WorldWideScience

Sample records for flavor compound s-linalool

  1. Volatile flavor compounds in yogurt: a review.

    Science.gov (United States)

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  2. Flavor release and perception in hard candy: influence of flavor compound-flavor solvent interactions.

    Science.gov (United States)

    Schober, Amanda L; Peterson, Devin G

    2004-05-05

    The release kinetics of l-menthol dissolved in propylene glycol (PG), Miglyol, or 1,8-cineole (two common odorless flavor solvents differing in polarity and a hydrophobic flavor compound) were monitored from a model aqueous system via atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Breath analysis was also conducted via APCI-MS to monitor release of l-menthol from hard candy that used PG and Miglyol for l-menthol incorporation. The quantities of l-menthol released when dissolved in PG or Miglyol from the model aqueous system were found to be similar and overall significantly greater in comparison to when dissolved in 1,8-cineole. Analogous results were reported by the breath analysis of hard candy. The release kinetics of l-menthol from PG or Miglyol versus from 1,8-cineole were notably more rapid and higher in quantity. Results from the sensory time-intensity study also indicated that there was no perceived difference in the overall cooling intensity between the two flavor solvent delivery systems (PG and Miglyol).

  3. Food emulsions as delivery systems for flavor compounds: A review.

    Science.gov (United States)

    Mao, Like; Roos, Yrjö H; Biliaderis, Costas G; Miao, Song

    2017-10-13

    Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.

  4. Evaluation of anxiolytic potency of essential oil and S-(+-linalool from Cinnamomum osmophloeum ct. linalool leaves in mice

    Directory of Open Access Journals (Sweden)

    Bing-Ho Cheng

    2015-01-01

    Full Text Available Cinnamomum osmophloeum ct. linalool (土肉桂 tǔ ròu guì is one chemotype of the indigenous cinnamons in Taiwan. This study examined the anxiolytic potency of leaf essential oil (LEO from C. osmophloeum ct. linalool and its main constituent on 4-week ICR mice using an open field test (OFT, a light–dark test (LDT and an elevated plus maze test (EPT. After oral administration of corn oil, LEO (250 mg/kg and 500 mg/kg, S-(+-linalool (500 mg/kg, R-(−-linalool (500 mg/kg, and trazodone hydrochloride (75 mg/kg for 14 days, the anxiolytic effects on mice behavior were evaluated. The results showed that LEO from C. osmophloeum ct. linalool leaves and S-(+-linalool can significantly increase the time mice remained in the center area of the OFT, the illuminated area of the LDT and the open arms of the EPT without any side effects affecting motor activity, indicating excellent anxiolytic responses. Furthermore, results from the measurements of monoamines in mice brain revealed decreases in serotonin, dopamine, and norepinephrine, which are consistent with their anxiolytic effects in animal models. The findings obtained suggest that LEO from C. osmophloeum ct. linalool and its major compound, S-(+-linalool, possess anxiolytic properties without any side effects and thus support their potential use in treatment of anxiety disorders.

  5. Associations of Volatile Compounds with Sensory Aroma and Flavor: The Complex Nature of Flavor

    Directory of Open Access Journals (Sweden)

    Edgar Chambers IV

    2013-04-01

    Full Text Available Attempts to relate sensory analysis data to specific chemicals such as volatile compounds have been frequent. Often these associations are difficult to interpret or are weak in nature. Although some difficulties may relate to the methods used, the difficulties also result from the complex nature of flavor. For example, there are multiple volatiles responsible for a flavor sensation, combinations of volatiles yield different flavors than those expected from individual compounds, and the differences in perception of volatiles in different matrices. This review identifies some of the reasons sensory analysis and instrumental measurements result in poor associations and suggests issues that need to be addressed in future research for better understanding of the relationships of flavor/aroma phenomena and chemical composition.

  6. Current knowledge of soft cheeses flavor and related compounds.

    Science.gov (United States)

    Sablé, S; Cottenceau, G

    1999-12-01

    Cheese aroma is the result of the perception of a large number of molecules belonging to different chemical classes. The volatile compounds involved in the soft cheese flavor have received a great deal of attention. However, there has been less work concerning the volatile compounds in the soft smear-ripened cheeses than in the mold-ripened cheeses. This paper reviews the components that contribute to the characteristic flavor in the soft cheeses such as surface-ripened, Camembert-type, and Blue cheeses. The sensory properties and quantities of the molecules in the different cheeses are discussed.

  7. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies.

    Science.gov (United States)

    Blanco, Carlos A; Andrés-Iglesias, Cristina; Montero, Olimpio

    2016-06-10

    Beer consumers are accustomed to a product that offers a pleasant and well-defined taste. However, in alcohol-free and alcohol-reduced beers these characteristics are totally different from those in regular beer. Therefore, it is important to evaluate and determine the different flavor compounds that affect organoleptic characteristics to obtain a product that does not contain off-flavors, or taste of grass or wort. The taste defects in alcohol-free beer are mainly attributed to loss of aromatic esters, insufficient aldehydes, reduction or loss of different alcohols, and an indeterminate change in any of its compounds during the dealcoholization process. The dealcoholization processes that are commonly used to reduce the alcohol content in beer are shown, as well as the negative consequences of these processes to beer flavor. Possible strategies to circumvent such negative consequences are suggested.

  8. Formation of Flavor Compounds by Amino Acid Catabolism in Cheese (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

  9. Rejection thresholds in solid chocolate-flavored compound coating.

    Science.gov (United States)

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2012-10-01

    Classical detection thresholds do not predict liking, as they focus on the presence or absence of a sensation. Recently however, Prescott and colleagues described a new method, the rejection threshold, where a series of forced choice preference tasks are used to generate a dose-response function to determine hedonically acceptable concentrations. That is, how much is too much? To date, this approach has been used exclusively in liquid foods. Here, we determined group rejection thresholds in solid chocolate-flavored compound coating for bitterness. The influences of self-identified preferences for milk or dark chocolate, as well as eating style (chewers compared to melters) on rejection thresholds were investigated. Stimuli included milk chocolate-flavored compound coating spiked with increasing amounts of sucrose octaacetate, a bitter and generally recognized as safe additive. Paired preference tests (blank compared to spike) were used to determine the proportion of the group that preferred the blank. Across pairs, spiked samples were presented in ascending concentration. We were able to quantify and compare differences between 2 self-identified market segments. The rejection threshold for the dark chocolate preferring group was significantly higher than the milk chocolate preferring group (P= 0.01). Conversely, eating style did not affect group rejection thresholds (P= 0.14), although this may reflect the amount of chocolate given to participants. Additionally, there was no association between chocolate preference and eating style (P= 0.36). Present work supports the contention that this method can be used to examine preferences within specific market segments and potentially individual differences as they relate to ingestive behavior. This work makes use of the rejection threshold method to study market segmentation, extending its use to solid foods. We believe this method has broad applicability to the sensory specialist and product developer by providing a

  10. Identification of flavor compounds and enhancement of flavor characteristics in space foods

    International Nuclear Information System (INIS)

    Jo, Cheorun; Yun, Hyejeong; Jung, Samooel; Jung, Yeonkook; Lee, Hyeonjeong

    2010-12-01

    To minimize the deterioration of sensorial quality of irradiated bulgogi and dakgalbi, the microbial safety and volatiles were examined. The total aerobic bacterial population of dakgalbi was eliminated by 40 kGy of irradiation, But, the lipid oxidation and the contents of volatile basic nitrogen were significantly increased by 40 kGy of irradiation, and off-flavor was significantly higher in irradiated sample. The amount of volatile compounds was increased by irradiation including hexane, heptane, propanal, hexanal, pentanal, and nonanal Totally 7 natural materials and red wine were added into ground beef for manufacturing bulgogi and evaluated the relative radiation sensitivity (RRS) against Salmonella typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. When garlic, onion, or red wine were added into the ground beef with concentrations 1 to 5%, the RRS increased significantly. Also, garlic or onion used as ingredient of dakalbi significantly increased RRS against Escherichia coli, Listeria monocytohenes garlic or red wine were selected to increase of RRS and combined with charcoal packaging to reduce the off-odor of ground beef by irradiation. The combination treatment of garlic or red wine with charcoal packaging reduced the total volatile compounds. Sensory evaluation confirmed that the use of combination treatment of natural materials with charcoal packaging enhance the sensorial quality of ground beef. As the result, it is possible to reduce the required irradiation dose by increasing RRS, which can minimize sensory deterioration of the products. And, charcoal packaging can reduce sensory deterioration

  11. Identification of flavor compounds and enhancement of flavor characteristics in space foods

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Cheorun; Yun, Hyejeong; Jung, Samooel; Jung, Yeonkook; Lee, Hyeonjeong [Chungnam National University, Daejeon (Korea, Republic of)

    2010-12-15

    To minimize the deterioration of sensorial quality of irradiated bulgogi and dakgalbi, the microbial safety and volatiles were examined. The total aerobic bacterial population of dakgalbi was eliminated by 40 kGy of irradiation, But, the lipid oxidation and the contents of volatile basic nitrogen were significantly increased by 40 kGy of irradiation, and off-flavor was significantly higher in irradiated sample. The amount of volatile compounds was increased by irradiation including hexane, heptane, propanal, hexanal, pentanal, and nonanal Totally 7 natural materials and red wine were added into ground beef for manufacturing bulgogi and evaluated the relative radiation sensitivity (RRS) against Salmonella typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. When garlic, onion, or red wine were added into the ground beef with concentrations 1 to 5%, the RRS increased significantly. Also, garlic or onion used as ingredient of dakalbi significantly increased RRS against Escherichia coli, Listeria monocytohenes garlic or red wine were selected to increase of RRS and combined with charcoal packaging to reduce the off-odor of ground beef by irradiation. The combination treatment of garlic or red wine with charcoal packaging reduced the total volatile compounds. Sensory evaluation confirmed that the use of combination treatment of natural materials with charcoal packaging enhance the sensorial quality of ground beef. As the result, it is possible to reduce the required irradiation dose by increasing RRS, which can minimize sensory deterioration of the products. And, charcoal packaging can reduce sensory deterioration

  12. The Impact of Simple Phenolic Compounds on Beer Aroma and Flavor

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2018-03-01

    Full Text Available Beer is a complex beverage containing a myriad of flavor- and aroma-active compounds. Brewers strive to achieve an appropriate balance of desired characters, while avoiding off-aromas and flavors. Phenolic compounds are always present in finished beer, as they are extracted from grains and hops during the mashing and brewing process. Some of these compounds have little impact on finished beer, while others may contribute either desirable or undesirable aromas, flavors, and mouthfeel characteristics. They may also contribute to beer stability. The role of simple phenolic compounds on the attributes of wort and beer are discussed.

  13. Analysis of flavor-related compounds from tabacco using SPME-GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.B.; Lee, S.G. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2001-04-01

    The flavor-related compounds contained in tobacco were analyzed by selected ion monitoring (SIM) method using headspace SPME gas chromatography-mass spectrometry (GC-MS). Flavor-related compounds were estragole, pulegone, trans-anethole, safrole, piperonal, eugenol, methyleugenol, coumarin, trans-isoeugenol, trans-methyleugenol and myristicin More than one of the flavor-related compounds were detected in the range of 0.001-1.3 {mu}g/g from all brands of tobacco studied. The recovery was ranged from 89.1 to 102.9% and relative standard deviation was ranged from 2.6 to 25.2%. (author). 19 refs., 4 tabs., 2 figs.

  14. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping.

    Science.gov (United States)

    Khlystov, Andrey; Samburova, Vera

    2016-12-06

    The growing popularity of electronic cigarettes (e-cigarettes) raises concerns about the possibility of adverse health effects to primary users and people exposed to e-cigarette vapors. E-Cigarettes offer a very wide variety of flavors, which is one of the main factors that attract new, especially young, users. How flavoring compounds in e-cigarette liquids affect the chemical composition and toxicity of e-cigarette vapors is practically unknown. Although e-cigarettes are marketed as safer alternatives to traditional cigarettes, several studies have demonstrated formation of toxic aldehydes in e-cigarette vapors during vaping. So far, aldehyde formation has been attributed to thermal decomposition of the main components of e-cigarette e-liquids (propylene glycol and glycerol), while the role of flavoring compounds has been ignored. In this study, we have measured several toxic aldehydes produced by three popular brands of e-cigarettes with flavored and unflavored e-liquids. We show that, within the tested e-cigarette brands, thermal decomposition of flavoring compounds dominates formation of aldehydes during vaping, producing levels that exceed occupational safety standards. Production of aldehydes was found to be exponentially dependent on concentration of flavoring compounds. These findings stress the need for a further, thorough investigation of the effect of flavoring compounds on the toxicity of e-cigarettes.

  15. Bromofenóis simples relacionados ao "flavor" de organismos marinhos Brominated phenols as key flavor compounds found in marine organisms

    Directory of Open Access Journals (Sweden)

    Vilma Mota da Silva

    2007-06-01

    Full Text Available The perception of the flavor is an important attribute of quality in marine fish and other seafoods, being the first and main factor of discrimination for the evaluation, later acceptance and preference of the product by the consumer. Recently, the simple bromophenols have been considered an important group of key flavor compounds occurring in a wide variety of seafood species like fishes, mollusks, crustaceans and algae. When present in high concentration, in seafood, the bromophenols produce an undesirable flavor and are associated with inferior quality. Meanwhile, when present in low concentration levels (for example ng g-1 these compounds produce a desirable marine - or ocean-like - flavor and enhance the existing flavor in seafood. Indeed, simple bromophenols are widespread in seafood but virtually absent in freshwater fish. Herein we present a review on these flavor components found in the marine environment.

  16. Quantitation of (R)- and (S)-linalool in beer using solid phase microextraction (SPME) in combination with a stable isotope dilution assay (SIDA).

    Science.gov (United States)

    Steinhaus, Martin; Fritsch, Helge T; Schieberle, Peter

    2003-11-19

    A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.

  17. Expression of Clarkia S-linalool synthase in transgenic petunia plant results in the accumulation of S-linalyl-b-D-glucopyranoside

    NARCIS (Netherlands)

    Lücker, J.; Bouwmeester, H.J.; Schwab, W.; Blaas, J.; Plas, van der L.H.W.; Verhoeven, H.A.

    2001-01-01

    Petunia hybrida W115 was transformed with a Clarkia breweri S-linalool synthase cDNA (lis). Lis was expressed in all tissues analysed, and linalool was detected in leaves, sepals, corolla, stem and ovary, but not in nectaries, roots, pollen and style. However, the S-linalool produced by the plant in

  18. Flavor and taste compounds analysis in Chinese solid fermented ...

    African Journals Online (AJOL)

    A total of 82 kinds of volatile compounds were identified, including alcohols, acids, esters, aldehydes, ketones, phenols, heterocyclic compounds, alkynes and benzenes. The subtle aroma of the soy sauce seemed to depend not only on particular key compounds but also on a “critical balance” or a “weighted concentration

  19. Characterizing endogenous and oxidative low molecular weight flavor/aroma compounds in fresh squeezed/blended pomegranate juice.

    Science.gov (United States)

    Little published information exists regarding flavor and aroma compounds in pomegranate (Punica granatum) juices. Although, arils have fruity and sweet characteristics, we found no publications describing volatile and semi-volatile compounds responsible for their typical flavor. Only two reports w...

  20. Flavor of roasted peanuts (Arachis hypogaea) - Part II: Correlation of volatile compounds to sensory characteristics

    NARCIS (Netherlands)

    Lykomitros, Dimitrios; Fogliano, Vincenzo; Capuano, Edoardo

    2016-01-01

    Flavor and color of roasted peanuts are important research areas due to their significant influence on consumer preference. The aim of the present study was to explore correlations between sensory attributes of peanuts, volatile headspace compounds and color parameters. Different raw peanuts were

  1. Modification of ginseng flavors by bitter compounds found in chocolate and coffee.

    Science.gov (United States)

    Sook Chung, Hee; Lee, Soo-Yeun

    2012-06-01

    Ginseng is not widely accepted by U.S. consumers due to its unfamiliar flavors, despite its numerous health benefits. Previous studies have suggested that the bitter compounds in chocolate and coffee may mask the off-flavors of ginseng. The objectives of this study were to: (1) profile sensory characteristics of ginseng extract solution, caffeine solution, cyclo (L-Pro-L-Val) solution, theobromine solution, and 2 model solutions simulating chocolate bitterness; and (2) determine the changes in the sensory characteristics of ginseng extract solution by the addition of the bitter compounds found in chocolate and coffee. Thirteen solutions were prepared in concentrations similar to the levels of the bitter compounds found in coffee and chocolate products. Twelve panelists participated in a descriptive analysis panel which included time-intensity ratings. Ginseng extract was characterized as sweeter, starchier, and more green tea than the other sample solutions. Those characteristics of ginseng extract were effectively modified by the addition of caffeine, cyclo (L-Pro-L-Val), and 2 model solutions. A model solution simulating dark chocolate bitterness was the least influenced in intensities of bitterness by the addition of ginseng extract. Results from time-intensity ratings show that the addition of ginseng extract increased duration time in certain bitterness of the 2 model solutions. Bitter compounds found in dark chocolate could be proposed to effectively mask the unique flavors of ginseng. Future studies blending aroma compounds of chocolate and coffee into such model solutions may be conducted to investigate the influence on the perception of the unique flavors through the congruent flavors. © 2012 Institute of Food Technologists®

  2. Autolysis of Aspergillus oryzae Mycelium and Effect on Volatile Flavor Compounds of Soy Sauce.

    Science.gov (United States)

    Xu, Ning; Liu, Yaqi; Hu, Yong; Zhou, Mengzhou; Wang, Chao; Li, Dongsheng

    2016-08-01

    The autolyzed mycelia of Aspergillus oryzae are rich in proteins, nucleic acids, sugar, and other biomacromolecules, and are one of the main contributors to the flavor profile of commercially important fermented goods, including soy sauce and miso. We induced autolysis of the mycelia of A. oryzae over 1 to 10 d, and found that the maximum dissolved amounts of total protein and nucleic acid ratio accounted for 28.63% and 88.93%, respectively. The organic acid content, such as citric acid, tartaric acid, succinic acid, lactic acid, and acetic acid, initially increased and then decreased as autolysis progressed, corresponding to changes in pH levels. The main characteristic flavor compounds in soy sauce, namely, ethanol, 2-phenylethanol, and 2-methoxy-4-vinylphenol, were all detected in the autolysate. Subsequently, we tested the effect of adding mycelia of A. oryzae during the fermentation process of soy sauce for 60 d, and found that addition of 1.2‰ A. oryzae mycelia provided the richest flavor. Overall, our findings suggest that compounds found in the autolysate of A. oryzae may promote the flavor compounds of soy sauce, such as alcohols, aldehydes, phenols, and esters. © 2016 Institute of Food Technologists®

  3. [Synthesis and regulation of flavor compounds derived from brewing yeast: Esters].

    Science.gov (United States)

    Loviso, Claudia L; Libkind, Diego

    2018-04-04

    During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product. Copyright © 2018 The Authors. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  5. [Determination of flavor compounds in foxtail millet wine by gas chromatography-mass spectrometry coupled with headspace solid phase microextraction].

    Science.gov (United States)

    Liu, Jingke; Zhang, Aixia; Li, Shaohui; Zhao, Wei; Zhang, Yuzong; Xing, Guosheng

    2017-11-08

    To comprehensively understand flavor compounds and aroma characteristics of foxtail millet wine, extraction conditions were optimized with 85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm carboxen (CAR)/PDMS and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers. The flavor compounds in foxtail millet wine were investigated by gas chromatography-mass spectrometry (GC-MS) coupled with headspace solid phase microextraction (HS-SPME), and the odor characteristics and intensity were analyzed by odor active values (OAVs). The samples of 8 mL were placed in headspace vials with 1.5 g NaCl, then the headspace vials were heated at 60℃ for 40 min. Using HS-SPME with different fibers, a total of 55 flavor compounds were identified from the samples, including alcohols, esters, benzene derivatives, hydrocarbons, acids, aldehydes, ketones, terpenes, phenols and heterocycle compounds. The main flavor compounds were alcohols compounds. According to their OAVs, phenylethyl alcohol, styrene, 1-methyl-naphthalene, 2-methyl-naphthalene, benzaldehyde, benzeneacetaldehyde and 2-methoxy-phenol were established to be odor-active compounds. Phenylethyl alcohol and benzeneacetaldehyde were the most prominent odor-active compounds. PA and PDMS fibers had good extraction effect for polar and nonpolar compounds, respectively. CAR/PDMS and DVB/CAR/PDMS provided a similar compounds profile for moderate polar compounds. This research comprehensively determined flavor compounds of foxtail millet wine, and provided theoretical basis for product development and quality control.

  6. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

    Science.gov (United States)

    Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-07-01

    Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®

  7. SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.

    Science.gov (United States)

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F

    2016-02-01

    Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information. © 2016 Institute of Food Technologists®

  8. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  9. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  10. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2012-03-01

    Full Text Available The organic volatile flavor compounds in fermented stinky tofu (FST were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  11. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.

    Science.gov (United States)

    Neiens, Silva D; Steinhaus, Martin

    2018-02-14

    The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.

  12. Effect of Selected Mercapto Flavor Compounds on Acrylamide Elimination in a Model System

    Directory of Open Access Journals (Sweden)

    Zhiyong Xiong

    2017-05-01

    Full Text Available The effect of four mercapto flavor compounds (1,2-ethanedithiol, 1-butanethiol, 2-methyl-3-furanthiol, and 2-furanmethanethiol on acrylamide elimination were investigated in model systems. The obtained results showed that mercaptans assayed were effective in elimination arylamide in a model system. Their reactivities for decreasing acrylamide content depended on mercaptan’s molecular structure and acrylamide disappearance decreased in the following order: 1,2-ethanedithiol > 2-methyl-3-furanthiol > 1-butanethiol > 2-furanmethanethiol. Mercaptans were added to acrylamide to produce the corresponding 3-(alkylthio propionamides. This reaction was irreversible and only trace amounts of acrylamide were formed by thermal heating of 3-(alkylthio propanamide. Although a large amount disappeared, only part of the acrylamide conversed into 3-(alkylthio propionamides. All of these results constitute a fundamental proof of the complexity of the reactions involved in the removal of free acrylamide in foods. This implies mercapto flavor/aroma may directly or indirectly reduce the level of acrylamide in food processing. This study could be regarded as a pioneer contribution on acrylamide elimination in a model system by the addition of mercapto flavor compounds.

  13. Relationship Between Consumer Acceptability and Pungency-Related Flavor Compounds of Vidalia Onions.

    Science.gov (United States)

    Kim, Ha-Yeon; Jackson, Daniel; Adhikari, Koushik; Riner, Cliff; Sanchez-Brambila, Gabriela

    2017-10-01

    A consumer study was conducted to evaluate preferences in Vidalia onions, and define consumer acceptability thresholds for commonly analyzed flavor compounds associated with pungency. Two varieties of Vidalia onions (Plethora and Sapelo Sweet) were grown at 3 fertilizer application rates (37.5 and 0; 134.5 and 59.4; and 190 and 118.8 kg/ha of nitrogen and sulfur, respectively), creating 6 treatments with various flavor attributes to use in the study. Bulb soluble solids, sugars, pyruvic acid, lachrymatory factor (LF; propanethial S-oxide), and methyl thiosulfinate (MT) content were determined and compared to sensory responses for overall liking, intensity of the sharp/pungent/burning sensation (SPB), and intent to buy provided by 142 consumers. Onion pyruvate, LF, MT, and sugar content increased as fertilization rate increased, regardless of onion variety. Consumer responses showed participants preferred onions with low SPB, which correlated positively to lower pyruvate, LF and MT concentrations, but showed no relationship to total sugars in the onion bulb. Regression analyses revealed that the majority of consumers (≥55%) found the flavor of Vidalia onions acceptable when the concentrations of LF, pyruvic acid, and MT within the bulbs were below 2.21, 4.83, and 0.43 nmol/mL, respectively. These values will support future studies aimed at identifying the optimal cultivation practices for production of sweet Vidalia onions, and can serve as an industry benchmark for quality control, thus ensuring the flavor of Vidalia onions will be acceptable to the majority of consumers. This study identified the relationship between consumer preferences and commonly analyzed flavor compounds in Vidalia onions, and established thresholds for these compounds at concentrations which the majority of consumers will find desirable. These relationships and thresholds will support future research investigating how cultural practices impact onion quality, and can be used to assist

  14. The analysis of aroma/flavor compounds in green tea using ice concentration linked with extractive stirrer.

    Science.gov (United States)

    Alluhayb, Abdullah H; Logue, Brian A

    2017-10-06

    Worldwide, green tea is one of the most popular beverages. It promotes blood circulation, liver function, and lowers the risk of cancer and cardiovascular diseases. This drink is characterized by the distinctive odors and flavors produced by its constituent compounds, with its value predicated on the amount and type of constituents extracted from the tea leaves during brewing. Ice concentration linked with extractive stirrer (ICECLES) is a novel sample preparation technique, especially applicable for the extraction of relatively polar compounds while retaining excellent extraction efficiencies for non-polar compounds. In this study, ICECLES was used to prepare green tea for analysis of aroma/flavor compounds by gas chromatography-mass spectrometry (GC-MS). ICECLES performed very well, revealing 301 constituents as compared to 245 for SBSE (i.e., 56 more constituents were detected via ICECLES). Moreover, ICECLES produced stronger signal to noise ratios for all except 4 of 301 constituents, with a maximum signal enhancement of 19. Of the constituents which were only detectable using ICECLES, some very important aroma/flavor and/or medicinal compounds were easily identified, including furfural, furfural alcohol, maltol, eugenol, 2-methylpyrazine, phenethyl alcohol, 2,6-dimethoxyphenol, and α-terpineol. Overall, we confirmed that ICECLES sample preparation followed by GC-MS consistently allowed more complete green tea aroma/flavor analysis, especially for relatively polar compounds, some of which are critical for flavor quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis and Odor Evaluation of Five New Sulfur-Containing Ester Flavor Compounds from 4-Ethyloctanoic Acid

    Directory of Open Access Journals (Sweden)

    Baoguo Sun

    2010-07-01

    Full Text Available Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthiopropyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds all have meaty odor and might be used in foods if approved for this purpose in the future.

  16. Synthesis and odor evaluation of five new sulfur-containing ester flavor compounds from 4-ethyloctanoic acid.

    Science.gov (United States)

    Liu, Yuping; Chen, Haitao; Yin, Decai; Sun, Baoguo

    2010-07-29

    Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthio)propyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds all have meaty odor and might be used in foods if approved for this purpose in the future.

  17. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes.

    Science.gov (United States)

    Lee, Mi-Sun; LeBouf, Ryan F; Son, Youn-Suk; Koutrakis, Petros; Christiani, David C

    2017-04-27

    We aimed to assess the content of electronic cigarette (EC) emissions for five groups of potentially toxic compounds that are known to be present in tobacco smoke: nicotine, particles, carbonyls, volatile organic compounds (VOCs), and trace elements by flavor and puffing time. We used ECs containing a common nicotine strength (1.8%) and the most popular flavors, tobacco and menthol. An automatic multiple smoking machine was used to generate EC aerosols under controlled conditions. Using a dilution chamber, we targeted nicotine concentrations similar to that of exposure in a general indoor environment. The selected toxic compounds were extracted from EC aerosols into a solid or liquid phase and analyzed with chromatographic and spectroscopic methods. We found that EC aerosols contained toxic compounds including nicotine, fine and nanoparticles, carbonyls, and some toxic VOCs such as benzene and toluene. Higher mass and number concentrations of aerosol particles were generated from tobacco-flavored ECs than from menthol-flavored ECs. We found that diluted machine-generated EC aerosols contain some pollutants. These findings are limited by the small number of ECs tested and the conditions of testing. More comprehensive research on EC exposure extending to more brands and flavor compounds is warranted.

  18. Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate.

    Science.gov (United States)

    Arsa, Supeeraya; Theerakulkait, Chockchai

    2018-02-19

    Rice bran is a by-product obtained from the rice milling industry. The aims of this research were to add value to rice bran by preparation of enzymatic hydrolyzed rice bran protein concentrate (HRPC) as a flavoring agent and the flavoring which was produced by HRPC has not been investigated. Different drying methods (freeze-drying and spray-drying) and fructose additions were studied for improvement of rice bran protein sensorial aroma characteristics. The most abundant amino acids in liquid HRPC (LH) were glutamic acid, arginine, aspartic acid and leucine. The intensity of desirable aromas, such as cereal-like, nut-like, milk-powder-like, sweet, and cocoa-like aroma, were higher in spray-dried HRPC powder (SHP) than in LH and freeze-dried HRPC. Volatile compounds, such as aldehydes, pyrazines and ketones, were significantly increased in HRPC powders in which fructose was added before spray-drying (SHP-F). Higher amounts of 2-methylbutanal, 3-methylbutanal, phenylacetaldehyde, 2,5-dimethylpyrazine, vanillin, 2-acetylpyrrole and maltol were detected in SHP-F. Moreover, these compounds had high odor active values, which accounted for the cocoa-like, sweet, nut-like, and milk-powder-like characteristics of SHP-F. These findings could lead to the creation of desirable aroma characteristics of rice bran protein concentrate by different preparation methods. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation.

    Science.gov (United States)

    Andrés-Iglesias, Cristina; García-Serna, Juan; Montero, Olimpio; Blanco, Carlos A

    2015-10-01

    The coupled operation of vacuum distillation process to produce alcohol free beer at laboratory scale and Aspen HYSYS simulation software was studied to define the chemical changes during the dealcoholization process in the aroma profiles of 2 different lager beers. At the lab-scale process, 2 different parameters were chosen to dealcoholize beer samples, 102mbar at 50°C and 200mbar at 67°C. Samples taken at different steps of the process were analyzed by HS-SPME-GC-MS focusing on the concentration of 7 flavor compounds, 5 alcohols and 2 esters. For simulation process, the EoS parameters of the Wilson-2 property package were adjusted to the experimental data and one more pressure was tested (60mbar). Simulation methods represent a viable alternative to predict results of the volatile compound composition of a final dealcoholized beer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enantiomeric distribution of major chiral volatile organic compounds in juniper-flavored distillates.

    Science.gov (United States)

    Pažitná, Alexandra; Spánik, Ivan

    2014-02-01

    The enantiomeric ratios of chiral volatile organic compounds in juniper-flavored spirits produced by various processing technologies in different EU countries were determined by multidimensional GC using solid-phase microextraction and liquid-liquid extraction as a sample pretreatment procedure. In total, more than 260 compounds were detected in studied spirits from which linalool, α-terpineol, 4-terpineol, linalool oxides, α-pinene, and verbenone were selected for enantiomeric separation. The significant differences in enantiomeric ratio of linalool and cis-linalool oxide allowed us to distinguish between samples produced in Slovakia and the United Kingdom from those produced in Germany, Czech Republic, and Belgium. The pure enantiomer of trans-linalool oxide was found only in samples from Germany. It was shown that the enantiomeric ratio is independent of the sample treatment procedure, and only small differences up to 1% were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analyzing the flavor compounds in Chinese traditional fermented shrimp pastes by HS-SPME-GC/MS and electronic nose

    Science.gov (United States)

    Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu

    2017-04-01

    Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.

  2. Search for compounds contributing to onion-like off-flavor in beer and investigation of the cause of the flavor.

    Science.gov (United States)

    Noba, Shigekuni; Yako, Nana; Kobayashi, Minoru; Masuda, Susumu; Watanabe, Tetsuya

    2017-10-01

    Onion-like off-flavor is a highly undesirable property in beer. Although several compounds that impart onion-like odors have been identified, the individual contribution of these compounds to the onion-like off-flavor in beer is not clear. In the present study, we searched for compounds that impart an onion-like odor by gas chromatography (GC)-olfactometry. The analysis of several types of beer revealed that 2-mercapto-3-methyl-1-butanol (2M3MB) and 3-mercapto-3-methyl-1-butanol (3M3MB) were possible causative compounds. Based on the difference threshold values in beer (0.13 ng/mL for 2M3MB and 17.5 ng/mL for 3M3MB) and the quantification values of these compounds in beer samples, only 2M3MB was considered to contribute to the onion-like off-flavor in beer. A further formation factor analysis of 2M3MB revealed that 2M3MB was formed in hopped wort after fermentation, and that the concentration of 2M3MB increased following the hot aeration treatment of wort. These results suggest that preventing the hot aeration of wort is a key factor for reducing 2M3MB levels in beer. In a previous report, 3-methyl-2-buten-1-ol (3MBol) was speculated to be the precursor of 2M3MB and 3M3MB; however, the results of the present quantification analysis and wort addition tests indicate that 3MBol did not contribute to the formation of 2M3MB in the brewing process and that unknown precursors of 2M3MB originated in wort. Identifying the precursor of 2M3MB may facilitate elucidation of the mechanism of 2M3MB formation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Influence of pulsed electric field on enzymes, bacteria and volatile flavor compounds of unpasteurized sake

    Science.gov (United States)

    Takamasa, OKUMURA; Taro, YAEGASHI; Takahiro, FUJIWARA; Katsuyuki, TAKAHASHI; Koichi, TAKAKI; Tomo, KUDO

    2018-04-01

    A pulsed electric field (PEF) was applied to unpasteurized sake at constant temperatures, at which α-amylase was not inactivated. We adjusted the input energy to be identical for the temperatures by changing the number of PEF application, because the current significantly increased with the temperature, even the amplitude of the applied voltage was identical. As a result, the α-amylase was seemed to be inactivated by PEF application, not due to thermal effect. The glucoamylase was significantly inactivated by PEF. Moreover, the acid carboxypeptidase was inactivated by PEF at 4 °C but significantly activated at 25 °C. These results show that the sensitivity of enzyme to PEF application differs depending on the types of enzyme and treatment temperature. On the other hand, the colony number of bacteria was remarkably decreased, but the amount of the volatile flavor compounds was not decreased by PEF application.

  4. Changes in Volatile Compounds of Chinese Luzhou-Flavor Liquor during the Fermentation and Distillation Process.

    Science.gov (United States)

    Ding, Xiaofei; Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2015-11-01

    The aim of this study was to investigate the dynamic of volatile compounds in the Zaopei during the fermentation and distillation process by headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Physicochemical properties analysis of Zaopei (fermented grains [FG], fermented grains mixed with sorghum [FGS], streamed grains [SG], and streamed grains mixed with Daqu [SGD]) showed distinct changes. A total number of 66 volatile compounds in the Zaopei were identified, in which butanoic acid, hexanoic acid, ethyl hexanoate, ethyl lactate, ethyl octanoate, hexyl hexanoate, ethyl hydrocinnamate, ethyl oleate, ethyl hexadecanoate, and ethyl linoleate were considered to be the dominant compounds due to their high concentrations. FG had the highest volatile compounds (112.43 mg/kg), which significantly decreased by 17.05% in the FGS, 67.12% in the SG, and 73.75% in the SGD. Furthermore, about 61.49% of volatile compounds of FGS were evaporated into raw liquor, whereas head, heart, and tail liquor accounted for 29.84%, 39.49%, and 30.67%, respectively. Each volatile class generally presented a decreasing trend, except for furans. Especially, the percentage of esters was 55.51% to 67.41% in the Zaopei, and reached 92.60% to 97.67% in the raw liquor. Principal component analysis based ordination of volatile compounds data segregated FGS and SGD samples. In addition, radar diagrams of the odor activity values suggested that intense flavor of fruit was weakened most from FG to SGD. The dynamic of volatile compounds in the Zaopei during the fermentation and distillation process was tested by SPME-GCMS. The result of this study demonstrated that both volatile compounds of Zaopei and thermal reaction during distillation simply determined the unique feature of raw liquor. This study was conducted based on the real products from liquor manufactory, so it is practicable that the method can be used in an industry setting. © 2015 Institute of Food

  5. Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages.

    Science.gov (United States)

    Ortega-Rivas, Enrique; Salmerón-Ochoa, Iván

    2014-01-01

    Food drinks are normally processed to increase their shelf-life and facilitate distribution before consumption. Thermal pasteurization is quite efficient in preventing microbial spoilage of many types of beverages, but the applied heat may also cause undesirable biochemical and nutritious changes that may affect sensory attributes of the final product. Alternative methods of pasteurization that do not include direct heat have been investigated in order to obtain products safe for consumption, but with sensory attributes maintained as unchanged as possible. Food scientists interested in nonthermal food preservation technologies have claimed that such methods of preserving foods are equally efficient in microbial inactivation as compared with conventional thermal means of food processing. Researchers in the nonthermal food preservation area also affirm that alternative preservation technologies will not affect, as much as thermal processes, nutritional and sensory attributes of processed foods. This article reviews research in nonthermal food preservation, focusing on effects of processing of food drinks such as fruit juices and dairy products. Analytical techniques used to identify volatile flavor-aroma compounds will be reviewed and comparative effects for both thermal and nonthermal preservation technologies will be discussed.

  6. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.

    Science.gov (United States)

    Simon, Oliver; Klaiber, Iris; Huber, Armin; Pfannstiel, Jens

    2014-09-23

    Understanding of the molecular response of bacteria to precursors, products and environmental conditions applied in bioconversions is essential for optimizing whole-cell biocatalysis. To investigate the molecular response of the potential biocatalyst Pseudomonas putida KT2440 to the flavor compound vanillin we applied complementary gel- and LC-MS-based quantitative proteomics approaches. Our comprehensive proteomics survey included cytoplasmic and membrane proteins and led to the identification and quantification of 1614 proteins, corresponding to 30% of the total KT2440 proteome. 662 proteins were altered in abundance during growth on vanillin as sole carbon source as compared to growth on glucose. The proteome response entailed an increased abundance of enzymes involved in vanillin degradation, significant changes in central energy metabolism and an activation of solvent tolerance mechanisms. With respect to vanillin metabolism, particularly enzymes belonging to the β-ketoadipate pathway including a transcriptional regulator and porins specific for vanillin uptake increased in abundance. However, catabolism of vanillin was not dependent on vanillin dehydrogenase (Vdh), as shown by quantitative proteome analysis of a Vdh-deficient KT2440 mutant (GN235). Other aldehyde dehydrogenases that were significantly increased in abundance in response to vanillin may replace Vdh and thus may represent interesting targets for improving vanillin production in P. putida KT2440. The high demand for the flavor compound vanillin by the food and fragrance industry makes natural vanillin from vanilla pods a scarce and expensive resource rendering its biotechnological production economically attractive. Pseudomonas bacteria are metabolically very versatile and accept a broad range of hydrocarbons as carbon source making them suitable candidates for bioconversion processes. This work describes the impact of vanillin on the metabolism of the reference strain P. putida KT2440 on a

  7. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce[Gamma irradiation; Fermented anchovy; Color; Flavor compounds; Electronic nose; Sensory evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo E-mail: mwbyun@kaeri.re.kr

    2004-02-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell.

  8. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Dan, Tong; Wang, Dan; Wu, Shimei; Jin, Rulin; Ren, Weiyi; Sun, Tiansong

    2017-09-29

    Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000) of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  9. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Tong Dan

    2017-09-01

    Full Text Available Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000 of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography–mass spectrometry (SPME-GC-MS against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.

  10. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.

    Science.gov (United States)

    Ong, Olivia X H; Seow, Yi-Xin; Ong, Peter K C; Zhou, Weibiao

    2015-09-01

    Application of high intensity ultrasound has shown potential in the production of Maillard reaction odor-active flavor compounds in model systems. The impact of initial pH, sonication duration, and ultrasound intensity on the production of Maillard reaction products (MRPs) by ultrasound processing in a cysteine-xylose model system were evaluated using Response Surface Methodology (RSM) with a modified mathematical model. Generation of selected MRPs, 2-methylthiophene and tetramethyl pyrazine, was optimal at an initial pH of 6.00, accompanied with 78.1 min of processing at an ultrasound intensity of 19.8 W cm(-2). However, identification of volatiles using gas chromatography-mass spectrometry (GC/MS) revealed that ultrasound-assisted Maillard reactions generated fewer sulfur-containing volatile flavor compounds as compared to conventional heat treatment of the model system. Likely reasons for this difference in flavor profile include the expulsion of H2S due to ultrasonic degassing and inefficient transmission of ultrasonic energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Volatile Compounds with Characteristic Odor of Essential Oil from Magnolia obovata Leaves by Hydrodistillation and Solvent-assisted Flavor Evaporation.

    Science.gov (United States)

    Miyazawa, Mitsuo; Nakashima, Yoshimi; Nakahashi, Hiroshi; Hara, Nobuyuki; Nakagawa, Hiroki; Usami, Atsushi; Chavasiri, Warinthorn

    2015-01-01

    The present study focuses on the volatile compounds with characteristic odor of essential oil from the leaves of Magnolia obovata by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) method. Eighty-seven compounds, representing 98.0% of the total oil, were identified using HD. The major compounds of HD oil were (E)-β-caryophyllene (23.7%), α-humulene (11.6%), geraniol (9.1%), and borneol (7.0%). In SAFE oil, fifty-eight compounds, representing 99.7% of the total oil, were identified. The main compounds of SAFE oil were (E)-β-caryophyllene (48.9%), α-humulene (15.7%), and bicyclogermacrene (4.2%). In this study, we newly identified eighty-five compounds of the oils from M. obovata leaves. These oils were also subjected to aroma evaluation by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). As a result, twenty-four (HD) and twenty-five (SAFE) aroma-active compounds were detected. (E)-β-Caryophyllene, α-humulene, linalool, geraniol, 1,8-cineole, and bicyclogermacrene were found to impart the characteristic odor of M. obovata leaves. These results imply that the oils of M. obovata leaves must be investigated further to clarify their potential application in the food and pharmaceutical industries.

  12. Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: a review.

    Science.gov (United States)

    Lasekan, Ola; Abbas, Kassim A

    2012-01-01

    The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed.

  13. Use of gas chromatography-mass spectrometry-olfactometry and a conventional flask test to identify off-flavor compounds generated from phenylalanine during chlorination of drinking water.

    Science.gov (United States)

    Matsushita, Taku; Sakuma, Miki; Tazawa, Shiori; Hatase, Taiki; Shirasaki, Nobutaka; Matsui, Yoshihiko

    2017-11-15

    Off-flavor in drinking water can be caused by transformation products (TPs) generated from organic compounds, such as amino acids, present during chlorination. However, the contributions of many of these TPs to overall off-flavor have not been quantified, mainly because the lack of appropriate chemical standards prevents sensory evaluation by means of a conventional flask test. In the present study, we used gas chromatography-mass spectrometry-olfactometry (GC-MS-O) to identify compounds responsible for the off-flavor generated by chlorination of an aqueous solution of the amino acid phenylalanine, and we propose a sensory evaluation procedure for quantification of the contributions of the identified TPs to the overall off-flavor, regardless of the availability of chemical standards of the TPs. GC-MS-O revealed that two TPs, N-chlorophenylacetaldimine and 2-chloro-2-phenylacetaldehyde, for which chemical standards are not commercially available, were the main components responsible for the off-flavor of the chlorinated solution. By using a sensory evaluation procedure involving a combination of GC-MS-O and a conventional flask test, we quantified the contributions of TPs to the overall off-flavor of the chlorinated solution. Approximately 60% of the off-flavor was attributable to free chlorine (13%), 2-chloro-2-phenylacetaldehyde (13%), trichloramine (12%) phenylacetaldehyde (11%) phenylacetonitrile (8%), and N-chlorophenylacetaldimine (2%). Treatment with powdered activated carbon (PAC) removed the off-flavor. Experiments with chlorination of 15 N-labeled phenylalanine suggested that PAC reductively decomposed trichloramine into N 2 gas and adsorbed all of the other identified TPs. Superfine PAC (median diameter, 0.7 μm) removed the off-flavor more rapidly than normal-size PAC (median diameter, 8.0 μm). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. De Novo Synthesis of Benzenoid Compounds by the Yeast Hanseniaspora vineae Increases the Flavor Diversity of Wines.

    Science.gov (United States)

    Martin, Valentina; Giorello, Facundo; Fariña, Laura; Minteguiaga, Manuel; Salzman, Valentina; Boido, Eduardo; Aguilar, Pablo S; Gaggero, Carina; Dellacassa, Eduardo; Mas, Albert; Carrau, Francisco

    2016-06-08

    Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.

  15. Tentative Identification of Volatile Flavor Compounds in Commercial Budu, a Malaysian Fish Sauce, Using GC-MS

    Directory of Open Access Journals (Sweden)

    Yazid Abdul Manap

    2012-05-01

    Full Text Available Budu is a famous Malaysian fish sauce, usually used as seasoning and condiment in cooking. Budu is produced by mixing fish and salt at certain ratio followed by fermentation for six months in closed tanks. In this study, four commercial brands of Budu were analyzed for their chemical properties (pH, salt content and volatile compounds. The pH of Budu samples ranged from 4.50–4.92, while the salt (NaCl content ranged between 11.80% and 22.50% (w/v. For tentative identification of volatile flavor compounds in Budu, two GC columns have been used, DB-WAX and HP-5MS. A total of 44 volatile compounds have been detected and 16 were common for both columns. 3-Methyl-1-butanol, 2-methylbutanal, 3-methylbutanal, dimethyl disulfide, 3-(methylthio-propanal, 3-methylbutanoic acid and benzaldehye have been identified as the aroma-active compounds in Budu due to their lower threshold values.

  16. Quantitative analysis by GC-MS/MS of 18 aroma compounds related to oxidative off-flavor in wines.

    Science.gov (United States)

    Mayr, Christine M; Capone, Dimitra L; Pardon, Kevin H; Black, Cory A; Pomeroy, Damian; Francis, I Leigh

    2015-04-08

    A quantitation method for 18 aroma compounds reported to contribute to "oxidative" flavor in wines was developed. The method allows quantitation of the (E)-2-alkenals ((E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal), various Strecker aldehydes (methional, 2-phenylacetaldehyde, 3-methylbutanal, and 2-methylpropanal), aldehydes (furfural, 5-methylfurfural, hexanal, and benzaldehyde), furans (sotolon, furaneol, and homofuraneol), as well as alcohols (methionol, eugenol, and maltol) in the same analysis. The aldehydes were determined after derivatization directly in the wine with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride; the formed oximes along with the underivatized aroma compounds were isolated by solid-phase extraction and analyzed by means of GC-MS/MS. The method was used to investigate the effect of different closures (synthetic closures, natural corks, and screw cap) on the formation of oxidation-related compounds in 14 year old white wine. Results showed a significant increase in the concentration of some of the monitored compounds in the wine, particularly methional, 2-phenylacetaldehyde, and 3-methylbutanal.

  17. Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC-MS combined with HS-SPME and discrimination with electronic nose.

    Science.gov (United States)

    Gao, Lihua; Liu, Ting; An, Xinjing; Zhang, Jinlan; Ma, Xiaoran; Cui, Jinmei

    2017-01-01

    Soy sauce contains a variety of volatiles that are highly valuable to its quality with regard to sensory characteristics. This paper describes the analysis of volatile compounds influencing the flavor quality of Chinese-type soy sauces. Gas chromatography-mass spectrometry (GC-MS) combined with headspace-solid phase microextraction and electronic nose (E-nose) were applied for identifying the volatile flavor compounds as well as determining their volatile profiles of 12 soy sauces manufactured by different fermentation process. Forty one key volatile components of these 12 soy sauce products, a pure soy sauce and an acid-hydrolyzed vegetable protein sample, were compared in semi-quantitative form, and their volatile flavor profiles were analyzed by E-nose. The substantially similar results between hierarchical cluster analysis based on GC-MS data and E-nose analysis suggested that both techniques may be useful in evaluating the flavor quality of soy sauces and differentiating soy sauce products. The study also showed that there were less volatile flavor compounds in soy sauces produced through low-salt solid-state fermentation process, a traditional manufacturing technology and a widely adopted technology in Chinese soy sauce industries. In addition, the investigation suggested that the flavor quality of soy sauce varied widely in Chinese domestic market, and that the present Chinese national standards of soy sauce should be further perfected by the addition of flavor grades of soy sauce in the physical and chemical index. Meanwhile, this research provided valuable information to manufacturers and government regulators, which have practical significance to improve quality of soy sauces.

  18. Effect of Gamma-Irradiation on the Volatile Flavor Compounds from Dried Ginger (Zingiber officinale Roscoe)

    International Nuclear Information System (INIS)

    No, K.M.; Seo, H.Y.; Gyawali, Rajendra; Shim, S.L.; Yang, S.H.; Lee, S.J.; Kim, K.S.

    2005-01-01

    The effect of gamma irradiation on volatile components of Korean dried ginger (Zingiber officinale Roscoe) was studied and compared with non-irradiated sample. Volatile compounds from non- and irradiated samples were extracted using simultaneous distillation-extraction (SDE) apparatus and analyzed by gas chromatography-mass spectrometer (GC/MS). A total of 83 and 71 compounds were identified and quantified from non-and irradiated dried ginger at dose of 10 kGy. Identified components were hydrocarbons, alcohols, aldehydes, esters, ketones and miscellaneous compounds

  19. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken.

    Science.gov (United States)

    Yan, Junshu; Liu, Peifeng; Xu, Liangmei; Huan, Hailin; Zhou, Weiren; Xu, Xiaoming; Shi, Zhendan

    2018-04-01

    The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.

  20. Maturity acceleration of Italian dried sausage by Staphylococcus carnosus - Relationship between maturity and flavor compounds

    DEFF Research Database (Denmark)

    Stahnke, Louise Heller; Holck, A.; Jensen, Anni

    2002-01-01

    . Sausages with S. carnosus 833 matured more than 2 wk faster than control sausages. Maturity correlated significantly with higher amounts of branched-chain aldehydes and alcohols and both branched- and straight-chain methyl ketones-compounds arising from the breakdown of the amino acids leucine, isoleucine...

  1. Effect of gamma-irradiation on flavor compounds of fresh mushrooms

    International Nuclear Information System (INIS)

    Mau, J.L.; Hwang, S.J.

    1997-01-01

    Fresh mushrooms (Agaricus bisporus) were gamma-irradiated with doses of 1,2, and 5 kGy. The volatile compounds were isolated using a Lickens-Nickerson apparatus and analyzed using gas chromatography and gas chromatography-mass spectrometry. The amount of total volatiles was greatly affected by the doses applied. The amounts of benzaldehyde and benzyl alcohol were not affected by gamma-irradiation and ranged from 8.94 to 11.79 and from 0.696 to 1.503 micrograms/g, respectively. The amounts of eight-carbon compounds decreased as the doses of gamma-irradiation increased, from 41.73 for the control (0 kGy) to 20.06 (1 kGy), 8.77 (2 kGy), and 4.04 micrograms/g (5 kGy irradiated mushrooms). The major eight-carbon compound was 1-octen-3-ol, and its amount decreased from 30.34 (the control) to 14.18 (1 kGy), 6.22 (2 kGy), and 2.92 micrograms/g (5 kGy)

  2. Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine.

    Science.gov (United States)

    Wang, Xu; Xie, Kelin; Zhuang, Haining; Ye, Ran; Fang, Zhongxiang; Feng, Tao

    2015-09-01

    The volatile compounds in gingko wine, a novel functional wine, were extracted by head-space solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) coupled with odor activity value (OAV) and relative odor contribution (ROC) analyses. In addition, the total polyphenolic content of gingko wine was determined using the Folin-Ciocalteu reagent, and its antioxidant capacity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Fifty-eight compounds were tentatively identified, including 13 esters, 10 alcohols, 11 acids, 12 carbonyl compounds, 2 lactones, 2 phenols, and 8 hydrocarbons. Ethyl hexanoate, ethyl pentanoate, nonanal, ethyl butyrate and ethyl heptanoate were the major contributors to the gingko wine aroma based on the results of OAV and ROC. The total phenols content of the gingko wine was 456 mg/L gallic acid equivalents, and its antioxidant capacity was higher than those of typical Chinese liquors analyzed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Characterization of Atypical Off-Flavor Compounds in Natural Cork Stoppers by Multidimensional Gas Chromatographic Techniques.

    Science.gov (United States)

    Slabizki, Petra; Fischer, Claus; Legrum, Charlotte; Schmarr, Hans-Georg

    2015-09-09

    Natural cork stoppers with sensory deviations other than the typical cork taint were subgrouped according to their sensory descriptions and compared with unaffected control cork stoppers. The assessment of purge and trap extracts obtained from corresponding cork soaks was performed by heart-cut multidimensional gas chromatography-olfactometry (MDGC-O). The identification of compounds responsible for atypical cork taint detected in MDGC-O was further supported with additional multidimensional GC analysis in combination with mass spectrometric detection. Geosmin and 2-methylisoborneol were mainly found in cork stoppers described as moldy and cellarlike; 3-isopropyl-2-methoxypyrazine and 3-isobutyl-2-methoxypyrazine were found in cork stoppers described with green attributes. Across all cork subgroups, the impact compound for typical cork taint, 2,4,6-trichloroanisole (TCA), was present and is therefore a good marker for cork taint in general. Another potent aroma compound, 3,5-dimethyl-2-methoxypyrazine (MDMP), was also detected in each subgroup, obviously playing an important role with regard to the atypical cork taint. Sensory deviations possibly affecting the wine could be generated by MDMP and its presence should thus be monitored in routine quality control.

