WorldWideScience

Sample records for flame photometric detector

  1. Determination of organophosphorus flame retardants in fish by pressurized liquid extraction using aqueous solutions and solid-phase microextraction coupled with gas chromatography-flame photometric detector.

    Science.gov (United States)

    Gao, Zhanqi; Deng, Yuehua; Yuan, Wenting; He, Huan; Yang, Shaogui; Sun, Cheng

    2014-10-31

    A novel method was developed for the determination of organophosphorus flame retardants (PFRs) in fish. The method consists of a combination of pressurized liquid extraction (PLE) using aqueous solutions and solid-phase microextraction (SPME), followed by gas chromatography-flame photometric detector (GC-FPD). The experimental parameters that influenced extraction efficiency were systematically evaluated. The optimal responses were observed by extracting 1g of fish meat with the solution of water:acetonitrile (90:10, v/v) at 150°C for 5min and acid-washed silica gel used as lipid sorbent. The obtained extract was then analyzed by SPME coupled with GC-FPD without any additional clean-up steps. Under the optimal conditions, the proposed procedure showed a wide linear range (0.90-5000ngg(-1)) obtained by analyzing the spiked fish samples with increasing concentrations of PFRs and correlation coefficient (R) ranged from 0.9900 to 0.9992. The detection limits (S/N=3) were in the range of 0.010-0.208ngg(-1) with standard deviations (RSDs) ranging from 2.0% to 9.0%. The intra-day and inter-day variations were less than 9.0% and 7.8%, respectively. The proposed method was successfully applied to the determination of PFRs in real fish samples with recoveries varying from 79.8% to 107.3%. The results demonstrate that the proposed method is highly effective for analyzing PFRs in fish samples.

  2. The measurement of H 2SO 4 and other sulfate species at Tuxedo, New York with a thermal analysis flame photometric detector and simultaneously collected quartz filter samples

    Science.gov (United States)

    Morandi, Maria T.; Kneip, Theo J.; Geoffery Cobourn, W.; Husar, Rudolf B.; Lioy, Paul J.

    A study of major atmospheric particulate sulfate species was conducted during 30 July 1980-1983 September 1980 in Sterling Forest, a rural area in Tuxedo, NY, not affected by major local sources of pollution. In situ measurements of total sulfate, sulfuric acid and ammonium sulfate ammonium bisulfate were made using Thermal Analysis-Flame Photometric Detection (TA-FPD). These measurements were compared to the total sulfate and strong acid (H +) concentration measured in simultaneously collected 12 h, treated quartz filter samples. The concentration of NH 4HSO 4 was inferred from the difference between the total strong acid concentration and the sulfuric acid measurements, so that total sulfate and acid concentrations could be balanced. A major sulfate pollution episode occurred during the period of 27-29 August. The concentration of H + showed an excess above that necessary to account for the TA-FPD H 2SO 4 measurement, indicating the presence of NH 4 HSO 4. The maximum 12 h average concentrations of H 2SO 4, NH 4HSO 4 and (NH 4) 2SO 4 were 5.18, 11.42 and 10.08 μg m -3 as SO 42- respectively, and were measured from 9:15 to 21:15 on 28 August. The study demonstrated the usefulness of concurrent measurements of airborne particulate sulfate by filter extraction and TA-FPD to identify acidic sulfate species.

  3. Quantitative extraction of methylgermanium species at trace levels and determination by on-column capillary gas chromatography with flame photometric detector

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A solvent extraction procedure for the quantitativeextraction of trace levels of methylgermanium species as theirchloride complex has been developed and the extract was determinedby an on-column capillary gas chromatography with a lab-modifiedflame phorometric detector(FPD) using quartz surface-inducedgermanium emission after pentylation with Grignard reaction. Theextracted percentages for TMGe, DMGe and MMGe in a 100-ml 9mol/LHCl aqueous solution by a single extraction with 1 ml hexane are86.6%, 87.4% and 96.2%, respectively. The precision for overallprocedure range from 3.9% to 7.5%. The extraction was found to beindependent of the initial concentration of methylgermanium speciesin the aqueous phase, which typically varied from 0.1 to 10 μg. This method is suitable for most types of environmental samples and, are superior to all hydride generation coupled spectrometric andspectrophotometric methods in terms of selectivity and toleranceability to interference.

  4. Micro flame-based detector suite for universal gas sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Thomas Warren; Washburn, Cody M.; Moorman, Matthew Wallace; Manley, Robert George; Lewis, Patrick Raymond; Miller, James Edward; Clem, Paul Gilbert; Shelmidine, Gregory J.; Manginell, Ronald Paul; Okandan, Murat

    2005-11-01

    A microflame-based detector suit has been developed for sensing of a broad range of chemical analytes. This detector combines calorimetry, flame ionization detection (FID), nitrogen-phosphorous detection (NPD) and flame photometric detection (FPD) modes into one convenient platform based on a microcombustor. The microcombustor consists in a micromachined microhotplate with a catalyst or low-work function material added to its surface. For the NPD mode a low work function material selectively ionizes chemical analytes; for all other modes a supported catalyst such as platinum/alumina is used. The microcombustor design permits rapid, efficient heating of the deposited film at low power. To perform calorimetric detection of analytes, the change in power required to maintain the resistive microhotplate heater at a constant temperature is measured. For FID and NPD modes, electrodes are placed around the microcombustor flame zone and an electrometer circuit measures the production of ions. For FPD, the flame zone is optically interrogated to search for light emission indicative of deexcitation of flame-produced analyte compounds. The calorimetric and FID modes respond generally to all hydrocarbons, while sulfur compounds only alarm in the calorimetric mode, providing speciation. The NPD mode provides 10,000:1 selectivity of nitrogen and phosphorous compounds over hydrocarbons. The FPD can distinguish between sulfur and phosphorous compounds. Importantly all detection modes can be established on one convenient microcombustor platform, in fact the calorimetric, FID and FPD modes can be achieved simultaneously on only one microcombustor. Therefore, it is possible to make a very universal chemical detector array with as little as two microcombustor elements. A demonstration of the performance of the microcombustor in each of the detection modes is provided herein.

  5. Applications of multi-spectral imaging: failsafe industrial flame detector

    Science.gov (United States)

    Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath

    2016-05-01

    Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.

  6. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a th...

  7. 40 CFR 1065.260 - Flame-ionization detector.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Flame-ionization detector. 1065.260 Section 1065.260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... emissions at a temperature of (191 ± 11) °C. (d) FID fuel and burner air. Use FID fuel and burner air...

  8. Simultaneous determination of organophosphorous insecticides in bean samples by gas chromatography - flame photometric detection

    Directory of Open Access Journals (Sweden)

    Keyller Bastos Borges

    2014-02-01

    Full Text Available The indiscriminate use of organophosphorous pesticides (OPPs in crops may leave residues in food and may cause poisoning in the applicators. A method was developed for the determination of five OPPs in bean samples by Gas Chromatography-Flame Photometric Detection (GC-FPD. Validation parameters comprised linearity between 0.24 and 8.56 μg g-1 (r = 0.9985 for diazinon; 0.23 and 8.14 μg g-1 (r = 0.9959 for methyl parathion; 0.28 and 10.25 μg g-1 (r = 0.9987 for methyl pirimiphos; 0.52 and 18.87 μg g-1 (r = 0.9955 for malathion; 0.86 and 13.67 μg g-1 (r = 0.9919 for ethion. The limits of quantification (equal to those of detection were the lowest rates of ranges mentioned above for each compound. The extraction method showed approximately 95% recovery, with CV% < 15%. Although twenty-eight bean samples obtained in the southern region of the state of Minas Gerais,Brazil, were analyzed, they failed to match any of the OPPs under analysis. The absence of OPPs in the samples could be due to the degradation that occurred between the use of OPPs and bean commercialization, levels below the detection /quantification limits and the non-use of OPPs in bean cultivation.

  9. Photometric method of determining gold film thickness of nuclear radiation silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, B.A.; Zakharchuk, D.V.; Kovalev, I.I.; Nikolaeva, T.V.; Serushkina, E.S.

    1987-07-01

    The authors examine a photometric method of assessing a nuclear radiation silicon detector's gold film thickness based on the photocurrent from a light passed through the sputtered metal layer. The surface-barrier detectors of nuclear radiations with a gold front contact are characterized by a high sensitivity to light in the 0.4-1.0 micrometer wavelength band. The relative error of determining the gold film thickness using the method examined here is of the 7% order.

  10. New source and detector technology for the realization of photometric units

    Science.gov (United States)

    Dönsberg, Timo; Pulli, Tomi; Poikonen, Tuomas; Baumgartner, Hans; Vaskuri, Anna; Sildoja, Meelis; Manoocheri, Farshid; Kärhä, Petri; Ikonen, Erkki

    2014-12-01

    The production of incandescent light bulbs is bound to end, as incandescent lighting is being phased out globally in favour of more energy-efficient and sustainable solutions. Temporally stable light-emitting diodes (LEDs) are potential candidates to replace incandescent lamps as photometric source standards. However, traditional V(λ) filter based photometers may have large uncertainty when LEDs are measured instead of incandescent lamps. This is due to the narrow and complicated spectra of LEDs. When the spectra of LEDs are limited to the visible wavelength range, new silicon detector technology can be advantageously exploited in photometry. We present a novel method—based on the recently introduced Predictable Quantum Efficient Detector (PQED)—for the realization of photometric units which completely eliminates the need to use V(λ) filters. Instead, the photometric weighting is taken into account numerically by measuring the relative spectral irradiance. The illuminance values of a blue and a red LED were determined using the new method and a conventional reference photometer. The values obtained by the two methods deviated from each other by -0.06% and 0.48% for the blue and red LED, respectively. The PQED-based values have much lower standard uncertainty (0.17% to 0.18%) than the uncertainty of the values based on the conventional photometer (0.46% to 0.51%).

  11. Homogeneous Liquid-Liquid Microextraction for Determination of Organophosphorus Pesticides in Environmental Water Samples Prior to Gas Chromatography-Flame Photometric Detection.

    Science.gov (United States)

    Berijani, Sana; Sadigh, Mirhanif; Pournamdari, Elham

    2016-07-01

    In this study, homogeneous liquid-liquid microextraction (HLLME) was developed for preconcentration and extraction of 15 organophosphorus pesticides (OPPs) from water samples coupling with gas chromatography followed by a flame photometric detector (HLLME-GC-FPD). In this method, OPPs were extracted by the homogeneous phase in a ternary solvent system (water/acetic acid/chloroform). The homogeneous solution was excluded by the addition of sodium hydroxide as a phase separator reagent and a cloudy solution was formed. After centrifugation (3 min at 5,000 rpm), the fine particles of extraction solvent (chloroform) were sedimented at the bottom of the conical test tube (10.0 ± 0.5 µL). Furthermore, 0.5 µL of the sedimented phase was injected into the GC for separation and determination of OPPs. Optimal results were obtained under the following conditions: volume of the extracting solvent (chloroform), 53 µL; volume of the consolute solvent (acetic acid), 0.76 mL and concentration of sodium hydroxide, 40% (w/v). Under the optimum conditions, the enrichment factors of (260-665), the extraction percent of 75.8-104%, the dynamic linear range of 0.03-300 µg L(-1) and the limits of detection of 0.004-0.03 µg L(-1) were obtained for the OPPs. This method was successfully applied for the extraction and determination of the OPPs in environmental water samples.

  12. False triggering of an ultraviolet flame detector after 99mTc-MDP injection.

    Science.gov (United States)

    Yoshizawa, Hisashi; Starkey, Jay

    2016-06-01

    We report a patient who set off a restroom's ultraviolet-spectrum flame detector, occurring 2.5 h after administration of radioisotope 99mTc-MDP (740 MBq) for bone scintigraphy. The radiation dose rate emitted from the patient was estimated to be about 11.82 μSv/h at a distance of 100 cm. To date, many cases have been reported of radiation detector false alarms triggered by radioisotopes administered to patients, presumably due to strengthened security measures and increased radioisotope use. Only one other case of false flame detector triggering in relation to radioisotope administration has been reported, in that case due to therapeutic radioiodine; there have been no prior reports of diagnostic (99m)Tc triggering flame detectors.

  13. Aspects of the mechanism of the flame ionization detector

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    The development of flame ionization detection (FID) took place on an empirical basis without a clear understanding of the mechanism. The study of flames by MS showed that the all-important ion was the formylium ion CHO+. The pre-combustion degradation was thought to be a pyrolytic degradation...... and hydrogenation at the high temperatures obtained close to the combustion zone. Using a capillary probe inside the flame it was recently shown that a degradation of all hydrocarbons to methane takes place at low temperatures by the reaction of hydrogen atoms which are generated in the burning hydrogen...

