WorldWideScience

Sample records for flammable gas single

  1. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  2. Safety basis for selected activities in single-shell tanks with flammable gas concerns. Revision 1

    International Nuclear Information System (INIS)

    Schlosser, R.L.

    1996-01-01

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for single-shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade

  3. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  4. Methodology for flammable gas evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, J.D., Westinghouse Hanford

    1996-06-12

    There are 177 radioactive waste storage tanks at the Hanford Site. The waste generates flammable gases. The waste releases gas continuously, but in some tanks the waste has shown a tendency to trap these flammable gases. When enough gas is trapped in a tank`s waste matrix, it may be released in a way that renders part or all of the tank atmosphere flammable for a period of time. Tanks must be evaluated against previously defined criteria to determine whether they can present a flammable gas hazard. This document presents the methodology for evaluating tanks in two areas of concern in the tank headspace:steady-state flammable-gas concentration resulting from continuous release, and concentration resulting from an episodic gas release.

  5. Flammable gas safety program

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Steele, R.

    1994-01-01

    This report describes the status of developing analytical methods to account for the organic constituents in Hanford waste tanks, with particular emphasis on those tanks that have been assigned to the Flammable Gas Watch List. Six samples of core segments from Tank 101-SY, obtained during the window E core sampling, have been analyzed for organic constituents. Four of the samples were from the upper region, or convective layer, of the tank and two were from the lower, nonconvective layer. The samples were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry (GC/MS). The major components detected were ethylenediaminetetraacetic acid (EDTA), nitroso-iminodiacetic acid (NIDA), nitrilotriacetic acid (NTA), citric acid (CA), succinic acid (SA), and ethylenediaminetriacetic acid (ED3A). The chelator of highest concentration was EDTA in all six samples analyzed. Liquid chromatography (LC) was used to quantitate low molecular weight acids (LMWA) including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon (TOC) in the samples analyzed was accounted for by these acids. Oxalate constituted approximately 40% of the TOC in the nonconvective layer samples. Oxalate was found to be approximately 3 to 4 times higher in concentration in the nonconvective layer than in the convective layer. During FY 1993, LC methods for analyzing LWMA, and two chelators N-(2-hydroxyethyl) ethylenediaminetriacetic acid and EDTA, were transferred to personnel in the Analytical Chemistry Laboratory and the 222-S laboratory

  6. Flammable gas project topical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D.

    1997-01-29

    The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

  7. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2005-03-03

    This document describes the qualitative evaluation of frequency and consequences for DST and SST representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant structures, systems and components (SSCs) and/or technical safety requirements (TSRs) were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support WP-13033, Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  8. Flammable gas program topical report

    International Nuclear Information System (INIS)

    Johnson, G.D.

    1996-01-01

    The major emphasis of this report is to describe what has been learned about the generation, retention, and release of flammable gas mixtures in high-level waste tanks. A brief overview of efforts to characterize the gas composition will be provided. The report also discusses what needs to be learned about the phenomena, how the Unreviewed Safety Question will be closed, and the approach for removing tanks from the Watch List

  9. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks; TOPICAL

    International Nuclear Information System (INIS)

    SMALLEY, J.L.

    1999-01-01

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR)

  10. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    International Nuclear Information System (INIS)

    SMALLEY, J.L.

    1999-01-01

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR)

  11. Flammable Gas Safety Self-Study 52827

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Laboratory

    2016-03-17

    This course, Flammable Gas Safety Self-Study (COURSE 52827), presents an overview of the hazards and controls associated with commonly used, compressed flammable gases at Los Alamos National Laboratory (LANL).

  12. The Chemistry of Flammable Gas Generation

    International Nuclear Information System (INIS)

    ZACH, J.J.

    2000-01-01

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data

  13. The Chemistry of Flammable Gas Generation

    Energy Technology Data Exchange (ETDEWEB)

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  14. Fixed target flammable gas upgrades

    International Nuclear Information System (INIS)

    Schmitt, R.; Squires, B.; Gasteyer, T.; Richardson, R.

    1996-12-01

    In the past, fixed target flammable gas systems were not supported in an organized fashion. The Research Division, Mechanical Support Department began to support these gas systems for the 1995 run. This technical memo describes the new approach being used to supply chamber gasses to fixed target experiments at Fermilab. It describes the engineering design features, system safety, system documentation and performance results. Gas mixtures provide the medium for electron detection in proportional and drift chambers. Usually a mixture of a noble gas and a polyatomic quenching gas is used. Sometimes a small amount of electronegative gas is added as well. The mixture required is a function of the specific chamber design, including working voltage, gain requirements, high rate capability, aging and others. For the 1995 fixed target run all the experiments requested once through gas systems. We obtained a summary of problems from the 1990 fixed target run and made a summary of the operations logbook entries from the 1991 run. These summaries primarily include problems involving flammable gas alarms, but also include incidents where Operations was involved or informed. Usually contamination issues were dealt with by the experimenters. The summaries are attached. We discussed past operational issues with the experimenters involved. There were numerous incidents of drift chamber failure where contaminated gas was suspect. However analyses of the gas at the time usually did not show any particular problems. This could have been because the analysis did not look for the troublesome component, the contaminant was concentrated in the gas over the liquid and vented before the sample was taken, or that contaminants were drawn into the chambers directly through leaks or sub-atmospheric pressures. After some study we were unable to determine specific causes of past contamination problems, although in argon-ethane systems the problems were due to the ethane only

  15. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, R.E.

    1996-04-15

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high

  16. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Raymond, R.E.

    1996-01-01

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ''beyond extremely unlikely'' frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high

  17. Remote flammable gas detection/measuring device.

    CSIR Research Space (South Africa)

    Kononov, VA

    1999-11-01

    Full Text Available This research report presents the results of an evaluation of the existing open path remote flammable gas detection/monitoring technology and provides recommendations on possible limited implementation of this technology and future development...

  18. 46 CFR 154.1350 - Flammable gas detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a fixed flammable gas detection system that has sampling points in: (1) Each cargo pump room; (2) Each cargo...

  19. Flammable gas data evaluation. Progress report

    International Nuclear Information System (INIS)

    Whitney, P.D.; Meyer, P.A.; Miller, N.E.

    1996-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements for insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line

  20. Flammable gas project expert elicitation results for Hanford Site double-shell tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This report documents the results of the second phase of parameter quantification by the flammable gas expert panel. This second phase is focused on the analysis of flammable gas accidents in the Hanford Site double-shell tanks. The first phase of parameter quantification, performed in 1997 was focused on the analysis of Hanford single-shell tanks

  1. Retained Gas Sampling Results for the Flammable Gas Program

    International Nuclear Information System (INIS)

    Bates, J.M.; Mahoney, L.A.; Dahl, M.E.; Antoniak, Z.I.

    1999-01-01

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples

  2. Retained Gas Sampling Results for the Flammable Gas Program

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  3. Flammability of Gas-Filled Polymers

    Directory of Open Access Journals (Sweden)

    Ushkov Valentin Anatol'evich

    2017-09-01

    Full Text Available The regularities of flame propagation on the horizontal surface of gas-filled polymers are considered depending on the concentration of oxygen in the oxidizer flow. The values of the coefficients in the expression describing relationship between the rate of flame propagation on the surface of foams and oxygen concentration are obtained. It was shown that with the mass content of reactive organophosphorus compounds reaching 4.0...5.9%, non-smoldering resole foam plastics with high performance characteristics are obtained. It was found that in order to obtain moderately combustible polyurethane foams based on oxyethylated phosphorus-containing polyols, the phosphorus concentration should not exceed 3 % of mass. To obtain flame-retardant urea-formaldehyde foam cellular plastics, the concentration of phosphorus should not exceed 0.3 % of mass. Physical-mechanical properties and flammability indices of developed gas-filled polymers based on reactive oligomers are presented.

  4. Strategy for resolution of the flammable gas safety issue

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D.

    1997-05-23

    This document provides a strategy for resolution of the Flammable Gas Safety Issue. It defines the key elements required for the following: Closing the Flammable Gas Unreviewed Safety Question (USQ); Providing the administrative basis for resolving the safety issue; Defining the data needed to support these activities; and Providing the technical and administrative path for removing tanks from the Watch List.

  5. Strategy for resolution of the flammable gas safety issue

    International Nuclear Information System (INIS)

    Johnson, G.D.

    1997-01-01

    This document provides a strategy for resolution of the Flammable Gas Safety Issue. It defines the key elements required for the following: Closing the Flammable Gas Unreviewed Safety Question (USQ); Providing the administrative basis for resolving the safety issue; Defining the data needed to support these activities; and Providing the technical and administrative path for removing tanks from the Watch List

  6. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Meacham, J.E.

    2008-01-01

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  7. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Meacham, J.E.

    2009-01-01

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  8. Assessment of gas flammability in transuranic waste container

    International Nuclear Information System (INIS)

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-01-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions

  9. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Hu, T.A.

    2007-01-01

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  10. A summary description of the flammable gas tank safety program

    International Nuclear Information System (INIS)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks

  11. Engineering task plan for flammable gas atmosphere mobile color video camera systems

    International Nuclear Information System (INIS)

    Kohlman, E.H.

    1995-01-01

    This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser

  12. Hazard assessments of double-shell flammable gas tanks

    International Nuclear Information System (INIS)

    Fox, G.L.; Stepnewski, D.D.

    1994-01-01

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures

  13. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  14. Project W-030 flammable gas verification monitoring test

    International Nuclear Information System (INIS)

    BARKER, S.A.

    1999-01-01

    This document describes the verification monitoring campaign used to document the ability of the new ventilation system to mitigate flammable gas accumulation under steady state tank conditions. This document reports the results of the monitoring campaign. The ventilation system configuration, process data, and data analysis are presented

  15. Progress toward mitigation of flammable gas Tank 241-SY-101

    International Nuclear Information System (INIS)

    Lentsch, J.W.; Babad, H.; Hanson, C.E.; Kirch, N.W.

    1994-01-01

    The mixing pump installed in Hanford Site tank 241-SY-101 has been shown to be effective in releasing flammable gases in a controlled manner. This controlled release of gas prevents the accumulation and episodic release above flammable limits. More work needs to be done to optimize the pumping operation, and to evaluate the long-term effects of mixing so as to assure that no undesirable changes have occurred to the waste. Other alternative mitigation concepts are still being evaluated as a backup to mixing

  16. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  17. Evaluation of Flammable Gas Monitoring and Ventilation System Alternatives for Double-Contained Receiver Tanks

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    1999-01-01

    This study identifies possible flammable gas monitoring and ventilation system alternatives to ensure adequate removal of flammable gases from the Double-Contained Receiver Tank (DCRT) primary tanks during temporary storage of small amounts of waste. The study evaluates and compares these alternatives to support closure of the Flammable Gas Unreviewed Safety Question (USQ TF-96-04330)

  18. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    International Nuclear Information System (INIS)

    Sherwood, D.J.

    1995-01-01

    Flammable gases generated in radioactive liquids. Twenty-five high level radioactive liquid waste storage tanks located underground at the Hanford Site are on a Flammable Gas Watch List because they contain waste which tends to retain the gases generated in it until rather large quantities are available for sudden release to the tank head space; if a tank is full it has little dome space, and a flammable concentration of gases could be produced--even if the tank is ventilated. If the waste has no tendency to retain gas generated in it then a continual flammable gas concentration in the tank dome space is established by the gas production rate and the tank ventilation rate (or breathing rate for unventilated tanks); this is also a potential problem for Flammable Gas Watch List tanks, and perhaps other Hanford tanks too. All Flammable Gas Watch List tanks will be fitted with Standard Hydorgen Monitoring Systems so that their behavior can be observed. In some cases, such as tank 241-SY-101, the data gathered from such observations will indicate that tank conditions need to be mitigated so that gas release events are either eliminated or rendered harmless. For example, a mixer pump was installed in tank 241-SY-101; operating the pump stirs the waste, replacing the large gas release events with small releases of gas that are kept below twenty-five percent of the lower flammability limit by the ventilation system. The concentration of hydrogen measured in Hanford waste tanks is greater than that of any other flammable gas. Hydrogen levels measured with a Standard Hydrogen Monitoring System in excess of 0.6 volume percent will cause Westinghouse Hanford Company to consider actions which will decrease the amount of flammable gas in the tank

  19. Characterization strategy for the flammable gas safety issue

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Roberts, J.S.

    1997-06-01

    The characterization strategy for resolving the flammable gas safety issue for Hanford waste tanks is based on a structured logic diagram (SLD) that displays the outcomes necessary to reach the desired goal of making flammable gas risk acceptable. The diagram provides a structured path that can identify all information inputs, data as well as models, needed to achieve the goal. Tracing the path from need to outcome provides an immediate and clear justification and defense of a specific need. The diagram itself is a open-quote picture of a risk calculation close-quote and forms the basis for a quantitative model of risk. The SLID, with the risk calculation, identifies options for characterization, mitigation, and controls that have the maximum effect in reducing risk. It provides quantitative input to risk-based decision making so that options are chosen for maximum impact at least cost

  20. A risk-based approach to flammable gas detector spacing.

    Science.gov (United States)

    Defriend, Stephen; Dejmek, Mark; Porter, Leisa; Deshotels, Bob; Natvig, Bernt

    2008-11-15

    Flammable gas detectors allow an operating company to address leaks before they become serious, by automatically alarming and by initiating isolation and safe venting. Without effective gas detection, there is very limited defense against a flammable gas leak developing into a fire or explosion that could cause loss of life or escalate to cascading failures of nearby vessels, piping, and equipment. While it is commonly recognized that some gas detectors are needed in a process plant containing flammable gas or volatile liquids, there is usually a question of how many are needed. The areas that need protection can be determined by dispersion modeling from potential leak sites. Within the areas that must be protected, the spacing of detectors (or alternatively, number of detectors) should be based on risk. Detector design can be characterized by spacing criteria, which is convenient for design - or alternatively by number of detectors, which is convenient for cost reporting. The factors that influence the risk are site-specific, including process conditions, chemical composition, number of potential leak sites, piping design standards, arrangement of plant equipment and structures, design of isolation and depressurization systems, and frequency of detector testing. Site-specific factors such as those just mentioned affect the size of flammable gas cloud that must be detected (within a specified probability) by the gas detection system. A probability of detection must be specified that gives a design with a tolerable risk of fires and explosions. To determine the optimum spacing of detectors, it is important to consider the probability that a detector will fail at some time and be inoperative until replaced or repaired. A cost-effective approach is based on the combined risk from a representative selection of leakage scenarios, rather than a worst-case evaluation. This means that probability and severity of leak consequences must be evaluated together. In marine and

  1. Summary of tank information relating salt well pumping to flammable gas safety issues

    International Nuclear Information System (INIS)

    Caley, S.M.; Mahoney, L.A.; Gauglitz, P.A.

    1996-09-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Active use of these SSTs was phased out completely by November 1980, and the first step toward final disposal of the waste in the SSTs is interim stabilization, which involves removing essentially all of the drainable liquid from the tank. Stabilization can be achieved administratively, by jet pumping to remove drainable interstitial liquid, or by supernatant pumping. To date, 116 tanks have been declared interim stabilized; 44 SSTs have had drainable liquid removed by salt well jet pumping. Of the 149 SSTs, 19 are on the Flammable Gas Watch List (FGWL) because the waste in these tanks is known or suspected, in all but one case, to generate and retain mixtures of flammable gases, including; hydrogen, nitrous oxide, and ammonia. Salt well pumping to remove the drainable interstitial liquid from these SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. The scope of this work is to collect and summarize information, primarily tank data and observations, that relate salt well pumping to flammable gas safety issues. While the waste within FGWL SSTs is suspected offering flammable gases, the effect of salt well pumping on the waste behavior is not well understood. This study is being conducted for the Westinghouse Hanford Company as part of the Flammable Gas Project at the Pacific Northwest National Laboratory (PNNL). Understanding the historical tank behavior during and following salt well pumping will help to resolve the associated safety issues

  2. An approximate-reasoning-based method for screening flammable gas tanks

    International Nuclear Information System (INIS)

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-03-01

    High-level waste (HLW) produces flammable gases as a result of radiolysis and thermal decomposition of organics. Under certain conditions, these gases can accumulate within the waste for extended periods and then be released quickly into the dome space of the storage tank. As part of the effort to reduce the safety concerns associated with flammable gas in HLW tanks at Hanford, a flammable gas watch list (FGWL) has been established. Inclusion on the FGWL is based on criteria intended to measure the risk associated with the presence of flammable gas. It is important that all high-risk tanks be identified with high confidence so that they may be controlled. Conversely, to minimize operational complexity, the number of tanks on the watchlist should be reduced as near to the true number of flammable risk tanks as the current state of knowledge will support. This report presents an alternative to existing approaches for FGWL screening based on the theory of approximate reasoning (AR) (Zadeh 1976). The AR-based model emulates the inference process used by an expert when asked to make an evaluation. The FGWL model described here was exercised by performing two evaluations. (1) A complete tank evaluation where the entire algorithm is used. This was done for two tanks, U-106 and AW-104. U-106 is a single shell tank with large sludge and saltcake layers. AW-104 is a double shell tank with over one million gallons of supernate. Both of these tanks had failed the screening performed by Hodgson et al. (2) Partial evaluations using a submodule for the predictor likelihood for all of the tanks on the FGWL that had been flagged previously by Whitney (1995)

  3. 46 CFR 111.105-32 - Bulk liquefied flammable gas and ammonia carriers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk liquefied flammable gas and ammonia carriers. 111... gas and ammonia carriers. (a) Each vessel that carries bulk liquefied flammable gases or ammonia as a.... (2) The term “gas-dangerous” does not include the weather deck of an ammonia carrier. (c) Each...

  4. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  5. Strategy for resolution of the Flammable Gas Safety Issue

    International Nuclear Information System (INIS)

    Johnson, G.D.

    1995-01-01

    The purpose of this document is to provide the general strategy for resolution of the flammable gas safety issue; it is not a detailed description of program activities. budgets and schedules. Details of the program activities have been issued (Johnson and Sherwood, 1994) and the information pertaining to budgets is provided in the FY 1995-1997 Multi-Year Work Plan for Tank Waste Remediation System (TWRS) (Program Element 1.1.1.2.02.). The key element in this strategy is to provide an understanding of the behavior of each of the Flammable Gas Watch List tanks. While a review of historical information does provide some insight, it is necessary to gather current information about the gases, behavior and nature of the waste,. and about the control systems that maintain and monitor the waste. Analysis of this information will enable TWRS to determine the best approach to place any tank in a safe condition, if it is found to be in an unsafe state

  6. Flammable gas tank waste level reconciliation tank 241-SX-105

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980

  7. Flammable gas tank waste level reconcilliation tank 241-SX-102

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ''Wallet Report'' is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980

  8. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    International Nuclear Information System (INIS)

    Estey, S.D.

    1998-01-01

    Several Hanford waste tanks have been observed to exhibit periodic releases of significant quantities of flammable gases. Because potential safety issues have been identified with this type of waste behavior, applicable tanks were equipped with instrumentation offering the capability to continuously monitor gases released from them. This document was written to cover three primary areas: (1) describe the current technical basis for requiring flammable gas monitoring, (2) update the technical basis to include knowledge gained from monitoring the tanks over the last three years, (3) provide the criteria for removal of Standard Hydrogen Monitoring System(s) (SHMS) from a waste tank or termination of other flammable gas monitoring activities in the Hanford Tank farms

  9. Results of gas monitoring of double-shell flammable gas watch list tanks

    International Nuclear Information System (INIS)

    Wilkins, N.E.

    1995-01-01

    Tanks 103-SY; 101-AW; 103-, 104-, and 105-AN are on the Flammable Gas Watch List. Recently, standard hydrogen monitoring system (SHMS) cabinets have been installed in the vent header of each of these tanks. Grab samples have been taken once per week, and a gas chromatograph was installed on tank 104-AN as a field test. The data that have been collected since gas monitoring began on these tanks are summarized in this document

  10. Resolve. Version 2.5: Flammable Gas Accident Analysis Tool Acceptance Test Plan and Test Results

    International Nuclear Information System (INIS)

    LAVENDER, J.C.

    2000-01-01

    RESOLVE. Version 2 .5 is designed to quantify the risk and uncertainty of combustion accidents in double-shell tanks (DSTs) and single-shell tanks (SSTs). The purpose of the acceptance testing is to ensure that all of the options and features of the computer code run; to verify that the calculated results are consistent with each other; and to evaluate the effects of the changes to the parameter values on the frequency and consequence trends associated with flammable gas deflagrations or detonations

  11. Operational experience in mitigating flammable gas releases from Hanford Site Tank 241-SY-101

    International Nuclear Information System (INIS)

    Lentsch, J.W.; Babad, H.; Kirch, N.W.

    1995-01-01

    Flammable gases consisting of hydrogen, nitrous oxide, ammonia, and methane are periodically released from Hanford Site waste tank 241-SY-101 at concentrations above the flammable limit. A large mixer pump installed in the tank in 1993 has effectively mitigated this problem by continuously releasing small amounts of the flammable gases at the rate they are generated. Tank 241-SY-101 is also equipped with multiple high-sensitivity gas monitoring systems and level detection systems to measure the quantity of gas that is retained in and released from the waste

  12. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  13. Modelling of hot surface ignition within gas turbines subject to flammable gas in the intake

    DEFF Research Database (Denmark)

    Pedersen, Lea Duedahl; Nielsen, Kenny Krogh; Yin, Chungen

    2017-01-01

    Controlling risks associated with fires and explosions from leaks of flammable fluids at oil and gas facilities is paramount to ensuring safe operations. The gas turbine is a significant potential source of ignition; however, the residual risk is still not adequately understood. A model has been...... but decreases with increase in initial mixture temperature and pressure. The model shows a great potential in reliable prediction of the risk of hot surface ignition within gas turbines in the oil and gas industry. In the future, a dedicated experimental study will be performed not only to improve...

  14. Electrical safety in flammable gas/vapor laden atmospheres

    CERN Document Server

    Korver, WOE

    1992-01-01

    This book provides comprehensive coverage of electrical system installation within areas where flammable gases and liquids are handled and processed. The accurate hazard evaluation of flammability risks associated with chemical and petrochemical locations is critical in determining the point at which the costs of electrical equipment and installation are balanced with explosion safety requirements. The book offers the most current code requirements along with tables and illustrations as analytic tools. Environmental characteristics are covered in Section 1 along with recommended electrical ins

  15. Flammable gas issues in double-contained receiver tanks. Revision 2

    International Nuclear Information System (INIS)

    Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

    1998-08-01

    Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a reference document describing the current knowledge of flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases. The report incorporates these analyses into two models for calculating headspace flammability, one based on instantaneous equilibrium between dissolved gases and the headspace and one incorporating limited release rates based on mass-transfer considerations. Finally, it demonstrates the use of both models to estimate headspace flammable gas concentrations and minimum ventilation rates required to maintain concentrations below 25% of the LFL

  16. The effect of hydrogen enrichment towards the flammability limits of natural gas in conventional combustion

    International Nuclear Information System (INIS)

    Izirwan Izhab; Nur Syuhada Mohd Shokri; Nurul Saadah Sulaiman; Mohd Zulkifli Mohamad Noor; Siti Zubaidah Sulaiman; Rosmawati Naim; Norida Ridzuan, Mohd Masri Razak; Abdul Halim Abdul Razik; Zulkafli Hassan

    2010-01-01

    The use of hydrogenated fuels shows a considerable promise for the applications in gas turbines and internal combustion engines. The aims of this study are to determine the flammability limits of natural gas/ air mixtures and to investigate the effect of hydrogen enrichment on the flammability limits of natural gas/ air mixtures up to 60 vol % of hydrogen/fuel volume ratio at atmospheric pressure and ambient temperature. The experiments were performed in a 20 L closed explosion vessel where the mixtures were ignited by using a spark permanent wire that was placed at the centre of the vessel. The pressure-time variations during explosions of natural gas/ air mixtures in an explosion vessel were recorded. Moreover, the explosion pressure data is used to determine the flammability limits that flame propagation is considered to occur if explosion pressure is greater than 0.1 bar. Therefore, in this study, the results show that the range of flammability limits are from 6 vol % to 15 vol % and by the addition of hydrogen in natural gas proved to extend the initial lower flammability limit of 6 vol % to 2 vol % of methane. (author)

  17. Flammable gas issues in double-contained receiver tanks. Revision 1

    International Nuclear Information System (INIS)

    Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

    1998-06-01

    Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a technical basis or reference document for flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases

  18. Flammable gas issues in double-contained receiver tanks. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

    1998-06-01

    Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a technical basis or reference document for flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases.

  19. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    International Nuclear Information System (INIS)

    Choi, A.S.; Iverson, D.C.

    1996-01-01

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  20. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    International Nuclear Information System (INIS)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY)

  1. System acceptance and operability test report for the RMCS exhauster C on flammable gas tanks

    International Nuclear Information System (INIS)

    Waldo, E.J.

    1998-01-01

    This test report documents the completion of acceptance and operability testing of the rotary mode core sampling (RMCS) exhauster C, as modified for use as a major stack (as defined by the Washington State Department of Health) on flammable gas tanks

  2. Operation of the multigap resistive plate chamber using a gas mixture free of flammable components

    CERN Document Server

    Akindinov, A; Antonioli, P; Arcelli, S; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lee, K; Lee, S C; Lioublev, E; Luvisetto, M L; Margotti, A; Martemyanov, A N; Nania, R; Noferini, F; Otiougova, P; Pesci, A; Pinazza, O; Polozov, P A; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Smirnitsky, A V; Tchoumakov, M M; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A

    2004-01-01

    We have investigated the operation of the multigap resistive plate chamber (MRPC) for the ALICE-TOF system with a gas mixture free of flammable components. Two different gas mixtures, with and without iso-C//4H//1//0 have been used to measure the performance of the MRPC. The efficiency, time resolution, total charge, and the fast to total charge ratio have been found to be comparable.

  3. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  4. Control Decisions for Flammable Gas Hazards in Double Contained Receiver Tanks (DCRTs)

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in double-contained receiver tanks (DCRTs) made at control decision meetings on November 16, 17, and 18, 1999, on April 19,2000, and on May 10,2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996) for DCRTs. Following the contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the U.S. Department of Energy (DOE), Office of River Protection (ORP) for review and approval.

  5. Flammable Gas Refined Safety Analysis Tool Software Verification and Validation Report for Resolve Version 2.5

    International Nuclear Information System (INIS)

    BRATZEL, D.R.

    2000-01-01

    The purpose of this report is to document all software verification and validation activities, results, and findings related to the development of Resolve Version 2.5 for the analysis of flammable gas accidents in Hanford Site waste tanks

  6. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  7. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop number-sign 2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages

  8. Results of vapor space monitoring of flammable gas Watch List tanks

    International Nuclear Information System (INIS)

    Wilkins, N.E.

    1997-01-01

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed

  9. Results of Vapor Space Monitoring of Flammable Gas Watch List Tanks

    Energy Technology Data Exchange (ETDEWEB)

    MCCAIN, D.J.

    2000-09-27

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, released rate, and ventilation rate) is also discussed.

  10. A refined safety analysis approach for closure of the Hanford Site flammable gas unreviewed safety question

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1997-01-01

    Following a 1990 investigation into flammable gas generation, retention, and release mechanisms within the Hanford Site high-level waste tanks, personnel concluded that the existing Authorization Basis documentation did not adequately evaluate flammable gas hazards. This declaration was based primarily on the fact that personnel did not adequately consider hydrogen and nitrous oxide evolution within the material in certain waste tanks and subsequent hypothetical ignition in the development of safety documentation for the waste tanks. The US Department of Energy-Headquarters subsequently declared an Unreviewed Safety Question (USQ). Although work scope has been focused on closure of the USQ since 1990, the DOE has yet to close the USQ because of considerable uncertainty regarding essential technical parameters and associated risk. The DOE recently approved a Basis for Interim Operation to revise the Authorization Basis for managing the tank farms, however, the USQ remains open. The two fundamental requirements for closure of the flammable gas USQ are as follows: development of a defensible technical basis for existing controls; development of a process to assess the adequacy of controls as the waste tank mission progresses

  11. Equipment design guidance document for flammable gas waste storage tank new equipment

    International Nuclear Information System (INIS)

    Smet, D.B.

    1996-01-01

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas

  12. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    International Nuclear Information System (INIS)

    Vincent, A

    2006-01-01

    The objective of the analysis was to determine the failure of the Vent and Purge (V and P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V and P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V and P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V and P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V and P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V and P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V and P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V and P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex

  13. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  14. Assessment of alternative mitigation concepts for Hanford flammable gas tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Schienbein, L.A.; Hudson, J.D.; Eschbach, E.J.; Lessor, D.L.

    1994-09-01

    This report provides a review and assessment of four selected mitigation concepts: pump jet mixing, sonic vibration, dilution, and heating. Though the relative levels of development of these concepts are quite different, some definite conclusions are made on their comparative feasibility. Key findings of this report are as follows. A mixer pump has proven to be a safe and effective active mitigation method in Tank 241-SY-101, and the authors are confident that mixer pumps will effectively mitigate other tanks with comparable waste configurations and properties. Low-frequency sonic vibration is also predicted to be effective for mitigation. Existing data cannot prove that dilution can mitigate gas release event (GRE) behavior. However, dilution is the only concept of the four that potentially offers passive mitigation. Like dilution, heating the waste cannot be proven with available information to mitigate GRE behavior. The designs, analyses, and data from which these conclusions are derived are presented along with recommendations.

  15. Assessment of alternative mitigation concepts for Hanford flammable gas tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Schienbein, L.A.; Hudson, J.D.; Eschbach, E.J.; Lessor, D.L.

    1994-09-01

    This report provides a review and assessment of four selected mitigation concepts: pump jet mixing, sonic vibration, dilution, and heating. Though the relative levels of development of these concepts are quite different, some definite conclusions are made on their comparative feasibility. Key findings of this report are as follows. A mixer pump has proven to be a safe and effective active mitigation method in Tank 241-SY-101, and the authors are confident that mixer pumps will effectively mitigate other tanks with comparable waste configurations and properties. Low-frequency sonic vibration is also predicted to be effective for mitigation. Existing data cannot prove that dilution can mitigate gas release event (GRE) behavior. However, dilution is the only concept of the four that potentially offers passive mitigation. Like dilution, heating the waste cannot be proven with available information to mitigate GRE behavior. The designs, analyses, and data from which these conclusions are derived are presented along with recommendations

  16. The role of quantitative uncertainty in the safety analysis of flammable gas accidents in Hanford waste tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    Following a 1990 investigation into flammable gas generation, retention, and release mechanisms within the Hanford Site high-level waste tanks, personnel concluded that the existing Authorization Basis documentation did not adequately evaluate flammable gas hazards. The US Department of Energy Headquarters subsequently declared the flammable gas hazard as an unresolved safety issue. Although work scope has been focused on resolution of the issue, it has yet to be resolved due to considerable uncertainty regarding essential technical parameters and associated risk. Resolution of the Flammable Gas Safety Issue will include the identification of a set of controls for the Authorization Basis for the tanks which will require a safety analysis of flammable gas accidents. A traditional nuclear facility safety analysis is based primarily on the analysis of a set of bounding accidents to represent the risks of the possible accidents and hazardous conditions at a facility. While this approach may provide some indication of the bounding consequences of accidents for facilities, it does not provide a satisfactory basis for identification of facility risk or safety controls when there is considerable uncertainty associated with accident phenomena and/or data as is the case with potential flammable gas accidents at the Hanford Site. This is due to the difficulties in identifying the bounding case and reaching consensus among safety analysts, facility operations and engineering, and the regulator on the implications of the safety analysis results. In addition, the bounding cases are frequently based on simplifying assumptions that make the analysis results insensitive to variations among facilities or the impact of alternative safety control strategies. The existing safety analysis of flammable gas accidents for the Tank Waste Remediation system (TWRS) at the Hanford Site has these difficulties. However, Hanford Site personnel are developing a refined safety analysis approach

  17. Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

    1997-11-01

    Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor's controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first

  18. An approximate-reasoning-based method for screening high-level waste tanks for flammable gas

    International Nuclear Information System (INIS)

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-01-01

    The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at Hanford have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop an improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. AR models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. The authors performed a pilot study to investigate the utility of AR for flammable gas screening. They found that the effort to implement such a model was acceptable and that computational requirements were reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts

  19. Operability test report for core sample truck number one flammable gas modifications

    International Nuclear Information System (INIS)

    Akers, J.C.

    1997-01-01

    This report primarily consists of the original test procedure used for the Operability Testing of the flammable gas modifications to Core Sample Truck No. One. Included are exceptions, resolutions, comments, and test results. This report consists of the original, completed, test procedure used for the Operability Testing of the flammable gas modifications to the Push Mode Core Sample Truck No. 1. Prior to the Acceptance/Operability test the truck No. 1 operations procedure (TO-080-503) was revised to be more consistent with the other core sample truck procedures and to include operational steps/instructions for the SR weather cover pressurization system. A draft copy of the operations procedure was used to perform the Operability Test Procedure (OTP). A Document Acceptance Review Form is included with this report (last page) indicating the draft status of the operations procedure during the OTP. During the OTP 11 test exceptions were encountered. Of these exceptions four were determined to affect Acceptance Criteria as listed in the OTP, Section 4.7 ACCEPTANCE CRITERIA

  20. An approximate reasoning-based method for screening high-level-waste tanks for flammable gas

    International Nuclear Information System (INIS)

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    2000-01-01

    The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at the Hanford site have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop and improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. Approximate-reasoning models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. In a pilot study to investigate the utility of AR for flammable gas screening, the effort to implement such a model was found to be acceptable, and computational requirements were found to be reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts

  1. An Approximate Reasoning-Based Method for Screening High-Level-Waste Tanks for Flammable Gas

    International Nuclear Information System (INIS)

    Eisenhawer, Stephen W.; Bott, Terry F.; Smith, Ronald E.