  4. Flavor, fragrance, and odor analysis

    National Research Council Canada - National Science Library

    Marsili, Ray

    2012-01-01

    .... Written from a practical, problem-solving perspective, it discusses the chemical structures of key flavor and fragrance compounds, contains numerous examples and chromatograms, and emphasizes novel...

  5. Characterization and Assessment of Flavor Compounds and Some Allergens in Three Iranian Rice Cultivars during Gelatinization Process by HS-SPME/GC-MS

    Directory of Open Access Journals (Sweden)

    M. H. Givianrad

    2012-01-01

    Full Text Available A combined gas chromatography mass spectrometry with headspace solid-phase microextraction method has been utilized for the analysis of the flavor volatiles of three different rice cultivars including two modified Iranian rice cultivars and Hashemi rice cultivar during gelatinization. As a result, while gelatinization would progress, the amount of the volatile compounds would be also increased. Altogether, 74, 55 and 66 components were identified for Hashemi, HD5 and HD6 rice samples, respectively, which 56 unique compounds were not identified, previously. Subsequently, seven fragrance chemicals have been detected, which were most frequently reported as contact allergens in the European Union.

  6. Heavy flavors

    International Nuclear Information System (INIS)

    Cox, B.; Gilman, F.J.; Gottschalk, T.D.

    1986-11-01

    A range of issues pertaining to heavy flavors at the SSC is examined including heavy flavor production by gluon-gluon fusion and by shower evolution of gluon jets, flavor tagging, reconstruction of Higgs and W bosons, and the study of rare decays and CP violation in the B meson system. A specific detector for doing heavy flavor physics and tuned to this latter study at the SSC, the TASTER, is described. 36 refs., 10 figs

  7. Flavor Memory

    NARCIS (Netherlands)

    Mojet, Jos; Köster, Ep

    2016-01-01

    Odor, taste, texture, temperature, and pain all contribute to the perception and memory of food flavor. Flavor memory is also strongly linked to the situational aspects of previous encounters with the flavor, but does not depend on the precise recollection of its sensory features as in vision and

  8. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene.

    Science.gov (United States)

    Sharon-Asa, Liat; Shalit, Moshe; Frydman, Ahuva; Bar, Einat; Holland, Doron; Or, Etti; Lavi, Uri; Lewinsohn, Efraim; Eyal, Yoram

    2003-12-01

    Citrus fruits possess unique aromas rarely found in other fruit species. While fruit flavor is composed of complex combinations of soluble and volatile compounds, several low-abundance sesquiterpenes, such as valencene, nootkatone, alpha-sinensal, and beta-sinensal, stand out in citrus as important flavor and aroma compounds. The profile of terpenoid volatiles in various citrus species and their importance as aroma compounds have been studied in detail, but much is still lacking in our understanding of the physiological, biochemical, and genetic regulation of their production. Here, we report on the isolation, functional expression, and developmental regulation of Cstps1, a sesquiterpene synthase-encoding gene, involved in citrus aroma formation. The recombinant enzyme encoded by Cstps1 was shown to convert farnesyl diphosphate to a single sesquiterpene product identified as valencene by gas chromatography-mass spectrometry (GC-MS). Phylogenetic analysis of plant terpene synthase genes localized Cstps1 to the group of angiosperm sesquiterpene synthases. Within this group, Cstps1 belongs to a subgroup of citrus sesquiterpene synthases. Cstps1 was found to be developmentally regulated: transcript was found to accumulate only towards fruit maturation, corresponding well with the timing of valencene accumulation in fruit. Although citrus fruits are non-climacteric, valencene accumulation and Cstps1 expression were found to be responsive to ethylene, providing further evidence for the role of ethylene in the final stages of citrus fruit ripening. Isolation of the gene encoding valencene synthase provides a tool for an in-depth study of the regulation of aroma compound biosynthesis in citrus and for metabolic engineering for fruit flavor characteristics.

  9. Reconstitution of the flavor signature of Dornfelder red wine on the basis of the natural concentrations of its key aroma and taste compounds.

    Science.gov (United States)

    Frank, Stephanie; Wollmann, Nadine; Schieberle, Peter; Hofmann, Thomas

    2011-08-24

    By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated from a Dornfelder red wine, 31 odor-active compounds were identified by means of HRGC-MS and comparison with reference compounds. A total of 27 odorants, judged with high FD factors by means of AEDA, was quantitated by means of stable isotope dilution assays, and acetaldehyde was determined enzymatically. In addition, 36 taste-active compounds were analyzed by means of HPLC-UV, HPLC-MS/MS, and ion chromatography. The quantitative data obtained for the identified aroma and taste compounds enabled for the first time the reconstruction of the overall flavor of the red wine. Sensory evaluation of both the aroma and taste profiles of the authentic red wine and the recombinate revealed that Dornfelder red wine was closely mimicked. Moreover, it was demonstrated that the high molecular weight fraction of red wine is essential for its astringent taste impression. By comparison of the overall odor of the aroma recombinate in ethanol with that of the total flavor recombinate containing all tastants, it was shown for the first time that the nonvolatile tastants had a strong influence on the intensity of certain aroma qualities.

  10. Debaryomyces hansenii strains differ in their production of flavor compounds in a cheese-surface model

    DEFF Research Database (Denmark)

    Gori, Klaus; Sørensen, Louise Marie; Petersen, Mikael Agerlin

    2012-01-01

    Flavor production among12 strains of Debaryomyces hansenii when grown on a simple cheese model mimicking a cheese surface was investigated by dynamic headspace sampling followed by gas chromatography-mass spectrometry. The present study confirmed that D. hansenii possess the ability to produce...

  11. Impact of Microbial Composition of Cambodian Traditional Dried Starters (Dombea on Flavor Compounds of Rice Wine: Combining Amplicon Sequencing With HP-SPME-GCMS

    Directory of Open Access Journals (Sweden)

    Sokny Ly

    2018-05-01

    Full Text Available Dombae is a traditional ferment starter which has been used for starchy based wine production in Cambodia. However, the production technology of rice wine in Cambodia is not optimized. The current study aimed to investigate the microbiota associated in five ferment starters and the effect of a traditional fermentation process using a metagenomics sequencing analysis and HS-SPME-GCMS for the characterization of the aromatic profiles at the end of fermentation. Most of bacteria identified in this study were lactic acid bacteria including Weissella cibaria, Pediococcus sp. MMZ60A, Lactobacillus fermentum, and Lactobacillus plantarum. Saccharomyces cerevisiae and Saccharomycopsis fibuligera were found to be abundant yeasts while the only amylolytic filamentous fungus was Rhizopus oryzae. A total of 25 aromatic compounds were detected and identified as esters, alcohols, acids, ketones and aldehydes. The alcohol group was dominant in each rice wine. Significant changes were observed at the level of microbial communities during fermentation, suggesting microbial succession for the assimilation of starch and subsequently assimilation of fermentation by-products leading to the production of flavor compounds. At this level, the presence of Weissella, Pediococcus, and Lactobacillus genus was strongly correlated with most of the flavor compounds detected.

  12. Impact of Microbial Composition of Cambodian Traditional Dried Starters (Dombea) on Flavor Compounds of Rice Wine: Combining Amplicon Sequencing With HP-SPME-GCMS

    Science.gov (United States)

    Ly, Sokny; Mith, Hasika; Tarayre, Cédric; Taminiau, Bernard; Daube, Georges; Fauconnier, Marie-Laure; Delvigne, Frank

    2018-01-01

    Dombae is a traditional ferment starter which has been used for starchy based wine production in Cambodia. However, the production technology of rice wine in Cambodia is not optimized. The current study aimed to investigate the microbiota associated in five ferment starters and the effect of a traditional fermentation process using a metagenomics sequencing analysis and HS-SPME-GCMS for the characterization of the aromatic profiles at the end of fermentation. Most of bacteria identified in this study were lactic acid bacteria including Weissella cibaria, Pediococcus sp. MMZ60A, Lactobacillus fermentum, and Lactobacillus plantarum. Saccharomyces cerevisiae and Saccharomycopsis fibuligera were found to be abundant yeasts while the only amylolytic filamentous fungus was Rhizopus oryzae. A total of 25 aromatic compounds were detected and identified as esters, alcohols, acids, ketones and aldehydes. The alcohol group was dominant in each rice wine. Significant changes were observed at the level of microbial communities during fermentation, suggesting microbial succession for the assimilation of starch and subsequently assimilation of fermentation by-products leading to the production of flavor compounds. At this level, the presence of Weissella, Pediococcus, and Lactobacillus genus was strongly correlated with most of the flavor compounds detected. PMID:29867806

  13. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase.

    Science.gov (United States)

    Raab, Thomas; López-Ráez, Juan Antonio; Klein, Dorothée; Caballero, Jose Luis; Moyano, Enriqueta; Schwab, Wilfried; Muñoz-Blanco, Juan

    2006-04-01

    The flavor of strawberry (Fragaria x ananassa) fruit is dominated by an uncommon group of aroma compounds with a 2,5-dimethyl-3(H)-furanone structure. We report the characterization of an enzyme involved in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF; Furaneol), the key flavor compound in strawberries. Protein extracts were partially purified, and the observed distribution of enzymatic activity correlated with the presence of a single polypeptide of approximately 37 kD. Sequence analysis of two peptide fragments showed total identity with the protein sequence of a strongly ripening-induced, auxin-dependent putative quinone oxidoreductase, Fragaria x ananassa quinone oxidoreductase (FaQR). The open reading frame of the FaQR cDNA consists of 969 bp encoding a 322-amino acid protein with a calculated molecular mass of 34.3 kD. Laser capture microdissection followed by RNA extraction and amplification demonstrated the presence of FaQR mRNA in parenchyma tissue of the strawberry fruit. The FaQR protein was functionally expressed in Escherichia coli, and the monomer catalyzed the formation of HDMF. After chemical synthesis and liquid chromatography-tandem mass spectrometry analysis, 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone was confirmed as a substrate of FaQR and the natural precursor of HDMF. This study demonstrates the function of the FaQR enzyme in the biosynthesis of HDMF as enone oxidoreductase and provides a foundation for the improvement of strawberry flavor and the biotechnological production of HDMF.

  14. Influence of lambda-carrageenan on the release of systematic series of volatile flavor compounds from viscous food model systems

    DEFF Research Database (Denmark)

    Bylaite, Egle; Ilgunaite, Z.; Meyer, Anne Boye Strunge

    2004-01-01

    -liquid partition coefficients K (37degreesC) of a total of 43 aroma compounds were determined in pure water and in the lambda-carrageenan solutions by static headspace gas chromatography. Mass transfer of the aroma compounds in water and in the thickened lambda-carrageenan solutions which had a wide viscosity...... range was assessed by dynamic headspace gas chromatography. K(37degreesC) increased as the carbon chain increased within each homologous series. Esters exhibited the highest volatility, followed by aldehydes, ketones, and alcohols. Under equilibrium, no overall effect of lambda-carrageenan was found...

  15. Selecting odorant compounds to enhance sweet flavor perception by gas chromatography/olfactometry-associated taste (GC/O-AT).

    Science.gov (United States)

    Barba, Carmen; Beno, Noelle; Guichard, Elisabeth; Thomas-Danguin, Thierry

    2018-08-15

    Gas chromatography/olfactometry-associated taste (GC/O-AT) analysis combined with mass spectrometry allowed identification of odorant compounds associated with taste attributes (sweet, salty, bitter and sour) in a multi-fruit juice. Nine compounds were selected for their odor-associated sweetness enhancement in a multi-fruit juice odor context using Olfactoscan and for their odor-induced sweet taste enhancement in sucrose solution and sugar-reduced fruit juice through sensory tests. Sweetness of the fruit juice odor was significantly enhanced by methyl 2-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate and linalool; sweet perception was significantly enhanced in 7% sucrose solution by ethyl 2-methylbutanoate, furaneol and γ-decalactone, and in 32% sugar-reduced fruit juice by ethyl 2-methylbutanoate. GC/O-AT analysis is a novel, efficient approach to select odorants associated with a given taste. The further screening of taste-associated odorants by Olfactoscan helps to identify the most efficient odorants to enhance a target taste perception and may be used to find new ways to modulate taste perception in foods and beverages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Meat flavor precursors and factors influencing flavor precursors--A systematic review.

    Science.gov (United States)

    Khan, Muhammad Issa; Jo, Cheorun; Tariq, Muhammad Rizwan

    2015-12-01

    Flavor is the sensory impression sensed by taste and smell buds and is a leading factor determining the meat quality and purchasing decision of the consumer. Meat flavor is characteristic of volatiles produced as a result of reactions of non-volatile components that are induced thermally. The water soluble compounds having low molecular weight and meat lipids are important precursors of cooked meat flavor. The Maillard reaction, lipid oxidation, and vitamin degradation are leading reactions during cooking which develop meat flavor from uncooked meat with little aroma and bloody taste. The pre-slaughter and postmortem factors like animal breed, sex, age, feed, aging and cooking conditions contribute to flavor development of cooked meat. The objective of this review is to highlight the flavor chemistry, meat flavor precursors and factors affecting meat flavor precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Flavor physics without flavor symmetries

    Science.gov (United States)

    Buchmuller, Wilfried; Patel, Ketan M.

    2018-04-01

    We quantitatively analyze a quark-lepton flavor model derived from a six-dimensional supersymmetric theory with S O (10 )×U (1 ) gauge symmetry, compactified on an orbifold with magnetic flux. Two bulk 16 -plets charged under the U (1 ) provide the three quark-lepton generations whereas two uncharged 10 -plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavor symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the underlying grand unified theory symmetry and the wave function profiles of the zero modes, which lead to a prediction of the light neutrino mass scale, mν 1˜10-3 eV and heavy Majorana neutrino masses in the range from 1 012 to 1 014 GeV . The model successfully includes thermal leptogenesis.

  18. Time-Related Changes in Volatile Compounds during Fermentation of Bulk and Fine-Flavor Cocoa (Theobroma cacao Beans

    Directory of Open Access Journals (Sweden)

    Juan Manuel Cevallos-Cevallos

    2018-01-01

    Full Text Available Chocolate is one of the most consumed foods worldwide and cacao fermentation contributes to the unique sensory characteristics of chocolate products. However, comparative changes in volatiles occurring during fermentation of Criollo, Forastero, and Nacional cacao—three of the most representative cultivars worldwide—have not been reported. Beans of each cultivar were fermented for five days and samples were taken every 24 hours. Volatiles from each sample were adsorbed into a solid phase microextraction fiber and analyzed by gas chromatography-mass spectrometry. Aroma potential of each compound was determined using available databases. Multivariate data analyses showed partial clustering of samples according to cultivars at the start of the fermentation but complete clustering was observed at the end of the fermentation. The Criollo cacao produced floral, fruity, and woody aroma volatiles including linalool, epoxylinalool, benzeneethanol, pentanol acetate, germacrene, α-copaene, aromadendrene, 3,6-heptanedione, butanal, 1-phenyl ethenone, 2-nonanone, and 2-pentanone. Nacional cacao produced fruity, green, and woody aroma volatiles including 2-nonanone, 3-octen-1-ol, 2-octanol acetate, 2-undecanone, valencene, and aromadendrene. The Forastero cacao yielded floral and sweet aroma volatiles such as epoxylinalool, pentanoic acid, benzeneacetaldehyde, and benzaldehyde. This is the first report of volatiles produced during fermentation of Criollo, Forastero, and Nacional cacao from the same origin.

  19. Voltammetric detection of the α-dicarbonyl compound: methylglyoxal as a flavoring agent in wine and beer.

    Science.gov (United States)

    Chatterjee, Sanghamitra; Chen, Aicheng

    2012-11-02

    A simple, rapid and highly selective method for the determination of the most abundant α-dicarbonyl compound in wine and beer has been developed for the first time by employing square wave voltammetry. A novel electrochemical sensor, based on the electrodeposition of platinum nanoparticles onto single wall carbon nanotubes that were cast on a glassy carbon electrode (GCE) substrate, is presented in this paper. This modified electrode exhibited excellent catalytic activity in the electroreduction of methylglyoxal, showing much higher peak currents than those measured on an unmodified GCE. The effects of different experimental and instrumental parameters, such as solution pH and square wave frequency, were examined. The reduction peak current showed a linear range of from 0.1×10(-6) to 100×10(-6)M with a 0.9979 correlation coefficient; and a low detection limit of 2.8×10(-9)M was also obtained. The proposed methodology was successfully applied to the quantitative analysis of methylglyoxal in wine and beer samples. The developed sensor possesses advantageous properties such as a high active surface area, stability, and rapid electron transfer rate, which cumulatively demonstrate high performance toward the electrocatalytic reduction and detection of methylglyoxal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products.

    Science.gov (United States)

    Han, Jia-Run; Yan, Jia-Nan; Sun, Shi-Guang; Tang, Yue; Shang, Wen-Hui; Li, Ao-Ting; Guo, Xiao-Kun; Du, Yi-Nan; Wu, Hai-Tao; Zhu, Bei-Wei; Xiong, Youling L

    2018-09-30

    The objective of the present study was to improve the utilization of scallop (Chlamys farreri) byproducts by using Maillard reaction. Scallop mantle hydrolysates (SMHs) were prepared using neutrase then reacted with ribose. Thirty-four peptides were identified from SMHs by UPLC-Q-TOF-MS, and the abundance of Asp and Lys suggested the strong Maillard reactivity. The formation of Schiff's base as well as modification of amide I, II and III bands in Maillard reaction products (MRPs) was confirmed by ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopy. Thirty volatile compounds were produced by the reaction of SMHs with ribose. Moreover, MRPs with enhanced radical scavenging and anti-linoleic acid peroxidation activities over SMHs promoted the survival and reduced the DNA damage of HepG2 cells treated with hydrogen peroxide. These results suggest that SMHs-ribose MRPs can be potentially used as food antioxidant for suppressing of lipid oxidation or protecting of cell from oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Voltammetric detection of the α-dicarbonyl compound: Methylglyoxal as a flavoring agent in wine and beer

    International Nuclear Information System (INIS)

    Chatterjee, Sanghamitra; Chen Aicheng

    2012-01-01

    Highlights: ► Synergistic electrocatalytic effect of Pt nanoparticles and single-wall carbon nanotubes on the reduction of methylglyoxal. ► Novel electrochemical Pt/SWNT/GCE sensor designed for the determination of methylglyoxal. ► Excellent analytical performance with low detection limit and high sensitivity. ► The developed methylglyoxal sensor shows promising process control, clinical and, biomedical applications. - Abstract: A simple, rapid and highly selective method for the determination of the most abundant α-dicarbonyl compound in wine and beer has been developed for the first time by employing square wave voltammetry. A novel electrochemical sensor, based on the electrodeposition of platinum nanoparticles onto single wall carbon nanotubes that were cast on a glassy carbon electrode (GCE) substrate, is presented in this paper. This modified electrode exhibited excellent catalytic activity in the electroreduction of methylglyoxal, showing much higher peak currents than those measured on an unmodified GCE. The effects of different experimental and instrumental parameters, such as solution pH and square wave frequency, were examined. The reduction peak current showed a linear range of from 0.1 × 10 −6 to 100 × 10 −6 M with a 0.9979 correlation coefficient; and a low detection limit of 2.8 × 10 −9 M was also obtained. The proposed methodology was successfully applied to the quantitative analysis of methylglyoxal in wine and beer samples. The developed sensor possesses advantageous properties such as a high active surface area, stability, and rapid electron transfer rate, which cumulatively demonstrate high performance toward the electrocatalytic reduction and detection of methylglyoxal.

  2. Voltammetric detection of the {alpha}-dicarbonyl compound: Methylglyoxal as a flavoring agent in wine and beer

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sanghamitra [Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1 (Canada); Chen Aicheng, E-mail: achen@lakeheadu.ca [Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1 (Canada)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Synergistic electrocatalytic effect of Pt nanoparticles and single-wall carbon nanotubes on the reduction of methylglyoxal. Black-Right-Pointing-Pointer Novel electrochemical Pt/SWNT/GCE sensor designed for the determination of methylglyoxal. Black-Right-Pointing-Pointer Excellent analytical performance with low detection limit and high sensitivity. Black-Right-Pointing-Pointer The developed methylglyoxal sensor shows promising process control, clinical and, biomedical applications. - Abstract: A simple, rapid and highly selective method for the determination of the most abundant {alpha}-dicarbonyl compound in wine and beer has been developed for the first time by employing square wave voltammetry. A novel electrochemical sensor, based on the electrodeposition of platinum nanoparticles onto single wall carbon nanotubes that were cast on a glassy carbon electrode (GCE) substrate, is presented in this paper. This modified electrode exhibited excellent catalytic activity in the electroreduction of methylglyoxal, showing much higher peak currents than those measured on an unmodified GCE. The effects of different experimental and instrumental parameters, such as solution pH and square wave frequency, were examined. The reduction peak current showed a linear range of from 0.1 Multiplication-Sign 10{sup -6} to 100 Multiplication-Sign 10{sup -6} M with a 0.9979 correlation coefficient; and a low detection limit of 2.8 Multiplication-Sign 10{sup -9} M was also obtained. The proposed methodology was successfully applied to the quantitative analysis of methylglyoxal in wine and beer samples. The developed sensor possesses advantageous properties such as a high active surface area, stability, and rapid electron transfer rate, which cumulatively demonstrate high performance toward the electrocatalytic reduction and detection of methylglyoxal.

  3. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone.

    Science.gov (United States)

    Schiefner, André; Sinz, Quirin; Neumaier, Irmgard; Schwab, Wilfried; Skerra, Arne

    2013-06-07

    The last step in the biosynthetic route to the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is catalyzed by Fragaria x ananassa enone oxidoreductase (FaEO), earlier putatively assigned as quinone oxidoreductase (FaQR). The ripening-induced enzyme catalyzes the reduction of the exocyclic double bond of the highly reactive precursor 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone (HMMF) in a NAD(P)H-dependent manner. To elucidate the molecular mechanism of this peculiar reaction, we determined the crystal structure of FaEO in six different states or complexes at resolutions of ≤1.6 Å, including those with HDMF as well as three distinct substrate analogs. Our crystallographic analysis revealed a monomeric enzyme whose active site is largely determined by the bound NAD(P)H cofactor, which is embedded in a Rossmann-fold. Considering that the quasi-symmetric enolic reaction product HDMF is prone to extensive tautomerization, whereas its precursor HMMF is chemically labile in aqueous solution, we used the asymmetric and more stable surrogate product 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (EHMF) and the corresponding substrate (2E)-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone (EDHMF) to study their enzyme complexes as well. Together with deuterium-labeling experiments of EDHMF reduction by [4R-(2)H]NADH and chiral-phase analysis of the reaction product EHMF, our data show that the 4R-hydride of NAD(P)H is transferred to the unsaturated exocyclic C6 carbon of HMMF, resulting in a cyclic achiral enolate intermediate that subsequently becomes protonated, eventually leading to HDMF. Apart from elucidating this important reaction of the plant secondary metabolism our study provides a foundation for protein engineering of enone oxidoreductases and their application in biocatalytic processes.

  4. Evaluation of ozonation on levels of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout Oncorhynchus mykiss from water recirculation aquaculture systems

    Science.gov (United States)

    Common “off-flavors” in fish cultured in water recirculation aquaculture systems (WRAS) are “earthy” and “musty” due to the presence of the off-flavor metabolites geosmin and 2-methylisoborneol (MIB), respectively. Previously, ozone addition has been applied to WRAS at relatively low doses to break...

  5. Lepton flavor violation in flavored gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Calibbi, Lorenzo [Universite Libre de Bruxelles, Service de Physique Theorique, Brussels (Belgium); Paradisi, Paride [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN Sezione di Padova, Padua (Italy); SISSA, Trieste (Italy); Ziegler, Robert [Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France)

    2014-12-01

    We study the anatomy and phenomenology of lepton flavor violation (LFV) in the context of flavored gauge mediation (FGM). Within FGM, the messenger sector couples directly to the MSSM matter fields with couplings controlled by the same dynamics that explains the hierarchies in the SM Yukawas. Although the pattern of flavor violation depends on the particular underlying flavor model, FGM provides a built-in flavor suppression similar to wave function renormalization or SUSY partial compositeness. Moreover, in contrast to these models, there is an additional suppression of left-right flavor transitions by third-generation Yukawas that in particular provides an extra protection against flavor-blind phases. We exploit the consequences of this setup for lepton flavor phenomenology, assuming that the new couplings are controlled by simple U(1) flavor models that have been proposed to accommodate large neutrino mixing angles. Remarkably, it turns out that in the context of FGM these models can pass the impressive constraints from LFV processes and leptonic electric dipole moments (EDMs) even for light superpartners, therefore offering the possibility of resolving the longstanding muon g - 2 anomaly. (orig.)

  6. Flavored dark matter beyond Minimal Flavor Violation

    International Nuclear Information System (INIS)

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-01-01

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator with a coupling. We identify a number of ''flavor-safe'' scenarios for the structure of which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed

  7. Determinação do perfil de compostos voláteis e avaliação do sabor e aroma de bebidas produzidas a partir da erva-mate (Ilex paraguariensis Volatile compounds profile and flavor analysis of yerba mate (Ilex paraguariensis beverages

    Directory of Open Access Journals (Sweden)

    Carla Carolina Batista Machado

    2007-06-01

    Full Text Available Volatile compounds from green and roasted yerba mate were analyzed by gas chromatography/mass spectrometry and the flavor profile from yerba mate beverages was determined by descriptive quantitative analyses. The main compounds tentatively identified in green mate were linalool, alpha-terpineol and trans-linalool oxide and in roasted mate were (E,Z-2,4-heptadienal isomers and 5-methylfurfural. Green mate infusion was qualified as having bitter taste and aroma as well as green grass aroma while roasted mate was defined as having a smooth, slightly burnt aroma. The relationship between the tentatively identified compounds and flavor must be determined by olfatometric analysis.

  8. Modeling and experimental studies on intermittent starch feeding and citrate addition in simultaneous saccharification and fermentation of starch to flavor compounds.

    Science.gov (United States)

    Chavan, Abhijit R; Raghunathan, Anuradha; Venkatesh, K V

    2009-04-01

    Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process.

  9. Flavor changing lepton processes

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka

    2002-01-01

    The flavor changing lepton processes, or in another words the lepton flavor changing processes, are described with emphasis on the updated theoretical motivations and the on-going experimental progress on a new high-intense muon source. (author)

  10. Flavored dark matter beyond Minimal Flavor Violation

    CERN Document Server

    Agrawal, Prateek; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a $U(3)_\\chi$ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter $\\chi$ which transforms as triplet under $U(3)_\\chi$, and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator $\\phi$ with a coupling $\\lambda$. We identify a number of "flavor-safe" scenarios for the structure of $\\lambda$ which are beyond Minimal Flavor Violation. For dark matter and collider phenomenology we focus on the well-motivated case of $b$-...

  11. Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses.

    Science.gov (United States)

    Drake, M A; Miracle, R E; McMahon, D J

    2010-11-01

    A current industry goal is to produce a 75 to 80% fat-reduced Cheddar cheese that is tasty and appealing to consumers. Despite previous studies on reduced-fat cheese, information is critically lacking in understanding the flavor and flavor chemistry of reduced-fat and nonfat Cheddar cheeses and how it differs from its full-fat counterpart. The objective of this study was to document and compare flavor development in cheeses with different fat contents so as to quantitatively characterize how flavor and flavor development in Cheddar cheese are altered with fat reduction. Cheddar cheeses with 50% reduced-fat cheese (RFC) and low-fat cheese containing 6% fat (LFC) along with 2 full-fat cheeses (FFC) were manufactured in duplicate. Cheeses were ripened at 8°C and samples were taken following 2 wk and 3, 6, and 9 mo for sensory and instrumental volatile analyses. A trained sensory panel (n=10 panelists) documented flavor attributes of cheeses. Volatile compounds were extracted by solid-phase microextraction or solvent-assisted flavor evaporation followed by separation and identification using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Selected compounds were quantified using external standard curves. Sensory properties of cheeses were distinct initially but more differences were documented as cheeses aged. By 9 mo, LFC and RFC displayed distinct burnt/rosy flavors that were not present in FFC. Sulfur flavor was also lower in LFC compared with other cheeses. Forty aroma-active compounds were characterized in the cheeses by headspace or solvent extraction followed by gas chromatography-olfactometry. Compounds were largely not distinct between the cheeses at each time point, but concentration differences were evident. Higher concentrations of furanones (furaneol, homofuraneol, sotolon), phenylethanal, 1-octen-3-one, and free fatty acids, and lower concentrations of lactones were present in LFC compared with FFC after 9 mo of ripening. These

  12. Multisensory Flavor Priming

    DEFF Research Database (Denmark)

    Dijksterhuis, Garmt Bernard

    2016-01-01

    with a taxonomy of different priming situations. In food-related applications of flavor, both bottom-up (sensory) as well as top-down (expectations) processes are at play. Most of the complex interactions that this leads to take place outside the awareness of the perceiving subject. A model is presented where...... many, past and current, aspects (sensory, surroundings, social, somatic, sentimental) of a (flavor) perception, together result in the perception of a flavor, its liking. or its choice. This model borrows on ideas from priming, situated/embodied cognition, and (food-related) perception.......Flavor is multisensory; several interacting sensory systems-taste, smell, and mouthfeel-together comprise "flavor," making it a cognitively constructed percept rather than a bottom-up sensory one. In this chapter, some of the complications this entails for flavor priming are introduced, along...

  13. Authenticity of raspberry flavor in food products using SPME?chiral?GC?MS

    OpenAIRE

    Hansen, Anne?Mette S.; Frandsen, Henrik L.; Fromberg, Arvid

    2015-01-01

    Abstract A fast and simple method for authenticating raspberry flavors from food products was developed. The two enantiomers of the compound (E)???ionone from raspberry flavor were separated on a chiral gas chromatographic column. Based on the ratio of these two enantiomers, the naturalness of a raspberry flavor can be evaluated due to the fact that a natural flavor will consist almost exclusively of the R enantiomer, while a chemical synthesis of the same compound will result in a racemic mi...

  14. Irradiation and flavor

    International Nuclear Information System (INIS)

    Reineccius, G.A.

    1992-01-01

    Flavor will not be a significant factor in determining the success of irradiated foods entering the U.S. market. The initial applications will use low levels of irradiation that may well result in products with flavor superior to that of products from alternative processing techniques (thermal treatment or chemical fumigation). The success of shelf-stable foods produced via irradiation may be much more dependent upon our ability to deal with the flavor aspects of high levels of irradiation

  15. Precursors of chicken flavor. II. Identification of key flavor precursors using sensory methods.

    Science.gov (United States)

    Aliani, Michel; Farmer, Linda J

    2005-08-10

    Sensory evaluation was used to identify flavor precursors that are critical for flavor development in cooked chicken. Among the potential flavor precursors studied (thiamin, inosine 5'-monophosphate, ribose, ribose-5-phosphate, glucose, and glucose-6-phosphate), ribose appears most important for chicken aroma. An elevated concentration (added or natural) of only 2-4-fold the natural concentration gives an increase in the selected aroma and flavor attributes of cooked chicken meat. Assessment of the volatile odor compounds by gas chromatography-odor assessment and gas chromatography-mass spectrometry showed that ribose increased odors described as "roasted" and "chicken" and that the changes in odor due to additional ribose are probably caused by elevated concentrations of compounds such as 2-furanmethanethiol, 2-methyl-3-furanthiol, and 3-methylthiopropanal.

  16. Flavor physics and CP violation

    International Nuclear Information System (INIS)

    Isidori, Gino

    2014-01-01

    Lectures on flavor physics presented at the 2012 CERN HEP Summer School. Content: 1) flavor physics within the Standard Model, 2) phenomenology of B and D decays, 3) flavor physics beyond the Standard Model

  17. Aroma compounds in fresh cut pomegranate arils.

    Science.gov (United States)

    Little published information exists regarding flavor and aroma compounds in pomegranate (Punica granatum). Although arils have fruity and sweet characteristics, we found no publications describing actual compounds responsible for their typical flavor. Since most commercial usage of pomegranates in...

  18. Sampling and Analytical Method for Alpha-Dicarbonyl Flavoring Compounds via Derivatization with o-Phenylenediamine and Analysis Using GC-NPD

    Directory of Open Access Journals (Sweden)

    Stephanie M. Pendergrass

    2016-01-01

    Full Text Available A novel methodology is described for the sampling and analysis of diacetyl, 2,3-pentanedione, 2,3-hexanedione, and 2,3-heptanedione. These analytes were collected on o-phenylenediamine-treated silica gel tubes and quantitatively recovered as the corresponding quinoxaline derivatives. After derivatization, the sorbent was desorbed in 3 mL of ethanol solvent and analyzed using gas chromatography/nitrogen-phosphorous detection (GC/NPD. The limits of detection (LOD achieved for each analyte were determined to be in the range of 5–10 nanograms/sample. Evaluation of the on-tube derivatization procedure indicated that it is unaffected by humidities ranging from 20% to 80% and that the derivatization procedure was quantitative for analyte concentrations ranging from 0.1 μg to approximately 500 μg per sample. Storage stability studies indicated that the derivatives were stable for 30 days when stored at both ambient and refrigerated temperatures. Additional studies showed that the quinoxaline derivatives were quantitatively recovered when sampling up to a total volume of 72 L at a sampling rate of 50 cc/min. This method will be important to evaluate and monitor worker exposures in the food and flavoring industry. Samples can be collected over an 8-hour shift with up to 288 L total volume collected regardless of time, sampling rate, and/or the effects of humidity.

  19. A matter of taste: Improving flavor of fresh potatoes

    Science.gov (United States)

    Breeding for improved potato flavor has not been a high priority in US breeding programs. It is a difficult trait to breed for because it cannot be done in a high throughput manner and it requires an understanding of the complex biochemistry of flavor compounds and effects of cooking on those compou...

  20. Beef flavor: a review from chemistry to consumer.

    Science.gov (United States)

    Kerth, Chris R; Miller, Rhonda K

    2015-11-01

    This paper briefly reviews research that describes the sensation, generation and consumer acceptance of beef flavor. Humans sense the five basic tastes in their taste buds, and receptors in the nasal and sinus cavities sense aromas. Additionally, trigeminal senses such as metallic and astringent are sensed in the oral and nasal cavities and can have an effect on the flavor of beef. Flavors are generated from a complex interaction of tastes, tactile senses and aromas taken collectively throughout the tongue, nasal, sinus and oral cavities. Cooking beef generates compounds that contribute to these senses and result in beef flavor, and the factors that are involved in the cookery process determine the amount and type of these compounds and therefore the flavor generated. A low-heat, slow cooking method generates primarily lipid degradation products, while high-heat, fast cookery generates more Maillard reaction products. The science of consumer acceptance, cluster analyses and drawing relationships among all flavor determinants is a relatively new discipline in beef flavor. Consumers rate beef that has lipid degradation products generated from a low degree of doneness and Maillard flavor products from fast, hot cookery the highest in overall liking, and current research has shown that strong relationships exist between beef flavor and consumer acceptability, even more so than juiciness or tenderness. © 2015 Society of Chemical Industry.

  1. Heavy flavor spectroscopy

    International Nuclear Information System (INIS)

    Rosen, J.; Marques, J.; Spiegel, L.

    1993-09-01

    As a useful by-product of the unfolding searches for mixing and CP-violation effects in the beauty sector there will accrue very large data samples for the study of heavy flavor spectroscopy. Interest in this field may be provisionally divided into two general classes: Hidden flavor states, i.e. c bar c and b bar b onium states; open flavor states: The D, D s , B, B s , and B c meson systems; and charm and beauty flavored baryons. In this brief note we emphasize that there are many missing states in both categories -- states which are not readily produced exclusively due to quantum number preferences or states which are not readily observed inclusively due to experimentally difficult decay channels. As recorded luminosities increase it may be possible to fill in some of the holes in the present listings of heavy flavor states. Of particular interest to us would be the identification of heavy flavor mesons which are not easily explained in terms of a q bar q paradigm but rather may be evidence for hadro-molecular states. At Snowmass 1993 the topic of self-tagging schemes in B meson production was very much in vogue. Whether or not excited B-meson flavor-tagging will prove to be competitive with traditional methods based on the partner bar B decay remains to be seen. We suggest however that the richness of the excited B-system may undermine the efficacy of self-tagging schemes

  2. Heavy flavor spectroscopy

    International Nuclear Information System (INIS)

    Rosen, J.; Marques, J.; Spiegel, L.

    1993-01-01

    As a useful by-product of the unfolding searches for mixing and CP-violation effects in the beauty sector there will accrue very large data samples for the study of heavy flavor spectroscopy. (I) Hidden flavor states, i.e. c bar c and b bar b onium states. (II) Open flavor states (a) the D, D s , B, B s , and B c meson systems; (b) Charm and beauty flavored baryons. In this brief note the authors emphasize that there are many missing (undiscovered) states in both categories - states which are not readily produced exclusively due to quantum number preferences or states which are not readily observed inclusively due to experimentally difficult decay channels. As recorded luminosities increase it may be possible to fill in some of the holes in the present listings of heavy flavor states. Of particular interest to the authors would be the identification of heavy flavor mesons which are not easily explained in terms of a q bar q paradigm but rather may be evidence for hadro-molecular status. At Snowmass 1993 the topic of self-tagging schemes in B meson production was very much in vogue. Whether or not excited B-meson flavor-tagging will prove to be competitive with traditional methods based on the partner B decay remains to be seen. The authors suggest however that the richness of the excited B-system may undetermine the efficacy of self-tagging schemes

  3. Sequential flavor symmetry breaking

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-01-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  4. Sequential flavor symmetry breaking

    Science.gov (United States)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  5. Authenticity of raspberry flavor in food products using SPME-chiral-GC-MS

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg; Frandsen, Henrik Lauritz; Fromberg, Arvid

    2015-01-01

    A fast and simple method for authenticating raspberry flavors from food products was developed. The two enantiomers of the compound (E)-α-ionone from raspberry flavor were separated on a chiral gas chromatographic column. Based on the ratio of these two enantiomers the naturalness of a raspberry...... flavor can be evaluated due to the fact that a natural flavor will consist almost exclusively of the R enantiomer, while a chemical synthesis of the same compound will result in a racemic mixture. 27 food products containing raspberry flavors where investigated using SPME-chiral-GC-MS. We found raspberry...... distribution of the R and S isomer. Two products were labelled to contain natural raspberry flavors but were found to contain almost equal amounts of both enantiomers indicating a presence of synthetic raspberry flavors only. Additionally, two products labelled to contain both raspberry juice and flavor showed...

  6. The preliminary study on peculiar flavor from irradiated dried duck

    International Nuclear Information System (INIS)

    Li Zongju; Chen Zongdao; Xu Denyi

    1992-01-01

    Peculiar flavor may be induced from irradiative preservation of meat with higher dose. The study on the irradiation of dried duck indicated that peculiar flavor is produced by a threshold of 1.5 kGy and intensifies with the increase of dose. The flavor primarily comes from muscle of dried duck especially from its water soluble protein. With the increase of dose, volatile carbonyl compounds, amines and sulfur compounds increased significantly. Paper chromatography analysis shows that two new volatile carbonyl compounds (R f =0.23 and 0.28) and a new volatile amine-propamine are induced by irradiation. This compounds may be the source of peculiar flavor in irradiated dried duck

  7. The preliminary study on peculiar flavor from irradiated dried duck

    Energy Technology Data Exchange (ETDEWEB)

    Zongju, Li; Zongdao, Chen; Denyi, Xu [Southwest Agricultural Univ., Chongqing, SC (China)

    1992-11-01

    Peculiar flavor may be induced from irradiative preservation of meat with higher dose. The study on the irradiation of dried duck indicated that peculiar flavor is produced by a threshold of 1.5 kGy and intensifies with the increase of dose. The flavor primarily comes from muscle of dried duck especially from its water soluble protein. With the increase of dose, volatile carbonyl compounds, amines and sulfur compounds increased significantly. Paper chromatography analysis shows that two new volatile carbonyl compounds (R[sub f] =0.23 and 0.28) and a new volatile amine-propamine are induced by irradiation. This compounds may be the source of peculiar flavor in irradiated dried duck.

  8. Theories of Leptonic Flavor

    DEFF Research Database (Denmark)

    Hagedorn, Claudia

    2017-01-01

    I discuss different theories of leptonic flavor and their capability of describing the features of the lepton sector, namely charged lepton masses, neutrino masses, lepton mixing angles and leptonic (low and high energy) CP phases. In particular, I show examples of theories with an abelian flavor...... symmetry G_f, with a non-abelian G_f as well as theories with non-abelian G_f and CP....

  9. The effect of homogenization pressure on the flavor and flavor stability of whole milk powder.

    Science.gov (United States)

    Park, Curtis W; Drake, MaryAnne

    2017-07-01

    Flavor is one of the key factors that can limit the application and shelf life of dried dairy ingredients. Many off-flavors are caused during ingredient manufacture that carry through into ingredient applications and decrease consumer acceptance. The objective of this research was to investigate the effect of homogenization pressure on the flavor and flavor stability of whole milk powder (WMP). Whole milk powder was produced from standardized pasteurized whole milk that was evaporated to 50% solids (wt/wt), homogenized in 2 stages with varying pressures (0/0, 5.5/1.4, 11.0/2.8, or 16.5/4.3 MPa), and spray dried. Whole milk powder was evaluated at 0, 3, and 6 mo of storage at 21°C. Sensory properties were evaluated by descriptive analysis. Volatile compounds were analyzed by sorptive stir bar extraction with gas chromatography-mass spectrometry. Fat globule size in condensed whole milk and particle size of powders were measured by laser diffraction. Surface free fat, inner free fat, and encapsulated fat of WMP were measured by solvent extractions. Phospholipid content was measured by ultra-high-performance liquid chromatography-evaporative light scattering. Furosine in WMP was analyzed by ultra-high-performance liquid chromatography-mass spectrometry. Increased homogenization pressure decreased cardboard and painty flavors, volatile lipid oxidation compound concentrations, fat globule size in condensed milk, surface free fat, and inner free fat in WMP. Encapsulated fat increased and phospholipid-to-encapsulated fat ratio decreased with higher homogenization pressure. Surface free fat in powders increased cardboard flavor and lipid oxidation. These results indicate that off-flavors were decreased with increased homogenization pressures in WMP due to the decrease in free fat. To decrease off-flavor intensities in WMP, manufacturers should carefully evaluate these parameters during ingredient manufacture. Copyright © 2017 American Dairy Science Association. Published

  10. Multisensory flavor perception.

    Science.gov (United States)

    Spence, Charles

    2015-03-26

    The perception of flavor is perhaps the most multisensory of our everyday experiences. The latest research by psychologists and cognitive neuroscientists increasingly reveals the complex multisensory interactions that give rise to the flavor experiences we all know and love, demonstrating how they rely on the integration of cues from all of the human senses. This Perspective explores the contributions of distinct senses to our perception of food and the growing realization that the same rules of multisensory integration that have been thoroughly explored in interactions between audition, vision, and touch may also explain the combination of the (admittedly harder to study) flavor senses. Academic advances are now spilling out into the real world, with chefs and food industry increasingly taking the latest scientific findings on board in their food design. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Flavor, fragrance, and odor analysis

    National Research Council Canada - National Science Library

    Marsili, Ray

    2012-01-01

    ... solid-phase micro extraction procedures. It also presents important updates on GC-olfactometry as a tool for studying flavor synergy effects"-- "Sample preparation techniques for isolating and concentrating flavor and odor-active chemicals...

  12. Neutrino flavor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [Dipartimento di Fisica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno (Italy); Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2013-04-15

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears.

  13. Neutrino flavor entanglement

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2013-01-01

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears

  14. Lepton flavor violation

    International Nuclear Information System (INIS)

    Cooper, M.D. Brooks, M.; Hogan, G.E.

    1997-01-01

    The connection of rare decays to supersymmetric grand unification is highlighted, and a review of the status of rare decay experiments is given. Plans for future investigations of processes that violate lepton flavor are discussed. A new result from the MEGA experiment, a search for μ + → e + γ, is reported to be B.R. -11 with 90% confidence

  15. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  16. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  17. The mystery of flavor

    International Nuclear Information System (INIS)

    Peccei, R. D.

    1998-01-01

    After outlining some of the issues surrounding the flavor problem, I present three speculative ideas on the origin of families. In turn, families are conjectured to arise from an underlying preon dynamics; from random dynamics at very short distances; or as a result of compactification in higher dimensional theories. Examples and limitations of each of these speculative scenarios are discussed

  18. FlavorDB: a database of flavor molecules.

    Science.gov (United States)

    Garg, Neelansh; Sethupathy, Apuroop; Tuwani, Rudraksh; Nk, Rakhi; Dokania, Shubham; Iyer, Arvind; Gupta, Ayushi; Agrawal, Shubhra; Singh, Navjot; Shukla, Shubham; Kathuria, Kriti; Badhwar, Rahul; Kanji, Rakesh; Jain, Anupam; Kaur, Avneet; Nagpal, Rashmi; Bagler, Ganesh

    2018-01-04

    Flavor is an expression of olfactory and gustatory sensations experienced through a multitude of chemical processes triggered by molecules. Beyond their key role in defining taste and smell, flavor molecules also regulate metabolic processes with consequences to health. Such molecules present in natural sources have been an integral part of human history with limited success in attempts to create synthetic alternatives. Given their utility in various spheres of life such as food and fragrances, it is valuable to have a repository of flavor molecules, their natural sources, physicochemical properties, and sensory responses. FlavorDB (http://cosylab.iiitd.edu.in/flavordb) comprises of 25,595 flavor molecules representing an array of tastes and odors. Among these 2254 molecules are associated with 936 natural ingredients belonging to 34 categories. The dynamic, user-friendly interface of the resource facilitates exploration of flavor molecules for divergent applications: finding molecules matching a desired flavor or structure; exploring molecules of an ingredient; discovering novel food pairings; finding the molecular essence of food ingredients; associating chemical features with a flavor and more. Data-driven studies based on FlavorDB can pave the way for an improved understanding of flavor mechanisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  20. The mystery of flavor

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1998-01-01

    After outlining some of the issues surrounding the flavor problem, I present three speculative ideas on the origin of families. In turn, families are conjectured to arise from an underlying preon dynamics; from random dynamics at very short distances; or as a result of compactification in higher dimensional theories. Examples and limitations of each of these speculative scenarios are discussed. copyright 1998 American Institute of Physics

  1. Safety evaluation of food flavorings

    International Nuclear Information System (INIS)

    Schrankel, Kenneth R.

    2004-01-01

    Food flavorings are an essential element in foods. Flavorings are a unique class of food ingredients and excluded from the legislative definition of a food additive because they are regulated by flavor legislation and not food additive legislation. Flavoring ingredients naturally present in foods, have simple chemical structures, low toxicity, and are used in very low levels in foods and beverages resulting in very low levels of human exposure or consumption. Today, the overwhelming regulatory trend is a positive list of flavoring substances, e.g. substances not listed are prohibited. Flavoring substances are added to the list following a safety evaluation based on the conditions of intended use by qualified experts. The basic principles for assessing the safety of flavoring ingredients will be discussed with emphasis on the safety evaluation of flavoring ingredients by the Food and Agriculture Organization (FAO) and World Health Organization (WHO) Joint Expert Committee on Food Additives (JECFA) and the US Flavor and Extract Manufacturers Expert Panel (FEXPAN). The main components of the JECFA evaluation process include chemical structure, human intake (exposure), metabolism to innocuous or harmless substances, and toxicity concerns consistent with JECFA principles. The Flavor and Extract Manufacturers Association (FEMA) evaluation is very similar to the JECFA procedure. Both the JECFA and FEMA evaluation procedures are widely recognized and the results are accepted by many countries. This implies that there is no need for developing countries to conduct their own toxicological assessment of flavoring ingredients unless it is an unique ingredient in one country, but it is helpful to survey intake or exposure assessment. The global safety program established by the International Organization of Flavor Industry (IOFI) resulting in one worldwide open positive list of flavoring substances will be reviewed

  2. Flavor, fragrance, and odor analysis

    National Research Council Canada - National Science Library

    Marsili, Ray

    2012-01-01

    ...)-olfactometry, and electronic-nose technology, this new edition discusses the significant advantage of these methods for flavor and odor studies in the food, cosmetic, and pharmaceutical industries...

  3. Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times

    Science.gov (United States)

    Lee, Jeehyun; Chambers, Delores; Chambers, Edgar

    2013-01-01

    Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138

  4. Flavor-singlet spectrum in multi-flavor QCD

    Science.gov (United States)

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2018-03-01

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  5. Flavor-singlet spectrum in multi-flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasamichi; Rinaldi, Enrico

    2017-06-18

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  6. The flavor-locked flavorful two Higgs doublet model

    Science.gov (United States)

    Altmannshofer, Wolfgang; Gori, Stefania; Robinson, Dean J.; Tuckler, Douglas

    2018-03-01

    We propose a new framework to generate the Standard Model (SM) quark flavor hierarchies in the context of two Higgs doublet models (2HDM). The `flavorful' 2HDM couples the SM-like Higgs doublet exclusively to the third quark generation, while the first two generations couple exclusively to an additional source of electroweak symmetry breaking, potentially generating striking collider signatures. We synthesize the flavorful 2HDM with the `flavor-locking' mechanism, that dynamically generates large quark mass hierarchies through a flavor-blind portal to distinct flavon and hierarchon sectors: dynamical alignment of the flavons allows a unique hierarchon to control the respective quark masses. We further develop the theoretical construction of this mechanism, and show that in the context of a flavorful 2HDM-type setup, it can automatically achieve realistic flavor structures: the CKM matrix is automatically hierarchical with | V cb | and | V ub | generically of the observed size. Exotic contributions to meson oscillation observables may also be generated, that may accommodate current data mildly better than the SM itself.

  7. Flavored model building

    International Nuclear Information System (INIS)

    Hagedorn, C.

    2008-01-01

    In this thesis we discuss possibilities to solve the family replication problem and to understand the observed strong hierarchy among the fermion masses and the diverse mixing pattern of quarks and leptons. We show that non-abelian discrete symmetries which act non-trivially in generation space can serve as profound explanation. We present three low energy models with the permutation symmetry S 4 , the dihedral group D 5 and the double-valued group T' as flavor symmetry. The T' model turns out to be very predictive, since it explains tri-bimaximal mixing in the lepton sector and, moreover, leads to two non-trivial relations in the quark sector, √((m d )/(m s ))= vertical stroke V us vertical stroke and √((m d )/(m s ))= vertical stroke (V td )/(V ts ) vertical stroke. The main message of the T' model is the observation that the diverse pattern in the quark and lepton mixings can be well-understood, if the flavor symmetry is not broken in an arbitrary way, but only to residual (non-trivial) subgroups. Apart from leading to deeper insights into the origin of the fermion mixings this idea enables us to perform systematic studies of large classes of discrete groups. This we show in our study of dihedral symmetries D n and D' n . As a result we find only five distinct (Dirac) mass matrix structures arising from a dihedral group, if we additionally require partial unification of either left-handed or left-handed conjugate fermions and the determinant of the mass matrix to be non-vanishing. Furthermore, we reveal the ability of dihedral groups to predict the Cabibbo angle θ C , i.e. vertical stroke V us(cd) vertical stroke cos((3π)/(7)), as well as maximal atmospheric mixing, θ 23 =(π)/(4), and vanishing θ 13 in the lepton sector. (orig.)

  8. Authenticity of raspberry flavor in food products using SPME-chiral-GC-MS.

    Science.gov (United States)

    Hansen, Anne-Mette S; Frandsen, Henrik L; Fromberg, Arvid

    2016-05-01

    A fast and simple method for authenticating raspberry flavors from food products was developed. The two enantiomers of the compound (E)-α-ionone from raspberry flavor were separated on a chiral gas chromatographic column. Based on the ratio of these two enantiomers, the naturalness of a raspberry flavor can be evaluated due to the fact that a natural flavor will consist almost exclusively of the R enantiomer, while a chemical synthesis of the same compound will result in a racemic mixture. Twenty-seven food products containing raspberry flavors where investigated using SPME-chiral-GC-MS. We found raspberry jam, dried raspberries, and sodas declared to contain natural aroma all contained almost only R-(E)-α-ionone supporting the content of natural raspberry aroma. Six out of eight sweets tested did not indicate a content of natural aroma on the labeling which was in agreement with the almost equal distribution of the R and S isomer. Two products were labeled to contain natural raspberry flavors but were found to contain almost equal amounts of both enantiomers indicating a presence of synthetic raspberry flavors only. Additionally, two products that were labeled to contain both raspberry juice and flavor showed equal amounts of both enantiomers, indicating the presence of synthetic flavor.