  14. One-step extraction for gas chromatography with flame photometric detection of 18 organophosphorus pesticides in Chinese medicine health wines.

    Science.gov (United States)

    Liu, Qianzhen; Kong, Weijun; Qiu, Feng; Wei, Jianhe; Yang, Shihai; Zheng, Yuguo; Yang, Meihua

    2012-02-15

    An easy, rapid and selective gas chromatography with flame photometric detection (GC-FPD) method was established for simultaneously determining 18 organophosphorus pesticides (OPPs) in 80 Chinese medicine (CM) health wines. This method was based on a simple one-step extraction procedure using a little solvent without any further cleanup steps. The optimized extraction solvent for the pesticides is acetone:dichloromethane (1:1, V/V) with extraction recovery of 79.0-109.1% and relative standard deviation (RSD) of 0.36-12.68%, respectively. The limits of detection (LODs) of the established GC-FPD method for all investigated pesticides ranged from 1 to 15ngmL(-1) and limits of quantification (LOQs) from 4 to 50ngmL(-1). Out of all 80 CM health wines, 18 OPPs were found in 8 samples at low concentrations of 8.2-37.9ngmL(-1). These pesticides were successfully confirmed by GC-MS. This is the first report of determining OPPs in CM health wines, providing references for monitoring the quality of CM health wine in routine analysis.

  15. Inductively coupled plasma emission spectroscopic and flame photometric analysis of goat epididymal fluid

    Institute of Scientific and Technical Information of China (English)

    MeenakshiGaur; VikasPruthi; RamasarePrasad; BenM.J.Pereira

    2000-01-01

    Aim: The elemental composition of the epididymal luminal fluid (ELF) in adult goat (Capra indica) was investigated. Methods: ELF was collected by micropuncture from twelve sites along the epididymal duct. The elemental contents was analyzed with inductively coupled plasma (ICP) emission spectroscopy, a microanalytical technique that can simultaneously measure many elements in minute volumes of sample. The Na and K concentrations were determined by flame photometry. Results: ICP spectroscopy showed the presence of copper, calcium, nickel, iron, magnesium, chromium, titanium and zinc in ELF, with fluctuating levels at different sites along the length of the epididymis.Cadmium, cobalt, lead and manganese were not found. The Na+/K+ ratio was seen to be higher at the initial segments of the epididymis and lower at the distal. Conclusion: It is proposed that the observed characteristic distribution of elements in ELF may have far reaching implications in sperm maturation and storage known to occur in the epididymis. (Asian J Androl 2000 Dec;2:288-292)

  16. Determination of phosphine and other fumigants in air samples by thermal desorption and 2D heart-cutting gas chromatography with synchronous SIM/Scan mass spectrometry and flame photometric detection.

    Science.gov (United States)

    Fahrenholtz, Svea; Hühnerfuss, Heinrich; Baur, Xaver; Budnik, Lygia Therese

    2010-12-24

    Fumigants and volatile industrial chemicals are particularly hazardous to health when a freight container is fumigated or the contaminated material is introduced into its enclosed environment. Phosphine is now increasingly used as a fumigant, after bromomethane--the former fumigant of choice--has been banned by the Montreal Protocol. We have enhanced our previously established thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method by integrating a second gas chromatographic dimension and a flame photometric detector to allow the simultaneous detection of phosphine and volatile organic compounds (VOCs), providing a novel application. A thermal desorption system is coupled to a two dimensional gas chromatograph using both mass spectrometric and flame photometric detection (TD-2D-GC-MS/FPD). Additionally, the collection of mass spectrometric SIM and Scan data has been synchronised, so only a single analysis is now sufficient for qualitative scanning of the whole sample and for sensitive quantification. Though detection limits for the herewith described method are slightly higher than in the previous method, they are in the low μL m(-3) range, which is not only below the respective occupational exposure and intervention limits but also allows the detection of residual contamination after ventilation. The method was developed for the separation and identification of 44 volatile substances. For 12 of these compounds (bromomethane, iodomethane, dichloromethane, 1,2-dichlorethane, benzene, tetrachloromethane, 1,2-dichloropropane, toluene, trichloronitromethane, ethyl benzene, phosphine, carbon disulfide) the method was validated as we chose the target compounds due to their relevance in freight container handling.

  17. Organophosphorus pesticide and ester analysis by using comprehensive two-dimensional gas chromatography with flame photometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangping; Li, Dengkun; Li, Jiequan [Nanjing Centre for Disease Control and Prevention, Zizhulin Street, Gulou 210003, Nanjing (China); Rose, Gavin [Department of Environment and Primary Industries, Macleod Centre, Ernest Jones Drive, Macleod, Vic 3085 (Australia); Marriott, Philip J., E-mail: philip.marriott@monash.edu [Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton 3800 (Australia)

    2013-12-15

    Highlights: • GC × GC-FPD(P-mode) was applied to detection of 37 phosphorus (P)-containing compounds. • The method improves resolution of P-compounds that coelute in the first dimension. • P-compounds are analyzed with excellent sensitivity supported by cryogenic modulation. • The FPD(P-mode) selectivity allows analysis in high hydrocarbon (H/C) matrix. • Soil samples and spiked chemical weapon compounds in H/C matrix are readily screened. -- Abstract: Thirty-seven phosphorus (P)-containing compounds comprising organophosphorus pesticides and organophosphate esters were analyzed by using comprehensive two-dimensional gas chromatography with flame photometric detection in P mode (GC × GC-FPD(P)), with a non-polar/moderately polar column set. A suitable modulation temperature and period was chosen based on experimental observation. A number of co-eluting peak pairs on the {sup 1}D column were well separated in 2D space. Excellent FPD(P) detection selectivity, responding to compounds containing the P atom, produces clear 2D GC × GC plots with little interference from complex hydrocarbon matrices. Limits of detection (LOD) were within the range of 0.0021–0.048 μmol L{sup −1}, and linear calibration correlation coefficients (R{sup 2}) for all 37 P-compounds were at least 0.998. The P-compounds were spiked in 2% diesel and good reproducibility for their response areas and retention times was obtained. Spiked recoveries were 88%–157% for 5 μg L{sup −1} and 80%–138% for 10 μg L{sup −1} spiked levels. Both {sup 1}t{sub R} and {sup 2}t{sub R} shifts were noted when the content of diesel was in excess of 5% in the matrix. Soil samples were analyzed by using the developed method; some P-compounds were positively detected. In general, this study shows that GC × GC-FPD(P) is an accurate, sensitive and simple method for P-compound analysis in complicated environmental samples.

  18. Development of pressurized liquid extraction and solid-phase microextraction combined with gas chromatography and flame photometric detection for the determination of organophosphate esters in sediments.

    Science.gov (United States)

    Zheng, Jianming; Gao, Zhanqi; Yuan, Wenting; He, Huan; Yang, Shaogui; Sun, Cheng

    2014-09-01

    Organophosphate esters have been extensively used as flame retardants and plasticizers. The analysis of organophosphate esters in the environment is a hot topic because many of them are toxic and persistent. We developed a novel procedure for determining organophosphate esters in sediment. In this work, pressurized liquid extraction and solid-phase microextraction are used for sample preparation to extract and concentrate the analytes, which are then analyzed by gas chromatography with flame photometric detection. The extraction parameters of pressurized liquid extraction were investigated and optimized by orthogonal design and then evaluated by range analysis and analysis of variance. Under the optimal conditions, the proposed procedure showed wide linear ranges (0.90-100 ng/g) with correlation coefficients ranging from 0.9921 to 0.9990. The detection limits of the method were in the range of 0.009-0.280 ng/g with standard deviations ranging from 2.2 to 9.5%. Recoveries of the proposed method ranged from 82.3 to 108.9% with relative standard deviations esters in real sediments with recoveries varying from 79.8 to 107.3%. The proposed method was proved to be simple, easy, and sensitive for analyzing organophosphate esters in sediment samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Flame Photometric Ignition Circuit Research and Design%火焰光度计点火控制电路设计

    Institute of Scientific and Technical Information of China (English)

    宋婷玉; 徐小力; 许宝杰; 谷玉海; 宋丹丹

    2012-01-01

    In order to design the flame photometric ignition circuit,through to the method of decomposing the circuit working different effects in the ignition system, then reduction in its whole process, producing the delay and high-pressure discharge ignition with NE555 and mutual inductance coil, finally, with the basic functions anti-interference and self-protection, ruled out the influence of external environment to the flame, and ensure the reliability of practical application of the circuit.%通过将点火系统中不同作用的电路分解,然后还原其整个工作过程的方法,用NE555产生延时,线圈互感产生高压放电点火,设计了火焰光度计点火控制电路,具备了点火电路抗干扰和自保护的功能,排除了外部环境对火焰的影响,保证了电路的可靠性。

  20. Determination of organotin compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame-photometric detection (HS-SPME-GC-PFPD)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Manuel [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France); Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Lespes, Gaetane; Gautier, Martine Potin [Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Gregori, Ida de; Pinochet, Hugo [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France)

    2005-12-01

    A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 {mu}m PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L{sup -1} in water and close to ng (Sn) kg{sup -1} in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME-GC-PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices. (orig.)

  1. Optimisation of pressurised liquid extraction for elimination of sulphur interferences during determination of organotin compounds in sulphur-rich sediments by gas chromatography with flame photometric detection.

    Science.gov (United States)

    Wasik, Andrzej; Radke, Barbara; Bolałek, Jerzy; Namieśnik, Jacek

    2007-05-01

    A simple method for species-selective analysis of organotin compounds (OTCs) (butyl and phenyl) in sediments was developed. The sample preparation procedure was specifically optimised for sulphur-rich sediments to eliminate interferences from elemental sulphur and organosulphur compounds. Tin species were extracted from sediment samples using pressurised liquid extraction technique (PLE), ethylated - with simultaneous extraction to isooctane - in aqueous phase with sodium tetraethylborate (NaBEt(4)) and separated/detected by gas chromatography with flame photometric detection (GC-FPD). PLE operational variables (extraction temperature and pressure, solvent composition and number of static extraction steps) and extract handling routine were fine-tuned to minimise the amount of extracted interferents while keeping OTCs recovery at an acceptable level. Best results were obtained after extraction of sediment samples with methanol/water (75% v/v methanol) solution of acetic acid/sodium acetate with tropolone addition (0.6 g l(-1)). Derivatisation of low temperature, high-pressure (50 degrees C, 13.8 MPa) extracts gives isooctane extracts which are clean enough to be directly analysed by GC-FPD without any further cleanup. Interferences from elemental sulphur were completely eliminated while concentrations of other interferents were reduced to the level not impairing quantitation of OTCs under the study. No negative effects in terms of chromatographic column deterioration were observed after repeated injections of such extracts. Two certified reference materials, BCR646 and PACS-2, were analysed to assess performance of the method. Recoveries of all OTCs under the study, except MBT, were in the range of 91-114%. MBT extraction efficiency was low (34-47%) therefore the method is unsuitable for precise determinations of this compound.

  2. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  3. Cross validation of gas chromatography-flame photometric detection and gas chromatography-mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine.

    Science.gov (United States)

    Prapamontol, Tippawan; Sutan, Kunrunya; Laoyang, Sompong; Hongsibsong, Surat; Lee, Grace; Yano, Yukiko; Hunter, Ronald Elton; Ryan, P Barry; Barr, Dana Boyd; Panuwet, Parinya

    2014-01-01

    We report two analytical methods for the measurement of dialkylphosphate (DAP) metabolites of organophosphate pesticides in human urine. These methods were independently developed/modified and implemented in two separate laboratories and cross validated. The aim was to develop simple, cost effective, and reliable methods that could use available resources and sample matrices in Thailand and the United States. While several methods already exist, we found that direct application of these methods required modification of sample preparation and chromatographic conditions to render accurate, reliable data. The problems encountered with existing methods were attributable to urinary matrix interferences, and differences in the pH of urine samples and reagents used during the extraction and derivatization processes. Thus, we provide information on key parameters that require attention during method modification and execution that affect the ruggedness of the methods. The methods presented here employ gas chromatography (GC) coupled with either flame photometric detection (FPD) or electron impact ionization-mass spectrometry (EI-MS) with isotopic dilution quantification. The limits of detection were reported from 0.10ng/mL urine to 2.5ng/mL urine (for GC-FPD), while the limits of quantification were reported from 0.25ng/mL urine to 2.5ng/mL urine (for GC-MS), for all six common DAP metabolites (i.e., dimethylphosphate, dimethylthiophosphate, dimethyldithiophosphate, diethylphosphate, diethylthiophosphate, and diethyldithiophosphate). Each method showed a relative recovery range of 94-119% (for GC-FPD) and 92-103% (for GC-MS), and relative standard deviations (RSD) of less than 20%. Cross-validation was performed on the same set of urine samples (n=46) collected from pregnant women residing in the agricultural areas of northern Thailand. The results from split sample analysis from both laboratories agreed well for each metabolite, suggesting that each method can produce

  4. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography - flame ionization detector.