    2000-01-01

    The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at the Hanford site have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop an improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. Approximate-reasoning models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. In a pilot study to investigate the utility of AR for flammable gas screening, the effort to implement such a model was found to be acceptable, and computational requirements were found to be reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts

  2. An approximate reasoning-based method for screening high-level-waste tanks for flammable gas

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    2000-06-01

    The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at the Hanford site have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop and improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. Approximate-reasoning models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. In a pilot study to investigate the utility of AR for flammable gas screening, the effort to implement such a model was found to be acceptable, and computational requirements were found to be reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts.

  3. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  4. Development of a cost efficient methodology to perform allocation of flammable and toxic gas detectors applying CFD tools

    Energy Technology Data Exchange (ETDEWEB)

    Storch, Rafael Brod; Rocha, Gean Felipe Almeida [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Nalvarte, Gladys Augusta Zevallos [Det Norske Veritas (DNV), Novik (Norway)

    2012-07-01

    This paper is aimed to present a computational procedure for flammable and toxic gas detector allocation and quantification developed by DNV. The proposed methodology applies Computational Fluid Dynamics (CFD) simulations as well as operational and safety characteristics of the analyzed region to assess the optimal number of toxic and flammable gas detectors and their optimal location. A probabilistic approach is also used when applying the DNV software ThorEXPRESSLite, following NORSOK Z013 Annex G and presented in HUSER et al. 2000 and HUSER et al. 2001, when the flammable gas detectors are assessed. A DNV developed program, DetLoc, is used to run in an iterative way the procedure described above leading to an automatic calculation of the gas detectors location and number. The main advantage of the methodology presented above is the independence of human interaction in the gas detector allocation leading to a more precise and free of human judgment allocation. Thus, a reproducible allocation is generated when comparing several different analyses and a global criteria appliance is guaranteed through different regions in the same project. A case study is presented applying the proposed methodology. (author)

  5. Flammable gas safety program. Analytical methods development: FY 1993 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Steele, R.

    1994-01-01

    This report describes the status of developing analytical methods to account for the organic constituents in Hanford waste tanks, with particular emphasis on those tanks that have been assigned to the Flammable Gas Watch List. Six samples of core segments from Tank 101-SY, obtained during the window E core sampling, have been analyzed for organic constituents. Four of the samples were from the upper region, or convective layer, of the tank and two were from the lower, nonconvective layer. The samples were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry (GC/MS). The major components detected were ethylenediaminetetraacetic acid (EDTA), nitroso-iminodiacetic acid (NIDA), nitrilotriacetic acid (NTA), citric acid (CA), succinic acid (SA), and ethylenediaminetriacetic acid (ED3A). The chelator of highest concentration was EDTA in all six samples analyzed. Liquid chromatography (LC) was used to quantitate low molecular weight acids (LMWA) including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon (TOC) in the samples analyzed was accounted for by these acids. Oxalate constituted approximately 40% of the TOC in the nonconvective layer samples. Oxalate was found to be approximately 3 to 4 times higher in concentration in the nonconvective layer than in the convective layer. During FY 1993, LC methods for analyzing LWMA, and two chelators N-(2-hydroxyethyl) ethylenediaminetriacetic acid and EDTA, were transferred to personnel in the Analytical Chemistry Laboratory and the 222-S laboratory.

  6. Independent design review report for truck number 1 modifications for flammable gas tanks

    International Nuclear Information System (INIS)

    Wilson, G.W.

    1997-01-01

    The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments

  7. Contribution to internal pressure and flammable gas concentration in RAM [radioactive material] transport packages

    International Nuclear Information System (INIS)

    Warrant, M.M.; Brown, N.

    1989-01-01

    Various facilities in the US generate wastes contaminated with transuranic (TRU) isotopes (such as plutonium and americium) that decay primarily by emission of alpha particles. The waste materials consist of a wide variety of commercially available plastics, paper, cloth, and rubber; concreted or sludge wastes containing water; and metals, glass, and other solid inorganic materials. TRU wastes that have surface dose rates of 200 mrem/hr or less are typically packaged in plastic bags placed inside metal drums or boxes that are vented through high efficiency particulate air (HEPA) filters. These wastes are to be transported from waste generation or storage sites to the Waste Isolation Pilot Plant (WIPP) in the TRUPACT-II, a Type B package. Radiolysis of organic wastes or packaging materials, or wastes containing water generates gas which may be flammable or simply contribute to the internal pressure of the radioactive material (RAM) transport package. This paper discusses the factors that affect the amount and composition of this gas, and summarizes maximum radiolytic G values (number of molecules produced per 100 eV absorbed energy) found in the technical literature for many common materials. These G values can be used to determine the combination of payload materials and decay heats that are safe for transport. G values are established for categories of materials, based on chemical functional groups. It is also shown using transient diffusion and quasi-equilibrium statistical mechanics methods that hydrogen, if generated, will not stratify at the top of the transport package void space. 9 refs., 1 tab

  8. Flammability Indices for Refrigerants

    Science.gov (United States)

    Kataoka, Osami

    This paper introduces a new index to classify flammable refrigerants. A question on flammability indices that ASHRAE employs arose from combustion test results of R152a and ammonia. Conventional methods of not only ASHRAE but also ISO and Japanese High-pressure gas safety law to classify the flammability of refrigerants are evaluated to show why these methods conflict with the test results. The key finding of this paper is that the ratio of stoichiometric concentration to LFL concentration (R factor) represents the test results most precisely. In addition, it has excellent correlation with other flammability parameters such as flame speed and pressure rise coefficient. Classification according to this index gives reasonable flammability order of substances including ammonia, R152a and carbon monoxide. Theoretical background why this index gives good correlation is also discussed as well as the insufficient part of this method.

  9. Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105

    Energy Technology Data Exchange (ETDEWEB)

    Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

    1998-09-01

    The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations.

  10. Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105

    International Nuclear Information System (INIS)

    Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

    1998-09-01

    The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations

  11. Flammable refrigerants

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Verwoerd, M.; Oostendorp, P.A.

    1999-01-01

    Hydrocarbons are promising alternatives for CFC, HCFC and HFC refrigerants. Due to their flammable nature, safety aspects have to be considered carefully. The world-wide situation concerning acceptability and practical application of flammable refrigerants is becoming more and more complex and

  12. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  13. Gas retention and release behavior in Hanford single-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large (∼100 m 3 ) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given

  14. Interstage Flammability Analysis Approach

    Science.gov (United States)

    Little, Jeffrey K.; Eppard, William M.

    2011-01-01

    The Interstage of the Ares I launch platform houses several key components which are on standby during First Stage operation: the Reaction Control System (ReCS), the Upper Stage (US) Thrust Vector Control (TVC) and the J-2X with the Main Propulsion System (MPS) propellant feed system. Therefore potentially dangerous leaks of propellants could develop. The Interstage leaks analysis addresses the concerns of localized mixing of hydrogen and oxygen gases to produce deflagration zones in the Interstage of the Ares I launch vehicle during First Stage operation. This report details the approach taken to accomplish the analysis. Specified leakage profiles and actual flammability results are not presented due to proprietary and security restrictions. The interior volume formed by the Interstage walls, bounding interfaces with the Upper and First Stages, and surrounding the J2-X engine was modeled using Loci-CHEM to assess the potential for flammable gas mixtures to develop during First Stage operations. The transient analysis included a derived flammability indicator based on mixture ratios to maintain achievable simulation times. Validation of results was based on a comparison to Interstage pressure profiles outlined in prior NASA studies. The approach proved useful in the bounding of flammability risk in supporting program hazard reviews.

  15. Flammable gas production in Land 2 and Land 3/4 radioactive waste repositories

    International Nuclear Information System (INIS)

    1988-02-01

    Geological, radiolytic and microbiological sources of gas are considered in relation to Land 2 and Land 3/4 type radioactive waste repositories. Geological sources are potentially the most troublesome and it is concluded that site investigation work should be designed to detect gas trap structures, reservoir lithologies or source rocks. Known source and reservoir lithologies should not be considered as suitable for the siting of waste repositories. Radiolytic and microbiological sources will depend on waste characteristics. A detailed review of the literature on radiolytic gas generation is presented and conclusions from this work indicate that water in waste and matrix should be kept to a minimum. Similarly, the level of radioactivity stored in each waste container should be kept to the minimum compatible with the storage design. Microbiological gas sources will be reduced by maintaining the cellulose content of the waste at a minimum. It is suggested that the removal of organics from the waste stream would be beneficial in terms of potential gas production. (author)

  16. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    International Nuclear Information System (INIS)

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed

  17. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  18. Flammability characteristics of LPG

    International Nuclear Information System (INIS)

    Cardillo, Paolo

    2005-01-01

    The use of LPG is continuous increase not only in the domestic field but also in the field of the transports. Consequently, there is a renewed interest for its flammability characteristics in order to decide the necessary conditions of safety. The main components of LPG are hydrocarbons containing three or four carbon atoms. The normal components of LPG are propane and butane; small concentrations of other hydrocarbons (isobutene, propylene, butane, ethane, pentane) may also be present. Different mixtures of LGP have different and physical characteristics with a different behavior during the use. Also flammability characteristics can be different according to the composition. In this paper at firsts the flammability characteristics of the main components of LGP, taken singularly, are examinated; subsequently some examples of calculation of the flammability limits of different mixture are reported [it

  19. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report

  20. Flammability Assessment Methodology Program Phase I: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    C. A. Loehr; S. M. Djordjevic; K. J. Liekhus; M. J. Connolly

    1997-09-01

    The Flammability Assessment Methodology Program (FAMP) was established to investigate the flammability of gas mixtures found in transuranic (TRU) waste containers. The FAMP results provide a basis for increasing the permissible concentrations of flammable volatile organic compounds (VOCs) in TRU waste containers. The FAMP results will be used to modify the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (TRUPACT-II SARP) upon acceptance of the methodology by the Nuclear Regulatory Commission. Implementation of the methodology would substantially increase the number of drums that can be shipped to the Waste Isolation Pilot Plant (WIPP) without repackaging or treatment. Central to the program was experimental testing and modeling to predict the gas mixture lower explosive limit (MLEL) of gases observed in TRU waste containers. The experimental data supported selection of an MLEL model that was used in constructing screening limits for flammable VOC and flammable gas concentrations. The MLEL values predicted by the model for individual drums will be utilized to assess flammability for drums that do not meet the screening criteria. Finally, the predicted MLEL values will be used to derive acceptable gas generation rates, decay heat limits, and aspiration time requirements for drums that do not pass the screening limits. The results of the program demonstrate that an increased number of waste containers can be shipped to WIPP within the flammability safety envelope established in the TRUPACT-II SARP.

  1. Gas release during salt well pumping: model predictions and comparisons to laboratory experiments

    International Nuclear Information System (INIS)

    Peurrung, L.M.; Caley, S.M.; Bian, E.Y.; Gauglitz, P.A.

    1996-09-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Nineteen of these SSTs have been placed on the Flammable Gas Watch List (FGWL) because they are known or suspected, in all but one case, to retain these flammable gases. Salt well pumping to remove the interstitial liquid from SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. Research at the Pacific Northwest National Laboratory (PNNL) has sought to quantify the release of flammable gases during salt well pumping operations. This study is being conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. Understanding and quantifying the physical mechanisms and waste properties that govern gas release during salt well pumping will help to resolve the associated safety issues

  2. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Huckaby, J.L.; Bryan, S.A.; Johnson, G.D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report

  3. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  4. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns

  5. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

  6. Single fireball and fireball ideal gas

    International Nuclear Information System (INIS)

    Fiore, R.; Page, R.; Sertorio, L.

    1977-01-01

    In the paper the partition function of a macroscopic hadron system with two models is studied. In one model the mathematical fireball appears as a fundamental particle in a Boltzmann ideal gas occupying a volume V. In a second model the macroscopic volume V is divided in noninteracting boxes of volume Vsub(0), each one containing and interacting-pion gas. Both cases show the same limiting temperature Tsup(*) produced by the bootstrap equation, although far from Tsup(*) they represent different thermodynamic systems

  7. Flammability of kerosene in civil and military aviation

    Energy Technology Data Exchange (ETDEWEB)

    Sochet, I.; Gillard, P. [Universite d' Orleans, Lab. Energetique Explosions Structures, Bourges cedex, 18 (France)

    2002-09-01

    The investigation of the ignition conditions of kerosene vapors in the air contained in an aircraft fuel tank contributes to the definition of onboard safety requirements. Civil and military kerosene are characterized by specification. The specification of civil aviation kerosene is based upon usage requirements and property limits, while military kerosene is primarily controlled by specific chemical composition. Characterization of the flammability properties is a first step for the establishment of aircraft safety conditions. Flash point, vapor pressure, gas chromatography analysis, and flammability properties of the kerosene used by the French Military aviation (F-34 and F-35 kerosene) are compared with the flammability properties of civil kerosene. The empirical law established by the Federal Aviation Administration (FAA) in 1998, expressing the ignition energy in terms of fuel, temperature, flash point and altitude is modified and expressed in terms of fuel temperature, flash point and pressure. (Author)

  8. Self-Flammability of Gases Generated by Hanford Tank Waste and the Potential of Nitrogen Inerting to Eliminate Flammability Safety Concerns

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-12

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retained gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.

  9. Multiscale modelling of single crystal superalloys for gas turbine blades

    NARCIS (Netherlands)

    Tinga, T.

    2009-01-01

    Gas turbines are extensively used for power generation and for the propulsion of aircraft and vessels. Their most severely loaded parts, the turbine rotor blades, are manufactured from single crystal nickel-base superalloys. The superior high temperature behaviour of these materials is attributed to

  10. Predicting the flammable region reach of propane vapor clouds

    OpenAIRE

    Vílchez Sánchez, Juan Antonio; Villafañe, Diana; Casal Fàbrega, Joaquim

    2014-01-01

    Liquified gas fuels are widely used around the world, and the growth of LNG and LPG consumption continues to increase. However, using these fuels can lead to accidents if they are released to the environment. Consequently, the challenge to control and predict such hazards has become an objective in emergency planning and risk analysis. In a previous article the “Dispersion Safety Factor” (DSF) was proposed, defined as the ratio between the distance at which the lower flammability limit concen...

  11. Thermal and Radiolytic Gas Generation Tests on Material from Tanks 241-U-103, 241-AW-101, 241-S-106, and 241-S-102: Status Report

    International Nuclear Information System (INIS)

    King, C.M.; Bryan, S.A.

    1999-01-01

    This report summarizes progress in evaluating thermal and radiolytic flammable gas generation in actual Hanford single-shell tank wastes. The work described was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support DE and S Hanford (DESH) and Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies performed by Numatec Hanford Corporation (formerly Westinghouse Hanford Company). This report describes the results of laboratory tests of gas generation from actual convective layer wastes from Tank 241-U-103 under thermal and radiolytic conditions. Accurate measurements of gas generation rates from highly radioactive tank wastes are needed to assess the potential for producing and storing flammable gases within the tanks. The gas generation capacity of the waste in Tank 241-U-103 is a high priority for the Flammable Gas Safety Program due to its potential for accumulating gases above the flammability limit (Johnson et al, 1997). The objective of this work was to establish the composition of gaseous degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The gas generation tests on Tank 241-U-103 samples focused first on the effect of temperature on the composition and rate of gas generation Generation rates of nitrogen, nitrous oxide, methane, and hydrogen increased with temperature, and the composition of the product gas mixture varied with temperature

  12. Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.

    Science.gov (United States)

    Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko

    2015-03-01

    One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.

  13. FLAMMABILITY OF HERBICIDE-TREATED GUAVA FOLIAGE

    Science.gov (United States)

    Guava leaves treated with herbicide were found to be less flammable than untreated green leaves or dead leaves . Differences in flammability were...determined by small-scale laboratory fires, differential thermal analysis, and thermogravimetric analysis. The herbicide-treated leaves had a higher ash

  14. 16 CFR 1611.4 - Flammability test.

    Science.gov (United States)

    2010-01-01

    ... FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.4 Flammability test. (a) Apparatus and materials. The.... The center section of the rack contains an open U-shaped area in which burning of the specimen takes... fan is turned off during the test. (4) Timing mechanism. The burning rate shall be determined by a...

  15. A flammability and combustion model for integrated accident analysis

    International Nuclear Information System (INIS)

    Plys, M.G.; Astleford, R.D.; Epstein, M.

    1988-01-01

    A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs

  16. Tank 241-C-103 headspace flammability

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1994-01-01

    Information regarding flammable vapors, gases, and aerosols is presented for the purpose of resolving the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. This document is restricted to issues regarding the flammability of gases, vapors, and an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain information about the organic liquid present in tank 241-C-103, this document addresses neither the potential for, nor consequences of, a pool fire involving this organic liquid; they will be discussed in a separate report

  17. Tank 241-C-103 headspace flammability

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1994-01-01

    Information regarding flammable vapors, gases, and aerosols is presented for the purpose of resolving the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. This document is restricted to issues regarding the flammability of gases, vapors, and an aerosol that may exist in the headspace of tank 241-C-103. While discussing certain information about the organic liquid present in tank 241-C-103, this document addresses neither the potential for, nor consequences of, a pool fire involving this organic liquid; they will be discussed in a separate report.

  18. Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103

    International Nuclear Information System (INIS)

    Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

    1998-09-01

    The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many (∼25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval

  19. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  20. 16 CFR 1500.44 - Method for determining extremely flammable and flammable solids.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method for determining extremely flammable and flammable solids. 1500.44 Section 1500.44 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND...

  1. Design of single piece sabot for a single stage gas gun

    Science.gov (United States)

    Vemparala, Vignesh; Mathew, Arun Tom; Rao Koka, Tirumala

    2017-11-01

    Single piece sabot is a vital part in single stage gas guns for impact testing in aerospace industries. Depending on the type of projectile used the design of sabot varies to accommodate the testing equipment. The velocity of the projectile exiting the barrel is dependent on the material and shape of the sabot used. The material selected for the design of sabot is rigid polyurethane foam, due to their low elastic modulus and low density. Two samples of rigid PU foam is taken and tests are performed to get their exact material properties. These properties are incorporated in numerical simulation to determine the best fit for practical use. Since the PU foams has a wide range of porosity which plays a prominent role in deciding the exit velocity and accuracy of the projectile coming out of the barrel. By optimisation, to the best suitable material sample can be determined.

  2. Unmanned Vehicle Material Flammability Test

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  3. Action plan for response to abnormal conditions in Hanford high level radioactive liquid waste storage tanks containing flammable gases

    International Nuclear Information System (INIS)

    Sherwood, D.J.

    1994-03-01

    Radioactive liquid waste tends to produce hydrogen as a result of the interaction of gamma radiation and water. In tanks containing organic chelating agents, additional hydrogen gas as well as nitrous oxide and ammonia can be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site, contain waste that retains the gases produced in them until large quantities are released rapidly to the tank vapor space. Tanks filled to near capacity have relatively little vapor space; therefore, if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture may result. The most notable waste tank with a flammable gas problem is tank 241-SY-101. Waste in this tank has occasionally released enough flammable gas to burn if an ignition source had been present inside of the tank. Several other waste tanks exhibit similar behavior to a lesser magnitude. Administrative controls have been developed to assure that these Flammable Gas Watch List tanks are safely maintained. Responses have also been developed for off-normal conditions which might develop in these tanks. In addition, scientific and engineering studies are underway to further understand and mitigate the behavior of the Flammable Gas Watch List tanks

  4. Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane

    International Nuclear Information System (INIS)

    Li, Q.Y.; Wang, L.; Ju, Y.L.

    2011-01-01

    Highlights: → A novel liquefaction and distillation process is designed for oxygen bearing coal-bed methane. → Oxygen contained in coal-bed methane is removed in distillation process. → Flammability limits are analyzed for the whole operation process. → We find explosion hazard may exist in distillation tower. → Effective measures are proposed to ensure the operation safety in distillation tower. - Abstract: A novel liquefaction and distillation process has been proposed and designed for the typical oxygen-bearing coal-bed methane (CBM), in which the impurities of the oxygen and nitrogen components are removed in the distillation column. The flammability limit theory combining with HYSYS simulation results are employed to analyze and calculate the flammability limits and the results indicate that no flammability hazard exists in the stages of compression, liquefaction and throttling. However, flammability hazard exists at the top the distillation column because the methane mole fraction decreases to the value below the upper flammability limit (UFL). The safety measures of initially removing oxygen content from the feed gas combining with the control of the bottom flowrate (flowrate of the liquid product at column bottom) are proposed to ensure the operation safety of the liquefaction process. The results reveal that the operation safety of the whole process can be guaranteed, together with high methane recovery rate and high purity of the liquid product. The applicability of the liquefaction process has also been analyzed in this paper. The simulation results can offer references for the separation of oxygen from CBM, the analysis of flammability limits and the safety measures for the whole process.

  5. Influence of Knits Structure on Flammability and Comfortability

    Directory of Open Access Journals (Sweden)

    Mikučionienė D.

    2014-12-01

    Full Text Available Investigations of the influence of the knit structure, i.e. the loop length and the number of yarns in a loop, on flammability and comfortability are presented in this paper. The investigations were carried out using single jersey knits from Delta TA 18 tex × 2 yarns with five variants of a loop length. Single yarn as well as folded yarn from two single yarns was used in the investigations. Comparison of the results of single-layer knits flammability and air permeability with those of multilayer packet was made. The results obtained show that an increase in the loop length of the knit increases their permeability to air and decreases the burning time as well as increase in the number of layers decreases the air permeability and increases the burning time. Moreover, the similar burning time with significantly different permeability to air can be achieved changing the basic knitting parameters, i.e. the loop length and/or the yarn linear density.

  6. Method of burning flammable radioactive wastes

    International Nuclear Information System (INIS)

    Yahata, Taneaki.

    1980-01-01

    Purpose: To completely oxidize flammable radioactive wastes such as organic compounds, ion exchange materials or oils. Method: Contaminated flammable radioactive wastes are heated and pyrolytically decomposed in the range 400 0 to 500 0 C in the presence of oxygen under lower pressure than atmospheric pressure. Volatile organic substance, hydrogen and soot subsequently produced are passed over oxidation catalyst. The catalysts such as copper oxide, iron oxide, cobalt oxide, nickel oxide, chromium oxide are heated in the range 600 0 to 700 0 C to produce stable oxides. (J.P.N.)

  7. The effect of the environment conditions on the prediction of flammable cloud dispersion

    OpenAIRE

    Schleder, Adriana; Martins, Marcelo; Pastor Ferrer, Elsa; Planas Cuchi, Eulàlia

    2014-01-01

    In order to quantify the damage caused by undesired events involving leakages of flammable materials, specific models are used to analyze the spills or jets of gas and liquid, gas dispersion, explosions and fires. The main step of this analysis is to estimate the concentration, in space and time, of the vapor cloud of hazardous substances released into the atmosphere; the purpose is to determine the area where a fire or explosion might occur and the quantity of flam...

  8. The effect of the computational grid size on the prediction of a flammable cloud dispersion

    OpenAIRE

    Schleder, Adriana; Martins, Marcelon; Pastor Ferrer, Elsa; Planas Cuchi, Eulàlia

    2014-01-01

    The consequence analysis is used to define the extent and nature of effects caused by undesired events being of great help when quantifying the damage caused by such events. For the case of leaking of flammable and/or toxic materials, effects are analyzed for explosions, fires and toxicity. Specific models are used to analyze the spills or jets of gas or liquids, gas dispersions, explosions and fires. The central step in the analysis of consequences in such cases is to de...

  9. 16 CFR 423.9 - Conflict with flammability standards.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conflict with flammability standards. 423.9... TEXTILE WEARING APPAREL AND CERTAIN PIECE GOODS AS AMENDED § 423.9 Conflict with flammability standards. If there is a conflict between this regulation and any regulations issued under the Flammable Fabrics...

  10. 16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact adhesives, also known as contact bonding cements, when distributed in containers intended or suitable for...

  11. An Approach to the Flammability Testing of Aerospace Materials

    Science.gov (United States)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  12. Natural gas industry in European Community and european single market

    International Nuclear Information System (INIS)

    Cadoret, I.

    1992-01-01

    Common Market of natural gas is dominated by some companies. In several Member Countries, one company only manages the whole industry. European Economic Community thinks this type of structure induce hindrances to free circulation of natural gas in Europe. 10 refs

  13. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  14. Review on flammability of biofibres and biocomposites

    CSIR Research Space (South Africa)

    Mngomezulu, ME

    2013-10-01

    Full Text Available The subject on flammability properties of natural fibre-reinforced biopolymer composites has not been broadly researched. This is not only evidenced by the minimal use of biopolymer composites and/or blends in different engineering areas where fire...

  15. Analysis of flammability in the attached buildings to containment under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, J.C. de la, E-mail: juan-carlos.de-la-rosa-blul@ec.europa.eu [European Commission Joint Research Centre (Netherlands); Fornós, Joan, E-mail: jfornosh@anacnv.com [Asociación Nuclear Ascó-Vandellós (Spain)

    2016-11-15

    Highlights: • Analysis of flammability conditions in buildings outside containment. • Stepwise approach easily applicable for any kind of containment and attached buildings layout. • Detailed application for real plant conditions has been included. - Abstract: Right after the events unfolded in Fukushima Daiichi, the European Union countries agreed in subjecting Nuclear Power Plants to Stress Tests as developed by WENRA and ENSREG organizations. One of the results as implemented in many European countries derived from such tests consisted of mandatory technical instructions issued by nuclear regulatory bodies on the analysis of potential risk of flammable gases in attached buildings to containment. The current study addresses the key aspects of the analysis of flammable gases leaking to auxiliary buildings attached to Westinghouse large-dry PWR containment for the specific situation where mitigating systems to prevent flammable gases to grow up inside containment are available, and containment integrity is preserved – hence avoiding isolation system failure. It also provides a full practical exercise where lessons learned derived from the current study – hence limited to the imposed boundary conditions – are applied. The leakage of gas from the containment to the support buildings is based on separate calculations using the EPRI-owned Modular Accident Analysis Program, MAAP4.07. The FATE™ code (facility Flow, Aerosol, Thermal, and Explosion) was used to model the transport and distribution of leaked flammable gas (H{sub 2} and CO) in the penetration buildings. FATE models the significant mixing (dilution) which occurs as the released buoyant gas rises and entrains air. Also, FATE accounts for the condensation of steam on room surfaces, an effect which acts to concentrate flammable gas. The results of the analysis show that during a severe accident, flammable conditions are unlikely to occur in compartmentalized buildings such as the one used in the

  16. Analysis of flammability in the attached buildings to containment under severe accident conditions

    International Nuclear Information System (INIS)

    Rosa, J.C. de la; Fornós, Joan

    2016-01-01

    Highlights: • Analysis of flammability conditions in buildings outside containment. • Stepwise approach easily applicable for any kind of containment and attached buildings layout. • Detailed application for real plant conditions has been included. - Abstract: Right after the events unfolded in Fukushima Daiichi, the European Union countries agreed in subjecting Nuclear Power Plants to Stress Tests as developed by WENRA and ENSREG organizations. One of the results as implemented in many European countries derived from such tests consisted of mandatory technical instructions issued by nuclear regulatory bodies on the analysis of potential risk of flammable gases in attached buildings to containment. The current study addresses the key aspects of the analysis of flammable gases leaking to auxiliary buildings attached to Westinghouse large-dry PWR containment for the specific situation where mitigating systems to prevent flammable gases to grow up inside containment are available, and containment integrity is preserved – hence avoiding isolation system failure. It also provides a full practical exercise where lessons learned derived from the current study – hence limited to the imposed boundary conditions – are applied. The leakage of gas from the containment to the support buildings is based on separate calculations using the EPRI-owned Modular Accident Analysis Program, MAAP4.07. The FATE™ code (facility Flow, Aerosol, Thermal, and Explosion) was used to model the transport and distribution of leaked flammable gas (H_2 and CO) in the penetration buildings. FATE models the significant mixing (dilution) which occurs as the released buoyant gas rises and entrains air. Also, FATE accounts for the condensation of steam on room surfaces, an effect which acts to concentrate flammable gas. The results of the analysis show that during a severe accident, flammable conditions are unlikely to occur in compartmentalized buildings such as the one used in the

  17. The Seepage Simulation of Single Hole and Composite Gas Drainage Based on LB Method

    Science.gov (United States)

    Chen, Yanhao; Zhong, Qiu; Gong, Zhenzhao

    2018-01-01

    Gas drainage is the most effective method to prevent and solve coal mine gas power disasters. It is very important to study the seepage flow law of gas in fissure coal gas. The LB method is a simplified computational model based on micro-scale, especially for the study of seepage problem. Based on fracture seepage mathematical model on the basis of single coal gas drainage, using the LB method during coal gas drainage of gas flow numerical simulation, this paper maps the single-hole drainage gas, symmetric slot and asymmetric slot, the different width of the slot combined drainage area gas flow under working condition of gas cloud of gas pressure, flow path diagram and flow velocity vector diagram, and analyses the influence on gas seepage field under various working conditions, and also discusses effective drainage method of the center hole slot on both sides, and preliminary exploration that is related to the combination of gas drainage has been carried on as well.

  18. Compressed gas combined single- and two-stage light-gas gun

    Science.gov (United States)

    Lamberson, L. E.; Boettcher, P. A.

    2018-02-01

    With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 101 and 103 m/s in a single, relatively small, cost effective instrument.

  19. Biogas utilization as flammable for internal combustion engine

    International Nuclear Information System (INIS)

    Cardenas, H.

    1995-01-01

    In this work the energetic potential stored in form of generated biogas of organic industrial wastes treatment is analyzed. Biogas utilization as flammable at internal combustion engine coupled to electrical energy generating is studied in the Wastewater Treatment Plant of Bucaramanga city (Colombia). This Plant was designed for 160.000 habitants treatment capacity, 1300 m3/h wealth, 170 BDO/m3 residues concentration and 87% process efficiency. The plant generate 2.000 m3/d of biogas. In laboratory trials was worked with biogas originating from Treatment Plant, both without purifying and purified, and the obtained results were compared with both yields determined with 86-octanes gasoline and natural gas. The analysis of pollutant by-products generated in combustion process as leak gases, present corrosive compounds and not desirable. elements in biogas composition are included

  20. Method for Predicting Hypergolic Mixture Flammability Limits

    Science.gov (United States)

    2017-02-01

    of all these phases. 15.  SUBJECT TERMS EOARD, rocket propulsion, combustion chemistry , energetic ionic liquids, flammability limits, fuel/oxidizer...Chemical Engineering Lab(UCP) This report is in support of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Demonstration Program, which...formation at 298.15 K have been proposed by Osmont and co-workers [Osmont, 2007 and Osmont et al., 2007] by using quantum chemistry computations at

  1. Tank 24-C-103 headspace flammability

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1994-05-01

    Information regarding flammable vapors, gases, and aerosols is presented and interpreted to help resolve the tank 241-C-103 headspace flammability issue. Analyses of recent vapor and liquid samples, as well as visual inspections of the tank headspace, are discussed in the context of tank dynamics. Concern that the headspace of tank 241-C-103 may contain a flammable mixture of organic vapors and an aerosol of combustible organic liquid droplets arises from the presence of a layer of organic liquid in the tank. This organic liquid is believed to have originated in the plutonium-uranium extraction (PUREX) process, having been stored initially in tank 241-C-102 and apparently transferred to tank 241-C-103 in 1975 (Carothers 1988). Analyses of samples of the organic liquid collected in 1991 and 1993 indicate that the primary constituents are tributyl phosphate (TBP) and several semivolatile hydrocarbons (Prentice 1991, Pool and Bean 1994). This is consistent with the premise that the organic waste came from the PUREX process, because the PUREX process used a solution of TBP in a diluent composed of the n-C 11 H 24 to n-C 15 H 32 normal paraffinic hydrocarbons (NPH)

  2. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  3. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    International Nuclear Information System (INIS)

    DOUGLAS, J.G.

    2006-01-01

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  4. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  5. Flammable Gas Safety Program: analysis of gas sampling probe locations in the SX-farm flammable gas watchlist tanks

    International Nuclear Information System (INIS)

    McLaren, J.M.; Claybrook, S.W.

    1995-09-01

    An analysis was performed to determine the optimum ventilation line up for the AN Tank Farm. The analysis used the postulated maximum historical GRE in tanks AN-103, -104, and -105. Tank AN-104 was found to be limiting. The results of the analysis show that an airflow of 250 cfm through tanks 241-AN-103, -104, and -105 with an airflow of 100 cfm through tanks 241-AN-101, -102, -106, and -107 would be the optimum ventilation lineup

  6. Flammability tests for regulation of building and construction materials

    Science.gov (United States)

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  7. Flammability of litter from southeastern trees: a preliminary assessment

    Science.gov (United States)

    J. Morgan Varner; Jeffrey M. Kane; Erin M. Banwell; Jesse K. Kreye

    2015-01-01

    The southeastern United States possesses a great diversity of woody species and an equally impressive history of wildland fires. Species are known to vary in their flammability, but little is known about southeastern species. We used published data and our own collections to perform standard litter flammability tests on a diverse suite of 25 native overstory trees from...

  8. Gas characterization system software acceptance test procedure

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the Software Acceptance Testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  9. Gas characterization system software acceptance test report

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the results of software acceptance testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  10. A study on flammability limits of fuel mixtures.

    Science.gov (United States)

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Sekiya, Akira

    2008-07-15

    Flammability limit measurements were made for various binary and ternary mixtures prepared from nine different compounds. The compounds treated are methane, propane, ethylene, propylene, methyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. The observed values of lower flammability limits of mixtures were found to be in good agreement to the calculated values by Le Chatelier's formula. As for the upper limits, however, some are close to the calculated values but some are not. It has been found that the deviations of the observed values of upper flammability limits from the calculated ones are mostly to lower concentrations. Modification of Le Chatelier's formula was made to better fit to the observed values of upper flammability limits. This procedure reduced the average difference between the observed and calculated values of upper flammability limits to one-third of the initial value.