  9. Formation of Poultry Meat Flavor by Heating Process and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Maijon Purba

    2014-09-01

    Full Text Available Flavor is an important factor in the acceptance of food. Flavor of poultry meat is naturally formed through a specific process of heating, where various chemical reactions complex occurred among nonvolatile precursors in fatty tissue or in lean tissue. The main flavor in the form of volatile and nonvolatile components play a major influence on the acceptance of various processed meat, especially the taste. Removal of sulfur components decreases meat flavor (meaty, while removal of carbonyl compounds decrease the specific flavor and increases common flavor of the meat. Poultry meat has a fairly high fat content that easily generates lipid oxidation. Lipid oxidation in poultry meat is a sign that the meat was damaged and caused off odor. Addition of antioxidants in the diet can inhibit lipid oxidation in the meat. Lipids interaction with proteins and carbohydrates is unavoidable during the thermal processing of food, causing the appearance of volatile components. The main reaction in meat flavor formation mechanism is Maillard reaction followed by Stecker reaction and degradation of lipids and thiamine. They involve in the reaction between carbonyl and amine components to form flavor compounds, which enhance the flavor of poultry meat.

  10. Detection of Off-Flavor in Catfish Using a Conducting Polymer Electronic-Nose Technology

    Science.gov (United States)

    Wilson, Alphus D.; Oberle, Charisse S.; Oberle, Daniel F.

    2013-01-01

    The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor) and off-flavor fillets were strongly different as confirmed by a Principal Component Analysis (PCA) and a Quality Factor value (QF > 7.9) indicating a significant difference at (P 90%) and with relatively low rates (≤5%) of unknown or indecisive determinations in three trials. This A32S e-nose instrument also was capable of detecting the incidence of mild off-flavor in fillets at levels lower than the threshold of human olfactory detection. Potential applications of e-nose technologies for pre- and post-harvest management of production and meat-quality downgrade problems associated with catfish off-flavor are discussed. PMID:24287526

  11. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses

    Science.gov (United States)

    Gilbert, Jessica L.; Guthart, Matthew J.; Gezan, Salvador A.; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L.; Colquhoun, Thomas A.; Bartoshuk, Linda M.; Sims, Charles A.; Clark, David G.; Olmstead, James W.

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (Panalysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile. PMID:26378911

  12. FlavorDB: a database of flavor molecules

    OpenAIRE

    Garg, Neelansh; Sethupathy, Apuroop; Tuwani, Rudraksh; NK, Rakhi; Dokania, Shubham; Iyer, Arvind; Gupta, Ayushi; Agrawal, Shubhra; Singh, Navjot; Shukla, Shubham; Kathuria, Kriti; Badhwar, Rahul; Kanji, Rakesh; Jain, Anupam; Kaur, Avneet

    2017-01-01

    Abstract Flavor is an expression of olfactory and gustatory sensations experienced through a multitude of chemical processes triggered by molecules. Beyond their key role in defining taste and smell, flavor molecules also regulate metabolic processes with consequences to health. Such molecules present in natural sources have been an integral part of human history with limited success in attempts to create synthetic alternatives. Given their utility in various spheres of life such as food and ...

  13. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making.

    Science.gov (United States)

    Meng, Xing; Wu, Qun; Wang, Li; Wang, Diqiang; Chen, Liangqiang; Xu, Yan

    2015-12-01

    Microbial interactions could impact the metabolic behavior of microbes involved in food fermentation, and therefore they are important for improving food quality. This study investigated the effect of Bacillus licheniformis, the dominant bacteria in the fermentation process of Chinese Maotai-flavor liquor, on the metabolic activity of Saccharomyces cerevisiae. Results indicated that S. cerevisiae inhibited the growth of B. licheniformis in all mixed culture systems and final viable cell count was lower than 20 cfu/mL. Although growth of S. cerevisiae was barely influenced by B. licheniformis, its metabolism was changed as initial inoculation ratio varied. The maximum ethanol productions were observed in S. cerevisiae and B. licheniformis at 10(6):10(7) and 10(6):10(8) ratios and have increased by 16.8 % compared with single culture of S. cerevisiae. According to flavor compounds, the culture ratio 10(6):10(6) showed the highest level of total concentrations of all different kinds of flavor compounds. Correlation analyses showed that 12 flavor compounds, including 4 fatty acids and their 2 corresponding esters, 1 terpene, and 5 aromatic compounds, that could only be produced by S. cerevisiae were significantly correlated with the initial inoculation amount of B. licheniformis. These metabolic changes in S. cerevisiae were not only a benefit for liquor aroma, but may also be related to its inhibition effect in mixed culture. This study could help to reveal the microbial interactions in Chinese liquor fermentation and provide guidance for optimal arrangement of mixed culture fermentation systems.

  14. Effect of xanthan gum on the release of strawberry flavor in formulated soy beverage.

    Science.gov (United States)

    Xu, Jiao; He, Zhiyong; Zeng, Maomao; Li, Bingbing; Qin, Fang; Wang, Linxiang; Wu, Shengfang; Chen, Jie

    2017-08-01

    The effects of xanthan gum on the release of strawberry flavor compounds in formulated soy protein isolate (SPI) beverage were investigated by headspace gas chromatography (GC). Seven strawberry flavor compounds (limonene, ethyl hexanoate, (Z)-3-hexenyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, (Z)-3-hexen-1-ol and diacetyl) could be detected by GC and hence analyzed the gas-matrix partition coefficients (K). The release of flavor compounds was restrained in SPI and/or xanthan gum solution. The retention of (Z)-3-hexen-1-ol, limonene and diacetyl significantly changed (pfuraneol) accelerated the release of ester compounds to some extent in different matrices. The above results demonstrated that presence of SPI and xanthan gum could bring about an imbalance in the strawberry flavor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Flavored model building

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, C.

    2008-01-15

    In this thesis we discuss possibilities to solve the family replication problem and to understand the observed strong hierarchy among the fermion masses and the diverse mixing pattern of quarks and leptons. We show that non-abelian discrete symmetries which act non-trivially in generation space can serve as profound explanation. We present three low energy models with the permutation symmetry S{sub 4}, the dihedral group D{sub 5} and the double-valued group T' as flavor symmetry. The T' model turns out to be very predictive, since it explains tri-bimaximal mixing in the lepton sector and, moreover, leads to two non-trivial relations in the quark sector, {radical}((m{sub d})/(m{sub s}))= vertical stroke V{sub us} vertical stroke and {radical}((m{sub d})/(m{sub s}))= vertical stroke (V{sub td})/(V{sub ts}) vertical stroke. The main message of the T' model is the observation that the diverse pattern in the quark and lepton mixings can be well-understood, if the flavor symmetry is not broken in an arbitrary way, but only to residual (non-trivial) subgroups. Apart from leading to deeper insights into the origin of the fermion mixings this idea enables us to perform systematic studies of large classes of discrete groups. This we show in our study of dihedral symmetries D{sub n} and D'{sub n}. As a result we find only five distinct (Dirac) mass matrix structures arising from a dihedral group, if we additionally require partial unification of either left-handed or left-handed conjugate fermions and the determinant of the mass matrix to be non-vanishing. Furthermore, we reveal the ability of dihedral groups to predict the Cabibbo angle {theta}{sub C}, i.e. vertical stroke V{sub us(cd)} vertical stroke = cos((3{pi})/(7)), as well as maximal atmospheric mixing, {theta}{sub 23}=({pi})/(4), and vanishing {theta}{sub 13} in the lepton sector. (orig.)

  16. Flavor symmetries and fermion masses

    International Nuclear Information System (INIS)

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model

  17. The flavoring of the pomeron

    International Nuclear Information System (INIS)

    Dash, J.W.; Manesis, E.K.

    1977-03-01

    A theoretical review and a detailed phenomenological description of the 'flavoring' of the bare Pomeron pole at t=0 (i.e. the non-diffractive renormalization of its multiperipheral unitarity sum by strange quarks, charmed quarks, diquarks,...) are presented. From an 'unflavored' intercept α=0.85 to a 'flavored' intercept α approximately 1.08, probably close to the bare intercept of the Reggeon Field Theory. NN, πN, and KN total cross sections and real to imaginary amplitude ratios are treated. No oscillations are observed. Particular attention is paid to 2 sigmasub(KN) - sigmasub(πN) which rises monotonically. A closely related combination of inelastic diffraction cross sections is presented which decreases monotonically, indicating that vacuum amplitudes are not simply the sum of a Pomeron pole and an ideally mixed f. In fact it is argued that a Pomeron +f structure is neither compatible with flavoring nor with schemes in which flavoring is somehow absorbed away. In contrast, flavoring is required for consistency with experiment by the Chew-Rosenzweig hypothesis of the Pomeron-f identity. A description of flavoring threshold effects on the Reggeon Field Theory at current energies is presented

  18. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    Directory of Open Access Journals (Sweden)

    Jessica L Gilbert

    Full Text Available Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001 were found with sweetness (R2 = 0.70, texture (R2 = 0.68, and flavor (R2 = 0.63. Sourness had a significantly negative relationship with overall liking (R2 = 0.55. The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001 demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their

  19. Flavor profile of radiation processed food commodities

    International Nuclear Information System (INIS)

    Chatterjee, S.; Variyar, Prasad S.; Sharma, Arun

    2006-01-01

    Full text: Flavor is one of the major quality attributes that play an important role in driving consumer choices and preferences for food. Among the several attributes that decide the flavor quality of any food, aroma and taste are the most important. While volatile constituents contribute to aroma, taste is a perception stimulated by non-volatile principles of food. Radiation processing of food has in recent years assumed increasing importance as a method for hygenization. At the doses employed for food irradiation no significant qualitative changes in the aroma constituents have been reported in most cases. An increase in perceived aroma has however been observed in several radiation processed foods. Besides volatile aroma compounds non-volatile aroma precursors are ubiquitous in plant kingdom. These compounds have been reported to exist largely as bound glycosidic conjugates and are known to undergo breakdown during processing and storage. This results in release of free aroma, thereby, modifying the flavor quality of the product. No report, however, exists on the effect of radiation processing on these bound aroma precursors. Four major class of food namely spices, oil seeds, fruits and beverages were therefore taken up for a detailed study. With respect to aroma, an enhanced breakdown of aroma precursors namely isoeugenol and 4-vinyl guaiacol glycosides and release of free aglycones was demonstrated to result in an increased aroma quality of radiation processed monsooned coffee. Breakdown of phenyl ethanol glucoside resulted in a fruitier note to pomegranate while enhanced spicy note of irradiated nutmeg arise as a result of radiolytic break down p-cymene-7-ol rutinoside precursor and release of free p-cymene-7-ol. An increased color quality of irradiated saffron was a result of the formation of free carotene aglycones namely crocetin from its glycosidic precursors while changes in perceived taste quality of radiation processed soybean could be attributed to

  20. Self-induced neutrino flavor conversion without flavor mixing

    International Nuclear Information System (INIS)

    Chakraborty, S.; Izaguirre, I.; Raffelt, G.G.; Hansen, R. S.

    2016-01-01

    Neutrino-neutrino refraction in dense media can cause self-induced flavor conversion triggered by collective run-away modes of the interacting flavor oscillators. The growth rates were usually found to be of order a typical vacuum oscillation frequency Δ m 2 /2E. However, even in the simple case of a ν e beam interacting with an opposite-moving ν-bar e beam, and allowing for spatial inhomogeneities, the growth rate of the fastest-growing Fourier mode is of order μ=√2 G F  n ν , a typical ν–ν interaction energy. This growth rate is much larger than the vacuum oscillation frequency and gives rise to flavor conversion on a much shorter time scale. This phenomenon of 'fast flavor conversion' occurs even for vanishing Δ m 2 /2E and thus does not depend on energy, but only on the angle distributions. Moreover, it does not require neutrinos to mix or to have masses, except perhaps for providing seed disturbances. We also construct a simple homogeneous example consisting of intersecting beams and study a schematic supernova model proposed by Ray Sawyer, where ν e and ν-bar e emerge with different zenith-angle distributions, the key ingredient for fast flavor conversion. What happens in realistic astrophysical scenarios remains to be understood

  1. Potential hazards in smoke-flavored fish

    Science.gov (United States)

    Lin, Hong; Jiang, Jie; Li, Donghua

    2008-08-01

    Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alternative to traditional smoking. The hazards of the fish products treated by liquid-smoking process are discussed in this review. The smoke flavoring is one important ingredient in the smoke-flavored fish. This paper gives the definition of smoke flavorings and the hazard of polycyclic aromatic hydrocarbons (PAHs) residue in the smoke flavorings on the market. It gives also an assessment of chemical hazards such as carcinogenic PAHs, especially Benzo-[ a]pyrene, as well as biological hazards such as Listeria monocytogenes, Clostridium botulinum, histamine and parasites in smoke-flavored fish. The limitations in regulations or standards are discussed. Smoke flavored fish have lower content of PAHs as compared with the traditional smoking techniques if the PAHs residue in smoke flavorings is controlled by regulations or standards.

  2. Flavor and flavor chemistry differences among milks processed by high-temperature, short-time pasteurization or ultra-pasteurization.

    Science.gov (United States)

    Jo, Y; Benoist, D M; Barbano, D M; Drake, M A

    2018-05-01

    Typical high-temperature, short-time (HTST) pasteurization encompasses a lower heat treatment and shorter refrigerated shelf life compared with ultra-pasteurization (UP) achieved by direct steam injection (DSI-UP) or indirect heat (IND-UP). A greater understanding of the effect of different heat treatments on flavor and flavor chemistry of milk is required to characterize, understand, and identify the sources of flavors. The objective of this study was to determine the differences in the flavor and volatile compound profiles of milk subjected to HTST, DSI-UP, or IND-UP using sensory and instrumental techniques. Raw skim and raw standardized 2% fat milks (50 L each) were processed in triplicate and pasteurized at 78°C for 15 s (HTST) or 140°C for 2.3 s by DSI-UP or IND-UP. Milks were cooled and stored at 4°C, then analyzed at d 0, 3, 7, and 14. Sensory attributes were determined using a trained panel, and aroma active compounds were evaluated by solid-phase micro-extraction or stir bar sorptive extraction followed by gas chromatography-mass spectrometry, gas chromatography-olfactometry, and gas chromatography-triple quad mass spectrometry. The UP milks had distinct cooked and sulfur flavors compared with HTST milks. The HTST milks had less diversity in aroma active compounds compared with UP milks. Flavor intensity of all milks decreased by d 14 of storage. Aroma active compound profiles were affected by heat treatment and storage time in both skim and 2% milk. High-impact aroma active compounds were hydrogen sulfide, dimethyl trisulfide, and methional in DSI-UP and 2 and 3-methylbutanal, furfural, 2-heptanone, 2-acetyl-1-pyrroline, 2-aminoacetophenone, benzaldehyde, and dimethyl sulfide in IND-UP. These results provide a foundation knowledge of the effect of heat treatments on flavor development and differences in sensory quality of UP milks. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Lepton-flavor violating mediators

    Energy Technology Data Exchange (ETDEWEB)

    Galon, Iftah; Kwa, Anna [Department of Physics & Astronomy, University of California,Irvine, CA 92697 (United States); Tanedo, Philip [Department of Physics & Astronomy, University of California,Riverside, CA 92521 (United States)

    2017-03-13

    We present a framework where dark matter interacts with the Standard Model through a light, spin-0 mediator that couples chirally to pairs of different-flavor leptons. This flavor violating final state weakens bounds on new physics coupled to leptons from terrestrial experiments and cosmic-ray measurements. As an example, we apply this framework to construct a model for the Fermi-LAT excess of GeV γ-rays from the galactic center. We comment on the viability of this portal for self-interacting dark matter explanations of small scale structure anomalies and embeddings in flavor models. Models of this type are shown to be compatible with the muon anomalous magnetic moment anomaly. We review current experimental constraints and identify possible future theoretical and experimental directions.

  4. Simulating nonlinear neutrino flavor evolution

    Science.gov (United States)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  5. Consumer preferences for mild cheddar cheese flavors.

    Science.gov (United States)

    Drake, S L; Gerard, P D; Drake, M A

    2008-11-01

    Flavor is an important factor in consumer selection of cheeses. Mild Cheddar cheese is the classification used to describe Cheddar cheese that is not aged extensively and has a "mild" flavor. However, there is no legal definition or age limit for Cheddar cheese to be labeled mild, medium, or sharp, nor are the flavor profiles or flavor expectations of these cheeses specifically defined. The objectives of this study were to document the distinct flavor profiles among commercially labeled mild Cheddar cheeses, and to characterize if consumer preferences existed for specific mild Cheddar cheese flavors or flavor profiles. Flavor descriptive sensory profiles of a representative array of commercial Cheddar cheeses labeled as mild (n= 22) were determined using a trained sensory panel and an established cheese flavor sensory language. Nine representative Cheddar cheeses were selected for consumer testing. Consumers (n= 215) assessed the cheeses for overall liking and other consumer liking attributes. Internal preference mapping, cluster analysis, and discriminant analysis were conducted. Mild Cheddar cheeses were diverse in flavor with many displaying flavors typically associated with more age. Four distinct consumer clusters were identified. The key drivers of liking for mild Cheddar cheese were: color, cooked/milky, whey and brothy flavors, and sour taste. Consumers have distinct flavor and color preferences for mild Cheddar cheese. These results can help manufacturers understand consumer preferences for mild Cheddar cheese.

  6. Flavorful Ways to New Physics

    CERN Document Server

    2015-01-01

    The workshop is intended to bring together young PhD students and postdocs with international renown representatives of the field of flavor physics. The workshop is specifically intended for PhD students and young postdocs. The overview talks about four big topics in flavor physics are given by international experts. The informal atmosphere should lead to fruitful discussions between the young and the experienced scientists. Furthermore, the participants themselves are invited to present their own work. Thus all young academics will get insights into selected fields of current research.

  7. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  8. Contact allergy to toothpaste flavors

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1978-01-01

    Toothpaste flavors are fragrance mixtures. Oil of peppermint and spearmint, carvone and anethole are ingredients with a low sensitizing potential, but they are used in almost every brand of toothpaste and caused seven cases of contact allergy in a 6-year period at Gentofte Hospital. Toothpaste...... reactions are rare due to several reasons; local factors in the mouth, the low sensitizing potential of the flavors generally used, and the lack of recognition. It is emphasized that the toothpaste battery for patch testing has to be relevant and changed according to the consumers' and manufacturers' taste...

  9. Effect of fat level on the perception of five flavor chemicals in ice cream with or without fat mimetics by using a descriptive test.

    Science.gov (United States)

    Liou, B K; Grün, I U

    2007-10-01

    Fat mimetics are commonly used in the manufacture of low-fat and fat-free ice creams. However, the use of fat mimetics affects flavor and texture characteristics of ice cream, which results in decreased overall acceptability by consumers. The initial objective of this study was to investigate the release behavior of 5 strawberry flavor compounds in ice creams with Simplesse((R)), Litesse((R)), and Litesse((R))/Simplesse((R)) mixes using descriptive analysis. Fat mimetics and flavor formulation significantly influenced the perception of Furaneoltrade mark (cooked sugar flavor), alpha-ionone (violet flavor), and gamma-undecalactone (peach flavor), but there was no interaction between ice cream type and flavor formulation for the 3 flavors. Furaneol and ethyl-3-methyl-3-phenylglycidate (candy flavor) were perceived more strongly in full-fat ice cream, while cis-3-hexen-1-ol (grassy flavor), alpha-ionone, and gamma-undecalactone were perceived more strongly in low-fat ice cream. Ice creams with Simplesse and full-fat ice cream had similar sensory characteristics, while ice creams with Litesse were similar to low-fat ice creams in flavor characteristics, and ice creams with Litesse/Simplesse mixes were closer in flavor profile to low-fat ice cream but had similar texture properties to those of full-fat ice cream. Simplesse was found to be a better fat mimetic for duplicating the flavor profiles and mouthfeel of full-fat ice cream.

  10. FLAVOR BIOGENERATION IN MANGABA (Hancornia speciosa Gomes FRUIT

    Directory of Open Access Journals (Sweden)

    Narenda Narain

    2007-11-01

    Full Text Available Most of the volatile flavoring substances are formed during maturation of fruit when it ripens. In this study, the mangaba (Hancornia speciosa Gomes fruit was harvested at half-ripe and ripe stages of maturity and analyzed for its volatile components. The extracts were obtained from the fruit pulp by using simultaneous distillation and extraction technique. Several extraction parameters such as weight of the pulp, dilution with water, solvent volume and extraction period were standardized to obtain highly characteristic fruit aroma extracts. The extracts were analyzed for the identification of volatile compounds by using a system of high resolution gas chromatograph coupled with mass spectrometer. Eighty-six components were separated out of which 46 compounds were positively identified. The volatile flavoring substances pertaining to classes of esters and terpenes increased from 6.19 to 35.487% and from 7.51 to 10.40%, respectively. The principal volatile compounds present in the pulp of ripe mangaba fruit were isopropyl acetate (19.23%, 3-hexanol (10.74%, linalool (7.38%, ä-limonene (2.43%, 3-pentanol (3.80%, 3-ethyl 2-buten-1-ol (2.53% and furfural (1.52%. Biogeneration of mangaba flavor is mainly characterized due to the presence of compounds pertaining to esters, aldehydes and terpenes.

  11. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Chiral flavor violation from extended gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jared A. [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Shih, David; Thalapillil, Arun [NHETC, Department of Physics and Astronomy,Rutgers University, Piscataway, NJ 08854 (United States)

    2015-07-08

    Models of extended gauge mediation, in which large A-terms arise through direct messenger-MSSM superpotential couplings, are well-motivated by the discovery of the 125 GeV Higgs. However, since these models are not necessarily MFV, the flavor constraints could be stringent. In this paper, we perform the first detailed and quantitative study of the flavor violation in these models. To facilitate our study, we introduce a new tool called FormFlavor for computing precision flavor observables in the general MSSM. We validate FormFlavor and our qualitative understanding of the flavor violation in these models by comparing against analytical expressions. Despite being non-MFV, we show that these models are protected against the strongest constraints by a special flavor texture, which we dub chiral flavor violation (χFV). This results in only mild bounds from current experiments, and exciting prospects for experiments in the near future.

  13. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception.

    Science.gov (United States)

    Schwieterman, Michael L; Colquhoun, Thomas A; Jaworski, Elizabeth A; Bartoshuk, Linda M; Gilbert, Jessica L; Tieman, Denise M; Odabasi, Asli Z; Moskowitz, Howard R; Folta, Kevin M; Klee, Harry J; Sims, Charles A; Whitaker, Vance M; Clark, David G

    2014-01-01

    Fresh strawberries (Fragaria x ananassa) are valued for their characteristic red color, juicy texture, distinct aroma, and sweet fruity flavor. In this study, genetic and environmentally induced variation is exploited to capture biochemically diverse strawberry fruit for metabolite profiling and consumer rating. Analyses identify fruit attributes influencing hedonics and sensory perception of strawberry fruit using a psychophysics approach. Sweetness intensity, flavor intensity, and texture liking are dependent on sugar concentrations, specific volatile compounds, and fruit firmness, respectively. Overall liking is most greatly influenced by sweetness and strawberry flavor intensity, which are undermined by environmental pressures that reduce sucrose and total volatile content. The volatile profiles among commercial strawberry varieties are complex and distinct, but a list of perceptually impactful compounds from the larger mixture is better defined. Particular esters, terpenes, and furans have the most significant fits to strawberry flavor intensity. In total, thirty-one volatile compounds are found to be significantly correlated to strawberry flavor intensity, only one of them negatively. Further analysis identifies individual volatile compounds that have an enhancing effect on perceived sweetness intensity of fruit independent of sugar content. These findings allow for consumer influence in the breeding of more desirable fruits and vegetables. Also, this approach garners insights into fruit metabolomics, flavor chemistry, and a paradigm for enhancing liking of natural or processed products.

  14. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception.

    Directory of Open Access Journals (Sweden)

    Michael L Schwieterman

    Full Text Available Fresh strawberries (Fragaria x ananassa are valued for their characteristic red color, juicy texture, distinct aroma, and sweet fruity flavor. In this study, genetic and environmentally induced variation is exploited to capture biochemically diverse strawberry fruit for metabolite profiling and consumer rating. Analyses identify fruit attributes influencing hedonics and sensory perception of strawberry fruit using a psychophysics approach. Sweetness intensity, flavor intensity, and texture liking are dependent on sugar concentrations, specific volatile compounds, and fruit firmness, respectively. Overall liking is most greatly influenced by sweetness and strawberry flavor intensity, which are undermined by environmental pressures that reduce sucrose and total volatile content. The volatile profiles among commercial strawberry varieties are complex and distinct, but a list of perceptually impactful compounds from the larger mixture is better defined. Particular esters, terpenes, and furans have the most significant fits to strawberry flavor intensity. In total, thirty-one volatile compounds are found to be significantly correlated to strawberry flavor intensity, only one of them negatively. Further analysis identifies individual volatile compounds that have an enhancing effect on perceived sweetness intensity of fruit independent of sugar content. These findings allow for consumer influence in the breeding of more desirable fruits and vegetables. Also, this approach garners insights into fruit metabolomics, flavor chemistry, and a paradigm for enhancing liking of natural or processed products.

  15. Detection of Off-Flavor in Catfish Using a Conducting Polymer Electronic-Nose Technology

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2013-11-01

    Full Text Available The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor and off-flavor fillets were strongly different as confirmed by a Principal Component Analysis (PCA and a Quality Factor value (QF > 7.9 indicating a significant difference at (P < 0.05. The A32S e-nose effectively discriminated between good-flavor and off-flavor catfish at high levels of accuracy (>90% and with relatively low rates (≤5% of unknown or indecisive determinations in three trials. This A32S e-nose instrument also was capable of detecting the incidence of mild off-flavor in fillets at levels lower than the threshold of human olfactory detection. Potential applications of e-nose technologies for pre- and post-harvest management of production and meat-quality downgrade problems associated with catfish off-flavor are discussed.

  16. 21 CFR 172.510 - Natural flavoring substances and natural substances used in conjunction with flavors.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Natural flavoring substances and natural substances used in conjunction with flavors. 172.510 Section 172.510 Food and Drugs FOOD AND DRUG ADMINISTRATION....510 Natural flavoring substances and natural substances used in conjunction with flavors. Natural...

  17. Brain mechanisms of flavor learning.

    Science.gov (United States)

    Yamamoto, Takashi; Ueji, Kayoko

    2011-01-01

    Once the flavor of the ingested food (conditioned stimulus, CS) is associated with a preferable (e.g., good taste or nutritive satisfaction) or aversive (e.g., malaise with displeasure) signal (unconditioned stimulus, US), animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning) are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammillary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.

  18. Flavor Democracy in Particle Physics

    International Nuclear Information System (INIS)

    Sultansoy, Saleh

    2007-01-01

    The flavor democracy hypothesis (or, in other words, democratic mass matrix approach) was introduced in seventies taking in mind three Standard Model (SM) families. Later, this idea was disfavored by the large value of the t-quark mass. In nineties the hypothesis was revisited assuming that extra SM families exist. According to flavor democracy the fourth SM family should exist and there are serious arguments disfavoring the fifth SM family. The fourth SM family quarks lead to essential enhancement of the Higgs boson production cross-section at hadron colliders and the Tevatron can discover the Higgs boson before the LHC, if it mass is between 140 and 200 GeV. Then, one can handle 'massless' Dirac neutrinos without see-saw mechanism. Concerning BSM physics, flavor democracy leads to several consequences: tanβ ≅ mt/mb ≅ 40 if there are three MSSM families; super-partner of the right-handed neutrino can be the LSP; relatively light E(6)-inspired isosinglet quark etc. Finally, flavor democracy may give opportunity to handle ''massless'' composite objects within preonic models

  19. Flavor asymmetry of the nucleon

    International Nuclear Information System (INIS)

    Bijker, R.; Santopinto, E.

    2008-01-01

    The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (uu, dd and ss) are taken into account in an explicit form. The inclusion of qq pairs leads automatically to an excess of d over u quarks in the proton, in agreement with experimental data. (Author)

  20. Flavor asymmetry of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R. [Instituto de Ciencias Nucleares, UNAM, Apartado Postal 70-543, 04510 Mexico D. F. (Mexico); Santopinto, E. [INFN and Dipartimento di Fisica, Via Dodecaneso 33, I-16146 Genova (Italy)]. e-mail: bijker@nucleares.unam.mx

    2008-12-15

    The flavor asymmetry of the nucleon sea is discussed in an unquenched quark model for baryons in which the effects of quark-antiquark pairs (uu, dd and ss) are taken into account in an explicit form. The inclusion of qq pairs leads automatically to an excess of d over u quarks in the proton, in agreement with experimental data. (Author)

  1. Effects of processing treatment and sorbate addition on the flavor characteristics of apple cider.

    Science.gov (United States)

    Boylston, Terri D; Wang, Hui; Reitmeier, Cheryll A; Glatz, Bonita A

    2003-03-26

    Processing treatments used to produce a microbiologically "safe" apple cider were evaluated to determine the impact of these treatments on the overall flavor characteristics. Apple cider with (0.1%) and without (0%) potassium sorbate was subjected to four processing treatments: untreated, irradiated at 2 kGy, irradiated at 4 kGy, and pasteurized. Volatile flavor compounds were isolated from the cider using solid-phase microextraction methods with gas chromatographic analysis. A trained descriptive analysis panel evaluated sensory attributes. The effects of the processing treatment were dependent on the presence of sorbate in the apple cider. Irradiation treatments resulted in a decrease in the content of esters characteristic of apple flavor and an increase in the content of alcohols and aldehydes formed through lipid oxidation reactions. The presence of sorbate reduced the effects of the irradiation treatments on these volatile flavor compounds. Sensory panelists, however, detected higher intensities of undesirable flavor attributes, including "cardboard flavor", and lower intensities of the desirable "apple flavor" in irradiated cider with added sorbate.

  2. Volatile flavor analysis and sensory evaluation of custard desserts varying in type and concentration of carboxymethyl cellulose.

    Science.gov (United States)

    van Ruth, Saskia M; de Witte, Leontien; Uriarte, Amaya Rey

    2004-12-29

    The influence of type and concentration of carboxymethyl cellulose (CMC) on flavor and textural properties of custard desserts was examined. A synthetic strawberry flavor mixture was used to flavor the custards; it comprised 15 volatile flavor compounds. The viscosity of the custards was determined using rheometric measurements. Static headspace gas chromatography and in-nose proton transfer reaction-mass spectrometry analyses were conducted to determine the custards' volatile flavor properties. Perceived odor, flavor, and textural properties were assessed in sensory analysis experiments using magnitude estimation against a fixed modulus. Both type and concentration of CMC altered the viscosity of the custards. Softer custards had higher static headspace flavor concentrations. On the contrary, firmer custards demonstrated higher in-nose flavor concentrations. In sensory analysis, firmer custards showed higher thickness and lower sweetness intensities than their low-viscosity counterparts. The thickness perception corresponded to the viscosity of the custards. Removal of sucrose from the custards affected sweetness intensity only and not the intensity of other attributes. Therefore, the influence of the viscosity of the custards on the release of sweet-tasting components is held responsible for the effect on perceived sweetness intensity. Odor intensities were generally higher for the low-viscosity custard, whereas fruity flavor intensities were higher for the firmer custards. Odor intensities correlated with static headspace concentrations and flavor intensities related reasonably well with in-nose concentrations. Opening and closing of the nasal cavity is regarded as an important factor determining the discrepancy between static and in-nose measurements.

  3. Heavy flavor production from photons and hadrons

    International Nuclear Information System (INIS)

    Heusch, C.A.

    1982-01-01

    The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e + e - annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed

  4. Flavor perception and aroma release from model dairy desserts.

    Science.gov (United States)

    Lethuaut, Laurent; Weel, Koen G C; Boelrijk, Alexandra E M; Brossard, Chantal D

    2004-06-02

    Six model dairy desserts, with three different textures and two sucrose levels, were equally flavored with a blend of four aroma compounds [ethyl pentanoate, amyl acetate, hexanal, and (E)-2-hexenal] and evaluated by a seven person panel in order to study whether the sensory perception of the flavor and the aroma release during eating varied with the textural characteristics or the sweetness intensity of the desserts. The sensory perception was recorded by the time intensity (TI) method, while the in vivo aroma release was simultaneously measured by the MS-nose. Considering the panel as a whole, averaged flavor intensity increased with sucrose level and varied with the texture of the desserts. Depending on the aroma compound, the averaged profile of in vivo aroma release varied, but for each aroma compound, averaged aroma release showed no difference with the sucrose level and little difference with the texture of the desserts. Perceptual sweetness-aroma interactions were the main factors influencing perception whatever the texture of the desserts.

  5. Suppressing supersymmetric flavor violations through quenched gaugino-flavor interactions

    Science.gov (United States)

    Wells, James D.; Zhao, Yue

    2017-06-01

    Realizing that couplings related by supersymmetry (SUSY) can be disentangled when SUSY is broken, it is suggested that unwanted flavor and C P -violating SUSY couplings may be suppressed via quenched gaugino-flavor interactions, which may be accomplished by power-law running of sfermion anomalous dimensions. A simple theoretical framework to accomplish this is exemplified, where a strongly coupled conformal field theory is achieved after SUSY is softly broken. The defeated constraints are tallied. One key implication of the scenario is the expectation of enhanced top, bottom and tau production at the LHC, accompanied by large missing energy. Also, direct detection signals of dark matter may be more challenging to find than in conventional SUSY scenarios.

  6. Supersymmetry: Compactification, flavor, and dualities

    Science.gov (United States)

    Heidenreich, Benjamin Jones

    We describe several new research directions in the area of supersymmetry. In the context of low-energy supersymmetry, we show that the assumption of R-parity can be replaced with the minimal flavor violation hypothesis, solving the issue of nucleon decay and the new physics flavor problem in one stroke. The assumption of minimal flavor violation uniquely fixes the form of the baryon number violating vertex, leading to testable predictions. The NLSP is unstable, and decays promptly to jets, evading stringent bounds on vanilla supersymmetry from LHC searches, whereas the gravitino is long-lived, and can be a dark matter component. In the case of a sbottom LSP, neutral mesinos can form and undergo oscillations before decaying, leading to same sign tops, and allowing us to place constraints on the model in this case. We show that this well-motivated phenomenology can be naturally explained by spontaneously breaking a gauged flavor symmetry at a high scale in the presence of additional vector-like quarks, leading to mass mixings which simultaneously generate the flavor structure of the baryon-number violating vertex and the Standard Model Yukawa couplings, explaining their minimal flavor violating structure. We construct a model which is robust against Planck suppressed corrections and which also solves the mu problem. In the context of flux compactifications, we begin a study of the local geometry near a stack of D7 branes supporting a gaugino condensate, an integral component of the KKLT scenario for Kahler moduli stabilization. We obtain an exact solution for the geometry in a certain limit using reasonable assumptions about symmetries, and argue that this solution exhibits BPS domain walls, as expected from field theory arguments. We also begin a larger program of understanding general supersymmetric compactifications of type IIB string theory, reformulating previous results in an SL(2, R ) covariant fashion. Finally, we present extensive evidence for a new class of

  7. Flavor symmetry in the large Nc limit

    International Nuclear Information System (INIS)

    Karl, G.; Washington Univ., Seattle, WA; Lipkin, H.J.; Washington Univ., Seattle, WA

    1991-01-01

    An essential difference between two-flavor and three-flavor descriptions of baryons in large N c QCD is discussed in detail. For N c ≥3 a state with the SU(3) flavor quantum numbers of the proton must contain a number of strange quarks n s ≥(N c -3)/3, while a state with no strange quarks must have extra hypercharge Y-1 = 3/N c -1. The extra strangeness or extra hypercharge which vanishes for N c = 3 is spurious for the physical proton. This problem does not arise in two-flavor QCD, where the flavor-SU(2) Skyrmion may give a good approximation for nucleon-pion physics at low energies below strangeness threshold. But any nucleon model with SU(3) flavor symmetry which is interpreted as arising from the large N c limit in QCD can lead to erroneous conclusions about the spin and flavor structure of the proton. 12 refs

  8. Flavor Beyond the Standard Universe

    CERN Document Server

    Giudice, Gian F; Soreq, Yotam

    2012-01-01

    We explore the possibility that the observed pattern of quark masses is the consequence of a statistical distribution of Yukawa couplings within the multiverse. We employ the anthropic condition that only two ultra light quarks exist, justifying the observed richness of organic chemistry. Moreover, the mass of the recently discovered Higgs boson suggests that the top Yukawa coupling lies near the critical condition where the electroweak vacuum becomes unstable, leading to a new kind of flavor puzzle and to a new anthropic condition. We scan Yukawa couplings according to distributions motivated by high-scale flavor dynamics and find cases in which our pattern of quark masses has a plausible probability within the multiverse. Finally we show that, under some assumptions, these distributions can significantly ameliorate the runaway behavior leading to weakless universes.

  9. Heavy flavor measurements at LHC

    CERN Document Server

    Spagnolo, S; The ATLAS collaboration

    2013-01-01

    ATLAS and CMS measurements in the area of heavy flavor physics are reviewed with focus on the most recent results. The topics discussed include heavy flavor production rates and properties, exclusive b-hadron production, with attention to the recent observations of rare b-hadrons and to the measurements of Lambda_b production cross section, lifetime and mass. Differential production cross sections and polarization measurements of Upsilon states are presented, along with production ratios of chi_c states in the charmonium system. Evidence for a new Xsi_b state and observations of structures in the J/Psi phi spectrum from B+- decays to J/Psi phi K+- in the CMS data are also reported. Precision studies of the Bs system and determination of CP-violation sensitive parameters are discussed. Finally the status of the searches for rare decays is presented.

  10. Heavy flavor measurements at LHC

    CERN Document Server

    Spagnolo, S; The ATLAS collaboration

    2013-01-01

    ATLAS and CMS measurements in the area of heavy flavor physics are reviewed with focus on the most recent results. The topics discussed include heavy flavor production rates and properties, exclusive b-hadron production, with attention to the recent observations of rare b-hadrons and to the precise measurements of Lambda_b production cross section, lifetime and mass. Differential production cross sections and polarization measurements of Upsilon states are presented, along with production ratios of chi_c states in the charmonium system. Evidence for a new Xsi_b state and observations of structures in the J/Psi phi spectrum from B+- decays to J/Psi phi K+- in the CMS data are also reported. Precision studies of the Bs system and determination of CP-violation sensitive parameters are discussed. Finally the status of the searches for rare FCNC decays is presented.

  11. Flavor Physics & CP Violation 2015

    Science.gov (United States)

    "Flavor Physics & CP violation 2015" (FPCP 2015) was held in Nagoya, Japan, at Nagoya University, from May 25 to May 29 2015. This is the 13th meeting of the series of annual conferences started in Philadelphia, PA, USA in 2002. The aim of the conference is to review developments in flavor physics and CP violation, in both theory and experiment, exploiting the potential to study new physics at the LHC and future facilities. The topics include CP violation, rare decays, CKM elements with heavy quark decays, flavor phenomena in charged leptons and neutrinos, and also interplay between flavor and LHC high Pt physics. The FPCP2015 conference had more than 140 participants, including researchers from abroad and many young researchers (postdocs and students). The conference consisted of plenary talks and poster presentations. The plenary talks include 2 overview talks, 48 review talks, and 2 talks for outlook in theories and experiments, given by world leading researchers. There was also a special lecture by Prof. Makoto Kobayashi, one of the Nobel laureates in 2008. The poster session had 41 contributions. Many young researchers presented their works. These proceedings contain written documents for these plenary and poster presentations. The full scientific program and presentation materials can be found at http://fpcp2015.hepl.phys.nagoya-u.ac.jp/. We would like to thank the International Advisory Committee for their invaluable assistance in coordinating the scientific program and in helping to identifying many speakers. Thanks are also due to the Local Organizing Committee for tireless efforts for smooth running of the conference and very enjoyable social activities. We also thank the financial supports provided by Japanese Scociety for the Promotion of Science (JSPS) unfer the Grant-in-Aid for Scientific Research (S) "Probing New Physics with Tau-Lepton" (No. 26220706), by Nagoya University under the Program for Promoting the Enhancement of Research Universities, and

  12. Brain mechanisms of flavor learning

    Directory of Open Access Journals (Sweden)

    Takashi eYamamoto

    2011-09-01

    Full Text Available Once the flavor of the ingested food (conditioned stimulus, CS is associated with a preferable (e.g., good taste or nutritive satisfaction or aversive (e.g., malaise with displeasure signal (unconditioned stimulus, US, animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammilary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.

  13. Flavor extrapolation in lattice QCD

    International Nuclear Information System (INIS)

    Duffy, W.C.

    1984-01-01

    Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors

  14. Flavor changing Z0 decay

    International Nuclear Information System (INIS)

    Axelrod, A.

    1982-01-01

    The discovery of the Z 0 , the particle mediating the weak neutral interaction of the SU(2)/sub L/ x U(1) electroweak theory, is anxiously awaited and is expected to occur at the next generation of accelerators. Large projected Z 0 production rates will make the study of rare decay modes possible. The predicted sixth quark flavor, or top, has also not been discovered and may be too heavy to produce by t anti t. Therefore it is natural to study the feasibility of producing the top quark via a flavor changing neutral current decay process such as t anti c. Flavor changing neutral currents are also of interest for the constraints on theories that they give. For three generations, the branching ratios are found to be no larger than about 10 -10 , thus essentially ruling out discovery of the top quark by this process. If there is a fourth generation, however, a supermassive b' quark can greatly increase the rates. As the b' mass is varied from 25 GeV to 1 TeV, and for reasonable choices of the other parameters, the branching ratios can be as large as about 10 -8 to about 10 -3 . A potential form of CP violation is also considered in that latter case, but is small

  15. Simulating nonlinear neutrino flavor evolution

    Energy Technology Data Exchange (ETDEWEB)

    Duan, H [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Fuller, G M [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Carlson, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: hduan@phys.washington.edu, E-mail: gfuller@ucsd.edu, E-mail: carlson@lanl.gov

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle {theta}{sub 13}.

  16. Flavorful leptoquarks at hadron colliders

    Science.gov (United States)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  17. The Flavor World of Childhood

    Directory of Open Access Journals (Sweden)

    Julie A Mennella

    2014-07-01

    Although some may view food choice as a cultural trait, not directly related to our biology, overwhelming evidence suggests that children’s biology makes them especially vulnerable to the current food environment of processed foods high in salt and refined sugars. Emerging research in humans and animal models suggests that, beginning very early in life, sensory experiences shape and modify flavor and food preferences and have far-reaching effects on behavior. Such early life experiences with healthy levels of salt and sweet tastes and repeated exposure to healthy food flavors may go a long way toward promoting healthy eating and growth, which could have a significant impact in addressing the many chronic illnesses associated with poor food choice. Yet because of the lack of research, many feeding practices are based on idiosyncratic parental behavior, family traditions, or medical lore, rather than research. One of the keys to continued advances and applications on how to develop good food habits comes from studying the fundamental principles underlying flavor learning, which provides an understanding and appreciation of essential aspect of cultural food practices and habits.

  18. Identifying consumer preferences for specific beef flavor characteristics in relation to cattle production and postmortem processing parameters.

    Science.gov (United States)

    O'Quinn, T G; Woerner, D R; Engle, T E; Chapman, P L; Legako, J F; Brooks, J C; Belk, K E; Tatum, J D

    2016-02-01

    Sensory analysis of ground LL samples representing 12 beef product categories was conducted in 3 different regions of the U.S. to identify flavor preferences of beef consumers. Treatments characterized production-related flavor differences associated with USDA grade, cattle type, finishing diet, growth enhancement, and postmortem aging method. Consumers (N=307) rated cooked samples for 12 flavors and overall flavor desirability. Samples were analyzed to determine fatty acid content. Volatile compounds produced by cooking were extracted and quantified. Overall, consumers preferred beef that rated high for beefy/brothy, buttery/beef fat, and sweet flavors and disliked beef with fishy, livery, gamey, and sour flavors. Flavor attributes of samples higher in intramuscular fat with greater amounts of monounsaturated fatty acids and lesser proportions of saturated, odd-chain, omega-3, and trans fatty acids were preferred by consumers. Of the volatiles identified, diacetyl and acetoin were most closely correlated with desirable ratings for overall flavor and dimethyl sulfide was associated with an undesirable sour flavor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Flavor and Acceptance of Roasted California Almonds During Accelerated Storage.

    Science.gov (United States)

    Franklin, Lillian M; King, Ellena S; Chapman, Dawn; Byrnes, Nadia; Huang, Guangwei; Mitchell, Alyson E

    2018-02-07

    Monitoring oxidative flavor changes in almonds is possible only if the chemical and sensory profile during roasting and storage is first established. Herein, almonds roasted at two different temperatures (115 and 152 °C) were stored at 39 °C for 0 to 12 months and were analyzed by headspace solid-phase microextraction gas chromatography-mass spectrometry, descriptive analysis, and consumer hedonic analysis. Volatile profiles, descriptive sensory profiles, and consumer hedonic scores were analyzed for predictive relationships. Descriptive attributes involving Roasted and Nutty as well as consumer liking were highest in fresh almonds, while flavors typically associated with oxidative rancidity such as Cardboard, Painty/Solvent, Soapy, and Total Oxidized increased during storage. Compounds most important for predicting rancidity-related attributes were lipid oxidation products, including pentanal, hexanal, heptanal, and octanal. Consumer liking was best predicted by similar compounds to those predicting Clean Nutty flavor, including Maillard reaction products such as 2- and 3-methylbutanal, 2-methylpyrazine, and 2,5-dimethylpyrazine.

  20. Effective Prevention of Oxidative Deterioration of Fish Oil: Focus on Flavor Deterioration.

    Science.gov (United States)

    Miyashita, Kazuo; Uemura, Mariko; Hosokawa, Masashi

    2018-03-25

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), both abundant in fish oil, are known to have significant biochemical and physiological effects primarily linked to the improvement of human health, especially cardiovascular and brain health. However, the incorporation of fish oil into foods and beverages is often challenging, as fish oil is very easily oxidized and can cause undesirable flavors. This review discusses this rapid formation of the fishy and metallic off-flavors, focusing especially on an early stage of fish oil oxidation. Although oxidative stability and quality of commercialized fish oil have improved over the past few years, there is a still a problem with its application: Flavor deterioration can be found even at very low oxidation levels. This review also notes the effective way to inhibit the formation of the volatile compounds responsible for the flavor deterioration.

  1. Flavor Dependence of the S-parameter

    DEFF Research Database (Denmark)

    Di Chiara, Stefano; Pica, Claudio; Sannino, Francesco

    2011-01-01

    of flavors, colors and matter representation. We show that S, normalized to the number of flavors, increases as we decrease the number of flavors and gives a direct measure of the anomalous dimension of the mass of the fermions. Our findings support the conjecture presented in [arXiv:1006.0207 [hep...... constitute important constraints on models of dynamical electroweak symmetry breaking and unparticle physics....

  2. Flavor physics and CP violation

    Science.gov (United States)

    Chang, Paoti; Chen, Kai-Feng; Hou, Wei-Shu

    2017-11-01

    We currently live in the age of the CKM paradigm. The 3 × 3 matrix that links (d , s , b) quarks to (u , c , t) in the charged current weak interaction, being complex and nominally with 18 parameters, can be accounted for by just 3 rotation angles and one CP violating (CPV) phase, with unitarity and the CKM phases triumphantly tested at the B factories. But the CKM picture is unsatisfactory and has too many parameters. The main aim of Flavor Physics and CP violation (FPCP) studies is the pursuit to uncover New Physics beyond the Standard Model (SM). Two highlights of LHC Run 1 period are the CPV phase ϕs of Bs mixing and Bs →μ+μ- decay, which were found to be again consistent with SM, though the saga is yet unfinished. We also saw the emergence of the P5‧ angular variable anomaly in B0 →K∗0μ+μ- decay and R K (∗) anomaly in B →K (∗)μ+μ- to B →K (∗)e+e- rate ratios, and the BaBar anomaly in B →D (∗) τν decays, which suggest possible New Physics in these flavor processes, pointing to extra Z‧, charged Higgs, or leptoquarks. Charmless hadronic, semileptonic, purely leptonic and radiative B decays continue to offer various further windows on New Physics. Away from B physics, the rare K → πνν decays and ε‧ / ε in the kaon sector, μ → e transitions, muon g - 2 and electric dipole moments of the neutron and electron, τ → μγ , μμμ , eee, and a few charm physics probes, offer broadband frontier windows on New Physics. Lastly, flavor changing neutral transitions involving the top quark t and the 125 GeV Higgs boson h, such as t → ch and h → μτ, offer a new window into FPCP, while a new Z‧ related or inspired by the P5‧ anomaly, could show up in analogous top quark processes, perhaps even link with low energy phenomena such as muon g - 2 or rare kaon processes. In particular, we advocate the potential new SM, the two Higgs doublet model without discrete symmetries to control flavor violation, as SM2. As we are

  3. Heavy flavor measurements and new physics searches

    International Nuclear Information System (INIS)

    Isidori, G.

    2014-01-01

    We review recent progress in measuring and theoretically understanding flavor-changing processes, and the corresponding constraints derived on possible extensions of the Standard Model (SM). A clear message emerges from present data: if physics beyond the SM is not far from the TeV scale (hence it is directly accessible with present and future high-energy facilities), it must have a highly non-trivial flavor structure in order to satisfy the existing low-energy flavor-physics bounds. However, this structure has not been clearly identified yet and its investigation is the main purpose of future experiments in flavor physics

  4. The effect of sucralose on flavor sweetness in electronic cigarettes varies between delivery devices.

    Directory of Open Access Journals (Sweden)

    Kathryn Rosbrook

    Full Text Available The appeal of sweet electronic cigarette flavors makes it important to identify the chemical compounds that contribute to their sweetness. While volatile chemicals that produce sweet aromas have been identified in e-liquids, there are no published reports of sugars or artificial sweeteners in commercial e-liquids. However, the sweetener sucralose is marketed as an e-liquid additive to commercial flavors. The primary aims of the study were to determine if sucralose is delivered in sufficient concentration in the inhaled aerosol to enhance flavor sweetness, and whether the amount delivered depends on the e-liquid delivery system. Thirty-two adult smokers rated flavor intensity, sweetness, harshness and liking/disliking for 4 commercial flavors with and without sucralose (1% using 2 e-cigarette delivery systems (cartridge and tank. Participants alternately vaped normally or with the nose pinched closed to block perception of volatile flavor components via olfaction. LC/MS was used to measure the concentration of sucralose in the e-liquid aerosols using a device that mimicked vaping. Sweetness and flavor intensity were perceived much more strongly when olfaction was permitted. The contribution of sucralose to sweetness was significant only for the cartridge system, and the chemical analysis showed that the concentration of sucralose in the aerosol was higher when the cartridge was used. Together these findings indicate that future regulation of sweet flavor additives should focus first on the volatile constituents of e-liquids with the recognition that artificial sweeteners may also contribute to flavor sweetness depending upon e-cigarette design.

  5. Cytotoxicity of Cheese and Cheddar Cheese food flavorings on Allim cepa L root meristems

    Directory of Open Access Journals (Sweden)

    A. G. Moura

    Full Text Available Abstract Despite their great importance for the food industry, flavorings, in general, raise a number of questions regarding their cytotoxicity, mutagenicity and carcinogenicity, since, in the literature, there are few studies found evaluating the toxicity on the systemic and cellular level, of these chemical compounds. The root meristems of Allium cepa (onion are widely used for the assessment of toxicity of chemical compounds of interest. Thus, this study aimed to evaluate, in A. cepa meristematic cells, individually and in combination at the cellular level, the toxicity of synthetic Cheese and Cheddar Cheese food flavorings, identical to the natural, at doses of 1.0 and 2.0 mL, at exposure times of 24 and 48 hours. In combination we used 0.5 mL of Cheese flavor associated with 0.5 mL of Cheddar flavor; and 1.0 mL of Cheese flavor associated with 1.0 mL of Cheddar flavor, at exposure times of 24 and 48 hours. For these evaluations, we used groups of five onion bulbs, which were first embedded in distilled water and then transferred to their respective doses. The root tips were collected and fixed in acetic acid (3:1 for 24 hours. The slides were prepared by crushing and were stained with 2% acetic orcein. Cells were analyzed throughout the cell cycle, totaling 5,000 for each control and exposure time. The mitotic indices calculated and cellular aberrations observed were subjected to statistical analysis using the chi-square test (p <0.05. No chromosomal abnormalities nor those of mitotic spindle were observed for the treatments performed. The results, both individually and in combination, showed that the flavorings under study significantly reduced the cell division rate of the test system cells used. Therefore, under the conditions studied, the two flavorings were cytotoxic.