    Science.gov (United States)

    Olatunji, Olatunde S; Fatoki, Olalekan S; Opeolu, Beatrice O; Ximba, Bhekumusa J

    2014-08-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in smoked, grilled and boiled meats were determined using gas chromatography - flame ionization detector (GC-FID). PAHs in the processed meats were extracted in n-hexane after hydrolysis with methanolic KOH. Clean-up was achieved using solid phase extraction in neutral-Si/basic-Si/acidic-Si/neutral-Si frits. The fractions, benzo[k]fluoranthene (BkP), benzo[a]pyrene (BaP), indeno[123-cd]pyrene (IP) and benzo[ghi]perylene (BghiP) were separated and quantified using GC-FID. The method and instrument limits of detections were 0.1, 0.1, 0.2, 0.3μg/kg and 0.5, 0.5, 1.0, 1.5μg/kg, respectively, for BkP, BaP, IP and BghiP. The method's recovery and precision generally varied between 83.69% and 94.25% with relative standard deviation (RSD) of 3.18-15.60%; and 90.38-96.71% with relative standard deviation (RSD) of 1.82-12.87% respectively. The concentration of BkP, BaP, IP and BghiP in smoked, grilled and boiled meat samples were ranged 0.64-31.54μg/kg, 0.07-7.04μg/kg, 0.09-15.03, 0.51-46.67μg/kg and 0.01-5.11μg/kg, respectively.

  5. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column

    Science.gov (United States)

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  6. Mechanism of the flame ionization detector. II. Isotope effects and heteroatom effects

    DEFF Research Database (Denmark)

    Holm, Torkil

    1997-01-01

    The relative molar flame ionization detecton (FID) response (RMR) for a hydrocarbon does not change when deuterium is substituted for hydrogen. The exception is methane for which an inverse deuterium effect of 3..5% is observed for tetradeuteriomethane. [13C]Methane shows an inverse isotope effect...... of 2%. The reason for the small or non-existent isotope effects is that H/2H exchange takes place in the pre-combustion hydrogenolysis in the flame. This was shown by taking samples from the lower part of the flame by means of a fused silica capillary probe. By the same technique the hydrogenolytic...... reactions in the hydrogen flame of compounds added to the hydrogen gas in low concentrations were followed. Alcohols, ethers, ketones, and esters all produced methane and carbon monoxide, while amines produced methane and hydrogen cyanide, halogen compounds methane and hydrogen halide, etc. The FID response...

  7. QUALITY ASSURANCE STUDY OF MARINE LIPID CLASS DETERMINATION USING CHROMAROD/IATROSCAN( REG. TRADEMARK) THIN-LAYER CHROMATOGRAPHY-FLAME IONIZATION DETECTOR

    Science.gov (United States)

    An Iatroscan thin-layer chromatorgraphy-flame ionization detector has been utilized to quantify lipid classes in marine samples. This method was evaluated relative to established quality assurance (QA) procedures used for the gas chromatographic analysis of PCBs. A method for ext...

  8. Low Dark Current Mesa-Type AlGaN Flame Detectors

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2007-01-01

    Full Text Available This study characterizes and reports on the fabrication process of AlGaN flame photodetectors with an Al0.1Ga0.9N/GaN superlattice structure. The AlGaN flame photodetectors exhibited a low dark current (∼1.17×10−10 A at bias of −5 V and large rejection ratio of photocurrent (∼2.14×10−5 A at bias of -5 V to dark current, which is greater than five orders of magnitude. Responsivity at 350 nm at a bias of -5 V was 0.194 A/W. Quantum efficiency, η, was 0.687 at a reverse bias of 5 V.

  9. Analysis of benzene, toluene, ethylbenzene and xylenes in soils by headspace and gas chromatography/flame ionization detector

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The constituents of gasoline: benzene, toluene, ethylbenzene and xylenes (BTEX are frequently found in soils due to leaks in fuel storage tanks and they present chronic toxicity. In this work it was developed and validated a methodology of BTEX analysis in soil by gas chromatography/ flame ionization detector and static headspace. The recovery of BTEX in soil samples was evaluated using soils with different textures (sandy and loamy. The analysis method showed good resolution, in a low time of analysis (less than 30 minutes. Limits of quantification of 0.05 mg Kg¯¹ soil for benzene, toluene, ethylbenzene and xylenes are below the guiding values that range from 0.15 to 95 mg Kg¯¹ soil, established to determine soil quality. It was verified that the methodology enables the use of this method for BTEX analysis of soil samples for passive environmental identification of gas stations.

  10. Quantitative analysis of triglyceride species of vegetable oils by high performance liquid chromatography via a flame ionization detector.

    Science.gov (United States)

    Phillips, F C; Erdahl, W L; Schmit, J A; Privett, O S

    1984-11-01

    A method for the quantitative analysis of triglyceride species composition of vegetable oils by reversed-phase high performance liquid chromatography (RP-HPLC) via a flame ionization detector (FID) is described. Triglycerides are separated into molecular species via Zorbax chemically bonded octadecylsilane (ODS) columns using gradient elution with methylene chloride in acetonitrile. Identification of species is made by matching the retention times of the peaks in the chromatogram with the order of elution of all of the species that could be present in the sample on the basis of a random distribution of the fatty acids and comparison of experimental and calculated theoretical carbon numbers (TCN). Quantitative analysis is based on a direct proportionality of peak areas. Differences in the response of individual species were small and did not dictate the use of response factors. The method is applied to cocoa butter before and after randomization, soybean oil and pure olive oil.

  11. The VLT-FLAMES Tarantula Survey XVI. The optical+NIR extinction laws in 30 Doradus and the photometric determination of the effective temperatures of OB stars

    CERN Document Server

    Apellániz, J Maíz; Barbá, R H; Gräfener, G; Bestenlehner, J M; Crowther, P A; García, M; Herrero, A; Sana, H; Simón-Díaz, S; Taylor, W D; van Loon, J Th; Vink, J S; Walborn, N R

    2014-01-01

    Context: The commonly used extinction laws of Cardelli et al. (1989) have limitations that, among other issues, hamper the determination of the effective temperatures of O and early B stars from optical+NIR photometry. Aims: We aim to develop a new family of extinction laws for 30 Doradus, check their general applicability within that region and elsewhere, and apply them to test the feasibility of using optical+NIR photometry to determine the effective temperature of OB stars. Methods: We use spectroscopy and NIR photometry from the VLT-FLAMES Tarantula Survey and optical photometry from HST/WFC3 of 30 Doradus and we analyze them with the software code CHORIZOS using different assumptions such as the family of extinction laws. Results: We derive a new family of optical+NIR extinction laws for 30 Doradus and confirm its applicability to extinguished Galactic O-type systems. We conclude that by using the new extinction laws it is possible to measure the effective temperatures of OB stars with moderate uncertain...

  12. Differentiation of Lard from Other Edible Fats by Gas Chromatography-Flame Ionisation Detector (GC-FID and Chemometrics

    Directory of Open Access Journals (Sweden)

    Omar Dahimi

    2014-01-01

    Full Text Available The presence of lard or its derivatives in any food products is a serious religious issue among Muslim and Judaism. Thus, the objective of this study was to investigate the use of gas chromatography with flame ionisation detector (GC-FID coupled with chemometrics techniques such as Principle Components Analysis (PCA and K-mean cluster analysis to differentiate lard adulteration at very low concentrations in beef and chicken fats. The measurements were made from the pure lard, beef tallow, pure chicken fat; and beef tallow (BT, chicken fat (CF adulterated with different concentrations of lard (0.5%-10% in BT and CF. The data were first scaled into standardisation before PCA is performed to each of the scaled data using Unscrambler software. The Scores plots and loadings plots of each scaled data were compared and studied. The results showed that lard contains higher fatty acid (FA of C18: 2cis and low C16:0 FA, but oppositely for beef tallow and chicken fat. The amount of C4:0, C14:0, and C18:0 FAs are approximately similar for all fats. Others FAs are small in amount and nearly similar for both. Additionally, PCA was able to significantly identify lard, beef fat, chicken fat and the mixtures of lard and beef tallow, lard and chicken fat, even at lower concentration level (0.5 % lard-99.5% beef tallow / chicken fat (w/w. K-mean cluster only able to classify the pure lard (LD, pure chicken fat (CF and pure beef tallow (BT

  13. Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection.

    Science.gov (United States)

    Xiong, Jun; Hu, Bin

    2008-06-06

    Two methods based on hollow fiber liquid phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME), have been critically compared for the analysis of organosulfur pesticides (OSPs) in environmental and beverage samples by gas chromatography-flame photometric detection (GC-FPD). Experimental conditions including extraction solvent, solvent volume, extraction time, temperature and ionic strength have been investigated for both HF-LPME and DLLME. Under the optimal conditions, the limits of detection for the six target OSPs (malathion, chlorpyrifos, buprofezin, triazophos, carbosulfan and pyridaben) obtained by HF-LPME-GC-FPD and DLLME-GC-FPD were ranged from 1.16 microg/L to 48.48 microg/L and 0.21 microg/L to 3.05 microg/L, respectively. The relative standard deviations (RSDs, n=5) were in the range of 3.4-8.0% and 8.5-13.7%with the enrichment factors (EFs) of 27-530 and 176-946 folds for HF-LPME-GC-FPD and DLLME-GC-FPD, respectively. Both methods were found to be simple, fast, efficient, and inexpensive. Compared with HF-LPME, the advantages of DLLME technique were less extraction time, suitable for batches of samples pretreatment simultaneously, a higher extraction capacity when analyzing simple samples such as water samples. While for the analysis of complicated matrix samples such as soil and beverage samples, HF-LPME was demonstrated to be more robust and more suitable. Both methods were applied to the analysis of six OSPs in different waters, soil and beverage samples, and no target OSPs was found in these samples. For analysis of the spiked samples, the recovery of 81.7-114.4% with RSDs of 0.6-9.6% were obtained for HF-LPME, and the recovery of 78.5-117.2% with RSDs of 0.6-11.9% were obtained for DLLME.

  14. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in whole water by continuous liquid-liquid extraction and capillary-column gas chromatography with flame photometric detection

    Science.gov (United States)

    Jha, Virendra K.; Wydoski, Duane S.

    2003-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 organophosphate pesticide degradates from natural-water samples is described. Compounds are extracted from water samples with methylene chloride using a continuous liquid-liquid extractor for 6 hours. The solvent is evaporated using heat and a flow of nitrogen to a volume of 1 milliliter and solvent exchanged to ethyl acetate. Extracted compounds are determined by capillary-column gas chromatography with flame photometric detection. Single-operator derived method detection limits in three water-matrix samples ranged from 0.003 to 0.009 microgram per liter. Method performance was validated by spiking all compounds in three different matrices at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of most method compounds spiked in surface-water samples ranged from 54 to 137 percent and those in ground-water samples ranged from 40 to 109 percent for all pesticides. Recoveries in reagent-water samples ranged from 42 to 104 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had variable recovery in all three matrices ranging from 27 to 79 percent. As a result, the detected concentration of O-ethyl-O-methyl-S-propylphosphorothioate in samples is reported in this method with an estimated remark code. Based on the performance issue, two more compounds, disulfoton and ethion monoxon, also will be reported in this method with an estimated remark code. Estimated-value compounds, which are ?E-coded? in the data base, do not meet the performance criteria for unqualified quantification, but are retained in the method because the compounds are important owing to high use or potential environmental effects and because analytical performance has been consistent and reproducible.

  15. Quantitative determination of wine highly volatile sulfur compounds by using automated headspace solid-phase microextraction and gas chromatography-pulsed flame photometric detection. Critical study and optimization of a new procedure.