  11. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport

    Directory of Open Access Journals (Sweden)

    Afrooz Farjoo

    2017-10-01

    Full Text Available Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene was studied within the temperature and pressure ranges of 25–600 °C and 110–160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption–diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  12. Hydrogen Separation by Natural Zeolite Composite Membranes: Single and Multicomponent Gas Transport.

    Science.gov (United States)

    Farjoo, Afrooz; Kuznicki, Steve M; Sadrzadeh, Mohtada

    2017-10-06

    Single and multicomponent gas permeation tests were used to evaluate the performance of metal-supported clinoptilolite membranes. The efficiency of hydrogen separation from lower hydrocarbons (methane, ethane, and ethylene) was studied within the temperature and pressure ranges of 25-600 °C and 110-160 kPa, respectively. The hydrogen separation factor was found to reduce noticeably in the gas mixture compared with single gas experiments at 25 °C. The difference between the single and multicomponent gas results decreased as the temperature increased to higher than 300 °C, which is when the competitive adsorption-diffusion mechanism was replaced by Knudsen diffusion or activated diffusion mechanisms. To evaluate the effect of gas adsorption, the zeolite surface isotherms of each gas in the mixture were obtained from 25 °C to 600 °C. The results indicated negligible adsorption of individual gases at temperatures higher than 300 °C. Increasing the feed pressure resulted in a higher separation efficiency for the individual gases compared with the multicomponent mixture, due to the governing effect of the adsorptive mechanism. This study provides valuable insight into the application of natural zeolites for the separation of hydrogen from a mixture of hydrocarbons.

  13. Influence of heat exchange of reservoir with rocks on hot gas injection via a single well

    Science.gov (United States)

    Nikolaev, Vladimir E.; Ivanov, Gavril I.

    2017-11-01

    In the computational experiment the influence of heat exchange through top and bottom of the gas-bearing reservoir on the dynamics of temperature and pressure fields during hot gas injection via a single well is investigated. The experiment was carried out within the framework of modified mathematical model of non-isothermal real gas filtration, obtained from the energy and mass conservation laws and the Darcy law. The physical and caloric equations of state together with the Newton-Riemann law of heat exchange of gas reservoir with surrounding rocks, are used as closing relations. It is shown that the influence of the heat exchange with environment on temperature field of the gas-bearing reservoir is localized in a narrow zone near its top and bottom, though the size of this zone is increased with time.

  14. 75 FR 49379 - Correction to Internal Citation of “Extremely Flammable Solid” and “Flammable Solid”

    Science.gov (United States)

    2010-08-13

    ... CONSUMER PRODUCT SAFETY COMMISSION 16 CFR Part 1500 Correction to Internal Citation of ``Extremely... to correct internal citations to the definitions of ``extremely flammable solid'' and ``flammable... citation for part 1500 continues to read as follows: Authority: 15 U.S.C. 1261-1277. 0 2. In Sec. 1500.83...

  15. 16 CFR 1500.45 - Method for determining extremely flammable and flammable contents of self-pressurized containers.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method for determining extremely flammable and flammable contents of self-pressurized containers. 1500.45 Section 1500.45 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND...

  16. Flame Motion In Gas Turbine Burner From Averages Of Single-Pulse Flame Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Tylli, N.; Hubschmid, W.; Inauen, A.; Bombach, R.; Schenker, S.; Guethe, F. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland)

    2005-03-01

    Thermo acoustic instabilities of a gas turbine burner were investigated by flame front localization from measured OH laser-induced fluorescence single pulse signals. The average position of the flame was obtained from the superposition of the single pulse flame fronts at constant phase of the dominant acoustic oscillation. One observes that the flame position varies periodically with the phase angle of the dominant acoustic oscillation. (author)

  17. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    International Nuclear Information System (INIS)

    Mendoza, D.P.; Mahoney, L.A.; Gauglitz, P.A.; Rassat, S.D.; Caley, S.M.

    1999-01-01

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Alleinann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  18. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    SD Rassat; PA Gauglitz; SM Caley; LA Mahoney; DP Mendoza

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  19. Three mechanisms model of shale gas in real state transport through a single nanopore

    Science.gov (United States)

    Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai

    2018-02-01

    At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.

  20. Experimental and numerical investigation of kerosene flammability

    Energy Technology Data Exchange (ETDEWEB)

    Sochet, I. [Orleans Univ., ENSIB, Lab. Energetique Explosions Structures, 18 - Bourges (France); Pascaud, J.M.; Gillard, P. [Orleans Univ., IUTde Bourges, Lab. Energetique Explosions Structures, 18 - Bourges (France)

    2002-08-01

    In an attempt to contribute to aircraft safety, it is fundamental to define the explosions conditions of kerosene vapor in an aircraft tank. Flammability properties of kerosene F-34 and F-35 have been determined experimentally. The flash point and the vapor pressure have been measured by means of an appropriate apparatus. A first analysis of the composition by GC-MS analysis shows four essential compounds: decane, dodecane, 1,2,4 trimethylbenzene and butyl-cyclohexane. The evolution of maximum pressure is compared with the theoretical values obtained with a simple model based on the theory of molecule collisions. A simple modelling has been developed as part of a novel study on ignition and combustion of classical propulsive powders and transposed to liquid kerosene droplets in order to predict the main characteristics of these explosions in a closed vessel. (authors)

  1. Flammability of polypropylene/organoclay nanocomposites

    International Nuclear Information System (INIS)

    Alves, Tatianny Soares; Barbosa, Renata; Carvalho, Laura Hecker de; Canedo, Eduardo Luis

    2014-01-01

    The flammabilities of nanocomposites made with three polypropylene grades (homo and copolymers) with 5 wt % of organoclay (Cloisite 20A), 5 or 15 wt % of maleated polypropylene as compatibilizer, and 0, 0.5 or 1 wt % of cis-13-docosenamide (Erucamide) as co-intercalant, were studied using the horizontal burning test UL94HB. Masterbatches prepared in an internal mixer were diluted in the polypropylene matrix using a corotating twin-screw extruder, with different screw configurations and operating at 240 or 480 rpm. Results indicate that the high burning rate of the composites was not affected by the processing conditions. For all formulations was observed a significant reduction in smoke release, lack of dripping and the formation of a char surface layer, that protected the core of the samples. (author)

  2. Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study

    Science.gov (United States)

    Lu, Zhansheng; Lv, Peng; Ma, Dongwei; Yang, Xinwei; Li, Shuo; Yang, Zongxian

    2018-02-01

    As one of the prominent applications in intelligent systems, gas sensing technology has attracted great interest in both industry and academia. In the current study, the pristine graphyne (GY) without and with a single Mn atom is investigated to detect the gas molecules (CO, CH4, CO2, NH3, NO and O2). The pristine GY is promising to detect O2 molecules because of its chemical adsorption on GY with large electron transfer. The great stability of the Mn/GY is found, and the Mn atom prefers to anchor at the alkyne ring as a single atom. Upon single Mn atom anchoring, the sensitivity and selectivity of GY based gas sensors is significantly improved for various molecules, except CH4. The recovery time of the Mn/GY after detecting the gas molecules may help to appraise the detection efficiency for the Mn/GY. The current study will help to understand the mechanism of detecting the gas molecules, and extend the potentially fascinating applications of GY-based materials.

  3. Low-frequency noise characterization of single CuO nanowire gas sensor devices

    NARCIS (Netherlands)

    Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D.

    2015-01-01

    Low-frequency noise properties of single CuO nanowire devices were investigated under gas sensor operation conditions in dry and humid synthetic air at 350¿°C. A 1/f noise spectrum was found with the normalized power spectral density of current fluctuations typically a factor of 2 higher for humid

  4. Genetic component of flammability variation in a Mediterranean shrub.

    Science.gov (United States)

    Moreira, B; Castellanos, M C; Pausas, J G

    2014-03-01

    Recurrent fires impose a strong selection pressure in many ecosystems worldwide. In such ecosystems, plant flammability is of paramount importance because it enhances population persistence, particularly in non-resprouting species. Indeed, there is evidence of phenotypic divergence of flammability under different fire regimes. Our general hypothesis is that flammability-enhancing traits are adaptive; here, we test whether they have a genetic component. To test this hypothesis, we used the postfire obligate seeder Ulex parviflorus from sites historically exposed to different fire recurrence. We associated molecular variation in potentially adaptive loci detected with a genomic scan (using AFLP markers) with individual phenotypic variability in flammability across fire regimes. We found that at least 42% of the phenotypic variation in flammability was explained by the genetic divergence in a subset of AFLP loci. In spite of generalized gene flow, the genetic variability was structured by differences in fire recurrence. Our results provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems. © 2014 John Wiley & Sons Ltd.

  5. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance with...

  6. 46 CFR 182.480 - Flammable vapor detection systems.

    Science.gov (United States)

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  7. 46 CFR 105.10-15 - Flammable liquid.

    Science.gov (United States)

    2010-10-01

    ... FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Definition of Terms Used in This Part § 105.10-15 Flammable... vapor pressure of 14 pounds or more. 1 American Society of Testing Materials Standard D 323...

  8. DOE/DOE Tight Oil Flammability & Transportation Spill Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lord, David L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This presentation describes crude oils, their phase behavior, the SPR vapor pressure program, and presents data comparisons from various analytical techniques. The overall objective is to describe physical properties of crude oil relevant to flammability and transport safety

  9. Chemical Safety Alert: Lightning Hazard to Facilities Handling Flammable Substances

    Science.gov (United States)

    Raises awareness about lightning strikes, which cause more death/injury and damage than all other environmental elements combined, so industry can take proper precautions to protect equipment and storage or process vessels containing flammable materials.

  10. 16 CFR 1611.3 - Flammability-general requirement.

    Science.gov (United States)

    2010-01-01

    ... STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM The Standard § 1611.3 Flammability—general requirement. The rate of burning shall not exceed 1.2 in./sec as judged by the average of five determinations...

  11. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    International Nuclear Information System (INIS)

    Romero-Hermida, M. I.; Romero-Enrique, J. M.; Morales-Flórez, V.; Esquivias, L.

    2016-01-01

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N 2 , CO 2 , and O 2 , emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO 2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO 2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO 2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO 2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO 2 concentrations and low temperatures, the CO 2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  12. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study.

    Science.gov (United States)

    Romero-Hermida, M I; Romero-Enrique, J M; Morales-Flórez, V; Esquivias, L

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  13. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Hermida, M. I. [Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro s/n, 11510 Puerto Real (Spain); Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Romero-Enrique, J. M. [Departamento de Física Atómica, Molecular y Nuclear, Área de Física Teórica, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Morales-Flórez, V.; Esquivias, L. [Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Instituto de Ciencia de Materiales de Sevilla (CSIC/US), Av. Américo Vespucio 49, 41092 Sevilla (Spain)

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N{sub 2}, CO{sub 2}, and O{sub 2}, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO{sub 2} adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO{sub 2} adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO{sub 2} adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO{sub 2} adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO{sub 2} concentrations and low temperatures, the CO{sub 2} adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  14. Computer simulations of a single-laser double-gas-jet wakefield accelerator concept

    Directory of Open Access Journals (Sweden)

    R. G. Hemker

    2002-04-01

    Full Text Available We report in this paper on full scale 2D particle-in-cell simulations investigating laser wakefield acceleration. First we describe our findings of electron beam generation by a laser propagating through a single gas jet. Using realistic parameters which are relevant for the experimental setup in our laboratory we find that the electron beam resulting after the propagation of a 0.8 μm, 50 fs laser through a 1.5 mm gas jet has properties that would make it useful for further acceleration. Our simulations show that the electron beam is generated when the laser exits the gas jet, and the properties of the generated beam, especially its energy, depend only weakly on most properties of the gas jet. We therefore propose to use the first gas jet as a plasma cathode and then use a second gas jet placed immediately behind the first to provide additional acceleration. Our simulations of this proposed setup indicate the feasibility of this idea and also suggest ways to optimize the quality of the resulting beam.

  15. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Science.gov (United States)

    2012-10-12

    ... (Board) believes that current operations at the Hanford Tank Farms require safety- significant active... administrative control in lieu of an engineered feature is also contrary to DOE's established hierarchy of...

  16. Impact Of Melter Internal Design On Off-Gas Flammability

    International Nuclear Information System (INIS)

    Choi, A. S.; Lee, S. Y.

    2012-01-01

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good

  17. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    Energy Technology Data Exchange (ETDEWEB)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Huang, J. W.; Zeng, X. L.; Li, Y.; E, J. C.; Huang, J. Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Sun, T.; Fezzaa, K. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Wang, Z. [Physics Division P-25, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-05-15

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantify lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.

  18. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  19. Wireless gas sensing in South African underground platinum mines

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2014-04-01

    Full Text Available Approximately 70% of South African mines are classified as fiery, where methane gas potentially could cause explosions. The number of flammable gas reports and accidents are increasing steadily for both gold and platinum mines. However...

  20. Experimental study of single-electron loss by Ar+ ions in rare-gas atoms

    Science.gov (United States)

    Reyes, P. G.; Castillo, F.; Martínez, H.

    2001-04-01

    Absolute differential and total cross sections for single-electron loss were measured for Ar+ ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10-19 and 10-22 cm2, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Zt, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases.

  1. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    Science.gov (United States)

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of 98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. On the temperature dependence of flammability limits of gases.

    Science.gov (United States)

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2011-03-15

    Flammability limits of several combustible gases were measured at temperatures from 5 to 100 °C in a 12-l spherical flask basically following ASHRAE method. The measurements were done for methane, propane, isobutane, ethylene, propylene, dimethyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. As the temperature rises, the lower flammability limits are gradually shifted down and the upper limits are shifted up. Both the limits shift almost linearly to temperature within the range examined. The linear temperature dependence of the lower flammability limits is explained well using a limiting flame temperature concept at the lower concentration limit (LFL)--'White's rule'. The geometric mean of the flammability limits has been found to be relatively constant for many compounds over the temperature range studied (5-100 °C). Based on this fact, the temperature dependence of the upper flammability limit (UFL) can be predicted reasonably using the temperature coefficient calculated for the LFL. However, some compounds such as ethylene and dimethyl ether, in particular, have a more complex temperature dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Towards radiocarbon dating of single foraminifera with a gas ion source

    Science.gov (United States)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12C- ion source current of 10-15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  4. Towards radiocarbon dating of single foraminifera with a gas ion source

    International Nuclear Information System (INIS)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO 2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO 2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12 C − ion source current of 10–15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  5. Towards radiocarbon dating of single foraminifera with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Lippold, J. [Heidelberg Academy of Sciences, 69120 Heidelberg (Germany); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Schulz, H. [Institute for Geosciencies, University of Tuebingen, 72076 Tuebingen (Germany)

    2013-01-15

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 {mu}g for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO{sub 2} is liberated from 150 to 1150 {mu}g of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO{sub 2} is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 {mu}g (50 {mu}g C) typically gives a {sup 12}C{sup -} ion source current of 10-15 {mu}A over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 {mu}g Cibicides pseudoungerianus test at 14,030 {+-} 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  6. Theoretical evaluation of the efficiency of gas single-stage reciprocating compressor medium pressure units

    Science.gov (United States)

    Busarov, S. S.; Vasil'ev, V. K.; Busarov, I. S.; Titov, D. S.; Panin, Ju. N.

    2017-08-01

    Developed earlier and tested in such working fluid as air, the technology of calculating the operating processes of slow-speed long-stroke reciprocating stages let the authors to obtain successful results concerning compression of gases to medium pressures in one stage. In this connection, the question of the efficiency of the application of slow-speed long-stroke stages in various fields of technology and the national economy, where the working fluid is other gas or gas mixture, is topical. The article presents the results of the efficiency evaluation of single-stage compressor units on the basis of such stages for cases when ammonia, hydrogen, helium or propane-butane mixture is used as the working fluid.

  7. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  8. Flammability on textile of flight crew professional clothing

    Science.gov (United States)

    Silva-Santos, M. C.; Oliveira, M. S.; Giacomin, A. M.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    The issue about flammability of textile materials employed in passenger cabins of commercial aircrafts is an important part of safety routines planning. Once an in-flight emergency initiated with fire or smoke aboard, time becomes critical and the entire crew must be involved in the solution. It is part of the crew functions, notably the attendants, the in-flight firefighting. This study compares the values of textile material of flight attendant working cloths and galley curtain fabric with regard to flammability and Limiting Oxygen Index (LOI). Values to the professional clothing material indicate that they are flammable and the curtains, self-extinguishing. Thus, despite of the occurrences of fire outbreaks in aircrafts are unexceptional, the use of other materials and technologies for uniforms, such as alternative textile fibers and flame retardant finishes should be considered as well as the establishment of performance limits regarding flame and fire exposing.

  9. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi

    2017-01-01

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N_2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N_2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N_2O onto CNT, the horizontal adsorption with E_a_d_s = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N_2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N_2O were investigated. Adsorption of N_2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N_2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N_2O sensors.

  10. Textiles: Some technocal information and data III: Low flammable and other high performance fibres

    CSIR Research Space (South Africa)

    Hunter, L

    1978-07-01

    Full Text Available What it meant by the flammability of a texttile material? What exactly are the meaning of such term as "non-burning", "fire resistant", "self-extinquishing","non-combustible","flameproof",etc? Unfortunately the flammability properties to which...

  11. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha; Choudhury, Snehashis; Archer, Lynden A.

    2015-01-01

    liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room

  12. 14 CFR Appendix N to Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis

    Science.gov (United States)

    2010-01-01

    ..., Definitions). A non-flammable ullage is one where the fuel-air vapor is too lean or too rich to burn or is... Office for approval the fuel tank flammability analysis, including the airplane-specific parameters...

  13. Economic dispatch of a single micro-gas turbine under CHP operation

    International Nuclear Information System (INIS)

    Rist, Johannes F.; Dias, Miguel F.; Palman, Michael; Zelazo, Daniel; Cukurel, Beni

    2017-01-01

    Highlights: •Economic dispatch of a micro gas turbine is considered for smart grid integration. •A detailed thermodynamic cycle analysis is conducted for variable load CHP operation. •Benefits are shown for case studies with real demand profiles and energy tariffs. •Optimal unit schedule can be electricity, heat, revenue or maintenance-cost driven. -- Abstract: This work considers the economic dispatch of a single micro-gas turbine under combined heat and power (CHP) operation. A detailed thermodynamic cycle analysis is conducted on a representative micro-gas turbine unit with non-constant component efficiencies and recuperator bypass. Based on partial and full load configurations, an accurate optimization model is developed for solving the economic dispatch problem of integrating the turbine into the grid. The financial benefit and viability of this approach is then examined on four detailed scenarios using real data on energy demand profiles and electricity tariffs. The analysis considers the optimal operation in a large hotel, a full-service restaurant, a small hotel, and a residential neighborhood during various seasons. The optimal schedule follows four fundamental economic drivers which are electricity, heat, revenue, and maintenance-cost driven.

  14. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  15. Predictive Modelling of Concentration of Dispersed Natural Gas in a Single Room

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH

    2009-07-01

    Full Text Available This paper aimed at developing a mathematical model equation to predict the concentration of natural gas in a single room. The model equation was developed by using theoretical method of predictive modelling. The model equation developed is as given in equation 28. The validity of the developed expression was tested through the simulation of experimental results using computer software called MathCAD Professional. Both experimental and simulated results were found to be in close agreement. The statistical analysis carried out through the correlation coefficients for the results of experiment 1, 2, 3 and 4 were found to be 0.9986, 1.0000, 0.9981 and 0.9999 respectively, which imply reasonable close fittings between the experimental and simulated concentrations of dispersed natural gas within the room. Thus, the model equation developed can be considered a good representation of the phenomena that occurred when there is a leakage or accidental release of such gas within the room.

  16. A One ppm NDIR Methane Gas Sensor with Single Frequency Filter Denoising Algorithm

    Directory of Open Access Journals (Sweden)

    Binqing Jiang

    2012-09-01

    Full Text Available A non-dispersive infrared (NDIR methane gas sensor prototype has achieved a minimum detection limit of 1 parts per million by volume (ppm. The central idea of the design of the sensor is to decrease the detection limit by increasing the signal to noise ratio (SNR of the system. In order to decrease the noise level, a single frequency filter algorithm based on fast Fourier transform (FFT is adopted for signal processing. Through simulation and experiment, it is found that the full width at half maximum (FWHM of the filter narrows with the extension of sampling period and the increase of lamp modulation frequency, and at some optimum sampling period and modulation frequency, the filtered signal maintains a noise to signal ratio of below 1/10,000. The sensor prototype provides the key techniques for a hand-held methane detector that has a low cost and a high resolution. Such a detector may facilitate the detection of leakage of city natural gas pipelines buried underground, the monitoring of landfill gas, the monitoring of air quality and so on.

  17. 10 CFR 36.69 - Irradiation of explosive or flammable materials.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Irradiation of explosive or flammable materials. 36.69... IRRADIATORS Operation of Irradiators § 36.69 Irradiation of explosive or flammable materials. (a) Irradiation... cause radiation overexposures of personnel. (b) Irradiation of more than small quantities of flammable...

  18. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pending type certification projects: Fuel tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability. (a...

  19. 49 CFR 174.304 - Class 3 (flammable liquid) materials in tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Class 3 (flammable liquid) materials in tank cars... (flammable liquid) materials in tank cars. A tank car containing a Class 3 (flammable liquid) material, other... the liquid from the tank car to permanent storage tanks of sufficient capacity to receive the entire...

  20. Controlling the ignition and flammability of magnesium for aerospace applications

    International Nuclear Information System (INIS)

    Czerwinski, Frank

    2014-01-01

    The perceived easy ignition and flammability of magnesium alloys create a detrimental safety feature that overshadows their high strength-to-weight ratio and hinders the aerospace application opportunities. To overcome the existing barriers a progress in understanding and controlling the reactivity of magnesium at high temperatures is required. This report describes fundamentals of magnesium ignition and flammability along with laboratory testing procedures and correlations with full scale fire scenarios, related in particular to the aircraft cabin. The influence of alloying elements on high temperature reactivity of magnesium and global efforts to develop ignition resistant and non-flammable magnesium alloys are reviewed. Although ignition and flammability represent quite different quantities, both are controlled by an oxidation resistance of the alloy and its capability to form a dense and protective surface oxide after exposures to an open flame or other heat source. Since surface oxide, composed of pure MgO, does not offer a sufficient protection, the research strategy is focused on modification of its chemistry and microstructure by micro-alloying the substrate with rare earths and other elements having high affinity to oxygen

  1. 30 CFR 77.1103 - Flammable liquids; storage.

    Science.gov (United States)

    2010-07-01

    ... storage tanks shall be mounted securely on firm foundations. Outlet piping shall be provided with flexible connections or other special fittings to prevent adverse effects from tank settling. (c) Fuel lines shall be... hazards. (d) Areas surrounding flammable-liquid storage tanks and electric substations and transformers...

  2. Electron attachment to DNA single strands: gas phase and aqueous solution.

    Science.gov (United States)

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F

    2007-01-01

    The 2'-deoxyguanosine-3',5'-diphosphate, 2'-deoxyadenosine-3',5'-diphosphate, 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3',5'-dTDP (0.17 eV) and 3',5'-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3',5'-dTDP > 3',5'-dCDP > 3',5'-dGDP > 3',5'-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3'-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3'-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3',5'-dADP(-) (0.26 eV) and 3',5'-dGDP(-) (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers

  3. Effect of Meltable Triazine-DOPO Additive on Rheological, Mechanical, and Flammability Properties of PA6

    Directory of Open Access Journals (Sweden)

    Irina Butnaru

    2015-08-01

    Full Text Available Through a straightforward approach, a new meltable, halogen-free, nitrogen-phosphorus-based flame retardant (FR, 6-(2-(4,6-diamino-1,3,5-triazin-2-ylethyl dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DTE-DOPO was synthesized and incorporated in polyamide 6 (PA6. It was proved that a very low phosphorus content of 1.46 wt% for DTE-DOPO additive improved the flame retardancy of PA6, leading to a non-flammable material. The performance of the new additive was compared to that of the commercially-available Exolit® OP 1230. The PA6 formulations were evaluated by measuring the rheological, mechanical, and flammability behavior. Using compounding by melt extrusion, 17 wt% additives was introduced into PA6 matrix and the corresponding formulations were characterized. The results evidenced a higher homogeneity of DTE-DOPO with PA6, a high thermal stability with a catalyzing decomposition effect on PA6 caused by the presence of the new developed FR, enhanced elasticity for the PA6/DTE-DOPO formulation and a V0 rating for both formulations. Thermal and fire analysis indicated a primary gas-phase activity, combined with a complete suppression of the self-sustained burning for the PA6/DTE-DOPO formulation.

  4. Estimation of the lower flammability limit of organic compounds as a function of temperature.

    Science.gov (United States)

    Rowley, J R; Rowley, R L; Wilding, W V

    2011-02-15

    A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yoosefian, Mehdi, E-mail: m.yoosefian@kgut.ac.ir

    2017-01-15

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N{sub 2}O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N{sub 2}O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N{sub 2}O onto CNT, the horizontal adsorption with E{sub ads} = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N{sub 2}O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N{sub 2}O were investigated. Adsorption of N{sub 2}O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N{sub 2}O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N{sub 2}O sensors.

  6. Current status of the debate about the European single market for gas and electricity

    International Nuclear Information System (INIS)

    Pluge, W.

    1993-01-01

    The current status of the debate is characterised by heterogeneity, which can be perceived reading the body of opinions given by the EC Commission, the European Parliament, the EC Council of Ministers, or the national governments, and in the opinions of the European Parliament or the respective national parliaments, the scope of diverging attitudes ranging from anticipating obedience in single cases to anticipating refusal. There is a growing awareness of the distinctions between the gas and the power industry and their respective requirements, leading to increasing discussions about suitable policies. The EC Commission has put down some basic principles, but their proposal of establishing a scheme of Third Party Access on a voluntary basis is a wolf in sheep's clothing, because in case this voluntary scheme will not work, more stringent instruments are on the list. There is general confusion to be stated, which might indicate that the existing systems are not so bad after all. (orig.) [de

  7. Transient Analysis of a Gas-cooled Fast Reactor for Single Control Assembly Withdrawal

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2014-01-01

    The Energy Multiplier Module (EMZ) system response has been evaluated for control assembly withdrawal transients. Currently the EM2 core is equipped with six cylindrical drum-type control assemblies in the reflector zone for excess reactivity control and power maneuvering during the operating core life. This study investigates the system response to the control assembly withdrawal accident with various rotational speeds and reactivity worth to determine feasible control assembly design requirements from the physics viewpoint. The simulations have been conducted for single control assembly withdrawal transients without scram by a gas-cooled reactor plant simulator, which is based on a simplified plant nodal model, including the point reactor kinetics, single channel core thermal-fluid model, and a turbo-machinery performance model. Simulations were conducted for the middle-of- cycle core, when the excess reactivity of the core is the highest. Control assembly withdrawal times were varied from 1 (runaway) to 180 sec and reactivity worth was varied from 100 to 400 pcm. For a single control assembly withdrawal, the simulation has shown that the peak fuel temperature is expected to be ~1820°C when the assembly worth is 200 pcm and the runaway time is 1 sec per 180 degree rotation. The peak temperature could be reduced to ~1780°C if the assembly is rotated out in a moderate speed such as 1 degree/sec. These peak temperatures give a thermal margin of 22 to 24% to the melting point of uranium carbide fuel. The results also indicate that the current design with a single control assembly worth of 314 pcm may need adjustments in the future design. (author)

  8. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  9. GESIT: a thermodynamic program for single cycle gas turbine plants with and without intercoolers

    Energy Technology Data Exchange (ETDEWEB)

    Heil, J

    1973-08-01

    A computer program for the thermodynamic modeling of singlecycle gas turbine plants is described. A high-temperature reactor is assumed as a heat source in the program, but the HTR can be replaced with another heat source without difficulty. Starting from a set of independent data, the program calculates efficiencies and mass flows. It indicates all values for a heat and power balance and prints out the temperatures and pressures for the different parts of the cycle. Besides this, the program is able to optimize the compression ratios for minimal power input. It also takes into account turbine rotor cooling (at the roots of the blades). Furthermore, the program is able to use either total pressure loss or specified losses in different parts of the cycle. The program GESlT can also handle systems with one or two intercoolers, or with no intercooler. GESIT gives all input and output values for the heat exchangers and turbo-machines. First the single-cycle gas turbine plant is described. After that the computational basis for the program and the program structure is explained. Instructions for data input are given so that the program can be immediately utilized. An example of input data together with the associated output is presented. (auth)

  10. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing

    2012-11-23

    Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.

  11. [Gas tamponade following intraoperative pneumothorax on a single lung: A case study].

    Science.gov (United States)

    El Jaouhari, S D; Mamane Nassirou, O; Meziane, M; Bensghir, M; Haimeur, C

    2017-04-01

    Intraoperative pneumothorax is a rare complication with a high risk of cardiorespiratory arrest by gas tamponade especially on a single lung. We report the case of a female patient aged 53 years who benefited from a left pneumonectomy on pulmonary tuberculosis sequelae. The patient presented early postoperative anemia with a left hemothorax requiring an emergency thoracotomy. In perioperative, the patient had a gas tamponade following a pneumothorax of the remaining lung, and the fate has been avoided by an exsufflation. Intraoperative pneumothorax can occur due to lesions of the tracheobronchial airway, of the brachial plexus, the placement of a central venous catheter or barotrauma. The diagnosis of pneumothorax during unipulmonary ventilation is posed by the sudden onset of hypoxia associated with increased airway pressures and hypercapnia. The immediate life-saving procedure involves fine needle exsufflation before the placement of a chest tube. Prevention involves reducing the risk of barotrauma by infusing patients with low flow volumes and the proper use of positive airway pressure, knowing that despite protective ventilation, barotraumas risk still exists. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Single channel analog pulse processor Asic for gas proportional counters and SI detector

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sarkar, Soumen; Kataria, S.K.; Viyogi, Y.P.

    2005-01-01

    The paper presents the design and development of a single channel pulse processor in short Singleplex ASIC targeted for gas proportional counters/Si detectors. The design is optimized for the dynamic range of +500 fC to -500 fC with provision for externally adjusted pole-zero cancellation. A dedicated filter based on the de-convolution principle is used for the cancellation of the long hyperbolic signal tail produced by the slow drift of ions, typical in gas proportional with the filter time constants derived from the actual detector input signal shape. The pole-zero adjustment can be done by external dc voltage to achieve perfect base-line recovery to 1% after 5 μs. The simulated 0 pf noise is 500 e - rms for the peaking time of 1.2 μs with noise slope of 7e - -. The gain is 3.4 mv/fC over the entire linear dynamic range with power dissipation of 13 mW. This design is a modified version of Indiplex chip with features dynamic range equal gain on both polarities with nearly same noise and serves as diagnostic chip for Indiplex. The chip can be used for radiation monitoring instruments. (author)

  13. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  14. Gas Detection for Experiments

    CERN Document Server

    Hay, D

    2001-01-01

    Flammable gases are often used in detectors for physics experiments. The storage, distribution and manipulation of such flammable gases present several safety hazards. As most flammable gases cannot be detected by human senses, specific well-placed gas detection systems must be installed. Following a request from the user group and in collaboration with CERN safety officers, risk analyses are performed. An external contractor, who needs to receive detailed user requirements from CERN, performs the installations. The contract is passed on a guaranteed results basis. Co-ordination between all the CERN groups and verification of the technical installation is done by ST/AA/AS. This paper describes and focuses on the structured methodology applied to implement such installations based on goal directed project management techniques (GDPM). This useful supervision tool suited to small to medium sized projects facilitates the task of co-ordinating numerous activities to achieve a completely functional system.

  15. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  16. A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Colin Barschel

    2015-01-01

    Full Text Available We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1H, 2H, or 3He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 1033/cm2 s can be produced with existing techniques.

  17. Growth of Cd0.96Zn0.04Te single crystals by vapor phase gas transport method

    Directory of Open Access Journals (Sweden)

    S. H. Tabatabai Yazdi

    2006-03-01

    Full Text Available   Cd0.96Zn0.04Te crystals were grown using vapor phase gas transport method (VPGT. The results show that dendritic crystals with grain size up to 3.5 mm can be grown with this technique. X-ray diffraction and Laue back-reflection patterns show that dendritic crystals are single-phase, whose single crystal grains are randomly oriented with respect to the gas-transport axis. Electrical measurements, carried out using Van der Pauw method, show that the as-grown crystals have resistivity of about 104 Ω cm and n-type conductivity.

  18. Fires in the Cenozoic: a late flowering of flammable ecosystems

    OpenAIRE

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine...

  19. Fires in the Cenozoic: a late flowering of flammable ecosystems

    Directory of Open Access Journals (Sweden)

    William John Bond

    2015-01-01

    Full Text Available Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analysed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma. Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+ for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However none of the potential global factors (oxygen, rainfall seasonality, CO2 , novel flammable growth forms provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  20. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    Science.gov (United States)

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  1. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  2. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  3. Evaluation of natural gas supply options for south east and central Europe. Part 1: Indicator definitions and single indicator analysis

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Carvalho, Maria G.; Pilavachi, Petros A.; Martins, Nelson

    2007-01-01

    The need for diversification of energy sources is an immanent goal in long term energy strategy. In particular, this is of great importance for the natural gas supply. In this respect, evaluation and assessment of potential natural gas resources and their relation to consumers is of great importance. The natural gas supply in Europe is one of the main issues of European energy strategy to be followed in the future. In particular, the natural gas supply in the southeast countries is important. This paper provides a framework for understanding how much natural gas is available for use in south east and central Europe as well as the links to the recent supply of natural gas and its transport. The analysis is focused on evaluation of the potential routes for natural gas supply to the south east and central European countries. The potential options included in this analysis are the Yamal Route; Nabucco Route; West Balkan Route; LNG NEUM Route and Gas by Wire Route. In this analysis, attention is focused on the following indicators for assessment of potential options: environmental indicator; NG cost indicator; NG transport and royalty indicator; investment indicator; and NG demand indicator. The first part of this paper is devoted to the definition of the indicators and to single indicator analysis. (author)

  4. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S

    2016-12-12

    In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.