  6. An E-liquid Flavor Wheel: A Shared Vocabulary based on Systematically Reviewing E-liquid Flavor Classifications in Literature.

    NARCIS (Netherlands)

    Krüsemann, Erna Johanna Zegerina; Boesveldt, Sanne; de Graaf, Kees; Talhout, Reinskje

    2018-01-01

    E-liquids are available in a high variety of flavors. A systematic classification of e-liquid flavors is necessary to increase comparability of research results. In the food, alcohol and fragrance industry, flavors are classified using flavor wheels. We systematically reviewed literature on flavors

  7. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    Science.gov (United States)

    Gilbert, Jessica L; Guthart, Matthew J; Gezan, Salvador A; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L; Colquhoun, Thomas A; Bartoshuk, Linda M; Sims, Charles A; Clark, David G; Olmstead, James W

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (Pblueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile.

  8. The effect of vitamin concentrates on the flavor of pasteurized fluid milk.

    Science.gov (United States)

    Yeh, E B; Schiano, A N; Jo, Y; Barbano, D M; Drake, M A

    2017-06-01

    Fluid milk consumption in the United States continues to decline. As a result, the level of dietary vitamin D provided by fluid milk in the United States diet has also declined. Undesirable flavor(s)/off flavor(s) in fluid milk can negatively affect milk consumption and consumer product acceptability. The objectives of this study were to identify aroma-active compounds in vitamin concentrates used to fortify fluid milk, and to determine the influence of vitamin A and D fortification on the flavor of milk. The aroma profiles of 14 commercial vitamin concentrates (vitamins A and D), in both oil-soluble and water-dispersible forms, were evaluated by sensory and instrumental volatile compound analyses. Orthonasal thresholds were determined for 8 key aroma-active compounds in skim and whole milk. Six representative vitamin concentrates were selected to fortify skim and 2% fat pasteurized milks (vitamin A at 1,500-3,000 IU/qt, vitamin D at 200-1,200 IU/qt, vitamin A and D at 1,000/200-6,000/1,200 IU/qt). Pasteurized milks were evaluated by sensory and instrumental volatile compound analyses and by consumers. Fat content, vitamin content, and fat globule particle size were also determined. The entire experiment was done in duplicate. Water-dispersible vitamin concentrates had overall higher aroma intensities and more detected aroma-active compounds than oil-soluble vitamin concentrates. Trained panelists and consumers were able to detect flavor differences between skim milks fortified with water-dispersible vitamin A or vitamin A and D, and unfortified skim milks. Consumers were unable to detect flavor differences in oil-soluble fortified milks, but trained panelists documented a faint carrot flavor in oil-soluble fortified skim milks at higher vitamin A concentrations (3,000-6,000 IU). No differences were detected in skim milks fortified with vitamin D, and no differences were detected in any 2% milk. These results demonstrate that vitamin concentrates may contribute to

  9. Influence of heating and acidification on the flavor of whey protein isolate.

    Science.gov (United States)

    White, S S; Fox, K M; Jervis, S M; Drake, M A

    2013-03-01

    Previous studies have established that whey protein manufacture unit operations influence the flavor of dried whey proteins. Additionally, manufacturers generally instantize whey protein isolate (WPI; ≥ 90% protein) by agglomeration with lecithin to increase solubility and wettability. Whey protein isolate is often subjected to additional postprocessing steps in beverage manufacturing, including acidification and heat treatment. These postprocessing treatments may further influence formation or release of flavors. The objective of the first study was to characterize the effect of 2 processing steps inherent to manufacturing of acidic protein beverages (acidification and heat treatment) on the flavor of non-instant WPI. The second study sought to determine the effect of lecithin agglomeration, a common form of instantized (INST) WPI used in beverage manufacturing, on the flavor of WPI after acidification and heat treatment. In the first experiment, commercial non-instantized (NI) WPI were rehydrated and evaluated as is (control); acidified to pH 3.2; heated to 85°C for 5 min in a benchtop high temperature, short time (HTST) pasteurizer; or acidified to 3.2 and heated to 85°C for 30s (AH-HTST). In the second experiment, INST and NI commercial WPI were subsequently evaluated as control, acidified, heated, or AH-HTST. All samples were evaluated by descriptive sensory analysis, solid-phase microextraction (SPME), and gas chromatography-mass spectrometry. Acidification of NI WPI produced higher concentrations of dimethyl disulfide (DMDS) and sensory detection of potato/brothy flavors, whereas heating increased cooked/sulfur flavors. Acidification and heating increased cardboard, potato/brothy, and malty flavors and produced higher concentrations of aldehydes, ketones, and sulfur compounds. Differences between INST and NI WPI existed before treatment; INST WPI displayed cucumber flavors not present in NI WPI. After acidification, INST WPI were distinguished by higher

  10. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    Keywords. Hypercentral constituent quark model; charmed and beauty baryons; hyper-Coulomb plus power potential. Abstract. Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement ...

  11. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Miller,M.; Surrow, B.; Van Nieuwenhuizen G.; Bieser, F.; Gareus, R.; Greiner,L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for theSTAR experiment at RHIC. The HFT will bring new physics capabilities toSTAR and it will significantly enhance the physics capabilities of theSTAR detector at central rapidities. The HFT will ensure that STAR willbe able to take heavy flavor data at all luminosities attainablethroughout the proposed RHIC II era.

  12. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  13. A Heavy Flavor Tracker for STAR

    International Nuclear Information System (INIS)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi, A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow, B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-01-01

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era

  14. Patterns of flavor signals in supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    2007-11-15

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  15. A flavor sector for the composite Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Vecchi, Luca, E-mail: vecchi@lanl.gov

    2013-11-25

    We discuss flavor violation in large N Composite Higgs models. We focus on scenarios in which the masses of the Standard Model fermions are controlled by hierarchical mixing parameters, as in models of Partial Compositeness. We argue that a separation of scales between flavor and Higgs dynamics can be employed to parametrically suppress dipole and penguin operators, and thus effectively remove the experimental constraints arising from the lepton sector and the neutron EDM. The dominant source of flavor violation beyond the Standard Model is therefore controlled by 4-fermion operators, whose Wilson coefficients can be made compatible with data provided the Higgs dynamics approaches a “walking” regime in the IR. Models consistent with all flavor and electroweak data can be obtained with a new physics scale within the reach of the LHC. Explicit scenarios may be realized in a 5D framework, the new key ingredient being the introduction of flavor branes where the wave functions of the bulk fermions end.

  16. Patterns of flavor signals in supersymmetric models

    International Nuclear Information System (INIS)

    Goto, T.; Tanaka, M.

    2007-11-01

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b→s(d) transition observables in B d and B s decays, taking the constraint from the B s - anti B s mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes μ → eγ, τ → μγ and τ → eγ for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  17. Flavor and Functional Characteristics of Whey Protein Isolates from Different Whey Sources.

    Science.gov (United States)

    Smith, T J; Foegeding, E A; Drake, M A

    2016-04-01

    This study evaluated flavor and functional characteristics of whey protein isolates (WPIs) from Cheddar, Mozzarella, Cottage cheese, and rennet casein whey. WPIs were manufactured in triplicate. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid-phase microextraction followed by gas chromatography-mass spectrometry. Functional properties were evaluated by measurement of foam stability, heat stability, and protein solubility. WPI from Cheddar and Cottage cheese whey had the highest cardboard flavor, whereas sweet aromatic flavor was highest in Mozzarella WPI, and rennet casein WPI had the lowest overall flavor and aroma. Distinct sour taste and brothy/potato flavor were also noted in WPI from Cottage cheese whey. Consistent with sensory results, aldehyde concentrations were also highest in Cheddar and Cottage cheese WPI. Overrun, yield stress, and foam stability were not different (P > 0.05) among Cheddar, Mozzarella, and rennet casein WPI, but WPI foams from Cottage cheese whey had a lower overrun and air-phase fraction (P whey sources could be used in new applications due to distinct functional and flavor characteristics. © 2016 Institute of Food Technologists®

  18. Effect of gamma - irradiation on the volatile flavor profile of fennel (foeniculum vulgare mill.) from Pakistan

    International Nuclear Information System (INIS)

    Khan, N.; Jamila, N.; JI YEON Choi, J. Y.; Nho, E. Y.; Kim, K. S.; Hussain, I.

    2015-01-01

    The volatile flavor compounds of non-irradiated and 1, 5, 10 and 20 kGy gamma-irradiated seeds of fennel (Foeniculum vulgare Mill.) from Pakistan were isolated by simultaneous distillation-extraction (SDE) and were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 82 compounds were identified in the non irradiated fennel, with EAnethole (36.74 percentage), Estragole (26.31 percentage), and β-Limonene (15.99 percentage) as the major compounds. The irradiation doses caused slight variations in the number and contents of the volatile components. Though several volatile compounds showed increase after Υ-irradiation, the contents of major compounds such as beta-Limonene and estrgole were decreased. The overall number of the volatile compounds showed increase up to the recommended irradiation doses of 10 kGy but their contents decreased. In general no major change was noted in the overall major flavor compounds of the subject spice. Therefore the application of Υ--irradiation is feasible without any significant qualitative or quantitative loss of volatile flavor compounds when exposed to 10 kGy Υ--irradiation. (author)

  19. Lepton flavor non-conservation

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Tuebingen Univ.; Leontaris, G.K.; Vergados, J.D.

    1994-01-01

    In the present work we review the most prominent lepton flavor violating processes (μ → eγ, μ → 3e, (μ - , e -) conversion, M - M oscillations etc.), in the context of unified gauge theories. Many currently fashionable extensions of the standard model are considered, such as: i) extensions of the fermion sector (right-handed neutrino); ii) minimal extensions involving additional Higgs scalars (more than one isodoublets, singly and doubly charged isosinglets, isotriplets with doubly charged members etc.); iii) supersymmetric or superstring inspired unified models emphasizing the implications of the renormalization group equations in the leptonic sector. Special attention is given to the experimentally most interesting (μ - , e - ) conversion in the presence of nuclei. The relevant nuclear aspects of the amplitudes are discussed in a number of fashionable nuclear models. The main features of the relevant experiments are also discussed, and detailed predictions of the above models are compared to the present experimental limits. (Author)

  20. Searches for lepton flavor violation

    International Nuclear Information System (INIS)

    Bryman, D.

    1986-01-01

    The search for lepton flavor violation has reached considerable sensitivity, but with only null results so far. The experiments are sensitive to new particle in the 1 to 100 TeV range arising in a variety of theories, although the constraints on the masses of such particles improve only as the inverse fourth power of branching ratios. Presenting, neutrinoless μe conversion in the field of a nucleus provides the most serious constraints for many models. New experiments on rare kaon decays γe conversion and μ → eγ will result in improved sensitivity in the next few years. Ignoring theoretical prejudice, it is important to study many different processes in the hope uncovering some new effects

  1. Tetraquark states with open flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liang [Hebei Normal University, Department of Physics, Shijiazhuang (China); CAS Center for Excellence in Particle Physics, Beijing (China); Qiao, Cong-Feng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); CAS Center for Excellence in Particle Physics, Beijing (China)

    2016-10-15

    In this work, we estimate the masses of tetraquark states with four different flavors by virtue of QCD sum rules, in both b and c sectors. We construct four [8{sub c}] {sub anti} {sub bs} x [8{sub c}] {sub anti} {sub du} tetraquark currents with J{sup P} = 0{sup +}, and then we perform an analytic calculation up to dimension eight in the operator product expansion. We keep terms which are linear in the strange quark mass m{sub s}, and in the end we find two possible tetraquark states with masses (5.57 ± 0.15) and (5.58 ± 0.15) GeV. We find that their charmed-partner masses lie in (2.54 ± 0.13) and (2.55 ± 0.13) GeV, respectively, and are hence accessible in experiments like BESIII and Belle. (orig.)

  2. A couplet from flavored dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek [Fermilab,P.O. Box 500, Batavia, IL, 60510 (United States); Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD, 20742-4111 (United States); Kilic, Can [Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin, 2515 Speedway Stop C1608, Austin, TX, 78712-1197 (United States); Verhaaren, Christopher B. [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD, 20742-4111 (United States)

    2015-08-17

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In such a scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to three photon lines. Two of these lines are closely spaced, and constitute the couplet. Provided the flavor violation is sufficiently small, the ratios of the line energies are determined in terms of the charged lepton masses, and constitute a prediction of this framework. For dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 keV line. The next generation of X-ray telescopes may have the necessary resolution to resolve the double line structure of such a couplet.

  3. Flavor and CP invariant composite Higgs models

    International Nuclear Information System (INIS)

    Redi, Michele; Weiler, Andreas

    2011-09-01

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3) U x SU(3) D which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  4. A flavor protection for warped Higgsless models

    International Nuclear Information System (INIS)

    Csaki, Csaba; Curtin, David

    2009-01-01

    We examine various possibilities for realistic 5D Higgsless models on a Randall-Sundrum (RS) background, and construct a full quark sector featuring next-to-minimal flavor violation (with an exact bulk SU(2) protecting the first two generations) which satisfies electroweak and flavor constraints. The 'new custodially protected representation' is used for the third generation to protect the light quarks from flavor violations induced due to the heavy top. A combination of flavor symmetries, and an 'RS-GIM' mechanism for the right-handed quarks suppresses flavor-changing neutral currents below experimental bounds, assuming Cabibbo-Kobayashi-Maskawa-type mixing on the UV brane. In addition to the usual Higgsless RS signals, this model predicts an exotic charge-5/3 quark with mass of about 0.5 TeV which should show up at the LHC very quickly, as well as nonzero flavor-changing neutral currents which could be detected in the next generation of flavor experiments. In the course of our analysis, we also find quantitative estimates for the errors of the fermion zero-mode approximation, which are significant for Higgsless-type models.

  5. Flavor and CP invariant composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; INFN, Firenze (Italy); Weiler, Andreas [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3){sub U} x SU(3){sub D} which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  6. Flavor Preferences in Animals: Role of Mouth and Gut Nutrient Sensors

    Directory of Open Access Journals (Sweden)

    Anthony Sclafani

    2014-07-01

    water infusion. Flavor preference is then assessed in a two-bottle test with the CS+ vs. CS-. Numerous studies demonstrate that animals consume more of the sugar-paired CS+ flavor than of the water-paired CS- flavor during training and strongly prefer the CS+ to CS- in the choice test. Preferences are learned by hungry as well as freely fed animals and for initially unpalatable tastes (e.g., bitter as well as palatable flavors (e.g., sweet cherry. Once learned, the CS+ preference persists for many days to weeks even in the absence of nutrient infusions. The upper intestinal tract is a primary site where sugars act to condition flavor preferences, although the portal vein region near the liver is also implicated in sugar conditioning [2]. The discovery that the T1R2/T1R3 sweet receptor proteins are expressed in intestinal cells raised the possibility that the same receptors that trigger sugar appetite in the mouth also mediate postoral sugar appetition in the gut. However, several findings refute this attractive idea. In particular, sweet-tasting compounds differ substantially in their ability to condition flavor preferences when infused in the gut: IG glucose is much more effective than IG fructose in conditioning a CS+ preference whereas IG sucralose, a nonnutritive sweetener, conditioned a CS- preference [2]. In addition, sweet taste-impaired T1R3 knockout (KO mice that are indifferent to sugars in the mouth develop normal preferences for a CS+ flavor paired with IG sucrose. These findings implicate glucose-specific intestinal sensors (SGLT1 and SGLT3 in sugar-conditioned preferences. This is supported by the flavor conditioning action in mice of the nonmetabolizable glucose analog α-methyl-D-glucopyranoside, which is an SGLT1/SGLT3 ligand [4]. The postoral appetition effects of sugar but not nonnutritive sweeteners explain why mice learn to prefer sucrose over isosweet sucralose solutions. Like sugar, fat has postoral appetition effects. IG infusions of a soybean

  7. Analysis of flavor and perfume using an internally cooled coated fiber device.

    Science.gov (United States)

    Chen, Yong; Begnaud, Frédéric; Chaintreau, Alain; Pawliszyn, Janusz

    2007-05-01

    A miniaturized internally cooled coated fiber device was applied for the analysis of flavors and fragrances from various matrices. Its integration with a CTC CombiPAL autosampler enabled high throughput for the analysis of analytes in complex matrices that required simultaneous heating of the matrices and cooling of the fiber coating to achieve high extraction efficiency. It was found that up to ten times increase of extraction efficiencies was observed when the device was used to extract flavor compounds in water, even when limited sample temperatures were used to preserve the integrity of target compounds. The extraction of the flavor compounds in water with the device was reproducible, with RSD not larger than 15%. The lower limits of the linear ranges were in the low ppb range, which was about one order of magnitude smaller than those obtained with the commercialized 100 microm PDMS fibers. Exhaustive extraction of some perfume ingredients from a complex matrix (shampoo) was realized. All achieved recoveries were not less than 80%. The repeatability of the extraction of the perfume compounds from shampoo was better than 10%. The linear ranges were about 1-3000 microg/g, and the LOD was about 0.2-1 microg/g. The automated internally cooled coated fiber device was demonstrated to be a powerful sample preparation tool in flavor and fragrance analysis.

  8. (S3)3 theories of flavor

    International Nuclear Information System (INIS)

    Carone, C.D.

    1996-07-01

    The author presents a supersymmetric theory of flavor based on the discrete flavor group (S 3 ) 3 . The model can account for the masses and mixing angles of the standard model, while maintaining sufficient sfermion degeneracy to evade the supersymmetric flavor problem. The author demonstrates that the model has a viable phenomenology and makes one very striking prediction: the nucleon decays predominantly to Kl where l is a first generation lepton. He shows that the modes n → K 0 bar ν e , p → K + bar ν e , and p → K 0 e + occur at comparable rates, and could well be discovered simultaneously at the SuperKamiokande experiment

  9. Topological phase in two flavor neutrino oscillations

    International Nuclear Information System (INIS)

    Mehta, Poonam

    2009-01-01

    We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between nonorthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.

  10. Heavy flavor baryons in hypercentral model

    International Nuclear Information System (INIS)

    Patel, Bhavin; Vinodkumar, P.C.; Rai, Ajay Kumar

    2008-01-01

    Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three- body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index υ. The ground state masses of the heavy flavor, J P = 1/2 + and 3/2 + baryons are computed for different power indices, υ starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index υ = 1.0. (author)

  11. [Inheritance on and innovation of traditional Chinese medicine (TCM) flavor theory and TCM flavor standardization principle flavor theory in Compendium of Materia Medica].

    Science.gov (United States)

    Zhang, Wei; Zhang, Rui-xian; Li, Jian

    2015-12-01

    All previous literatures about Chinese herbal medicines show distinctive traditional Chinese medicine (TCM) flavors. Compendium of Materia Medica is an influential book in TCM history. The TCM flavor theory and flavor standardization principle in this book has important significance for modern TCM flavor standardization. Compendium of Materia Medica pays attention to the flavor theory, explain the relations between the flavor of medicine and its therapeutic effects by means of Neo-Confucianism of the Song and Ming Dynasties. However,the book has not reflected and further developed the systemic theory, which originated in the Jin and Yuan dynasty. In Compendium of Materia Medica , flavor are standardized just by tasting medicines, instead of deducing flavors. Therefore, medicine tasting should be adopted as the major method to standardize the flavor of medicine.

  12. 21 CFR 169.181 - Vanilla-vanillin flavoring.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Vanilla-vanillin flavoring. 169.181 Section 169... Dressings and Flavorings § 169.181 Vanilla-vanillin flavoring. (a) Vanilla-vanillin flavoring conforms to... ingredients prescribed for vanilla-vanillin extract by § 169.180, except that its content of ethyl alcohol is...

  13. 21 CFR 172.585 - Sugar beet extract flavor base.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sugar beet extract flavor base. 172.585 Section 172... CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this section. (a...

  14. Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.).

    Science.gov (United States)

    Mayorga, H; Knapp, H; Winterhalter, P; Duque, C

    2001-04-01

    The bound volatile fraction of cape gooseberry (Physalis peruviana L.) fruit harvested in Colombia has been examined by HRGC and HRGC-MS after enzymatic hydrolysis using a nonselective pectinase (Rohapect D5L). Forty bound volatiles could be identified, with 21 of them being reported for the first time in cape gooseberry. After preparative isolation of the glycosidic precursors on XAD-2 resin, purification by multilayer coil countercurrent chromatography and HPLC of the peracetylated glycosides were carried out. Structure elucidation by NMR, ESI-MS/MS, and optical rotation enabled the identification of (1S,2S)-1-phenylpropane-1,2-diol 2-O-beta-D-glucopyranoside (1) and p-menth-4(8)-ene-1,2-diol 1-O-alpha-L-arabinopyranosyl-(1-6)-beta-D-glucopyranoside (2). Both glycosides have been identified for the first time in nature. They could be considered as immediate precursors of 1-phenylpropane-1,2-diol and p-menth-4(8)-ene-1,2-diol, typical volatiles found in the fruit of cape gooseberry.

  15. Progress in Flavor Physics (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    We present a pedagogical introduction to quark flavor physics, within and beyond the Standard Model. Particular attention is devoted to the phenomenology of B and D decays, in view of recent and possible future results at the LHC experiments.

  16. Theoretically palatable flavor combinations of astrophysical neutrinos

    International Nuclear Information System (INIS)

    Bustamante, Mauricio

    2015-07-01

    The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.

  17. Prospects in lepton-flavor violation

    International Nuclear Information System (INIS)

    Hoffman, C.M.

    1982-01-01

    The theoretical and experimental situation regarding lepton-flavor conservation is reviewed and upcoming experiments are described. It is concluded that future improvements in experimental sensitivities will require higher flux, higher quality muon and kaon beams

  18. Heavy flavor baryons in hypercentral model

    Indian Academy of Sciences (India)

    periments have generated much interest in the spectroscopy of heavy flavor baryons ... the point of view of simple systems to study three-body problems. ..... One of the authors (PCV) acknowledges the financial support from the University.

  19. Lectures on Flavor Physics and CP Violation

    CERN Document Server

    Grinstein, Benjamín

    2016-12-20

    These lectures on flavor physics are an introduction to the subject. First lec- ture: We discuss the meaning of flavor and the importance of flavor physics in restricting extensions of the Standard Model (SM) of Electroweak interactions. We explain the origin of the KM matrix and how its elements are determined. We discuss FCNC and the GIM mechanism, followed by how a principle of Minimal Flavor Violation leads to SM extensions that are safe as far as FCNC are concerned even if the new physics comes in at low, TeVish scales. This is illustrated by the example of B radiative decays ( b → sγ ). Second lecture: We then turn our attention to CP-violation. We start by presenting neutral meson mixing. Then we consider various CP-asymmetries, culminating in the theoretically clean interference between mixing and decay into CP eigenstates.

  20. Prenatal flavor exposure affects flavor recognition and stress-related behavior of piglets.

    Science.gov (United States)

    Oostindjer, Marije; Bolhuis, J Elizabeth; van den Brand, Henry; Kemp, Bas

    2009-11-01

    Exposure to flavors in the amniotic fluid and mother's milk derived from the maternal diet has been shown to modulate food preferences and neophobia of young animals of several species. Aim of the experiment was to study the effects of pre- and postnatal flavor exposure on behavior of piglets during (re)exposure to this flavor. Furthermore, we investigated whether varying stress levels, caused by different test settings, affected behavior of animals during (re)exposure. Piglets were exposed to anisic flavor through the maternal diet during late gestation and/or during lactation or never. Piglets that were prenatally exposed to the flavor through the maternal diet behaved differently compared with unexposed pigs during reexposure to the flavor in several tests, suggesting recognition of the flavor. The differences between groups were more pronounced in tests with relatively high stress levels. This suggests that stress levels, caused by the design of the test, can affect the behavior shown in the presence of the flavor. We conclude that prenatal flavor exposure affects behaviors of piglets that are indicative of recognition and that these behaviors are influenced by stress levels during (re)exposure.

  1. Lepton flavor violation in an extended MSSM

    CERN Document Server

    Espinosa-Castañeda, R.; Gómez-Bock, M.; Mondragón, M.

    2016-01-01

    In this work we explore a lepton flavor violation effect induced at one loop for a flavor structure in an extended minimal standard supersymmetric model, considering an ansatz for the trilinear term. In particular we find a finite expression which will show the impact of this phenomena in the $h\\to \\mu \\tau$ decay, produced by a mixing in the trilinear coupling of the soft supersymmetric Lagrangian.

  2. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  3. Three-flavor color superconductivity

    International Nuclear Information System (INIS)

    Malekzadeh, H.

    2007-12-01

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid 3 He), the A and A * phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A * phase is favored. It is shown that the 2SC phase is identical to the A * phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  4. Adding Flavor to Beverages with Non-Conventional Yeasts

    Directory of Open Access Journals (Sweden)

    Davide Ravasio

    2018-02-01

    Full Text Available Fungi produce a variety of volatile organic compounds (VOCs during their primary and secondary metabolism. In the beverage industry, these volatiles contribute to the the flavor and aroma profile of the final products. We evaluated the fermentation ability and aroma profiles of non-conventional yeasts that have been associated with various food sources. A total of 60 strains were analyzed with regard to their fermentation and flavor profile. Species belonging to the genera Candida, Pichia and Wickerhamomyces separated best from lager yeast strains according to a principal component analysis taking alcohol and ester production into account. The speed of fermentation and sugar utilization were analysed for these strains. Volatile aroma-compound formation was assayed via gas chromatography. Several strains produced substantially higher amounts of aroma alcohols and esters compared to the lager yeast strain Weihenstephan 34/70. Consequently, co-fermentation of this lager yeast strain with a Wickerhamomyces anomalus strain generated an increased fruity-flavour profile. This demonstrates that mixed fermentations utilizing non-Saccharomyces cerevisiae biodiversity can enhance the flavour profiles of fermented beverages.

  5. LHC benchmarks from flavored gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Ierushalmi, N.; Iwamoto, S.; Lee, G.; Nepomnyashy, V.; Shadmi, Y. [Physics Department, Technion - Israel Institute of Technology,Haifa 32000 (Israel)

    2016-07-12

    We present benchmark points for LHC searches from flavored gauge mediation models, in which messenger-matter couplings give flavor-dependent squark masses. Our examples include spectra in which a single squark — stop, scharm, or sup — is much lighter than all other colored superpartners, motivating improved quark flavor tagging at the LHC. Many examples feature flavor mixing; in particular, large stop-scharm mixing is possible. The correct Higgs mass is obtained in some examples by virtue of the large stop A-term. We also revisit the general flavor and CP structure of the models. Even though the A-terms can be substantial, their contributions to EDM’s are very suppressed, because of the particular dependence of the A-terms on the messenger coupling. This holds regardless of the messenger-coupling texture. More generally, the special structure of the soft terms often leads to stronger suppression of flavor- and CP-violating processes, compared to naive estimates.

  6. Acceptance of sugar reduction in flavored yogurt.

    Science.gov (United States)

    Chollet, M; Gille, D; Schmid, A; Walther, B; Piccinali, P

    2013-09-01

    To investigate what level of sugar reduction is accepted in flavored yogurt, we conducted a hedonic test focusing on the degree of liking of the products and on optimal sweetness and aroma levels. For both flavorings (strawberry and coffee), consumers preferred yogurt containing 10% added sugar. However, yogurt containing 7% added sugar was also acceptable. On the just-about-right scale, yogurt containing 10% sugar was more often described as too sweet compared with yogurt containing 7% sugar. On the other hand, the sweetness and aroma intensity for yogurt containing 5% sugar was judged as too low. A second test was conducted to determine the effect of flavoring concentration on the acceptance of yogurt containing 7% sugar. Yogurts containing the highest concentrations of flavoring (11% strawberry, 0.75% coffee) were less appreciated. Additionally, the largest percentage of consumers perceived these yogurts as "not sweet enough." These results indicate that consumers would accept flavored yogurts with 7% added sugar instead of 10%, but 5% sugar would be too low. Additionally, an increase in flavor concentration is undesirable for yogurt containing 7% added sugar. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. On flavor violation for massive and mixed neutrinos

    International Nuclear Information System (INIS)

    Blasone, M.; Capolupo, A.; Ji, C.R.; Vitiello, G.

    2009-01-01

    We discuss flavor charges and states for interacting mixed neutrinos in QFT. We show that the Pontecorvo states are not eigenstates of the flavor charges. This implies that their use in describing the flavor neutrinos produces a violation of lepton charge conservation in the production/detection vertices. The flavor states defined as eigenstates of the flavor charges give the correct representation of mixed neutrinos in charged current weak interaction processes.

  8. Starter Culture Selection for Making Chinese Sesame-Flavored Liquor Based on Microbial Metabolic Activity in Mixed-Culture Fermentation

    Science.gov (United States)

    Wu, Qun; Ling, Jie

    2014-01-01

    Selection of a starter culture with excellent viability and metabolic activity is important for inoculated fermentation of traditional food. To obtain a suitable starter culture for making Chinese sesame-flavored liquor, the yeast and bacterium community structures were investigated during spontaneous and solid-state fermentations of this type of liquor. Five dominant species in spontaneous fermentation were identified: Saccharomyces cerevisiae, Pichia membranaefaciens, Issatchenkia orientalis, Bacillus licheniformis, and Bacillus amyloliquefaciens. The metabolic activity of each species in mixed and inoculated fermentations of liquor was investigated in 14 different cocultures that used different combinations of these species. The relationships between the microbial species and volatile metabolites were analyzed by partial least-squares (PLS) regression analysis. We found that S. cerevisiae was positively correlated to nonanal, and B. licheniformis was positively associated with 2,3-butanediol, isobutyric acid, guaiacol, and 4-vinyl guaiacol, while I. orientalis was positively correlated to butyric acid, isovaleric acid, hexanoic acid, and 2,3-butanediol. These three species are excellent flavor producers for Chinese liquor. Although P. membranaefaciens and B. amyloliquefaciens were not efficient flavor producers, the addition of them alleviated competition among the other three species and altered their growth rates and flavor production. As a result, the coculture of all five dominant species produced the largest amount of flavor compounds. The result indicates that flavor producers and microbial interaction regulators are important for inoculated fermentation of Chinese sesame-flavored liquor. PMID:24814798

  9. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2018-04-01

    Full Text Available Strong flavor baijiu (SFB, also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected.

  10. Heavy-flavor parton distributions without heavy-flavor matching prescriptions

    NARCIS (Netherlands)

    Bertone, Valerio; Glazov, Alexandre; Mitov, Alexander; Papanastasiou, Andrew S.; Ubiali, Maria

    We show that the well-known obstacle for working with the zero-mass variable flavor number scheme, namely, the omission of O(1) mass power corrections close to the conventional heavy flavor matching point (HFMP) μb = m, can be easily overcome. For this it is sufficient to take advantage of the

  11. Prenatal Flavor Exposure Affects Flavor Recognition and Stress-Related Behavior of Piglets

    NARCIS (Netherlands)

    Oostindjer, M.; Bolhuis, J.E.; Brand, van den H.; Kemp, B.

    2009-01-01

    Exposure to flavors in the amniotic fluid and mother's milk derived from the maternal diet has been shown to modulate food preferences and neophobia of young animals of several species. Aim of the experiment was to study the effects of pre- and postnatal flavor exposure on behavior of piglets during

  12. Differentiation between Flavors of Sweet Orange (Citrus sinensis) and Mandarin (Citrus reticulata).

    Science.gov (United States)

    Feng, Shi; Suh, Joon Hyuk; Gmitter, Frederick G; Wang, Yu

    2018-01-10

    Pioneering investigations referring to citrus flavor have been intensively conducted. However, the characteristic flavor difference between sweet orange and mandarin has not been defined. In this study, sensory analysis illustrated the crucial role of aroma in the differentiation between orange flavor and mandarin flavor. To study aroma, Valencia orange and LB8-9 mandarin were used. Their most aroma-active compounds were preliminarily identified by aroma extract dilution analysis (AEDA). Quantitation of key volatiles followed by calculation of odor activity values (OAVs) further detected potent components (OAV ≥ 1) impacting the overall aromatic profile of orange/mandarin. Follow-up aroma profile analysis revealed that ethyl butanoate, ethyl 2-methylbutanoate, octanal, decanal, and acetaldehyde were essential for orange-like aroma, whereas linalool, octanal, α-pinene, limonene, and (E,E)-2,4-decadienal were considered key components for mandarin-like aroma. Furthermore, an unreleased mandarin hybrid producing fruit with orange-like flavor was used to validate the identification of characteristic volatiles in orange-like aroma.

  13. Authenticity and traceability of vanilla flavors by analysis of stable isotopes of carbon and hydrogen.

    Science.gov (United States)

    Hansen, Anne-Mette Sølvbjerg; Fromberg, Arvid; Frandsen, Henrik Lauritz

    2014-10-22

    Authenticity and traceability of vanilla flavors were investigated using gas chromatography-isotope ratio mass spectrometry (GC-IRMS). Vanilla flavors produced by chemical synthesis (n = 2), fermentation (n = 1), and extracted from two different species of the vanilla orchid (n = 79) were analyzed. The authenticity of the flavor compound vanillin was evaluated on the basis of measurements of ratios of carbon stable isotopes (δ(13)C). It was found that results of δ(13)C for vanillin extracted from Vanilla planifolia and Vanilla tahitensis were significantly different (t test) and that it was possible to differentiate these two groups of natural vanillin from vanillin produced otherwise. Vanilla flavors were also analyzed for ratios of hydrogen stable isotopes (δ(2)H). A graphic representation of δ(13)C versus δ(2)H revealed that vanillin extracted from pods grown in adjacent geographic origins grouped together. Accordingly, values of δ(13)C and δ(2)H can be used for studies of authenticity and traceability of vanilla flavors.

  14. Flavorful hybrid anomaly-gravity mediation

    International Nuclear Information System (INIS)

    Gross, Christian; Hiller, Gudrun

    2011-01-01

    We consider supersymmetric models where anomaly and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of anomaly mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of anomaly mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing energy at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.

  15. Flavor Alignment via Shining in RS

    CERN Document Server

    Csáki, Csaba; Surujon, Ze'ev; Weiler, Andreas

    2010-01-01

    We present a class of warped extra dimensional models whose flavor violating interactions are much suppressed compared to the usual anarchic case due to flavor alignment. Such suppression can be achieved in models where part of the global flavor symmetry is gauged in the bulk and broken in a controlled manner. We show that the bulk masses can be aligned with the down type Yukawa couplings by an appropriate choice of bulk flavon field representations and TeV brane dynamics. This alignment could reduce the flavor violating effects to levels which allow for a Kaluza-Klein scale as low as 2-3 TeV, making the model observable at the LHC. However, the up-type Yukawa couplings on the IR brane, which are bounded from below by recent bounds on CP violation in the D system, induce flavor misalignment radiatively. Off-diagonal down-type Yukawa couplings and kinetic mixings for the down quarks are both consequences of this effect. These radiative Yukawa corrections can be reduced by raising the flavon VEV on the IR brane...

  16. In Silico Analysis of the Association Relationship between Neuroprotection and Flavors of Traditional Chinese Medicine Based on the mGluRs

    Science.gov (United States)

    Qiao, Liansheng; Chen, Yankun; Zhao, Bowen; Gu, Yu; Huo, Xiaoqian; Zhang, Yanling; Li, Gongyu

    2018-01-01

    The metabotropic glutamate receptors (mGluRs) are known as both synaptic receptors and taste receptors. This feature is highly similar to the Property and Flavor theory of Traditional Chinese medicine (TCM), which has the pharmacological effect and flavor. In this study, six ligand based pharmacophore (LBP) models, seven homology modeling models, and fourteen molecular docking models of mGluRs were built based on orthosteric and allosteric sites to screening potential compounds from Traditional Chinese Medicine Database (TCMD). Based on the Pharmacopoeia of the People’s Republic of China, TCMs of compounds and their flavors were traced and listed. According to the tracing result, we found that the TCMs of the compounds which bound to orthosteric sites of mGluRs are highly correlated to a sweet flavor, while the allosteric site corresponds to a bitter flavor. Meanwhile, the pharmacological effects of TCMs with highly frequent flavors were further analyzed. We found that those TCMs play a neuroprotective role through the efficiencies of detumescence, promoting blood circulation, analgesic effect, and so on. This study provides a guide for developing new neuroprotective drugs from TCMs which target mGluRs. Moreover, it is the first study to present a novel approach to discuss the association relationship between flavor and the neuroprotective mechanism of TCM based on mGluRs. PMID:29320397

  17. Collider signatures of flavorful Higgs bosons

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; Lotito, Matteo

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarks can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H"± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.

  18. Heavy flavor production in nuclear collisions

    CERN Document Server

    Armesto-Pérez, Nestor; Capella, A; Pajares, C; Salgado, C A

    2001-01-01

    Heavy flavor production off nuclei is studied in the small x/sub F/ region of the produced heavy system. Corrections to the usually employed perturbative QCD factorization formula are considered in the framework of the Glauber-Gribov model. Transition from low to high energies is taken into account by using finite energy cutting rules. The low energy limit of the obtained results coincides with the probabilistic formula usually employed for quarkonium absorption. At finite energies both rescattering of the heavy flavor and corrections to nucleon parton densities inside nuclei appear, the latter also affecting lepton pair production. It turns out that at asymptotic energies both open heavy flavor and quarkonium are equally absorbed. The numerical differences between the results obtained with the probabilistic formula and the exact one are <20% up to LHC energies, and ~1/2% at SPS energies. (18 refs).

  19. Lepton flavor violation induced by dark matter

    Science.gov (United States)

    Arcadi, Giorgio; Ferreira, C. P.; Goertz, Florian; Guzzo, M. M.; Queiroz, Farinaldo S.; Santos, A. C. O.

    2018-04-01

    Guided by gauge principles we discuss a predictive and falsifiable UV complete model where the Dirac fermion that accounts for the cold dark matter abundance in our Universe induces the lepton flavor violation (LFV) decays μ →e γ and μ →e e e as well as μ -e conversion. We explore the interplay between direct dark matter detection, relic density, collider probes and lepton flavor violation to conclusively show that one may have a viable dark matter candidate yielding flavor violation signatures that can be probed in the upcoming experiments. In fact, keeping the dark matter mass at the TeV scale, a sizable LFV signal is possible, while reproducing the correct dark matter relic density and meeting limits from direct-detection experiments.

  20. Unquenched flavor on the Higgs branch

    International Nuclear Information System (INIS)

    Faedo, Antón F.; Mateos, David; Pantelidou, Christiana; Tarrío, Javier

    2016-01-01

    We construct the gravity duals of the Higgs branches of three-dimensional (four-dimensional) super Yang-Mills theories coupled to N_f quark flavors. The effect of the quarks on the color degrees of freedom is included, and corresponds on the gravity side to the backreaction of N_f flavor D6-branes (D7-branes) on the background of N_c color D2-branes (D3-branes). The Higgsing of the gauge group arises from the dissolution of some color branes inside the flavor branes. The dissolved color branes are represented by non-Abelian instantons whose backreaction is also included. The result is a cascading-like solution in which the effective number of color branes varies along the holographic direction. In the three-dimensional case the solution may include an arbitrary number of quasi-conformal (walking) regions.

  1. Lepton flavor violation and seesaw symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Aristizabal Sierra, D., E-mail: daristizabal@ulg.ac.be [Universite de Liege, IFPA, Department AGO (Belgium)

    2013-03-15

    When the standard model is extended with right-handed neutrinos the symmetries of the resulting Lagrangian are enlarged with a new global U(1){sub R} Abelian factor. In the context of minimal seesaw models we analyze the implications of a slightly broken U(1){sub R} symmetry on charged lepton flavor violating decays. We find, depending on the R-charge assignments, models where charged lepton flavor violating rates can be within measurable ranges. In particular, we show that in the resulting models due to the structure of the light neutrino mass matrix muon flavor violating decays are entirely determined by neutrino data (up to a normalization factor) and can be sizable in a wide right-handed neutrino mass range.

  2. Flavor Characteristics of Hanwoo Beef in Comparison with Other Korean Foods

    Directory of Open Access Journals (Sweden)

    Hoa Van Ba

    2012-03-01

    Full Text Available The present study identified volatile flavor components of Hanwoo longissimus muscle and other Korean foods (Doenjang, Chungukjang, sesame oil and their traits were compared in relation with flavor precursors that include fatty acids and protein degradation products. Hanwoo longissimus muscle was purchased from a commercial abattoir while the other foods were sampled from three separate households. The results showed totals of 68 (9.94 μg/g, 60 (15.75 μg/g, 49 (107.61 μg/ml and 50 (7.20 μg/g volatile components for Doenjang, Chungukjang, sesame oil and Hanwoo beef longissimus, respectively (p<0.05. Aldehydes were the most predominant components in beef, but alcohols, acids and esters, and pyrazines are probably the major contributors to the flavor characteristics of other foods. SDS-PAGE revealed that beef longissimus muscle and Doenjang showed higher protein degradation than other foods which could be likely related to chiller ageing and ripening process. The total polyunsaturated fatty acids were approximately 50, 60, 41 and 5% for Doenjang, Chungukjang, sesame oil and beef longissimus muscle, respectively. Based on the mechanism(s of generation of the volatile compounds and the chemical composition of each food sample, differences and traits of volatile flavor components among the four food types are likely due to fatty acid profiles, proteolytic activity and processing conditions. Aroma intense compounds like pyrazines and sulfur-containing compounds were limited in cooked beef in the current experimental condition (i.e., relatively low heating temperature. This suggests that higher heating temperature as in the case of roasting is needed for the generation of high aroma notes in meat. Furthermore, proteolytic activity and stability of fatty acids during ageing have a great influence on the generation of flavor components in cooked beef.

  3. Taste: The Bedrock of Flavor

    OpenAIRE

    Gary K Beauchamp

    2014-01-01

    The significance of taste for human health:Throughout most of human evolution, the daily decisions of what to put into ones mouth and swallow and what to reject presented challenges fraught with danger. Energy-rich foods were often difficult to find; protein was in short supply; sodium was scarce. Moreover, many plants that did contain nutrients were also equipped with defensive compounds that were poisonous. Now many humans over consume exactly the foods that they evolved to find particu...

  4. Flavor universal resonances and warped gravity

    Energy Technology Data Exchange (ETDEWEB)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo; Sundrum, Raman [Maryland Center for Fundamental Physics, Department of Physics,University of Maryland, College Park, MD 20742 (United States)

    2017-01-04

    Warped higher-dimensional compactifications with “bulk” standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a “little hierarchy problem” remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of “vectorlike confinement”, with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at ∼O(10) TeV, with subdominant resonance decays into Higgs/top-rich final states, giving the LHC an early “preview” of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests.

  5. On the Flavor Structure of Natural Composite Higgs Models & Top Flavor Violation

    CERN Document Server

    Azatov, Aleksandr; Perez, Gilad; Soreq, Yotam

    2014-01-01

    We explore the up flavor structure of composite pseudo Nambu-Goldstone-boson Higgs models, where we focus on the flavor anarchic minimal $SO(5)$ case. We identify the different sources of flavor violation in this framework and emphasise the differences from the anarchic Randall-Sundrum scenario. In particular, the fact that the flavor symmetry does not commute with the symmetries that stabilize the Higgs potential may constrain the flavor structure of the theory. In addition, we consider the interplay between the fine tuning of the model and flavor violation. We find that generically the tuning of this class of models is worsen in the anarchic case due to the contributions from the additional fermion resonances. We show that, even in the presence of custodial symmetry, large top flavor violating rate are naturally expected. In particular, $t\\to cZ$ branching ratio of order of $10^{-5}$ is generic for this class of models. Thus, this framework can be tested in the next run of the LHC as well as in other future...

  6. Systematic model building with flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plentinger, Florian

    2009-12-19

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and

  7. Neutrino masses and spontaneously broken flavor symmetries

    International Nuclear Information System (INIS)

    Staudt, Christian

    2014-01-01

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  8. Review of Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    S. Fukano, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  9. Systematic model building with flavor symmetries

    International Nuclear Information System (INIS)

    Plentinger, Florian

    2009-01-01

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays μ → eγ, τ → μγ, and τ → eγ which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and to search for phenomenological

  10. Monitoring of Yeast Communities and Volatile Flavor Changes During Traditional Korean Soy Sauce Fermentation.

    Science.gov (United States)

    Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho

    2015-09-01

    Flavor development in soy sauce is significantly related to the diversity of yeast species. Due to its unique fermentation with meju, the process of making Korean soy sauce gives rise to a specific yeast community and, therefore, flavor profile; however, no detailed analysis of the identifying these structure has been performed. Changes in yeast community structure during Korean soy sauce fermentation were examined using both culture-dependent and culture-independent methods with simultaneous analysis of the changes in volatile compounds by GC-MS analysis. During fermentation, Candida, Pichia, and Rhodotorula sp. were the dominant species, whereas Debaryomyces, Torulaspora, and Zygosaccharomyces sp. were detected only at the early stage. In addition, Cryptococcus, Microbotryum, Tetrapisispora, and Wickerhamomyces were detected as minor strains. Among the 62 compounds identified in this study, alcohols, ketones, and pyrazines were present as the major groups during the initial stages, whereas the abundance of acids with aldehydes increased as the fermentation progressed. Finally, the impacts of 10 different yeast strains found to participate in fermentation on the formation of volatile compounds were evaluated under soy-based conditions. It was revealed that specific species produced different profiles of volatile compounds, some of which were significant flavor contributors, especially volatile alcohols, aldehydes, esters, and ketones. © 2015 Institute of Food Technologists®

  11. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    Science.gov (United States)

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Essential Oils in Ginger, Hops, Cloves, and Pepper Flavored Beverages-A Review.

    Science.gov (United States)

    Ameh, Sunday J; Ibekwe, Nneka N; Ebeshi, Benjamin U

    2014-08-28

    ABSTRACT In the West, sugar-based, ginger flavored beverages may contain hops, other flavorings, fruit juices, and varying levels of ethanol. Ginger ales contain 0.5%v/v; ginger beers >0.5%; and alcoholic ginger beers 0.5 ≤ 11%. Ales are carbonated by pressurized CO 2 , while beers and alcoholic beers are carbonated by yeast or ginger beer plant (GBP). In Africa, grain-based beverages include "fura da nono," "kunu," and "akamu," which are spiced with one or more flavorings including ginger, black pepper, clove, chili pepper, or Aframomum alligator peppers. Spices have flavor because they contain essential oils (EOs), which are composed of aroma-active compounds (AACs). The benefits and toxicities of spices are ascribed to their EOs/AACs contents. Aim: Given the toxic potentials of EOs/AACs vis-à-vis their benefits, this review aimed to investigate the means by which the levels of EOs/AACs in spiced beverages are regulated. Methodology: The benefits and liabilities of key EOs/AACs of spices were identified and described. The methods for assaying them in raw materials and beverages were also identified. Results: There was a dearth of data on the levels of EOs/AACs in both raw and finished goods. Moreover, their assay methods were found to be tedious and costly. The implications of these findings on regulation are discussed. Conclusions: Owing to the practical difficulties in assaying flavors in beverages, both manufacturers and regulators should focus on: (i) the wholesomeness of raw materials; and (ii) good manufacturing practice (GMP). However, studies aimed at developing more robust methods for flavor should continue.

  13. Unified flavor symmetry from warped dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Mariana, E-mail: mariana.frank@concordia.ca [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6 (Canada); Hamzaoui, Cherif, E-mail: hamzaoui.cherif@uqam.ca [Groupe de Physique Théorique des Particules, Département des Sciences de la Terre et de L' Atmosphère, Université du Québec à Montréal, Case Postale 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8 (Canada); Pourtolami, Nima, E-mail: n_pour@live.concordia.ca [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6 (Canada); Toharia, Manuel, E-mail: mtoharia@physics.concordia.ca [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6 (Canada)

    2015-03-06

    In a model of warped extra-dimensions with all matter fields in the bulk, we propose a scenario which explains all the masses and mixings of the SM fermions. In this scenario, the same flavor symmetric structure is imposed on all the fermions of the Standard Model (SM), including neutrinos. Due to the exponential sensitivity on bulk fermion masses, a small breaking of this symmetry can be greatly enhanced and produce seemingly un-symmetric hierarchical masses and small mixing angles among the charged fermion zero-modes (SM quarks and charged leptons), thus washing out visible effects of the symmetry. If the Dirac neutrinos are sufficiently localized towards the UV boundary, and the Higgs field leaking into the bulk, the neutrino mass hierarchy and flavor structure will still be largely dominated and reflect the fundamental flavor structure, whereas localization of the quark sector would reflect the effects of the flavor symmetry breaking sector. We explore these features in an example based on which a family permutation symmetry is imposed in both quark and lepton sectors.

  14. Flavor release measurement from gum model system

    DEFF Research Database (Denmark)

    Ovejero-López, I.; Haahr, Anne-Mette; van den Berg, Frans W.J.

    2004-01-01

    composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory...

  15. Flavor mixing via dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Jaffe, R.L.

    1988-01-01

    This paper is concerned with the physics of the quark gluon plasma. The author interested in the complexity of the flavor structure of hadron wavefunctions. This issue bears upon the validity of the quenched approximation in lattice gauge theory and the structure of the QCD vacuum, both of which have been central issues here

  16. Flavor symmetry breaking and meson masses

    International Nuclear Information System (INIS)

    Bhagwat, Mandar S.; Roberts, Craig D.; Chang Lei; Liu Yuxin; Tandy, Peter C.

    2007-01-01

    The axial-vector Ward-Takahashi identity is used to derive mass formulas for neutral pseudoscalar mesons. Flavor symmetry breaking entails nonideal flavor content for these states. Adding that the η ' is not a Goldstone mode, exact chiral-limit relations are developed from the identity. They connect the dressed-quark propagator to the topological susceptibility. It is confirmed that in the chiral limit the η ' mass is proportional to the matrix element which connects this state to the vacuum via the topological susceptibility. The implications of the mass formulas are illustrated using an elementary dynamical model, which includes an Ansatz for that part of the Bethe-Salpeter kernel related to the non-Abelian anomaly. In addition to the current-quark masses, the model involves two parameters, one of which is a mass-scale. It is employed in an analysis of pseudoscalar- and vector-meson bound-states. While the effects of SU(N f =2) and SU(N f =3) flavor symmetry breaking are emphasized, the five-flavor spectra are described. Despite its simplicity, the model is elucidative and phenomenologically efficacious; e.g., it predicts η-η ' mixing angles of ∼-15 deg. and π 0 -η angles of ∼1 deg

  17. Contributed report: Flavor anarchy for Majorana neutrinos

    Indian Academy of Sciences (India)

    journal of. December 2004 physics pp. 1407–1416. Contributed report: Flavor anarchy for Majorana neutrinos. YOSEF NIR1 and YAEL SHADMI2. 1Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel. 2Physics Department, Technion–Israel Institute of Technology, Haifa 32000, Israel.

  18. Flavor SU(3) in hadronic B decays

    International Nuclear Information System (INIS)

    Dighe, A.

    1998-11-01

    Here we shall outline a few methods that use the flavor SU(3) symmetry in the decays of B mesons to determine the angles of the unitarity triangle and to identify the decay modes which would display a significant CP violation. (author)

  19. Experimental Overview of Open Heavy Flavor

    International Nuclear Information System (INIS)

    Schweda, Kai

    2017-01-01

    These are the proceedings of the experimental overview of the production of open heavy flavor at the international conference Strangeness in Quark Matter 2016 . Instead of a comprehensive overview, I focus on a few topics which the reader might find particularly interesting. (paper)

  20. Recent CMS Results on Flavor Physics

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    We present the latest results of the CMS experiment in the field of flavor physics. The observation of a new beauty baryon in decays to Xi(b) and a prompt pion is discussed along with recent measurements Lambda_b baryon and quarkonium production cross sections. Finally, we describe the search for rare decays of charmed mesons to dimuons.

  1. Extraordinary phenomenology from warped flavor triviality

    International Nuclear Information System (INIS)

    Delaunay, Cedric; Gedalia, Oram; Lee, Seung J.; Perez, Gilad; Ponton, Eduardo

    2011-01-01

    Anarchic warped extra dimensional models provide a solution to the hierarchy problem. They can also account for the observed flavor hierarchies, but only at the expense of little hierarchy and CP problems, which naturally require a Kaluza-Klein (KK) scale beyond the LHC reach. We have recently shown that when flavor issues are decoupled, and assumed to be solved by UV physics, the framework's parameter space greatly opens. Given the possibility of a lower KK scale and composite light quarks, this class of flavor triviality models enjoys a rather exceptional phenomenology, which is the focus of this Letter. We also revisit the anarchic RS EDM problem, which requires m KK ≥12 TeV, and show that it is solved within flavor triviality models. Interestingly, our framework can induce a sizable differential tt-bar forward-backward asymmetry, and leads to an excess of massive boosted di-jet events, which may be linked to the recent findings of the CDF Collaboration. This feature may be observed by looking at the corresponding planar flow distribution, which is presented here. Finally we point out that the celebrated standard model preference towards a light Higgs is significantly reduced within our framework.