    Science.gov (United States)

    López, Ricardo; Lapeña, Ana Cristina; Cacho, Juan; Ferreira, Vicente

    2007-03-02

    The quantitative determination of wine volatile sulfur compounds by automated headspace solid-phase microextraction (HS-SPME) with a carboxen-polydimethylsiloxane (CAR-PDMS) fiber and subsequent gas chromatography-pulsed flame photometric detection (GC-PFPD) has been evaluated. The direct extraction of the sulfur compounds in 5 ml of wine has been found to suffer from matrix effects and short linear ranges, problems which could not be solved by the use of different internal standards or by multiple headspace SPME. These problems were attributed to saturation of the fiber and to competitive effects between analytes, internal standards and other wine volatiles. Another problem was the oxidation of analytes during the procedure. The reduction in sample volume by a factor 50 (0.1 ml diluted with water or brine) brought about a reduction in the amount of sulfur compounds taken in the fiber by a factor just 3.3. Consequently, a new procedure has been proposed. In a sealed vial containing 4.9 ml of saturated NaCl brine, the air is thoroughly displaced with nitrogen, and the wine (0.1 ml) and the internal standards (0.02 ml) are further introduced with a syringe through the vial septum. This sample is extracted at 35 degrees C for 20 min. This procedure makes a satisfactory determination possible of hydrogen sulfide, methanethiol, ethanethiol, dimethyl sulfide, diethyl sulfide and dimethyl disulfide. The linear dynamic ranges cover the normal ranges of occurrence of these analytes in wine with typical r2 between 0.9823 and 0.9980. Reproducibility in real samples ranges from 10 to 20% and repeatability is better than 10% in most cases. The method accuracy is satisfactory, with errors below 20% for hydrogen sulfide and mostly below 10% for the other compounds. The proposed method has been applied to the analysis of 34 Spanish wines.

  16. Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of Asian palm civet coffee (Kopi Luwak).

    Science.gov (United States)

    Jumhawan, Udi; Putri, Sastia Prama; Yusianto; Bamba, Takeshi; Fukusaki, Eiichiro

    2015-11-01

    Development of authenticity screening for Asian palm civet coffee, the world-renowned priciest coffee, was previously reported using metabolite profiling through gas chromatography/mass spectrometry (GC/MS). However, a major drawback of this approach is the high cost of the instrument and maintenance. Therefore, an alternative method is needed for quality and authenticity evaluation of civet coffee. A rapid, reliable and cost-effective analysis employing a universal detector, GC coupled with flame ionization detector (FID), and metabolite fingerprinting has been established for discrimination analysis of 37 commercial and non-commercial coffee beans extracts. gas chromatography/flame ionization detector (GC/FID) provided higher sensitivity over a similar range of detected compounds than GC/MS. In combination with multivariate analysis, GC/FID could successfully reproduce quality prediction from GC/MS for differentiation of commercial civet coffee, regular coffee and coffee blend with 50 wt % civet coffee content without prior metabolite details. Our study demonstrated that GC/FID-based metabolite fingerprinting can be effectively actualized as an alternative method for coffee authenticity screening in industries.

  17. Monitoring of monooctanoyl phosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    Thin-layer chromatography with flame ionization detector (TLC-FID) method was used for monitoring the production of structured phospholipids (ML-type: L-long chain fatty acids; M-medium chain fatty acids) by enzyme-catalyzed acidolysis between soybean phosphatidylcholine (PC) and caprylic acid....... It was found that the structured PC fractionated into 2-3 distinct bands on both plate thin layer chromatography (TLC) and Chromarod TLC. These 3 bands represented PC of LL-type, ML-type and MM-type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme dosage...

  18. Quantification of Triacylglycerol Molecular Species in Edible Fats and Oils by Gas Chromatography-Flame Ionization Detector Using Correction Factors.

    Science.gov (United States)

    Yoshinaga, Kazuaki; Obi, Junji; Nagai, Toshiharu; Iioka, Hiroyuki; Yoshida, Akihiko; Beppu, Fumiaki; Gotoh, Naohiro

    2017-03-01

    In the present study, the resolution parameters and correction factors (CFs) of triacylglycerol (TAG) standards were estimated by gas chromatography-flame ionization detector (GC-FID) to achieve the precise quantification of the TAG composition in edible fats and oils. Forty seven TAG standards comprising capric acid, lauric acid, myristic acid, pentadecanoic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, and/or linolenic acid were analyzed, and the CFs of these TAGs were obtained against tripentadecanoyl glycerol as the internal standard. The capillary column was Ultra ALLOY(+)-65 (30 m × 0.25 mm i.d., 0.10 μm thickness) and the column temperature was programmed to rise from 250°C to 360°C at 4°C/min and then hold for 25 min. The limit of detection (LOD) and limit of quantification (LOQ) values of the TAG standards were > 0.10 mg and > 0.32 mg per 100 mg fat and oil, respectively, except for LnLnLn, and the LOD and LOQ values of LnLnLn were 0.55 mg and 1.84 mg per 100 mg fat and oil, respectively. The CFs of TAG standards decreased with increasing total acyl carbon number and degree of desaturation of TAG molecules. Also, there were no remarkable differences in the CFs between TAG positional isomers such as 1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol, 1-stearoyl-2-palmitoyl-3-oleoyl-rac-glycerol, and 1-palmitoyl-2-stearoyl-3-oleoyl-rac-glycerol, which cannot be separated by GC-FID. Furthermore, this method was able to predict the CFs of heterogeneous (AAB- and ABC-type) TAGs from the CFs of homogenous (AAA-, BBB-, and CCC-type) TAGs. In addition, the TAG composition in cocoa butter, palm oil, and canola oil was determined using CFs, and the results were found to be in good agreement with those reported in the literature. Therefore, the GC-FID method using CFs can be successfully used for the quantification of TAG molecular species in natural fats and oils.

  19. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  20. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  1. Ageing of a space-based CCD: photometric performance development of the low Earth orbiting detectors of the CoRoT mission

    CERN Document Server

    Asensio-Torres, Ruben

    2016-01-01

    In this thesis we have analysed the time evolution of the photometric precision achieved by the space-based exoplanet-hunting mission CoRoT during its flight phase (2007-2012). This study of the noise level of CoRoT light curves has been based on a previous paper by Aigrain et al. 2009, where they found a gradual degradation of the photometric performance over time for the first 14 months of data. Here we have analysed the anti-center runs IRa01 (2007), LRa01 (2008), LRa03 (2010) and LRa06 (2012). The two first runs were studied by Aigrain as well, so we are able to compare our results. The two last runs allowed us to evaluate the trend of photometric degradation over more than 5 years. We obtain low observational point-to-point noise, although a factor 3 bigger than the source photon noise. We find effects showing the ageing of the CoRoT CCDs. On 2h time scales we notice a receding photometric performance, with a noise increase of about 2.1 times across the four analysed runs, corresponding to a 15% increase...

  2. Spatio-temporal variation of organotin compounds in seawater and sediments from Cape Town harbour, South Africa using gas chromatography with flame photometric detector (GC-FPD

    Directory of Open Access Journals (Sweden)

    Hussein K. Okoro

    2016-01-01

    Full Text Available The spatio-temporal variation of two organotin compounds (OTCs of tributyltin and triphenyltin in the seawater and sediment of Cape Town harbour was investigated. The organotin compounds were determined by GC-FPD following prior extraction with 0.02% tropolone. The concentration of OTCs varies for locations in Cape Town harbour. The concentration of OTCs in seawater ranges from 0.067 ± 0.01 to 111.290 ± 32.20 × 10−3 μg/l for TBT while that of TPT ranges between between ND ± SD and 23008.0 ± 0.03 × 10−3 μg/l respectively between locations. Relatively higher concentrations were measured for TBT and TPT during summer than in winter and spring seasons (p ⩽ 0.05. Apparently, the observed high or low values recorded for TBT in Cape Town harbour could be the result of an increase or decrease in the traffic of ships and boats. TBT was detected in all the sediment samples analysed except for location 9 (entrance to harbour, the two control sites (which are located far away from the inner harbour where boating activities are taking place, and location 12 (Robinson dry dock 2 where the samples were not at all found. For the control sites, antifouling compounds TBT and TPT were not detected throughout except for TBT that was found in control A during summer. The seasonal variation of OTC abundance in sediment was also investigated. The results indicated that TBT is present throughout the seasons but is predominantly present in this order summer > winter > spring.

  3. Monitoring of monooctanoyl phosphatidylcholine synthesis by enzymatic acidolysis between soybean phosphatidylcholine and caprylic acid by thin-layer chromatography with a flame ionization detector

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    Thin-layer chromatography with flame ionization detector (TLC-FID) method was used for monitoring the production of structured phospholipids (ML-type: L-long chain fatty acids; M-medium chain fatty acids) by enzyme-catalyzed acidolysis between soybean phosphatidylcholine (PC) and caprylic acid....... It was found that the structured PC fractionated into 2-3 distinct bands on both plate thin layer chromatography (TLC) and Chromarod TLC. These 3 bands represented PC of LL-type, ML-type and MM-type, respectively. The TLC-FID method was applied in the present study to examine the influence of enzyme dosage...... migration is taking place during reaction since the lipase is claimed to be 1,3-specific. The TLC-FID method offers a simple and cheap technique for elucidation of product and by-product formation during enzyme-catalyzed reactions for production of phospholipids containing mixtures of long- and medium...

  4. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    Science.gov (United States)

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  5. Separation and determination of benzene, toluene, ethylbenzene and o-xylene compounds in water using directly suspended droplet microextraction coupled with gas chromatography-flame ionization detector.

    Science.gov (United States)

    Sarafraz-Yazdi, A; Amiri, A H; Es'haghi, Z

    2009-05-15

    The directly suspended droplet microextraction (DSDME) technique coupled with the capillary gas chromatography-flame ionization detector (GC-FID) was used to determine BTEX compounds in aqueous samples. The effective parameters such as organic solvent, extraction time, microdroplet volume, salt effect and stirring speed were optimized. The performance of the proposed technique was evaluated for the determination of BTEX compounds in natural water samples. Under the optimal conditions the enrichment factors ranged from 142.68 to 312.13, linear range; 0.01-20 microg mL(-1), limits of detection; 0.8-7 ng mL(-1) for most analytes. Relative standard deviations for 0.2 microg mL(-1) of BTEX in water were in the range 1.81-2.47% (n=5). The relative recoveries of BTEX from surface water at spiking level of 0.2 microg mL(-1) were in the range of 89.87-98.62%.

  6. Metabolic fingerprinting of hard and semi-hard natural cheeses using gas chromatography with flame ionization detector for practical sensory prediction modeling.

    Science.gov (United States)

    Ochi, Hiroshi; Bamba, Takeshi; Naito, Hiroshige; Iwatsuki, Keiji; Fukusaki, Eiichiro

    2012-11-01

    Metabolic fingerprinting using gas chromatography with flame ionization detector (GC/FID) was used to generate a practical metabolomics-based tool for quality evaluation of natural cheese. Hydrophilic low molecular weight components, relating to sensory characteristics, including amino acids, fatty acids, amines, organic acids, and saccharides, were extracted and derivatized prior to the analysis. Data on 12 cheeses, six Cheddar cheeses and six Gouda cheeses, were analyzed by multivariate analysis. Prediction models for two sensory attributes relating to maturation, "Rich flavor" and "Sour flavor", were constructed with 4199 data points from GC/FID, and excellent predictability was validated. Chromatograms from GC/FID and gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) were comparable when the same column was used. Although GC/FID alone cannot identify peaks, the mutually complementary relationship between GC/FID and GC/MS does allow peak identification. Compounds contributing significantly to the sensory predictive models included lactose, succinic acid, L-lactic acid, and aspartic acid for "Rich flavor", and lactose, L-lactic acid, and succinic acid for "Sour flavor". Since similar model precision was obtained using GC/FID and GC/TOF-MS, metabolic fingerprinting using GC/FID, which is a relatively inexpensive instrument compared with GC/MS, is easy to maintain and operate, and is a valid alternative when metabolomics (especially using GC/MS) is to be used in a practical setting as a novel quality evaluation tool for manufacturing processes or final products. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    Science.gov (United States)

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up

  8. The ALHAMBRA photometric system

    CERN Document Server

    Villegas, T Aparicio; Cabrera-Cano, J; Moles, M; Benitez, N; Perea, J; del Olmo, A; Fernandez-Soto, A; Cristobal-Hornillos, D; Husillos, C; Aguerri, J A L; Broadhurst, T; Castander, F J; Cepa, J; Cervino, M; Delgado, R M Gonzalez; Infante, L; Marquez, I; Masegosa, J; Martinez, V J; Prada, F; Quintana, J M; Sanchez, S F

    2010-01-01

    This paper presents the characterization of the optical range of the ALHAMBRA photometric system, a 20 contiguous, equal-width, medium-band CCD system with wavelength coverage from 3500A to 9700A. The photometric description of the system is done by presenting the full response curve as a product of the filters, CCD and atmospheric transmission curves, and using some first and second order moments of this response function. We also introduce the set of standard stars that defines the system, formed by 31 classic spectrophotometric standard stars which have been used in the calibration of other known photometric systems, and 288 stars, flux calibrated homogeneously, from the Next Generation Spectral Library (NGSL). Based on the NGSL, we determine the transformation equations between Sloan Digital Sky Survey (SDSS) ugriz photometry and the ALHAMBRA photometric system, in order to establish some relations between both systems. Finally we develop and discuss a strategy to calculate the photometric zero points of ...