  5. Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program

    International Nuclear Information System (INIS)

    2002-01-01

    The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase 'gas generationtesting' shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

  6. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    Science.gov (United States)

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  7. Controllable preparation of copper phthalocyanine single crystal nano column and its chlorine gas sensing properties

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2016-09-01

    Full Text Available The unsubstituted copper phthalocyanine (CuPc single crystal nano columns were fabricated for the first time as chlorine (Cl2 gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane, M-plane, R-plane, Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26∼659% with the increase for Cl2 within concentration range (0.08∼4.0ppm. These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.

  8. Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine.

    Science.gov (United States)

    Bythell, Benjamin J; Csonka, István P; Suhai, Sándor; Barofsky, Douglas F; Paizs, Béla

    2010-11-25

    The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H(2)O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H(2)O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H(2)O, NH(3), guanidine) fragment ions, and the d(3) ion.

  9. Single and multiple ionization of noble gas atoms by H0 impact

    International Nuclear Information System (INIS)

    Sarkadi, L.; Gulyas, L.; Herczku, P.; Kovacs, S.T.S.; Koever, A.

    2012-01-01

    Complete text of publication follows. The understanding of the mechanisms of collisions between energetic charged particles and neutral atoms is of fundamental significance, and it has large importance in many research fields (plasma physics, astrophysics, materials science, etc.), as well as in number of practical applications. In the present work we measured total direct ionization and electron loss cross sections for the collisions of H 0 atoms with noble gas atoms (He, Ne, Ar, Kr) in the energy range 75-300 keV. The experiment was carried out at the 1.5 MV Van de Graaff accelerator of Atomki by coincident detection of the recoil target ions and the charge-state analyzed scattered projectiles. With this study we wished to obtain information about the role played by the electron of the H 0 projectile in the process of the single and multiple vacancy production induced by the collision. For this purpose we repeated the measurements also with proton projectile under the same experimental conditions. For calibration of the measuring system and normalization of our data we used the cross section values of Ref. [1]. The experimental results were analysed with using the classical trajectory Monte Carlo (CTMC) method. CTMC describes well the experimental data for both projectiles for the single vacancy creation, however we observed increasing deviation between the theory and experiment with increasing number of the created vacancies, as well as with decreasing atomic number of the target atoms. Fig. 1 shows our results obtained for the single, double and triple ionization (q = 1, 2, 3) of Kr at H 0 impact for the two cases when the outgoing projectile is H 0 (a) and H + (b), i.e., for pure ionization of the target, and ionization of the target with simultaneous electron loss of the projectile. The curves in the figure were obtained by two versions of the three-body CTMC theory: a conventional model (dashed curves); and a model taking partially account of the many

  10. A Simple Technique to Estimate the Flammability Index of Moroccan Forest Fuels

    Directory of Open Access Journals (Sweden)

    M'Hamed Hachmi

    2011-01-01

    Full Text Available A formula to estimate forest fuel flammability index (FI is proposed, integrating three species flammability parameters: time to ignition, time of combustion, and flame height. Thirty-one (31 Moroccan tree and shrub species were tested within a wide range of fuel moisture contents. Six species flammability classes were identified. An ANOVA of the FI-values was performed and analyzed using four different sample sizes of 12, 24, 36, and 50 flammability tests. Fuel humidity content is inversely correlated to the FI-value, and the linear model appears to be the most adequate equation that may predict the hypothetical threshold-point of humidity of extinction. Most of the Moroccan forest fuels studied are classified as moderately flammable to flammable species based on their average humidity content, calculated for the summer period from July to September.

  11. Evaluation of the generation and release of flammable gases in tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Pederson, L.R.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Meisel, D.; Jonah, C. (Argonne National Lab., IL (United States)); Ashby, E.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1991-11-01

    Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.

  12. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    Science.gov (United States)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  13. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    OpenAIRE

    Lekov, Alex

    2010-01-01

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certificati...

  14. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    Science.gov (United States)

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  15. Low-Flammability PTFE for High-Oxygen Environments

    Science.gov (United States)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  16. The Efficiency of Non-Flammable Functional Underwear

    Directory of Open Access Journals (Sweden)

    Glombikova Viera

    2014-09-01

    Full Text Available This study evaluates the efficiency of non-flammable functional underwear used as a secondary heat barrier in extreme conditions. Five groups of knitted fabrics were analysed for flame resistance and selected physiological properties (water vapour permeability, air permeability, thermal resistance and liquid moisture transport by moisture management transport. The results indicated similar levels of flame resistance for the materials tested but show important differences in terms of physiological characteristics, namely liquid moisture transport, which influences the safety and comfort of protective clothing.

  17. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    International Nuclear Information System (INIS)

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs

  18. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D. (comp.)

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  19. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  20. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  1. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  2. A Room-temperature Hydrogen Gas Sensor Using Palladium-decorated Single-Walled Carbon Nanotube/Si Heterojunction

    Directory of Open Access Journals (Sweden)

    Yong Gang DU

    2016-05-01

    Full Text Available We report a room-temperature (RT hydrogen gas (H2 sensor based on palladium-decorated single-walled carbon nanotube/Si (Pd-SWNTs/Si heterojunction. The current-voltage (I-V curves of the Pd-SWNTs/Si heterojunction in different concentrations of H2 were measured. The experimental results reveal that the Pd-SWNTs/Si heterojunction exhibits high H2 response. After exposure to 0.02 %, 0.05 %, and 0.1 % H2 for 10 min, the resistance of the heterojunction increases dramatically. The response is 122 %, 269 % and 457 %, respectively. A simple interfacial theory is used to understand the gas sensitivity results. This approach is a step toward future CNTs-based gas sensors for practical application.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12925

  3. Anti-site defected MoS2 sheet-based single electron transistor as a gas sensor

    Science.gov (United States)

    Sharma, Archana; Husain, Mushahid; Srivastava, Anurag; Khan, Mohd. Shahid

    2018-05-01

    To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to study the adsorption of CO and CO2 gas molecules on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (MoS). The strong interaction between Mo metal with pristine MoS2 sheet suggests its strong binding nature. Doping Mo into MoS2 sheet enhances CO and CO2 adsorption strength. The sensing response of MoS-doped MoS2 system to CO and CO2 gas molecules is obtained in the single electron transistor (SET) environment by varying bias voltage. Doping reduces charging energy of the device which results in fast switching of the device from OFF to ON state.

  4. Safe Handling and Use of Flammable and Combustible Materials. Module SH-30. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safe handling and use of flammable and combustible materials is one of 50 modules concerned with job safety and health. This module introduces the student to the hazards of flammable and combustible materials and the measures necessary to control those hazards. Following the introduction, 14 objectives (each keyed to a page…

  5. 14 CFR 26.33 - Holders of type certificates: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Holders of type certificates: Fuel tank... Tank Flammability § 26.33 Holders of type certificates: Fuel tank flammability. (a) Applicability. This... part 25 of this chapter. (2) Exception. This paragraph (b) does not apply to— (i) Fuel tanks for which...

  6. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This... Series 767 Series (b) Any fuel tank meeting all of the criteria stated in paragraphs (b)(1), (b)(2) and...

  7. Outlier treatment for improving parameter estimation of group contribution based models for upper flammability limit

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    2015-01-01

    Flammability data is needed to assess the risk of fire and explosions. This study presents a new group contribution (GC) model to predict the upper flammability limit UFL oforganic chemicals. Furthermore, it provides a systematic method for outlier treatment inorder to improve the parameter...

  8. The ring of fire: the relative importance of fuel packing versus intrinsic leaf flammability

    NARCIS (Netherlands)

    Grootemaat, S.; Wright, I.J.; Cornelissen, J.H.C.; Viegas, D.X.

    2014-01-01

    Two different experimental set-ups were used to disentangle the relative importance of intrinsic leaf traits versus fuel packing for the flammability in fuel beds. Dried leaves from 25 Australian perennial species were burnt in fuel bed rings under controlled conditions. The flammability parameters

  9. Prediction methods for the calculation of the flammability properties of gases and vapors: CHETAH and ASTM software. Part 1. Esters and Ethers

    International Nuclear Information System (INIS)

    Gigante, L.; Dellavedova, M.; Pasturenzi, C.; Lunghi, A.; Cardillo, P.

    2008-01-01

    After the law by decree of the 12. June 2003, N 233 (ATEX Directive) and REACH regulation (Regulation EC n. 2907/2006 of the European Parliament), several industrial fields, also not chemical, need the flammability data for the substances used. Perhaps, many of these data, especially for compounds with not common uses, are not easy to collect. It would be helpful to provide prediction methods in order to calculate these data without any experimentation that sometimes results time consuming, expensive and practically impossible for all the commercial compounds. In this research the ASTM software CHETAH (CHEmical Thermodynamic And Hazard evaluation) has been used in order to compute the lower flammability limit (L i ), the limiting oxygen concentration (LOC, using nitrogen as inert gas) as a function of temperature, the adiabatic flame temperature T flame , the fundamental burning velocity (S u ), the quenching distance (Q d ), the minimum ignition energy (MIE) for esters and ethers, substances highly used in industry. [it

  10. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  11. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    International Nuclear Information System (INIS)

    Malet, J.; Mimouni, S.; Manzini, G.; Xiao, J.; Vyskocil, L.; Siccama, N.B.; Huhtanen, R.

    2015-01-01

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety

  12. Methods development for measuring and classifying flammability/combustibility of refrigerants. Interim report, task 2 - test plan

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, E.W.; Tapscott, R.E. [Univ. of New Mexico, Albuquerque, NM (United States)

    1994-07-01

    Regulations on alternative refrigerants and concerns for the environment are forcing the refrigeration industry to consider the use of potentially flammable fluids to replace CFC fluids currently in use. The objectives of this program are to establish the conditions under which refrigerants and refrigerant blends exhibit flammability and to develop appropriate methods to measure flammability.

  13. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives; risk... TO OTHER ACTS UNDER THE CONSUMER PRODUCT SAFETY ACT § 1145.3 Extremely flammable contact adhesives... associated with certain extremely flammable contact adhesives under the Consumer Product Safety Act rather...

  14. Experimental study of single-electron loss by Ar{sup +} ions in rare-gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, P.G. [Facultad de Ciencias, UNAM, Coyoacan (Mexico); Castillo, F. [Instituto de Ciencias Nucleares, UNAM, Coyoacan (Mexico); Martinez, H. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)]. E-mail: hm@fis.unam.mx

    2001-04-28

    Absolute differential and total cross sections for single-electron loss were measured for Ar{sup +} ions on rare-gas atoms in the laboratory energy range of 1.5 to 5.0 keV. The electron loss cross sections for all the targets studied are found to be in the order of magnitude between 10{sup -19} and 10{sup -22} cm{sup 2}, and show a monotonically increasing behaviour as a function of the incident energy. The behaviour of the total single-electron loss cross sections with the atomic target number, Z{sub t}, shows different dependences as the collision energy increases. In all cases the present results display experimental evidence of saturation in the single-electron loss cross section as the atomic number of the target increases. (author)

  15. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber.

    Science.gov (United States)

    Gamisans, Xavier; Sarrà, Montserrrat; Lafuente, F Javier

    2002-03-29

    The absorption of SO(2) and NH(3) from the flue gas into NaOH and H(2)SO(4) solutions, respectively has been studied using an industrial scale ejector-venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube. The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption. The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.

  16. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas

    DEFF Research Database (Denmark)

    Liu, Xi; Zhang, Chenghua; Li, Yongwang

    2017-01-01

    Structuralevolution of iron nanoparticles involving the formationand growth of iron carbide nuclei in the iron nanoparticle was directlyvisualized at the atomic level, using environmental transmission electronmicroscopy (TEM) under reactive conditions mimicking Fischer–Tropschsynthesis. Formation...... and electronenergy-loss spectra provides a detailed picture from initial activationto final degradation of iron under synthesis gas....

  17. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  18. Safety evaluation of interim stabilization of non-stabilized single-shell watch list tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, S.M.

    1994-12-30

    The report provides a summation of the status of safety issues associated with interim stabilization of Watch List SSTs (organic, ferrocyanide, and flammable gas), as extracted from recent safety analyses, including the Tank Farms Accelerated Safety Analysis efforts.

  19. Safety evaluation of interim stabilization of non-stabilized single-shell watch list tanks

    International Nuclear Information System (INIS)

    Stahl, S.M.

    1994-01-01

    The report provides a summation of the status of safety issues associated with interim stabilization of Watch List SSTs (organic, ferrocyanide, and flammable gas), as extracted from recent safety analyses, including the Tank Farms Accelerated Safety Analysis efforts

  20. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  1. Measurements of gas filled halfraum energetics at the national ignition facility using a single quad

    Energy Technology Data Exchange (ETDEWEB)

    Kline, J.L.; Fernandez, J.C.; Goldman, S.R.; Gautier, D.C.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Workman, J.B. [Los Alamos National Laboratory, Los Alamos, NM (United States); Braun, D.; Landen, O.; Niemann, C.; Campbell, K.; Celeste, J.; Dewald, E.; Glenzer, S.; Hinkel, D.; Holder, J.; Kalantar, D.; Kamperschroer, J.; Kimbrough, J.; Kirkwood, R.; Lee, F.D.; MacGowan, B.; MacKinnon, A.; McDonald, J.; Schein, J.; Schneider, M.; Suter, L.; Young, B. [Lawrence Livermore National Lab., CA (United States)

    2006-06-15

    Gas filled halfraum experiments were conducted at the National Ignition Facility which provided an excellent test of the tools needed to understand halfraum energetics in an ignition relevant regime. The experiments used a highly shaped laser pulse and measured large levels of backscattered laser energy. These two components challenge the ability of radiation hydrodynamic simulations to model the experiments. The results show good agreement between experimental measurements and simulations. (authors)

  2. Measurements of gas filled halfraum energetics at the national ignition facility using a single quad

    International Nuclear Information System (INIS)

    Kline, J.L.; Fernandez, J.C.; Goldman, S.R.; Gautier, D.C.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Workman, J.B.; Braun, D.; Landen, O.; Niemann, C.; Campbell, K.; Celeste, J.; Dewald, E.; Glenzer, S.; Hinkel, D.; Holder, J.; Kalantar, D.; Kamperschroer, J.; Kimbrough, J.; Kirkwood, R.; Lee, F.D.; MacGowan, B.; MacKinnon, A.; McDonald, J.; Schein, J.; Schneider, M.; Suter, L.; Young, B.

    2006-01-01

    Gas filled halfraum experiments were conducted at the National Ignition Facility which provided an excellent test of the tools needed to understand halfraum energetics in an ignition relevant regime. The experiments used a highly shaped laser pulse and measured large levels of backscattered laser energy. These two components challenge the ability of radiation hydrodynamic simulations to model the experiments. The results show good agreement between experimental measurements and simulations. (authors)

  3. Extended Le Chatelier's formula for carbon dioxide dilution effect on flammability limits.

    Science.gov (United States)

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2006-11-02

    Carbon dioxide dilution effect on the flammability limits was measured for various flammable gases. The obtained values were analyzed using the extended Le Chatelier's formula developed in a previous study. As a result, it has been found that the flammability limits of methane, propane, propylene, methyl formate, and 1,1-difluoroethane are adequately explained by the extended Le Chatelier's formula using a common set of parameter values. Ethylene, dimethyl ether, and ammonia behave differently from these compounds. The present result is very consistent with what was obtained in the case of nitrogen dilution.

  4. Bombardment of gas molecules on single graphene layer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Ramki [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 660-701 (Korea, Republic of); Park, Jae Hyun [Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ha, Dong Sung [Future Propulsion Center, Agency for Defense Development, Daejeon 305-600 (Korea, Republic of)

    2014-12-09

    Graphite is widely used as a material for rocket-nozzle inserts due to its excellent thermo-physical properties as well as low density. During the operation of rockets, the surface of the graphite nozzle is subjected to very high heat fluxes and the undesirable erosion of the surface occurs due to the bombardment of gas molecules with high kinetic energy, which causes a significant reduction of nozzle performance. However, the understanding and quantification of such bombardment is not satisfactory due to its complexity: The bond breaking-forming happens simultaneously for the carbon atoms of graphene, some gas molecules penetrate through the surface, some of them are reflected from the surface, etc. In the present study, we perform extensive molecular dynamics (MD) simulations to examine the bombardment phenomena in high temperature environment (several thousand Kelvin). Advanced from the previous studies that have focused on the bombardment by light molecules (e.g., H{sub 2}), we will concentrate on the impact by realistic molecules (e.g., CO{sub 2} and H{sub 2}O). LAMMPS is employed for the MD simulations with NVE ensemble and AIREBO potential for graphene. The molecular understanding of the interaction between graphene and highly energetic gas molecules will enable us to design an efficient thermo-mechanical protection system.

  5. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  6. Pulmonary gas exchange impairment following tourniquet deflation: a prospective, single-blind clinical trial.

    Science.gov (United States)

    Lin, Lina; Wang, Liangrong; Bai, Yu; Zheng, Liupu; Zhao, Xiyue; Xiong, Xiangqing; Jin, Lida; Ji, Wei; Wang, Wantie

    2010-06-09

    The tourniquet has been considered as a recognized cause of limb ischemia/reperfusion injury in orthopedic surgery resulting in a transient neutrophil, monocyte activation, and enhanced neutrophil transendothelial migration with potential remote tissue injury. This study investigated the effect of unilateral tourniquet application within a safe time limit on pulmonary function and the roles of lipid peroxidation and systemic inflammatory response. Thirty patients undergoing unilateral lower extremity surgery with or without tourniquet were equally divided into a control group with no tourniquet (Group C) and a tourniquet (Group T). Arterial partial pressure of oxygen (P(a)O(2)), arterial-alveolar oxygen tension ratio (a/A ratio), alveolar-arterial oxygen difference (A-aDO(2)) and respiratory index, plasma malondialdehyde, serum interleukin (IL) -6 and IL-8 levels were measured immediately before and 1 hour after tourniquet inflation/operation beginning, 0.5, 2, 6, and 24 hours after tourniquet deflation/operation ending. The results represented no significant changes in Group C with regard to either blood gas variables or levels of circulating mediators, while blood gas variable changes of greater A-aDO(2) and respiratory index and lower PaO2 and a/A ratio were shown at 6 hours following tourniquet deflation. The levels of malondialdehyde, IL-6, and IL-8 were increased over baseline values from 2 to 24 hours following tourniquet deflation in Group T. We concluded that tourniquet application within a safe time limit may cause pulmonary gas exchange impairment several hours after tourniquet deflation, where lipid peroxidation and systemic inflammatory response may be involved. Copyright 2010, SLACK Incorporated.

  7. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1997-01-01

    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...... employs the Barkan and Sheinin hydrate model for the description of the hydrate phase, the original Patel-Teja equation of state for the vapor phase fugacities, and the MPT EOS (instead of the activity coefficient model) for the activity of water in the aqueous phase. The new method has succesfully...

  8. Engineering task plan for determining breathing rates in single shell tanks using tracer gas

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1997-01-01

    The testing of single shell tanks to determine breathing rates. Inert tracer gases helium, and sulfur hexafluoride will be injected into the tanks AX-103, BY-105, C-107 and U-103. Periodic samples will be taken over a three month interval to determine actual headspace breathing rates

  9. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  10. Optimization Study of Hydrogen Gas Adsorption on Zig-zag Single-walled Carbon Nanotubes: The Artificial Neural Network Analysis

    Science.gov (United States)

    Nasruddin; Lestari, M.; Supriyadi; Sholahudin

    2018-03-01

    The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).

  11. The relation between photoluminescence properties and gas pressure with [0001] InGaN single quantum well systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Toshiaki [Department of Nanosystem Sciences, Yokohama City University, Yokohama 236-0027 (Japan); Alfieri, Giovanni; Kawakami, Yoichi [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto 615-8510 (Japan); Micheletto, Ruggero, E-mail: ruggero@yokohama-cu.ac.jp [Department of Nanosystem Sciences, Yokohama City University, Yokohama 236-0027 (Japan)

    2017-01-15

    Highlights: • Photoluminescence of InGaN device is variable, there is no clear explanation for this. • We perform an ad-hoc absorption procedure, found that gases on the surface reduce emission. • We found that variability is related to the pressure of the gas in which the sample is immersed. • We point out the role of oxygen as major player in the reduction of photoluminescence. • A model is proposed and explains successfully the dynamical optical processes observed. - Abstract: We show for the first time that photoluminescence of InGaN single quantum wells (SQW) devices is related to the gas pressure in which the sample is immersed, also we give a model of the phenomena to suggest a possible cause. Our model shows a direct relation between experimental behavior and molecular coverage dynamics. This strongly suggests that the driving force of photoluminescence decrease is oxygen covering the surface of the device with a time dynamics that depends on the gas pressure. This aims to contribute to the understanding of the physical mechanism of the so-called optical memory effect and blinking phenomenon observed in these devices.

  12. Surface-Anchored Poly(4-vinylpyridine)–Single-Walled Carbon Nanotube–Metal Composites for Gas Detection

    KAUST Repository

    Yoon, Bora

    2016-08-05

    A platform for chemiresistive gas detectors based upon single-walled carbon nanotube (SWCNT) dispersions stabilized by poly(4-vinylpyridine) (P4VP) covalently immobilized onto a glass substrate was developed. To fabricate these devices, a glass substrate with gold electrodes is treated with 3-bromopropyltrichlorosilane. The resulting alkyl bromide coating presents groups that can react with the P4VP to covalently bond (anchor) the polymer–SWCNT composite to the substrate. Residual pyridyl groups in P4VP not consumed in this quaternization reaction are available to coordinate metal nanoparticles or ions chosen to confer selectivity and sensitivity to target gas analytes. Generation of P4VP coordinated to silver nanoparticles produces an enhanced response to ammonia gas. The incorporation of soft Lewis acidic Pd2+ cations by binding PdCl2 to P4VP yields a selective and highly sensitive device that changes resistance upon exposure to vapors of thioethers. The latter materials have utility for odorized fuel leak detection, microbial activity, and breath diagnostics. A third demonstration makes use of permanganate incorporation to produce devices with large responses to vapors of volatile organic compounds that are susceptible to oxidation.

  13. Investigations of X-ray response of single wire anode Ar-N2 flow type gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.

    1984-01-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon+nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interaction in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique. (orig.)

  14. Estimation and Uncertainty Analysis of Flammability Properties of Chemicals using Group-Contribution Property Models

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    Process safety studies and assessments rely on accurate property data. Flammability data like the lower and upper flammability limit (LFL and UFL) play an important role in quantifying the risk of fire and explosion. If experimental values are not available for the safety analysis due to cost...... or time constraints, property prediction models like group contribution (GC) models can estimate flammability data. The estimation needs to be accurate, reliable and as less time consuming as possible. However, GC property prediction methods frequently lack rigorous uncertainty analysis. Hence....... In this study, the MG-GC-factors are estimated using a systematic data and model evaluation methodology in the following way: 1) Data. Experimental flammability data is used from AIChE DIPPR 801 Database. 2) Initialization and sequential parameter estimation. An approximation using linear algebra provides...

  15. Non-Flammable Crew Clothing Utilizing Phosphorus-Based Fire Retardant Polymers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For maintaining U.S. leadership role in space exploration, there is an urgent need to develop non-flammable shirts, shorts, sweaters, and jackets without...

  16. LBA-ECO LC-02 Forest Flammability Data, Catuaba Experimental Farm, Acre, Brazil: 1998

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the results of controlled burns conducted to assess the flammability of mature forests on the Catuaba Experimental Farm of the Federal...

  17. LBA-ECO LC-02 Forest Flammability Data, Catuaba Experimental Farm, Acre, Brazil: 1998

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides the results of controlled burns conducted to assess the flammability of mature forests on the Catuaba Experimental Farm of the...

  18. Screening the Hanford tanks for trapped gas

    International Nuclear Information System (INIS)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford's nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list

  19. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Directory of Open Access Journals (Sweden)

    Voytkov Ivan V.

    2016-01-01

    Full Text Available The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  20. Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades

    Science.gov (United States)

    Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming

    The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.

  1. Comparative study of shale-gas production using single- and dual-continuum approaches

    KAUST Repository

    El-Amin, Mohamed

    2017-07-06

    In this paper, we explore the possibility of specifying the ideal hypothetical positions of matrices blocks and fractures in fractured porous media as a single-continuum reservoir model in a way that mimics the dual-porosity dual-permeability (DPDP) configuration. In order to get an ideal mimic, we use the typical configuration and geometrical hypotheses of the DPDP model for the SDFM. Unlike the DPDP model which consists of two equations for the two-continuum coupled by a transfer term, the proposed single-domain fracture model (SDFM) model consists of a single equation for the single-continuum. Each one of the two models includes slippage effect, adsorption, Knudsen diffusion, geomechanics, and thermodynamics deviation factor. For the thermodynamics calculations, the cubic Peng-Robinson equation of state is employed. The diffusion model is verified by calculating the total mass flux through a nanopore by combination of slip flow and Knudsen diffusion and compared with experimental data. A semi-implicit scheme is used for the time discretization while the thermodynamics equations are updated explicitly. The spatial discretization is done using the cell-centered finite difference (CCFD) method. Finally, numerical experiments are performed under variations of the physical parameters. Several results are discussed such as pressure, production rate and cumulative production. We compare the results of the two models using the same dimensions and physical and computational parameters. We found that the DPDP and the SDFM models production rate and cumulative production behave similarly with approximately the same slope but with some differences in values. Moreover, we found that the poroelasticity effect reduces the production rate and consequently the cumulative production rate but in the SDFM model the reservoir takes more time to achieve depletion than the DPDP model. The normal fracture factor which appears in the transfer term of the DPDP model is adjusted against

  2. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  3. Clothing Flammability and Burn Injuries: Public Opinion Concerning an Overlooked, Preventable Public Health Problem.

    Science.gov (United States)

    Frattaroli, Shannon; Spivak, Steven M; Pollack, Keshia M; Gielen, Andrea C; Salomon, Michele; Damant, Gordon H

    2016-01-01

    The objective of this study was to describe knowledge of clothing flammability risk, public support for clothing flammability warning labels, and stronger regulation to reduce the risk. As part of a national survey of homeowners about residential sprinkler systems, the authors included questions about clothing flammability. The authors used an online web panel to sample homeowners and descriptive methods to analyze the resulting data. The sample included 2333 homeowners. Knowledge of clothing flammability and government oversight of clothing flammability risk was low. Homeowners were evenly split about the effectiveness of current standards; however, when presented with clothing-related burn injury and death data, a majority (53%) supported stricter standards. Most homeowners (64%) supported warning labels and indicated that such labels would either have no effect on their purchasing decisions (64%) or be an incentive (24%) to purchase an item. Owners of sprinkler-equipped homes were more likely to support these interventions than owners of homes without sprinkler systems. Public knowledge about clothing flammability risks is low. Most homeowners supported clothing labels to inform consumers of this risk and increased government intervention to reduce the risk.

  4. Model of ASTM Flammability Test in Microgravity: Iron Rods

    Science.gov (United States)

    Steinberg, Theodore A; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    There is extensive qualitative results from burning metallic materials in a NASA/ASTM flammability test system in normal gravity. However, this data was shown to be inconclusive for applications involving oxygen-enriched atmospheres under microgravity conditions by conducting tests using the 2.2-second Lewis Research Center (LeRC) Drop Tower. Data from neither type of test has been reduced to fundamental kinetic and dynamic systems parameters. This paper reports the initial model analysis for burning iron rods under microgravity conditions using data obtained at the LERC tower and modeling the burning system after ignition. Under the conditions of the test the burning mass regresses up the rod to be detached upon deceleration at the end of the drop. The model describes the burning system as a semi-batch, well-mixed reactor with product accumulation only. This model is consistent with the 2.0-second duration of the test. Transient temperature and pressure measurements are made on the chamber volume. The rod solid-liquid interface melting rate is obtained from film records. The model consists of a set of 17 non-linear, first-order differential equations which are solved using MATLAB. This analysis confirms that a first-order rate, in oxygen concentration, is consistent for the iron-oxygen kinetic reaction. An apparent activation energy of 246.8 kJ/mol is consistent for this model.

  5. Summary report on the design of the retained gas sampler system (retained gas sampler, extruder and extractor)

    International Nuclear Information System (INIS)

    Wootan, D.W.; Bolden, R.C.; Bridges, A.E.; Cannon, N.S.; Chastain, S.A.; Hey, B.E.; Knight, R.C.; Linschooten, C.G.; Pitner, A.L.; Webb, B.J.

    1994-01-01

    This document summarizes work performs in Fiscal Year 1994 to develop the three main components of Retained Gas Sampler System (RGSS). These primary components are the Retained Gas Sampler (RGS), the Retained Gas Extruder (RGE), and the Retained Gas Extractor (RGEx). The RGS is based on the Westinghouse Hanford Company (WHC) Universal Sampler design, and includes modifications to reduce gas leakage. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. Significant progress has been made in developing the RGSS. The RGSS is being developed by WHC to extract a representative waste sample from a Flammable Gas Watch List Tanks and to measure both the amount and composition of free and open-quotes boundclose quotes gases. Sudden releases of flammable gas mixtures are a safety concern for normal waste storage operations and eventual waste retrieval. Flow visualization testing was used to identify important fluid dynamic issues related to the sampling process. The primary data priorities for the RGSS are to measure the void fraction and the flammable gas concentration in the waste sample. The safety analysis for the RGSS is being performed by Los Alamos National Laboratory and is more than sixty percent (60%) complete

  6. Dynamic response of single crystalline copper subjected to quasi-isentropic, gas-gun driven loading

    International Nuclear Information System (INIS)

    Jarmakani, H.; McNaney, J.M.; Kad, B.; Orlikowski, D.; Nguyen, J.H.; Meyers, M.A.

    2007-01-01

    A transmission electron microscopy study of quasi-isentropic gas-gun loading (peak pressures between 18 and 52 GPa) of [0 0 1] monocrystalline copper was carried out. The defect substructures at these different pressures were analyzed. Current experimental evidence suggests a deformation substructure that transitions from slip to twinning, where twinning occurs at the higher pressures (∼52 GPa), and heavily dislocated laths and dislocation cells take place at the intermediate and lower pressures. Evidence of stacking faults at the intermediate pressures was also found. Dislocation cell sizes decreased with increasing pressure and increased with distance away from the surface of impact. The results from the quasi-isentropic experiments are compared with those for flyer-plate and laser shock experiments reported in the literature. The Preston-Tonks-Wallace constitutive description is used to model both quasi-isentropic and shock compression experiments and predict the pressure at which the slip-twinning transition occurs in both cases. The model predicts a higher twinning transition pressure for isentropic than for shock experiments, and that twinning should not take place in the quasi-isentropic compression experiments given the loading paths investigated

  7. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Junjun [Department; Department; Zhang, Shiran [Department; Department; Choksi, Tej [Department; Nguyen, Luan [Department; Department; Bonifacio, Cecile S. [Department; Li, Yuanyuan [Department; Zhu, Wei [Department; Department; College; Tang, Yu [Department; Department; Zhang, Yawen [College; Yang, Judith C. [Department; Greeley, Jeffrey [Department; Frenkel, Anatoly I. [Department; Tao, Franklin [Department; Department

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis were explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.

  8. A model of gas generation and transport within TRU [transuranic] waste drums

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1987-01-01

    Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled. Concentrations of gas throughout the waste drum are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that hydrogen gas can accumulate to concentrations greater than 4 mole percent (lower flammable limit) with about 5 Ci of plutonium. Polyethylene provides a worst case for combustible waste material. If the drum liner is punctured and a carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. 5 refs., 7 figs., 4 tabs

  9. Single-phase and two-phase gas-liquid turbulent mixing between subchannels in a simulated rod bundle

    International Nuclear Information System (INIS)

    Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa; Tomino, Takayoshi.

    1996-01-01

    This study is concerned with turbulent mixing which is one of the three mechanisms of cross flows between subchannels in a nuclear fuel rod bundle. The channel used in this experiments was a vertical simulated rod bundle having two subchannels connected through 1 to 3 gaps between two rods and/or rod and channel wall. The number of the gaps was changed to investigate the effect of the number on the turbulent mixing. Turbulent mixing rates of air and water and fluctuations of pressure difference between the subchannels were measured for single-phase and two-phase gas-liquid flows under hydrodynamic equilibrium flow conditions. It has been confirmed that the turbulent mixing rate is affected strongly by the fluctuations especially for liquid phase in two-phase slug or churn flow. (author)

  10. Krypton Gas for High Quality Single Wall Carbon Nanotubes Synthesis by KrF Excimer Laser Ablation

    Directory of Open Access Journals (Sweden)

    Jasim Al-Zanganawee

    2015-01-01

    Full Text Available We report for the first time the production of single wall carbon nanotubes (SWCNTs by KrF excimer laser ablation method under the krypton gas atmosphere. For the ablation experiment 450 mJ energy and 30 Hz repetition rate KrF excimer laser was used, and the target was prepared with the following composition: 0.6% Ni, 0.6% Co, and 98.8% C (atomic percentage. The ablation product was characterized by confocal Raman microspectroscopy, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA. The SWCNTs obtained are a mixture of semiconducting and metallic types with narrow diameters distribution of 1.26 to 1.49 nm, are micrometers long, and contain low amount of graphite and amorphous carbon.