  2. Heavy flavored jet modification in CMS

    CERN Document Server

    AUTHOR|(CDS)2084335

    2016-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets (from charm and bottom quarks) in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the heavy flavor jet spectra and measurements of the nuclear modification factors in both PbPb and pPb as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013. Finally, we also will present a proposal for c-jet tagging methodology to be used for the upcoming hi...

  3. School Nutrition Directors' Perspectives on Flavored Milk in Schools

    Science.gov (United States)

    Yon, Bethany A.; Johnson, Rachel K.; Berlin, Linda

    2013-01-01

    The offering of flavored milk in schools is a controversial topic. U.S. Department of Agriculture regulations now require that flavored milk in schools is fat-free. The perceptions, beliefs, and attitudes of 21 school nutrition directors (SNDs) about the offering and student acceptance of lower-calorie, flavored milk were explored using a focus…

  4. Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Madsen, Henrik; Smedsgaard, Jørn

    2003-01-01

    and the method can be used to measure breath from the nose. A mathematical model of the data was developed to give a quantitative method for description and characterization of the release of flavor compounds. The release profiles consisted of two sequences, one for a chewing period, and one for a phasing out...... process. The proposed method for modeling provided a reasonable description of the release process. In addition to flavor compounds, this new interface and mathematical application could provide information on chemicals in the human breath which could be interesting, for example, within medical diagnosis....... with that of the flavor detection threshold. An application study on the release of menthone and menthol from chewing gum by a group of six test persons was performed. Flavored chewing gum was used as a model matrix because of the long chewing periods and the simplicity of the system. It is concluded that the interface...

  5. Cajá-flavored drinks: a proposal for mixed flavor beverages and a study of the consumer profile

    OpenAIRE

    Mamede,Maria Eugênia de Oliveira; Kalschne,Daneysa Lahis; Santos,Adriana Pereira Coelho; Benassi,Marta de Toledo

    2015-01-01

    Mixed flavor beverages represent a trend that is gaining the allegiance of potential fruit juice consumers. The present study proposed to prepare mixed flavor beverages and verify their consumer acceptance. Cajá beverage (sample A) was used as the standard. The other beverages were prepared by mixing the cajá-flavored product with other flavors: strawberry (B), pineapple (C), jabuticaba (D), mango (E) and cashew (F). The consumer profiles in the two regions studied were similar. Ove...

  6. Flavor Profile of Chinese Liquor Is Altered by Interactions of Intrinsic and Extrinsic Microbes.

    Science.gov (United States)

    Wu, Qun; Kong, Yu; Xu, Yan

    2016-01-15

    The flavor profile of Chinese liquor is the result of the metabolic activity of its microbial community. Given the importance of the microbial interaction, a novel way to control the liquor's flavor is by regulating the composition of the community. In this study, we efficiently improved the liquor's flavor by perturbing the intrinsic microbial metabolism with extrinsic microbes. We first constructed a basic microbial group (intrinsic) containing Saccharomyces cerevisiae, Wickerhamomyces anomalus, and Issatchenkia orientalis and added special flavor producers (extrinsic), Saccharomyces uvarum and Saccharomyces servazzii, to this intrinsic group. Upon the addition of the extrinsic microbes, the maximum specific growth rates of S. cerevisiae and I. orientalis increased from 6.19 to 43.28/day and from 1.15 to 14.32/day, respectively, but that of W. anomalus changed from 1.00 to 0.96/day. In addition, most volatile compounds known to be produced by the extrinsic strains were not produced. However, more esters, alcohols, and acids were produced by S. cerevisiae and I. orientalis. Six compounds were significantly different by random forest analysis after perturbation. Among them, increases in ethyl hexanoate, isobutanol, and 3-methylbutyric acid were correlated with S. cerevisiae and I. orientalis, and a decrease in geranyl acetone was correlated with W. anomalus. Variations in ethyl acetate and 2-phenylethanol might be due to the varied activity of W. anomalus and S. cerevisiae. This work showed the effect of the interaction between the intrinsic and extrinsic microbes on liquor flavor, which would be beneficial for improving the quality of Chinese liquor. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Control of Maillard-type off-flavor development in ultrahigh-temperature-processed bovine milk by phenolic chemistry.

    Science.gov (United States)

    Kokkinidou, Smaro; Peterson, Devin G

    2014-08-13

    The application of phenolic compounds to suppress Maillard chemistry and off-flavor development in ultrahigh-termperature (UHT)-processed milk during processing and storage was investigated. Five phenolic compounds were examined for structure-reactivity relationships (catechin, genistein, daidzein, 1,2,3-trihydroxybenzene, and 1,3,5-trihydroxybenzene). The levels of key transient Maillard reaction (MR) intermediates (reactive carbonyl species) and select off-flavor markers (methional, 2-acetyl-2-thiazoline, 2-acetyl-1-pyrroline) were quantified by LC-MS/MS and GC-MS/ToF, respectively. The addition of phenolic compounds prior to UHT processing significantly reduced the concentration of MR intermediates and related off-flavor compounds compared to a control sample (p markers and reactive carbonyl species. Sensory studies were in agreement with the analytical data. The cooked flavor intensity was rated lower for the recombination model samples of the catechin-treated UHT milk compared to the control UHT milk. Additionally, consumer acceptability studies showed catechin-treated UHT milk to have significantly higher liking scores when compared the control sample (Fisher's LSD = 0.728).

  8. Flavor and CP violations from sleptons at the Muon Collider

    International Nuclear Information System (INIS)

    Cheng, H.-C.

    1997-12-01

    Supersymmetric theories generally have new flavor and CP violation sources in the squark and slepton mass matrices. They will contribute to the lepton flavor violation processes, such as μ→eγ, which can be probed far below the current bound with an intense muon source at the front end of the muon collider. In addition, if sleptons can be produced at the muon collider, the flavor violation can occur at their production and decay, allowing us to probe the flavor mixing structure directly. Asymmetry between numbers of μ + e - and e + μ - events will be a sign for CP violation in supersymmetric flavor mixing

  9. CHANNEL CATFISH INDUSTRY IN THE USA AND THE OFF-FLAVOR PROBLEM

    Directory of Open Access Journals (Sweden)

    Nikola Fijan

    2000-03-01

    Full Text Available The history, the production technology in channel catfish pond farming industry as well as the statistical data on production, processing and product value during past 15 years are presented. The trend of increasing consumption by the population and the presently low prices of grain and soybeans are conductive to further expansion of production. The steady growth of the industry is stimulated by several factors: innovative efforts by farmers, research at the universities and at government institutions some of which have numerous experimental ponds, cooperative extension service for farmers, modern marketing, activities of catfish farming associations, high quality of products from processing plants and vertical integration. The off-flavor in catfish caused by algal metabolites is a major problem in the industry. Genera of algae producing such metabolites, their accumulation in other fish and occurrence in drinking water reservoirs as well as the current emphasis on preventing the entrance of off-flavor contaminated catfish onto the market were reviewed. The main undesirable algal metyabolites are volatile alcohols geosmin and 2-methylisoborneol (MIB. The need for less expensive and quick methods of identifying major off-flavor compounds was pointed out. Research at the University of Arkansas at Pine Bluff, USA, on control of off-flavor algae in experimental ponds by filter-feeding silver carp (Hypophthalmichthys molitrix Val. and tilapias confined in cages showed this approach to be rather promising.

  10. Growth behavior of off-flavor-forming microorganisms in apple juice.

    Science.gov (United States)

    Siegmund, Barbara; Pöllinger-Zierler, Barbara

    2007-08-08

    Alicyclobacillus acidoterrestris and Streptomyces griseus griseus are two bacteria species that are frequently found in apple juice as spoilage bacteria. They both show thermoacidophilic behavior, adapting to the low pH of the juices and being able to survive high temperatures. They are able to regerminate in the shelf-stable product and spoil the juice by the formation of off-flavor compounds (i.e., guaiacol and 2,6-dibromophenol as metabolites of A. acidoterrestris and 2-isopropyl-3-methoxypyrazine, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, and geosmin as important metabolites of S. griseus). In this study the growth behavior of the strains and the impact on apple juice were investigated under different conditions (i.e., temperature, oxygen supply, and mutual influence of the strains). The off-flavor formation was monitored by GC-MS after headspace SPME and subsequent calculation of the odor activity values. The results showed that S. griseus grows and consequently spoils the product even at 4 degrees C, whereas A. acidoterrestris needs at least room temperature to show significant growth. Limited oxygen supply did not significantly reduce off-flavor formation for any of the strains. The simultaneous presence of the strains in the juice reduced the growth of both species; nevertheless, off-flavor was detected.

  11. A combination of quantitative marinating and Maillard reaction to enhance volatile flavor in Chinese marinated chicken.

    Science.gov (United States)

    Wei, Xiuli; Wang, Chunqing; Zhang, Chunhui; Li, Xia; Wang, Jinzhi; Li, Hai; Tang, Chunhong

    2017-02-01

    A combination of quantitative marinating and Maillard reaction was investigated by adding d-xylose, l-cysteine and thiamine to the marinated brine of quantitative marinating, which was expected to enhance the volatile flavor of Chinese marinated chicken. Response surface methodology was used to optimize parameters, in which response was sensory evaluation scores of marinated chicken. A Box-Behnken center design was applied to the optimized added contents. The optimized contents were d-xylose (1-5‰), l-cysteine (1-5‰) and thiamine (1-3‰). Analysis of variance indicated that a second-order polynomial equation could predict the experimental data well (R 2  = 0.94), and sensory evaluation scores were significantly affected by the added amount of d-xylose, l-cysteine and thiamine. The optimal conditions that maximized the sensory evaluation score of Chinese marinated chicken were found to be 4.96‰ d-xylose, 2.28‰ l-cysteine and 2.66‰ thiamine (w/w). Given these optimal conditions, a number of meat-like flavor compounds such as 2-pentyl-furan, benzothiazole and 4-methyl-5-thiazoleethanol were identified by gas chromatographic-mass spectrometric analysis. Our results suggested that a combination of quantitative marinating and Maillard reaction might be a promising method to enhance the volatile flavor, especially meat-like flavor, of Chinese marinated chicken. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Flavor physics and right-handed models

    Energy Technology Data Exchange (ETDEWEB)

    Shafaq, Saba

    2010-08-20

    The Standard Model of particle physics only provides a parametrization of flavor which involves the values of the quark and lepton masses and unitary flavor mixing matrix i.e. CKM (Cabibbo-Kobayashi-Masakawa) matrix for quarks. The precise determination of elements of the CKM matrix is important for the study of the flavor sector of quarks. Here we concentrate on the matrix element vertical stroke V{sub cb} vertical stroke. In particular we consider the effects on the value of vertical stroke V{sub cb} vertical stroke from possible right-handed admixtures along with the usually left-handed weak currents. Left Right Symmetric Model provide a natural basis for right-handed current contributions and has been studied extensively in the literature but has never been discussed including flavor. In the first part of the present work an additional flavor symmetry is included in LRSM which allows a systematic study of flavor effects. The second part deals with the practical extraction of a possible right-handed contribution. Starting from the quark level transition b{yields}c we use heavy quark symmetries to relate the helicities of the quarks to experimentally accessible quantities. To this end we study the decays anti B{yields}D(D{sup *})l anti {nu} which have been extensively explored close to non recoil point. By taking into account SCET (Soft Collinear Effective Theory) formalism it has been extended to a maximum recoil point i.e. {upsilon} . {upsilon}{sup '} >>1. We derive a factorization formula, where the set of form factors is reduced to a single universal form factor {xi}({upsilon} . {upsilon}{sup '}) up to hard-scattering corrections. Symmetry relations on form factors for exclusive anti B {yields} D(D{sup *})l anti {nu} transition has been derived in terms of {xi}({upsilon} . {upsilon}{sup '}). These symmetries are then broken by perturbative effects. The perturbative corrections to symmetry-breaking corrections to first order in the strong

  13. Phenomenology of flavor-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Kaplan, D. Elazzar; Kribs, Graham D.

    2000-01-01

    The phenomenology of a new economical supersymmetric model that utilizes dynamical supersymmetry breaking and gauge mediation for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of supersymmetry breaking through a messenger sector and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate flavor changing neutral current bounds since their mass scale, consistent with ''effective supersymmetry,'' is of order 10 TeV. We define and advocate a ''minimal flavor-mediated model'' (MFMM), recently introduced in the literature, which successfully accommodates the small flavor-breaking parameters of the standard model using order 1 couplings and ratios of flavon field VEVs. The mediation of supersymmetry breaking occurs via two-loop logarithm-enhanced gauge-mediated contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parametrized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. Full two-loop renormalization group evolution is performed, correctly taking into account the negative two-loop gauge contributions from heavy first and second generations. Electroweak symmetry is radiatively broken with the value of μ determined by matching to the Z mass. The weak scale spectrum is generally rather heavy, except for the lightest Higgs boson, the lightest stau, the lightest chargino, the lightest two neutralinos, and of course a very light gravitino. The next-to-lightest sparticle always has a decay length that is larger than the scale of a detector, and is either the lightest stau

  14. Δ(54) flavor phenomenology and strings

    Energy Technology Data Exchange (ETDEWEB)

    Carballo-Pérez, Brenda [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico); HEBA Ideas S.A. de C.V.,Calculistas 37, Cd. Mx. 09400 (Mexico); Peinado, Eduardo; Ramos-Sánchez, Saúl [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico)

    2016-12-23

    Δ(54) can serve as a flavor symmetry in particle physics, but remains almost unexplored. We show that in a classification of semi-realistic ℤ{sub 3}×ℤ{sub 3} heterotic string orbifolds, Δ(54) turns out to be the most natural flavor symmetry, providing additional motivation for its study. We revisit its phenomenological potential from a low-energy perspective and subject to the constraints of string models. We find a model with Δ(54) arising from heterotic orbifolds that leads to the Gatto-Sartori-Tonin relation for quarks and charged-leptons. Additionally, in the neutrino sector, it leads to a normal hierarchy for neutrino masses and a correlation between the reactor and the atmospheric mixing angles, the latter taking values in the second octant and being compatible at three sigmas with experimental data.

  15. Lepton flavor violation with light vector bosons

    Directory of Open Access Journals (Sweden)

    Julian Heeck

    2016-07-01

    Full Text Available New sub-GeV vector bosons with couplings to muons but not electrons have been discussed in order to explain the muon's magnetic moment, the gap of high-energy neutrinos in IceCube or the proton radius puzzle. If such a light Z′ not only violates lepton universality but also lepton flavor, as expected for example from the recent hint for h→μτ at CMS, the two-body decay mode τ→μZ′ opens up and for MZ′<2mμ gives better constraints than τ→3μ already with 20-year-old ARGUS limits. We discuss the general prospects and motivation of light vector bosons with lepton-flavor-violating couplings.

  16. Gapless Color-Flavor-Locked Quark Matter

    DEFF Research Database (Denmark)

    Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna

    2004-01-01

    In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We argue that as a function of decreasing quark chemical...... potential mu or increasing M_s, there is a quantum phase transition from the CFL phase to a new ``gapless CFL phase'' in which only seven quasiparticles have a gap. The transition occurs where M_s^2/mu is approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken...... a linear combination Qtilde of electric and color charges, but it is a Qtilde-conductor with a nonzero electron density. These electrons and the gapless quark quasiparticles make the low energy effective theory of the gapless CFL phase and, consequently, its astrophysical properties are qualitatively...

  17. Possibility of new dibaryons containing heavy flavors

    International Nuclear Information System (INIS)

    Leandri, J.; Silvestre-Brac, B.

    1993-01-01

    In a recent paper we have shown that the possibility of including heavy flavor in the dibaryon sector can lead to some new favored configurations (relative to the baryon-baryon threshold). In this study we extend our previous work by a systematic study of all the physical Qq 5 systems in a simple chromomagnetic model. In the first part we assume that the q quarks belong to the fundamental irrep of SU(3) F and that the Q quark has infinite mass. These assumptions are subsequently relaxed by introducing two mass parameters δ and η. Once these symmetries are broken we gain access in our model to a large number of new dibaryons containing heavy flavor. Some of them could be stable against decay via strong interactions, and we indicate the most favorable cases

  18. Studies of heavy flavored jets with CMS

    CERN Document Server

    Jung, Kurt

    2017-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the mass and flavor of the initiating parton. Thus, measurements of jet quenching with identified partons place powerful constraints on the thermodynamic and transport properties of the hot and dense medium. We present recent results of heavy flavor jet spectra and nuclear modification factors of jets associated to charm and bottom quarks in both pPb and PbPb collisions. New measurements to be presented include the dijet asymmetry of pairs of b-jets in PbPb collisions and a finalized c-jet measurement in pPb collisions based on new data collected during the 2015 heavy-ion run period at the LHC.

  19. Light-flavor squark reconstruction at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)548062; Weuste, Lars

    2015-01-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light- flavored right-handed squark at a 3 TeV e+e collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two- photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  20. Flavor changing strings and domain walls

    International Nuclear Information System (INIS)

    Dvali, G.; Senjanovic, G.

    1993-04-01

    We consider the cosmological consequences of a spontaneous breaking of non-abelian discrete symmetries, which may appear as a natural remnant of a continuous symmetry, such as a family symmetry. The result may be a stable domain wall across which an electron would turn into a muon (orν e into ν μ ) or a flavor analogue of an Alice string-domain wall structure with the same property. (author). 16 refs

  1. New signatures of flavor violating Higgs couplings

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, Malte; Kopp, Joachim; Liu, Jia; Wang, Xiao-Ping [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics,Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-06-24

    We explore several novel LHC signatures arising from quark or lepton flavor violating couplings in the Higgs sector, and we constrain such couplings using LHC data. Since the largest signals are possible in channels involving top quarks or tau leptons, we consider in particular the following flavor violating processes: (1) pp→thh (top plus di-Higgs final state) arising from a dimension six coupling of up-type quarks to three insertions of the Higgs field. We develop a search strategy for this final state and demonstrate that detection is possible at the high luminosity LHC if flavor violating top-up-Higgs couplings are not too far below the current limit. (2) pp→tH{sup 0}, where H{sup 0} is the heavy neutral CP-even Higgs boson in a two Higgs doublet model (2HDM). We consider the decay channels H{sup 0}→tu,WW,ZZ,hh and use existing LHC data to constrain the first three of them. For the fourth, we adapt our search for the thh final state, and we demonstrate that in large regions of the parameter space, it is superior to other searches, including searches for flavor violating top quark decays (t→hq). (3) H{sup 0}→τμ, again in the context of a 2HDM. This channel is particularly well motivated by the recent CMS excess in h→τμ, and we use the data from this search to constrain the properties of H{sup 0}.

  2. The New Flavor of Higgsed Gauge Mediation

    OpenAIRE

    Craig, Nathaniel; McCullough, Matthew; Thaler, Jesse

    2012-01-01

    Recent LHC bounds on squark masses combined with naturalness and flavor considerations motivate non-trivial sfermion mass spectra in the supersymmetric Standard Model. These can arise if supersymmetry breaking is communicated to the visible sector via new extended gauge symmetries. Such extended symmetries must be spontaneously broken, or confined, complicating the calculation of soft masses. We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge...

  3. Flavor Physics in the Quark Sector

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Mario; /Frascati; Asner, David Mark; /Carleton U.; Bauer, Daniel Adams; /Imperial Coll., London; Becher, Thomas G.; /Fermilab; Beneke, M.; /Aachen, Tech. Hochsch.; Bevan, Adrian John; /Queen Mary, U. of London; Blanke, Monika; /Munich, Tech. U. /Munich, Max Planck Inst.; Bloise, C.; /Frascati; Bona, Marcella; /CERN; Bondar, Alexander E.; /Novosibirsk, IYF; Bozzi, Concezio; /INFN, Ferrara; Brod, Joachim; /Karlsruhe U.; Buras, Andrzej J.; /Munich, Tech. U.; Cabibbo, N.; /INFN, Rome /Rome U.; Carbone, A.; /INFN, Bologna; Cavoto, Gianluca; /INFN, Rome; Cirigliano, Vincenzo; /Los Alamos; Ciuchini, Marco; /INFN, Rome; Coleman, Jonathon P.; /SLAC; Cronin-Hennessy, Daniel P.; /Minnesota U.; Dalseno, J.P.; /KEK, Tsukuba /Glasgow U. /Queen Mary, U. of London /Freiburg U. /Charles U. /Pisa U. /Vienna, OAW /Imperial Coll., London /Bergen U. /INFN, Rome /Rome U. /Munich, Tech. U. /INFN, Rome /Rome U. /Southampton U. /INFN, Rome /Nara Women' s U. /Florida U. /INFN, Turin /Turin U. /Edinburgh U. /Warwick U. /INFN, Rome /Rome U. /Massachusetts U., Amherst /KEK, Tsukuba /Bern U. /CERN /Munich, Tech. U. /Mainz U., Inst. Phys. /Wayne State U. /Munich, Max Planck Inst. /CERN /Frascati /Brookhaven /Mainz U., Inst. Kernphys. /Munich, Tech. U. /Siegen U. /Imperial Coll., London /Victoria U. /KEK, Tsukuba /Fermilab /Washington U., St. Louis /Frascati /Warwick U. /Indian Inst. Tech., Madras /Melbourne U. /Princeton U. /Beijing, Inst. High Energy Phys. /INFN, Rome /INFN, Rome3 /Fermilab /SLAC /York U., Canada /Brookhaven /UC, Irvine /INFN, Rome /Rome U. /Valencia U., IFIC /INFN, Padua /Padua U. /Munich, Max Planck Inst. /Barcelona U. /Warwick U. /Tata Inst. /Frascati /Mainz U., Inst. Phys. /Vienna U. /KEK, Tsukuba /Orsay, LPT /Frascati /Munich, Tech. U. /Brookhaven /Bern U. /CERN /Mainz U., Inst. Phys. /Wayne State U. /Valencia U., IFIC /CERN /Kentucky U. /Oxford U. /Iowa State U. /Bristol U. /INFN, Rome /Rutherford /CERN /Orsay, LAL /Glasgow U. /INFN, Padua /Queen Mary, U. of London /Texas U. /LPHE, Lausanne /Fermilab /UC, Santa Cruz /Vienna, OAW /Cincinnati U. /Frascati /Orsay, LAL /Ohio State U. /Purdue U. /Novosibirsk, IYF /Frascati /INFN, Rome /Padua U. /INFN, Rome /Bern U. /Karlsruhe U. /Brookhaven /CERN /Paris U., VI-VII /Zurich, ETH /Pisa U. /Frascati /Oxford U. /Orsay, LAL /INFN, Rome2 /INFN, Rome /INFN, Rome3 /Princeton U. /Fermilab /Queen' s U., Kingston /KEK, Tsukuba /Melbourne U. /Brookhaven /Indiana U. /INFN, Rome /Rome U. /Pisa U. /Mainz U., Inst. Phys. /Karlsruhe U. /Oxford U. /Cambridge U., DAMTP /Edinburgh U. /CERN

    2010-08-26

    In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved, apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K,D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments, thus a review of the status of quark flavor physics is timely. This report is the result of the work of the physicists attending the 5th CKM workshop, hosted by the University of Rome 'La Sapienza', September 9-13, 2008. It summarizes the results of the current generation of experiments that is about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade.

  4. Microencapsulation of Flavors in Carnauba Wax

    OpenAIRE

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at aroun...

  5. Neutrino Flavor Evolution in Turbulent Supernova Matter

    Science.gov (United States)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  6. Neutrino flavor evolution in neutron star mergers

    Science.gov (United States)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-08-01

    We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.

  7. QCD thermodynamics with two flavors of quarks

    International Nuclear Information System (INIS)

    Bernard, C.; Ogilvie, M.C.; DeGrand, T.A.; DeTar, C.; Gottlieb, S.; Krasnitz, A.; Sugar, R.L.; Toussaint, D.

    1992-01-01

    We present results of numerical simulations of quantum chromo-dynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 x 12 3 lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.)

  8. Helium synthesis, neutrino flavors, and cosmological implications

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1980-01-01

    The problem of the production of helium in the big bang is reexamined in the light of several recent astrophysical observations. These data, and theoretical particle-physics considerations, lead to some important inconsistencies in the standard big-bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid

  9. Rare Z decays and neutrino flavor universality

    Energy Technology Data Exchange (ETDEWEB)

    Durieux, Gauthier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Cornell Univ. Ithaca, NY (United States). Lab. for Elementary Particle Physics; Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Centre for Cosmology, Particle Physics and Phenomenology; Grossman, Yuval; Kuflik, Erik [Cornell Univ. Ithaca, NY (United States). Lab. for Elementary Particle Physics; Koenig, Matthias [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Mainz Univ. (Germany). Mainz Inst. for Theoretical Physics; Ray, Shamayita [Cornell Univ. Ithaca, NY (United States). Lab. for Elementary Particle Physics; Calcutta Univ. (India). Dept. of Physics

    2015-12-15

    We study rare four-body decays of the Z-boson involving at least one neutrino and one charged lepton. Large destructive interferences make these decays very sensitive to the Z couplings to neutrinos. As the identified charged leptons can determine the neutrino flavors, these decays probe the universality of the Z couplings to neutrinos. The rare four-body processes could be accurately measured at future lepton colliders, leading to percent level precision.

  10. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage

    DEFF Research Database (Denmark)

    Baranauskiene, R.; Bylaite, Egle; Zukauskaite, J.

    2007-01-01

    The effect of different commercial modified food starch carrier materials on the flavor retention of the essential oil (EO) of peppermint (Mentha piperita L.) during spray drying and storage was evaluated. The obtained results revealed that the emulsification and encapsulation efficiencies...... individual compounds were observed. Larger differences in the compositions of surface oils from various encapsulation products were obtained. Flavor components were released at different rates by each of the encapsulated products. The aroma binding capacity of different modified starch matrices to lock EO...... droplets depends on the water activity, and the leakage of aromas from encapsulated powder products during storage increased with increasing water activity....

  11. Flavor release measurement from gum model system.

    Science.gov (United States)

    Ovejero-López, Isabel; Haahr, Anne-Mette; van den Berg, Frans; Bredie, Wender L P

    2004-12-29

    Flavor release from a mint-flavored chewing gum model system was measured by atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) and sensory time-intensity (TI). A data analysis method for handling the individual curves from both methods is presented. The APCI-MS data are ratio-scaled using the signal from acetone in the breath of subjects. Next, APCI-MS and sensory TI curves are smoothed by low-pass filtering. Principal component analysis of the individual curves is used to display graphically the product differentiation by APCI-MS or TI signals. It is shown that differences in gum composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory adaptation and sensitivity differences of human perception versus APCI-MS detection might explain the divergence between the two dynamic measurement methods.

  12. Collective excitations of massive flavor branes

    Directory of Open Access Journals (Sweden)

    Georgios Itsios

    2016-08-01

    Full Text Available We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2+1-dimensional intersections, we further study alternative quantization and the zero sound of the resulting anyonic fluid. We finally extend these results to non-zero temperature and magnetic field and compute the diffusion constant in the hydrodynamic regime. The numerical results we find match the predictions by the Einstein relation.

  13. Flavor Physics in the Quark Sector

    CERN Document Server

    Antonelli, Mario; Bauer, Daniel Adams; Becher, Thomas G.; Beneke, M.; Bevan, Adrian John; Blanke, Monika; Bloise, C.; Bona, Marcella; Bondar, Alexander E.; Bozzi, Concezio; Brod, Joachim; Buras, Andrzej J.; Cabibbo, N.; Carbone, A.; Cavoto, Gianluca; Cirigliano, Vincenzo; Ciuchini, Marco; Coleman, Jonathon P.; Cronin-Hennessy, Daniel P.; Dalseno, J.P.; Davies, C.H.; Di Lodovico, Francesca; Dingfelder, Jochen C.; Dolezal, Zdenek; Donati, Simone; Dungel, W.; Egede, Ulrik; Eigen, Gerald; Faccini, Riccardo; Feldmann, Thorsten; Ferroni, Fernando; Flynn, Jonathan M.; Franco, Enrico; Fujikawa, M.; Furic, Ivan K.; Gambino, Paolo; Gardi, E.; Gershon, Timothy John; Giagu, Stefano; Golowich, Eugene; Goto, Toru; Greub, C.; Grojean, Christophe; Guadagnoli, Diego; Haisch, U.A.; Harr, Robert Francis; Hoang, Andre H.; Hurth, Tobias; Isidori, Gino; Jaffe, D.E.; Juttner, Andreas; Jager, Sebastian; Khodjamirian, Alexander; Koppenburg, Patrick Stefan; Kowalewski, Robert V.; Krokovny, P.; Kronfeld, Andreas Samuel; Laiho, J.; Lanfranchi, G.; Latham, Thomas Edward; Libby, James F.; Limosani, A.; Lopes Pegna, David; Lu, Cai-Dian; Lubicz, Vittorio; Lunghi, Enrico; Luth, Vera G.; Maltman, K.; Marciano, William Joseph; Martin, Emilie Claire Mutsumi; Martinelli, Guido; Martinez-Vidal, Fernando; Masiero, A.; Mateu, V.; Mescia, Federico; Mohanty, Gagan Bihari; Moulson, Matthew; Neubert, Matthias; Neufeld, Helmut; Nishida, Shohei; Offen, Nils; Palutan, M.; Paradisi, Paride; Parsa, Z.; Passemar, Emilie; Patel, M.; Pecjak, B.D.; Petrov, Alexey A.; Pich, Antonio; Pierini, Maurizio; Plaster, Brad; Powell, Brian Alfred; Prell, Soeren Andre; Rademaker, J.; Rescigno, Marco; Ricciardi, Stefania; Robbe, Patrick; Rodrigues, E.; Rotondo, Marcello; Sacco, Roberto; Schilling, Christopher James; Schneider, Olivier; Scholz, Enno E.; Schumm, Bruce Andrew; Schwanda, C.; Schwartz, Alan Jay; Sciascia, Barbara; Serrano, Justine; Shigemitsu, J.; Shipsey, Ian P.J.; Sibidanov, A.L.; Silvestrini, Luca; Simonetto, Franco; Simula, Silvano; Smith, Christopher; Soni, A.; Sonnenschein, Lars; Sordini, Viola; Sozzi, Marco S.; Spadaro, Tommaso; Spradlin, Patrick Michael; Stocchi, Achille; Tantalo, Nazario; Tarantino, Cecilia; Telnov, Alexandre V.; Tonelli, Diego; Towner, I.S.; Trabelsi, K.; Urquijo, Phillip; Van de Water, R.S.; Van Kooten, Richard J.; Virto, Javier; Volpi, Guido; Wanke, R.; Westhoff, Susanne; Wilkinson, G.; Wingate, Matthew Bowen; Xie, Y.; Zupan, Jure

    2010-01-01

    One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of $K, D$, and $B$ mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near...

  14. Masses, flavor mix and CP violation

    International Nuclear Information System (INIS)

    Chaussard, L.

    2004-06-01

    The author describes the relationships between masses, mixing of flavors and CP violation. This document is divided into 4 chapters: 1) fermions' masses, 2) mixing of flavors and CP violation, 3) beauty physics and 4) neutrino physics. In chapter 1 an attempt is made to explain what is behind the concepts of lepton mass and quark mass. As for neutrinos, the only neutral fermion, Dirac's and Majorana's views are exposed as well as their consequences. Fermion flavors are mixed in the process of mass generation and this mix is responsible for the breaking of CP and T symmetries. In chapter 2 the author shows how the analysis of particle oscillations from neutral mesons (K 0 , D 0 , B d 0 and B s 0 ) and from neutrinos can shed light on CP violation. Chapter 3 is dedicated to the contribution of beauty physics to the determination of the unitary triangle, through the oscillations of beauty mesons. In chapter 4 the author reviews the experimental results obtained recently concerning neutrino mass and neutrino oscillations and draws some perspectives on future neutrino experiments. (A.C.)

  15. Off-flavors removal and storage improvement of mackerel viscera by supercritical carbon dioxide extraction.

    Science.gov (United States)

    Lee, Min Kyung; Uddin, M Salim; Chun, Byung Soo

    2008-07-01

    The oil in mackerel viscera was extracted by supercritical carbon dioxide (SCO2) at a semi-batch flow extraction process and the fatty acids composition in the oil was identified. Also the off-flavors removal in mackerel viscera and the storage improvement of the oils were carried out. As results obtained, by increasing pressure and temperature, quantity was increased. The maximum yield of oils obtained from mackerel viscera by SCO, extraction was 118 mgg(-1) (base on dry weight of freeze-dried raw anchovy) at 50 degrees C, 350 bar And the extracted oil contained high concentration of EPA and DHA. Also it was found that the autoxidation of the oils using SCO2 extraction occurred very slowly compared to the oils by organic solvent extraction. The off-flavors in the powder after SCO2 extraction were significantly removed. Especially complete removal of the trimethylamine which influences a negative compound to the products showed. Also other significant off-flavors such as aldehydes, sulfur-containing compounds, ketones, acids or alcohols were removed by the extraction.

  16. Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering".

    Science.gov (United States)

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J; Nauta, Arjen; Geurts, Jan M W

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the "missing links" between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.

  17. Electric dipole moments with and beyond flavor invariants

    Science.gov (United States)

    Smith, Christopher; Touati, Selim

    2017-11-01

    In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U (1) phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  18. Electric dipole moments with and beyond flavor invariants

    Directory of Open Access Journals (Sweden)

    Christopher Smith

    2017-11-01

    Full Text Available In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U(1 phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.

  19. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics.

    Science.gov (United States)

    Gu, Fenglin; Chen, Yonggan; Fang, Yiming; Wu, Guiping; Tan, Lehe

    2015-10-09

    Colonizing Bacillus in vanilla (Vanilla planifolia Andrews) beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58%±0.05% and 3.48%±0.10%, respectively) than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09%±0.14% and 3.21%±0.15%, respectively). Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.

  20. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics

    Directory of Open Access Journals (Sweden)

    Fenglin Gu

    2015-10-01

    Full Text Available Colonizing Bacillus in vanilla (Vanilla planifolia Andrews beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58% ± 0.05% and 3.48% ± 0.10%, respectively than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09% ± 0.14% and 3.21% ± 0.15%, respectively. Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.

  1. Resource factor in production of quality and safe flavored food

    Directory of Open Access Journals (Sweden)

    Наталія Епінетівна Фролова

    2015-07-01

    Full Text Available Research of methods for establishing authenticity of essential oil of cumin and dill based on optical isomerism of components is presented in the article.In modern food technology more often used frozen raw, concentrates fruit and vegetables, growing issue of healthy products and this all require the use of flavors. Synthetic flavors can be dangerous to the human body. Usage of counterfeit natural flavors is dangerous.

  2. Odd-flavor Simulations by the Hybrid Monte Carlo

    CERN Document Server

    Takaishi, Tetsuya; Takaishi, Tetsuya; De Forcrand, Philippe

    2001-01-01

    The standard hybrid Monte Carlo algorithm is known to simulate even flavors QCD only. Simulations of odd flavors QCD, however, can be also performed in the framework of the hybrid Monte Carlo algorithm where the inverse of the fermion matrix is approximated by a polynomial. In this exploratory study we perform three flavors QCD simulations. We make a comparison of the hybrid Monte Carlo algorithm and the R-algorithm which also simulates odd flavors systems but has step-size errors. We find that results from our hybrid Monte Carlo algorithm are in agreement with those from the R-algorithm obtained at very small step-size.

  3. Flavor Tagging with Deep Neural Networks at Belle II

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The Belle II experiment is mainly designed to investigate the decay of B meson pairs from $\\Upsilon(4S)$ decays, produced by the asymmetric electron-positron collider SuperKEKB. The determination of the B meson flavor, so-called flavor tagging, plays an important role in analyses and can be inferred in many cases directly from the final state particles. In this talk a successful approach of B meson flavor tagging utilizing a Deep Neural Network is presented. Monte Carlo studies show a significant improvement with respect to the established category-based flavor tagging algorithm.

  4. Flavor Tagging at Tevatron incl. calibration and control

    Energy Technology Data Exchange (ETDEWEB)

    Moulik, T.; /Kansas U.

    2007-01-01

    This report summarizes the flavor tagging techniques developed at the CDF and D0 experiments. Flavor tagging involves identification of the B meson flavor at production, whether its constituent is a quark or an anti-quark. It is crucial for measuring the oscillation frequency of neutral B mesons, both in the B{sup 0} and B{sub S} system. The two experiments have developed their unique approaches to flavor tagging, using neural networks, and likelihood methods to disentangle tracks from b decays from other tracks. This report discusses these techniques and the measurement of B{sup 0} mixing, as a means to calibrate the taggers.

  5. Collective three-flavor oscillations of supernova neutrinos

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol

    2008-06-01

    Neutrinos and antineutrinos emitted from a core collapse supernova interact among themselves, giving rise to collective flavor conversion effects that are significant near the neutrinosphere. We develop a formalism to analyze these collective effects in the complete three-flavor framework. It naturally generalizes the spin-precession analogy to three flavors and is capable of analytically describing phenomena like vacuum/Mikheyev-Smirnov-Wolfenstein (MSW) oscillations, synchronized oscillations, bipolar oscillations, and spectral split. Using the formalism, we demonstrate that the flavor conversions may be “factorized” into two-flavor oscillations with hierarchical frequencies. We explicitly show how the three-flavor solution may be constructed by combining two-flavor solutions. For a typical supernova density profile, we identify an approximate separation of regions where distinctly different flavor conversion mechanisms operate, and demonstrate the interplay between collective and MSW effects. We pictorialize our results in terms of the “e3-e8 triangle” diagram, which is a tool that can be used to visualize three-neutrino flavor conversions in general, and offers insights into the analysis of the collective effects in particular.

  6. Flavor at the TeV scale with extra dimensions

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Hall, Lawrence; Smith, David; Weiner, Neal

    2000-01-01

    Theories where the standard model fields reside on a 3-brane, with a low fundamental cutoff and extra dimensions, provide alternative solutions to the gauge hierarchy problem. However, generating flavor at the TeV scale while avoiding flavor-changing difficulties appears prohibitively difficult at first sight. We argue to the contrary that this picture allows us to lower flavor physics close to the TeV scale. Small Yukawa couplings are generated by ''shining'' badly broken flavor symmetries from distant branes, and flavor and CP-violating processes are adequately suppressed by these symmetries. We further show how the extra dimensions avoid four dimensional disasters associated with light fields charged under flavor. We construct elegant and realistic theories of flavor based on the maximal U(3) 5 flavor symmetry which naturally generate the simultaneous hierarchy of masses and mixing angles. Finally, we introduce a new framework for predictive theories of flavor, where our 3-brane is embedded within highly symmetrical configurations of higher-dimensional branes. (c) 2000 The American Physical Society

  7. Flavor alignment via shining in Randall-Sundrum models

    International Nuclear Information System (INIS)

    Csaki, Csaba; Perez, Gilad; Surujon, Ze'ev; Weiler, Andreas

    2010-01-01

    We present a class of warped extra dimensional models whose flavor violating interactions are much suppressed compared to the usual anarchic case due to flavor alignment. Such suppression can be achieved in models where part of the global flavor symmetry is gauged in the bulk and broken in a controlled manner. We show that the bulk masses can be aligned with the down-type Yukawa couplings by an appropriate choice of bulk flavon field representations and TeV brane dynamics. This alignment could reduce the flavor violating effects to levels that allow for a Kaluza-Klein scale as low as 2-3 TeV, making the model observable at the LHC. However, the up-type Yukawa couplings on the IR brane, which are bounded from below by recent bounds on CP violation in the D system, induce flavor misalignment radiatively. Off-diagonal down-type Yukawa couplings and kinetic mixings for the down quarks are both consequences of this effect. These radiative Yukawa corrections can be reduced by raising the flavon vacuum expectation value on the IR brane (at the price of some moderate tuning), or by extending the Higgs sector. The flavor changing effects from the radiatively induced Yukawa mixing terms are at around the current upper experimental bounds. We also show the generic bounds on UV-brane induced flavor violating effects, and comment on possible additional flavor violations from bulk flavor gauge bosons and the bulk Yukawa scalars.

  8. Study on creation of an indocalamus leaf flavor

    Directory of Open Access Journals (Sweden)

    Guangyong ZHU

    2015-01-01

    Full Text Available AbstractFlavors represent a small but significant segment of food industry. Sensory characteristics play an important role in the process of consumer acceptance and preference. Indocalamus leaf takes on a pleasant odor and indocalamus leaf flavor can be used in many products. However, indocalamus leaf flavor formula has not been reported. Therefore, developing an indocalamus leaf flavor is of significant interests. Note is a distinct flavor or odor characteristic. This paper concentrates on preparation and creation of indocalamus leaf flavor according to the notes of indocalamus leaf. The notes were obtained by smelling indocalamus leaf, and the results showed that the notes of indocalamus leaf flavor can be classified as: green-leafy note, sweet note, beany note, aldehydic note, waxy note, woody note, roast note, creamy note, and nutty note. According to the notes of indocalamus leaf odor, a typical indocalamus leaf flavor formula was obtained. The indocalamus leaf flavor blended is pleasant, harmonious, and has characteristics of indocalamus leaf odor.

  9. Controlling light oxidation flavor in milk by blocking riboflavin excitation wavelengths by interference.

    Science.gov (United States)

    Webster, J B; Duncan, S E; Marcy, J E; O'Keefe, S F

    2009-01-01

    Milk packaged in glass bottles overwrapped with iridescent films (treatments blocked either a single visible riboflavin [Rb] excitation wavelength or all visible Rb excitation wavelengths; all treatments blocked UV Rb excitation wavelengths) was exposed to fluorescent lighting at 4 degrees C for up to 21 d and evaluated for light-oxidized flavor. Controls consisted of bottles with no overwrap (light-exposed treatment; represents the light barrier properties of the glass packaging) and bottles overwrapped with aluminum foil (light-protected treatment). A balanced incomplete block multi-sample difference test, using a ranking system and a trained panel, was used for evaluation of light oxidation flavor intensity. Volatiles were evaluated by gas chromatography and Rb degradation was evaluated by fluorescence spectroscopy. Packaging overwraps limited production of light oxidation flavor over time but not to the same degree as the complete light block. Blocking all visible and UV Rb excitation wavelengths reduced light oxidation flavor better than blocking only a single visible excitation wavelength plus all UV excitation wavelengths. Rb degraded over time in all treatments except the light-protected control treatment and only minor differences in the amount of degradation among treatments was observed. Hexanal production was significantly higher in the light-exposed control treatment compared to the light-protected control treatment from day 7; it was only sporadically significantly higher in the 570 nm and 400 nm block treatments. Pentanal, heptanal, and an unidentified volatile compound also increased in concentration over time, but there were no significant differences in concentration among the packaging overwrap treatments for these compounds.

  10. Precision Light Flavor Physics from Lattice QCD

    Science.gov (United States)

    Murphy, David

    In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its

  11. Flavor mixing with quarks and leptons

    International Nuclear Information System (INIS)

    Bigi, I.I.

    1987-10-01

    The last year has brought such a wealth of new information on heavy flavors that meaningful bounds can now be placed on all fermion mass related parameters in the Standard Model. The status of the KM matrix is reviewed with particular emphasis on the theoretical uncertainties. B 0 -anti B 0 mixing is reevaluated and CP violation is discussed as it is observed in K/sub L/ decays and as it hopefully can be studied in B decays. The report is concluded with short remarks on neutrino oscillations

  12. Lifetimes of some b-flavored hadrons

    International Nuclear Information System (INIS)

    Stone, S.

    2014-06-01

    Recent measurements of lifetimes of some b-flavored hadrons are presented and interpreted in the context of theoretical models, especially the Heavy Quark Expansion. Decay widths and decay width differences in the B s 0 - B-bar s 0 system are discussed from the studies of decays into the final states J/ψK + K - , J/ψπ + π - , D s + D s - , K + K - and D s ± π ± . Lifetime measurements of the baryons Λ b 0 , Ξ b - , Ξ b 0 , and Ω b - are also shown. (author)

  13. Search for Lepton Flavor Violation with Muons

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka

    2009-01-01

    Physics motivation and phenomenology of muon to electron conversion (μ - +N(A,Z)→e - +N(A,Z)) in a muonic atom, which is one the most important muon processes to search for lepton flavor violation of charged leptons, are presented. Prospects for future experiments at J-PARC (Japan Proton Accelerator Complex) in Japan, such as the COMET experiment for a sensitivity of less than 10 -16 as the first stage, and then the PRISM/PRIME experiment for a sensitivity of less than 10 -18 as the ultimate stage, are discussed.

  14. Naturalness, SUSY heavy higgses and flavor constraints

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    I will demonstrate that supersymmetric (SUSY) higgses provide an important diagnostic for electroweak naturalness in the SUSY paradigm. I first review the naturalness problem of the Standard Model (SM) and SUSY as one of its most promising solutions. I study the masses of heavy Higgses in SUSY theories under broad assumptions, and show how they are constrained by their role in Electroweak symmetry breaking. I then show how Flavor Physics severely constrains large parts of SUSY parameter space, otherwise favored by naturalness. If SUSY Higgses are not discovered at relatively low mass during the next LHC run, this tension will further increase, disfavoring naturalness from SUSY.

  15. Analysis of Bs flavor oscillations at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro Leonardo, Nuno Teotonio Viegas [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-09-01

    The search for and study of flavor oscillations in the neutral BsBs meson system is an experimentally challenging task. It constitutes a flagship analysis of the Tevatron physics program. In this dissertation, they develop an analysis of the time-dependent Bs flavor oscillations using data collected with the CDF detector. The data samples are formed of both fully and partially reconstructed B meson decays: Bs → Dsπ(ππ) and Bs → Dslv. A likelihood fitting framework is implemented and appropriate models and techniques developed for describing the mass, proper decay time, and flavor tagging characteristics of the data samples. The analysis is extended to samples of B+ and B0 mesons, which are further used for algorithm calibration and method validation. The B mesons lifetimes are extracted. The measurement of the B0 oscillation frequency yields Δmd = 0.522 ± 0.017 ps-1. The search for Bs oscillations is performed using an amplitude method based on a frequency scanning procedure. Applying a combination of lepton and jet charge flavor tagging algorithms, with a total tagging power ϵ'D2 of 1.6%, to a data sample of 355 pb-1, a sensitivity of 13.0 ps-1 is achieved. They develop a preliminary same side kaon tagging algorithm, which is found to provide a superior tagging power of about 4.0% for the Bs meson species. A study of the dilution systematic uncertainties is not reported. From its application as is to the Bs samples the sensitivity is significantly increased to about 18 ps-1 and a hint of a signal is seen at about 175. ps-1. They demonstrate that the extension of the analysis to the increasing data samples with the inclusion of the same side tagging algorithm is capable of providing an observation of Bs mixing beyond the

  16. QCD thermodynamics with two flavors of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C.; Ogilvie, M.C. (Washington Univ., Saint Louis, MO (United States). Dept. of Physics); DeGrand, T.A. (Colorado Univ., Boulder, CO (United States). Physics Dept.); DeTar, C. (Utah Univ., Salt Lake City, UT (United States). Physics Dept.); Gottlieb, S.; Krasnitz, A. (Indiana Univ., Bloomington, IN (United States). Dept. of Physics); Sugar, R.L. (California Univ., Santa Barbara, CA (United States). Dept. of Physics); Toussaint, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Physics); MIMD Lattice Computations (MILC) Collaboration

    1992-05-01

    We present results of numerical simulations of quantum chromo-dynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 x 12[sup 3] lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.).

  17. Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Blechman, Andrew E.; Petriello, Frank

    2006-01-01

    The anarchic Randall-Sundrum model of flavor is a low energy solution to both the electroweak hierarchy and flavor problems. Such models have a warped, compact extra dimension with the standard model fermions and gauge bosons living in the bulk, and the Higgs living on or near the TeV brane. In this paper we consider bounds on these models set by lepton flavor-violation constraints. We find that loop-induced decays of the form l→l ' γ are ultraviolet sensitive and incalculable when the Higgs field is localized on a four-dimensional brane; this drawback does not occur when the Higgs field propagates in the full five-dimensional space-time. We find constraints at the few TeV level throughout the natural range of parameters, arising from μ-e conversion in the presence of nuclei, rare μ decays, and rare τ decays. A tension exists between loop-induced dipole decays such as μ→eγ and tree-level processes such as μ-e conversion; they have opposite dependences on the five-dimensional Yukawa couplings, making it difficult to decouple flavor-violating effects. We emphasize the importance of the future experiments MEG and PRIME. These experiments will definitively test the Randall-Sundrum geometric origin of hierarchies in the lepton sector at the TeV scale

  18. Characteristic Flavor of Traditional Soup Made by Stewing Chinese Yellow-Feather Chickens.

    Science.gov (United States)

    Qi, Jun; Liu, Deng-Yong; Zhou, Guang-Hong; Xu, Xing-Lian

    2017-09-01

    The traditional recipe for Chinese chicken soup creates a popular taste of particular umami and aroma. The present study investigated the effects of stewing time (1, 2, and 3 h) on the principal taste-active and volatile compounds and the overall flavor profile of traditional Chinese chicken soup by measuring the contents of free amino acids (FAAs), 5'-nucleotides, minerals and volatile compounds and by evaluating the taste and aroma profiles using an electronic nose, an electronic tongue and a human panel. Results showed that the major umami-related compounds in the chicken soup were inosine 5'-monophosphate (IMP) and chloride, both of which increased significantly (P < 0.05) during stewing. The taste active values (TAVs) of the equivalent umami concentration (EUC) increased from 4.08 to 9.93 (P < 0.05) after stewing for 3 h. Although the FAA and mineral contents increased significantly (P < 0.05), their TAVs were less than 1. The volatile compounds were mainly hexanal, heptanal, octanal, nonanal, (E)-2-nonanal, (E)-2-decenal, (E,E)-2,4-decadienal, 1-hexanol, and 2-pentyl furan. With the prolonged stewing time, the aldehydes first increased and then decreased significantly (P < 0.05), while 1-hexanol and 2-pentyl furan increased steadily (P < 0.05). The aroma scores of the chicken soup reached the maximum after stewing for 3 h. The discrepancy in overall flavor characteristics tended to stabilize after 2 h of stewing. In general, stewing time has a positive effect on improving the flavor profiles of chicken soup, especially within the first 2 h. © 2017 Institute of Food Technologists®.

  19. Searching for flavor labels in food products: The influence of color-flavor congruence and association strength

    Directory of Open Access Journals (Sweden)

    Carlos eVelasco

    2015-03-01

    Full Text Available Prior research provides robust support for the existence of a number of associations between colors and flavors. In the present study, we examined whether congruent (vs. incongruent combinations of product packaging colors and flavor labels would facilitate visual search for products labelled with specific flavors in a Stroop-like manner. Across two experiments, a Stroop-like effect between flavor words and packaging colors is documented and we demonstrate that people are able to search for packaging flavor labels more rapidly when the color of the packaging is congruent with the flavor label (e.g., red/tomato than when it is incongruent (e.g., yellow/tomato. In addition, when the packaging color was incongruent, those flavor labels that were more strongly associated with a specific color yielded slower reaction times and more errors (Stroop interference than those that were less strongly tied to a specific color. Importantly, search efficiency was affected both by color/flavor congruence and association strength. Taken together, these results therefore highlight the role of color congruence and color-word association strength when it comes to searching for specific flavor labels.

  20. Searching for flavor labels in food products: the influence of color-flavor congruence and association strength.

    Science.gov (United States)

    Velasco, Carlos; Wan, Xiaoang; Knoeferle, Klemens; Zhou, Xi; Salgado-Montejo, Alejandro; Spence, Charles

    2015-01-01

    Prior research provides robust support for the existence of a number of associations between colors and flavors. In the present study, we examined whether congruent (vs. incongruent) combinations of product packaging colors and flavor labels would facilitate visual search for products labeled with specific flavors. The two experiments reported here document a Stroop-like effect between flavor words and packaging colors. The participants were able to search for packaging flavor labels more rapidly when the color of the packaging was congruent with the flavor label (e.g., red/tomato) than when it was incongruent (e.g., yellow/tomato). In addition, when the packaging color was incongruent, those flavor labels that were more strongly associated with a specific color yielded slower reaction times and more errors (Stroop interference) than those that were less strongly tied to a specific color. Importantly, search efficiency was affected both by color/flavor congruence and association strength. Taken together, these results therefore highlight the role of color congruence and color-word association strength when it comes to searching for specific flavor labels.