  9. Determination of 5alpha-androst-16-en-3alpha-ol in truffle fermentation broth by solid-phase extraction coupled with gas chromatography-flame ionization detector/electron impact mass spectrometry.

    Science.gov (United States)

    Wang, Guan; Li, Yuan-Yuan; Li, Dong-Sheng; Tang, Ya-Jie

    2008-07-15

    A novel method using solid-phase extraction coupled with gas chromatography and flame ionization detector (FID)/electron impact mass spectrometry (EIMS) was developed for the determination of 5alpha-androst-16-en-3alpha-ol (androstenol), a steroidal compound belonging to the group of musk odorous 16-androstenes, in truffle fermentation broth. Comparison studies between FID and EIMS indicated two detectors gave similar quantitative results. The highest androstenol concentration of 123.5 ng/mL was detected in Tuber indicum fermentation broth, while no androstenol was found in Tuber aestivum fermentation broth. For the first time, this work confirmed the existence of androstenol in the truffle fermentation broth, which suggested truffle fermentation is a promising alternative for androstenol production on a large scale.

  10. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  11. Uncertain Photometric Redshifts

    CERN Document Server

    Polsterer, Kai Lars; Gieseke, Fabian

    2016-01-01

    Photometric redshifts play an important role as a measure of distance for various cosmological topics. Spectroscopic redshifts are only available for a very limited number of objects but can be used for creating statistical models. A broad variety of photometric catalogues provide uncertain low resolution spectral information for galaxies and quasars that can be used to infer a redshift. Many different techniques have been developed to produce those redshift estimates with increasing precision. Instead of providing a point estimate only, astronomers start to generate probabilistic density functions (PDFs) which should provide a characterisation of the uncertainties of the estimation. In this work we present two simple approaches on how to generate those PDFs. We use the example of generating the photometric redshift PDFs of quasars from SDSS(DR7) to validate our approaches and to compare them with point estimates. We do not aim for presenting a new best performing method, but we choose an intuitive approach t...

  12. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  13. Determination of methyl tert-butyl ether (MTBE) in Chinese fuels by gas chromatography/mass spectrometry and gas chromatography/flame ionization detector

    Institute of Scientific and Technical Information of China (English)

    LIU Jie-min; CHENG Wei; WEN Mei-juan; JIANG Gui-bin

    2004-01-01

    A method was developed to determine the concentration of methyl tert-butyl ether(MTBE) in gasoline,diesel and heating oil by gas chromatography(GC) with mass spectrometry(GC-MS) or flame ionization detection (FID). The diluted gasoline was directly injected into the GC, and the complete separation of MTBE from co-eluting hydrocarbons was not required. GC/MS or GC/FID method can be used to analyze MTBE in different concentration range and have good consistency.

  14. 脉冲火焰光度检测器分析水中有机磷农药%Analysis of Trace Organophosphorous Pesticide in Water Using Pulsed Flame Photometric Detector

    Institute of Scientific and Technical Information of China (English)

    汤亚飞; 王焰新; 蔡鹤生; Broder J.Merkel

    2005-01-01

    介绍一种新的有机磷农药GC分析检测器PFPD,考查了积分时间、柱流速、进样溶剂对GC/PFPD测定的影响.结果表明,在注入量0.04~2 000 ng范围内,注入量与GC响应间呈良好的线性关系,最低检出量为甲基对硫磷和对硫磷0.01 ng,乐果和敌敌畏0.02 ng.GC/PFPD结合固相萃取技术可满足环境水样中微量有机磷农药残留的分析要求.

  15. Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography-flame ionisation detector equipped with highly polar ionic liquid capillary column.

    Science.gov (United States)

    Yoshinaga, Kazuaki; Asanuma, Masaharu; Mizobe, Hoyo; Kojima, Koichi; Nagai, Toshiharu; Beppu, Fumiaki; Gotoh, Naohiro

    2014-10-01

    In this study, the characterisation of all cis- and trans-octadecenoic acid (C18:1) positional isomers in partially hydrogenated vegetable oil (PHVO) and milk fat, which contain several cis- and trans-C18:1 positional isomers, was achieved by gas chromatography-flame ionisation detector equipped with a highly polar ionic liquid capillary column (SLB-IL111). Prior to analysis, the cis- and trans-C18:1 fractions in PHVO and milk fat were separated using a silver-ion cartridge. The resolution of all cis-C18:1 positional isomers was successfully accomplished at the optimal isothermal column temperature of 120 °C. Similarly, the positional isomers of trans-C18:1, except for trans-6-C18:1 and trans-7-C18:1, were separated at 120 °C. The resolution of trans-6-C18:1 and trans-7-C18:1 isomers was made possible by increasing the column temperature to 160 °C. This analytical method is suitable for determining the cis- and trans-C18:1 positional isomers in edible fats and oils.

  16. Simultaneous quantification of amphetamines, caffeine and ketamine in urine by hollow fiber liquid phase microextraction combined with gas chromatography-flame ionization detector.

    Science.gov (United States)

    Xiong, Jun; Chen, Jie; He, Man; Hu, Bin

    2010-08-15

    A method of hollow fiber (HF) liquid phase microextraction (LPME) combined with gas chromatography (GC)-flame ionization detection (FID) was developed for the simultaneous quantification of trace amphetamine (AP), methamphetamine (MA), methylenedioxyamphetamine (MDA), methylenedioxymethamphetamine (MDMA), caffeine and ketamine (KT) in drug abuser urine samples. The factors affecting on the extraction of six target analytes by HF-LPME were investigated and optimized, and the subsequent analytical performance evaluation and real sample analysis were performed by the extraction of six target analytes in sample solution containing 30% NaCl (pH 12.5) for 20 min with extraction temperature of 30 degrees C and stirring rate of 1000 rpm. Under such optimal conditions, the limits of detection (LODs, S/N=3) for the six target analytes were ranged from 8 microg/L (AP, KT) to 82 microg/L (MDA), with the enrichment factors (EFs) of 5-227 folds, and the relative standard deviations (RSDs, n=7) were in the range of 6.9-14.1%. The correlation coefficients of the calibration for the six target analytes over the dynamic linear range were higher than 0.9958. The application feasibility of HF-LPME-GC-FID in illegal drug monitoring was demonstrated by analyzing drug abuser urine samples, and the recoveries of target drugs for the spiked sample ranging from 75.2% to 119.3% indicated an excellent anti-interference capability of the developed method. The proposed method is simple, effective, sensitive and low-cost, and provides a much more accurate and sensitive detection platform over the conventional analytical techniques (such as immunological assay) for drug abuse analysis.

  17. A Photometric Search for Extrasolar Planets

    Science.gov (United States)

    Howell, S. B.; Everett, M.; Davis, D. R.; Weidenschilling, S. J.; McGruder, C. H., III; Gelderman, R.

    2000-10-01

    We describe a new program for the photometric detection of extrasolar planets using the 1.3 m telescope on Kitt Peak, which will be operated by a consortium of universities headed by Western Kentucky Univ. and including South Carolina State Univ., Planetary Science Institute, Boston Univ., and UC-Berkeley (SSL). This approach will complement the existing, highly successful, spectroscopic searches. The theory of photometric transit detection has been discussed by a number of authors (e.g. Borucki & Summers 1984; Howell & Merline 1995; Howell et al. 1996) and shown to be well within the capabilities of both photomultiplier and CCD observations. The first photometric transit detection was recently accomplished for the spectroscopically discovered planet orbiting HD209458 (Henry et al. 2000). The detection of extrasolar planet transits requires high photometric precision rather than accuracy. The necessary photometric precision to detect Jupiter-, Neptune-, and Earth-sized planets in orbit around F-M dwarfs is 1%, 0.1% and 0.00001%, respectively. The required precision to observe transits by Jupiter-sized extrasolar planets is easily obtained with modern CCD detectors and the differential ensemble photometric techniques pioneered by Howell et al. (1988). The use of such a technique for ultra-high precision photometry has been described in numerous papers (Charbonneau et al. 2000, Howell 2000, plus many others). Everett and Howell recently used the Kitt Peak NOAO 0.9 m telescope with the wide-field MOSAIC camera to search for extrasolar planet transits. During this run, they achieved a photometric precision of 0.024% for this dataset. With the 1.3 m telescope, we expect to reach a photometric precision of ~ 0.01% (10-4 mag). Our consortium has recently begun to refurbish and automate the 1.3 m telescope, which will be known as the Remote-Controlled Telescope (RCT). The primary instrument will be a CCD camera with a SITe 2048 x 2048 CCD having pixel well depths of 363

  18. Photometric stereo endoscopy

    Science.gov (United States)

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.

    2013-01-01

    Abstract. While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging. PMID:23864015

  19. Photometric redshifts for the NGVS

    Science.gov (United States)

    Raichoor, A.; Mei, S.; Erben, T.; Hildebrandt, H.; Huertas-Company, M.; Ilbert, O.; Licitra, R.; Ball, N. M.; Boissier, S.; Boselli, A.; Chen, Y.-T.; Côté, P.; Cuillandre, J.-C.; Duc, P. A.; Durrell, P. R.; Ferrarese, L.; Guhathakurta, P.; Gwyn, S. D. J.; Kavelaars, J. J.; Lancon, A.; Liu, C.; MacArthur, L. A.; Muller, M.; Muñoz, R. P.; Peng, E. W.; Puzia, T. H.; Sawicki, M.; Toloba, E.; Van Waerbeke, L.; Woods, D.; Zhang, H.

    2014-12-01

    We present the photometric redshift catalog for the Next Generation Virgo Cluster Survey (NGVS), a 104 deg^2 optical imaging survey centered on the Virgo cluster in the u^*, g, r ,i, z bandpasses at point source depth of 25-26 ABmag. It already is the new optical reference survey for the study of the Virgo cluster, and will be also used for multiple ancillary programs. To obtain photometric redshifts, we perform accurate photometry, through the PSF-homogenization of our data. We then estimate the photometric redshifts using Le Phare and BPZ codes, adding a new prior extended down to i_{AB}=12.5 mag. We assess the accuracy of our photometric redshifts as a function of magnitude and redshift using ˜80,000 spectroscopic redshifts from public surveys. For i_{AB} outliers.

  20. Determination of phthalate esters in drinking water and edible vegetable oil samples by headspace solid phase microextraction using graphene/polyvinylchloride nanocomposite coated fiber coupled to gas chromatography-flame ionization detector.

    Science.gov (United States)

    Amanzadeh, Hatam; Yamini, Yadollah; Moradi, Morteza; Asl, Yousef Abdossalmi

    2016-09-23

    In the current study, a graphene/polyvinylchloride nanocomposite was successfully coated on a stainless steel substrate by a simple dip coating process and used as a novel headspace solid phase microextraction (HS-SPME) fiber for the extraction of phthalate esters (PEs) from drinking water and edible vegetable oil samples. The prepared SPME fibers exhibited high extractability for PEs (due to the dominant role of π-π stacking interactions and hydrophobic effects) yielding good sensitivity and precision when followed by a gas chromatograph with a flame ionization detector (GC-FID). The optimization strategy of the extraction process was carried out using the response surface method based on a central composite design. The developed method gave a low limit of detection (0.06-0.08μgL(-1)) and good linearity (0.2-100μgL(-1)) for the determination of the PEs under the optimized conditions (extraction temperature, 70±1°C; extraction time, 35min; salt concentration, 30% w/v; stirring rate, 900rpm; desorption temperature, 230°C; and desorption time, 4min) whereas the repeatability and fiber-to-fiber reproducibility were in the range 6.1-7.8% and 8.9-10.2%, respectively. Finally, the proposed method was successfully applied to the analysis of PEs in drinking water and edible oil samples with good recoveries (87-112%) and satisfactory precisions (RSDs<8.3%), indicating the absence of matrix effects in the proposed HS-SPME method.