  11. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    Science.gov (United States)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  12. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    Science.gov (United States)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to

  13. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Science.gov (United States)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  14. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.

  15. The Effect of Exhaust Gas Recirculation (EGR on the Emission of a Single Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Limyaa Mahdi Asaad

    2016-07-01

    Full Text Available A single cylinder variable compression ratio spark ignition engine type PRODIT was used in this study. The  experiments  were  conducted  with  gasoline  fuel  (80  octane  No.at  equivalence  ratio  (Ø  =1.  This study examined the effects of exhaust gas recirculation on emission. It was conducted at engine speeds (1500, 1900, 2300 and 2700 r.p.m..The  exhaust  gases  were  added  in  volumetric  ratios  of  10%,  20%  and  30%  of  the  entering  air/fuel charge. The results showed that the EGR addition decreases the CO2 concentrations, in the same time CO and HC concentrations increase remarkably.  NOx concentration decreased highly with the increase of EGR percentage at variable engine speeds and constant torque. Also, it decreased when the engine run  at  constant  speed  and  variable  engine  torque.  The  exhaust  gas  temperature  decreased  with increasing EGR ratio.

  16. A comparison of single knock-on and complete bubble destruction models of the fission induced re-solution of gas atoms from bubbles

    International Nuclear Information System (INIS)

    Wood, M.H.

    1978-03-01

    In previous theoretical studies of the behaviour of the fission gases in nuclear fuel, the Nelson single knock-on model of the fission induced re-solution of gas atoms from fission gas bubbles has been employed. In the present investigation, predictions from this model are compared with those from a complete bubble destruction model of the re-solution process. The main conclusions of the study are that the complete bubble destruction model predicts more gas release after a particular irradiation time than the single knock-on model, for the same choice of the model parameters, and that parameter sets chosen to give the same gas release predict significantly different bubble size distribution functions. (author)

  17. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM

    Science.gov (United States)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-01

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.

  18. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  19. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  20. Hydrodynamic performance of a single-use aerated stirred bioreactor in animal cell culture: applications of tomography, dynamic gas disengagement (DGD), and CFD.

    Science.gov (United States)

    Kazemzadeh, Argang; Elias, Cynthia; Tamer, Melih; Ein-Mozaffari, Farhad

    2018-05-01

    The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined. The experimental data indicated that the total gas holdup values increased with increasing both the rotational speed of impeller and volumetric gas flow rate. Moreover, the analysis of the flow field generated inside the aerated stirred bioreactor was conducted using CFD results. Overall, a more uniform distribution of the gas holdup was obtained at impeller speeds ≥ 100 rpm for volumetric gas flow rates ≥ 1.6 × 10 -5  m 3 /s.

  1. Modelling leaf, plant and stand flammability for ecological and operational decision making

    Science.gov (United States)

    Zylstra, Philip

    2014-05-01

    Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however

  2. Composition and quantities of retained gas measured in Hanford waste tanks 241-U-103, S-106, BY-101, and BY-109

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, L.A.; Antoniak, Z.I.; Bates, J.M.

    1997-12-01

    This report provides the results obtained for the single-shell tanks (SSTs) sampled with the Retained Gas Sampler (RGS) during 1997: Tanks 241-U-103, 241-S-106, 241-BY-101, and 241-BY-109. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically to be used in concert with the gas extraction equipment in the hot cell to capture and extrude a gas-containing waste sample in a hermetically sealed system. The four tanks represent several different types of flammable gas SSTs. Tank U-103 is on the Flammable Gas Watch List (FGWL) and is one of the highest-priority group of SSTs that show evidence of significant gas retention. Tank S-106, though not a FGWL tank, has a uniquely high barometric pressure response and continuing rapid surface level rise, indicating a large and increasing volume of retained gas. Tanks BY-101 and BY-109 are not on the FGWL but were chosen to test the effect of recent salt-well pumping on gas retention. Section 2 of this report provides an overview of the process by which retained gases in the Hanford tanks are sampled and analyzed. A detailed description of the procedure used to reduce and analyze the data is provided in Section 3. Tank-by-tank results are covered in Section 4 (with the data presented in the order in which the tanks were sampled), and an RGS system performance overview is given in Section 5. Section 6 presents conclusions from these analyses and recommendations for further research. The cited references are listed in Section 7. Appendix A describes the procedures used to extract gas and ammonia from the samples, Appendix B contains detailed laboratory data from each of the tanks, and Appendix C gives field sampling data.

  3. Composition and quantities of retained gas measured in Hanford waste tanks 241-U-103, S-106, BY-101, and BY-109

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Antoniak, Z.I.; Bates, J.M.

    1997-12-01

    This report provides the results obtained for the single-shell tanks (SSTs) sampled with the Retained Gas Sampler (RGS) during 1997: Tanks 241-U-103, 241-S-106, 241-BY-101, and 241-BY-109. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically to be used in concert with the gas extraction equipment in the hot cell to capture and extrude a gas-containing waste sample in a hermetically sealed system. The four tanks represent several different types of flammable gas SSTs. Tank U-103 is on the Flammable Gas Watch List (FGWL) and is one of the highest-priority group of SSTs that show evidence of significant gas retention. Tank S-106, though not a FGWL tank, has a uniquely high barometric pressure response and continuing rapid surface level rise, indicating a large and increasing volume of retained gas. Tanks BY-101 and BY-109 are not on the FGWL but were chosen to test the effect of recent salt-well pumping on gas retention. Section 2 of this report provides an overview of the process by which retained gases in the Hanford tanks are sampled and analyzed. A detailed description of the procedure used to reduce and analyze the data is provided in Section 3. Tank-by-tank results are covered in Section 4 (with the data presented in the order in which the tanks were sampled), and an RGS system performance overview is given in Section 5. Section 6 presents conclusions from these analyses and recommendations for further research. The cited references are listed in Section 7. Appendix A describes the procedures used to extract gas and ammonia from the samples, Appendix B contains detailed laboratory data from each of the tanks, and Appendix C gives field sampling data

  4. Position paper on flammability concerns associated with TRU waste destined for WIPP

    International Nuclear Information System (INIS)

    1991-04-01

    The Waste Isolation Pilot Plant (WIPP), in southeastern New Mexico,is an underground repository, designed for the safe geologic disposal of transuranic (TRU) wastes generated from defense-related activities of the US Department of Energy (DOE). The WIPP storage rooms are mined in a bedded salt (halite) formation, and are located 2150 feet below the surface. After the disposal of waste in the storage rooms, closure of the repository is expected to occur by creep (plastic flow) of the salt formation, with the waste being permanently isolated from the surrounding environment. This paper has evaluated the issue of flammability concerns associated with TRU waste to be shipped to WIPP, including a review of possible scenarios that can potentially contribute to the flammability. The paper discusses existing regulations that address potential flammability concerns, presents an analysis of previous flammability-related incidents at DOE sites with respect to the current regulations, and finally, examines the degree of assurance these regulations provide in safeguarding against flammability concerns during transportation and waste handling. 50 refs., 7 figs., 7 tabs

  5. The Jarvis gas release incident

    International Nuclear Information System (INIS)

    Manocha, J.

    1992-01-01

    On 26 September, 1991, large volumes of natural gas were observed to be leaking from two water wells in the Town of Jarvis. Gas and water were being ejected from a drilled water well, at which a subsequent gas explosion occurred. Measurements of gas concentrations indicated levels far in excess of the lower flammability limit at several locations. Electrical power and natural gas services were cut off, and residents were evacuated. A state of emergency was declared, and gas was found to be flowing from water wells, around building foundations, and through other fractures in the ground. By 27 September the volumes of gas had reduced substantially, and by 30 September all residents had returned to their homes and the state of emergency was cancelled. The emergency response, possible pathways of natural gas into the aquifer, and public relations are discussed. It is felt that the likelihood of a similar incident occurring in the future is high. 11 figs

  6. The vibrational spectra of N-phenylpyrrole in the gas phase, in argon matrices and in single crystals

    International Nuclear Information System (INIS)

    Schweke, D.; Brauer, B.; Gerber, R.B.; Haas, Y.

    2007-01-01

    The infrared spectrum of N-phenylpyrrole (PP) was measured in the gas phase and in an argon matrix, and the Raman spectrum was obtained in a single crystal. The measured matrix shifts are found to be small: many bands are not split, and the shifts from the gas phase values are less than 1%. Splitting to two sub-bands is observed for some bands, indicating the presence of two major trapping sites, in agreement with previous predictions. The spectra are analyzed with the help of harmonic calculations on the free molecule and on its adduct with one or two argon atoms, and anharmonic frequency calculations on the free molecule. Harmonic frequencies were obtained at the MP2/cc-pVDZ and DFT-B3LYP/cc-pVDZ levels. Anharmonic frequencies were obtained by the correlation-corrected vibrational self-consistent field (CC-VSCF) method with a variant of the PM3 semiempirical electronic structure method, calibrated for much improved spectroscopic accuracy. The potential surfaces used in the CC-VSCF calculation obtained by adjusting standard PM3 surfaces so that they provide harmonic frequencies that are comparable to those obtained at the DFT-B3LYP/cc-pVDZ level. Agreement between the experimental and theoretical results is in general very good, allowing the assignments of most bands. The harmonic frequency calculations of PP-Ar clusters, at the MP2/cc-pVDZ level show that the environment can greatly affect the intensities of some of the transitions, which is in accord with experiment

  7. Species mixture effects on flammability across plant phylogeny: the importance of litter particle size and the special role for non-Pinus Pinaceae.

    Science.gov (United States)

    Zhao, Weiwei; Cornwell, William K; van Pomeren, Marinda; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2016-11-01

    Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide-ranging species and 34 random two-species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non- Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non-flammable species were found in mixtures involving the non- Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.

  8. A preliminary study on the thermal conductivity and flammability of WPC based on some tropical woods

    International Nuclear Information System (INIS)

    Chia, L.H.L.; Chua, P.H.; Lee, E.E.N.

    1985-01-01

    Selected local woods and their wood-polymer combinations or composites (WPC) were tested for their thermal conductivity and their fire resistance. WPC were prepared by polymerizing monomers 'in situ' in oven dried woods by gamma radiation. The monomers included acrylonitrile (AN), 60% styrene-40% acrylonitrile (STAN), methyl methacrylate (MMA), 95% methyl methacrylate-5% dioxane (MD), and vinylidene chloride (VDC). A reduction in thermal conductivity was exhibited by all the composites prepared. W-PAN showed the greatest reduction in thermal conductivity and W-PSTAN in general showed the least. An explanation is suggested for this behaviour. The polymers PMMA and PMD were found to enhance flammability of the woods while PVDC, PAN, and PSTAN imparted fire resistance to the woods. Of the six local woods studied, Ramin-and-Keruing-polymer composites showed the highest flammable tendencies obtained. The correlation of thermal conductivity to flammability is discussed. (author)

  9. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  10. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  11. Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay

    Science.gov (United States)

    Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.

    1999-01-01

    The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the

  12. 16 CFR 1500.46 - Method for determining flashpoint of extremely flammable contents of self-pressurized containers.

    Science.gov (United States)

    2010-01-01

    ... extremely flammable contents of self-pressurized containers. 1500.46 Section 1500.46 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND... extremely flammable contents of self-pressurized containers. Use the apparatus described in § 1500.43a. Use...

  13. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints

    International Nuclear Information System (INIS)

    Khan, Mohd Shariq; Lee, Moonyong

    2013-01-01

    The particle swarm paradigm is employed to optimize single mixed refrigerant natural gas liquefaction process. Liquefaction design involves multivariable problem solving and non-optimal execution of these variables can waste energy and contribute to process irreversibilities. Design optimization requires these variables to be optimized simultaneously; minimizing the compression energy requirement is selected as the optimization objective. Liquefaction is modeled using Honeywell UniSim Design ™ and the resulting rigorous model is connected with the particle swarm paradigm coded in MATLAB. Design constraints are folded into the objective function using the penalty function method. Optimization successfully improved efficiency by reducing the compression energy requirement by ca. 10% compared with the base case. -- Highlights: ► The particle swarm paradigm (PSP) is employed for design optimization of SMR NG liquefaction process. ► Rigorous SMR process model based on UniSim is connected with PSP coded in MATLAB. ► Stochastic features of PSP give more confidence in the optimality of complex nonlinear problems. ► Optimization with PSP notably improves energy efficiency of the SMR process.

  14. Detection of haemoglobins with abnormal oxygen affinity by single blood gas analysis and 2,3-diphosphoglycerate measurement.

    Science.gov (United States)

    Guerrini, G; Morabito, A; Samaja, M

    2000-10-01

    The aim is to determine if a single measurement of blood 2,3-diphosphoglycerate combined with gas analysis (pH, PCO2, PO2 and saturation) can identify the cause of an altered blood-oxygen affinity: the presence of an abnormal haemoglobin or a red cell disorder. The population (n=94) was divided into healthy controls (A, n=14), carriers of red cell disorders (B, n=72) and carriers of high oxygen affinity haemoglobins (C, n=8). Those variables were measured both in samples equilibrated at selected PCO2 and PO2 and in venous blood. In the univariable approach applied to equilibrated samples, we correctly identified C subjects in 93.6% or 96.8% of the cases depending on the selected variable, the standard P50 (PO2 at which 50% of haemoglobin is oxygenated) or a composite variable calculated from the above measurements. After introducing the haemoglobin concentration as a further discriminating variable, the A and B subjects were correctly identified in 91.9% or 94.2% of the cases, respectively. These figures become 93.0% or 86.1%, and 93.7% or 94.9% of the cases when using direct readings from venous blood, thereby avoiding the blood equilibration step. This test is feasible also in blood samples stored at 4 degrees C for 48 h, or at room temperature for 8 h.

  15. Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

  16. Drag reduction by polymer addition in single and two-phase gas-liquid flows in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Bizotto, Vanessa Cristina; Paes, Diogo Melo; Franca, Fernando de Almeida [Universidade Estadual de Campinas, SP (Brazil). Centro de Estudos de Petroleo. LabPetro]. E-mails: vanessa@cepetro.unicamp.br; diogopaes10@hotmail.com; Sabadini, Edvaldo [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mails: sabadini@iqm.unicamp.br; ffranca@fem.unicamp.br

    2008-07-01

    Turbulence mechanisms, as the eddies formation frequency and size, promote energy dissipation that appears as pressure drop in pipe flows. Adding minute amounts of polymers - ppm - of high molecular weight to the solution can lead to the reduction of the viscous dissipation. The formed macromolecules interact with the eddies, cause the eddies coherence breakdown, damp the energy transport and reduces the pressure drop. This phenomenon is known as the hydrodynamic drag reduction (DR, for short). Thus, for a given pipe flow rate there is decrease in pressure head, which is a desired operating strategy when transporting liquids. Studies on the hydrodynamic drag reduction in polymeric systems have been carried out in collaboration by the Chemistry Institute and the Petroleum Laboratory - LabPetro, UNICAMP. These studies have allowed microscopic approaches to the engineering scales, tackling the most usual processes - single phase flows, as well as gas-liquid two-phase flows in pipelines, which are quite common in the chemical and the petroleum industries. Tests conducted in the Chemistry Institute comprised over-the-bench experimentations made with a rotational double-gap type rheometer. These quick performed tests used small amount of polymers, and provided information on the additive concentration, the drag reduction and the solution mechanical stability along a turbulent shearing process. The results indicated that 17% is the limiting drag reduction achieved when a 2 ppm aqueous solution of polyacrylamide - PAM - was tested. These tests, besides giving preliminary estimations, are limited in terms of engineering application due to the low shearing rates applied by the viscometer. The tests performed at LabPetro comprised pressure drop measurements in actual pipe flows, both water single and air-water two-phase flows, using the previous knowledge acquired with the viscometer tests. In the former case, the Prandtl-von Karman map has been drawn to show the %DR in terms

  17. Enhancing the x-ray output of a single-wire explosion with a gas-puff based plasma opening switch

    Science.gov (United States)

    Engelbrecht, Joseph T.; Ouart, Nicholas D.; Qi, Niansheng; de Grouchy, Philip W.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Banasek, Jacob T.; Potter, William M.; Rocco, Sophia V.; Hammer, David A.; Kusse, Bruce R.; Giuliani, John L.

    2018-02-01

    We present experiments performed on the 1 MA COBRA generator using a low density, annular, gas-puff z-pinch implosion as an opening switch to rapidly transfer a current pulse into a single metal wire on axis. This gas-puff on axial wire configuration was studied for its promise as an opening switch and as a means of enhancing the x-ray output of the wire. We demonstrate that current can be switched from the gas-puff plasma into the wire, and that the timing of the switch can be controlled by the gas-puff plenum backing pressure. X-ray detector measurements indicate that for low plenum pressure Kr or Xe shots with a copper wire, this configuration can offer a significant enhancement in the peak intensity and temporal distribution of radiation in the 1-10 keV range.

  18. World`s first fuel cell in a single-family home - The VNG natural gas house: Low-emission energy meets all household needs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    VNG - Verbundnetz Gas Aktiengesellschaft of Leipzig, Germany, has pioneered the development of a decentral home energy system combining very high efficiencies with extremely low emissions. The company has installed the world`s first fuel cell total energy system using natural gas as an energy source to generate both heat and power in a single-family home. It replaces the gas-fired mini power station operated as part of the VNG natural gas house project which was instrumental in the rapid advancement of small-scale co-generation technology. The objective of VNG and its project partners is to collect reliable data for advancing fuel cell technology development, allowing appliance manufacturers to design a competitive system for introduction on the market within a few years. Discerning consumers will then be able to opt for an innovative, highly efficient system to meet all their household energy needs. (orig.)

  19. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    International Nuclear Information System (INIS)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-01-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed

  20. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-03-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed.

  1. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  2. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  3. Achievement report for fiscal 1998. Research and development of ceramic gas turbine (Regenerative single-shaft ceramic gas turbine for cogeneration); 1998 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saiseishiki ichijiku ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Efforts are exerted to develop a 300kW-class ceramic gas turbine with a turbine inlet temperature of 1350 degrees C and thermal efficiency of 42% or higher. The soundness in strength of the ceramic rotor blades and their fastening structure is confirmed. Rotor blade cushion thickness is found to decrease in start-and-stop repetitions in the initial period, but not thereafter. The exhaust diffuser and exhaust path shape are studied and improved for an increase in output, which improves turbine efficiency by 1.7%. Under the operating conditions of 1350 degrees C and full load, NOx emissions and combustion efficiency prove to be 5.6ppm and 99.9%. Even in the case using a large-diameter liner with its combustion efficiency under light load improved, the ultimate target value is achieved. Studies are further conducted on centrifugal stage loss reduction towards the ultimate goal set for the compressor. The diffuser shape is improved and the shroud clearance is reduced, and insulation efficiency of 81.1% is attained at the designing stage. In a test run of a pilot ceramic gas turbine in which temperature finally arrives at 1350 degrees C, engine thermal efficiency of 35% and shaft output of 282kW are achieved. (NEDO)

  4. An Equilibrium-Based Model of Gas Reaction and Detonation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999

  5. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.

    Science.gov (United States)

    Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan

    2013-09-01

    Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P exchange caused by differences in lung inflation and posture.

  6. Non-Toxic, Non-Flammable, -80 C Phase Change Materials

    Science.gov (United States)

    Cutbirth, J. Michael

    2013-01-01

    The objective of this effort was to develop a non-toxic, non-flammable, -80 C phase change material (PCM) to be used in NASA's ICEPAC capsules for biological sample preservation in flight to and from Earth orbit. A temperature of about -68 C or lower is a critical temperature for maintaining stable cell, tissue, and cell fragment storage.

  7. 16 CFR 1500.43a - Method of test for flashpoint of volatile flammable materials.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method of test for flashpoint of volatile flammable materials. 1500.43a Section 1500.43a Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... shall intersect the plane of the underside of the cover. The cover is also provided with an orifice...

  8. Effect of melamine phosphate on the thermal stability and flammability of bio-based polyurethanes

    International Nuclear Information System (INIS)

    Yakushin, Vladimir; Sevastyanova, Irina; Vilsone, Dzintra; Avots, Andris

    2016-01-01

    The effect of melamine phosphate (MP) on the thermal stability of bio-based polyurethane and the flammability parameters of wood samples with polyurethane coatings was studied. Thermogravimetric analysis and cone calorimeter test at a heat flux of 35 kW/m 2 were used for this purpose. The main characteristics of the thermal stability and flammability of the coating with addition of MP were compared with the characteristics of analogous coatings with addition of ammonium polyphosphate (APP), as well as APP in combination with melamine. It was found that the use of MP as an intumescent additive allows a considerable decrease of most of the flammability parameters of the polyurethane based on tall oil fatty acids, like APP. To reach the maximum effect, it is enough to load in the polyurethane 20% of MP. In contrast to APP, MP reduces also the smoke release of the samples. Using MP in combination with APP at definite weight ratios, it is possible to essentially reduce the flammability parameters of polyurethane coatings, such as PHRR, THR and MARHE. (paper)

  9. Fleet Composition of Rail Tank Cars That Transport Flammable Liquids: 2013-2016

    Science.gov (United States)

    2017-09-05

    Section 7308 of the Fixing America's Surface Transportation Act (FAST Act; P. L. 114-94; December 4, 2015) requires the U.S. Department of Transportation (DOT) to assemble and collect data on rail tank cars transporting Class 3 flammable liquids (box...

  10. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Science.gov (United States)

    2010-07-01

    ... drying apparatus and electrical connections and wiring thereto shall not be located within spray... apparatus, the drying apparatus, and the ventilating system of the spray enclosure shall be equipped with... 29 Labor 5 2010-07-01 2010-07-01 false Spray finishing using flammable and combustible materials...

  11. 30 CFR 35.22 - Test to determine effect of evaporation on flammability.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine effect of evaporation on... § 35.22 Test to determine effect of evaporation on flammability. (a) Purpose. The purpose of this test shall be to determine the effect of evaporation on the reduction of fire resistance of a hydraulic fluid...

  12. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I., E-mail: esko.kauppinen@aalto.fi [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Susi, T. [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Nasibulin, A. G. [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 (Russian Federation); Saint-Petersburg State Polytechnical University, 29 Polytechniheskaya st., St. Petersburg, 195251 (Russian Federation)

    2015-07-06

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  13. Hydrogen gas production is associated with reduced interleukin-1β mRNA in peripheral blood after a single dose of acarbose in Japanese type 2 diabetic patients.

    Science.gov (United States)

    Tamasawa, Atsuko; Mochizuki, Kazuki; Hariya, Natsuyo; Saito, Miyoko; Ishida, Hidenori; Doguchi, Satako; Yanagiya, Syoko; Osonoi, Takeshi

    2015-09-05

    Acarbose, an α-glucosidase inhibitor, leads to the production of hydrogen gas, which reduces oxidative stress. In this study, we examined the effects of a single dose of acarbose immediately before a test meal on postprandial hydrogen gas in breath and peripheral blood interleukin (IL)-1β mRNA expression in Japanese type 2 diabetic patients. Sixteen Japanese patients (14 men, 2 women) participated in this study. The mean±standard deviation age, hemoglobin A1c and body mass index were 52.1±15.4 years, 10.2±2.0%, and 27.7±8.0kg/m(2), respectively. The patients were admitted into our hospital for 2 days and underwent test meals at breakfast without (day 1) or with acarbose (day 2). We performed continuous glucose monitoring and measured hydrogen gas levels in breath, and peripheral blood IL-1β mRNA levels before (0min) and after the test meal (hydrogen gas: 60, 120, 180, and 300min; IL-1β: 180min). The induction of hydrogen gas production and the reduction in peripheral blood IL-1β mRNA after the test meal were not significant between days 1 (without acarbose) and 2 (with acarbose). However, the changes in total hydrogen gas production from day 1 to day 2 were closely and inversely associated with the changes in peripheral blood IL-1β mRNA levels. Our results suggest that an increase in hydrogen gas production is inversely associated with a reduction of the peripheral blood IL-1β mRNA level after a single dose of acarbose in Japanese type 2 diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Explosion protection for vehicles intended for the transport of flammable gases and liquids--an investigation into technical and operational basics.

    Science.gov (United States)

    Förster, Hans; Günther, Werner

    2009-05-30

    In Europe, the transport of flammable gases and liquids in tanks has been impacted by new developments: for example, the introduction of the vapour-balancing technique on a broad scale and the steady increase in the application of electronic components with their own power sources; furthermore, new regulatory policies like the ATEX Directives are being enforced in the European Union. With this background in mind, the present investigation aims to provide a basis for future developments of the relevant explosion protection regulations in the safety codes for the transport of dangerous goods (RID/ADR). Specifically, the concentration of gas in the air was measured under various practical conditions while tank vehicles were being loaded with flammable gases or liquids. These spot-test data were supplemented by systematic investigations at a road tanker placed in our test field. With respect to non-electrical ignition sources, a closer investigation of the effect of hot surfaces was carried out. With regard to improving the current regulations, the results of our investigation show that it would be reasonable to implement a stronger differentiation of the characteristics of the dangerous goods (gaseous/liquid, flashpoint) on the one hand and of the techniques applied (loading with and without vapour-balancing system) on the other hand. Conclusions for the further development of the current international regulations are proposed.

  15. Explosion protection for vehicles intended for the transport of flammable gases and liquids-An investigation into technical and operational basics

    International Nuclear Information System (INIS)

    Foerster, Hans; Guenther, Werner

    2009-01-01

    In Europe, the transport of flammable gases and liquids in tanks has been impacted by new developments: for example, the introduction of the vapour-balancing technique on a broad scale and the steady increase in the application of electronic components with their own power sources; furthermore, new regulatory policies like the ATEX Directives are being enforced in the European Union. With this background in mind, the present investigation aims to provide a basis for future developments of the relevant explosion protection regulations in the safety codes for the transport of dangerous goods (RID/ADR). Specifically, the concentration of gas in the air was measured under various practical conditions while tank vehicles were being loaded with flammable gases or liquids. These spot-test data were supplemented by systematic investigations at a road tanker placed in our test field. With respect to non-electrical ignition sources, a closer investigation of the effect of hot surfaces was carried out. With regard to improving the current regulations, the results of our investigation show that it would be reasonable to implement a stronger differentiation of the characteristics of the dangerous goods (gaseous/liquid, flashpoint) on the one hand and of the techniques applied (loading with and without vapour-balancing system) on the other hand. Conclusions for the further development of the current international regulations are proposed.

  16. Heterogeneous reactivity of sea spray particles during the CalNex field campaign: Insight from single particle measurements and correlations with gas phase measurements

    Science.gov (United States)

    Gaston, C. J.; Riedel, T. P.; Thornton, J. A.; Wagner, N.; Brown, S. S.; Quinn, P.; Bates, T. S.; Prather, K. A.

    2011-12-01

    Sea spray particles are ubiquitous in marine environments. Heterogeneous reactions between sea spray particles and gas phase pollutants, such as HNO3(g), and N2O5(g), alter particle composition by displacing particulate phase halogens in sea spray and releasing these halogen species into the gas phase; these halogen-containing gas phase species play a significant role in tropospheric ozone production. Measurements of both gas phase and particle phase species on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of heterogeneous reactivity of marine aerosols along the California coast. During the cruise, coastal measurements were made near the Santa Monica and Port of Los Angeles regions to monitor the chemical processing of marine aerosols. Sea spray particles were analyzed since these particles were the major chloride-containing particles detected. Real-time single particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the nocturnal processing of sea spray particles through the loss of particulate chloride and a simultaneous gain in particulate nitrate. Gas phase measurements are consistent with the particle phase observations: As N2O5(g) levels rose overnight, the production of ClNO2(g) coincided with the decrease in particulate chloride. These observations provide unique insight into heterogeneous reactivity from both a gas and particle phase perspective. Results from these measurements can be used to better constrain the rate of heterogeneous reactions on sea spray particles.

  17. Thermal modeling of core sampling in flammable gas waste tanks. Part 2: Rotary-mode sampling

    International Nuclear Information System (INIS)

    Unal, C.; Poston, D.; Pasamehmetoglu, K.O.; Witwer, K.S.

    1997-01-01

    The radioactive waste stored in underground storage tanks at Hanford site includes mixtures of sodium nitrate and sodium nitrite with organic compounds. The waste can produce undesired violent exothermic reactions when heated locally during the rotary-mode sampling. Experiments are performed varying the downward force at a maximum rotational speed of 55 rpm and minimum nitrogen purge flow of 30 scfm. The rotary drill bit teeth-face temperatures are measured. The waste is simulated with a low thermal conductivity hard material, pumice blocks. A torque meter is used to determine the energy provided to the drill string. The exhaust air-chip temperature as well as drill string and drill bit temperatures and other key operating parameters were recorded. A two-dimensional thermal model is developed. The safe operating conditions were determined for normal operating conditions. A downward force of 750 at 55 rpm and 30 scfm nitrogen purge flow was found to yield acceptable substrate temperatures. The model predicted experimental results reasonably well. Therefore, it could be used to simulate abnormal conditions to develop procedures for safe operations

  18. Contribution to internal pressure and flammable gas concentration in RAM transport packages

    International Nuclear Information System (INIS)

    Warrant, M.M.; Brown, N.

    1989-01-01

    Various facilities in the US operated by the US Department of Energy generate wastes contaminated with transuranic (TRU) isotopes (such as plutonium and americium) that decay primarily by emission of alpha particles. The alpha particles lose energy in their passage through matter and change the material chemically in the process called radiolysis. The waste materials consist of a wide variety of commercially available plastics, paper, cloth, and rubber; concreted or sludge wastes containing water; and metals, glass, and other solid inorganic materials. TRU wastes that have surface dose rates of 200 mrem/hr or less are typically packaged in plastic bags placed inside metal drums or boxes that are vented through high efficiency particulate air (HEPA) filters. These wastes are to be transported from waste generation or storage sites to the Waste Isolation Pilot Plant (WIPP) in the TRUPACT-II, a Type B package

  19. Flammable gas deflagration consequence calculations for the tank waste remediation system basis for interim operation

    Energy Technology Data Exchange (ETDEWEB)

    Van Vleet, R.J., Westinghouse Hanford

    1996-08-13

    This paper calculates the radiological dose consequences and the toxic exposures for deflagration accidents at various Tank Waste Remediation System facilities. These will be used in support of the Tank Waste Remediation System Basis for Interim Operation.The attached SD documents the originator`s analysis only. It shall not be used as the final or sole document for effecting changes to an authorization basis or safety basis for a facility or activity.

  20. Solid-phase characterization in flammable-gas-tank sludges by electron microscopy

    International Nuclear Information System (INIS)

    Liu, J.; Pederson, L.R.; Qang, L.Q.

    1995-09-01

    The crystallinity, morphology, chemical composition, and crystalline phases of several Tank 241-SY-101 (hereinafter referred to as SY-101) and Tank 241-SY-103 (hereinafter referred to as SY-103) solid samples were studied by transmission electron microscopy (TEM), electron energy dispersive spectroscopy (EDS), and electron diffraction. The main focus is on the identification of aluminum hydroxide thought to be present in these tank samples. Aluminum hydroxide was found in SY-103, but not in SY-101. This difference can be explained by the different OH/Al ratios found in the two tank samples: a high OH/Al ratio in SY-101 favors the formation of sodium aluminate, but a low OH/Al ratio in SY-103 favors aluminum hydroxide. These results were confirmed by a magnetic resonance study on SY-101 and SY-103 simulant. The transition from aluminum hydroxide to sodium aluminate occurs at an OH/Al molar ratio of 3.6. It is believed that the study of Al(OH) 3 was not affected by sample preparation because all Al(OH) 3 is in the solid form according to the NMR experiments. There is no Al(OH) 3 in the liquid. It is, therefore, most likely that the observation of Al(OH) 3 is representative of the real sludge sample, and is not affected by drying. Similar conclusions also apply to other insoluble phases such as iron and chromium

  1. Thermal modeling of core sampling in flammable gas waste tanks. Part 1: Push-mode sampling

    International Nuclear Information System (INIS)

    Unal, C.; Stroh, K.; Pasamehmetoglu, K.O.

    1997-01-01

    The radioactive waste stored in underground storage tanks at Hanford site is routinely being sampled for waste characterization purposes. The push- and rotary-mode core sampling is one of the sampling methods employed. The waste includes mixtures of sodium nitrate and sodium nitrite with organic compounds that can produce violent exothermic reactions if heated above 160 C during core sampling. A self-propagating waste reaction would produce very high temperatures that eventually result in failure of the tank and radioactive material releases to environment. A two-dimensional thermal model based on a lumped finite volume analysis method is developed. The enthalpy of each node is calculated from the first law of thermodynamics. A flash temperature and effective contact area concept were introduced to account the interface temperature rise. No maximum temperature rise exceeding the critical value of 60 C was found in the cases studied for normal operating conditions. Several accident conditions are also examined. In these cases it was found that the maximum drill bit temperature remained below the critical reaction temperature as long as a 30 scfm purge flow is provided the push-mode drill bit during sampling in rotary mode. The failure to provide purge flow resulted in exceeding the limiting temperatures in a relatively short time

  2. Mechanisms of gas retention and release: Experimental results for Hanford waste tanks 241-AW-101 and 241-AN-103

    Energy Technology Data Exchange (ETDEWEB)

    Rassat, S.D.; Gauglitz, P.A.; Bredt, P.R.; Mahoney, L.A.; Forbes, S.V.; Tingey, S.M.