  1. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products.

    Science.gov (United States)

    Kaur, Gurjot; Muthumalage, Thivanka; Rahman, Irfan

    2018-05-15

    Tobacco products containing flavorings, such as electronic nicotine delivery devices (ENDS) or e-cigarettes, cigars/cigarillos, waterpipes, and heat-not-burn devices (iQOS) are continuously evolving. In addition to increasing the exposure of teenagers and adults to nicotine containing flavoring products and flavoring enhancers, chances of nicotine addiction through chronic use and abuse also increase. These flavorings are believed to be safe for ingestion, but little information is available about their effects on the lungs. In this review, we have discussed the in vitro and in vivo data on toxicity of flavoring chemicals in lung cells. We have further discussed the common flavoring agents, such as diacetyl and menthol, currently available detection methods, and the toxicological mechanisms associated with oxidative stress, inflammation, mucociliary clearance, and DNA damage in cells, mice, and humans. Finally, we present potential biomarkers that could be utilized for future risk assessment. This review provides crucial parameters important for evaluation of risk associated with flavoring agents and flavoring enhancers used in tobacco products and ENDS. Future studies can be designed to address the potential toxicity of inhaled flavorings and their biomarkers in users as well as in chronic exposure studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. How the Addition of Spices and Herbs to Virgin Olive Oil to Produce Flavored Oils Affects Consumer Acceptance.

    Science.gov (United States)

    Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed

    2016-06-01

    With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated.

  3. Flavor universal dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Burdman, G.; Evans, N.

    1999-01-01

    The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society

  4. Critical number of flavors in QED

    International Nuclear Information System (INIS)

    Bashir, A.; Gutierrez-Guerrero, L. X.; Calcaneo-Roldan, C.; Tejeda-Yeomans, M. E.

    2011-01-01

    We demonstrate that in unquenched quantum electrodynamics (QED), chiral symmetry breaking ceases to exist above a critical number of fermion flavors N f . This is a necessary and sufficient consequence of the fact that there exists a critical value of electromagnetic coupling α beyond which dynamical mass generation gets triggered. We employ a multiplicatively renormalizable photon propagator involving leading logarithms to all orders in α to illustrate this. We study the flavor and coupling dependence of the dynamically generated mass analytically as well as numerically. We also derive the scaling laws for the dynamical mass as a function of α and N f . Up to a multiplicative constant, these scaling laws are related through (α,α c )↔(1/N f ,1/N f c ). Calculation of the mass anomalous dimension γ m shows that it is always greater than its value in the quenched case. We also evaluate the β function. The criticality plane is drawn in the (α,N f ) phase space which clearly depicts how larger N f is required to restore chiral symmetry for an increasing interaction strength.

  5. Flavor-changing processes in extended technicolor

    International Nuclear Information System (INIS)

    Appelquist, Thomas; Piai, Maurizio; Christensen, Neil; Shrock, Robert

    2004-01-01

    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R) components of the quarks and charged leptons transform under the ETC group. We consider K 0 -K 0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the L and R components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the L and R components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intrafamily mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC representation assignment of the L and R components of the quarks, as well as the leptons. We draw lessons for future ETC model building

  6. Light flavor asymmetry of nucleon sea

    International Nuclear Information System (INIS)

    Song, Huiying; Zhang, Xinyu; Ma, Bo-Qiang

    2011-01-01

    The light flavor antiquark distributions of the nucleon sea are calculated in the effective chiral quark model and compared with experimental results. The contributions of the flavor-symmetric sea-quark distributions and the nuclear EMC effect are taken into account to obtain the ratio of Drell-Yan cross sections σ pD /2σ pp , which can match well with the results measured in the FermiLab E866/NuSea experiment. The calculated results also match the anti d(x)- anti u(x) measured in different experiments, but unmatch the behavior of anti d(x)/ anti u(x) derived indirectly from the measurable quantity σ pD /2σ pp by the FermiLab E866/NuSea Collaboration at large x. We suggest to measure again anti d(x)/ anti u(x) at large x from precision experiments with careful treatment of the experimental data. We also propose an alternative procedure for experimental data treatment. (orig.)

  7. Food Supplement Reduces Fat, Improves Flavor

    Science.gov (United States)

    2007-01-01

    Diversified Services Corporation, seeking to develop a new nutritional fat replacement and flavor enhancement product, took advantage of the NASA Glenn Garrett Morgan Commercialization Initiative (GMCI) for technology acquisition and development and introductions to potential customers and strategic partners. Having developed and commercialized the product, named Nurtigras, the company is now marketing it through its subsidiary, H.F. Food Technologies Inc. The Nutrigras fat substitute is available in liquid, gel, or dry form and can be easily customized to the specific needs of the food manufacturer. It is primarily intended for use as a partial replacement for animal fat in beef patties and other normally high-fat meat products, and can also be used in soups, sauces, bakery items, and desserts. In addition to the nutritional benefits, the fat replacement costs less than the food it replaces, and as such can help manufacturers reduce material costs. In precooked products, Nutrigras can increase moisture content and thereby increase product yield. The company has been able to repay the help provided by NASA by contributing to the Space Agency's astronaut diet-the Nutrigras fat substitute can be used as a flavor enhancer and shelf-life extender for food on the ISS.

  8. Flavor structure of warped extra dimension models

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit

    2005-01-01

    We recently showed that warped extra-dimensional models with bulk custodial symmetry and few TeV Kaluza-Klein (KK) masses lead to striking signals at B factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B physics. We also briefly study other new physics signatures that arise in rare K decays (K→πνν), in rare top decays [t→cγ(Z,gluon)], and the possibility of CP asymmetries in D 0 decays to CP eigenstates such as K S π 0 and others. Finally we demonstrate that with light KK masses, ∼3 TeV, the above class of models with anarchic 5D Yukawas has a 'CP problem' since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extra-dimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal

  9. Flavor Structure of Warped Extra Dimension Models

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit

    2004-01-01

    We recently showed, in HEP-PH--0406101, that warped extra dimensional models with bulk custodial symmetry and few TeV KK masses lead to striking signals at B-factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B-physics. We also briefly study other NP signatures that arise in rare K decays (K → πνν), in rare top decays [t → cγ(Z, gluon)] and the possibility of CP asymmetries in D 0 decays to CP eigenstates such as K s π 0 and others. Finally we demonstrate that with light KK masses, ∼ 3 TeV, the above class of models with anarchic 5D Yukawas has a ''CP problem'' since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extra-dimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal

  10. Flavor gauge models below the Fermi scale

    Science.gov (United States)

    Babu, K. S.; Friedland, A.; Machado, P. A. N.; Mocioiu, I.

    2017-12-01

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, X, corresponding to the B - L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B +, D + and Upsilon decays, D-{\\overline{D}}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling g X in the range (10-2-10-4) the model is shown to be consistent with the data. Possible ways of testing the model in b physics, top and Z decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.

  11. Strong CP, flavor, and twisted split fermions

    International Nuclear Information System (INIS)

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2005-01-01

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)

  12. Crystallography of three-flavor quark matter

    International Nuclear Information System (INIS)

    Rajagopal, Krishna; Sharma, Rishi

    2006-01-01

    We analyze and compare candidate crystal structures for the crystalline color superconducting phase that may arise in cold, dense but not asymptotically dense, three-flavor quark matter. We determine the gap parameter Δ and free energy Ω(Δ) for many possible crystal structures within a Ginzburg-Landau approximation, evaluating Ω(Δ) to order Δ 6 . In contrast to the two-flavor case, we find a positive Δ 6 term and hence an Ω(Δ) that is bounded from below for all the structures that we analyze. This means that we are able to evaluate Δ and Ω as a function of the splitting between Fermi surfaces for all the structures we consider. We find two structures with particularly robust values of Δ and the condensation energy, within a factor of 2 of those for the CFL phase which is known to characterize QCD at asymptotically large densities. The robustness of these phases results in their being favored over wide ranges of density. However, it also implies that the Ginzburg-Landau approximation is not quantitatively reliable. We develop qualitative insights into what makes a crystal structure favorable, and use these to winnow the possibilities. The two structures that we find to be most favorable are both built from condensates with face-centered cubic symmetry: in one case, the and condensates are separately face-centered cubic; in the other case and combined make up a face-centered cube

  13. Texture of semi-solids : sensory flavor-texture interactions for custard desserts

    NARCIS (Netherlands)

    Wijk, de R.A.; Rasing, F.; Wilkinson, C.L.

    2003-01-01

    Possible interactions between flavor and oral texture sensations were investigated for four flavorants, diacetyl, benzaldehyde, vanillin, and caffeine, added in two concentrations to model vanilla custard desserts. The flavorants affected viscosities and resulted in corresponding changes in

  14. Lepton flavor violation at LEP II and beyond

    International Nuclear Information System (INIS)

    Feng, J.L.; Univ. of California, Berkeley, CA

    1996-07-01

    At present, two fundamental mysteries in particle physics are the origins of electroweak symmetry breaking and the fermion mass matrices. The experimental discovery of superpartners would represent enormous progress in the understanding of electroweak symmetry breaking, but would it also allow progress on the flavor problem? To date, nearly all experimental studies of supersymmetry have ignored the possibility of flavor mixings in the sfermion sector. However, since all superpartners must be given masses, all supersymmetric theories necessarily allow for the possibility of new flavor mixings beyond the standard model. In addition, there are now many supersymmetric theories of flavor, which predict a wide variety of superpartner flavor mixings. In this study, the author examines the possibility of measuring these mixings at LEP II and the Next Linear Collider (NLC). Rare flavor changing processes, such as μ → eγ, τ → μγ, τ → eγ, b → sγ, and neutral meson mixing, already provide important constraints on the sfermion flavor mixings through the virtual effects of superpartners. However, as will be seen below, once superpartners are discovered, it will be possible to probe these mixings much more powerfully by directly observing the change in flavor occurring at the superpartner production and decay vertices

  15. Flavor changing neutral currents and the third family

    International Nuclear Information System (INIS)

    Reina, L.

    1996-01-01

    We consider a Two Higgs Doublet Model with Flavor Changing Scalar Neutral Currents arising at the tree level. All the most important constraints are taken into account and the compatibility with the present Electroweak measurements is examined. The Flavor Changing couplings involving the third family are not constrained to be very small and this allows us to predict some interesting signals of new physics

  16. Neutrino magnetic moment in a theory with lepton flavor symmetry

    International Nuclear Information System (INIS)

    Stephanov, M.A.

    1987-01-01

    A model for generating the neutrino magnetic moment of the order of 10 -10 μ B is proposed, which is based on the SU(3) lepton flavor symmetry. In such a way one can avoid the flavor changing processes. The experimental constraints on the constants of the model are considered

  17. Adolescents’ Interest in Trying Flavored E-Cigarettes

    Science.gov (United States)

    Pepper, J.K.; Ribisl, K.M.; Brewer, N.T.

    2016-01-01

    Background More U.S. adolescents use e-cigarettes than smoke cigarettes. Research suggests flavored e-cigarettes appeal to youth, but little is known about perceptions of and reasons for attraction to specific flavors. Methods A national sample of adolescents (n=1,125) ages 13-17 participated in a phone survey from November 2014-June 2015. We randomly assigned adolescents to respond to survey items about 1 of 5 e-cigarette flavors (tobacco, alcohol, menthol, candy, or fruit) and used regression analysis to examine the impact of flavor on interest in trying e-cigarettes and harm beliefs. Results Adolescents were more likely to report interest in trying an e-cigarette offered by a friend if it were flavored like menthol (OR=4.00, 95% CI 1.46-10.97), candy (OR=4.53, 95% CI 1.67-12.31), or fruit (OR=6.49, 95% CI 2.48-17.01) compared to tobacco. Adolescents believed that fruit-flavored e-cigarettes were less harmful to health than tobacco-flavored e-cigarettes (preasons for the appeal of individual flavors, such as novelty and perceived prestige. PMID:27633762

  18. Symplectic symmetry of the neutrino mass for many neutrino flavors

    International Nuclear Information System (INIS)

    Oeztuerk, N.; Ankara Univ.

    2001-01-01

    The algebraic structure of the neutrino mass Hamiltonian is presented for two neutrino flavors considering both Dirac and Majorana mass terms. It is shown that the algebra is Sp(8) and also discussed how the algebraic structure generalizes for the case of more than two neutrino flavors. (orig.)

  19. Flavor Dependent Retention of Remote Food Preference Memory.

    Science.gov (United States)

    Singh, Aditya; Kumar, Suraj; Singh, Vikram Pal; Das, Asish; Balaji, J

    2017-01-01

    Social Transmission of Food Preference (STFP) is a single trial non-aversive learning task that is used for testing non-spatial memory. This task relies on an accurate estimate of a change in food preference of the animals following social demonstration of a novel flavor. Conventionally this is done by providing two flavors of powdered food and later estimating the amount of food consumed for each of these flavors in a defined period of time. This is achieved through a careful measurement of leftover food for each of these flavors. However, in mice, only a small (~1 g) amount of food is consumed making the weight estimates error prone and thereby limiting the sensitivity of the paradigm. Using multiplexed video tracking, we show that the pattern of consumption can be used as a reliable reporter of memory retention in this task. In our current study, we use this as a measure and show that the preference for the demonstrated flavor significantly increases following demonstration and the retention of this change in preference during remote testing is flavor specific. Further, we report a modified experimental design for performing STFP that allows testing of change in preference among two flavors simultaneously. Using this paradigm, we show that during remote testing for thyme and basil demonstrated flavors, only basil demonstrated mice retain the change in preference while thyme demonstrated mice do not.

  20. The running coupling of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih; Wolff, Ulli; Sommer, Rainer

    2010-06-01

    We have calculated the step scaling function and the running coupling of QCD in the Schroedinger functional scheme with four flavors of O(a) improved Wilson quarks. Comparisons of our non-perturbative results with 2-loop and 3-loop perturbation theory as well as with non-perturbative data for only two flavors are made. (orig.)

  1. Safety evaluation of substituted thiophenes used as flavoring ingredients

    NARCIS (Netherlands)

    Cohen, Samuel M.; Fukushima, Shoji; Gooderham, Nigel J.; Guengerich, F.P.; Hecht, Stephen S.; Rietjens, Ivonne M.C.M.; Smith, Robert L.; Bastaki, Maria; Harman, Christie L.; McGowen, Margaret M.; Valerio, Luis G.; Taylor, Sean V.

    2017-01-01

    This publication is the second in a series by the Expert Panel of the Flavor and Extract Manufacturers Association summarizing the conclusions of its third systematic re-evaluation of the safety of flavorings previously considered to be generally recognized as safe (GRAS) under conditions of

  2. Flavor in the context of ancestral human diets

    Directory of Open Access Journals (Sweden)

    Richard Wrangham

    2014-07-01

    sizes of guts and molars. Multiple specializations in human physiology can likewise be expected. By identifying such differences between human and non-human digestive capacity we can expect to make much better use of animal models. Given that humans are evolutionarily specialized on diets composed of items of high caloric density that have been cooked, how should we expect sensory perception of food to have evolved? With regard to composition, our sensory mechanisms with regard to food perception should be largely similar to other omnivores, such as rodents and primates that eat similarly high-quality items whenever possible, even though they obtain them less often than humans do. For example mechanisms including taste, flavor and physical perception all presumably help animals identify attractive features of cooked foods, such as reduced bitterness, fatty odors and softness. However, some of the cooked-food flavors that we find attractive are evolutionarily novel [5]. Two processes are particularly intriguing. Caramelization produces sweet and bitter tastes and a range of nutty flavors generated by several thousand pyrolized sugars. It requires temperatures of at least 105oC, and was therefore an unknown phenomenon prior to cooking. Caramelized sugars seem unlikely to have been significant in human diets until pots allowed relatively elaborate cooking only ~ 20,000 years ago. Adaptive responses to caramelization therefore seem unlikely. The Maillard process is another source of multiple flavors derived from cooking. It again produces thousands of compounds, in this case from sugars and amino acids, some of which can be carcinogenic and many of which are strongly preferred flavors. Unlike caramelized sugars, Maillard compounds are produced abundantly on the surface of cooked meats even when roasted in very simple ways on a wood fire. Humans have therefore had rich opportunity to adapt to them. The Maillard process offers many opportunities to test the hypothesis that

  3. The breaking of flavor democracy in the quark sector

    Science.gov (United States)

    Fritzsch, Harald; Xing, Zhi-Zhong; Zhang, Di

    2017-09-01

    The democracy of quark flavors is a well-motivated flavor symmetry, but it must be properly broken in order to explain the observed quark mass spectrum and flavor mixing pattern. We reconstruct the texture of flavor democracy breaking and evaluate its strength in a novel way, by assuming a parallelism between the Q=+2/3 and Q=-1/3 quark sectors and using a nontrivial parametrization of the flavor mixing matrix. Some phenomenological implications of such democratic quark mass matrices, including their variations in the hierarchy basis and their evolution from the electroweak scale to a super-high energy scale, are also discussed. Supported by National Natural Science Foundation of China (11375207) and National Basic Research Program of China (2013CB834300)

  4. Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Kinney, William H. [University at Buffalo, Department of Physics, Buffalo, NY (United States); Park, Wan-Il [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Chonbuk National University, Division of Science Education and Institute of Fusion Science, Jeonju (Korea, Republic of)

    2017-09-15

    We show that, if they exist, lepton number asymmetries (L{sub α}) of neutrino flavors should be distinguished from the ones (L{sub i}) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on the mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than the conventional expectation, but they are not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constrained. The cosmological constraint on L{sub i} for a specific case is presented as an illustration. (orig.)

  5. A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production.

    Science.gov (United States)

    Bizaj, Etjen; Cordente, Antonio G; Bellon, Jennifer R; Raspor, Peter; Curtin, Chris D; Pretorius, Isak S

    2012-06-01

    Industrial food-grade yeast strains are selected for traits that enhance their application in quality production processes. Wine yeasts are required to survive in the harsh environment of fermenting grape must, while at the same time contributing to wine quality by producing desirable aromas and flavors. For this reason, there are hundreds of wine yeasts available, exhibiting characteristics that make them suitable for different fermentation conditions and winemaking practices. As wine styles evolve and technical winemaking requirements change, however, it becomes necessary to improve existing strains. This becomes a laborious and costly process when the targets for improvement involve flavor compound production. Here, we demonstrate a new approach harnessing preexisting industrial yeast strains that carry desirable flavor phenotypes - low hydrogen sulfide (H(2) S) production and high ester production. A low-H(2) S Saccharomyces cerevisiae strain previously generated by chemical mutagenesis was hybridized independently with two ester-producing natural interspecies hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Deficiencies in sporulation frequency and spore viability were overcome through use of complementary selectable traits, allowing successful isolation of several novel hybrids exhibiting both desired traits in a single round of selection. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Daily Fluoride Intake from Iranian Green Tea: Evaluation of Various Flavorings on Fluoride Release

    Directory of Open Access Journals (Sweden)

    Afshin Maleki

    2016-01-01

    Full Text Available With increased awareness of the health benefits of the compounds in green tea, especially polyphenols, its consumption is rising. The main purpose of this study is to determine the effect of different additives on the released fluoride into tea liquor and also daily fluoride intake. The concentrations of fluoride, nitrate, sulfate, and chloride were measured in 15 different flavored green teas (Refah-Lahijan. The fluoride and other anion concentrations were measured by ion chromatography method. The data were analyzed with Statistical Package for the Social Sciences version 16.0. The results showed that the minimum and maximum concentrations of fluoride in the green tea infusions were 0.162 mg/L (cinnamon-flavored green tea and 3.29 mg/L (bagged peach-flavored green tea, respectively. The mean concentration of fluoride in the green tea leaves was 52 mg/kg, and approximately 89% of the fluoride was released from the green tea leaves into the infusions after brewing. The fluoride concentrations varied significantly among the examined green teas ( P 0.05. Finally, drinking of the studied green teas cannot make a significant contribution to the daily dietary intake of F for consumers.

  7. Randall-Sundrum models vs. supersymmetry. The different flavor signatures

    International Nuclear Information System (INIS)

    Gori, Stefania

    2010-07-01

    The Minimal Supersymmetric Standard Model based on flavor symmetries and models with a warped extra dimension as first proposed by Randall and Sundrum represent two of the best founded theories beyond the Standard Model. They provide two appealing solutions both to the gauge hierarchy problem and to the Standard Model flavor hierarchy problems. In this thesis we focus on a particular Randall-Sundrum model based on the custodial symmetry SU(2) L x SU(2) R x P LR in the bulk and on two Supersymmetric flavor models: the one based on a U(1) abelian flavor symmetry, the other on a SU(3) non abelian flavor symmetry. We first analyze and compare the flavor structure of the two frameworks, showing two possible ways to address the New Physics flavor problem: warped geometry and custodial protection vs. flavor symmetry. Subsequently, we study the impact of the new particles (Kaluza-Klein states in the Randall-Sundrum model and superpartners in Supersymmetry) in the K and B meson mixings and rare decays. We perform a global numerical analysis of the new physics effects in the models in question and we show that it is possible to naturally be in agreement with all the available data on ΔF=2 observables, even fixing the energy scale of the models to the TeV range, in order to have new particles in the reach of the LHC. We then study distinctive patterns of flavor violation which can enable future experiments to distinguish the two frameworks. In particular, the specific correlations between the CP violating asymmetry in the B s 0 - anti B s 0 system, the rare decays B s,d →μ + μ - and K→πνanti ν allow in principle for an experimental test of the Randall-Sundrum model and of the two Supersymmetric flavor models and a clear distinction between the two frameworks, once new data will be available. (orig.)

  8. The flavor of the composite pseudo-goldstone Higgs

    International Nuclear Information System (INIS)

    Csaki, Csaba; Weiler, Andreas; Falkowski, Adam

    2008-01-01

    We study the flavor structure of 5D warped models that provide a dual description of a composite pseudo-Goldstone Higgs. We first carefully re-examine the flavor constraints on the mass scale of new physics in the standard Randall-Sundrum-type scenarios, and find that the KK gluon mass should generically be heavier than about 21 TeV. We then compare the flavor structure of the composite Higgs models to those in the RS model. We find new contributions to flavor violation, which while still are suppressed by the RS-GIM mechanism, will enhance the amplitudes of flavor violations. In particular, there is a kinetic mixing term among the SM fields which (although parametrically not enhanced) will make the flavor bounds even more stringent than in RS. This together with the fact that in the pseudo-Goldstone scenario Yukawa couplings are set by a gauge coupling implies the KK gluon mass to be at least about 33 TeV. For both the RS and the composite Higgs models the flavor bounds could be stronger or weaker depending on the assumption on the value of the gluon boundary kinetic term. These strong bounds seem to imply that the fully anarchic approach to flavor in warped extra dimensions is implausible, and there have to be at least some partial flavor symmetries appearing that eliminate part of the sources for flavor violation. We also present complete expressions for the radiatively generated Higgs potential of various 5D implementations of the composite Higgs model, and comment on the 1-5 percent level tuning needed in the top sector to achieve a phenomenologically acceptable vacuum state.

  9. Cajá-flavored drinks: a proposal for mixed flavor beverages and a study of the consumer profile

    Directory of Open Access Journals (Sweden)

    Maria Eugênia de Oliveira Mamede

    2015-03-01

    Full Text Available Mixed flavor beverages represent a trend that is gaining the allegiance of potential fruit juice consumers. The present study proposed to prepare mixed flavor beverages and verify their consumer acceptance. Cajá beverage (sample A was used as the standard. The other beverages were prepared by mixing the cajá-flavored product with other flavors: strawberry (B, pineapple (C, jabuticaba (D, mango (E and cashew (F. The consumer profiles in the two regions studied were similar. Overall beverages B, A and F were the most accepted, with scores of 7.7, 6.4 and 6.2, respectively. Internal Preference Mapping showed that most of the consumers were located near beverages A, B and F, confirming the acceptance results. The consumers indicated appearance and flavor as the most appreciated characteristics in beverages A, B and F. Beverages A, B and F presented higher total soluble solids contents and viscosities than the other beverages. Consumer segmentation did not depend on the different levels of familiarity with the cajá flavor. Thus the preparation of mixed flavor beverages of cajá-strawberry and cajá-cashew is an excellent proposal because it presents flavors with good potential for marketing in different regions of Brazil.

  10. U(3)-flavor nonet scalar as an origin of the flavor mass spectra

    International Nuclear Information System (INIS)

    Koide, Yoshio

    2008-01-01

    According to an idea that the quark and lepton mass spectra originate in a VEV structure of a U(3)-flavor nonet scalar Φ, the mass spectra of the down-quarks and charged leptons are investigated. The U(3) flavor symmetry is spontaneously and completely broken by non-zero and non-degenerated VEVs of Φ, without passing any subgroup of U(3). The ratios (m e +m μ +m τ )/(√(m e )+√(m μ )+√(m τ )) 2 and √(m e m μ m τ )/(√(m e )+√(m μ )+√(m τ )) 3 are investigated based on a toy model

  11. Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Basudeb; Sen, Manibrata [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India); Mirizzi, Alessandro, E-mail: bdasgupta@theory.tifr.res.in, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: manibrata.sen@gmail.com [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' , Via Amendola 173, 70126 Bari (Italy)

    2017-02-01

    It has been recently pointed out that neutrino fluxes from a supernova can show substantial flavor conversions almost immediately above the core. Using linear stability analyses and numerical solutions of the fully nonlinear equations of motion, we perform a detailed study of these fast conversions , focussing on the region just above the supernova core. We carefully specify the instabilities for evolution in space or time, and find that neutrinos travelling towards the core make fast conversions more generic, i.e., possible for a wider range of flux ratios and angular asymmetries that produce a crossing between the zenith-angle spectra of ν {sub e} and ν-bar {sub e} . Using fluxes and angular distributions predicted by supernova simulations, we find that fast conversions can occur within tens of nanoseconds, only a few meters away from the putative neutrinospheres. If these fast flavor conversions indeed take place, they would have important implications for the supernova explosion mechanism and nucleosynthesis.

  12. Microencapsulation of Flavors in Carnauba Wax

    Directory of Open Access Journals (Sweden)

    Branko Bugarski

    2010-01-01

    Full Text Available The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM, while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  13. Stimulus collative properties and consumers’ flavor preferences

    DEFF Research Database (Denmark)

    Giacalone, Davide; Duerlund, Mette; Bøegh-Petersen, Jannie

    2014-01-01

    properties. The relationship between overall arousal potential and hedonic response takes the shape of an inverted “U”, reaching an optimum at a certain level of arousal potential. In three independent studies, using different sets of novel beers as stimuli, consumers’ reported their hedonic response......The present work investigated consumers’ hedonic response to flavor stimuli in light of Berlyne’s (1967) collative-motivational model of aesthetic preferences. According to this paradigm, sensory preferences are a function of a stimulus’ arousal potential, which is determined by its collative......, whereas mixed results were obtained for familiarity and complexity. Additionally, in two of the studies the moderating role of relevant consumer characteristics – product knowledge, food neophobia and variety seeking tendency – was investigated. A consumer’s degree of product knowledge was found...

  14. Lepton flavor violation with displaced vertices

    Directory of Open Access Journals (Sweden)

    Julian Heeck

    2018-01-01

    Full Text Available If light new physics with lepton-flavor-violating couplings exists, the prime discovery channel might not be ℓ→ℓ′γ but rather ℓ→ℓ′X, where the new boson X could be an axion, majoron, familon or Z′ gauge boson. The most conservative bound then comes from ℓ→ℓ′+inv, but if the on-shell X can decay back into leptons or photons, displaced-vertex searches could give much better limits. We show that only a narrow region in parameter space allows for displaced vertices in muon decays, μ→eX,X→γγ,ee, whereas tauon decays can have much more interesting signatures.

  15. Recent heavy flavor results from the Tevatron

    International Nuclear Information System (INIS)

    Dorigo, Mirco

    2012-01-01

    The CDF and D0 experiments at the Tevatron p(bar p) collider have pioneered and established the role of flavor physics in hadron collisions. A broad program is now at its full maturity. We report on three new results sensitive to physics beyond the standard model, obtained using the whole CDF dataset: a measurement of the difference of CP asymmetries in K + K - and π + π - decays of D 0 mesons, new bounds on the B s 0 mixing phase and on the decay width difference of B s 0 mass-eigenstates, and an update of the summer 2011 search for B (s) 0 mesons decaying into pairs of muons. Finally, the D0 confirmation of the observation of a new hadron, the χ b (3P) state, is briefly mentioned.

  16. Microencapsulation of flavors in carnauba wax.

    Science.gov (United States)

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  17. Flavor-changing Z0 decay

    International Nuclear Information System (INIS)

    Axelrod, A.

    1982-10-01

    Chapter I reviews the phenomenological situation. Simple estimates of various rates are also provided in order to convey the physical intuition necessary to guide one through the equations and numbers that follow. Chapter II presents technical aspects of the general flavor changing Z 0 decay calculation, with emphasis on the integration scheme used. Chapter III describes a number of nontrivial checks on the calculation that were performed. Chapter IV contains the entire general algebraic result for the decay rate. Chapter V describes numerical aspects of the computer evaluation, and discusses the parameter values used and the results for the three generation case. A similar presentation for the four generation case is given in Chapter VI. Chapter VII describes what experimentalists should look for in a semiquantitative way. Some possibilities for rate enhancement, and some related processes are mentioned in Chapter VIII

  18. PHENIX results on open heavy flavor production

    Science.gov (United States)

    Hachiya, Takashi

    2018-02-01

    PHENIX measures the open heavy flavor productions in p + p, Cu+Au, and Au+Au collisions at = 200 and 510 GeV using the silicon tracking detectors for mid- and forward rapidities. In Au+Au collisions, the nuclear modification of single electrons from bottom and charm hadron decays are measured for minimum bias and most central collisions. It is found that bottoms are less suppressed than charms in pT=3-5 GeV/c and charms in most central collisions are more suppressed than that in minimum bias collisions. In p + p and Cu+Au collisions, J/ψ from B meson decays are measured at forward and backward rapidities. The nuclear modification of B mesons in Cu+Au collisions is consistent with unity.

  19. Impact of a Microbial Cocktail Used as a Starter Culture on Cocoa Fermentation and Chocolate Flavor

    Directory of Open Access Journals (Sweden)

    Igor Magalhães da Veiga Moreira

    2017-05-01

    Full Text Available Chocolate production suffered a vast impact with the emergence of the “witches’ broom” disease in cocoa plants. To recover cocoa production, many disease-resistant hybrid plants have been developed. However, some different cocoa hybrids produce cocoa beans that generate chocolate with variable quality. Fermentation of cocoa beans is a microbiological process that can be applied for the production of chocolate flavor precursors, leading to overcoming the problem of variable chocolate quality. The aim of this work was to use a cocktail of microorganisms as a starter culture on the fermentation of the ripe cocoa pods from PH15 cocoa hybrid, and evaluate its influence on the microbial communities present on the fermentative process on the compounds involved during the fermentation, and to perform the chocolate sensorial characterization. According to the results obtained, different volatile compounds were identified in fermented beans and in the chocolate produced. Bitterness was the dominant taste found in non-inoculated chocolate, while chocolate made with inoculated beans showed bitter, sweet, and cocoa tastes. 2,3-Butanediol and 2,3-dimethylpyrazine were considered as volatile compounds making the difference on the flavor of both chocolates. Saccharomyces cerevisiae UFLA CCMA 0200, Lactobacillus plantarum CCMA 0238, and Acetobacter pasteurianus CCMA 0241 are proposed as starter cultures for cocoa fermentation.

  20. Impact of a Microbial Cocktail Used as a Starter Culture on Cocoa Fermentation and Chocolate Flavor.

    Science.gov (United States)

    Magalhães da Veiga Moreira, Igor; de Figueiredo Vilela, Leonardo; da Cruz Pedroso Miguel, Maria Gabriela; Santos, Cledir; Lima, Nelson; Freitas Schwan, Rosane

    2017-05-09

    Chocolate production suffered a vast impact with the emergence of the "witches' broom" disease in cocoa plants. To recover cocoa production, many disease-resistant hybrid plants have been developed. However, some different cocoa hybrids produce cocoa beans that generate chocolate with variable quality. Fermentation of cocoa beans is a microbiological process that can be applied for the production of chocolate flavor precursors, leading to overcoming the problem of variable chocolate quality. The aim of this work was to use a cocktail of microorganisms as a starter culture on the fermentation of the ripe cocoa pods from PH15 cocoa hybrid, and evaluate its influence on the microbial communities present on the fermentative process on the compounds involved during the fermentation, and to perform the chocolate sensorial characterization. According to the results obtained, different volatile compounds were identified in fermented beans and in the chocolate produced. Bitterness was the dominant taste found in non-inoculated chocolate, while chocolate made with inoculated beans showed bitter, sweet, and cocoa tastes. 2,3-Butanediol and 2,3-dimethylpyrazine were considered as volatile compounds making the difference on the flavor of both chocolates. Saccharomyces cerevisiae UFLA CCMA 0200, Lactobacillus plantarum CCMA 0238, and Acetobacter pasteurianus CCMA 0241 are proposed as starter cultures for cocoa fermentation.

  1. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir.

    Science.gov (United States)

    Walsh, Aaron M; Crispie, Fiona; Kilcawley, Kieran; O'Sullivan, Orla; O'Sullivan, Maurice G; Claesson, Marcus J; Cotter, Paul D

    2016-01-01

    Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides . Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand

  2. The effect of microfiltration on color, flavor, and functionality of 80% whey protein concentrate.

    Science.gov (United States)

    Qiu, Y; Smith, T J; Foegeding, E A; Drake, M A

    2015-09-01

    The residual annatto colorant in fluid Cheddar cheese whey is bleached to provide a neutral-colored final product. Currently, hydrogen peroxide (HP) and benzoyl peroxide are used for bleaching liquid whey. However, previous studies have shown that chemical bleaching causes off-flavor formation, mainly due to lipid oxidation and protein degradation. The objective of this study was to evaluate the efficacy of microfiltration (MF) on norbixin removal and to compare flavor and functionality of 80% whey protein concentrate (WPC80) from MF whey to WPC80 from whey bleached with HP or lactoperoxidase (LP). Cheddar cheese whey was manufactured from colored, pasteurized milk. The fluid whey was pasteurized and fat separated. Liquid whey was subjected to 4 different treatments: control (no bleaching; 50°C, 1 h), HP (250 mg of HP/kg; 50°C, 1 h), and LP (20 mg of HP/kg; 50°C, 1 h), or MF (microfiltration; 50°C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% concentrate. The entire experiment was replicated 3 times. Proximate analyses, color, functionality, descriptive sensory and instrumental volatile analysis were conducted on WPC80. The MF and HP- and LP-bleached WPC80 displayed a 39.5, 40.9, and 92.8% norbixin decrease, respectively. The HP and LP WPC80 had higher cardboard flavors and distinct cabbage flavor compared with the unbleached and MF WPC80. Volatile compound results were consistent with sensory results. The HP and LP WPC80 were higher in lipid oxidation compounds (especially heptanal, hexanal, pentanal, 1-hexen-3-one, 2-pentylfuran, and octanal) compared with unbleached and MF WPC80. All WPC80 had >85% solubility across the pH range of 3 to 7. The microstructure of MF gels determined by confocal laser scanning showed an increased protein particle size in the gel network. MF WPC80 also had larger storage modulus values, indicating higher gel firmness. Based on bleaching efficacy comparable to chemical bleaching with HP

  3. Variable flavor scheme for final state jets

    International Nuclear Information System (INIS)

    Pietrulewicz, P.

    2014-01-01

    In this thesis I describe a setup to treat mass effects from secondary radiation of heavy quark pairs in inclusive hard scattering processes with various dynamical scales. The resulting variable flavor number scheme (VFNS) generalizes a well-known scheme for massive initial state quarks which has been developed for deep inelastic scattering (DIS) in the classical region 1 - x ⁓ O(1) and which will be also discussed here. The setup incorporated in the formalism of Soft-Collinear Effective Theory (SCET) consistently takes into account the effects of massive quark loops and allows to deal with all hierarchies between the mass scale and the involved kinematic scales corresponding to collinear and soft radiation. It resums all large logarithms due to flavor number dependent evolution, achieves both decoupling for very large masses and the correct massless behavior for very small masses, and provides a continuous description in between. In the bulk of this work I will concentrate on DIS in the endpoint region x → 1 serving mainly as a showcase for the concepts and on the thrust distribution for e + e - -collisions in the dijet limit as a phenomenologically relevant example for an event shape. The computations of the corrections to the structures in the factorization theorems are described explicitly for the singular terms at O(α s 2 C F T F ) arising from secondary radiation of massive quarks through gluon splitting. Apart from the soft function for thrust, which requires a dedicated calculation, these results are directly obtained from the corresponding results for the radiation of a massive gauge boson with vector coupling at O(α s ) with the help of dispersion relations, and most of the relevant conceptual and technical issues can be dealt with already at this level. Finally, to estimate the impact of the corrections I carry out a numerical analysis for secondary massive bottom and top quarks on thrust distributions at different center-of-mass energies

  4. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce

    Science.gov (United States)

    Kim, Jae Hyun; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo

    2004-02-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy ( Psauce could improve its sensory quality by reducing typical fishy smell.

  5. Effective Lagrangian description of Higgs mediated flavor violating electromagnetic transitions: Implications on lepton flavor violation

    International Nuclear Information System (INIS)

    Aranda, J. I.; Tututi, E. S.; Flores-Tlalpa, A.; Ramirez-Zavaleta, F.; Tlachino, F. J.; Toscano, J. J.

    2009-01-01

    Higgs mediated flavor violating electromagnetic interactions, induced at the one-loop level by a nondiagonal Hf i f j vertex, with f i and f j charged leptons or quarks, are studied within the context of a completely general effective Yukawa sector that comprises SU L (2)xU Y (1)-invariant operators of up to dimension-six. Exact formulae for the one-loop γf i f j and γγf i f j couplings are presented and their related processes used to study the phenomena of Higgs mediated lepton flavor violation. The experimental limit on the μ→eγ decay is used to derive a bound on the branching ratio of the μ→eγγ transition, which is 6 orders of magnitude stronger than the current experimental limit. Previous results on the τ→μγ and τ→μγγ decays are reproduced. The possibility of detecting signals of lepton flavor violation at γγ colliders is explored through the γγ→l i l j reaction, putting special emphasis on the τμ final state. Using the bound imposed on the Hτμ vertex by the current experimental data on the muon anomalous magnetic moment, it is found that about half a hundred events may be produced in the International Linear Collider.

  6. Naturally large radiative lepton flavor violating Higgs decay mediated by lepton-flavored dark matter

    International Nuclear Information System (INIS)

    Baek, Seungwon; Kang, Zhaofeng

    2016-01-01

    In the standard model (SM), lepton flavor violating (LFV) Higgs decay is absent at renormalizable level and thus it is a good probe to new physics. In this article we study a type of new physics that could lead to large LFV Higgs decay, i.e., a lepton-flavored dark matter (DM) model which is specified by a Majorana DM and scalar lepton mediators. Different from other similar models with similar setup, we introduce both left-handed and right-handed scalar leptons. They allow large LFV Higgs decay and thus may explain the tentative Br(h→τμ)∼1% experimental results from the LHC. In particular, we find that the stringent bound from τ→μγ can be naturally evaded. One reason, among others, is a large chirality violation in the mediator sector. Aspects of relic density and especially radiative direct detection of the leptonic DM are also investigated, stressing the difference from previous lepton-flavored DM models.

  7. Effects of sweet flavorings and nicotine on the appeal and sensory properties of e-cigarettes among young adult vapers: Application of a novel methodology.

    Science.gov (United States)

    Goldenson, Nicholas I; Kirkpatrick, Matthew G; Barrington-Trimis, Jessica L; Pang, Raina D; McBeth, Julia F; Pentz, Mary Ann; Samet, Jonathan M; Leventhal, Adam M

    2016-11-01

    Product characteristics that impact e-cigarette appeal by altering the sensory experience of vaping need to be identified to formulate evidence-based regulatory policies. While products that contain sweet flavorings and produce a "throat hit" (i.e., desirable airway irritation putatively caused by nicotine) are anecdotally cited as desirable reasons for vaping among young adults, experimental evidence of their impact on user appeal is lacking. This experiment applied a novel laboratory protocol to assess whether: (1) sweet flavorings and nicotine affect e-cigarette appeal; (2) sweet flavorings increase perceived sweetness; (3) nicotine increases throat hit; and (4) perceived sweetness and throat hit are associated with appeal. Young adult vapers (N=20; age 19-34) self-administered 20 standardized doses of aerosolized e-cigarette solutions varied according to a 3 flavor (sweet [e.g., cotton candy] vs. non-sweet [e.g., tobacco-flavored] vs. flavorless)×2 nicotine (6mg/mL nicotine vs. 0mg/mL [placebo]) double-blind, cross-over design. Participants rated appeal (liking, willingness to use again and perceived monetary value), perceived sweetness and throat hit strength after each administration. Sweet-flavored (vs. non-sweet and flavorless) solutions produced greater appeal and perceived sweetness ratings. Nicotine produced greater throat hit ratings than placebo, but did not significantly increase appeal nor interact with flavor effects on appeal. Controlling for flavor and nicotine, perceived sweetness was positively associated with appeal ratings; throat hit was not positively associated with appeal. Further identification of compounds in e-cigarette solutions that enhance sensory perceptions of sweetness, appeal, and utilization of e-cigarettes are warranted to inform evidence-based regulatory policies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of Sweet Flavorings and Nicotine on the Appeal and Sensory Properties of e-Cigarettes Among Young Adult Vapers: Application of a Novel Methodology*

    Science.gov (United States)

    Goldenson, Nicholas I.; Kirkpatrick, Matthew G.; Barrington-Trimis, Jessica L.; Pang, Raina D.; McBeth, Julia F.; Pentz, Mary Ann; Samet, Jonathan M.; Leventhal, Adam M.

    2016-01-01

    Introduction Product characteristics that impact e-cigarette appeal by altering the sensory experience of vaping need to be identified to formulate evidence-based regulatory policies. While products that contain sweet flavorings and produce a “throat hit” (i.e., desirable airway irritation putatively caused by nicotine) are anecdotally cited as desirable reasons for vaping among young adults, experimental evidence of their impact on user appeal is lacking. This experiment applied a novel laboratory protocol to assess whether: (1) sweet flavorings and nicotine affect e-cigarette appeal; (2) sweet flavorings increase perceived sweetness; (3) nicotine increases throat hit; and (4) perceived sweetness and throat hit are associated with appeal. Methods Young adult vapers (N=20; age 19–34) self-administered 20 standardized doses of aerosolized e-cigarette solutions varied according to a 3 flavor (sweet [e.g., cotton candy] vs. non-sweet [e.g., tobacco-flavored] vs. flavorless) × 2 nicotine (6 mg/mL nicotine vs. 0 mg/mL [placebo]) double-blind, cross-over design. Participants rated appeal (liking, willingness to use again and perceived monetary value), perceived sweetness and throat hit strength after each administration. Results Sweet-flavored (vs. non-sweet and flavorless) solutions produced greater appeal and perceived sweetness ratings. Nicotine produced greater throat hit ratings than placebo, but did not significantly increase appeal nor interact with flavor effects on appeal. Controlling for flavor and nicotine, perceived sweetness was positively associated with appeal ratings; throat hit was not positively associated with appeal. Conclusions Further identification of compounds in e-cigarette solutions that enhance sensory perceptions of sweetness, appeal, and utilization of e-cigarettes are warranted to inform evidence-based regulatory policies. PMID:27676583

  9. Volatile compounds in meat and meat products

    Directory of Open Access Journals (Sweden)

    Monika KOSOWSKA

    Full Text Available Abstract Meaty flavor is composed of a few hundreds of volatile compounds, only minor part of which are responsible for the characteristic odor. It is developed as a result of multi-directional reactions proceeding between non-volatile precursors contained in raw meat under the influence of temperature. The volatile compounds are generated upon: Maillard reactions, lipid oxidation, interactions between Maillard reaction products and lipid oxidation products as well as upon thiamine degradation. The developed flavor is determined by many factors associated with: raw material (breed, sex, diet and age of animal, conditions and process of slaughter, duration and conditions of meat storage, type of muscle, additives applied and the course of the technological process. The objective of this review article is to draw attention to the issue of volatile compounds characteristic for meat products and factors that affect their synthesis.

  10. Understanding the basic biology underlying the flavor world of children

    Directory of Open Access Journals (Sweden)

    Julie A. MENNELLA, Alison K. VENTURA

    2010-12-01

    Full Text Available Health organizations worldwide recommend that adults and children minimize intakes of excess energy and salty, sweet, and fatty foods (all of which are highly preferred tastes and eat diets richer in whole grains, low- and non- fat dairy products, legumes, fish, lean meat, fruits, and vegetables (many of which taste bitter. Despite such recommendations and the well-established benefits of these foods to human health, adults are not complying, nor are their children. A primary reason for this difficulty is the remarkably potent rewarding properties of the tastes and flavors of foods high in sweetness, saltiness, and fatness. While we cannot easily change children’s basic ingrained biology of liking sweets and avoiding bitterness, we can modulate their flavor preferences by providing early exposure, starting in utero, to a wide variety of flavors within healthy foods, such as fruits, vegetables, and whole grains. Because the flavors of foods mothers eat during pregnancy and lactation also flavor amniotic fluid and breast milk and become preferred by infants, pregnant and lactating women should widen their food choices to include as many flavorful and healthy foods as possible. These experiences, combined with repeated exposure to nutritious foods and flavor variety during the weaning period and beyond, should maximize the chances that children will select and enjoy a healthier diet [Current Zoology 56 (6: 834–841, 2010].

  11. The Flavor of the Composite Pseudo-Goldstone Higgs

    CERN Document Server

    Csaki, Csaba; Weiler, Andreas

    2008-01-01

    We study the flavor structure of 5D warped models that provide a dual description of a composite pseudo-Goldstone Higgs. We first carefully re-examine the flavor constraints on the mass scale of new physics in the standard Randall-Sundrum-type scenarios, and find that the KK gluon mass should generically be heavier than about 21 TeV. We then compare the flavor structure of the composite Higgs models to those in the RS model. We find new contributions to flavor violation, which while still are suppressed by the RS-GIM mechanism, will enhance the amplitudes of flavor violations. In particular, there is a kinetic mixing term among the SM fields which (although parametrically not enhanced) will make the flavor bounds even more stringent than in RS, and imply the KK gluon mass to be at least about 33 TeV. For both the RS and the composite Higgs models the flavor bounds could be stronger or weaker depending on the assumption on the value of the gluon boundary kinetic term. These strong bounds seem to imply that the...

  12. CP violation as a probe of flavor origin in supersymmetry

    International Nuclear Information System (INIS)

    Demir, D.A.; Masiero, A.; Vives, O.

    1999-11-01

    We address the question of the relation between supersymmetry breaking and the origin of flavor in the context of CP violating phenomena. We prove that, in the absence of the Cabibbo-Kobayashi-Maskawa phase, a general Minimal Supersymmetric Standard Model with all possible phases in the soft-breaking terms, but no new flavor structure beyond the usual Yukawa matrices, can never give a sizeable contribution to ε K , ε'/ε or hadronic B 0 CP asymmetries. Observation of supersymmetric contributions to CP asymmetries in B decays would hint at a non-flavor blind mechanism of supersymmetry breaking. (author)

  13. Stringy origin of non-Abelian discrete flavor symmetries

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael

    2007-01-01

    We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries

  14. Collider aspects of flavor physics at high Q

    International Nuclear Information System (INIS)

    Lari, T.; Pape, L.; Moortgat, F.; Porod, W.; Aguilar-Saavedra, J.A.; Aguila, F. del; Illana, J.; Allanach, B.C.; Raklev, A.R.; Burdman, G.; Eboli, O.J.P.; Castro, N.; Carvalho, J.; Onofre, A.; Veloso, F.; Klasen, M.; Fuks, B.; Herrmann, B.; Krasnikov, N.; Andreev, Y.; Bityukov, S.; Gninenko, S.; Matveev, V.; Toropin, A.; Krauss, F.; Weiglein, G.; Polesello, G.; Tricomi, A.; Uenel, G.; Alwall, J.; Frederix, R.; Gerard, J.M.; Giammanco, A.; Herquet, M.; Kalinin, S.; Kou, E.; Lemaitre, V.; Maltoni, F.; Sierra, D.A.; Hirsch, M.K.; Valle, J.W.F.; Villanova del Moral, A.; Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Beccaria, M.; Ventura, A.; Bejar, S.; Benucci, L.; Palla, F.; Borjanovic, I.; Bozzi, G.; Clerbaux, B.; Campos, F. de; Gouvea, A. de; Gopalakrishna, S.; Dennis, C.; Uenel, M.K.; Tseng, J.; Djouadi, A.; Ellwanger, U.; Moreau, G.; Fassouliotis, D.; Kourkoumelis, C.; Roupas, Z.; Ferreira, P.M.; Santos, R.; Goto, T.; Grzadkowski, B.; Guasch, J.; Hahn, T.; Hollik, W.; Heinemeyer, S.; Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Hidaka, K.; Hou, G.W.S.; Hurth, T.; Ibarra, A.; Karafasoulis, C.; Kyriakis, A.; Vermisoglou, G.; Kirsanov, M.M.; Kraml, S.; Macorini, G.; Panizzi, L.; Verzegnassi, C.; Magro, M.B.; Majerotto, W.; Mehdiyev, R.; Misiak, M.; Muehlleitner, M.; Oezcan, E.; Penaranda, S.; Pittau, R.; Pukhov, A.; Renard, F.M.; Restrepo, D.; Schumann, S.; Siegert, F.; Servant, G.; Skands, P.; Slavich, P.; Sola, J.; Spira, M.; Sultansoy, S.

    2008-01-01

    This chapter of the ''Flavor in the era of LHC'' workshop report discusses flavor-related issues in the production and decays of heavy states at the LHC at high momentum transfer Q, both from the experimental and the theoretical perspective. We review top quark physics, and discuss the flavor aspects of several extensions of the standard model, such as supersymmetry, little Higgs models or models with extra dimensions. This includes discovery aspects, as well as the measurement of several properties of these heavy states. We also present publicly available computational tools related to this topic. (orig.)

  15. Review of recent heavy flavor measurements in STAR

    Directory of Open Access Journals (Sweden)

    Lomnitz Michael R.

    2017-01-01

    Full Text Available Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  16. Review of recent heavy flavor measurements in STAR

    Science.gov (United States)

    Lomnitz, Michael R.

    2017-12-01

    Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  17. Applications of flavor symmetry to the phenomenology of elementary particles

    International Nuclear Information System (INIS)

    Kaeding, T.A.

    1995-05-01

    Some applications of flavor symmetry are examined. Approximate flavor symmetries and their consequences in the MSSM (Minimal Supersymmetric Standard Model) are considered, and found to give natural values for the possible B- and L-violating couplings that are empirically acceptable, except for the case of proton decay. The coupling constants of SU(3) are calculated and used to parameterize the decays of the D mesons in broken flavor SU(3). The resulting couplings are used to estimate the long-distance contributions to D-meson mixing

  18. Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes.

    Science.gov (United States)

    Pozo-Bayón, Maria Angeles; Ruíz-Rodríguez, Alejandro; Pernin, Karine; Cayot, Nathalie

    2007-02-21

    The use of solvent-assisted flavor evaporation extraction (SAFE) and purge and trap in Tenax allowed the identification of more than 100 volatile compounds in a sponge cake (SC-e). Gas chromatography-olfactometry (GC-O) of the SAFE extracts of crumb and crust were achieved in order to determine the most potent odorants of SC-e. The change in the traditional dough formulation of SC-e in which eggs were substituted by baking powder (SC-b) as the leavening agent produced important changes in some key aroma compounds. The release curves of some aroma compounds-some of them generated during baking and others added in the dough-were followed by cumulative headspace analysis. In the flavored SC-b, the aroma release curves showed a plateau after 15 min of purge, while the release increased proportionally with the purge time in the flavored SC-e. In general, except for some of the aroma compounds with the highest log P values, the rate of release of most of the added and generated aroma compounds was significantly influenced by the changes in the cake formulation. The higher rates of release found for the aroma compounds in SC-b could contribute to explain its rapid exhaustion of aroma compounds in the purge and trap experiments and might lead to poorer sensorial characteristics of this cake during storage.