  1. Development of a Micro-flame Ionization Detector for Portable Gas Chromatography%微小型氢火焰离子化检测器及在色谱中的应用

    Institute of Scientific and Technical Information of China (English)

    王建伟; 彭虹; 段春凤; 关亚风

    2011-01-01

    A micro-flame ionization detector (μ-FID) was developed. Differing from the traditional FID, air was introduced from the side of the upper part of the μ-FID body, flowing downwards into the burning chamber along a narrow round gap between the collection electrode and the inner wall of the detector body. When the coaxial flow of air reached the bottom of the chamber, it turned 180 °and flowed out through the hollow collector. The jet tip was located along the axis of the chamber and the collector, where the air flow was extremely stable, yielding extremely low noise level. A much higher polarization voltage was then applied to enhance ionization efficiency. Several important parameters were optimized, including the material and inner diameter of the jet tip, the length of collector, the distance between jet tip and collector, polarization voltage and gas flow rate. Under the optimized condition, the signal-to-noise ratios improved over one order of magnitude when polarization voltage increased from 150 V to 800 V. The limit of detection of the μ-FID was 1× 10-12 g/s, with a linear response of five orders of magnitude. Compared with traditional FID, the μ-FID only needs two kinds of gases (hydrogen and air) and gas consumption decreases 70%. The detector is small in volume,simple in structure, sensitive and easy to construct, suggesting that it is an excellent detector for portable GC. The μ-FID was also applied to analyze five phenolic compounds in real water samples.%构建了一种微小型氢火焰离子化检测器(μ-FID).与传统FID不同,助燃空气从收集极上部侧面导入,沿收集极与检测器壳体之间的缝隙向下流动,以环状气流沿壁流入燃烧室,流向反转后从中空的收集极内流出.火焰喷口位于燃烧腔的正中心轴线上,该区域助燃气的流动非常稳定,因此噪音电平非常低.采用更高的极化电压以提高离子化效率.对喷口材料及其内径、收集极

  2. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  3. Calibrating Photometric Redshifts of Luminous Red Galaxies

    CERN Document Server

    Padmanabhan, N; Schlegel, D J; Bridges, T J; Brinkmann, J; Cannon, R; Connolly, A J; Croom, S M; Csabai, I; Drinkwater, M; Eisenstein, D J; Hewett, P C; Loveday, J; Nichol, R C; Pimbblet, K A; De Propris, R; Schneider, D P; Scranton, R; Seljak, U; Shanks, T; Szapudi, I; Szalay, A S; Wake, D; Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan; Cannon, Russell; Connolly, Andrew J.; Croom, Scott M.; Csabai, Istvan; Drinkwater, Michael; Eisenstein, Daniel J.; Hewett, Paul C.; Loveday, Jon; Nichol, Robert C.; Pimbblet, Kevin A.; Propris, Roberto De; Schneider, Donald P.; Scranton, Ryan; Seljak, Uros; Shanks, Tom; Szapudi, Istvan; Szalay, Alexander S.; Wake, David

    2004-01-01

    We discuss the construction of a photometric redshift catalogue of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue -- (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, (iii) and estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS-2dF spectroscopic surveys, we find that the photometric redshift accuracy is $\\sigma \\sim 0.03$ for redshifts less than 0.55 and worsens at higher redshift ($\\sim 0.06$). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves, and photometric zeropoints. We also parametrize the photometric redshift error distribution with a sum of Gaussians, and use this model to deconvolve the errors from the measured photometric redshift distribution to est...

  4. Candle flames in microgravity

    Science.gov (United States)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  5. Photometric Study of Selected Asteroids

    Science.gov (United States)

    Shevchenko, Vasilij G.; Velichko, Feodor P.; Checha, Vitaly A.; Krugly, Yurij N.

    2014-07-01

    We performed photometric observations for eleven asteroids. New rotation periods were determined for five asteroids: 2812 Scaltriti (7.596 h), 4716 Urey (6.2 h), 7446 Hadrianus (3.402 h), (26657) 2000 SX293 (2.8 - 3.8 h), and (54063) 2000 GC136 (5.154 h).

  6. A solid phase microextraction coating based on ionic liquid sol-gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector.

    Science.gov (United States)

    Sarafraz-Yazdi, Ali; Vatani, Hossein

    2013-07-26

    Ionic liquid mediated sol-gel sorbents for head-space solid phase microextraction (HS-SPME) were developed for the extraction of benzene, toluene, ethylbenzene and o-xylene (BTEX) compounds from water samples in ultra-trace levels. The analytes were subsequently analyzed with gas chromatography coupled to flame ionization detector (GC-FID). Three different coating fibers were prepared including: poly(dimethylsiloxane) (PDMS), coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a higher temperature than decomposition temperature of ionic liquid (PDMS-IL-HT) and coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a lower temperature than decomposition temperature of ionic liquid (PDMS-IL-LT). Prepared fibers demonstrate many advantages such as high thermal and chemical stabilities due to the chemical bonding of the coatings with the silanol groups on the fused-silica surface fiber. These fibers have shown long life time up to 180 extractions. The scanning electron micrographs of the fibers surfaces revealed that addition of ionic liquid into the sol solution during the sol-gel process increases the fiber coating thickness, affects the form of fiber structure and also leaves high pores in the fiber surface that cause high surface area and therefore increases sample capacity of the fibers. The important parameters that affect the extraction efficiency are desorption temperature and time, sample volume, extraction temperature, extraction time, stirring speed and salt effect. Therefore these factors were investigated and optimized. Under optimal conditions, the dynamic linear range with PDMS-IL-HT, PDMS and PDMS-IL-LT fibers were 0.3-200,000; 50-200,000 and 170-150,000pgmL(-1) and the detection limits (S/N=3) were 0.1-2 and 15-200 and 50-500pgmL(-1), and limit of quantifications (S/N=10) were 0.3-8 and 50-700 and 170-1800, respectively. The relative

  7. Flame Holder System

    Science.gov (United States)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  8. Gaseous photomultipliers with solid photocathodes for the detection of sparks, flames and dangerous gases

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.; Francke, T.; Lund-Jensen, B.; Peskov, V. E-mail: vladimir.peskov@cern.ch

    2003-06-01

    In many applications, it is necessary to detect sparks or flames in daylight conditions or in illuminated areas. Most flames emit strongly in the ultraviolet spectrum (180-280 nm), and this property can be used for reliable identification of flames. We have developed new spark and flame detectors based on gaseous photomultipliers with CsI, CuI or CsTe photocathodes. A modified version of the detector can also detect smoke and dangerous vapors. These detectors are able to perform complex monitoring and detection functions. Some of their advantages are: low cost, high sensitivity, large output signal and operation under battery power. Gaseous photomultipliers can be position sensitive and, if necessary, be used in combination with various optical systems, for example for monitoring flames from space.

  9. Photometric study of IC 2156

    CERN Document Server

    Tadross, A L

    2015-01-01

    The optical UBVRI photometric analysis has been established using SLOAN DIGITAL SKY SURVEY (SDSS database) in order to estimate the astrophysical parameters of poorly studied open star cluster IC 2156. The results of the present study are compared with a previous one of ours, which relied on the 2MASS JHK infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine the geometrical structure; limited radius, core and tidal radii, the distances from the Sun, from the Galactic plane and from the Galactic center. Also, the main photometric parameters; age, distance modulus, color excesses, membership, total mass, luminosity, mass functions and relaxation time; have been estimated.

  10. Overconfidence in Photometric Redshift Estimation

    CERN Document Server

    Wittman, David; Tobin, Ryan

    2016-01-01

    We describe a new test of photometric redshift performance given a spectroscopic redshift sample. This test complements the traditional comparison of redshift {\\it differences} by testing whether the probability density functions $p(z)$ have the correct {\\it width}. We test two photometric redshift codes, BPZ and EAZY, on each of two data sets and find that BPZ is consistently overconfident (the $p(z)$ are too narrow) while EAZY produces approximately the correct level of confidence. We show that this is because EAZY models the uncertainty in its spectral energy distribution templates, and that post-hoc smoothing of the BPZ $p(z)$ provides a reasonable substitute for detailed modeling of template uncertainties. Either remedy still leaves a small surplus of galaxies with spectroscopic redshift very far from the peaks. Thus, better modeling of low-probability tails will be needed for high-precision work such as dark energy constraints with the Large Synoptic Survey Telescope and other large surveys.

  11. 微波辅助萃取-气相色谱法同时测定纺织品中6种禁用有机磷阻燃剂%Simultaneous determination of six banned organophosphorous flame retardants in textiles by gas chromatography combined with microwave-assisted extraction

    Institute of Scientific and Technical Information of China (English)

    王成云; 谢堂堂; 肖来龙; 张伟亚; 靳保辉; 刘彩明; 李丽霞

    2011-01-01

    An effective method was established for the simultaneous determination of six kinds of banned organophosphorous flame retardants in textiles. Organophosphorous flame retardants in textiles were first microwave-assisted extracted using acetone as the extraction solvent, and then were analyzed by gas chromatography coupled with flame photometric detector ( FPD). The detection limits of six analytes were all lower than 3. 0μg/L. The spiked mean recoveries varied from 81.5 % to 96. 7 % with the relative standard deviations of 3. 3 % to 6. 6 %. The mehtod developed was simple, rapid and sensitive. The proposed method was successfully applied to the determination of organophosphorous flame retardants in commercially available textiles and the results showed that banned organophospohrous flame retardants of high content existed in some commercial flame retardant textiles.%以丙酮为萃取溶剂,采用微波辅助萃取技术对纺织品中的禁用有机磷阻燃剂进行萃取,萃取液采用气相色谱-火焰光度检测器( GC-FPD)测定,从而建立了一种微波辅助萃取/GC-PFD分析方法,同时对纺织品中6种禁用有机磷阻燃剂进行了快速测定.检出限均低于3.0 μg/L,加标回收率为81.5% ~96.7%,相对标准偏差为3.3%~6.6%.应用该方法对市售的阻燃纺织品中禁用有机磷阻燃剂含量进行了测定,结果发现部分阻燃纺织品中检出高含量的禁用有机磷阻燃剂.

  12. Hi-tech Flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Modern science plays a crucial role in lighting the Olympic flame on the world’s highest mountain when the world saw live telecasts of the Olympic flame burning onthe top of Mount Qomolangma(Mount Everest) at 9:17 on the morning of May 8, few realized the years of work and high level of technology that had

  13. Photometric Variability in Earthshine Observations

    OpenAIRE

    Langford, Sally V.; Wyithe, J. Stuart B.; Turner, Edwin L.

    2009-01-01

    The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23 % per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from th...

  14. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  15. Photometric Characteristics of Lunar Terrains

    Science.gov (United States)

    Sato, Hiroyuki; Hapke, Bruce W.; Denevi, Brett W.; Robinson, Mark

    2016-10-01

    The photometric properties of the lunar depend on albedo, surface roughness, porosity, and the internal/external structure of particles. Hapke parameter maps derived using a bidirectional reflectance model [Hapke, 2012] from Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images demonstrated the spatial and spectral variation of the photometric properties of the Moon [Sato et al., 2014]. Using the same methodology, here we present the photometric characteristics of typical lunar terrains, which were not systematically analyzed in the previous study.We selected five representative terrain types: mare, highland, swirls, and two Copernican (fresh) crater ejecta (one mare and one highlands example). As for the datasets, we used ~39 months of WAC repeated observations, and for each image pixel, we computed latitude, longitude, incidence, emission, and phase angles using the WAC GLD100 stereo DTM [Scholten et al., 2012]. To obtain similar phase and incidence angle ranges, all sampling sites are near the equator and in the vicinity of Reiner Gamma. Three free Hapke parameters (single scattering albedo: w, HG2 phase function parameter: c, and angular width of SHOE: hs) were then calculated for the seven bands (321-689 nm). The remaining parameters were fixed by simplifying the model [Sato et al., 2014].The highlands, highland ejecta, and swirl (Reiner Gamma) showed clearly higher w than the mare and mare ejecta. The derived c values were lower (less backscattering) for the swirl and higher (more backscattering) for the highlands (and ejecta) relative to the other sites. Forward scattering materials such as unconsolidated transparent crystalline materials might be relatively enriched in the swirl. In the highlands, anorthositic agglutinates with dense internal scattering could be responsible for the strong backscattering. The mare and mare ejecta showed continuously decreasing c from UV to visible wavelengths. This might be caused by the FeO-rich pyroxene

  16. Optimal multihump filter for photometric redshifts

    OpenAIRE

    Budavari, Tamas; Szalay, Alexander S.; Csabai, Istvan; Connolly, Andrew J.; Tsvetanov, Zlatan

    2001-01-01

    We propose a novel type filter for multicolor imaging to improve on the photometric redshift estimation of galaxies. An extra filter - specific to a certain photometric system - may be utilized with high efficiency. We present a case study of the Hubble Space Telescope's Advanced Camera for Surveys and show that one extra exposure could cut down the mean square error on photometric redshifts by 34% over the z

  17. Establishment of the NIST flashing-light photometric unit

    Science.gov (United States)

    Ohno, Yoshihiro; Zong, Yuqin

    1997-09-01

    There is a need for accurate measurement of flashing lights for the proper maintenance of aircraft anticollision lights. A large variation in the measured intensities of anticollision lights has been a problem, and thus, NIST has undertaken the task to establish flashing-light photometric standards to provide calibration services in this area. A flashing-light photometric unit [lux second, (lx (DOT) s)] has been realized based on the NIST detector-based candela, using four standard photometers equipped with current integrators. Two different approaches have been taken to calibrate these standard photometers: one based on electrical calibration of the current integrator, and the other based on electronic pulsing of a steady-state photometric standard. The units realized using these two independent methods agreed to within 0.2%. The relative expanded uncertainty (k equals 2) of the standard photometers, in the measurement of the white xenon flash, is estimated to be 0.6%. The standard photometers are characterized for temporal response, linearity, and spectral responsivity, to be used for measurement of xenon flash sources of various waveforms and colors. Calibration services have been established at NIST for flashing-light photometers with white and red anticollision lights.