    1997-09-01

    The 177 storage tanks at Hanford contain a vast array of radioactive waste forms resulting, primarily, from nuclear materials processing. Through radiolytic, thermal, and other decomposition reactions of waste components, gaseous species including hydrogen, ammonia, and the oxidizer nitrous oxide are generated within the waste tanks. Many of these tanks are known to retain and periodically release quantities of these flammable gas mixtures. The primary focus of the Flammable Gas Project is the safe storage of Hanford tank wastes. To this end, we strive to develop an understanding of the mechanisms of flammable gas retention and release in Hanford tanks through laboratory investigations on actual tank wastes. These results support the closure of the Flammable Gas Unreviewed Safety Question (USQ) on the safe storage of waste tanks known to retain flammable gases and support resolution of the broader Flammable Gas Safety Issue. The overall purpose of this ongoing study is to develop a comprehensive and thorough understanding of the mechanisms of flammable gas retention and release. The first objective of the current study was to classify bubble retention and release mechanisms in two previously untested waste materials from Tanks 241-AN-103 (AN-103) and 241-AW-101 (AW-101). Results were obtained for retention mechanisms, release characteristics, and the maximum gas retention. In addition, unique behavior was also documented and compared with previously studied waste samples. The second objective was to lengthen the duration of the experiments to evaluate the role of slowing bubble growth on the retention and release behavior. Results were obtained for experiments lasting from a few hours to a few days.

  3. Mechanisms of gas retention and release: Experimental results for Hanford waste tanks 241-AW-101 and 241-AN-103

    International Nuclear Information System (INIS)

    Rassat, S.D.; Gauglitz, P.A.; Bredt, P.R.; Mahoney, L.A.; Forbes, S.V.; Tingey, S.M.

    1997-09-01

    The 177 storage tanks at Hanford contain a vast array of radioactive waste forms resulting, primarily, from nuclear materials processing. Through radiolytic, thermal, and other decomposition reactions of waste components, gaseous species including hydrogen, ammonia, and the oxidizer nitrous oxide are generated within the waste tanks. Many of these tanks are known to retain and periodically release quantities of these flammable gas mixtures. The primary focus of the Flammable Gas Project is the safe storage of Hanford tank wastes. To this end, we strive to develop an understanding of the mechanisms of flammable gas retention and release in Hanford tanks through laboratory investigations on actual tank wastes. These results support the closure of the Flammable Gas Unreviewed Safety Question (USQ) on the safe storage of waste tanks known to retain flammable gases and support resolution of the broader Flammable Gas Safety Issue. The overall purpose of this ongoing study is to develop a comprehensive and thorough understanding of the mechanisms of flammable gas retention and release. The first objective of the current study was to classify bubble retention and release mechanisms in two previously untested waste materials from Tanks 241-AN-103 (AN-103) and 241-AW-101 (AW-101). Results were obtained for retention mechanisms, release characteristics, and the maximum gas retention. In addition, unique behavior was also documented and compared with previously studied waste samples. The second objective was to lengthen the duration of the experiments to evaluate the role of slowing bubble growth on the retention and release behavior. Results were obtained for experiments lasting from a few hours to a few days

  4. Lander based hydroacoustic monitoring of marine single bubble releases in Eckernförde Bay utilizing the multibeam based GasQuant II system.

    Science.gov (United States)

    Urban, Peter; Schneider von Deimling, Jens; Greinert, Jens

    2015-04-01

    The GEOMAR Helmholtz Centre for Ocean Research Kiel is currently developing a Imagenex Delta T based lander system for monitoring and quantifying marine gas release (bubbles). The GasQuant II is built as the successor of the GasQuant I system (Greinert, 2008), that has been successfully used for monitoring tempo-spatial variability of gas release in the past (Schneider von Deimling et al., 2010). The new system is lightweight (40 kg), energy efficient, flexible to use and built for ROV deployment with autonomous operation of up to three days. A prototype has been successfully deployed in Eckernförde Bay during the R/V ALKOR cruise AL447 in October/November 2014 to monitor the tempo-spatial variability of gas bubble seepage and to detect a possible correlation with tidal variations. Two deployments, one in forward- and one in upward looking mode, reveal extensive but scattered single bubble releases rather than distinct and more continuous sources. While these releases are difficult to detect in forward looking mode, they can unambiguously be detected in the upward looking mode even for minor gas releases, bubble rising speeds can be determined. Greinert, J., 2008. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant. J. Geophys. Res. Oceans Vol. 113 Issue C7 CiteID C07048 113, 7048. doi:10.1029/2007JC004704 Schneider von Deimling, J., Greinert, J., Chapman, N.R., Rabbel, W., Linke, P., 2010. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents. Limnol. Oceanogr. Methods 8, 155. doi:10.4319/lom.2010.8.155

  5. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  6. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  7. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method.

    Science.gov (United States)

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-12-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER(1z)). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER(2z)). In total, 287 daily pairs of AER(2z) and AER(1z) estimates were made from 35 homes across three cities. In 87% of the cases, AER(2z) was higher than AER(1z). Overall, the AER(1z) estimates underestimated AER(2z) by approximately 16% (IQR: 5-32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. The results of this study suggest that the long-standing assumption that a home represents a single well-mixed air zone may result in a substantial negative bias in air exchange estimates. Indoor air quality professionals should take this finding into consideration when developing study designs or making decisions related to the recommendation and installation of residential ventilation systems. © 2014 Her Majesty the Queen in Right of Canada. Indoor Air published by John Wiley & Sons Ltd Reproduced with the permission of the Minister of Health Canada.

  8. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  9. Safety evaluation of interim stabilization of non-stabilized single-shell watch list tanks

    International Nuclear Information System (INIS)

    Stahl, S.M.

    1994-01-01

    This report provides results of a review of recently completed safety analyses related to hazards associated with Interim Stabilization of Single analyses related to hazards included oh the Hanford Site Waste Tank-Watch Shell Tanks (SSTs) that are included on the Hanford List. The purpose of the review was to identify and summarize conclusions regarding the safety of interim stabilization of Watch List SSTs, and to highlight applicable limitations, restrictions, and controls. The scope of this review was restricted to SSTs identified List in the categories of flammable gas ferrocyanide, and organic salts. High heat tanks were not included in the scope. A Watch List tank is defined as an underground storage tank containing waste that requires special safety precautions because it may have a serious potential for release of high level radioactive waste because of uncontrolled increases in temperature or pressure. Special restrictions have been placed on these tanks

  10. 29 CFR 1910.253 - Oxygen-fuel gas welding and cutting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Oxygen-fuel gas welding and cutting. 1910.253 Section 1910..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.253 Oxygen-fuel gas welding and cutting. (a) General requirements—(1) Flammable mixture. Mixtures of fuel gases...

  11. 16 CFR Figure 5 to Part 1610 - An Example of a Typical Gas Shield

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false An Example of a Typical Gas Shield 5 Figure 5 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Example of a Typical Gas Shield ER25MR08.004 ...

  12. Correlation of Flammability Test Data on Antimisting Fuels.

    Science.gov (United States)

    1982-12-01

    relative air-to-liquid velocity) decay during the course of single test runs. The basic informa- tion on pitot tube dynamic pressure decays and...1961). 2. K. J. DeJuhasz, Spray Literature Abstracts, Volumes I-IV, American Soc. Mechanical Engineers (1959-1969). 3. C. E. Lapple, J.P. Henry , and

  13. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    Science.gov (United States)

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  14. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Lakshmi; Mohanty, Smita [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Nayak, Sanjay K., E-mail: drsknayak@gmail.com [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Ali, Anwar [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India)

    2011-05-15

    Research highlights: {yields} The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. {yields} The effect of various modified nanoclays on the properties of base matrix has been investigated. {yields} It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T{sub g} of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  15. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    International Nuclear Information System (INIS)

    Unnikrishnan, Lakshmi; Mohanty, Smita; Nayak, Sanjay K.; Ali, Anwar

    2011-01-01

    Research highlights: → The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. → The effect of various modified nanoclays on the properties of base matrix has been investigated. → It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T g of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  16. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer

    International Nuclear Information System (INIS)

    Lee, Yoon-Sung; Kim, Dong-Won

    2013-01-01

    Highlights: • Gel polymer electrolytes were synthesized by in situ polymerization of ionic liquid in the lithium polymer cells. • Flammability of the electrolyte was significantly reduced by polymerizing electrolyte containing a non-flammable ionic liquid monomer. • The cells assembled with polymeric ionic liquid-based electrolytes exhibited reversible cycling behavior with good capacity retention. -- Abstract: Lithium polymer cells composed of a lithium negative electrode and a LiCoO 2 positive electrode were assembled with a gel polymer electrolyte obtained by in situ polymerization of an electrolyte solution containing an ionic liquid monomer with vinyl groups. The polymerization of the electrolyte solution containing the non-flammable ionic liquid monomer resulted in a significant reduction of the flammability of the gel polymer electrolytes. The lithium polymer cell assembled with the stable gel polymer electrolyte delivered a discharge capacity of 134.3 mAh g −1 at ambient temperature and exhibited good capacity retention

  17. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    Science.gov (United States)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  18. Flammability and thermal properties studies of nonwoven flax reinforced acrylic based polyester composites

    Science.gov (United States)

    Rasyid, M. F. Ahmad; Salim, M. S.; Akil, H. M.; Ishak, Z. A. Mohd.

    2017-12-01

    In the pursuit of green and more sustainable product, natural fibre reinforced composites originating from renewable resources has gained interest in recent years. These natural fibres exhibit good mechanical properties, low production costs, and good environmental properties. However, one of the disadvantages of natural fibre reinforced composites is their high flammability that limits their application in many fields. Within this research, the effect of sodium silicate on the flammability and thermal properties of flax reinforced acrylic based polyester composites has been investigated. Sodium silicate is applied as binder and flame retardant system in impregnation process of the natural flax fiber mats. The addition of sodium silicate significantly improved the flame retardant efficiency but reduced the degree of crosslinking of the composites.

  19. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    Science.gov (United States)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  20. Influence of natural or organophilic bentonite for flammable of the poly(ethylene-co-vinyl acetate)

    International Nuclear Information System (INIS)

    Heyder, Eduardo T.; Kloss, Juliana R.; Morita, Reinaldo Y.; Barbosa, Ronilson V.

    2015-01-01

    The manufacture polymeric applied in electrical sector in general use additives which act as flame retardants, for example, some borates, phosphates, and halogenated hydroxides. An alternative material for this purpose frequently reported in the literature because the flame resistance or flame retardancy is organoclay. Thus, the objective of this study is to evaluate the flammability of mixtures of EVA/natural bentonite and EVA/organoclay containing modifier as a species free of quaternary ammonium ions. The natural bentonite and organoclay were characterized by X-ray diffraction and scanning electron microscopy and materials were evaluated by X-ray diffraction and the flammability test. Regarding the combustion rate values, there was a reduction of flame propagation in EVA/natural bentonite (3.0%), showing that in this case the clay without modifier acted as a physical barrier and promoted retardant action of flame. (author)

  1. A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    C. H. Lee

    2014-01-01

    Full Text Available Natural fibre is a well-known reinforcement fibre in polymer-matrix Composites (PMC lately. Natural fibre has fast growing and abundance properties which make it available at very low cost. For kenaf fibre there is long lists of research projects which have been done regarding its behaviour, and properties and modification made to it. In this paper, fire flammability is the main concern for natural fibre reinforced polymer (NFRP composites especially kenaf fibre. To estimate its flammability, a wide range of factors can be considered such as fibre content, type of matrices, pH conditions, treatment, and fire retardant (FR filler’s type. The most important criteria are the ignition time, rate of propagation, and fire behavior. thermogravimetric analysis (TGA, different scanning calorimetric (DSC, and dynamic mechanical analysis (DMA are the three most famous methods used to investigate the fire behaviour of composites.

  2. Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing

    Science.gov (United States)

    Engel, Carl D.; Richardson, Erin; Davis, Eddie

    2003-01-01

    The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.

  3. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanli, E-mail: flmeng@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Hou, Nannan [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Ge, Sheng [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Sun, Bai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Zhen, E-mail: zjin@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Shen, Wei; Kong, Lingtao; Guo, Zheng [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Yufeng, E-mail: sunyufeng118@126.com [Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wu, Hao; Wang, Chen [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Li, Minqiang [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-03-25

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion.

  4. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Meng, Fanli; Hou, Nannan; Ge, Sheng; Sun, Bai; Jin, Zhen; Shen, Wei; Kong, Lingtao; Guo, Zheng; Sun, Yufeng; Wu, Hao; Wang, Chen; Li, Minqiang

    2015-01-01

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion

  5. Assessing and ranking the flammability of some ornamental plant species to select firewise plants for landscaping in WUI (SE France).

    Science.gov (United States)

    Ganteaume, A.; Jappiot, M.; Lampin, C.

    2012-04-01

    The increasing urbanization of Wildland-Urban Interfaces (WUI) as well as the high fire occurrence in these areas requires the assessment and the ranking of the flammability of the ornamental vegetation surrounding houses especially that planted in hedges. Thus, the flammability of seven species, among those most frequently planted in hedges in Provence (South-Eastern France), were studied at particle level and at dead surface fuel level (litters) under laboratory conditions. The flammability parameters (ignition frequency, time-to-ignition, flaming duration) of the very fine particles (live leaves and particles fire bench. Burning experiments using the epiradiator showed that live leaves of Phyllostachys sp., Photinia frasei and Prunus laurocerasus had the shortest time-to-ignition and the highest ignition frequency and flaming duration whereas Pittosporum tobira and Nerium oleander were the longest to ignite with a low frequency. Phyllostachys sp. and Nerium oleander litters were the shortest to ignite while Prunus laurocerasus litter had the lowest bulk density and long time-to-ignition, but high flame propagation. Photinia fraseri litter ignited frequently and had a high flame spread while Pittosporum tobira litter ignited the least frequently and for the shortest duration. Cupressus sempervirens litter had the highest bulk density and the longest flaming duration but the lowest flame propagation. Pyracantha coccinea litter was the longest to ignite and flame propagation was low but lasted a long time. Hierarchical cluster analysis performed on the flammability parameters of live leaves and of litters ranked the seven species in four distinct clusters from the most flammable (Prunus laurocerasus and Pyracantha coccinea) to the least flammable (Pittosporum tobira and Nerium oleander); the other species displaying two groups of intermediate flammabilities (Phyllostachys sp.- Photinia fraseri and Cupressus sempervirens ). The species with highly flammable

  6. Effect of Environmental Variables on the Flammability of Fire Resistant Materials

    OpenAIRE

    Osorio, Andres Felipe

    2014-01-01

    This work investigates the effects of external radiation, ambient pressure and microgravity on the flammability limits of fire-resistant (FR) materials. Future space missions may require spacecraft cabin environments different than those used in the International Space Station, 21%O2, 101.3kPa. Environmental variables include flow velocity, oxygen concentration, ambient pressure, micro or partial-gravity, orientation, presence of an external radiant flux, etc. Fire-resistant materials are use...

  7. Public consultation of 27 July 2017 no. 2017-012 relating to the creation of a single gas market area in France on 1 November 2018

    International Nuclear Information System (INIS)

    2017-01-01

    This public consultation concerns the operational conditions for the creation of a single gas market area in France on 1 November 2018. It forms part of the road-map towards a single gas market area in France as defined by the CRE in 2012. In order to relieve the existing congestion between the GRTgaz network North and South zones and to enable the creation of a single market area common to GRTgaz and TIGF, the CRE adopted, in its deliberation of 7 May 2014, the investment configuration associating the reinforcement of the Val-de-Saone pipeline and the Gascogne-Midi project. These new infrastructures, developed by GRTgaz and TIGF, have been designed to enable the creation of a single zone at an optimised cost. Consequently, in certain network configurations of use, residual congestions could exceptionally occur. This public consultation proposes the contractual mechanisms planned at this stage to relieve this congestion so as to ensure the availability of firm capacity. In order to define the most relevant mechanisms, the TSOs have studied the occurrence of residual congestion and the solutions that could be implemented to remedy them in the Concertation Gas process since September 2016. At the end of this work, the TSOs submitted a joint proposal to the CRE, which is annexed to this public consultation. In addition, pending the commissioning of new works, and while the 2016-2017 winter was marked by a South-East congestion that resulted in constraints in the nomination of certain players, this public consultation also focuses on the solutions studied by the TSOs in the event that this congestion occurs again in the winter of 2017-2018, as well as the changes in the price of imbalances

  8. Flammability limits: A review with emphasis on ethanol for aeronautical applications and description of the experimental procedure

    International Nuclear Information System (INIS)

    Coronado, Christian J.R.; Carvalho, João A.; Andrade, José C.; Cortez, Ely V.; Carvalho, Felipe S.; Santos, José C.; Mendiburu, Andrés Z.

    2012-01-01

    Highlights: ► Develops a comprehensive literature review on ethanol flammability limits. ► Difference in standard procedures lead to different experimental values of the flammability limits. ► Methodology for experiments to find the FL's of ethanol for aeronautical applications. - Abstract: The lower and upper flammability limits of a fuel are key tools for predicting fire, assessing the possibility of explosion, and designing protection systems. Knowledge about the risks involved with the explosion of both gaseous and vaporized liquid fuel mixtures with air is very important to guarantee safety in industrial, domestic, and aeronautical applications. Currently, most countries use various standard experimental tests, which lead to different experimental values for these limits. A comprehensive literature review of the flammability limits of combustible mixtures is developed here in order to organize the theoretical and practical knowledge of the subject. The main focus of this paper is the review of the flammability data of ethanol–air mixtures available in the literature. In addition, the description of methodology for experiments to find the upper and lower limits of flammability of ethanol for aeronautical applications is discussed. A heated spherical 20 L vessel was used. The mixtures were ignited with electrode rods placed in the center of the vessel, and the spark gap was 6.4 mm. LFL and the UFL were determined for ethanol (hydrated ethanol 96% °INPM) as functions of temperature for atmospheric pressure to compare results with data published in the scientific literature.

  9. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    Science.gov (United States)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  10. Condensation heat transfer coefficients of flammable refrigerants on various enhanced tubes

    International Nuclear Information System (INIS)

    Park, Ki Jung; Jung, Dong Soo

    2005-01-01

    In this study, external condensation Heat Transfer Coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39 .deg. C on a 1023 fpm low fin and turbo-C tubes. All data were taken under the heat flux of 32∼116 and 42∼142 kW/m 2 for the low fin and turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to 30% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of 7.3%. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate

  11. The diversity of the effects of sulfur mustard gas inhalation on respiratory system 10 years after a single, heavy exposure: analysis of 197 cases.

    Science.gov (United States)

    Emad, A; Rezaian, G R

    1997-09-01

    To find out the late pulmonary sequelae of sulfur mustard gas inhalation in 197 veterans, 10 years after their exposure. Cross-sectional clinical study. University hospital. One hundred ninety-seven veterans with a single, heavy exposure to sulfur mustard gas in 1986 and 86 nonexposed veterans as their control group. Pulmonary function tests, carbon monoxide diffusion capacity, bronchoscopy, and high-resolution CT of the chest were performed in all patients. Transbronchial lung biopsy was done in 24 suspected cases of pulmonary fibrosis. Asthma was diagnosed in 21 (10.65%), chronic bronchitis in 116 (58.88%), bronchiectasis in 17 (8.62%), airway narrowing due to searing or granulation tissue in 19 (9.64%), and pulmonary fibrosis in 24 (12.18%) cases. None of these were found among the control group except for a single case of chronic bronchitis. Although the respiratory symptoms of an acute sulfur mustard gas inhalation are usually transient and nonspecific, it can lead to the development of a series of chronic destructive pulmonary sequelae in such cases.

  12. Proseek single-plex protein assay kit system to detect sAxl and Gas6 in serological material of brain tumor patients

    Directory of Open Access Journals (Sweden)

    Heidi Jaksch-Bogensperger

    2018-06-01

    Full Text Available • The receptor tyrosine kinase (RTK Axl and its ligand Gas6 are critically involved in the pathogenesis of high-grade glioma (HGG. Both proteins were found to be overexpressed e.g. in tumor cells, mediating cell proliferation and migration as well as tumor angiogenesis and neuroinflammation. The extracellular domain of Axl (sAxl and Gas6 were found in the peri-tumoral edema and blood of animals as well as in human glioma tissue. Therefore, we monitored the level of sAxl and Gas6 in human blood samples. To increase the sensitivity of protein detection beyond commonly used standard methods we preliminary tested the innovative Proseek Single-Plex Protein Assay Kit System from Olink Bioscience together with new antibodies against the soluble RTK sAxl and its ligand Gas6. We conclude that the Proseek method is a highly sensitive and fast procedure that can be used as a possible powerful tool compared to routinely used ELISA-methods.

  13. Single-Longitudinal-Mode In-GaAsSb/AlGaAsSb Lasers for Gas Sensing

    International Nuclear Information System (INIS)

    Barrios, P.; Gupta, J.; Lapointe, J.; Aers, G.; Storey, C.

    2009-01-01

    Regrowth-free gain-coupled Ga Sb-based Dfb lasers suitable for gas sensing were fabricated. Threshold currents for 2.4μm emission of 400μm-long Dfb devices were 45mA with a total output power of nearly 11mW in C W operation at 20 o C. (Author)

  14. Computer systems and software description for gas characterization system

    International Nuclear Information System (INIS)

    Vo, C.V.

    1997-01-01

    The Gas Characterization System Project was commissioned by TWRS management with funding from TWRS Safety, on December 1, 1994. The project objective is to establish an instrumentation system to measure flammable gas concentrations in the vapor space of selected watch list tanks, starting with tank AN-105 and AW-101. Data collected by this system is meant to support first tank characterization, then tank safety. System design is premised upon Characterization rather than mitigation, therefore redundancy is not required

  15. New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications

    Science.gov (United States)

    Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim

    2018-02-01

    The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.

  16. Results of Large-Scale Spacecraft Flammability Tests

    Science.gov (United States)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    gas expansion. These results clearly demonstrate the unique features of purely forced flow in microgravity on flame spread, the dependence of flame behavior on the scale of the experiment, and the importance of full-scale testing for spacecraft fire safety.

  17. Single gas chromatography method with nitrogen phosphorus detector for urinary cotinine determination in passive and active smokers

    Directory of Open Access Journals (Sweden)

    Lusiane Malafatti

    2010-12-01

    Full Text Available Nicotine is a major addictive compound in cigarettes and is rapidly and extensively metabolized to several metabolites in humans, including urinary cotinine, considered a biomarker due to its high concentration compared to other metabolites. The aim of this study was to develop a single method for determination of urinary cotinine, in active and passive smokers, by gas chromatography with a nitrogen phosphorus detector (GC-NPD. Urine (5.0 mL was extracted with 1.0 mL of sodium hydroxide 5 mol L-1, 5.0 mL of chloroform, and lidocaine used as the internal standard. Injection volume was 1 μL in GC-NPD. Limit of quantification was 10 ng mL-1. Linearity was evaluated in the ranges 10-1000 ng mL-1 and 500-6000 ng mL-1, with determination coefficients of 0.9986 and 0.9952, respectively. Intra- and inter-assay standard relative deviations were lower than 14.2 %, while inaccuracy (bias was less than +11.9%. The efficiency of extraction was greater than 88.5%. Ruggedness was verified, according to Youden's test. Means of cotinine concentrations observed were 2,980 ng mL-1 for active smokers and 132 ng mL-1, for passive smokers. The results revealed that satisfactory chromatographic separation between the analyte and interferents was obtained with a ZB-1 column. This method is reliable, precise, linear and presented ruggedness in the range evaluated. The results suggest that it can be applied in routine analysis for passive and active smokers, since it is able to quantify a wide range of cotinine concentrations in urine.A nicotina é uma substância presente no cigarro capaz de causar dependência, sendo biotransformada em vários metabólitos nos seres humanos, dentre eles a cotinina urinária, que é considerada um indicador biológico de exposição à nicotina, devido a suas altas concentrações, comparado a outras matrizes. Assim, o objetivo deste estudo foi desenvolver um único método para determinação de cotinina urinária, em amostras de

  18. 78 FR 42818 - SafetyAlert: Safety Alert: Risks Associated With Liquid Petroleum (LP) Gas Odor Fade

    Science.gov (United States)

    2013-07-17

    ... gas that under certain conditions is required to be odorized for leak detection. The purpose of this... detection of any unintended release or leak of the gas. LPG is highly flammable and dangerous to inhale in... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...

  19. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    Science.gov (United States)

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  20. Numerical simulation on vacuum solution heat treatment and gas quenching process of a low rhenium-containing Ni-based single crystal turbine blade

    Directory of Open Access Journals (Sweden)

    Zhe-xin Xu

    2016-11-01

    Full Text Available Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating, holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade. The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process. Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution. The temperature distribution at sharp corner, thin wall and corner part is higher than that at thick wall part of blade during heating, and the isotherms show a toroidal line to the center of thick wall. The temperature of sheltered units is lower than that of the remaining part of blade. When there is no shelteration among multiple blades, the temperature distribution for all blades is almost identical. The fluid velocity field, temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated. Modeling results indicate that the loading tray, free outlet and the location of turbine blades have important influences on the flow field. The high-speed gas flows out from the nozzle is divided by loading tray, and the free outlet enhanced the two vortex flow at the end of the furnace door. The closer the blade is to the exhaust outlet and the nozzle, the greater the flow velocity is and the more adequate the flow is. The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching, and the effects in double layers differs from that in single layer. For single blade, the cooing rate at thin-walled part is lower than that at thick-walled part, the cooling rate at sharp corner is greater than that at tenon and blade platform, and the temperature at regions close to the internal position is

  1. Velocity of a single gas plug rising through a particle-gas-liquid three-phase flow (In the case that particles updrift in a stagnant liquid column)

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Shimada, Jun; Ohtake, Hiroyasu

    1999-01-01

    The velocity of a single air plug rising through a stagnant water column in a pipe with updrifting particles has been examined at atmospheric pressure and room temperature. The particles used were polymer balls with a diameter of 3.18 mm and a density of 0.835 x 10 -3 kg/m 3 . The water velocity in a film around the plug and a wake region behind the plug was measured by a laser Doppler velocimeter. The thickness of the film was also measured with a dye-fluoresce-method by a laser ray. When the updrifting particles were introduced, the rising velocity of the plug became fast a little. However, the velocity was considerably slower than that in the falling particle case and independent on the particle introduction rate. The film around the plug was thicker a little than that in the no particle case, however considerably thinner than that in the falling particle case. The water velocity in the film around the plug was slower a little than that in the no particle case, and not dependent on the particle introduction rate contrary to that in the falling particle case. The vortex size behind the plug was almost the same as that in the no particle case although the vortex region was spread downward in the falling particle case. (author)

  2. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1994-08-01

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components

  3. Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T

    Science.gov (United States)

    Pankow, James F.

    Confidence intervals are placed around the log Kp vs 1/ T correlation equations obtained using simple linear regressions (SLR) with the gas-particle partitioning data set of Yamasaki et al. [(1982) Env. Sci. Technol.16, 189-194]. The compounds and groups of compounds studied include the polycylic aromatic hydrocarbons phenanthrene + anthracene, me-phenanthrene + me-anthracene, fluoranthene, pyrene, benzo[ a]fluorene + benzo[ b]fluorene, chrysene + benz[ a]anthracene + triphenylene, benzo[ b]fluoranthene + benzo[ k]fluoranthene, and benzo[ a]pyrene + benzo[ e]pyrene (note: me = methyl). For any given compound, at equilibrium, the partition coefficient Kp equals ( F/ TSP)/ A where F is the particulate-matter associated concentration (ng m -3), A is the gas-phase concentration (ng m -3), and TSP is the concentration of particulate matter (μg m -3). At temperatures more than 10°C from the mean sampling temperature of 17°C, the confidence intervals are quite wide. Since theory predicts that similar compounds sorbing on the same particulate matter should possess very similar y-intercepts, the data set was also fitted using a special common y-intercept regression (CYIR). For most of the compounds, the CYIR equations fell inside of the SLR 95% confidence intervals. The CYIR y-intercept value is -18.48, and is reasonably close to the type of value that can be predicted for PAH compounds. The set of CYIR regression equations is probably more reliable than the set of SLR equations. For example, the CYIR-derived desorption enthalpies are much more highly correlated with vaporization enthalpies than are the SLR-derived desorption enthalpies. It is recommended that the CYIR approach be considered whenever analysing temperature-dependent gas-particle partitioning data.

  4. A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Xiaoxing; Dai, Ziqiang; Chen, Qinchuan; Tang, Ju

    2014-01-01

    Intrinsic carbon nanotubes (CNTs) show limited toxic gas detection, thus, we need to develop a method to fabricate a novel CNT sensor that has good sensitivity. In this study, density functional theory (DFT) was applied to determine the adsorption behavior of Au-doped single-walled carbon nanotubes (Au-SWCNTs) to SO 2 and H 2 S. The calculated results show that Au-SWCNTs have a high sensitivity to SO 2 and H 2 S. When SO 2 adsorbs on the surface of the nanotube, a large number of electrons transfer from the Au-SWCNT to SO 2 , which results in a decrease in the frontier orbital energy gap and an increase in electrical conductivity. On the other hand, when H 2 S adsorbs on the surface of the nanotube, the electrons transfer from H 2 S to the Au-SWCNT, the frontier orbital energy gap increases, and the electrical conductivity decreases. Thus, SO 2 and H 2 S could be detected by Au-SWCNTs. This conclusion is useful for the development of CNT-based gas sensors and provides a theoretical basis to fabricate Au-SWCNT-based gas sensors. (papers)

  5. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    Science.gov (United States)

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  6. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry.

    Science.gov (United States)

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-10-31

    A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.

  7. Use of a single-zone thermodynamic model with detailed chemistry to study a natural gas fueled homogeneous charge compression ignition engine

    International Nuclear Information System (INIS)

    Zheng Junnian; Caton, Jerald A.

    2012-01-01

    Highlights: ► Auto-ignition characteristics of a natural gas fueled HCCI engine. ► Engine speed had the greatest effect on the auto-ignition process. ► Increases of C 2 H 6 or C 3 H 8 improved the auto-ignition process. ► Engine performance was not sensitive to small changes in C 2 H 6 or C 3 H 8 . ► Nitric oxides concentrations decreased as engine speed or EGR level was increased. - Abstract: A single zone thermodynamic model with detailed chemical kinetics was used to simulate a natural gas fueled homogeneous charge compression ignition (HCCI) engine. The model employed Chemkin and used chemical kinetics for natural gas with 53 species and 325 reactions. This simulation was used to complete analyses for a modified 0.4 L single cylinder engine. The engine possessed a compression ratio of 21.5:1, and had a bore and stroke of 86 and 75 mm, respectively. Several sets of parametric studies were completed to investigate the minimal initial temperature, engine performance, and nitric oxide emissions of HCCI engine operation. The results show significant changes in combustion characteristics with varying engine operating conditions. Effects of varying equivalence ratios (0.3–1.0), engine speeds (1000–4000 RPM), EGR (0–40%), and fuel compositions were determined and analyzed in detail. In particular, every 0.1 increase in equivalence ratio or 500 rpm increase in engine speed requires about a 5 K higher initial temperature for complete combustion, and leads to around 0.7 bar increase in IMEP.

  8. Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures

    International Nuclear Information System (INIS)

    Schoor, F. van den; Hermanns, R.T.E.; Oijen, J.A. van; Verplaetsen, F.; Goey, L.P.H. de

    2008-01-01

    Different methods, both experimental and numerical, to determine the flammability limits are compared and evaluated, exemplified by a determination of the flammability limits of methane/hydrogen/air mixtures for hydrogen fuel molar fractions of 0, 0.2, 0.4 and 0.6, at atmospheric pressure and ambient temperature. Two different experimental methods are used. The first method uses a glass tube with visual observation of the flame, whereas the second method uses a closed spherical vessel with a pressure rise criterion to determine whether flame propagation has occurred. In addition to these experiments, the flammability limits are determined numerically. Unsteady planar and spherically expanding flames are calculated with a one-dimensional flame code with the inclusion of radiation heat loss in the optically thin limit. Comparison of the experimental results with the results of the planar flame calculations shows large differences, especially for lean mixtures. These differences increase with increasing hydrogen content in the fuel. Better agreement with the experimental results is found for the spherically expanding flame calculations. A limiting burning velocity of 5 cm/s is found to predict the upper flammability limit determined with the tube method very well, whereas the limiting flame temperature approach was found to give poorer agreement. Further analysis indicates that the neglect of flame front instabilities is the probable cause of the large differences between experimental and numerical results at the lower flammability limit

  9. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  10. Test plan for measuring ventilation rates and combustible gas levels in RPP active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-06-03

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by River Protection Project (RPP). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  11. Hollow Mesoporous Carbon Microparticles and Micromotors with Single Holes Templated by Colloidal Silica-Assisted Gas Bubbles.

    Science.gov (United States)

    Huang, Xiaoxi; Zhang, Tao; Asefa, Tewodros

    2017-07-01

    A simple, new synthetic method that produces hollow, mesoporous carbon microparticles, each with a single hole on its surface, is reported. The synthesis involves unique templates, which are composed of gaseous bubbles and colloidal silica, and poly(furfuryl alcohol) as a carbon precursor. The conditions that give these morphologically unique carbon microparticles are investigated, and the mechanisms that result in their unique structures are proposed. Notably, the amount of colloidal silica and the type of polymer are found to hugely dictate whether or not the synthesis results in hollow asymmetrical microparticles, each with a single hole. The potential application of the particles as self-propelled micromotors is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vapor and gas sampling of single-shell tank 241-S-106 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-106. This document presents In Situ vapor Sampling System (ISVS) data resulting from the June 13, 1996 sampling of SST 241-S-106. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which'supplied and analyzed the sample media

  13. Vapor and gas sampling of single-shell tank 241-U-104 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue.Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-U-104. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the July 16, 1996 sampling of SST 241-U-104. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  14. Vapor and gas sampling of single-shell tank 241-BX-110 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (the team) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-BX-110. This document presents sampling data resulting from the April 30, 1996 sampling of SST 241-BX-110. Analytical results will be presented in a separate report issued by Pacific Northwest National Laboratory (PNNL), which supplied and analyzed the sampling media

  15. Vapor and gas sampling of single-shell tank 241-S-103 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-103. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 12, 1996 sampling of SST 241-S-103. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  16. Group-Contribution based Property Estimation and Uncertainty analysis for Flammability-related Properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Marcarie, Camille; Abildskov, Jens

    2016-01-01

    regression and outlier treatment have been applied to achieve high accuracy. Furthermore, linear error propagation based on covariance matrix of estimated parameters was performed. Therefore, every estimated property value of the flammability-related properties is reported together with its corresponding 95......%-confidence interval of the prediction. Compared to existing models the developed ones have a higher accuracy, are simple to apply and provide uncertainty information on the calculated prediction. The average relative error and correlation coefficient are 11.5% and 0.99 for LFL, 15.9% and 0.91 for UFL, 2...