  19. Effect of high-oxygen and high-carbon-dioxide atmospheres on strawberry flavor and other quality traits.

    Science.gov (United States)

    Pérez, A G; Sanz, C

    2001-05-01

    The effect of high-oxygen atmospheres on strawberry flavor was studied. Strawberry fruits (Fragariax ananassa Duch. cv. Camarosa) were stored at 8 degrees C in four different atmospheres: air, 5% O(2)/20% CO(2), 80% O(2)/20% CO(2), and 90% O(2)/10% CO(2). Changes in several quality parameters were evaluated. Atmospheres combining high O(2) and high CO(2) were the most effective in preventing fungal growth and enhancing strawberry firmness. Other quality parameters such as color, titrable acidity, sugars and organic acids distribution, off-flavor development, and aroma were only mildly affected by superatmospheric O(2) levels. After one week of storage, unexpected high contents of off-flavor related compounds were found in the 80% O(2)/20% CO(2) and 90% O(2)/10% CO(2) atmospheres. Evidence of an altered ester biosynthesis was also found in fruits stored under these high-O(2) atmospheres. Data obtained suggest that stress induced by high CO(2) and stress induced by high O(2) have an additive effect on strawberry flavor alteration.

  20. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Key Aroma Compounds in Lippia dulcis (Dushi Button).

    Science.gov (United States)

    Schmitt, Rainer; Cappi, Michael; Pollner, Gwendola; Greger, Veronika

    2018-03-14

    An aroma extract dilution analysis (AEDA) applied on aroma extracts prepared from the edible flower Dushi Button ( Lippia dulcis) resulted in the detection of 34 odor-active compounds. The highest flavor dilution (FD) factors were determined for methyl 2-methylbutanoate, ethyl 2-methylbutanoate, 4-mercapto-4-methyl-2-pentanone, an unknown caramel-like compound, and vanillin. Quantitative measurements performed by application of stable isotope dilution assays (SIDA), followed by a calculation of odor activity values (OAVs), resulted in the revelation of 4-mercapto-4-methyl-2-pentanone, linalool, myrcene, ethyl 2-methylbutanoate, methyl 2-methylbutanoate, and ( Z)-3-hexenal as important contributors to the flavor of Dushi Buttons.

  2. Working group report: Flavor physics and model building

    Indian Academy of Sciences (India)

    cO Indian Academy of Sciences. Vol. ... This is the report of flavor physics and model building working group at ... those in model building have been primarily devoted to neutrino physics. ..... [12] Andrei Gritsan, ICHEP 2004, Beijing, China.

  3. Neutrinos from Cosmic Accelerators including Magnetic Field and Flavor Effects

    Directory of Open Access Journals (Sweden)

    Walter Winter

    2012-01-01

    Full Text Available We review the particle physics ingredients affecting the normalization, shape, and flavor composition of astrophysical neutrinos fluxes, such as different production modes, magnetic field effects on the secondaries (muons, pions, and kaons, and flavor mixing, where we focus on pγ interactions. We also discuss the interplay with neutrino propagation and detection, including the possibility to detect flavor and its application in particle physics, and the use of the Glashow resonance to discriminate pγ from pp interactions in the source. We illustrate the implications on fluxes and flavor composition with two different models: (1 the target photon spectrum is dominated by synchrotron emission of coaccelerated electrons and (2 the target photon spectrum follows the observed photon spectrum of gamma-ray bursts. In the latter case, the multimessenger extrapolation from the gamma-ray fluence to the expected neutrino flux is highlighted.

  4. μe conversion experiments. Testing charged lepton flavor violation

    International Nuclear Information System (INIS)

    Schaaf, Andries van der

    2004-01-01

    The recent evidence for neutrino mixing shows that lepton flavor is not a conserved quantity. Due to the smallness of the neutrino masses effective flavor changing neutral currents among charged leptons remain negligible in the Standard Model. Whereas b → sγ has a probability of O(10 -4 )μ → eγ is expected with a branching ratio around 10 -50 . Observable rates would be an unambiguous signal for physics beyond the Standard Model and indeed, many extensions of the model are constrained best by the present experimental limits on charged lepton flavor violation. In this talk I will discuss experimental searches for charged lepton flavor violation with emphasis on μe conversion in muonic atoms. (author)

  5. Can oral rehydration solution be safely flavored at home?

    Science.gov (United States)

    Nijssen-Jordan, C

    1997-12-01

    To determine the concentration of sodium, potassium, glucose, and osmolality of oral rehydration solutions (ORS) which have been flavored with varying amounts of unsweetened Kool-Aid powder, Jell-O powder, apple juice, or orange juice. Descriptive. Alberta Children's Hospital Chemistry Laboratory. None. Addition of varying amounts of flavoring easily available in all households to commercially available unsweetened ORS. Concentrations of electrolytes, glucose, and osmolality. Addition of fruit juices or flavor powders to commercially produced ORS does alter the electrolyte content and osmolality. When limited amounts of flavoring or juice is added, the osmolality of the solution approaches iso-osmolality. Small amounts of unsweetened Kool-Aid powder, Jell-O powder, and apple or orange juice can be added to oral rehydration solutions without significantly altering electrolyte composition and osmolality.

  6. The color-flavor transformation of induced QCD

    International Nuclear Information System (INIS)

    Shnir, Ya.

    2002-09-01

    The color-flavor transformation is applied to the U(N c ) lattice model, in which the gauge theory is induced by the chiral scalar field associated with an elementary plaquette. The flavor degrees of freedom are related with the number of generations of the auxiliary field, and flavor components of each generation are associated with all the plaquettes having a lattice site in common. The property of the dual color-flavor transformed theory, which is expressed in terms of the gauge singlets, are analyzed in d=2 and d=3 dimensions. The saddle point solution of the model in the large-N c limit is discussed. The correlations between the plaquettes, which are described by the dual theory, allows to define the dual lattice. In d=3 dimensions it is made of tetradecahedra which correspond to the cubes of the original lattice. The continuum limit of d=2 effective theory is discussed. (author)

  7. 2016 International Conference on Charged Lepton Flavor Violation

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, Edmond Craig

    2017-12-04

    Partial support for participation for students and postdocs who wished to attend to give poster presentations at the 2016 International Conference on Charged Lepton Flavor Violation (CLFV 2016) in Charlottesville, VA.

  8. The color-flavor transformation of induced QCD

    CERN Document Server

    Shnir, Ya M

    2002-01-01

    The color-flavor transformation is applied to the $U(N_c)$ lattice model, in which the gauge theory is induced by the chiral scalar field associated with an elementary plaquette. The flavor degrees of freedom are related with the number of generations of the auxiliary field, and flavor components of each generation are associated with all the plaquettes having a lattice site in common. The property of the dual color-flavor transformed theory, which is expressed in terms of the gauge singlets, are analyzed in $d=2$ and $d=3$ dimensions. The saddle point solution of the model in the large-$N_c$ limit is discussed. The correlations between the plaquettes, which are described by the dual theory, allows to define the dual lattice. In $d=3$ dimensions it is made of tetradecahedra which correspond to the cubes of the original lattice. The continuum limit of $d=2$ effective theory is discussed.

  9. Democratic (s)fermions and lepton flavor violation

    Science.gov (United States)

    Hamaguchi, K.; Kakizaki, Mitsuru; Yamaguchi, Masahiro

    2003-09-01

    The democratic approach to account for fermion masses and mixing is known to be successful not only in the quark sector but also in the lepton sector. Here we extend this ansatz to supersymmetric standard models, in which the Kähler potential obeys the underlying S3 flavor symmetries. The requirement of neutrino bi-large mixing angles constrains the form of the Kähler potential for left-handed lepton multiplets. We find that right-handed sleptons can have nondegenerate masses and flavor mixing, while left-handed sleptons are argued to have universal and hence flavor-blind masses. This mass pattern is testable in future collider experiments when superparticle masses will be measured precisely. Lepton flavor violation arises in this scenario. In particular, μ→eγ is expected to be observed in a planned future experiment if supersymmetry breaking scale is close to the weak scale.

  10. Democratic (s)fermions and lepton flavor violation

    International Nuclear Information System (INIS)

    Hamaguchi, K.; Kakizaki, Mitsuru; Yamaguchi, Masahiro

    2003-01-01

    The democratic approach to account for fermion masses and mixing is known to be successful not only in the quark sector but also in the lepton sector. Here we extend this ansatz to supersymmetric standard models, in which the Kaehler potential obeys the underlying S 3 flavor symmetries. The requirement of neutrino bi-large mixing angles constrains the form of the Kaehler potential for left-handed lepton multiplets. We find that right-handed sleptons can have nondegenerate masses and flavor mixing, while left-handed sleptons are argued to have universal and hence flavor-blind masses. This mass pattern is testable in future collider experiments when superparticle masses will be measured precisely. Lepton flavor violation arises in this scenario. In particular, μ→eγ is expected to be observed in a planned future experiment if supersymmetry breaking scale is close to the weak scale

  11. Flavors in the soup: An overview of heavy-flavored jet energy loss at CMS

    Science.gov (United States)

    Jung, Kurt E.

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy flavor tagged jets from charm and bottom quarks in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. This dissertation presents the energy modification of b-jets in PbPb at √sNN = 2.76 TeV and pPb collisions at √sNN = 5.02 TeV, along with the first ever measurements of charm jets in pPb collisions at √s NN =5.02 TeV and in pp collisions at √s = 2.76 TeV. Measurements of b-jet and c-jet spectra are compared to pp data at √s = 2.76 TeV and to PYTHIA predictions at both 2.76 and 5.02 TeV. We observe a centrality-dependent suppression for b-jets in PbPb and a result that is consistent with PYTHIA for both charm and bottom jets in pPb collisions.

  12. Heavy-light flavor correlations and the QCD phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Chihiro [Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw (Poland); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Redlich, Krzysztof [Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw (Poland)

    2016-12-15

    We discuss correlations between the light and heavy-light flavored mesons at finite temperature within a chiral effective theory implementing heavy quark symmetry. We show that the thermodynamics of the charmed mesons is strongly dragged by the chiral crossover dominated by the non-strange flavors. Consequently, the fluctuations carried by the states with strangeness can be used to characterize the onset of the chiral symmetry restoration.

  13. Origins of tiny neutrino mass and large flavor mixings

    International Nuclear Information System (INIS)

    Haba, Naoyuki

    2015-01-01

    Active neutrino masses are extremely smaller than those of other quarks and leptons, and there are large flavor mixings in the lepton sector, contrary to the quark sector. They are great mysteries in the standard model, but also excellent hints of new physics beyond the standard model. Thus, questions 'What is an origin of tiny neutrino mass?' and 'What is an origin of large lepton flavor mixings?' are very important. In this paper, we overview various attempts to solve these big questions. (author)

  14. Influence of flavor oscillations on neutrino beam instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo SP (Brazil); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  15. Report of the Quark Flavor Physics Working Group

    CERN Document Server

    Butler, J N; Ritchie, J L; Cirigliano, V; Kettell, S; Briere, R; Petrov, A A; Schwartz, A; Skwarnicki, T; Zupan, J; Christ, N; Sharpe, S R; Van de Water, R S; Altmannshofer, W; Arkani-Hamed, N; Artuso, M; Asner, D M; Bernard, C; Bevan, A J; Blanke, M; Bonvicini, G; Browder, T E; Bryman, D A; Campana, P; Cenci, R; Cline, D; Comfort, J; Cronin-Hennessy, D; Datta, A; Dobbs, S; Duraisamy, M; El-Khadra, A X; Fast, J E; Forty, R; Flood, K T; Gershon, T; Grossman, Y; Hamilton, B; Hill, C T; Hill, R J; Hitlin, D G; Jaffe, D E; Jawahery, A; Jessop, C P; Kagan, A L; Kaplan, D M; Kohl, M; Krizan, P; Kronfeld, A S; Lee, K; Littenberg, L S; MacFarlane, D B; Mackenzie, P B; Meadows, B T; Olsen, J; Papucci, M; Parsa, Z; Paz, G; Perez, G; Piilonen, L E; Pitts, K; Purohit, M V; Quinn, B; Ratcliff, B N; Roberts, D A; Rosner, J L; Rubin, P; Seeman, J; Seth, K K; Schmidt, B; Schopper, A; Sokoloff, M D; Soni, A; Stenson, K; Stone, S; Sundrum, R; Tschirhart, R; Vainshtein, A; Wah, Y W; Wilkinson, G; Wise, M B; Worcester, E; Xu, J; Yamanaka, T

    2013-01-01

    This report represents the response of the Intensity Frontier Quark Flavor Physics Working Group to the Snowmass charge. We summarize the current status of quark flavor physics and identify many exciting future opportunities for studying the properties of strange, charm, and bottom quarks. The ability of these studies to reveal the effects of new physics at high mass scales make them an essential ingredient in a well-balanced experimental particle physics program.

  16. 14th Conference on Flavor Physics and CP Violation

    CERN Document Server

    2016-01-01

    The 2016 edition of the Conference on Flavor Physics and CP Violation will be held at on the campus of the California Institute of Technology on 6-9 June. The FPCP conference series was founded in 2002 through the merger of the Heavy Flavor (HF) and B Physics and CP Violation (BPCP) conference series. A list of previous FPCP venues can be found here.

  17. Enforced Electrical Neutrality of the Color-Flavor Locked Phase

    International Nuclear Information System (INIS)

    Rajagopal, Krishna; Wilczek, Frank

    2001-01-01

    We demonstrate that quark matter in the color-flavor locked phase of QCD is rigorously electrically neutral, despite the unequal quark masses, and even in the presence of an electron chemical potential. As long as the strange quark mass and the electron chemical potential do not preclude the color-flavor locked phase, quark matter is automatically neutral. No electrons are required and none are admitted

  18. Multi baryons with flavors in the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Schat, Carlos L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, Norberto N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. of Physics

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order {omicron}(1/m{sub Q}). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  19. GUT and flavor models for neutrino masses and mixing

    Science.gov (United States)

    Meloni, Davide

    2017-10-01

    In the recent years experiments have established the existence of neutrino oscillations and most of the oscillation parameters have been measured with a good accuracy. However, in spite of many interesting ideas, no real illumination was sparked on the problem of flavor in the lepton sector. In this review, we discuss the state of the art of models for neutrino masses and mixings formulated in the context of flavor symmetries, with particular emphasis on the role played by grand unified gauge groups.

  20. Multi baryons with flavors in the Skyrme model

    International Nuclear Information System (INIS)

    Schat, Carlos L.; Scoccola, Norberto N.

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order ο(1/m Q ). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  1. Lepton flavor violation in tau decays

    International Nuclear Information System (INIS)

    Cvetic, G.; Dib, C.; Kim, C. S.; Kim, J. D.

    2002-01-01

    We study lepton flavor violation (LFV) in tau decays induced by heavy Majorana neutrinos within two models: (I) the standard model with additional right-handed heavy Majorana neutrinos, i.e., a typical seesaw-type model; (II) the standard model with left-handed and right-handed neutral singlets, which are inspired by certain scenarios of SO(10) models and heterotic superstring models with E 6 symmetry. We calculate various LFV branching ratios and a T-odd asymmetry. The seesaw model I predicts very small branching ratios for LFV processes in most of the parameter space, although in a very restricted parameter region it can reach maximal branching ratios Br(τ→μγ)∼10 -9 and Br(τ→3μ)∼10 -10 . In contrast, model II may show branching ratios Br(τ→eγ)∼10 -8 and Br(τ→3e) -9 over a sizable region of the parameter space, large enough to be tested by experiments in the near future

  2. Vanillin: Synthetic Flavoring from Spent Sulfite Liquor

    Science.gov (United States)

    Hocking, Martin B.

    1997-09-01

    Separation of the lignin component of wood from the cellulose presents an opportunity to access various interesting products from the lignin fragments. The lignin represents availability of a sizable renewable resource. Vanillin, or 3-methoxy-4-hydroxybenzaldehyde, is one of a series of related substituted aromatic flavor constituents, and represents one of the potentially profitable possibilities. Vanillin production from the lignin-containing waste liquor obtained from acid sulfite pulping of wood began in North America in the mid 1930's. By 1981 one plant at Thorold, Ontario produced 60% of the contemporary world supply of vanillin. The process also simultaneously decreased the organic loading of the aqueous waste streams of the pulping process. Today, however, whilst vanillin production from lignin is still practiced in Norway and a few other areas, all North American facilities using this process have closed, primarily for environmental reasons. New North American vanillin plants use petrochemical raw materials. An innovation is needed to help overcome the environmental problems of this process before vanillin production from lignin is likely to resume here. Current interest in the promotion of chemicals production from renewable raw materials reinforces the incentive to do this.

  3. New Physics at a Super Flavor Factory

    CERN Document Server

    Browder, Thomas E; Pirjol, Dan; Soni, Amarjit; Zupan, Jure

    2009-01-01

    The potential of a Super Flavor Factory (SFF) for searches of New Physics is reviewed. While very high luminosity B physics is assumed to be at the core of the program, its scope for extensive charm and tau studies are also emphasized. The possibility to run at the Upsilon(5S) as well as at the Upsilon(4S) is also very briefly discussed; in principle, this could provide very clean measurements of B_s decays. The strength and reach of a SFF is most notably due to the possibility of examining an impressive array of very clean observables. The angles and the sides of the unitarity triangle can be determined with unprecedented accuracy. These serve as a reference for New Physics (NP) sensitive decays such as B^+ ->tau^+ nu and penguin dominated hadronic decay modes, providing tests of generic NP scenarios with an accuracy of a few percent. Besides, very precise studies of direct and time dependent CP asymmetries in radiative B decays and forward-backward asymmetry studies in B -> X_s l^+ l^- and numerous null tes...

  4. Holographic quark gluon plasma with flavor

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, M. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany)

    2009-01-15

    In this work I explore theoretical and phenomenological implications of chemical potentials and charge densities inside a strongly coupled thermal plasma, using the gauge/gravity correspondence. Strong coupling effects discovered in this model theory are interpreted geometrically and may be taken as qualitative predictions for heavy ion collisions at RHIC and LHC. In particular I examine the thermodynamics, spectral functions, transport coefficients and the phase diagram of the strongly coupled plasma. For example stable mesons, which are the analogs of the QCD Rho-mesons, are found to survive beyond the deconfinement transition. A phase transition resembling 2-flavor QCD is discovered. The momentum diffusion rate of charmonium at strong coupling is significantly reduced compared to the weak coupling result, in reminiscence of the universal viscosity bound. This paper is based on partly unpublished work performed in the context of my PhD thesis. New results and ideas extending significantly beyond those published until now are stressed. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Dark Z implication for flavor physics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fanrong [Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, R.O. (China); Department of Physics, Jinan University, Guangzhou 510632 (China); Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-06-25

    Dark Z/dark photon (Z{sup ′}) is one candidate of dark force carrier, which helps to interpret the properties of dark matter (DM). Other than conventional studies of DM including direct detection, indirect detection and collider simulation, in this work we take flavor physics as a complementary approach to investigate the features of dark matter. We give an exact calculation of the new type of penguin diagram induced by Z{sup ′} which further modifies the well-known X,Y,Z functions in penguin-box expansion. The measurement of rare decays B→K{sup (∗)}μ{sup +}μ{sup −} and B{sub s}→μ{sup +}μ{sup −} at LHC, together with direct CP violation ε{sup ′}/ε in K→ππ as well as K{sub L}→μ{sup +}μ{sup −}, are used to determine the parameter space. The size of coupling constant, however, is found to be O(1) which is much weaker than the known constraints.

  6. arXiv Lepton flavor universality violation without new sources of quark flavor violation

    CERN Document Server

    Kamenik, Jernej F.; Zupan, Jure

    2018-02-03

    We show that new physics models without new flavor violating interactions can explain the recent anomalies in the b→sℓ+ℓ- transitions. The b→sℓ+ℓ- arises from a Z′ penguin which automatically predicts the V-A structure for the quark currents in the effective operators. This framework can either be realized in a renormalizable U(1)′ setup or be due to new strongly interacting dynamics. The dimuon resonance searches at the LHC are becoming sensitive to this scenario since the Z′ is relatively light, and could well be discovered in future searches by ATLAS and CMS.

  7. Effects of Maillard reaction on flavor and safety of Chinese traditional food: roast duck.

    Science.gov (United States)

    Zhou, Yiming; Xie, Fan; Zhou, Xiaoli; Wang, Yuqiang; Tang, Wen; Xiao, Ying

    2016-04-01

    Roast duck is one kind of representative roast food whose flavor is mainly produced by the Maillard reaction. However, some potentially toxic compounds are generated in the thermal process and are a potential health risk. The aim of this work was to analyze the effects of the Maillard reaction on flavor and safety of a Chinese traditional food: roast duck. Ducks with different roasting times (0, 10, 20, 30, 40, 50 and 60 min) were analyzed. The 40 and 50 min roast ducks exhibited an acceptable degree of sensory attributes, but the 60 min roast duck showed the most abundant aroma compounds. Antioxidant activities were observed to increase with roasting, and the 60 min roast duck showed the highest antioxidant activities (1,1-diphenylpicryhydrazyl, 39.3 µmol Trolox g(-1) sample). The highest content of acrylamide (0.21 µg g(-1)) and 5-hydroxymethylfurfural (0.089 µg g(-1)) were detected in the 50 and 60 min roast duck extract, respectively. Furthermore, water extract from 60 min roast ducks manifested a higher lactose dehydrogenase release ratio (51.9%) and greatly increased cell apoptosis. The drastic Maillard reaction in duck induced by long roasting time could be advantageous for color, aroma and antioxidant activities in roast ducks, but might be not beneficial to health. © 2015 Society of Chemical Industry.

  8. Simple picture for neutrino flavor transformation in supernovae

    Science.gov (United States)

    Duan, Huaiyu; Fuller, George M.; Qian, Yong-Zhong

    2007-10-01

    We can understand many recently discovered features of flavor evolution in dense, self-coupled supernova neutrino and antineutrino systems with a simple, physical scheme consisting of two quasistatic solutions. One solution closely resembles the conventional, adiabatic single-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mechanism, in that neutrinos and antineutrinos remain in mass eigenstates as they evolve in flavor space. The other solution is analogous to the regular precession of a gyroscopic pendulum in flavor space, and has been discussed extensively in recent works. Results of recent numerical studies are best explained with combinations of these solutions in the following general scenario: (1) Near the neutrino sphere, the MSW-like many-body solution obtains. (2) Depending on neutrino vacuum mixing parameters, luminosities, energy spectra, and the matter density profile, collective flavor transformation in the nutation mode develops and drives neutrinos away from the MSW-like evolution and toward regular precession. (3) Neutrino and antineutrino flavors roughly evolve according to the regular precession solution until neutrino densities are low. In the late stage of the precession solution, a stepwise swapping develops in the energy spectra of νe and νμ/ντ. We also discuss some subtle points regarding adiabaticity in flavor transformation in dense-neutrino systems.

  9. Flavor profiles of monovarietal virgin olive oils produced in the Oriental region of Morocco

    Directory of Open Access Journals (Sweden)

    Mansouri Farid

    2017-09-01

    Full Text Available The purpose of this study is the evaluation of flavor profiles of monovarietal virgin olive oils (VOO produced in the Oriental region of Morocco via the characterization of volatile compounds, using SPME-GC/MS technique, and the determination of total phenolic content (colorimetric method. The study concerns oils of three European olive cultivars (Arbosana, Arbequina and Koroneiki which were recently introduced in Morocco under irrigated high-density plantation system. GC/MS aroma profiles of analyzed VOOs showed the presence of 35 volatile compounds. The major compounds in such oils are C6 compounds produced from linoleic and linolenic acids via lipoxygenase pathway such as trans-2-hexenal, cis-2-hexenal, cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-3-hexen-1-ol acetate, hexanal and 1-hexanol in different proportions depending on the cultivar (p < 0.05. In addition, statistical analyses indicate that the analyzed VOOs have different aroma profiles. Arbequina oil has a high proportion of compounds with sensory notes “green” and “sweet” giving it a fruity sensation compared to Arbosana and Koroneiki. In parallel, Arbosana and Koroneiki oils are rich in phenolic compounds and provide relatively bitter and pungent tastes to these oils.

  10. Flavors in the Soup: An Overview of Heavy-Flavored Jet Energy Loss at CMS

    CERN Document Server

    Jung, Kurt

    2016-01-01

    Kurt E. Jung PhD, Purdue University, May 2016. Flavors in the Soup: An Overviewof Heavy-Flavored Jet Energy Loss at CMS. Major Professor: Wei Xie.The energy loss of jets in heavy-ion collisions is expected to depend on the flavorof the fragmenting parton. Thus, measurements of jet quenching as a function offlavor place powerful constraints on the thermodynamical and transport propertiesof the hot and dense medium. Measurements of the nuclear modification factorsof the heavy flavor tagged jets from charm and bottom quarks in both PbPb andpPb collisions can quantify such energy loss e↵ects. Specifically, pPb measurementsprovide crucial insights into the behavior of the cold nuclear matter e↵ect, whichis required to fully understand the hot and dense medium e↵ects on jets in PbPbcollisions. This dissertation presents the energy modification of b-jets in PbPb atppsN N = 2.76 TeV and pPb collisions at sN N = 5.02 TeV, along with the first everpmeasurements of charm jets in pPb collisions at sN N = 5.0...

  11. Heavy-flavor parton distributions without heavy-flavor matching prescriptions

    Science.gov (United States)

    Bertone, Valerio; Glazov, Alexandre; Mitov, Alexander; Papanastasiou, Andrew S.; Ubiali, Maria

    2018-04-01

    We show that the well-known obstacle for working with the zero-mass variable flavor number scheme, namely, the omission of O(1) mass power corrections close to the conventional heavy flavor matching point (HFMP) μ b = m, can be easily overcome. For this it is sufficient to take advantage of the freedom in choosing the position of the HFMP. We demonstrate that by choosing a sufficiently large HFMP, which could be as large as 10 times the mass of the heavy quark, one can achieve the following improvements: 1) above the HFMP the size of missing power corrections O(m) is restricted by the value of μ b and, therefore, the error associated with their omission can be made negligible; 2) additional prescriptions for the definition of cross-sections are not required; 3) the resummation accuracy is maintained and 4) contrary to the common lore we find that the discontinuity of α s and pdfs across thresholds leads to improved continuity in predictions for observables. We have considered a large set of proton-proton and electron-proton collider processes, many through NNLO QCD, that demonstrate the broad applicability of our proposal.

  12. Fermion masses and flavor mixings in a model with S4 flavor symmetry

    International Nuclear Information System (INIS)

    Ding Guijun

    2010-01-01

    We present a supersymmetric model of quark and lepton based on S 4 xZ 3 xZ 4 flavor symmetry. The S 4 symmetry is broken down to Klein four and Z 3 subgroups in the neutrino and the charged lepton sectors, respectively. Tri-Bimaximal mixing and the charged lepton mass hierarchies are reproduced simultaneously at leading order. Moreover, a realistic pattern of quark masses and mixing angles is generated with the exception of the mixing angle between the first two generations, which requires a small accidental enhancement. It is remarkable that the mass hierarchies are controlled by the spontaneous breaking of flavor symmetry in our model. The next to leading order contributions are studied, all the fermion masses and mixing angles receive corrections of relative order λ c 2 with respect to the leading order results. The phenomenological consequences of the model are analyzed, the neutrino mass spectrum can be normal hierarchy or inverted hierarchy, and the combined measurement of the 0ν2β decay effective mass m ββ and the lightest neutrino mass can distinguish the normal hierarchy from the inverted hierarchy.

  13. Randall-Sundrum models vs. supersymmetry. The different flavor signatures

    Energy Technology Data Exchange (ETDEWEB)

    Gori, Stefania

    2010-07-15

    The Minimal Supersymmetric Standard Model based on flavor symmetries and models with a warped extra dimension as first proposed by Randall and Sundrum represent two of the best founded theories beyond the Standard Model. They provide two appealing solutions both to the gauge hierarchy problem and to the Standard Model flavor hierarchy problems. In this thesis we focus on a particular Randall-Sundrum model based on the custodial symmetry SU(2){sub L} x SU(2){sub R} x P{sub LR} in the bulk and on two Supersymmetric flavor models: the one based on a U(1) abelian flavor symmetry, the other on a SU(3) non abelian flavor symmetry. We first analyze and compare the flavor structure of the two frameworks, showing two possible ways to address the New Physics flavor problem: warped geometry and custodial protection vs. flavor symmetry. Subsequently, we study the impact of the new particles (Kaluza-Klein states in the Randall-Sundrum model and superpartners in Supersymmetry) in the K and B meson mixings and rare decays. We perform a global numerical analysis of the new physics effects in the models in question and we show that it is possible to naturally be in agreement with all the available data on {delta}F=2 observables, even fixing the energy scale of the models to the TeV range, in order to have new particles in the reach of the LHC. We then study distinctive patterns of flavor violation which can enable future experiments to distinguish the two frameworks. In particular, the specific correlations between the CP violating asymmetry in the B{sub s}{sup 0}- anti B{sub s}{sup 0} system, the rare decays B{sub s,d}{yields}{mu}{sup +}{mu}{sup -} and K{yields}{pi}{nu}anti {nu} allow in principle for an experimental test of the Randall-Sundrum model and of the two Supersymmetric flavor models and a clear distinction between the two frameworks, once new data will be available. (orig.)

  14. Flavor characteristics of the juices from fresh market tomatoes differentiated from those from processing tomatoes by combined analysis of volatile profiles with sensory evaluation.

    Science.gov (United States)

    Iijima, Yoko; Iwasaki, Yumi; Otagiri, Yuji; Tsugawa, Hiroshi; Sato, Tsuneo; Otomo, Hiroe; Sekine, Yukio; Obata, Akio

    2016-12-01

    Various commercial tomato juices with different flavors are available at markets worldwide. To clarify the marker compounds related to the flavor characteristics of tomato juice, we analyzed 15 pure commercial tomato juices by a combination of volatile profiling and sensory evaluation. The correlations among volatiles and the relationship between volatiles and sensory descriptors were elucidated by multivariate analyses. Consequently, the tomato juices made from fresh market tomatoes (including the popular Japanese tomato variety "Momotaro") were clearly separated from other juices made from processing tomatoes, by both the volatile composition and sensory profiles. cis-3-Hexenol, hexanal, and apocarotenoids negatively contributed to the juices from fresh market tomatoes, whereas Strecker aldehydes and furfural showed positive contributions to the juices. Accordingly, the sensory characteristics of juices from fresh market tomatoes were related to cooked and fruity flavors but not to green or fresh notes.

  15. A Heavy Flavor Tracker for STAR

    International Nuclear Information System (INIS)

    Chasman, C.; Beavis, D.; Debbe, R.; Lee, J.H.; Levine, M.J.; Videbaek, F.; Xu, Z.; Kleinfelder, S.; Li, S.; Cendejas, R.; Huang, H.; Sakai, S.; Whitten, C.; Joseph, J.; Keane, D.; Margetis, S.; Rykov, V.; Zhang, W.M.; Bystersky, M.; Kapitan, J.; Kushpil, V.; Sumbera, M.; Baudot, J.; Hu-Guo, C.; Shabetai, A.; Szelezniak, M.; Winter, M.; Kelsey, J.; Milner, R.; Plesko, M.; Redwine, R.; Simon, F.; Surrow, B.; Van Nieuwenhuizen, G.; Anderssen, E.; Dong, X.; Greiner, L.; Matis, H.S.; Morgan, S.; Ritter, H.G.; Rose, A.; Sichtermann, E.; Singh, R.P.; Stezelberger, T.; Sun, X.; Thomas, J.H.; Tram, V.; Vu, C.; Wieman, H.H.; Xu, N.; Hirsch, A.; Srivastava, B.; Wang, F.; Xie, W.; Bichsel, H.

    2008-01-01

    The STAR Collaboration proposes to construct a state-of-the-art microvertex detector, the Heavy Flavor Tracker (HFT), utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precision measurement of the yields and spectra of particles containing heavy quarks. This will be accomplished through topological identification of D mesons by reconstruction of their displaced decay vertices with a precision of approximately 50 mu m in p+p, d+A, and A+A collisions. The HFT consists of 4 layers of silicon detectors grouped into two sub-systems with different technologies, guaranteeing increasing resolution when tracking from the TPC and the Silicon Strip Detector (SSD) towards the vertex of the collision. The Intermediate Silicon Tracker (IST), consisting of two layers of single-sided strips, is located inside the SSD. Two layers of Silicon Pixel Detector (PIXEL) are inside the IST. The PIXEL detectors have the resolution necessary for a precision measurement of the displaced vertex. The PIXEL detector will use CMOS Active Pixel Sensors (APS), an innovative technology never used before in a collider experiment. The APS sensors are only 50 mu m thick and at a distance of only 2.5 cm from the interaction point. This opens up a new realm of possibilities for physics measurements. In particular, a thin detector (0.28percent radiation length per layer) in STAR makes it possible to do the direct topological reconstruction of open charm hadrons down to very low pT by the identification of the charged daughters of the hadronic decay

  16. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Chasman, C.; Beavis, D.; Debbe, R.; Lee, J.H.; Levine, M.J.; Videbaek, F.; Xu, Z.; Kleinfelder, S.; Li, S.; Cendejas, R.; Huang, H.; Sakai, S.; Whitten, C.; Joseph, J.; Keane, D.; Margetis, S.; Rykov, V.; Zhang, W.M.; Bystersky, M.; Kapitan, J.; Kushpil, V.; Sumbera, M.; Baudot, J.; Hu-Guo, C.; Shabetai, A.; Szelezniak, M.; Winter, M.; Kelsey, J.; Milner, R.; Plesko, M.; Redwine, R.; Simon, F.; Surrow, B.; Van Nieuwenhuizen, G.; Anderssen, E.; Dong, X.; Greiner, L.; Matis, H.S.; Morgan, S.; Ritter, H.G.; Rose, A.; Sichtermann, E.; Singh, R.P.; Stezelberger, T.; Sun, X.; Thomas, J.H.; Tram, V.; Vu, C.; Wieman, H.H.; Xu, N.; Hirsch, A.; Srivastava, B.; Wang, F.; Xie, W.; Bichsel, H.

    2008-02-25

    The STAR Collaboration proposes to construct a state-of-the-art microvertex detector,the Heavy Flavor Tracker (HFT), utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precision measurement of the yields and spectra of particles containing heavy quarks. This will be accomplished through topological identification of D mesons by reconstruction of their displaced decay vertices with a precision of approximately 50 mu m in p+p, d+A, and A+A collisions. The HFT consists of 4 layers of silicon detectors grouped into two sub-systems with different technologies, guaranteeing increasing resolution when tracking from the TPC and the Silicon Strip Detector (SSD) towards the vertex of the collision. The Intermediate Silicon Tracker (IST), consisting of two layers of single-sided strips, is located inside the SSD. Two layers of Silicon Pixel Detector (PIXEL) are inside the IST. The PIXEL detectors have the resolution necessary for a precision measurement of the displaced vertex. The PIXEL detector will use CMOS Active Pixel Sensors (APS), an innovative technology never used before in a collider experiment. The APSsensors are only 50 mu m thick and at a distance of only 2.5 cm from the interaction point. This opens up a new realm of possibilities for physics measurements. In particular, a thin detector (0.28percent radiation length per layer) in STAR makes it possible to do the direct topological reconstruction of open charm hadrons down to very low pT by the identification of the charged daughters of the hadronic decay.

  17. A model-building approach to the origin of flavor

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Erik

    2017-01-24

    In this thesis we link the recent anomalies reported in B meson and h→μτ decays to the smallness of neutrino masses and aspects of the flavor puzzle, including the hierarchy of the Yukawa couplings and the disparate fermion mixings. By formulating various new models we attempt to shed light on the potential common origin of the distinct measurements in the flavor sector. To this end, discrete symmetries are utilized in this work as the governing principle behind all fermion interactions. The first two models based on the S{sub 3} and the A{sub 4} symmetry, respectively, aim to unify the diverse fermion masses and mixings. Special features separate the frameworks from the flavor models in the literature that often lack testable predictions. While the first model provides interesting flavor-violating signatures in top quark decays, the second one ties the flavor to the grand unification scale in a novel way. In the three following models we focus on the anomalies that hint at lepton flavor and universality violation. We propose that the large flavor violation observed in h→μτ decays is dictated by the scalar mixing of an enlarged S{sub 4}-symmetric Higgs sector. By constructing two leptoquark models we show for the first time that leptoquark couplings shaped by a Froggatt-Nielsen mechanism can accommodate the B meson anomalies and simultaneously generate naturally-small neutrino masses. Emphasizing the importance of testability, we demonstrate how these models can be probed by future diphoton resonances, using the recent 750 GeV excess as an example scenario.

  18. Scalar mass relations and flavor violations in supersymmetric theories

    International Nuclear Information System (INIS)

    Cheng, Hsin-Chia; California Univ., Berkeley, CA

    1996-01-01

    Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1% accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p → K 0 μ + , weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as μ → eγ. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs

  19. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado

    Science.gov (United States)

    Fathoni, A.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Haib, J.

    2017-07-01

    Syzygium aromaticum (clove) are native to Indonesia and have been widely used in food industry due to their flavor. Nonvolatile compounds contribute to flavor, mainly in their taste. Currently, there is very little information available about nonvolatile compounds in clove. Identification of nonvolatile compounds is important to improve clove's value. Compound extraction was conducted by maceration in ethanol. Fractionations of the extract were performed by using gravity column chromatography on silica gel and Sephadex LH-20 as stationary phase. Nonvolatile compounds were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). LC-MS/MS was operated in negative mode with 0.1 % formic acid in water and acetonitrile as mobile phase. Nonvolatile compounds were identified by fragment analysis and compared to references. Several compounds had been identified and characterized asquinic acid, monogalloylglucose, gallic acid, digalloylglucose, isobiflorin, biflorin, ellagic acid, hydroxygallic acid, luteolin, quercetin, naringenin, kaempferol, isorhamnetin, dimethoxyluteolin, and rhamnetin. These compounds had two main flavor perceptions, i.e. astringent, and bitter.

  20. Improving chocolate flavor in poor-quality cocoa almonds by enzymatic treatment.

    Science.gov (United States)

    Oliveira, Hilana Salete Silva; Mamede, Maria Eugênia Oliveira; Góes-Neto, Aristóteles; Koblitz, Maria Gabriela Bello

    2011-01-01

    This paper proposes a method to enzymatically treat poor-quality cocoa almonds (known as "slate") to ensure the formation of chocolate flavor precursors. The production of flavor precursors improves the quality of these almonds, which are usually responsible for the low quality of the liquor produced. Proteases and carboxypeptidases from different sources were tested under various conditions. The different treatments were evaluated by chemical analysis (hydrolysis efficiency) and sensory analysis of the treated material compared to good-quality cocoa almonds. The results show that it is possible, through the use of microbial enzymes, to generate the mixture of compounds that will release, after roasting, the characteristic chocolate flavor in poor-quality almonds. However, it is necessary to optimize the conditions of enzymatic treatment to obtain better results and thus establish a process that can be used for industrial purposes for manufacturing cocoa and chocolate. The basidiomycete Moniliophtora perniciosa is the causative agent of witches' broom disease (WBD) of the cocoa tree, whose seeds are the source of chocolate. It is the most important phytopathological problem of cocoa-producing areas of the American continent, and has decimated the Brazilian cocoa industry. In Bahia (Brazil), M. perniciosa was identified in 1989 and, as a consequence of its spreading, the annual production of cocoa almonds dropped from 450,000 to 90,000 tons within 12 y, reducing export values from an all-time high of about US$ 1 billion to 110 million. The high incidence of WBD incapacitates Brazil to produce enough cocoa almonds even for the internal market, leading the country to import low-quality cocoa almonds mainly from African countries. Our work proposes an enzymatic treatment to increase the quality of that cocoa almonds and, consequently, to improve the quality of the chocolate produced and consumed in the country. © 2011 Institute of Food Technologists®

  1. Remark on state vector construction when flavor mixing exists

    International Nuclear Information System (INIS)

    Fujii, K.; Shimomura, T.

    2006-01-01

    In the framework of quantum field theory, we consider the way to construct the one-particle state (with definite 3-momentum) when particle mixing exists, such as in the case of flavor-neutrino mixing. In the preceding report (Prog. Theor. Phys. 112, 901 (2004)), we have examined the structure of expectation values of the flavor neutrino charges (at time t) with respect to a neutrino-source state prepared at time t' (earlier than t). When there is no mixing, each of various contributions to the expectation value is equal, in its dominant part, to the transition probability corresponding to the respective neutrino-production process. On the basis of the assumption that such an equality holds also in the mixing case, we can find an appropriate form of one-flavor-neutrino state with 3-momentum and helicity. Along the same way, we examine the boson case when flavor mixing exists. We give remarks on the relation and difference between the ordinary and the present approaches to flavor oscillation

  2. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  3. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  4. Qualitative Analysis of E-Liquid Emissions as a Function of Flavor Additives Using Two Aerosol Capture Methods.

    Science.gov (United States)

    Eddingsaas, Nathan; Pagano, Todd; Cummings, Cody; Rahman, Irfan; Robinson, Risa; Hensel, Edward

    2018-02-13

    This work investigates emissions sampling methods employed for qualitative identification of compounds in e-liquids and their resultant aerosols to assess what capture methods may be sufficient to identify harmful and potentially harmful constituents present. Three popular e-liquid flavors (cinnamon, mango, vanilla) were analyzed using qualitative gas chromatography-mass spectrometry (GC-MS) in the un-puffed state. Each liquid was also machine-puffed under realistic-use flow rate conditions and emissions were captured using two techniques: filter pads and methanol impingers. GC-MS analysis was conducted on the emissions captured using both techniques from all three e-liquids. The e-liquid GC-MS analysis resulted in positive identification of 13 compounds from the cinnamon flavor e-liquid, 31 from mango, and 19 from vanilla, including a number of compounds observed in all e-liquid experiments. Nineteen compounds were observed in emissions which were not present in the un-puffed e-liquid. Qualitative GC-MS analysis of the emissions samples identify compounds observed in all three samples: e-liquid, impinge, and filter pads, and each subset thereof. A limited number of compounds were observed in emissions captured with impingers, but were not observed in emissions captured using filter pads; a larger number of compounds were observed on emissions collected from the filter pads, but not those captured with impingers. It is demonstrated that sampling methods have different sampling efficiencies and some compounds might be missed using only one method. It is recommended to investigate filter pads, impingers, thermal desorption tubes, and solvent extraction resins to establish robust sampling methods for emissions testing of e-cigarette emissions.

  5. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  6. Significance of ammonium compounds on nicotine exposure to cigarette smokers.

    NARCIS (Netherlands)

    Willems, E W; Rambali, B; Vleeming, W; Opperhuizen, Antoon; Amsterdam, J G C van

    2006-01-01

    The tobacco industry publicly contends that ammonia compounds are solely used as tobacco additive for purposes of tobacco flavoring, process conditioning and reduction of its subjective harshness and irritation. However, neither objective scientific reports, nor the contents of a large number of

  7. Ionic Liquids in the Synthesis of Antioxidant Targeted Compounds

    NARCIS (Netherlands)

    Falkeborg, Mia; Berton-Carabin, Claire C.; Cheong, Ling Zhi

    2016-01-01

    Oxidation of polyunsaturated lipids is a major cause of degradation of the sensory and nutritional quality of food products. The oxidation reactions lead to formation of volatile compounds generally associated with unpleasant flavors, which damages the sensory quality of foods. Lipid oxidation is

  8. Extended investigation of the twelve-flavor β-function

    Science.gov (United States)

    Fodor, Zoltán; Holland, Kieran; Kuti, Julius; Nógrádi, Dániel; Wong, Chik Him

    2018-04-01

    We report new results from high precision analysis of an important BSM gauge theory with twelve massless fermion flavors in the fundamental representation of the SU(3) color gauge group. The range of the renormalized gauge coupling is extended from our earlier work [1] to probe the existence of an infrared fixed point (IRFP) in the β-function reported at two different locations, originally in [2] and at a new location in [3]. We find no evidence for the IRFP of the β-function in the extended range of the renormalized gauge coupling, in disagreement with [2,3]. New arguments to guard the existence of the IRFP remain unconvincing [4], including recent claims of an IRFP with ten massless fermion flavors [5,6] which we also rule out. Predictions of the recently completed 5-loop QCD β-function for general flavor number are discussed in this context.

  9. Yeast diversity and native vigor for flavor phenotypes.

    Science.gov (United States)

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Family nonuniversal Z' models with protected flavor-changing interactions

    Science.gov (United States)

    Celis, Alejandro; Fuentes-Martín, Javier; Jung, Martin; Serôdio, Hugo

    2015-07-01

    We define a new class of Z' models with neutral flavor-changing interactions at tree level in the down-quark sector. They are related in an exact way to elements of the quark mixing matrix due to an underlying flavored U(1)' gauge symmetry, rendering these models particularly predictive. The same symmetry implies lepton-flavor nonuniversal couplings, fully determined by the gauge structure of the model. Our models allow us to address presently observed deviations from the standard model and specific correlations among the new physics contributions to the Wilson coefficients C9,10' ℓ can be tested in b →s ℓ+ℓ- transitions. We furthermore predict lepton-universality violations in Z' decays, testable at the LHC.

  11. Isovector and flavor-diagonal charges of the nucleon

    Science.gov (United States)

    Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram

    2018-03-01

    We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.

  12. Gamma ray constraints on flavor violating asymmetric dark matter

    DEFF Research Database (Denmark)

    Masina, I.; Panci, P.; Sannino, F.

    2012-01-01

    We show how cosmic gamma rays can be used to constrain models of asymmetric Dark Matter decaying into lepton pairs by violating flavor. First of all we require the models to explain the anomalies in the charged cosmic rays measured by PAMELA, Fermi and H.E.S.S.; performing combined fits we...... determine the allowed values of the Dark Matter mass and lifetime. For these models, we then determine the constraints coming from the measurement of the isotropic gamma-ray background by Fermi for a complete set of lepton flavor violating primary modes and over a range of DM masses from 100 GeV to 10 Te......V. We find that the Fermi constraints rule out the flavor violating asymmetric Dark Matter interpretation of the charged cosmic ray anomalies....

  13. A flavor-safe composite explanation of $R_K$

    CERN Document Server

    Carmona, Adrian

    2017-05-04

    In these proceedings we discuss a flavor-safe explanation of the anomaly found in $R_K= {\\cal B}(B \\to K \\mu^+ \\mu^-)/{\\cal B}(B \\to K e^+ e^-)$ by LHCb, within the framework of composite Higgs models. We present a model featuring a non-negligible degree of compositeness for all three generations of right-handed leptons, which leads to a violation of lepton-flavor universality in neutral current interactions while other constraints from quark- and lepton-flavor physics are met. Moreoever, the particular embedding of the lepton sector considered in this setup provides a parametrically enhanded contribution to the Higgs mass that can weak considerably the need for ultra-light top partners.

  14. Magnetized color flavor locked state and compact stars

    CERN Document Server

    Felipe, R Gonzalez; Martinez, A Perez

    2010-01-01

    The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.

  15. A Realistic $U(2)$ Model of Flavor arXiv

    CERN Document Server

    Linster, Matthias

    We propose a simple $U(2)$ model of flavor compatible with an $SU(5)$ GUT structure. All hierarchies in fermion masses and mixings arise from powers of two small parameters that control the $U(2)$ breaking. In contrast to previous $U(2)$ models this setup can be realized without supersymmetry and provides an excellent fit to all SM flavor observables including neutrinos. We also consider a variant of this model based on a $D_6 \\times U(1)_F$ flavor symmetry, which closely resembles the $U(2)$ structure, but allows for Majorana neutrino masses from the Weinberg operator. Remarkably, in this case one naturally obtains large mixing in the lepton sector from small mixing in the quark sector. The model also offers a natural option for addressing the Strong CP Problem and Dark Matter by identifying the Goldstone boson of the $U(1)_F$ factor as the QCD axion.

  16. The effect of toothpicks containing flavoring and flavoring plus jambu extract (spilanthol) to promote salivation in patients -diagnosed with opioid-induced dry mouth (xerostomia).

    Science.gov (United States)

    Davis, Bennet; Davis, Kathy; Bigelow, Sandy; Healey, Patricia

    To determine if the use of toothpicks infused with flavoring and flavoring plus the food additive spilanthol (Xerosticks™) improve saliva flow in people with opioid-induced dry mouth. Time series, nonrandomized, double-blind within-subject design. Private practice/academic multidisciplinary pain and palliative care clinic. Ten subjects with opioid-induced dry mouth were recruited, and all finished the study. Salivary flow and pH were measured consecutively at baseline, following use of a mango-flavored toothpick, and again after use of a mango-flavored toothpick infused with spilanthol. Salivary flow rates and saliva pH were compared between flavored and baseline, between flavored + spilanthol and baseline, and between the flavored and flavored + spilanthol. Mouthfeel of each toothpick was assessed using the Bluestone Mouthfeel Questionnaire. The primary measure was salivary flow, and the secondary measures were salivary pH and mouthfeel. Saliva flow increased 440 percent over baseline with use of a flavored toothpick and 628 percent over baseline with similarly flavored toothpicks infused with spilanthol, and these differences are significant (p = 0.00002). Saliva pH increased with both toothpicks (p = 0.04). The addition of spilanthol produced a greater increase in salivary flow (p = 0.05) compared to control toothpicks with flavoring alone. Furthermore, addition of spilanthol improved the "mouthfeel" of the toothpick (p = 0.00001). Toothpicks infused with either flavoring or flavoring plus spilanthol are likely to be an effective remedy for opioid-induced dry mouth. Addition of spilanthol may improve effectiveness over flavoring alone and may be better ac-cepted because spilanthol appears to improve mouthfeel.

  17. The strong coupling constant of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih

    2010-01-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  18. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  19. Domain wall fermion QCD with the exact one flavor algorithm

    Science.gov (United States)

    Jung, C.; Kelly, C.; Mawhinney, R. D.; Murphy, D. J.

    2018-03-01

    Lattice QCD calculations including the effects of one or more nondegenerate sea quark flavors are conventionally performed using the rational hybrid Monte Carlo (RHMC) algorithm, which computes the square root of the determinant of D†D , where D is the Dirac operator. The special case of two degenerate quark flavors with the same mass is described directly by the determinant of D†D —in particular, no square root is necessary—enabling a variety of algorithmic developments, which have driven down the cost of simulating the light (up and down) quarks in the isospin-symmetric limit of equal masses. As a result, the relative cost of single quark flavors—such as the strange or charm—computed with RHMC has become more expensive. This problem is even more severe in the context of our measurements of the Δ I =1 /2 K →π π matrix elements on lattice ensembles with G -parity boundary conditions, since G -parity is associated with a doubling of the number of quark flavors described by D , and thus RHMC is needed for the isospin-symmetric light quarks as well. In this paper we report on our implementation of the exact one flavor algorithm (EOFA) introduced by the TWQCD Collaboration for simulations including single flavors of domain wall quarks. We have developed a new preconditioner for the EOFA Dirac equation, which both reduces the cost of solving the Dirac equation and allows us to reuse the bulk of our existing high-performance code. Coupling these improvements with careful tuning of our integrator, the time per accepted trajectory in the production of our 2 +1 flavor G -parity ensembles with physical pion and kaon masses has been decreased by a factor of 4.2.

  20. Co-evolution as Tool for Diversifying Flavor and Aroma Profiles of Wines

    Directory of Open Access Journals (Sweden)

    Peter Morrison-Whittle

    2018-05-01

    Full Text Available The products of microbial metabolism form an integral part of human industry and have been shaped by evolutionary processes, accidentally and deliberately, for thousands of years. In the production of wine, a great many flavor and aroma compounds are produced by yeast species and are the targets of research for commercial breeding programs. Here we demonstrate how co-evolution with multiple species can generate novel interactions through serial co-culture in grape juice. We find that after ~65 generations, co-evolved strains and strains evolved independently show significantly different growth aspects and exhibit significantly different metabolite profiles. We show significant impact of co-evolution of Candida glabrata and Pichia kudriavzevii on the production of metabolites that affect the flavor and aroma of experimental wines. While co-evolved strains do exhibit novel interactions that affect the reproductive success of interacting species, we found no evidence of cross-feeding behavior. Our findings yield promising avenues for developing commercial yeast strains by using co-evolution to diversify the metabolic output of target species without relying on genetic modification or breeding technologies. Such approaches open up exciting new possibilities for harnessing microbial co-evolution in areas of agriculture and food related research generally.