  18. Sloan Digital Sky Survey Photometric Calibration Revisited

    Science.gov (United States)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  19. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  20. Igniting the Paralympic Flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Deaf-mute Jiang Xintian lights a small cauldron in the hands of wheelchairbound fencer Jin Jing at the Paralympic Flame Lighting Ceremony in Beijing’s symbolic Temple of Heaven on August 28. For nine days until September 6, when the 13th Paralympics opens in Beijing, a total of 850 torchbearers would relay the Paralympic flame along two routes through 11 Chinese provinces,

  1. Cosmology with photometric redshift surveys

    CERN Document Server

    Blake, C; Blake, Chris; Bridle, Sarah

    2004-01-01

    We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform two complementary types of analysis: (1) We quantify the statistical confidence and accuracy with which such surveys will be able to detect and measure characteristic features in the clustering power spectrum such as the acoustic oscillations and the turnover, in a model-independent fashion. For example, we show that a 10000 sq deg imaging survey with depth r = 22.5 and photometric redshift accuracy dz/(1+z) = 0.03 will detect the acoustic oscillations with 99.9% confidence, measuring the associated cosmological scale with 2% precision. Such a survey will also detect the turnover with 95% confidence, determining the corresponding scale with 20% accuracy. (2) By assuming a Lambda-CDM cosmology we calculate the confidence with which a non-zero baryon fraction can be deduced from such future surveys. After margi...

  2. Application of PZT thin film technology for angular resolved flame detection; Anwendung von pyroelektrischen PZT-Duennschichten fuer die winkelaufloesende Flammendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Norbert; Ebermann, Martin; Hoppe, Silke [InfraTec GmbH, Dresden (Germany)

    2012-07-01

    Hot gases emit a specific spectral pattern in the infrared range at about 4.3 {mu}m, which can be sensed with an infrared (IR) flame detector. State-of-the-art detectors are designed as single-point detectors to detect a flame inside a certain field of view where the position of the flame cannot be resolved. The novel 3 x 3 array sensor delivers additional spatial information about the observed scene for an angular location of the flame with a resolution of about 5 . (orig.)

  3. Realization of photometric base unit of candela traceable to cryogenic radiometer at UME

    Science.gov (United States)

    Samedov, F.; Bazkır, Ö.

    2005-06-01

    At National Metrology Institute of Turkey (UME, Ulusal Metroloji Enstitüsü), luminous intensity unit of candela was realized using detector-based approach and photometric scale was re-established depending on this new realization. Candela was measured on photometric bench using interferometric distance measurement system and filter-radiometer traceable to UME primary level electrical-substitution cryogenic radiometer. Thermally stabilized filter radiometer, which has been designed for spectral irradiance measurements, is consists of trap detector, filter housing and precision aperture. Different measurement techniques were used to fully characterize each parameter of filter-radiometer; like effective aperture area, spectral transmittance of V(λ) filter and responsivity of trap detector.

  4. A high-resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Letarte, B.; Hill, V.; Tolstoy, E.; Jablonka, P.; Shetrone, M.; Venn, K. A.; Spite, M.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Primas, F.; François, P.; Kaufer, A.; Szeifert, T.; Arimoto, N.; Sadakane, K.

    2010-01-01

    For the first time we show the detailed, late-stage, chemical evolution history of a small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high-resolution (R ~ 20 000, λ = 5340-5620; 6120-6701) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrically selected, r

  5. A high-resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Letarte, B.; Hill, V.; Tolstoy, E.; Jablonka, P.; Shetrone, M.; Venn, K. A.; Spite, M.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Primas, F.; François, P.; Kaufer, A.; Szeifert, T.; Arimoto, N.; Sadakane, K.

    2010-01-01

    For the first time we show the detailed, late-stage, chemical evolution history of a small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high-resolution (R similar to 20 000, lambda = 5340-5620; 6120-6701) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrical

  6. CuBANz: Photometric redshift estimator

    Science.gov (United States)

    Samui, Saumyadip; Pal, Shanoli Samui

    2016-09-01

    CuBANz is a photometric redshift estimator code for high redshift galaxies that uses the back propagation neural network along with clustering of the training set, making it very efficient. The training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. u-g, g-r etc.) rather than the apparent magnitudes at various photometric bands, as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. The clustering method enables accurate determination of the redshifts. CuBANz considers uncertainty in the photometric measurements as well as uncertainty in the neural network training. The code is written in C.

  7. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  8. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, Ard; Verleur, Ria

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  9. Flame Stretch Analysis in Diffusion Flames with Inert Gas

    Institute of Scientific and Technical Information of China (English)

    Ay Su; Ying-Chieh Liu

    2001-01-01

    Experimental investigations of impinging flame with fuel mixed with non-reaction gas were conducted.According to the observations of combustion test and temperature measurement, the non-reaction gas might dilute the local concentration of fuel in the diffusion process. The shape of the flame was symmetrical due to the flame stretch force. Results show that the conical flame might be de-structured by the addition of inert gas in pure methane fuel. The impinging flame became shorter and bluer as nitrogen was added to the fuel. The conditions of N2/CH4 equal to 1/2 and 1/1 show a wider plane in the YZ plane. The effect of inert gas overcomes the flame stretch and destroys the symmetrical column flame as well as the cold flow. Nitrogen addition also enhances the diffusion rate and combustion efficiency.

  10. Propagation Limits of High Pressure Cool Flames

    Science.gov (United States)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  11. Photometrical Observations "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Karpenko, G. F.; Sukhov, K. P.; Kudak, V. I.

    Photometrical observations GSS "SBIRS GEO 2" in B,V,R filters were carried near the equinoxes 2014-2015. Used velocity electrophotometer based on the FEU-79 in the pulse-counting mode. Received more than 25 light curves. From the known dimensions are defined; effective reflecting area - Sγλ, the spectral reflectance index - γλ, periods of light variation. Color-indices showed that in the reflected light flux from the GSS prevails "red" component. In the light curves are periodically dips and specular flash. This shows that GSS orbit is not in a static position specified triaxial orientation as in dynamic motion. Assumed following dynamics of the satellite "SBIRS GEO 2" in orbit. Helical scanning the Earth's surface visible infrared sensors satellite occurs with a period P1 = 15.66 sec. and swinging of the GSS about the direction of the motion vector of the satellite in an orbit with P2 = 62.64 sec., from the northern to the southern pole. Thus, during the period of swinging GSS going on 2 scan the visible part of the northern and southern hemispheres. In some dates observations dynamics work satellite in orbit changed.

  12. Photometric determinants of perceived transparency.

    Science.gov (United States)

    Singh, Manish; Anderson, Barton L

    2006-03-01

    Photometric constraints for the perception of transparency were investigated using stereoscopic textured displays. A contrast discontinuity divided the textured displays into two lateral halves, with one (reference) half fixed. Observers adjusted the luminance range within the other (test) half in order to perform two tasks: (i) indicate the highest luminance range for which the test side is perceived to be transparent, and (ii) indicate the lowest luminance range for which the test side is seen as being in plain view. Settings were obtained for multiple values of test mean luminance, in order to map out the perceptual locus of transition between transparency and non-transparency. The results revealed a systematic violation of Metelli's magnitude constraint in predicting the percept of transparency. Observer settings were approximated instead by a constraint based on perceived contrast (which matched Michelson contrast for the textures used). The results also revealed large asymmetries between darkening and lightening transparency. When the test was darker than the reference, settings were highly consistent across observers and closely followed the Michelson-contrast prediction. When the test was lighter, however, there was greater variability across observers, with two observers exhibiting shifts toward Metelli's magnitude constraint. Moreover, each observer's setting reliability was significantly worse for lightening transparency than darkening transparency. These results suggest that (polarity-preserving) darkening serves as an additional cue to perceptual transparency.

  13. Photometric Metallicities in Bootes I

    CERN Document Server

    Hughes, J; Dotter, A; Geisler, D

    2014-01-01

    We present new Stromgren and Washington data sets for the Bootes I dwarf galaxy, and combine them with the available SDSS photometry. The goal of this project is to refine a ground-based, practical, accurate method to determine age and metallicity for individual stars in Bootes I that can be selected in an unbiased imaging survey, without having to take spectra. We produce photometric metallicities from Stromgren and Washington photometry, for stellar systems with a range of $-1.0>[Fe/H]>-3.5$. To avoid the decrease in sensitivity of the Stromgren metallicity index on the lower red-giant branch, we replace the Stromgren v-filter with the broader Washington C-filter; we find that $CT_1by$ is the most successful filter combination, for individual stars with $[Fe/H]<-2.0$, to maintain ~0.2 dex $[Fe/H]$-resolution over the whole red-giant branch. We demonstrate that we can break the isochrones' age-metallicity degeneracy with these filters, using stars with log g=2.5-3.0, which have less than a 2% change in th...

  14. "Magic Eraser" Flame Tests

    Science.gov (United States)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  15. The Design and Evaluation of Horizontal Pipe Mini-Flame Atomization and Ionization Synchronous Detector in GC/AAS%色谱/原子吸收联用系统中卧管式微火焰原子化离子化同步检测器的研究与应用

    Institute of Scientific and Technical Information of China (English)

    阎正; 孙建民; 乔玉卿; 孙汉文

    2001-01-01

    介绍了一种新型的卧管式微火焰原子化离子化同步检测器,对其结构、工作原理及性能进行了研究。将其应用到色谱/原子吸收联用系统中,实现了有机金属化合物以及与其共存的有机化合物的同步检测。有机金属化合物(二乙基汞)的原子吸收信号检出限为2.5×10-11g/s;有机化合物(苯)的离子化信号检出限为1.0×10-11g/s。%Gas chromatography/atomic absorption spectroscopy(GC/AAS) is agood me thod for the species analysis of organometallic compounds. But the traditi o nal atomizers are not very suitable for this technology and all of them response only to one kind of signal - the conc e ntration of the metallic atoms of the ground state. They can not give any info r mation about the organic group of organometallic compounds and organic compound s which coexist with the former. For GC/AAS we want to design and manufacture a n ew kind of detector which is much more sensitive and has a much smaller dead vol ume and will sensitively and synchronousl y response to the atomization signal of organometallic compound and ionization s ignal of organic compound. The authors have noticed that the atomization of o r ganometallic compound and ionization of organic compound have been existing in t he same hydrogen flame. The question is how to gain and exchange and output the two signals which are completely different in characters. For this purpose we de signed and manufactured a new type of horizontal pipe mini-flame atomization an d ionization synchronous detector. The key part is a T type glass tube (80 mm× 13 mm×10 mm i.d.) w hich covers horizontally on the jet of the mini-flame atomizer and a long p i pe stainless steel collector (70 mm×9.5 mm o.d.×9 mm i.d.) is tightly ins erted in the tube. The light beam of the hollow cathode lamp passes through the hydroge n flame along the axial center of the glass tube and the ground state metallic at o ms in the flame diffuses to

  16. Novel Methods for Predicting Photometric Redshifts

    Data.gov (United States)

    National Aeronautics and Space Administration — We calculate photometric redshifts from the Sloan Digital Sky Survey Main Galaxy Sample, The Galaxy Evolution Explorer All Sky Survey, and The Two Micron All Sky...

  17. Photometric calibrations for 21st century science

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen; /Fermilab; Kaiser, Mary Elizabeth; /Johns Hopkins U.; Deustua, Susana E.; /Baltimore, Space Telescope Sci.; Smith, J.Allyn; /Austin Peay State U.; Adelman, Saul; /Citadel Military Coll.; Allam, Sahar S.; /Fermilab; Baptista, Brian; /Indiana U.; Bohlin, Ralph C.; /Baltimore, Space Telescope Sci.; Clem, James L.; /Louisiana State U.; Conley, Alex; /Colorado U.; Edelstein, Jerry; /UC, Berkeley, Space Sci. Dept. /NOAO, Tucson

    2009-02-01

    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. In principle, photometric calibration is a solved problem - laboratory reference standards such as blackbody furnaces achieve precisions well in excess of those needed for astrophysics. In practice, however, transferring the calibration from these laboratory standards to astronomical objects of interest is far from trivial - the transfer must reach outside the atmosphere, extend over 4{pi} steradians of sky, cover a wide range of wavelengths, and span an enormous dynamic range in intensity. Virtually all spectrophotometric observations today are calibrated against one or more stellar reference sources, such as Vega, which are themselves tied back to laboratory standards in a variety of ways. This system's accuracy is not uniform. Selected regions of the electromagnetic spectrum are calibrated extremely well, but discontinuities of a few percent still exist, e.g., between the optical and infrared. Independently, model stellar atmospheres are used to calibrate the spectra of selected white dwarf stars, e.g. the HST system, but the ultimate accuracy of this system should be verified against laboratory sources. Our traditional standard star systems, while sufficient until now, need to be improved and extended in order to serve future astrophysics experiments. This white paper calls for a program to improve upon and expand the current networks of

  18. Flame Retardant Epoxy Resins

    Science.gov (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  19. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  20. Asteroids (21) Lutetia: global and spatially resolved photometric properties

    Science.gov (United States)

    Faury, G.; Lamy, P.; Vernazza, P.; Jorda, L.; Toth, I.