  17. ASTM Committee G-4 metals flammability test program - Data and discussion

    Science.gov (United States)

    Stoltzfus, Joel M.; Homa, John M.; Williams, Ralph E.; Benz, Frank J.

    1988-01-01

    Results of metals flammability tests performed on twenty-six metals in the NASA/White Sands Test Facility are discussed together with the test systems. The promoted combustion and ignition characteristics of these metals are described, and the metals are ranked according to their suitability for use in oxygen systems. In general, alloys with high copper and nickel contents and low iron content were found to rank higher than those that had high iron content, while alloys that had high aluminum content were ranked the lowest.

  18. Laminar burning velocities of near-flammability-limit H{sub 2}-air-steam mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Loesel Sitar, J V; Chan, C K; Torchia, F; Guerrero, A

    1996-12-31

    Laminar burning velocities of lean H{sub 2}-air-steam mixtures near the flammability limit were measured by using the pressure-time history of an expanding flame kernel. Although flames in these mixtures are inherently unstable, this difficulty was avoided by using the early pressure rise of the burn. A comparison of results from that method with burning velocities determined from schlieren photographs of the expanding flame kernel gave good agreement. Despite the difficulties, it is believed that the pressure trace method gives results that are useful in modelling reactor accident scenarios. 8 refs., 4 figs.

  19. Laminar burning velocities of near-flammability-limit H2-air-steam mixtures

    International Nuclear Information System (INIS)

    Loesel Sitar, J.V.; Chan, C.K.; Torchia, F.; Guerrero, A.

    1995-01-01

    Laminar burning velocities of lean H 2 -air-steam mixtures near the flammability limit were measured by using the pressure-time history of an expanding flame kernel. Although flames in these mixtures are inherently unstable, this difficulty was avoided by using the early pressure rise of the burn. A comparison of results from that method with burning velocities determined from schlieren photographs of the expanding flame kernel gave good agreement. Despite the difficulties, it is believed that the pressure trace method gives results that are useful in modelling reactor accident scenarios. 8 refs., 4 figs

  20. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    OpenAIRE

    Korolchenko Dmitriy; Voevoda Sergey

    2016-01-01

    Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL) surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam...

  1. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  2. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes

  3. Vapor and gas sampling of single-shell tank 241-B-102 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (the team) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-B-102. This document presents sampling data resulting from the April 18, 1996 sampling of SST 241-B-102. Analytical results will be presented in a separate report issued by Pacific Northwest National Laboratory (PNNL), which supplied and analyzed the sampling media. The team, consisting of Sampling and Mobile Laboratories (SML) and Special Analytical Studies (SAS) personnel, used the vapor sampling system (VSS) to collect representative samples of the air, gases, and vapors from the headspace of SST 241-B-102 with sorbent traps and SUMMA canisters

  4. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator.

    Science.gov (United States)

    Ntlhokwe, Gaalebalwe; Tredoux, Andreas G J; Górecki, Tadeusz; Edwards, Matthew; Vestner, Jochen; Muller, Magdalena; Erasmus, Lené; Joubert, Elizabeth; Christel Cronje, J; de Villiers, André

    2017-07-01

    The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles. Graphical abstract Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles.

  5. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  6. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    Science.gov (United States)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  7. Redirecting fire-prone Mediterranean ecosystems toward more resilient and less flammable communities.

    Science.gov (United States)

    Santana, Victor M; Baeza, M Jaime; Valdecantos, Alejandro; Vallejo, V Ramón

    2018-06-01

    The extensive abandonment of agricultural lands in the Mediterranean basin has led to large landscapes being dominated by early-successional species, characterized by high flammability and an increasing fire risk. This fact promotes fire occurrence and places ecosystems in a state of arrested succession. In this work, we assessed the effectiveness of several restoration actions in redirecting these ecosystems toward more resilient communities dominated by resprouting species. These actions included the mechanical clearing of early-successional species, the plantation of resprouting species, and the combination of both treatments. For 13 years, we assessed shifts in the successional trajectory and ecosystem flammability by changes in: species composition, species richness, ecosystem evenness, the natural colonization of resprouting species, total biomass and proportion of dead biomass. We observed that the plantation and clearing combination was a suitable strategy to promote resilience. Species richness increased as well as the presence of the resprouting species introduced by planting. The natural colonization of the resprouting species was also enhanced. These changes in the successional trajectory were accompanied by a possible reduction of fire risk by reducing dead fuel proportion. These findings are relevant for the management of Mediterranean basin areas, but also suggest new tools for redirecting systems in fire-prone areas worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection.

    Science.gov (United States)

    Clarke, Peter J; Prior, Lynda D; French, Ben J; Vincent, Ben; Knox, Kirsten J E; Bowman, David M J S

    2014-12-01

    We used a mosaic of infrequently burnt temperate rainforest and adjacent, frequently burnt eucalypt forests in temperate eastern Australia to test whether: (1) there were differences in flammability of fresh and dried foliage amongst congeners from contrasting habitats, (2) habitat flammability was related to regeneration strategy, (3) litter fuels were more flammable in frequently burnt forests, (4) the severity of a recent fire influenced the flammability of litter (as this would suggest fire feedbacks), and (5) microclimate contributed to differences in fire hazard amongst habitats. Leaf-level comparisons were made among 11 congeneric pairs from rainforest and eucalypt forests. Leaf-level ignitability, combustibility and sustainability were not consistently higher for taxa from frequently burnt eucalypt forests, nor were they higher for species with fire-driven recruitment. The bulk density of litter-bed fuels strongly influenced flammability, but eucalypt forest litter was not less dense than rainforest litter. Ignitability, combustibility and flame sustainability of community surface fuels (litter) were compared using fuel arrays with standardized fuel mass and moisture content. Forests previously burned at high fire severity did not have consistently higher litter flammability than those burned at lower severity or long unburned. Thus, contrary to the Mutch hypothesis, there was no evidence of higher flammability of litter fuels or leaves from frequently burnt eucalypt forests compared with infrequently burnt rainforests. We suggest the manifest pyrogenicity of eucalypt forests is not due to natural selection for more flammable foliage, but better explained by differences in crown openness and associated microclimatic differences.

  9. Waste tank ventilation rates measured with a tracer gas method

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103

  10. Theoretical effect of concentration, circulation rate, stages, pressure and temperature of single amine and amine mixture solvents on gas sweetening performance

    Directory of Open Access Journals (Sweden)

    Nilay Kumar Sarker

    2016-09-01

    Full Text Available This simulation experiment performed by Aspen Hysys is about theoretical investigation of gas sweetening performance of single amine solvents MEA1, MDEA2, DEA3, DGA4, DIPA5 and mixed amine solvents DGA–MEA, DEA–MDEA and SULFOLANE6–MDEA. Sweet gas having very high percentage of methane is produced by MEA (95.36%, DGA–MEA (95.37%, DEA–MDEA (95.51% and SULFOLANE–MDEA (95.10% and DGA (93.76% shows lowest performance. DGA, SULFOLANE–MDEA, MDEA remove H2S at a lower circulation rate and DEA, DIPA need higher but satisfactory circulation rate. Increasing stage number shows positive effect on DEA, DIPA and SULFOLANE–MDEA. Pressure change has no significant effect. Temperature increase and methane percentage are negatively correlated for all solvents (except low circulating DIPA. With temperature increase H2S composition increases for DEA–MDEA, DGA–MEA; CO2 increases for DEA–MDEA, DGA–MEA and high circulating SULFOLANE–MDEA.

  11. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  12. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: An innovative single-step approach to convert waste palm shell into activated carbon

    Science.gov (United States)

    Yek, Peter Nai Yuh; Keey Liew, Rock; Shahril Osman, Mohammad; Chung Wong, Chee; Lam, Su Shiung

    2017-11-01

    Waste palm shell (WPS) is a biomass residue largely available from palm oil industries. An innovative microwave pyrolysis method was developed to produce biochar from WPS while the pyrolysis gas generated as another product is simultaneously used as activating agent to transform the biochar into waste palm shell activated carbon (WPSAC), thus allowing carbonization and activation to be performed simultaneously in a single-step approach. The pyrolysis method was investigated over a range of process temperature and feedstock amount with emphasis on the yield and composition of the WPSAC obtained. The WPSAC was tested as dye adsorbent in removing methylene blue. This pyrolysis approach provided a fast heating rate (37.5°/min) and short process time (20 min) in transforming WPS into WPSAC, recording a product yield of 40 wt%. The WPSAC was detected with high BET surface area (≥ 1200 m2/g), low ash content (< 5 wt%), and high pore volume (≥ 0.54 cm3/g), thus recording high adsorption efficiency of 440 mg of dye/g. The desirable process features (fast heating rate, short process time) and the recovery of WPSAC suggest the exceptional promise of the single-step microwave pyrolysis approach to produce high-grade WPSAC from WPS.

  13. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  14. A Method for Assessing Material Flammability for Micro-Gravity Environments

    Science.gov (United States)

    Steinhaus, T.; Olenick, S. M.; Sifuentes, A.; Long, R. T.; Torero, J. L.

    1999-01-01

    On a spacecraft, one of the greatest fears during a mission is the outbreak of a fire. Since spacecraft are enclosed spaces and depend highly on technical electronics, a small fire could cause a large amount of damage. NASA uses upward flame spread as a "worst case scenario" evaluation for materials and the Heat and Visible Smoke Release Rates Test to assess the damage potential of a fire. Details of these tests and the protocols followed are provided by the "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion" document. As pointed by Ohlemiller and Villa, the upward flame spread test does not address the effect of external radiation on ignition and spread. External radiation, as that coming from an overheated electrical component, is a plausible fire scenario in a space facility and could result in a reversal of the flammability rankings derived from the upward flame spread test. The "Upward Flame Propagation Test" has been the subject of strong criticism in the last few years. In many cases, theoretical exercises and experimental results have demonstrated the possibility of a reversal in the material flammability rankings from normal to micro-gravity. Furthermore, the need to incorporate information on the effects of external radiation and opposed flame spread when ranking materials based on their potential to burn in micro-gravity has been emphasized. Experiments conducted in a 2.2 second drop tower with an ethane burner in an air cross flow have emphasized that burning at the trailing edge is deterred in micro-gravity due to the decreased oxygen transport. For very low air flow velocities (U0.01 m/s). Only for U>0.l m/s extinction is observed at the leading edge (blow-off). Three dimensional numerical calculations performed for thin cellulose centrally ignited with an axisymmetric source have shown that under the presence of a forced flow slower than 0.035 m/s flames spreads

  15. 16 CFR 1500.43 - Method of test for flashpoint of volatile flammable materials by Tagliabue open-cup apparatus.

    Science.gov (United States)

    2010-01-01

    ... flammable materials by Tagliabue open-cup apparatus. 1500.43 Section 1500.43 Commercial Practices CONSUMER... horizontal plane above the liquid may be used, as follows: (1) Guide wire, 3/32-inch in diameter and 31/2... the thermometer, and in a plane 1/8-inch above the upper edge of the cup. The taper should be kept in...

  16. 75 FR 5578 - Submission for OMB Review; Comment Request-Flammability Standards for Clothing Textiles and Vinyl...

    Science.gov (United States)

    2010-02-03

    ... Standards for Clothing Textiles and Vinyl Plastic Film AGENCY: Consumer Product Safety Commission. ACTION: Notice. SUMMARY: Pursuant to the Paperwork Reduction Act of 1995 (44 U.S.C. Chapter 35), the Consumer... Commission's flammability standards for clothing textiles and vinyl plastic film. DATES: Written comments on...

  17. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  18. Mass loss and flammability of insulation materials used in sandwich panels during the pre-flashover phase of fire

    NARCIS (Netherlands)

    Giunta d'Albani, A.W.; de Kluiver, L.L.; de Korte, A.C.J.; van Herpen, R.; Weewer, R.; Brouwers, H.J.H.

    2017-01-01

    Nowadays, buildings contain more and more synthetic insulation materials in order to meet the increasing energy-performance demands. These synthetic insulation materials have a different response to fire. In this study, the mass loss and flammability limits of different sandwich panels and their

  19. Characterization of single crystal uranium-oxide thin films grown via reactive-gas magnetron sputtering on yttria-stabilized zirconia and sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Strehle, Melissa M.; Heuser, Brent J., E-mail: bheuser@illinois.edu; Elbakhshwan, Mohamed S.; Han Xiaochun; Gennardo, David J.; Pappas, Harrison K.; Ju, Hyunsu

    2012-06-30

    The microstructure and valence states of three single crystal thin film systems, UO{sub 2} on (11{sup Macron }02) r-plane sapphire, UO{sub 2} on (001) yttria-stabilized zirconia, and U{sub 3}O{sub 8} on (11{sup Macron }02) r-plane sapphire, grown via reactive-gas magnetron sputtering are analyzed primarily with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). XRD analysis indicates the growth of single crystal domains with varying degrees of mosaicity. XPS and UPS analyses yield U-4f, U-5f, O-1s, and O-2p electron binding energies consistent with reported bulk values. A change from p-type to n-type semiconductor behavior induced by preferential sputtering of oxygen during depth profile analysis was observed with both XPS and UPS. Trivalent cation impurities (Nd and Al) in UO{sub 2} lower the Fermi level, shifting the XPS spectral weight. This observation is consistent with hole-doping of a Mott-Hubbard insulator. The uranium oxide-(11{sup Macron }02) sapphire system is unstable with respect to Al interdiffusion across the film-substrate interface at elevated temperature. - Highlights: Black-Right-Pointing-Pointer Single crystal uranium-oxides grown on sapphire and yttria-stabilized zirconia. Black-Right-Pointing-Pointer Anion and cation valence states studied by photoelectron emission spectroscopy. Black-Right-Pointing-Pointer Trivalent Nd and Al impurities lower the Fermi level. Black-Right-Pointing-Pointer Uranium-oxide films on sapphire found to be unstable with respect to Al interdiffusion.

  20. Composition and quantities of retained gas measured in Hanford waste tanks 241-AW-101 A-101, AN-105, AN-104, and AN-103

    International Nuclear Information System (INIS)

    Shekarriz, A.; Rector, D.R.; Mahoney, L.A.

    1997-03-01

    This report provides the results obtained for the first five tanks sampled with the Retained Gas Sampler (RGS): Tanks 241-AW-101, A-101, AN-105, AN-104, and AN-103. The RGS is a modified version of the core sampler used at Hanford. It is designed specifically, in concert with the gas extraction equipment in the hot cell, to capture and extrude a gas-containing waste sample in a hermetically sealed system. The retained gases are then extracted and stored in small gas canisters. The composition of the gases contained in the canisters was measured by mass spectroscopy. The total gas volume was obtained from analysis of the extraction process, as discussed in detail throughout this report. The following are the findings of this research: (1) The RGS is a viable approach for measuring retained gases in double- and single-shell waste tanks at Hanford. (2) Local measurements of void fraction with the RGS agree with the results obtained with the void fraction instrument (VFI) in most cases. (3) In the tanks sampled, more than 16% of the retained gas in the nonconvective layer was nitrogen (N 2 ). The fraction of nitrogen gas was approximately 60% in Tank 241-AW-101. This finding shows that not all the retained gas mixtures are flammable. (4) In the tanks sampled, the ratios of hydrogen to oxidizers were observed to be significantly higher than 1; i.e., these tanks are fuel-rich. Based on these observations, the RGS will be used to sample for retained gases in several single-shell tanks at Hanford. The remaining sections of this summary describe the RGS-findings for the first five tanks tested. The results are described in the order in which the tanks were sampled, to reflect the increasing experience on which RGS methods were based

  1. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.

    Science.gov (United States)

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-07-09

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  2. Flammability of polypropylene/organoclay nanocomposites; Inflamabilidade de nanocompositos de polipropileno/argila organofilica

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Tatianny Soares; Barbosa, Renata [Universidade Federal do Piaui (UFPI), Teresina (Brazil); Carvalho, Laura Hecker de [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Canedo, Eduardo Luis [Instituto de Tecnologia de Pernambuco, Recife (Brazil)

    2014-11-01

    The flammabilities of nanocomposites made with three polypropylene grades (homo and copolymers) with 5 wt % of organoclay (Cloisite 20A), 5 or 15 wt % of maleated polypropylene as compatibilizer, and 0, 0.5 or 1 wt % of cis-13-docosenamide (Erucamide) as co-intercalant, were studied using the horizontal burning test UL94HB. Masterbatches prepared in an internal mixer were diluted in the polypropylene matrix using a corotating twin-screw extruder, with different screw configurations and operating at 240 or 480 rpm. Results indicate that the high burning rate of the composites was not affected by the processing conditions. For all formulations was observed a significant reduction in smoke release, lack of dripping and the formation of a char surface layer, that protected the core of the samples. (author)

  3. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Hong-Yun Yang

    2015-07-01

    Full Text Available Many of the photovoltaic (PV systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig, mass loss, heat release rate (HRR, carbon monoxide (CO and carbon dioxide (CO2 concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  4. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    Directory of Open Access Journals (Sweden)

    Korolchenko Dmitriy

    2016-01-01

    Full Text Available Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam-air mixture becomes nonflammable. As a result of solve of a heat balance equation it was made the following conclusion: water drops which size is equal to 100 μm will completely evaporate in a zone of combustion with extent of 1 m if the flying speed of drops is even 16 mps (acc. to Stokes v = 3 mps; whereas drops of larger size will evaporate only partially.

  5. Deep Sludge Gas Release Event Analytical Evaluation

    International Nuclear Information System (INIS)

    Sams, Terry L.

    2013-01-01

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, 'Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge'). The purpose of this technical

  6. Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters

    Energy Technology Data Exchange (ETDEWEB)

    Denise Baclawski

    2010-03-08

    The University of Nevada, Reno Fire Science Academy (FSA) applied for grant funding to develop and deliver programs for municipal, rural, and volunteer firefighters. The FSA specializes in preparing responders for a variety of emergency events, including flammable liquid fires resulting from accidents, intentional acts, or natural disasters. Live fire training on full scale burnable props is the hallmark of FSA training, allowing responders to practice critical skills in a realistic, yet safe environment. Unfortunately, flammable liquid live fire training is often not accessible to municipal, rural, or volunteer firefighters due to limited department training budgets, even though most department personnel will be exposed to flammable liquid fire incidents during the course of their careers. In response to this training need, the FSA developed a course during the first year of the grant (Year One), Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters. During the three years of the grant, a total of 2,029 emergency responders received this training. In Year Three, two new courses, a train-the-trainer for Responding to Terrorist Incidents in Your Community and Management of Large-Scale Disasters for Public Officials were developed and pilot tested during the Real-World Disaster Management Conference held at the FSA in June of 2007. Two research projects were conducted during Years Two and Three. The first, conducted over a two year period, evaluated student surveys regarding the value of the flammable liquids training received. The second was a needs assessment conducted for rural Nevada. Both projects provided important feedback and a basis for curricula development and improvements.

  7. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha

    2015-01-01

    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  8. Automatically varying the composition of a mixed refrigerant solution for single mixed refrigerant LNG (liquefied natural gas) process at changing working conditions

    International Nuclear Information System (INIS)

    Xu, Xiongwen; Liu, Jinping; Cao, Le; Pang, Weiqiang

    2014-01-01

    The SMR (single mixed refrigerant) process is widely used in the small- and medium-scale liquefaction of NG (natural gas). Operating the MR (mixed-refrigerant) process outside of the design specifications is difficult but essential to save energy. Nevertheless, it is difficult to realize because the process needs to alter the working refrigerant composition. To address this challenge, this study investigated the performance diagnosis mechanism for SMR process. A control strategy was then proposed to control the changes in working refrigerant composition under different working conditions. This strategy separates the working refrigerant flow in the SMR process into three flows through two phase separators before it flows into the cold box. The first liquid flow is rich in the high-temperature component (isopentane). The second liquid flow is rich in the middle-temperature components (ethylene and propane), and the gas flow is rich in the low-temperature components (nitrogen and methane). By adjusting the flow rates, it is easy to decouple the control variables and automate the system. Finally, this approach was validated by process simulation and shown to be highly adaptive and exergy efficient in response to changing working conditions. - Highlights: • The performance diagnosis mechanism of SMR LNG process is studied. • A measure to automatically change the operation composition as per the working conditions is proposed for SMR process. • SMR process simulation is performed to verify the validity of the control solution. • The control solution notably improves the energy efficiency of SMR process at changing working condition

  9. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

    Science.gov (United States)

    Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

    2014-03-14

    A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structural characterization of framework-gas interactions in the metal-organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction.

    Science.gov (United States)

    Gonzalez, Miguel I; Mason, Jarad A; Bloch, Eric D; Teat, Simon J; Gagnon, Kevin J; Morrison, Gregory Y; Queen, Wendy L; Long, Jeffrey R

    2017-06-01

    The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH 4 , N 2 , O 2 , Ar, and P 4 adsorption in Co 2 (dobdc) (dobdc 4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH 4 and Co-Ar interactions observed in Co 2 (dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH 4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co 2 (dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol -1 (for Ar). Moreover, the structures of Co 2 (dobdc)·3.8N 2 , Co 2 (dobdc)·5.9O 2 , and Co 2 (dobdc)·2.0Ar reveal the location of secondary (N 2 , O 2 , and Ar) and tertiary (O 2 ) binding sites in Co 2 (dobdc), while high-pressure CO 2 , CO, CH 4 , N 2 , and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.

  11. Evaluation of Gas Retention in Waste Simulants: Tall Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Shimskey, Rick W.; Denslow, Kayte M.; Powell, Michael R.; Boeringa, Gregory K.; Bontha, Jagannadha R.; Karri, Naveen K.; Fifield, Leonard S.; Tran, Diana N.; Sande, Susan; Heldebrant, David J.; Meacham, Joseph E.; Smet, Dave; Bryan, Wesley E.; Calmus, Ronald B.

    2014-05-16

    Gas generation in Hanford’s underground waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which typically has hydrogen as the major component together with other flammable species, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge in a waste tank is undesirable and limits the amount of tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge may potentially result in an unacceptable release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. Rapid release of large amounts of flammable gases could endanger personnel and equipment near the tank. For this reason, a thorough understanding of the circumstances that can lead to a potentially problematic gas accumulation in sludge layers is needed. To respond to this need, the Deep Sludge Gas Release Event Program (DSGREP) was commissioned to examine gas release behavior in sludges.

  12. Single-step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Panetta, Robert J; Jahren, A Hope

    2011-05-30

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ(13) C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC-C-IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r(2) =0.99, accuracy ±2% for 37 FAMEs) and δ(13) C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ(13) C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ(13) C values by as much as 0.80‰. A Bland-Altman evaluation of the GC-C-IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ(13) C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ(13) C data, such as authentication or metabolic flux studies, GC-C-IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Evgeny E. Ashkinazi

    2017-06-01

    Full Text Available Epitaxial growth of diamond films on different facets of synthetic IIa-type single crystal (SC high-pressure high temperature (HPHT diamond substrate by a microwave plasma CVD in CH4-H2-N2 gas mixture with the high concentration (4% of nitrogen is studied. A beveled SC diamond embraced with low-index {100}, {110}, {111}, {211}, and {311} faces was used as the substrate. Only the {100} face is found to sustain homoepitaxial growth at the present experimental parameters, while nanocrystalline diamond (NCD films are produced on other planes. This observation is important for the choice of appropriate growth parameters, in particular, for the production of bi-layer or multilayer NCD-on-microcrystalline diamond (MCD superhard coatings on tools when the deposition of continuous conformal NCD film on all facet is required. The development of the film morphology with growth time is examined with SEM. The structure of hillocks, with or without polycrystalline aggregates, that appear on {100} face is analyzed, and the stress field (up to 0.4 GPa within the hillocks is evaluated based on high-resolution mapping of photoluminescence spectra of nitrogen-vacancy NV optical centers in the film.

  14. An Exploratory Study on a High-Energy Flux (HEF) Calorimeter to Characterize Flammability of Advanced Engineered Polymers: Phase 1 - Ignition and Mass Loss Rate

    National Research Council Canada - National Science Library

    Tewarson, A

    1999-01-01

    This report describes a newly designed high-energy flux (HEF) calorimeter for the flammability evaluation of high fire resistant plastics exposed to high heat flux typical of combat field scenarios and large-scale fires...

  15. Inherently safe passive gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  16. Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable

    International Nuclear Information System (INIS)

    Basfar, A.A.

    2002-01-01

    Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation

  17. Effect of swelling behavior of organoclays in styrene on flammability of polystyrene nanocomposites obtained through in situ incorporation

    International Nuclear Information System (INIS)

    Timochenco, Licinia; Sayer, Claudia; Machado, Ricardo A.F.; Araujo, Pedro H.H.

    2009-01-01

    In this work the effect of the interaction between organoclays and styrene on the flammability of polystyrene/clay nanocomposites obtained through in-situ incorporation was investigated. The reactions were carried out in bulk polymerization. The interaction between organoclays and styrene was inferred by swelling of the organoclay in styrene. The nanocomposites were characterized by X-ray diffraction and Transmission Electron Microscopy. The heat release rate was obtained by Cone Calorimeter and the nanocomposites were tested through UL94 horizontal burn test. Thermogravimetric analysis were also performed. Results showed that intercalated and partially exfoliated nanocomposites were obtained depending on the swelling behavior of the organoclay in styrene. It was also observed an increase of the higher decomposition temperature and an accentuated decrease on the peak of heat release of the nanocomposites when comparing to the virgin polymer. No remarkable effect between the swelling behavior of the organoclay in styrene and the flammability properties was observed. (author)

  18. Evaluation of the Thermophysical Properties of Poly(MethylMethacrylate): A Reference Material for the Development of a flammability Test for Micro-Gravity Environments

    OpenAIRE

    Steinhaus, Thomas

    1999-01-01

    A study has been conducted using PMMA (Poly(methyl methacrylate)) as a reference material in the development process of the Forced Flow and flame Spread Test (FIST). This test attempts to establish different criteria for material flammability for micro-gravity environments. The FIST consists of two tests, ignition and flame spread tests, that provide a series of material “fire” properties that jointly provide important information on the flammability of a material. This work de...

  19. Gas and Gas Pains

    Science.gov (United States)

    ... to produce gas. Often, relatively simple changes in eating habits can lessen bothersome gas. Certain digestive system disorders, ... such as soda and beer, increase stomach gas. Eating habits, such as eating too quickly, drinking through a ...

  20. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks during salt well pumping and other activities

    International Nuclear Information System (INIS)

    Hays, C.B.

    1997-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping and other activities. The reference to 'other activities' throughout this NOC means those activities described in Appendix A. The use of portable exhausters represents a cost savings feature because one portable exhauster can be moved back and forth between SSTS as schedules for salt well pumping or other activities dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping or during performance of other activities. The primary objective of providing active ventilation to these SSTS is to reduce the risk of postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Other activities also have the potential to release trapped gases by interrupting gas pockets within the waste. Hanford Site waste tanks must comply with the Tank Farms Safety Basis (OESH 1997) which requires that the flammable gas concentration be less than 25 percent of the lower flammability limit (LFL). The Los Alamos National Laboratory (LANL) safety analysis indicates that the LFL might be exceeded in some tanks during certain postulated accident scenarios. Also, the potential for electrical (pump motor, heat tracing) and mechanical (equipment installation) spark sources exist. Therefore, because of the presence of ignition sources and the potential for released flammable gases, active ventilation might be required in some SSTS to reduce the 'time at risk' while salt well pumping or performing other activities. Thirty tanks remain to be salt well pumped

  1. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity & Extraterrestrial Fire-Safety Applications

    Science.gov (United States)

    Olson, S. L.; Beeson, H.; Haas, J.

    2001-01-01

    One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.

  2. Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Jiao, Jiao; Ma, Dan-Hui; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Fu, Yu-Jie; Ma, Wei

    2013-01-01

    Graphical abstract: -- Highlights: •A new ILAMD-HS-SDME method is developed for the microextraction of essential oil. •ILs used as destruction agent of plant cell walls and microwave absorption medium. •Parameters affecting the extraction efficiency are optimized by Box–Behnken design. •Procedure benefits: similar constituents, shorter duration and smaller sample amount. •ILAMD-HS-SDME followed by GC–MS is a promising technique in analytical fields. -- Abstract: A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography–mass spectrometry (GC–MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C 2 mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78 °C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences

  3. Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Jiao [State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040 (China); Ma, Dan-Hui [College of Life Sciences, Northeast Forestry University, Harbin 150040 (China); Gai, Qing-Yan; Wang, Wei; Luo, Meng [State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin 150040 (China); Fu, Yu-Jie, E-mail: yujie_fu2002@yahoo.com [State Engineering Laboratory of Bio-Resource Eco-Utilization, Northeast Forestry University, Harbin 150040 (China); Ma, Wei, E-mail: mawei@hljucm.net [State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040 (China); School of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin 150040 (China)

    2013-12-04

    Graphical abstract: -- Highlights: •A new ILAMD-HS-SDME method is developed for the microextraction of essential oil. •ILs used as destruction agent of plant cell walls and microwave absorption medium. •Parameters affecting the extraction efficiency are optimized by Box–Behnken design. •Procedure benefits: similar constituents, shorter duration and smaller sample amount. •ILAMD-HS-SDME followed by GC–MS is a promising technique in analytical fields. -- Abstract: A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography–mass spectrometry (GC–MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C{sub 2}mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78 °C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences.

  4. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  5. Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics

    Science.gov (United States)

    Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.

    2012-01-01

    Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.

  6. THERMAL DECOMPOSITION AND FLAMMABILITY OF ACRYLONITRILE-BUTADIENE-STYRENE/MULTI-WALLED CARBON NANOTUBES COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li-fang Tong; Hai-yun Ma; Zheng-ping Fang

    2008-01-01

    Thermal and flammability properties of acrylonitrile-butadiene-styrene copolymer (ABS) with the addition of multi-walled carbon nanotubes (MWNTs) were studied. ABS/MWNTs composites were prepared via melt blending with the MWNTs content varied from 0.2% to 4.0% by mass. Thermogravimetry results showed that the addition of MWNTs accelerated the degradation of ABS during the whole process under air atmosphere, and both onset and maximum degradation temperature were lower than those of pure ABS. The destabilization effect of MWNTs on the thermal stability of the composites became unobvious under nitrogen, and the addition of MWNTs could improve the maximum degradation temperature. The heat release rate and time of ignition (tign) for the composites reduced greatly with the addition of MWNTs especially when the concentration of nanotubes was higher than 1.0%. The accumulation of carbon nanotubes with a network structure was observed and the char layer became thicker with increasing nanotubes concentration. Results from Raman spectra showed a higher degree of graphitization for the residues of ABS/MWNTs composites.

  7. The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes.

    Science.gov (United States)

    Bond, William; Zaloumis, Nicholas P

    2016-06-05

    Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to 'reforest' Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  8. Experimental study of hydrogen combustion in a flammable atmosphere in presence of water drops

    International Nuclear Information System (INIS)

    Cheikhravat, Homan

    2009-01-01

    This thesis is part of safety studies on Pressurized Water Reactors for nuclear power plants. Scenarios including a release of hydrogen predict to trigger spraying in order to reduce the pressure and collect the aerosols towards the bottom. However spraying involves lowering the temperature and, consequently, the content of water vapor initially sufficient to render the atmosphere inert. The purpose of this thesis is to study the de-inerting conditions of premixed hydrogen / air / water vapor in presence of fogs and then to analyze the interaction between the water spray and the flame which can initially be laminar or turbulent. For this purpose two facilities have been designed: a spherical one of 56 L with central ignition that can be heated to 200 C and a large one optimised for flame acceleration (ENACCEF). With these tools have been determined the flammability limits of H 2 /air/water vapor as a function of pressure and temperature, the behavior of flames close to the limits, the effect of sprinkling on de-inerting and finally the interaction between the flame front and the droplets considering different mean droplets sizes. The influence of a hydrogen concentration gradient on the acceleration criterion and the role of sprinkling on the propagation of a turbulent flame have also been studied. It appears that the spray can cause not only de-inerting but also be ineffective in extinguishing the flame and, in some cases, can even increase the turbulence rate and consequently the flame acceleration process. (author)

  9. A novel intumescent flame retardant-functionalized graphene: Nanocomposite synthesis, characterization, and flammability properties

    International Nuclear Information System (INIS)

    Huang, Guobo; Chen, Suqing; Tang, Shouwan; Gao, Jianrong

    2012-01-01

    An intumescent flame retardant, poly(piperazine spirocyclic pentaerythritol bisphosphonate) (PPSPB), has been covalently grafted onto the surfaces of graphene oxide (GO) to obtain GO–PPSPB and according nanocomposites were prepared via solvent blending. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the chemically reduced GO–PPSPB (CRG–PPSPB) can achieve better dispersion in the ethylene vinyl acetate copolymer (EVA) matrix and exfoliated EVA/CRG–PPSPB nanocomposites are formed. The results from thermogravimetric analysis (TGA) and cone calorimeter tests indicate that CRG–PPSPB improve thermal stability and reduce obviously the flammability (including peak heat release rate (PHRR), total heat release (THR), average mass loss rate (AMLR), etc.) of EVA. Compared with pure EVA resin, the PHRR of the EVA/CRG–PPSPB nanocomposites filled with 1 wt% CRG–PPSPB is reduced by about 56%. The SEM images show that a compact, dense and uniform intumescent char is formed for EVA/CRG–PPSPB nanocomposites after combustion. The functionalization of graphene by intumescent flame retardant PPSPB can improve both the dispersion of graphene sheets in the polymer matrix and flame retardancy of the nanocomposites. -- Highlights: ► Graphene oxide were modified with intumescent flame retardant PPSPB. ► EVA/CRG–PPSPB nanocomposites were prepared via solvent blending. ► CRG–PPSPB improved the flame retardancy of EVA nanocomposites.