  1. The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics.

    Science.gov (United States)

    Koppel, Kadri; Gibson, Michael; Alavi, Sajid; Aldrich, Greg

    2014-05-23

    The pet food industry is an important portion of the food and feed industries in the US. The objectives of this study were (1) to determine cooking method (baking or extrusion), meat inclusion (0 or 20%), and extrusion thermal to mechanical energy ratios (low, medium, and high) effects on sensory and volatile properties of pet foods, and (2) to determine associations among sensory and volatile characteristics of baked and extruded pet foods. Descriptive sensory analysis and gas chromatography-mass spectrometry were used to analyze the pet food samples. It was found that baked samples were lighter in color (2.0-2.6 baked vs. 3.5-4.3 extruded, color intensity scale 0-15), and had lower levels of attributes that indicated rancidity (i.e., fishy flavor; 0.3-0.6 baked, 0.6-1.5 extruded, scale 0-15), whereas extruded pet foods were more cohesive in mass, more friable, hard, and crisp, but less powdery than baked samples. Fresh meat inclusion tended to decrease bitterness and increase fishy flavor and cohesiveness of pet foods. High thermal to mechanical energy ratio during extrusion resulted in less musty and more porous kibbles. The main volatile compounds included aldehydes, such as hexanal and heptanal, ketones, and alcohols. Extruded samples did not contain methylpyrazine, while baked samples did not contain 2-butyl furan. Future studies should consider evaluating the relationship between sensory results and animal palatability for these types of foods.

  2. Effects of Cola-Flavored Beverages and Caffeine on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Dotsey, Roger P; Moser, Elizabeth A S; Eckert, George J; Gregory, Richard L

    To examine the effects of cola-flavored beverages and caffeine on growth and metabolism of Streptococcus mutans biofilm. This study was designed to determine if carbonated beverages or caffeine can increase S. mutans growth and biofilm formation and metabolic activity in vitro, potentially leading to increased S. mutans-associated cariogenicity in children that consume them. Six different cola-flavored products, plus pure caffeine, and pure high fructose corn syrup (HFCS), at different concentrations similar to those in the beverages were tested. A 16-hour culture of S. mutans was treated with different dilutions in bacteriological media. To test for the effect on biofilm formation, the biofilm was stained with crystal violet. The absorbance was determined to evaluate biofilm growth. Biofilm metabolic activity was measured based on biofilm having the ability to reduce XTT to a water-soluble orange compound. The inclusion of HFCS in the beverages, as well as pure HFCS, significantly enhanced bacterial biofilm formation and metabolic activity. Pure caffeine and the presence of caffeine in beverages did not significantly increase biofilm formation, but pure caffeine significantly increased metabolism, and Diet Coke had significantly greater metabolic activity than Caffeine-Free Diet Coke. HFCS increases both the biofilm formation and metabolism of S. mutans, and caffeine in some cases increases metabolism of S. mutans.

  3. 78 FR 11791 - Flavored Milk; Petition to Amend the Standard of Identity for Milk and 17 Additional Dairy Products

    Science.gov (United States)

    2013-02-20

    ... allow optional characterizing flavoring ingredients used in milk (e.g., chocolate flavoring added to... lower-calorie flavored milk would particularly benefit school children who, according to IDFA and NMPF...

  4. Radiatively induced neutrino mass model with flavor dependent gauge symmetry

    Science.gov (United States)

    Lee, SangJong; Nomura, Takaaki; Okada, Hiroshi

    2018-06-01

    We study a radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1) μ - τ, in which we consider bosonic dark matter. We also analyze the constraints from lepton flavor violations, muon g - 2, relic density of dark matter, and collider physics, and carry out numerical analysis to search for allowed parameter region which satisfy all the constraints and to investigate some predictions. Furthermore we find that a simple but adhoc hypothesis induces specific two zero texture with inverse mass matrix, which provides us several predictions such as a specific pattern of Dirac CP phase.

  5. Fermion mass hierarchies and flavor mixing from T' symmetry

    International Nuclear Information System (INIS)

    Ding Guijun

    2008-01-01

    We construct a supersymmetric model based on T ' x Z 3 x Z 9 flavor symmetry. At the leading order, the charged lepton mass matrix is not diagonal, T ' is broken completely, and the hierarchy in the charged lepton masses is generated naturally. Nearly tribimaximal mixing is predicted, and subleading effects induce corrections of order λ 2 , where λ is the Cabibbo angle. Both the up quark and down quark mass matrices' textures of the well-known U(2) flavor theory are produced at the leading order; realistic hierarchies in quark masses and Cabibbo-Kobayashi-Maskawa matrix elements are obtained. The vacuum alignment and subleading corrections are discussed in detail.

  6. New Physics searches in Heavy Flavor with ATLAS

    CERN Document Server

    Dearnaley, W; The ATLAS collaboration

    2013-01-01

    Precision determinations of the flavor sector allow the search for indirect new physics signatures. At the forefront of these studies are the determinations of interference of new physics with known Df=1 and Df=2 processes. The ATLAS collaboration explores this area with competitive results measuring the CP violating phase phi_s from Bs->J/Psi phi decays and investigating rare B decays with dileptons in the final state. The latest ATLAS results relevant for new physics searches in the heavy flavor sector will be discussed.

  7. Softening the supersymmetric flavor problem in orbifold grand unified theories

    International Nuclear Information System (INIS)

    Kajiyama, Yuji; Terao, Haruhiko; Kubo, Jisuke

    2004-01-01

    The infrared attractive force of the bulk gauge interactions is applied to soften the supersymmetric flavor problem in the orbifold SU(5) grand unified theory of Kawamura. Then this force aligns in the infrared regime the soft supersymmetry breaking terms out of their anarchical disorder at a fundamental scale, in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are suppressed at low energies. It is found that this dynamical alignment is sufficiently good compared with the current experimental bounds, as long as the diagonalization matrices of the Yukawa couplings are CKM-like

  8. A large Muon Electric Dipole Moment from Flavor?

    CERN Document Server

    Hiller, Gudrun; Laamanen, Jari; Rüppell, Timo

    2010-01-01

    We study the prospects and opportunities of a large muon electric dipole moment (EDM) of the order (10^{-24} - 10^{-22}) ecm. We investigate how natural such a value is within the general minimal supersymmetric extension of the Standard Model with CP violation from lepton flavor violation in view of the experimental constraints. In models with hybrid gauge-gravity mediated supersymmetry breaking a large muon EDM is indicative for the structure of flavor breaking at the Planck scale, and points towards a high messenger scale.

  9. Effects of 4 Probiotic Strains in Coculture with Traditional Starters on the Flavor Profile of Yogurt.

    Science.gov (United States)

    Tian, Huaixiang; Shen, Yongbo; Yu, Haiyan; He, Yujie; Chen, Chen

    2017-07-01

    To study the influence of probiotics on the flavor profile of yogurt, 4 probiotics, including Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus casei, were cofermented with traditional starters. The changes of bacterial growth, acid contents and volatile compounds of yogurt were investigated during fermentation and refrigerated storage. The strains that exhibited a low growth rate in milk did not significantly affect the bacterial population dynamics, acidity, or organic acid content during fermentation and storage. However, high viability and enhancement of postacidification were clearly observed in the samples that contained strains with a high growth rate in milk, particularly L. casei. A total of 45 volatile compounds, detected in most samples, were identified by headspace solid-phase micro-extraction followed by gas chromatography-mass spectrometry. Among these compounds, ketones and aldehydes were the most abundant. The presence of either L. rhamnosus or L. plantarum did not significantly affect the major volatile compounds, while contributions of L. casei and L. acidophilus were found in the formation of minor volatile metabolites. Electronic nose measurements exhibited a good discrimination of samples that contained different probiotics during refrigerated storage. © 2017 Institute of Food Technologists®.

  10. Chemical Studies of Yellow Tamarillo (Solanum betaceum Cav. Fruit Flavor by Using a Molecular Sensory Approach

    Directory of Open Access Journals (Sweden)

    Juliana María García

    2016-12-01

    Full Text Available The odor-active volatile compounds of yellow tamarillo fruit (S. betaceum Cav. were identified and quantified by using a sensomics approach, combining a gentle volatile extraction (solvent-assisted flavor evaporation (SAFE, gas chromatography-mass spectrometry (GC-MS, and sensory analyses (gas chromatography-olfactometry (GC-O and aroma extract dilution analysis (AEDA. The medium-term purpose of this work is to evaluate the change of odor-active volatiles during processing. Thus, (Z-3-hexenal, hexanal, and ethyl butanoate were identified as key aroma compounds of yellow tamarillo. The C6-aliphatic compounds, aliphatic esters, and terpenols were characterized as the volatiles responsible for the herbal-green, fruity, and fresh-mint odor notes of this variety, respectively. Additionally, one non-volatile compound contributing to the residual bitter taste of this fruit was isolated by a bioguided (taste sensory analyses fractionation. The freeze-dried fruit was sequentially liquid-liquid partitioned with solvents of different polarity, and then the ethyl acetate fraction was submitted to size exclusion chromatography. Then, its structure was elucidated as rosmarinic acid, by using common spectroscopic methods (mass spectrometry (MS and nuclear magnetic resonance (NMR. The amount of rosmarinic acid was quantified as 46.17 ± 1.20 mg/100 g of dried fruit, by the external standard method. Its bitter taste threshold value was determined by using the 3AFC (alternative forced choice method to be 37.00 ± 1.25 mg/L.

  11. Grape expectations: the role of cognitive influences in color-flavor interactions.

    Science.gov (United States)

    Shankar, Maya U; Levitan, Carmel A; Spence, Charles

    2010-03-01

    Color conveys critical information about the flavor of food and drink by providing clues as to edibility, flavor identity, and flavor intensity. Despite the fact that more than 100 published papers have investigated the influence of color on flavor perception in humans, surprisingly little research has considered how cognitive and contextual constraints may mediate color-flavor interactions. In this review, we argue that the discrepancies demonstrated in previously-published color-flavor studies may, at least in part, reflect differences in the sensory expectations that different people generate as a result of their prior associative experiences. We propose that color-flavor interactions in flavor perception cannot be understood solely in terms of the principles of multisensory integration (the currently dominant theoretical framework) but that the role of higher-level cognitive factors, such as expectations, must also be considered.

  12. An overview of the role of flavors in e-cigarette addiction

    OpenAIRE

    Erna Krüsemann; Sanne Boesveldt; Kees de Graaf; Reinskje Talhout

    2018-01-01

    Background E-cigarettes are available in a wide variety of flavors, which increases sensory appeal and stimulates smoking initiation, especially among youth. To determine regulatory measures on flavors in e-cigarettes, e.g. restriction or prohibition, more insight should be obtained in the role of flavors in e-cigarette addiction. Core components of addiction are liking, learning, and wanting. We provide an overview of e-cigarette flavors related to these aspects of addiction, including d...

  13. Contribution of Histidine and Lysine to the Generation of Volatile Compounds in Jinhua Ham Exposed to Ripening Conditions Via Maillard Reaction.

    Science.gov (United States)

    Zhu, Chao-Zhi; Zhao, Jing-Li; Tian, Wei; Liu, Yan-Xia; Li, Miao-Yun; Zhao, Gai-Ming

    2018-01-01

    To evaluate the role of Maillard reactions in the generation of flavor compounds in Jinhua ham, the reactions of glucose and ethanal with histidine and lysine, respectively, were studied by simulating the ripening conditions of Jinhua ham. The volatile products produced were analyzed using solid phase microextraction-gas chromatography/mass spectrometry. The results showed that 8 volatile compounds were generated by the reaction of glucose and histidine and 10 volatile compounds were generated by the reaction of glucose and lysine. Reactions of ethanal with lysine and with histidine both generated 31 volatile compounds that contributed to the flavor of Jinhua ham. This indicates that histidine and lysine related to Maillard reactions possibly play important roles in the generation of the unique flavor compounds in Jinhua ham. This research demonstrates that free amino acids participate in the generation of volatile compounds from Jinhua ham via the Maillard reaction and provides a basic mechanism to explain flavor formation in Jinhua ham. Jinhua ham is a well-known traditional Chinese dry-cured meat product. However, the formation of the compounds comprising its special flavor is not well understood. Our results indicate that Maillard reactions occur in Jinhua ham under ripening conditions. This work illustrates the contribution of Maillard reactions to the flavor of Jinhua ham. © 2017 Institute of Food Technologists®.

  14. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce

    International Nuclear Information System (INIS)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo

    2004-01-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell

  15. Food Color and Its Impact on Taste/Flavor Perception

    NARCIS (Netherlands)

    Spence, Charles; Piqueras-Fiszman, Betina

    2016-01-01

    Color is perhaps the single most important product-intrinsic sensory cue when it comes to setting our expectations regarding the likely taste and flavor of food and drink. To date, a large body of research has demonstrated that changing the hue or intensity/saturation of the color of a variety of

  16. Recent heavy flavor physics results from fixed target experiments

    International Nuclear Information System (INIS)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs

  17. Recent heavy flavor physics results from fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs.

  18. Composite Higgs-mediated flavor-changing neutral current

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Contino, Roberto

    2009-01-01

    We discuss how, in the presence of higher-dimensional operators, the standard model fermion masses can be misaligned in flavor space with the Yukawa couplings to the Higgs boson, even with only one Higgs doublet. Such misalignment results in flavor-violating couplings to the Higgs and hence flavor-changing neutral current processes from tree-level Higgs exchange. We perform a model-independent analysis of such an effect. Specializing to the framework of a composite Higgs with partially composite standard model gauge and fermion fields, we show that the constraints on the compositeness scale implied by ε K can be generically as strong as those from the exchange of heavy spin-1 resonances if the Higgs is light and strongly coupled to the new states. In the special and well-motivated case of a composite pseudo-Goldstone Higgs, we find that the shift symmetry acting on the Higgs forces an alignment of the fermion mass terms with their Yukawa couplings at leading order in the fermions' degree of compositeness, thus implying much milder bounds. As a consequence of the flavor-violating Higgs couplings, we estimate BR(t→ch)∼10 -4 and BR(h→tc)∼5x10 -3 both for a pseudo-Goldstone (if t R is fully composite) and for a generic composite Higgs. By virtue of the AdS/CFT correspondence, our results directly apply to 5-dimensional Randall-Sundrum compactifications.

  19. Unlocking color and flavor in superconducting strange quark matter

    International Nuclear Information System (INIS)

    Alford, Mark; Berges, Juergen; Rajagopal, Krishna

    1999-01-01

    We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m s and the chemical potential μ for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m s , at sufficiently large μ we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2) color+L+R symmetry unbroken. As a consequence, chiral symmetry is always broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m s we observe a first-order transition from the color-flavor-locked phase to color superconducting phase analogous to that in two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m s our analysis indicates that chiral symmetry breaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at the baryon Fermi surfaces at low densities

  20. Heating (Gapless) Color-Flavor Locked Quark Matter

    DEFF Research Database (Denmark)

    Fukushima, Kenji; Kouvaris, Christoforos; Rajagopal, Krishna

    2005-01-01

    We explore the phase diagram of neutral quark matter at high baryon density as a function of the temperature T and the strange quark mass Ms. At T=0, there is a sharp distinction between the insulating color-flavor locked (CFL) phase, which occurs where Ms^2/mu 0 and Delta_2->0) cross. Because we...

  1. High-p{sub T} dilepton tails and flavor physics

    Energy Technology Data Exchange (ETDEWEB)

    Greljo, Admir [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland); University of Sarajevo, Faculty of Science, Sarajevo (Bosnia and Herzegovina); Marzocca, David [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)

    2017-08-15

    We investigate the impact of flavor-conserving, non-universal quark-lepton contact interactions on the dilepton invariant mass distribution in p p → l{sup +}l{sup -} processes at the LHC. After recasting the recent ATLAS search performed at 13 TeV with 36.1 fb{sup -1} of data, we derive the best up-to-date limits on the full set of 36 chirality-conserving four-fermion operators contributing to the processes and estimate the sensitivity achievable at the HL-LHC. We discuss how these high-p{sub T} measurements can provide complementary information to the low-p{sub T} rare meson decays. In particular, we find that the recent hints on lepton-flavor universality violation in b → sμ{sup +}μ{sup -} transitions are already in mild tension with the dimuon spectrum at high-p{sub T} if the flavor structure follows minimal flavor violation. Even if the mass scale of new physics is well beyond the kinematical reach for on-shell production, the signal in the high-p{sub T} dilepton tail might still be observed, a fact that has been often overlooked in the present literature. In scenarios where new physics couples predominantly to third generation quarks, instead, the HL-LHC phase is necessary in order to provide valuable information. (orig.)

  2. Strong preference for mint snus flavor among research participants

    Directory of Open Access Journals (Sweden)

    Liane M. Schneller

    2017-12-01

    Full Text Available Introduction: The Family Smoking Prevention and Tobacco Control Act of 2009 allows the US FDA to regulate tobacco products, including the banning of characterizing flavors, such as fruit and candy, cigarettes. The availability of mint flavored snus may facilitate the use of the product if consumers find it more palatable with respect to taste, odor, pleasantness, and intensity. Methods: This study assessed product evaluation (PES, odor identification, odor intensity, and odor hedonics among 151 smokers enrolled in a clinical trial of snus substitution for cigarettes. Results: Far more participants selected Winterchill (N=110 than Robust (N=41, regardless of their menthol cigarette smoking status. Nicotine dependence was higher among those who selected Winterchill (4 vs 3 on Fagerstrom scale, p=0.017. Those who found Winterchill to be more satisfying, less aversive, and having a more intense, more pleasant odor than Robust were substantially more likely to select Winterchill for their one week trial. Conclusions: Findings indicate that subjective effect measures such as the PES and DEQ are capable of differentiating products in terms of flavor preference, and that smokers express a strong preference for mint flavored snus.

  3. Whole grain rice flavor asssociated with assorted bran colors

    Science.gov (United States)

    Recognition of the health benefits of whole grain and pigmented bran rice has resulted in their increased consumption. The bran contributes fiber, minerals, vitamins, and an array of phytonutrients to the diet. Understanding flavor differences arising from bran pigmentation helps consumers choose ...

  4. 9 CFR 381.119 - Declaration of artificial flavoring or coloring.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Declaration of artificial flavoring or..., DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... Containers § 381.119 Declaration of artificial flavoring or coloring. (a) When an artificial smoke flavoring...

  5. Sea quark matrix elements and flavor singlet spectroscopy on the lattice

    International Nuclear Information System (INIS)

    Lagae, J.F.

    1996-01-01

    I summarize the results of three recent lattice studies which use stochastic estimator techniques in order to investigate the flavor singlet dynamics in QCD. These include a measurement of the pion-nucleon σ-term, the computation of the flavor singlet axial coupling constant of the nucleon and a determination of flavor singlet meson screening lengths in finite temperature QCD

  6. WHY COLOR-FLAVOR LOCKING IS JUST LIKE CHIRAL SYMMETRY BREAKING

    International Nuclear Information System (INIS)

    PISARSKI, R.D.; RISCHKE, D.H.

    2000-01-01

    The authors review how a classification into representations of color and flavor can be used to understand the possible patterns of symmetry breaking for color superconductivity in dense quark matter. In particular, the authors show how for three flavors, color-flavor locking is precisely analogous to the usual pattern of chiral symmetry breaking in the QCD vacuum

  7. Prenatal flavor exposure affects growth, health and behavior of newly weaned piglets

    NARCIS (Netherlands)

    Oostindjer, M.; Bolhuis, J.E.; Brand, van den H.; Roura, E.; Kemp, B.

    2010-01-01

    Young animals can learn about flavors from the maternal diet that appear in the amniotic fluid and mother's milk, which may reduce neophobia for similarly flavored food types at weaning. Flavor learning may be beneficial for piglets, which after the rather abrupt weaning in pig husbandry frequently

  8. Spin polarization versus color–flavor locking in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2015-01-01

    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...

  9. High pressure processing with hot sauce flavoring enhances sensory quality for raw oysters (Crassostrea virginica)

    Science.gov (United States)

    This study evaluated the feasibility of flavoring raw oysters by placing them under pressure in the presence of selected flavorings. Hand-shucked raw oysters were processed at high pressure (600 MPa), in the presence or absence of (Sriracha®) flavoring, and evaluated by a trained sensory panel 3 an...

  10. Flavor condensates in brane models and dark energy

    Science.gov (United States)

    Mavromatos, Nick E.; Sarkar, Sarben; Tarantino, Walter

    2009-10-01

    In the context of a microscopic model of string-inspired foam, in which foamy structures are provided by brany pointlike defects (D-particles) in space-time, we discuss flavor mixing as a result of flavor nonpreserving interactions of (low-energy) fermionic stringy matter excitations with the defects. Such interactions involve splitting and capture of the matter string state by the defect, and subsequent re-emission. As a result of charge conservation, only electrically neutral matter can interact with the D-particles. Quantum fluctuations of the D-particles induce a nontrivial space-time background; in some circumstances, this could be akin to a cosmological Friedman-Robertson-Walker expanding-universe, with weak (but nonzero) particle production. Furthermore, the D-particle medium can induce an Mikheyev-Smirnov-Wolfenstein-type effect. We have argued previously, in the context of bosons, that the so-called flavor vacuum is the appropriate state to be used, at least for low-energy excitations, with energies/momenta up to a dynamically determined cutoff scale. Given the intriguing mass scale provided by neutrino flavor mass differences from the point of view of dark energy, we evaluate the flavor-vacuum expectation value (condensate) of the stress-energy tensor of the 1/2-spin fields with mixing in an effective-low-energy quantum field theory in this foam-induced curved space-time. We demonstrate, at late epochs of the Universe, that the fermionic vacuum condensate behaves as a fluid with negative pressure and positive energy; however, the equation of state has wfermion>-1/3 and so the contribution of the fermion-fluid flavor vacuum alone could not yield accelerating universes. Such contributions to the vacuum energy should be considered as (algebraically) additive to the flavored boson contributions, evaluated in our previous works; this should be considered as natural from (broken) target-space supersymmetry that characterizes realistic superstring

  11. Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods.

    Science.gov (United States)

    Zhang, Yan; Guo, Shuntang; Liu, Zhisheng; Chang, Sam K C

    2012-08-01

    Off-flavor of soymilk is a barrier to the acceptance of consumers. The objectionable soy odor can be reduced through inhibition of their formation or through removal after being formed. In this study, soymilk was prepared by three grinding methods (ambient, cold, and hot grinding) from two varieties (yellow Prosoy and a black soybean) before undergoing three heating processes: stove cooking, one-phase UHT (ultrahigh temperature), and two-phase UHT process using a Microthermics direct injection processor, which was equipped with a vacuuming step to remove injected water and volatiles. Eight typical soy odor compounds, generated from lipid oxidation, were extracted by a solid-phase microextraction method and analyzed by gas chromatography. The results showed that hot grinding and cold grinding significantly reduced off-flavor as compared with ambient grinding, and hot grinding achieved the best result. The UHT methods, especially the two-phase UHT method, were effective to reduce soy odor. Different odor compounds showed distinct concentration patterns because of different formation mechanisms. The two varieties behaved differently in odor formation during the soymilk-making process. Most odor compounds could be reduced to below the detection limit through a combination of hot grinding and two-phase UHT processing. However, hot grinding gave lower solid and protein recoveries in soymilk.

  12. OPTIMASI DAN PEMODELAN PROSES RECOVER FLAVOR DARI LIMBAH CAIR INDUSTRI PENGOLAHAN RAJUNGAN DENGAN REVERSE OSMOSIS

    Directory of Open Access Journals (Sweden)

    Uju

    2009-04-01

    Full Text Available The waste water of blue crab pasteurization has potential in environmental pollution. It contained TSS of 206.5mg.1-1, BOD 7,092.6mg.1-1 and COD of 51,000mg.1-1. on the other hand, it also contains an interesting flavor compound, which composed of 0.23% non protein nitrogen and 17 amino acids where the highest was glutamic acid one. In this study, pre-filtration step using filter size 0.3 µ followed by reverse osmosis has been used to reduce these pollutions load and flavor compound recovery. During pre-filtration steps, TSS was reduced to 74.8% so turbidity decrased reased until 31%. After reverse osmosis process, BOD, and COD decreased more than 99%, and there was no amino acids detected in permeate stream. Factors that affect performance of reverse osmosis were transmembrane pressure, temperature and pH. The higher transmembrane pressure, temperature and pH resulted the higher the flux permeate. The use of higher temperature make flux increasing, eventually increasing transmembrane pressure make the flux increased only at transmembrane pressure less than 716 kPa. The protein rejection was influenced unsignifanctly by transmembrane pressure, temperature and pH. During concentrating flux declined exponentially by time function. At concentration factor 2.75 resulted 79% and 12% of increasing protein and NPN, respectively. The amino acids content can be increased 2−23 times of the origin. Even arginin and sistin, the amino acids that were undetectable initially, but they can bedetected at concentration of 0.0360 and 0.0250 (w/v respectively at the end of the process. Hidrolysis and fermentation process can increase the amino acid content 31−45 times

  13. Heavy Flavor Decays of the Z0 and a Search for Flavor Changing Neutral Currents

    Energy Technology Data Exchange (ETDEWEB)

    Walston, S

    2004-06-22

    Presented here are the results of a direct search for flavor changing neutral currents via the rare process Z{sup 0} {yields} bs and a measurement of R{sub bs} = {Lambda}(Z{sup 0} {yields} bs)/{Lambda}(Z{sup 0} {yields} hadrons). Because the decays Z{sup 0} {yields} b{bar b} and Z{sup 0} {yields} c{bar c} contribute significant backgrounds to Z{sup 0} {yields} bs, simultaneous measurements of R{sub b} = {Lambda}(Z{sup 0} {yields} b{bar b})/{Lambda}(Z{sup 0} {yields} hadrons) and R{sub c} = {Lambda}(Z{sup 0} {yields} c{bar c})/{Lambda}(Z{sup 0} {yields} hadrons) were also made. The standard double tag technique was extended and self calibrating tags were used for s, c, and b quarks. These measurements were made possible by the unique capabilities of the SLAC Large Detector (SLD) at the Stanford Linear Accelerator Center (SLAC): The b and c tags relied upon the SLD's VXD3 307 megapixel CCD vertex detector for topological and kinematic reconstruction of the B and D decay vertices; the s tag identified K{sup {+-}} mesons using the particle identification capabilities of SLD's Cherenkov Ring Imaging Detector (CRID), and K{sub S}{sup 0} mesons and {Lambda} hadrons by kinematic reconstruction of their decay vertices in SLD's 5120 channel central drift chamber (CDC) particle tracking system.

  14. Baryon-antibaryon flavor correlations in e+e- annihilation

    International Nuclear Information System (INIS)

    Liang Zuo-tang; Xie Qu-bing

    1991-01-01

    Under the assumption that in e + e - annihilations baryons and antibaryons are produced by the stochastic combination of quarks and antiquarks, the baryon-antibaryon flavor correlations come completely from the global compensation of the flavors of all of the quarks and antiquarks. This can at least provide us with a lower limit for the baryon-antibaryon flavor correlations in various models, and by comparing them with experiment, we can see if and to what extent one has the necessity or freedom to introduce any other mechanism to produce extra baryon-antibaryon flavor correlations. Starting from this assumption, we have made calculations on left-angle n Λbar Λ right-angle/left-angle n Λ right-angle, left-angle n Ξ - bar Λ right-angle/left-angle n Ξ - right-angle, and left-angle n Λ(1520)bar Λ right-angle/left-angle n Λ(1520) right-angle, which have already been measured, and on similar quantities such as left-angle n Σ ± bar Λ right-angle left-angle n Σ ± right-angle, left-angle n Σ *± bar Λ right-angle/left-angle n Σ *± right-angle,left-angle n Ξ *- bar Λ right-angle left-angle n Ξ *- right-angle, and left-angle n Ω - bar Λ right-angle/left-angle n Ω - right-angle, which have not been measured yet. Comparing with the available data, it seems that there is little room left for other mechanisms which result in extra flavor correlations

  15. The use of diacetyl (2,3-butanedione) and related flavoring substances as flavorings added to foods-Workplace safety issues.

    Science.gov (United States)

    Hallagan, John B

    2017-08-01

    In 2001, staff of the National Institute of Occupational Safety and Health (NIOSH) identified diacetyl (2,3-butanedione) as a "marker" of exposure in a microwave popcorn manufacturing facility in which workers developed severe respiratory illness. Subsequent investigations identified additional workers in food and flavor manufacturing facilities also with severe respiratory illness. The flavor industry, NIOSH, and federal and state regulators conducted significant programs to address workplace safety concerns related to the manufacture of flavors and foods containing added flavors. These programs, initiated in 2001, continue today. Key to the success of these programs is understanding what flavors added to foods are and how they are manufactured, how they are incorporated into foods, the specific characteristics of diacetyl and related flavoring substances, and what actions may be taken to assure the safest workplaces possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A systematic review of consumer preference for e-cigarette attributes: Flavor, nicotine strength, and type

    Science.gov (United States)

    Nemati, Mehdi; Zheng, Yuqing

    2018-01-01

    Objective Systematic review of research examining consumer preference for the main electronic cigarette (e-cigarette) attributes namely flavor, nicotine strength, and type. Method A systematic search of peer-reviewed articles resulted in a pool of 12,933 articles. We included only articles that meet all the selection criteria: (1) peer-reviewed, (2) written in English, and (3) addressed consumer preference for one or more of the e-cigarette attributes including flavor, strength, and type. Results 66 articles met the inclusion criteria for this review. Consumers preferred flavored e-cigarettes, and such preference varied with age groups and smoking status. We also found that several flavors were associated with decreased harm perception while tobacco flavor was associated with increased harm perception. In addition, some flavor chemicals and sweeteners used in e-cigarettes could be of toxicological concern. Finally, consumer preference for nicotine strength and types depended on smoking status, e-cigarette use history, and gender. Conclusion Adolescents could consider flavor the most important factor trying e-cigarettes and were more likely to initiate vaping through flavored e-cigarettes. Young adults overall preferred sweet, menthol, and cherry flavors, while non-smokers in particular preferred coffee and menthol flavors. Adults in general also preferred sweet flavors (though smokers like tobacco flavor the most) and disliked flavors that elicit bitterness or harshness. In terms of whether flavored e-cigarettes assisted quitting smoking, we found inconclusive evidence. E-cigarette users likely initiated use with a cigarette like product and transitioned to an advanced system with more features. Non-smokers and inexperienced e-cigarettes users tended to prefer no nicotine or low nicotine e-cigarettes while smokers and experienced e-cigarettes users preferred medium and high nicotine e-cigarettes. Weak evidence exists regarding a positive interaction between menthol

  17. A systematic review of consumer preference for e-cigarette attributes: Flavor, nicotine strength, and type.

    Science.gov (United States)

    Zare, Samane; Nemati, Mehdi; Zheng, Yuqing

    2018-01-01

    Systematic review of research examining consumer preference for the main electronic cigarette (e-cigarette) attributes namely flavor, nicotine strength, and type. A systematic search of peer-reviewed articles resulted in a pool of 12,933 articles. We included only articles that meet all the selection criteria: (1) peer-reviewed, (2) written in English, and (3) addressed consumer preference for one or more of the e-cigarette attributes including flavor, strength, and type. 66 articles met the inclusion criteria for this review. Consumers preferred flavored e-cigarettes, and such preference varied with age groups and smoking status. We also found that several flavors were associated with decreased harm perception while tobacco flavor was associated with increased harm perception. In addition, some flavor chemicals and sweeteners used in e-cigarettes could be of toxicological concern. Finally, consumer preference for nicotine strength and types depended on smoking status, e-cigarette use history, and gender. Adolescents could consider flavor the most important factor trying e-cigarettes and were more likely to initiate vaping through flavored e-cigarettes. Young adults overall preferred sweet, menthol, and cherry flavors, while non-smokers in particular preferred coffee and menthol flavors. Adults in general also preferred sweet flavors (though smokers like tobacco flavor the most) and disliked flavors that elicit bitterness or harshness. In terms of whether flavored e-cigarettes assisted quitting smoking, we found inconclusive evidence. E-cigarette users likely initiated use with a cigarette like product and transitioned to an advanced system with more features. Non-smokers and inexperienced e-cigarettes users tended to prefer no nicotine or low nicotine e-cigarettes while smokers and experienced e-cigarettes users preferred medium and high nicotine e-cigarettes. Weak evidence exists regarding a positive interaction between menthol flavor and nicotine strength.

  18. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e-Liquids without Nicotine

    OpenAIRE

    Muthumalage, Thivanka; Prinz, Melanie; Ansah, Kwadwo O.; Gerloff, Janice; Sundar, Isaac K.; Rahman, Irfan

    2018-01-01

    Background: The respiratory health effects of inhalation exposure to e-cigarette flavoring chemicals are not well understood. We focused our study on the immuno-toxicological and the oxidative stress effects by these e-cigarette flavoring chemicals on two types of human monocytic cell lines, Mono Mac 6 (MM6) and U937. The potential to cause oxidative stress by these flavoring chemicals was assessed by measuring the production of reactive oxygen species (ROS). We hypothesized that the flavorin...

  19. Volatile sulfur compounds in tropical fruits

    Directory of Open Access Journals (Sweden)

    Robert J. Cannon

    2018-04-01

    Full Text Available Global production and demand for tropical fruits continues to grow each year as consumers are enticed by the exotic flavors and potential health benefits that these fruits possess. Volatile sulfur compounds (VSCs are often responsible for the juicy, fresh aroma of tropical fruits. This poses a challenge for analytical chemists to identify these compounds as most often VSCs are found at low concentrations in most tropical fruits. The aim of this review is to discuss the extraction methods, enrichment techniques, and instrumentation utilized to identify and quantify VSCs in natural products. This will be followed by a discussion of the VSCs reported in tropical and subtropical fruits, with particular attention to the odor and taste attributes of each compound. Finally, the biogenesis and enzymatic formation of specific VSCs in tropical fruits will be highlighted along with the contribution each possesses to the aroma of their respective fruit. Keywords: Tropical fruits, Volatile sulfur compounds, Extraction methods

  20. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation.

    Science.gov (United States)

    Udomsil, Natteewan; Rodtong, Sureelak; Choi, Yeung Joon; Hua, Yanglin; Yongsawatdigul, Jirawat

    2011-08-10

    The potential of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation was elucidated. Four strains of T. halophilus isolated from fish sauce mashes were inoculated to anchovy mixed with 25% NaCl with an approximate cell count of 10(6) CFU/mL. The α-amino content of 6-month-old fish sauce samples inoculated with T. halophilus was 780-784 mM. The addition of T. halophilus MRC10-1-3 and T. halophilus MCD10-5-10 resulted in a reduction of histamine (P sauce inoculated with T. halophilus showed high contents of total amino acids with predominantly high glutamic acid. Major volatile compounds in fish sauce were 2-methylpropanal, 2-methylbutanal, 3-methylbutanal, and benzaldehyde. T. halophilus-inoculated fish sauce samples demonstrated the ability to reduce dimethyl disulfide, a compound contributing to a fecal note. The use of T. halophilus for fish sauce fermentation improves amino acid profiles and volatile compounds as well as reduces biogenic amine content of a fish sauce product.

  1. Three Lectures of Flavor and CP violation within and Beyond the Standard Model

    CERN Document Server

    Gori, Stefania

    2016-01-01

    These notes are based on the lectures I gave at the 2015 European School of High-Energy Physics (ESHEP2015). I discuss 1) flavor physics within the Standard Model, 2) effective field theories and Minimal Flavor Violation, 3) flavor physics in theories beyond the Standard Model and "high energy" flavor transitions of the top quark and of the Higgs boson. As a bi-product, I present the most updated constraints from the measurements of B_s -> mu^+mu^-, as well as I discuss the most recent development in the LHC searches for top flavor changing couplings.

  2. Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves.

    Science.gov (United States)

    Mendoza-Poudereux, Isabel; Muñoz-Bertomeu, Jesús; Navarro, Alicia; Arrillaga, Isabel; Segura, Juan

    2014-05-01

    Transgenic Lavandula latifolia plants overexpressing the linalool synthase (LIS) gene from Clarkia breweri, encoding the LIS enzyme that catalyzes the synthesis of linalool were generated. Most of these plants increased significantly their linalool content as compared to controls, especially in the youngest leaves, where a linalool increase up to a 1000% was observed. The phenotype of increased linalool content observed in young leaves was maintained in those T1 progenies that inherit the LIS transgene, although this phenotype was less evident in the flower essential oil. Cross-pollination of transgenic spike lavender plants allowed the generation of double transgenic plants containing the DXS (1-deoxy-d-xylulose-5-P synthase), coding for the first enzyme of the methyl-d-erythritol-4-phosphate pathway, and LIS genes. Both essential oil yield and linalool content in double DXS-LIS transgenic plants were lower than that of their parentals, which could be due to co-suppression effects linked to the structures of the constructs used. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Process Parameters Affecting the Synthesis of Natural Flavors by Shiitake (Lentinula edodes during the Production of a Non-Alcoholic Beverage

    Directory of Open Access Journals (Sweden)

    Sibel Özdemir

    2017-04-01

    Full Text Available A novel alcohol-free beverage with a fruity, slightly sour, sweetish, fresh, and plum-like flavor was produced by incorporating the edible mushroom shiitake (Lentinula edodes into the fermentation process. Shiitake pellets were used as a biocatalyst to promote the synthesis of the fruity esters methyl 2-methylbutanoate and 2-phenylethanol from amino acids and an organic acid present in the wort. We investigated the impact of two critical process parameters (volumetric power input and inoculum concentration on the morphology of, and flavor production by, the shiitake pellets in a 1 L stirred bioreactor. Increasing the volumetric power input and biomass concentration influenced the morphology of the pellets and promoted the production of the most important flavor compound methyl 2-methylbutanoate in the beverage. Furthermore the worty off-flavor methional was degraded during the cultivation in stirred bioreactor by shiitake pellets. These findings provide useful information to facilitate the scale-up of the biotransformation and fermentation process in bioreactors.

  4. Prospecting for new physics in the Higgs and flavor sectors

    International Nuclear Information System (INIS)

    Bishara, Fady

    2015-01-01

    We explore two directions in beyond the standard model physics: dark matter model building and probing new sources of CP violation. In dark matter model building, we consider two scenarios where the stability of dark matter derives from the flavor symmetries of the standard model. The first model contains a flavor singlet dark matter candidate whose couplings to the visible sector are proportional to the flavor breaking parameters. This leads to a metastable dark matter with TeV scale mediators. In the second model, we consider a fully gauged SU(3) 3 flavor model with a flavor triplet dark matter. Consequently, the dark matter multiplet is charged while the standard model fields are neutral under a remnant Z 3 which ensures dark matter stability. We show that a Dirac fermion dark matter with radiative splitting in the multiplet must have a mass in the range [0:5; 5] TeV in order to satisfy all experimental constraints. We then turn our attention to Higgs portal dark matter and investigate the possibility of obtaining bounds on the up, down, and strange quark Yukawa couplings. If Higgs portal dark matter is discovered, we find that direct detection rates are insensitive to vanishing light quark Yukawa couplings. We then review flavor models and give the expected enhancement or suppression of the Yukawa couplings in those models. Finally, in the last two chapters, we develop techniques for probing CP violation in the Higgs coupling to photons and in rare radiative decays of B mesons. While theoretically clean, we find that these methods are not practical with current and planned detectors. However, these techniques can be useful with a dedicated detector (e.g., a gaseous TPC). In the case of radiative B meson decay B 0 → (K* → Kππ)γ, the techniques we develop also allow the extraction of the photon polarization fraction which is sensitive to new physics contributions since, in the standard model, the right(left) handed polarization fraction is of O(Λ QCD =m b

  5. Prospecting for new physics in the Higgs and flavor sectors

    Energy Technology Data Exchange (ETDEWEB)

    Bishara, Fady [Univ. of Cincinnati, OH (United States)

    2015-05-01

    We explore two directions in beyond the standard model physics: dark matter model building and probing new sources of CP violation. In dark matter model building, we consider two scenarios where the stability of dark matter derives from the flavor symmetries of the standard model. The first model contains a flavor singlet dark matter candidate whose couplings to the visible sector are proportional to the flavor breaking parameters. This leads to a metastable dark matter with TeV scale mediators. In the second model, we consider a fully gauged SU(3)3 flavor model with a flavor triplet dark matter. Consequently, the dark matter multiplet is charged while the standard model fields are neutral under a remnant Z3 which ensures dark matter stability. We show that a Dirac fermion dark matter with radiative splitting in the multiplet must have a mass in the range [0:5; 5] TeV in order to satisfy all experimental constraints. We then turn our attention to Higgs portal dark matter and investigate the possibility of obtaining bounds on the up, down, and strange quark Yukawa couplings. If Higgs portal dark matter is discovered, we find that direct detection rates are insensitive to vanishing light quark Yukawa couplings. We then review flavor models and give the expected enhancement or suppression of the Yukawa couplings in those models. Finally, in the last two chapters, we develop techniques for probing CP violation in the Higgs coupling to photons and in rare radiative decays of B mesons. While theoretically clean, we find that these methods are not practical with current and planned detectors. However, these techniques can be useful with a dedicated detector (e.g., a gaseous TPC). In the case of radiative B meson decay B0 → (K* → Kππ) γ, the techniques we develop also allow the extraction of the photon polarization fraction which is sensitive to new physics contributions since, in the standard model, the right(left) handed

  6. Up sector of minimal flavor violation: top quark properties and direct D meson CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Berger, Joshua; Hewett, JoAnne L.; Li, Ye

    2013-07-01

    Minimal Flavor Violation in the up-type quark sector leads to particularly interesting phenomenology due to the interplay of flavor physics in the charm sector and collider physics from flavor changing processes in the top sector. We study the most general operators that can affect top quark properties and D meson decays in this scenario, concentrating on two CP violating operators for detailed studies. The consequences of these effective operators on charm and top flavor changing processes are generically small, but can be enhanced if there exists a light flavor mediator that is a Standard Model gauge singlet scalar and transforms under the flavor symmetry group. This flavor mediator can satisfy the current experimental bounds with a mass as low as tens of GeV and explain observed D-meson direct CP violation. Additionally, the model predicts a non-trivial branching fraction for a top quark decay that would mimic a dijet resonance.

  7. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption.

    Science.gov (United States)

    Parker, Mango; Capone, Dimitra L; Francis, I Leigh; Herderich, Markus J

    2018-03-14

    Pioneering investigations into precursors of fruity and floral flavors established the importance of terpenoid and C 13 -norisoprenoid glycosides to the flavor of aromatic wines. Nowadays flavor precursors in grapes and wine are known to be structurally diverse, encompassing glycosides, amino acid conjugates, odorless volatiles, hydroxycinnamic acids, and many others. Flavor precursors mainly originate in the grape berry but also from oak or other materials involved in winemaking. Flavors are released from precursors during crushing and subsequent production steps by enzymatic and nonenzymatic transformations, via microbial glycosidases, esterases, C-S lyases, and decarboxylases, and through acid-catalyzed hydrolysis and chemical rearrangements. Flavors can also be liberated from glycosides and amino acid conjugates by oral microbiota. Hence, it is increasingly likely that flavor precursors contribute to retronasal aroma formation through in-mouth release during consumption, prompting a shift in focus from identifying aroma precursors in grapes to understanding aroma precursors present in bottled wine.

  8. Short communication: The influence of solids concentration and bleaching agent on bleaching efficacy and flavor of sweet whey powder.

    Science.gov (United States)

    Jervis, M G; Smith, T J; Drake, M A

    2015-04-01

    Recent studies have demonstrated the effect of bleaching conditions and bleaching agent on flavor and functional properties of whey protein ingredients. Solids concentration at bleaching significantly affected bleaching efficacy and flavor effects of different bleaching agents. It is not known if these parameters influence quality of sweet whey powder (SWP). The purpose of this study was to determine the effects of solids concentration and bleaching agent on the flavor and bleaching efficacy of SWP. Colored cheddar whey was manufactured, fat separated, and pasteurized. Subsequently, the whey (6.7% solids) was bleached, concentrated using reverse osmosis (RO) to 14% solids, and then spray dried, or whey was concentrated before bleaching and then spray dried. Bleaching treatments included a control (no bleaching, 50 °C, 60 min), hydrogen peroxide (HP; 250 mg/kg, 50 °C, 60 min), benzoyl peroxide (50 mg/kg, 50 °C, 60 min), lactoperoxidase (20 mg/kg of HP, 50 °C, 30 min), and external peroxidase (MaxiBright, DSM Food Specialties, Delft, the Netherlands; 2 dairy bleaching units/mL, 50 °C, 30 min). The experiment was repeated in triplicate. Sensory properties and volatile compounds of SWP were evaluated by a trained panel and gas chromatography-mass spectrometry, respectively. Bleaching efficacy (norbixin destruction) and benzoic acid were measured by HPLC. Differences in bleaching efficacy, sensory and volatile compound profiles, and benzoic acid were observed with different bleaching agents, consistent with previous studies. Solids concentration affected bleaching efficacy of HP, but not other bleaching agents. The SWP from whey bleached with HP or lactoperoxidase following RO had increased cardboard and fatty flavors and higher concentrations of lipid oxidation compounds compared with SWP from whey bleached before RO. The SWP bleached with benzoyl peroxide after RO contained less benzoic acid than SWP from whey bleached before RO. These results indicate that

  9. Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast

    Directory of Open Access Journals (Sweden)

    Bruna Trindade de Carvalho

    2017-11-01

    Full Text Available Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc. This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages.

  10. Equilibrium flavor dynamics during the cosmic confinement transition

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1988-10-01

    The dynamics of the flavor composition of strongly interacting matter during the cosmic confinement transition is followed up in a simplified thermodynamical model. Relying on thermal, mechanical and chemical equilibrium the strangeness fraction of strongly interacting matter is analyzed. Due to equilibrium with respect to ΔS=0 and ΔS=1 weak interactions the relations between different flavors depend strongly on the poorly known lepton excess. In a universe where the lepton (antilepton) excess is in the same order of magnitude as the baryon excess, the strange quark abundancies are suppressed (enhanced). In the hadron phase the strange baryons carry up to a half of the baryon excess. (author) 22 refs.; 9 figs

  11. Flavored gauge mediation in the Peccei-Quinn NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Kowalska, Kamila [National Centre for Nuclear Research,Hoża 69, 00-681 Warsaw (Poland); Pawełczyk, Jacek [Institute of Theoretical Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Sessolo, Enrico Maria [National Centre for Nuclear Research,Hoża 69, 00-681 Warsaw (Poland)

    2015-12-22

    We investigate a particular version of the Peccei-Quinn (PQ) NMSSM characterized by an economical and rigidly hierarchical flavor structure and based on flavored gauge mediation and on some considerations inspired by string theory GUTs. In this way we can express the Lagrangian of the PQ NMSSM through very few parameters. The obtained model is studied numerically and confronted with the most relevant phenomenological constraints. We show that typical spectra are for the most part too heavy to be significantly probed at the LHC, but regions of the parameter space exist yielding signatures that might possibly be observed during Run II. We also calculate the fine tuning of the model. We show that, in spite of the appearance of large scales in the superpotential and soft terms, it does not exceed the tuning present in the MSSM for equivalent spectra, which is of the order of 10{sup 4}.

  12. Physics of neutrino flavor transformation through matter–neutrino resonances

    Directory of Open Access Journals (Sweden)

    Meng-Ru Wu

    2016-01-01

    Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  13. Superconductivity from gauge/gravity duality with flavor

    International Nuclear Information System (INIS)

    Ammon, Martin; Erdmenger, Johanna; Kaminski, Matthias; Kerner, Patrick

    2009-01-01

    We consider thermal strongly-coupled N=2 SYM theory with fundamental matter at finite isospin chemical potential. Using gauge/gravity duality, i.e. a probe of two flavor D7-branes embedded in the AdS black hole background, we find a critical temperature at which the system undergoes a second order phase transition. The critical exponent of this transition is one half and coincides with the result from mean field theory. In the thermodynamically favored phase, a flavor current acquires a vev and breaks an Abelian symmetry spontaneously. This new phase shows signatures known from superconductivity, such as an infinite dc conductivity and a gap in the frequency-dependent conductivity. The gravity setup allows for an explicit identification of the degrees of freedom in the dual field theory, as well as for a dual string picture of the condensation process.

  14. The role of top in heavy flavor physics

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, J.L. [Stanford Linear Accelerator Center, Stanford, CA (United States)

    1997-01-01

    The implications of the massive top quark on heavy flavor transitions are explored. We review the generation of quark masses and mixings and the determination techniques, and present the status of the elements of the weak mixing matrix. Purely leptonic decays of heavy mesons are briefly summarized. We present a general introduction to flavor changing neutral currents and an extensive summary of radiative and other rare decay modes. The physics of neutral meson mixing is reviewed and applied to each meson system. We describe the phenomenology of CP violation and how it may be measured in meson decays. Standard Model predictions are given in each case and the effects of physics beyond the Standard Model are also discussed. Throughout, we contrast these transitions in the K and B meson systems to those in the D meson and top-quark sectors.

  15. Electroweak and flavor dynamics at hadron colliders - I

    International Nuclear Information System (INIS)

    Elchtent, E.; Lane, K.

    1998-02-01

    This is the first of two reports cataloging the principal signatures of electroweak and flavor dynamics at anti pp and pp colliders. Here, we discuss some of the signatures of dynamical electroweak and flavor symmetry breaking. The framework for dynamical symmetry breaking we assume is technicolor, with a walking coupling α TC , and extended technicolor. The reactions discussed occur mainly at subprocess energies √s approx-lt 1 TeV. They include production of color-singlet and octet technirhos and their decay into pairs of technipions, longitudinal weak bosons, or jets. Technipions, in turn, decay predominantly into heavy fermions. This report will appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics (Snowmass 96)

  16. The role of top in heavy flavor physics

    International Nuclear Information System (INIS)

    Hewett, J.L.

    1997-01-01

    The implications of the massive top quark on heavy flavor transitions are explored. We review the generation of quark masses and mixings and the determination techniques, and present the status of the elements of the weak mixing matrix. Purely leptonic decays of heavy mesons are briefly summarized. We present a general introduction to flavor changing neutral currents and an extensive summary of radiative and other rare decay modes. The physics of neutral meson mixing is reviewed and applied to each meson system. We describe the phenomenology of CP violation and how it may be measured in meson decays. Standard Model predictions are given in each case and the effects of physics beyond the Standard Model are also discussed. Throughout, we contrast these transitions in the K and B meson systems to those in the D meson and top-quark sectors

  17. Evaluating the Gapless Color-Flavor Locked Phase

    DEFF Research Database (Denmark)

    Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna

    2004-01-01

    In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We recently argued that the next phase down in density (as...... a function of decreasing quark chemical potential mu or increasing strange quark mass M_s) is the new ``gapless CFL'' (``gCFL'') phase in which only seven quasiparticles have a gap, while there are gapless quasiparticles described by two dispersion relations at three momenta. There is a continuous quantum...... phase transition from CFL to gCFL quark matter at M_s^2/mu approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken a linear combination "Q-tilde" of electric and color charges, but it is a Q-tilde-conductor with gapless Q-tilde-charged quasiparticles...

  18. Exploring flavor structure of supersymmetry breaking at B factories

    International Nuclear Information System (INIS)

    Goto, Toru; Shindou, Tetsuo; Tanaka, Minoru; Okada, Yasuhiro; Shimizu, Yasuhiro

    2003-01-01

    We investigate flavor physics at present and future B factories in order to distinguish supersymmetric models. We evaluate CP asymmetries in various B decay modes, Δm Bd , Δm Bs , and ε K in three supersymmetric models, i.e. the minimal supergravity, the SU(5) SUSY GUT with right handed neutrinos, and a supersymmetric model with U(2) flavor symmetry. The allowed regions of Δm Bs /Δm Bd and CP asymmetries in B → J/ψK S and b → sγ are different for the three models so that it is possible to distinguish the three models by precise determinations of these observables in near future experiments. (author)

  19. Entanglement entropy and differential entropy for massive flavors

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2015-01-01

    In this paper we compute the holographic entanglement entropy for massive flavors in the D3-D7 system, for arbitrary mass and various entangling region geometries. We show that the universal terms in the entanglement entropy exactly match those computed in the dual theory using conformal perturbation theory. We derive holographically the universal terms in the entanglement entropy for a CFT perturbed by a relevant operator, up to second order in the coupling; our results are valid for any entangling region geometry. We present a new method for computing the entanglement entropy of any top-down brane probe system using Kaluza-Klein holography and illustrate our results with massive flavors at finite density. Finally we discuss the differential entropy for brane probe systems, emphasising that the differential entropy captures only the effective lower-dimensional Einstein metric rather than the ten-dimensional geometry.

  20. Some restrictions on possible supergroups and flavor groups

    International Nuclear Information System (INIS)

    Saclioglu, C.

    1977-01-01

    It is pointed out that a suggestion of Nambu which yields diquark currents from the usual flavor or color quark currents may be relevant for classifying similar currents which arise in gauge theories unifying strong, weak, and electromagnetic interactions. The requirement that charges of SU(3)/sub color/ x SU(n)/sub flavor/ plus the new diquark currents complete the generators of a simple vectorlike supergroup G can be met only in the cases n = 3,G = F 4 ; n = 6,G = E 7 ; and n = 7,G = SU(15) for n 2 and E 6 result from an analogous generalization of SU(3) and SU(3) x SU(3) x SU(3). Explicit generators involving diquark and leptoquark charges are constructed for the groups G 2 and F 4