  10. Functional design criteria for the retained gas sampler system

    International Nuclear Information System (INIS)

    Wootan, D.W.

    1995-01-01

    A Retained Gas Sampler System (RGSS) is being developed to capture and analyze waste samples from Hanford Flammable Gas Watch List Tanks to determine both the quantity and composition of gases retained in the waste. The RGSS consists of three main components: the Sampler, Extractor, and Extruder. This report describes the functional criteria for the design of the RGSS components. The RGSS Sampler is based on the WHC Universal Sampler design with modifications to eliminate gas leakage. The primary function of the Sampler is to capture a representative waste sample from a tank and transport the sample with minimal loss of gas content from the tank to the laboratory. The function of the Extruder is to transfer the waste sample from the Sampler to the Extractor. The function of the Extractor is to separate the gases from the liquids and solids, measure the relative volume of gas to determine the void fraction, and remove and analyze the gas constituents

  11. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    NARCIS (Netherlands)

    van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Simpson, W.R.

    2009-01-01

    We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured

  12. A further step toward H2 in automobile : development of an efficient bi-functional catalyst for single stage water gas shift

    NARCIS (Netherlands)

    Azzam, K.G.H.

    2008-01-01

    The suitability of polymer electrolyte fuel (PEM) cells for stationary and vehicular applications initiated research in all areas of fuel processor (i.e. reformer, water-gas-shift, preferential oxidation of CO (PROX)) catalysts for hydrogen generation. Water gas shift (WGS) reaction is an essential

  13. A wind-tunnel study on exhaust gas dispersion from road vehicles. Part 1. Velocity and concentration fields behind single vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Isao; Uehara, Kiyoshi; Yamao, Yukio [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 (Japan); Yoshikawa, Yasuo; Morikawa, Tazuko [Petroleum Energy Center, 4-3-9 Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2006-09-15

    By a reduced-scale model in a wind tunnel, we investigate the dispersion behavior of exhaust gas from automobiles. Two types of vehicles are considered, a passenger car and a small-size truck. Tracer gas experiments show that the exhaust gas dispersion is enhanced significantly by the vehicle wake compared to the case when the vehicle body is absent. The passenger car and the truck promote dispersion in the horizontal and the vertical direction, respectively. The wake field is analyzed by particle image velocimetry (PIV), and the distribution of the mean and the fluctuation fields is found to conform to the concentration field of the exhaust gas. The buoyancy of the exhaust gas has minor effect except on the vertical spread behind the truck whose wake flow amplifies the vertical displacement generated near the pipe exit. (author)

  14. The behavior, quantity, and location of undissolved gas in Tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.E.; Gallagher, N.B.; Hudson, J.D.; Stewart, C.W.

    1995-10-01

    Mitigation of episodic flammable gas releases from Hanford Waste Tank 241-SY-101 was accomplished in July 1993 with the installation of a mixer pump that prevents gas retention. But is has not been possible until recently to measure the effects of mixing on the waste or how much gas remains and where it is located. Direct measurements of the void fraction and rheology of the mixed waste by the void fraction instrument (VFI) and ball rheometer along with previous data provide estimates of the location, quantity, and behavior of undissolved gas in the tank. This report documents the compilation and integration of the information that enables this understanding.

  15. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena

  16. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R. [and others

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  17. Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase

    Science.gov (United States)

    Basiuk, Vladimir A.; Flores-Sánchez, Laura J.; Meza-Laguna, Victor; Flores-Flores, José Ocotlán; Bucio-Galindo, Lauro; Puente-Lee, Iván; Basiuk, Elena V.

    2018-04-01

    Noncovalent hybrids of carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of growing research effort focused on the development of new efficient organic photovoltaic cells, heterogeneous catalysts, lithium batteries, gas sensors, field effect transistors, among other possible applications. The main advantage of using unsubstituted Pcs is their very moderate cost and easy commercial availability. Unfortunately, the deposition of unsubstituted Pcs onto CNT sidewalls via the traditional liquid-phase strategy proves to be very problematic due to an extremely poor solubility of Pcs. At the same time, unsubstituted free-base H2Pc ligand and many of its transition metal complexes exhibit high thermal stability and volatility under reduced pressure, which allows for their physical vapor deposition onto solid surfaces. In the present work, we demonstrated the possibility of simple, fast, efficient and environmentally friendly noncovalent functionalization of single-walled CNTs (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me = Co, Ni, Cu and Zn. The functionalization can be performed at 400-500 °C under moderate vacuum, and takes about 2-3 h only. The nanohybrids obtained were characterized by means of Fourier-transform infrared, Raman, UV-vis and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), scanning and transmission electron microscopy. TGA suggested that Pc weight content is 30%, 17% and 35% for NiPc, CuPc and ZnPc, respectively (CoPc exhibited anomalous behavior), which is close to the estimates from EDS spectra of 24-39%, 27-36% and 27-44% for CoPc, CuPc and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Pc hybrids, as compared to that of pristine nanotubes, was interpreted as very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the patterns of HOMO and LUMO distribution

  18. Permeability and flammability study of composite sandwich structures for cryogenic applications

    Science.gov (United States)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  19. From Fireproof Desert to Flammable Grassland: Buffelgrass Invasion in the Sonoran Desert

    Science.gov (United States)

    Betancourt, J. L.

    2007-12-01

    Only a few decades ago, the Sonoran Desert of northwestern Mexico and southern Arizona was considered mostly fireproof, a case of not enough fine fuel to connect the dominant shrubs and cacti. This has changed with invasions by non-native, winter annual and summer-flower perennial grasses that are rapidly transforming fireproof desert into flammable grassland. Of particular concern is buffelgrass, Pennisetum ciliare, a fire-prone and invasive African perennial grass that has already converted millions of hectares across Sonora since the mid-1960s and has made quick headway in southern and central Arizona beginning in the 1980s. Near Tucson and Phoenix, AZ, buffelgrass invasion is proceeding exponentially, with population expansion (and the costs of mitigation) more than doubling every year. As this conversion progresses, there will be increased fire risks, lost tourist revenue, diminished property values, insurmountable setbacks to conservation efforts, and the threat of large ignition fronts in desert valleys routinely spreading into the mountains. Although somewhat belated, an integrated, multi-jurisdictional effort is being organized to reduce ecological and economic impacts. My presentation will summarize the history and context of buffelgrass introduction and invasion, the disconnect in attitudes and policies across state and international boundaries, ongoing management efforts, the role of science and responsibilities of scientists, accelerated spread with changing climate, and impacts to regional ecosystems and economies. This narrative may serve as a template for other semi-arid lands where buffelgrass and similar grasses have become invasive, including Australia, South America, and many islands in the Pacific Ocean (including Hawaii), Indian Ocean, and Caribbean Sea.

  20. Gas retention and release behavior in Hanford double-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A. [and others

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior.

  1. Gas retention and release behavior in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A.

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior

  2. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    International Nuclear Information System (INIS)

    Edwards, T. B.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF's melter operation during the processing of Sludge Batch 8 (SB8). SRNL's support has been in response to technical task requests that have been made by SRR's Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF's strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy

  3. Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: A first principles study.

    Science.gov (United States)

    Azam, Mohd Asyadi; Alias, Farizul Muiz; Tack, Liew Weng; Seman, Raja Noor Amalina Raja; Taib, Mohamad Fariz Mohamad

    2017-08-01

    Carbon nanotubes (CNTs) have received enormous attention due to their fascinating properties to be used in various applications including electronics, sensing, energy storage and conversion. The first principles calculations within density functional theory (DFT) have been carried out in order to investigate the structural, electronic and optical properties of un-doped and doped CNT nanostructures. O 2 , CO 2 , and CH 3 OH have been chosen as gas molecules to study the adsorption properties based on zigzag (8,0) SWCNTs. The results demonstrate that the adsorption of O 2 , CO 2, and CH 3 OH gas molecules on pristine, Si-doped and B-doped SWCNTs are either physisorption or chemisorption. Moreover, the electronic properties indicating SWCNT shows significant improvement toward gas adsorption which provides the impact of selecting the best gas sensor materials towards detecting gas molecule. Therefore, these pristine, Si-, and B-doped SWCNTs can be considered to be very good potential candidates for sensing application. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A study of the dynamic flammability of radiation cross-linked flame-retardant HDPE/EPDM/silicon-elastomer compound

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shaojin E-mail: jiashaojin2@yahoo.com.cn; Zhang Zhicheng E-mail: zczhang@ustc.edu.cn; Du Zhiwen; Teng Renrui; Wang Zhengzhou

    2003-04-01

    A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO{sub 2} from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated.

  5. A study of the dynamic flammability of radiation cross-linked flame-retardant HDPE/EPDM/silicon-elastomer compound

    International Nuclear Information System (INIS)

    Jia, Shaojin; Zhang Zhicheng; Du Zhiwen; Teng Renrui; Wang Zhengzhou

    2003-01-01

    A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO 2 from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated

  6. In situ rheology and gas volume in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G.; Mendoza, R.E.

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the 'hazard signature' of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior

  7. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    International Nuclear Information System (INIS)

    Economy, Kathleen M.; Helton, Jon Craig; Vaughn, Palmer

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  8. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  9. Is methane a new therapeutic gas?

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2012-09-01

    Full Text Available Abstract Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the exact mechanism underlying the anti-inflammatory effects is required to be further elucidated. Methane can cross the membrane and is easy to collect due to its abundance in natural gas. Although methane is flammable, saline rich in methane can be prepared for clinical use. These seem to be good news in application of methane as a therapeutic gas. Conclusion Several problems should be resolved before its wide application in clinical practice.

  10. Flammability of Cellulose-Based Fibers and the Effect of Structure of Phosphorus Compounds on Their Flame Retardancy

    Directory of Open Access Journals (Sweden)

    Khalifah A. Salmeia

    2016-08-01

    Full Text Available Cellulose fibers are promoted for use in various textile applications due their sustainable nature. Cellulose-based fibers vary considerably in their mechanical and flammability properties depending on their chemical composition. The chemical composition of a cellulose-based fiber is further dependent on their source (i.e., seed, leaf, cane, fruit, wood, bast, and grass. Being organic in nature, cellulose fibers, and their products thereof, pose considerable fire risk. In this work we have compared the flammability properties of cellulose fibers obtained from two different sources (i.e., cotton and peat. Compared to cotton cellulose textiles, peat-based cellulose textiles burn longer with a prominent afterglow which can be attributed to the presence of lignin in its structure. A series of phosphoramidates were synthesized and applied on both cellulose textiles. From thermogravimetric and pyrolysis combustion flow analysis of the treated cellulose, we were able to relate the flame retardant efficacy of the synthesized phosphorus compounds to their chemical structure. The phosphoramidates with methyl phosphoester groups exhibited higher condensed phase flame retardant effects on both types of cellulose textiles investigated in this study. In addition, the bis-phosphoramidates exhibited higher flame retardant efficacy compared to the mono-phosphoramidates.

  11. Altered community flammability in Florida's Apalachicola ravines and implications for the persistence of the endangered conifer Torreya taxifolia.

    Directory of Open Access Journals (Sweden)

    John M Mola

    Full Text Available Plant species and communities often reflect historic fire regimes via ecological and evolutionary responses to recurrent fires. Plant communities of the southeastern USA experience a wide array of fire regimes, perhaps nowhere more marked than the juxtaposition of fire-prone uplands and adjacent mesic ravines along Florida's Apalachicola River. The ravines contain many endemic and disjunct species, most notably the endangered endemic conifer Torreya taxifolia. A rapid decline in T. taxifolia over the past 60 years has been associated with widespread replacement by other tree species. To understand the changes accompanying the shift in ravine composition, we compared leaf litter flammability of nine historic and contemporary species. We measured maximum flame height, flame duration, smoldering duration, mass loss, absorptive capacity, and drying rate. Ordination and perMANOVA suggest the nine species segregated into three distinct groups: the fire-impeding T. taxifolia and Taxus floridana; an intermediate group of three deciduous angiosperms; and a mixed cluster of four flammable species. Results suggest T. taxifolia and T. floridana were fire-impeding species in these communities, while contemporary dominants burn similarly to the upslope pyric species. The increasing presence of fire-facilitating species may portend a shifting fire regime that further imperils T. taxifolia and other rare species in the formerly fire-safe ravines.

  12. Evaluation of the synergistic interaction between Decarbomobiphenyl Oxide and alumina on the flammability and thermal behavior of unsaturated polyester resin

    International Nuclear Information System (INIS)

    Al-Owias, A.; Al-Haizan, A.; Khattab, M. A.

    2005-01-01

    The bromine performance of decarbomobiphenyl oxide (DBBO) as a flame retardant for unsaturated polyester resin (UP) had been investigated in its own and in the presence of aluminum oxide (Al2O3) using UL-94V and Limiting Oxygen Index (LOI). Thermal behaviors of the resulted systems were evaluated using thermal analysis technique. DBBO showed a satisfactory fire retardant performance for UP, particularly when used at a loading higher than 30 wt%. In contrast aluminum oxide has no significant effect on the reduction of the flammability. Treatment of UP with mixtures containing different portioned of DBBO and alumina showed that, the best performance of these mixtures as a flame retardant occurred when the mixture is rich in DBBO. The maximum synergism between the two additives has been observed to occur at a weight ratio of DBBO to Al2O3 of 5:6. A possible explanation for the observed synergism between the two additives was given. The synergism was partly attributed to the formation of aluminum halide species which enhance the rate of halogen released from the halogenated compound and consequently reduce the flammability of the resin. (author)

  13. [Forensic medical evaluation of a burn injury from combustion of flammable fluids on the human body based on morphological changes in internal organs].

    Science.gov (United States)

    Khushkadamov, Z K

    2009-01-01

    The author describes morphological features of splanchnic organs in the patients that suffered an injury from combustion of flammable fluids at the body surface. The burn injury is a specific form of trauma originating from a combination of several injurious factors including thermoinhalation and intoxication with combustion products in the absence of oxygen in the centre of the hot spot. A rather specific combination of morphological changes in internal organs along with results of laboratory studies provides the most reliable criterion for forensic medical diagnosis of burn injuries from combustion of flammable fluids on the human body.

  14. The selection of skin care products for use in hyperbaric chamber may depend on flammability acceptability indices score.

    Science.gov (United States)

    McCord, Darlene E; Newton, Barry E; Fore, Jane; Chiffoleau, Gwenael

    2008-02-01

    Current protocols call for stopping adjunctive skin care treatments during hyperbaric oxygen therapy (HBOT) because the hyperbaric environment is considered unsafe for skin care products. The elevated oxygen fraction and the increased pressure in the hyperbaric chamber dramatically increase the flammability potential of materials, leading to the need for rigorous standards to prevent flame ignition. A scientific method of evaluating the flammability risks associated with skin care products would be helpful. Several skin care products were tested, using established industrial techniques for determining flammability potential with some modification. The information obtained from these tests can help clinicians make more rational decisions about which topical products can be used safely on patients undergoing HBOT. Wendell Hull & Associates conducted independent studies, comparing the oxygen compatibility for leading skin care products. Oxygen compatibility was determined using autogenous ignition temperature (AIT), oxygen index (OI), and heat of combustion (HoC) testing. AIT, a relative indication of a material's propensity for ignition, is the minimum temperature needed to cause a sample to self-ignite at a given pressure and oxygen concentration. OI, a relative indication of a material's flammability, is the minimum oxygen percentage that, when mixed with nitrogen, will sustain burning. HoC is the absolute value of a material's energy release when burning, if ignition occurs. Products with a high AIT, a high OI, and a low HoC are more compatible in an oxygen-enriched atmosphere (OEA). An acceptability index (AI) based on these 3 factors was calculated for the products, so the testers could rank overall material compatibility in OEAs (Lapin A. Oxygen Compatibility of Materials. International Institute of Refrigeration Commission Meeting; Brighton, England; 1973). Test results for the skin products varied widely. The AIT, OI, HoC, and AI were determined for each

  15. Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection.

    Science.gov (United States)

    Hrachowina, Lukas; Domènech-Gil, Guillem; Pardo, Antonio; Seifner, Michael S; Gràcia, Isabel; Cané, Carles; Romano-Rodríguez, Albert; Barth, Sven

    2018-03-23

    A new method for the site-selective synthesis of nanowires has been developed to enable material growth with defined morphology and, at the same time, different composition on the same chip surface. The chemical vapor deposition approach for the growth of these nanowire-based resistive devices using micromembranes can be easily modified and represents a simple, adjustable fabrication process for the direct integration of nanowire meshes in multifunctional devices. This proof-of-concept study includes the deposition of SnO 2 , WO 3 , and Ge nanowires on the same chip. The individual resistors exhibit adequate gas sensing responses toward changing gas concentrations of CO, NO 2 , and humidity diluted in synthetic air. The data have been processed by principal component analysis with cluster responses that can be easily separated, and thus, the devices described herein are in principle suitable for environmental monitoring.

  16. Gas carburizing end-discharge pusher furnaces for the automatic hardening of single gear components. Gasaufkohlungs-Durchstossanlagen mit automatischer Einzelhaertung von Getriebeteilen

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, D; Washausen, R

    1989-09-01

    Apart from rotary hearth furnaces, end-discharge pusher furnaces are increasingly used for carburizing and hardening single components. These furnaces offer the following advantages: There is no limitation to the depth of case. The furnace zones can be controlled separately permitting carburizing to be optimized. The furnace can be designed to permit hardening of single components or quenching in batches. Process data relating to the components can be stored and called automatically (reproducibility of product quality). Heat treatment can be integrated in production control by process computer even if the furnace is installed separately. Regardless of what type of furnace is used, specific requirements have to be met to ensure reliable automatic discharge of single components. (orig./BWI).

  17. arXiv R&D studies on eco-friendly gas mixtures for the ALICE Muon Identifier

    CERN Document Server

    INSPIRE-00584065

    Resistive Plate Chambers (RPCs), used for the Muon Spectrometer of the ALICE experiment at CERN LHC, are currently operated in maxi-avalanche mode with a low threshold value and without amplification in the front-end electronics. RPC detectors have shown a good operation stability with the current gas mixture during the entire Run 1 (2010$-$2013) and the ongoing Run 2 (2015$-$2018) at the LHC. The gas mixture is made up of $C_{2}H_{2}F_{4}$, $SF_{6}$ and $iC_{4}H_{10}$. Since the first two gases have high Global Warming Potentials (GWPs), there is the risk that they will be phased out of production in the next years, due to the recent restrictions and regulations of the European Union. Therefore, finding a new eco-friendly gas mixture has become extremely important in order to reduce the emissions of greenhouse gases. In addition, the present $iC_{4}H_{10}$ contribution makes the current gas mixture flammable. Non-flammable components, or at least in non-flammable concentrations, would be advisable to make th...

  18. The effect of surfactant on headspace single drop microextraction for the determination of some volatile aroma compounds in citronella grass and lemongrass leaves by gas chromatography

    Science.gov (United States)

    A rapid method for the determination of some volatile aromatic compounds (VACs), including citronellal, citronellol, neral, geranial, geraniol, and eugenol in citronella grass and lemongrass leaves, was developed using surfactant as a surface tension modifier while performing headspace single drop m...

  19. Test Plan for Measuring Ventilation Rates and Combustible Gas Levels in TWRS Active Catch Tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-10-25

    The purpose of this sampling activity is to obtain data to support an initial evaluation of potential hazards due to the presence of combustible gas in catch tanks that are currently operated by the River Protection Project (RPP). Results of the hazard analysis will be used to support closure of the flammable gas unreviewed safety question for these facilities. The data collection will be conducted in accordance with the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). Combustible gas, ammonia, and organic vapor levels in the headspace of the catch tanks will be field-measured using hand-held instruments. If a combustible gas level measurement in a tank exceeds an established threshold, gas samples will he collected in SUMMA' canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flowing through the tanks. This test plan identifies the sample collection, laboratory analysis, quality assurance, and reporting objectives for this data collection effort. The plan also provides the procedures for field measurement of combustible gas concentrations and ventilation rates.

  20. Leakage analysis of fuel gas pipe in large LNG carrier engine room

    Directory of Open Access Journals (Sweden)

    CEN Zhuolun

    2017-10-01

    Full Text Available [Objectives] The electric propulsion dual-fuel engine is becoming dominant in newly built Liquefied Natural Gas(LNGcarriers. To avoid the potential risks that accompany the use of flammable and explosive boil-off gas,the performance of precise safety and reliability assessments is indispensable. [Methods] This research concerns the engine rooms of large LNG carriers which are propelled electrically by a dual-fuel engine. Possible fuel gas(natural gasleak cases in different areas of the engine room are simulated and analyzed. Five representative leak cases defined by leak form,leak location and leak rate are entered into a Computational Fluid Dynamics(CFDsimulation,in which the Reynolds stress model of Fluent software is adopted as the turbulence model. The results of the leaked gas distribution and ventilation velocity field are analyzed in combination to obtain the diffusion tendency and concentration distribution of leaked gas in different areas.[Results] Based on an analysis of the results,an optimized arrangement of flammable gas detectors is provided for the engine room, and the adoption of an explosion-proof exhaust fan is proven to be unnecessary.[Conclusions] These analysis methods can provide a reference for similar gas leakage scenarios occurring in confined ventilated spaces. In addition, the simulation results can be used to quantitatively assess potential fire or explosion damage in order to guide the design of structural reinforcements.

  1. Gas turbine

    International Nuclear Information System (INIS)

    Yang, Ok Ryong

    2004-01-01

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  2. The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste

    International Nuclear Information System (INIS)

    Bredt, P.R.; Tingey, S.M.

    1996-01-01

    Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required

  3. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.

    2017-06-12

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  4. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.; Barthel, Alexander; Maheu, Clement; Sodpiban, Ounjit; Dega, Frank-Blondel; Vummaleti, Sai V.C.; Abou-Hamad, Edy; Pelletier, Jeremie; Cavallo, Luigi; D'Elia, Valerio; Basset, Jean-Marie

    2017-01-01

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  5. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    Directory of Open Access Journals (Sweden)

    H. A. J. Meijer

    2009-09-01

    Full Text Available We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured with only one device, making it a very cost-efficient system. No time lags are introduced between the measured mixing ratios. The system is designed to operate fully autonomously which makes it ideal for measurements at remote and unmanned stations. Only a small amount of sample air is needed, which makes this system also highly suitable for flask air measurements. In principle, only two reference cylinders are needed for daily operation and only one calibration per year against international WMO standards is sufficient to obtain high measurement precision and accuracy. The system described in this paper is in use since May 2006 at our atmospheric measurement site Lutjewad near Groningen, The Netherlands at 6°21´ E, 53°24´N, 1 m a.s.l. Results show the long-term stability of the system. Observed measurement precisions at our remote research station Lutjewad were: ±0.04 ppm for CO2, ±0.8 ppb for CH4, ±0.8 ppb for CO, ±0.3 ppb for N2O, and ±0.1 ppt for SF6. The ambient mixing ratios of all measured species as observed at station Lutjewad for the period of May 2007 to August 2008 are presented as well.

  6. Multipoint Ignition of a Gas Mixture by a Microwave Subcritical Discharge with an Extended Streamer Structure

    Science.gov (United States)

    Aleksandrov, K. V.; Busleev, N. I.; Grachev, L. P.; Esakov, I. I.; Ravaev, A. A.

    2018-02-01

    The results of experimental studies on using an electrical discharge with an extended streamer structure in a quasioptical microwave beam in the multipoint ignition of a propane-air mixture have been reported. The pulsed microwave discharge was initiated at the interior surface of a quartz tube that was filled with the mentioned flammable mixture and introduced into a microwave beam with a subbreakdown initial field. Gas breakdown was initiated by an electromagnetic vibrator. The dependence of the type of discharge on the microwave field strength was examined, the lower concentration threshold of ignition of the propane-air mixture by the studied discharge was determined, and the dynamics of combustion of the flammable mixture with local and multipoint ignition were compared.

  7. 49 CFR 571.302 - Standard No. 302; Flammability of interior materials.

    Science.gov (United States)

    2010-10-01

    ... frame. S5.1.4A bunsen burner with a tube of 10 mm inside diameter is used. The gas adjusting valve is set to provide a flame, with the tube vertical, of 38 mm in height. The air inlet to the burner is... seven to eight smooth, rounded teeth per 25 mm. S5.3Procedure. (a) Mount the specimen so that both sides...

  8. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Mandeltort, Lynn [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Saidi, Wissam A. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Yates, John T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Cole, Milton W. [Pennsylvania State Univ., University Park, PA (United States). Dept of Physics; Johnson, J. Karl [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  9. Bubble retention in synthetic sludge: Testing of alternative gas retention apparatus

    International Nuclear Information System (INIS)

    Rassat, S.D.; Gauglitz, P.A.

    1995-07-01

    Several of the underground storage tanks currently used to store waste at Hanford have been placed on the Flammable Gas Watch List, because the waste is either known or suspected to generate, store, and episodically release flammable gases. The objective of this experimental study is to develop a method to measure gas bubble retention in simulated tank waste and in diluted simulant. The method and apparatus should (1) allow for reasonably rapid experiments, (2) minimize sample disturbance, and (3) provide realistic bubble nucleation and growth. The scope of this experimental study is to build an apparatus for measuring gas retention in simulated waste and to design the apparatus to be compatible with future testing on actual waste. The approach employed for creating bubbles in sludge involves dissolving a soluble gas into the supernatant liquid at an elevated pressure, recirculating the liquid containing the dissolved gas through the sludge, then reducing the pressure to allow bubbles to nucleate and grow. Results have been obtained for ammonia as the soluble gas and SY1-SIM-91A, a chemically representative simulated tank waste. In addition, proof-of-principle experiments were conducted with both ammonia and CO 2 as soluble gases and sludge composed of 90-micron glass beads. Results are described

  10. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  11. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    Science.gov (United States)

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. GAS-FOVEAL CONTACT

    DEFF Research Database (Denmark)

    Alberti, Mark; la Cour, Morten

    2018-01-01

    PURPOSE: To compare gas-foveal contact in face-down positioning (FDP) and nonsupine positioning (NSP), to analyze causes of gas-foveal separation and to determine how gas-foveal contact affects clinical outcome after idiopathic macular hole repair. METHODS: Single center, randomized controlled...... study. Participants with an idiopathic macular hole were allocated to either FDP or NSP. Primary outcome was gas-foveal contact, calculated by analyzing positioning in relation to intraocular gas fill. Positioning was measured with an electronic device recording positioning for 72 hours postoperatively....... RESULTS: Positioning data were available for 33/35 in the FDP group and 35/37 in the NSP group, thus results are based on 68 analyzed participants. Median gas-foveal contact was 99.82% (range 73.6-100.0) in the FDP group and 99.57% (range 85.3-100.0) in the NSP group (P = 0.22). In a statistical model...

  13. Determination of campesterol, stigmasterol, and beta-sitosterol in saw palmetto raw materials and dietary supplements by gas chromatography: single-laboratory validation.

    Science.gov (United States)

    Sorenson, Wendy R; Sullivan, Darryl

    2006-01-01

    In conjunction with an AOAC Presidential Task Force on Dietary Supplements, a method was validated for measurement of 3 plant sterols (phytosterols) in saw palmetto raw materials, extracts, and dietary supplements. AOAC Official Method 994.10, "Cholesterol in Foods," was modified for purposes of this validation. Test samples were saponified at high temperature with ethanolic potassium hydroxide solution. The unsaponifiable fraction containing phytosterols (campesterol, stigmasterol, and beta-sitosterol) was extracted with toluene. Phytosterols were derivatized to trimethylsilyl ethers and then quantified by gas chromatography with a hydrogen flame ionization detector. The presence of the phytosterols was detected at concentrations greater than or equal to 1.00 mg/100 g based on 2-3 g of sample. The standard curve range for this assay was 0.00250 to 0.200 mg/mL. The calibration curves for all phytosterols had correlation coefficients greater than or equal to 0.995. Precision studies produced relative standard deviation values of 1.52 to 7.27% for campesterol, 1.62 to 6.48% for stigmasterol, and 1.39 to 10.5% for beta-sitosterol. Recoveries for samples fortified at 100% of the inherent values averaged 98.5 to 105% for campesterol, 95.0 to 108% for stigmasterol, and 85.0 to 103% for beta-sitosterol.

  14. Gas induced fire and explosion frequencies

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1997-01-01

    The use and handling of flammable gases poses a fire and explosion hazard to many DOE nuclear facilities. This hazard is not unique to DOE facilities. Each year over 2,900 non-residential structural fires occur in the U.S. where a gas is the first item ignited. Details from these events are collected by the National Fire Incident Reporting System (NFIRS) through an extensive reporting network. This extensive data set (800,000 fires in non-residential structures over a 5-year period) is an underutilized resource within the DOE community. Explosions in nuclear facilities can have very severe consequences. The explosion can both damage the facility containment and provide a mechanism for significant radiological dispersion. In addition, an explosion can have significant worker safety implications. Because of this a quantitative frequency estimate for explosions in an SRS laboratory facility has been prepared using the NFIRS data. 6 refs., 1 tab

  15. Evaluation of Gas Retention in Waste Simulants: Intermediate-Scale Column and Open-Channel-Depth Tests

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Michael R.; Gauglitz, Phillip A.; Denslow, Kayte M.; Fischer, Christopher M.; Heldebrant, David J.; Prowant, Matthew S.; Sande, Susan; Davis, James M.; Telander, Monty R.

    2014-02-14

    Gas generation in Hanford’s radioactive waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which may be hazardous and/or flammable, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge increases the sludge-layer volume, which decreases the available tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge can potentially result in a relatively rapid release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. The potential for rapid release of large amounts of hazardous and/or flammable gases is a safety hazard that needs to be managed. Accordingly, a thorough understanding is needed of the circumstances that can lead to problematic gas accumulation in sludge layers. The Deep-Sludge Gas Release Event Project (DSGREP) is tasked with developing an improved understanding of these gas release events.

  16. A Study of the Curing and Flammability Properties of Bisphenol A Epoxy Diacrylate Resin Utilizing a Novel Flame Retardant Monomer, bis[di-acryloyloxyethyl]-p-tert-butyl-phenyl Phosphate

    Directory of Open Access Journals (Sweden)

    Syang-Peng Rwei

    2017-02-01

    Full Text Available A UV-curable, flame-retardant monomer, DAPP (bis[di-acryloyloxyethyl]-p-tert-butyl-phenyl-phosphate, was synthesized based on BPDCP (4-tert-butylphenyl-dichloro phosphate and HEA (2-hydroxy ethyl acrylate. DAPP was blended with regular bisphenol A epoxy acrylate (BAEA in various ratios to yield various phosphorus contents. The TGA-IR (thermogravimetric analyzer interface with an infrared spectrometer results demonstrate that compounding 30 mol % DAPP with BAEA significantly reduced the amount of released CO gas. In contrast, the peak intensity of CO2 is independent of phosphorus content. The limiting oxygen index (LOI, reaching the saturated value of 26, and the heat release rate (HRR measured using a cone-calorimeter, 156.43 KW/m2, confirm the saturation point when 30 mol % DAPP was compounded into BAEA. A study of the kinetics of pyrolysis reveals that Ea decreases as the phosphorus content increases. Both the TGA-IR and pyrolysis results reveal that the phosphorus compound DAPP is easily decomposed during the initial stage of burning to form an insulating layer, which inhibits further burning of the resin and the consequent release of other flammable gases.

  17. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method.

    Science.gov (United States)

    Williams, D Bradley G; George, Mosotho J; Marjanovic, Ljiljana

    2014-08-06

    Tracking of metolachlor and atrazine herbicides in agricultural soils, from spraying through to harvest, was conducted using our recently reported "bubble-in-drop single-drop microextraction" method. The method showed good linearity (R(2) = 0.999 and 0.999) in the concentration range of 0.01-1.0 ng/mL with LOD values of 0.01 and 0.02 ng/mL for atrazine and metolachlor, respectively. Sonication methods were poor at releasing these herbicides from the soil matrixes, while hot water extraction readily liberated them, providing an efficient accessible alternative to sonication techniques. Good recoveries of 97% and 105% were shown for atrazine and metolachlor, respectively, from the soil. The spiking protocol was also investigated, resulting in a traceless spiking method. We demonstrate a very sensitive technique by which to assess, for example, the length of residence of pesticides in given soils and thus risk of exposure.

  18. Tomographic Reconstruction of Tracer Gas Concentration Profiles in a Room with the Use of a Single OP-FTIR and Two Iterative Algorithms: ART and PWLS.

    Science.gov (United States)

    Park, Doo Y; Fessier, Jeffrey A; Yost, Michael G; Levine, Steven P

    2000-03-01

    Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 × 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.

  19. A review of fire accidents, flammability and toxicity of burning textiles

    CSIR Research Space (South Africa)

    Van Rensburg, NJJ

    1982-09-01

    Full Text Available OF GASES AND VAPOURS Surface !area (m2) 10,O 11,O 9,o 4.0 The main gases involved in asphyxiation are oxygen, carbon dioxide, carbon monoxide and hydrogen cyanid&."". The effect of reduced levels of oxygen in the air on the physiological behaviour..., death in minutes 12 SA WRISpecial Publication -September 1982 Hydrogen cyanide is produced from various nitrogen containing products during burning. It is a deadly poison and has in fact been used in the gas chamber in the USA. Its effect...

  20. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)