    2011-10-01

    Asteroids (21) Lutetia has recently been visited by the Rosetta spacecraft of the European Space Agency and imaged by its Rosetta narrow (NAC) and wide (WAC) angle cameras. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appears as either slighlty defocused images offset from the primary images or large round or elliptical halos. The appearance, the location and the radiance of each individual ghost depends upon the optical configuration (selected filters) and on the image itself so that no general model can be proposed. Consequently, a case-by-case approach must be adopted which requires a long and tedious work where each ghost is individually parametrized according to its specific geometry (defocused offset image or halo) and iteratively fitted to the original image. The procedure has been successfully applied to all NAC and WAC images and works extremely well with residuals and sometime artifacts at insignificant levels. Both NAC and WAC have further been recalibrated using the most recent observations of stellar calibrators VEGA and the solar analog 16 Cyg B allowing to correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters). We will present results on the global photometric properties of (21) Lutetia, albedo, phase function and spectral reflectivity as well as spatially resolved properties based on a novel method developed in the space of the facets representing the three-dimensional shape of the body. This method successfully implemented in the cases of the nucleus of comet 9P/Tempel 2 and of asteroid (2867) Steins (Spjuth et al. 2011) has the advantage of automatically tracking the same

  1. The effect of photometric and geometric context on photometric and geometric lightness effects.

    Science.gov (United States)

    Lee, Thomas Y; Brainard, David H

    2014-01-24

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.

  2. Dynamics of unconfined spherical flames

    CERN Document Server

    Leblanc, Louis; Dennis, Kadeem; Zhe,; Liang,; Radulescu, Matei I

    2012-01-01

    Using the soap bubble technique, we visualize the dynamics of unconfined hydrogen-air flames using high speed schlieren video. We show that for sufficiently weak mixtures, i.e., low flame speeds, buoyancy effects become important. Flame balls of a critical dimension begin to rise. The experiments are found in very good agreement with the scaling laws proposed by Zingale and Dursi. We report the results in a fluid dynamics video.

  3. Photometric redshifts for the CFHTLS-Wide

    CERN Document Server

    Brimioulle, Fabrice; Seitz, Stella; Bender, Ralf; Snigula, Jan

    2008-01-01

    We want to derive bias free, accurate photometric redshifts for those fields of the CFHTLS-Wide data which are covered in the u*, g', r', i' and z' filters and are public on January 2008. These are 37 square degrees in the W1, W3 and W4 fields with photometric data for a total of 2.597.239 galaxies. We use the photometric redshift code PHOTO-z of Bender et al. (2001). We compare our redshifts for the W1, W3 and W4 fields to about 7500 spectroscopic redshifts from the VVDS therein. For galaxies with 17.5 <= i' AB <= 22.5 the accuracies and outlier rates become sigma=0.033, eta~2 % for W1, sigma=0.037, eta~2% for W3 and sigma=0.035, eta~2.5 % outliers for W4 fields. For the total galaxy sample with about 9000 spectroscopic redshifts from VVDS, DEEP2 or SDSS we obtain a sigma=0.04 and eta~5.7% for the PHOTO-z redshifts. We consider the photometric redshifts of Erben et al. (2008) which were obtained with exactly the same photometric catalog using the BPZ-redshift code and compare them with our computed red...

  4. Photometric Variability of the Be Star Population

    CERN Document Server

    Labadie-Bartz, Jonathan; McSwain, M Virginia; Bjorkman, J E; Bjorkman, K S; Lund, Michael B; Rodriguez, Joseph E; Stassun, Keivan G; Stevens, Daniel J; Gaudi, B Scott; James, David J; Kuhn, Rudolf B; Siverd, Robert J; Beatty, Thomas G

    2016-01-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, baseline of up to ten years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the Northern and Southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fracti...

  5. Sonneberg Sky Patrol Archive - Photometric Analysis

    CERN Document Server

    Spasovic, Milan; Lange, Christian; Jovanovic, Dragan; Schrimpf, Andreas

    2016-01-01

    The Sonneberg Sky Patrol archive so far has not yet been analyzed systematically. In this paper we present first steps towards an automated photometric analysis aiming at the search for variable stars and transient phenomena like novae. Early works on the sky patrol plates showed that photometric accuracy can be enhanced with fitting algorithms. The procedure used was a manually supported click-and-fit-routine, not suitable for automatic analysis of vast amount of photographic plates. We will present our progress on deconvolution of overlapping sources on the plates and compare photometric analysis using different methods. Our goal is to get light curves of sufficient quality from sky patrol plates, which can be classified with machine learning algorithms. The development of an automated scheme for finding transient events is in progress and the first results are very promising.

  6. Defining Photometric Peculiar Type Ia Supernovae

    CERN Document Server

    Gonzalez-Gaitan, S; Pignata, G; Forster, F; Gutierrez, C P; Bufano, F; Galbany, L; Folatelli, G; Phillips, M M; Hamuy, M; Anderson, J P; de Jaeger, T

    2014-01-01

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e. objects with light-curve characteristics such as later primary maxima and absence of secondary peak in redder filters. This method is capable of selecting out this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have similar photometric characteristics as 91bg-like SNe Ia, namely the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large up-coming wide field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  7. Defining photometric peculiar type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  8. Photometric Calibrations for the SIRTF Infrared Spectrograph

    CERN Document Server

    Morris, P W; Herter, T L; Armus, L; Houck, J; Sloan, G

    2002-01-01

    The SIRTF InfraRed Spectrograph (IRS) is faced with many of the same calibration challenges that were experienced in the ISO SWS calibration program, owing to similar wavelength coverage and overlapping spectral resolutions of the two instruments. Although the IRS is up to ~300 times more sensitive and without moving parts, imposing unique calibration challenges on their own, an overlap in photometric sensitivities of the high-resolution modules with the SWS grating sections allows lessons, resources, and certain techniques from the SWS calibration programs to be exploited. We explain where these apply in an overview of the IRS photometric calibration planning.

  9. Solid Propellant Flame Spectroscopy

    Science.gov (United States)

    1988-08-01

    400 jm to reach the maximum flame temperature, a distance that can be reduced by replacing the HTPB binder with a polyester or CMDB binder. The...the dark zone for propellants similar to HIX2 is 2-2.5 mm at 1.8 MPa (18 atm, 265 psia) (Ref. 22,187). In contrast, the dark zone for HMX CMDB ...propellants eliminates the dark zone is not surprising, since TMETN is a nitrate ester as was the double-base matrix of Kubota’s HMX CMDB propellant. A

  10. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  11. Simultaneous determination of organotin compounds in textiles by gas chromatography-flame photometry following liquid/liquid partitioning with tert-butyl ethyl ether after reflux-extraction.

    Science.gov (United States)

    Hamasaki, Tetsuo

    2013-10-15

    A rapid and relatively clean method for determining six organotin compounds (OtC) in textile goods with a gas chromatograph equipped with a conventional flame photometric detector (GC-FPD) has been developed. After the reflux-extraction to use methanol containing 1% (v/v) of hydrochloric acid, five hydrophobic OtC (e.g. tributyltin: TBT) and slightly less hydrophobic dibutyltin (DBT) could be drawn out through partitioning between the methanolic buffer solution and tert-butyl ethyl ether instead of hazardous dichloromethane, of which usage is provided by the official-methods notified in Japan, and following the ethylation procedure to use sodium tetraethylborate, the OtC were determined with the GC-FPD. The recoveries of DBT, TBT, tetrabutyltin, triphenyltin, dioctyltin, and trioctyltin from textile products (cloth diaper, socks, and undershirt) were 60-77, 89-98, 86-94, 71-78, 85-109, and 70-79% respectively, and their coefficients of variation were 2.5-16.5%. Calibration curves for OtC were linear (0.01-0.20 μg as Sn mL(-1)), and the correlation coefficients were 0.9922-1.0000. Their detection limits were estimated to be 2.7-9.7 n gas Sn g(-1). These data suggested that this method would be applicable to their simultaneous determination. Five retailed textile goods were analyzed by this proposed method, and 0.013-0.65 µg as Sn g(-1) of OtC (e.g. DBT) were determined in three. Moreover, a possibility that various OtC including non-targeted species in textile would be specifically detected by applying the studying speciation-technique of controlling signal intensity-flame fuel gas pressures of the GC-FPD was found.

  12. Photometric Redshifts of Galaxies in COSMOS

    CERN Document Server

    Mobasher, B; Scoville, N Z; Dahlen, T; Salvato, M; Aussel, H; Thompson, D J; Feldmann, R; Tasca, L; Lefèvre, O; Lilly, S; Carollo, C M; Kartaltepe, J S; McCracken, H; Mould, J; Renzini, A; Sanders, D B; Shopbell, P L; Taniguchi, Y; Ajiki, M; Shioya, Y; Contini, T; Giavalisco, M; Ilbert, O; Iovino, A; Le Brun, V; Mainieri, V; Mignoli, M; Scodeggio, M

    2006-01-01

    We measure photometric redshifts and spectral types for galaxies in the COSMOS survey. We use template fitting technique combined with luminosity function priors and with the option to simultaneously estimate dust extinction (i.e. E(B-V)) for each galaxy.Our estimated redshifts are accurate to i<25 and z~1.2. Using simulations with sampling and noise characteristics similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios and the number of bands used. From the simulations we find that the ratio of derived 95% confidence interval in the redshift probability distribution to the estimated photometric redshift (D95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. We compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z < 1.2 from zCOSMOS. Considering different scenarios, depending on us...

  13. System for clinical photometric stereo endoscopy

    Science.gov (United States)

    Durr, Nicholas J.; González, Germán.; Lim, Daryl; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.; Parot, Vicente

    2014-02-01

    Photometric stereo endoscopy is a technique that captures information about the high-spatial-frequency topography of the field of view simultaneously with a conventional color image. Here we describe a system that will enable photometric stereo endoscopy to be clinically evaluated in the large intestine of human patients. The clinical photometric stereo endoscopy system consists of a commercial gastroscope, a commercial video processor, an image capturing and processing unit, custom synchronization electronics, white light LEDs, a set of four fibers with diffusing tips, and an alignment cap. The custom pieces that come into contact with the patient are composed of biocompatible materials that can be sterilized before use. The components can then be assembled in the endoscopy suite before use. The resulting endoscope has the same outer diameter as a conventional colonoscope (14 mm), plugs into a commercial video processor, captures topography and color images at 15 Hz, and displays the conventional color image to the gastroenterologist in real-time. We show that this system can capture a color and topographical video in a tubular colon phantom, demonstrating robustness to complex geometries and motion. The reported system is suitable for in vivo evaluation of photometric stereo endoscopy in the human large intestine.

  14. On the realistic validation of photometric redshifts

    Science.gov (United States)

    Beck, R.; Lin, C.-A.; Ishida, E. E. O.; Gieseke, F.; de Souza, R. S.; Costa-Duarte, M. V.; Hattab, M. W.; Krone-Martins, A.

    2017-07-01

    Two of the main problems encountered in the development and accurate validation of photometric redshift (photo-z) techniques are the lack of spectroscopic coverage in the feature space (e.g. colours and magnitudes) and the mismatch between the photometric error distributions associated with the spectroscopic and photometric samples. Although these issues are well known, there is currently no standard benchmark allowing a quantitative analysis of their impact on the final photo-z estimation. In this work, we present two galaxy catalogues, Teddy and Happy, built to enable a more demanding and realistic test of photo-z methods. Using photometry from the Sloan Digital Sky Survey and spectroscopy from a collection of sources, we constructed data sets that mimic the biases between the underlying probability distribution of the real spectroscopic and photometric sample. We demonstrate the potential of these catalogues by submitting them to the scrutiny of different photo-z methods, including machine learning (ML) and template fitting approaches. Beyond the expected bad results from most ML algorithms for cases with missing coverage in the feature space, we were able to recognize the superiority of global models in the same situation and the general failure across all types of methods when incomplete coverage is convoluted with the presence of photometric errors - a data situation which photo-z methods were not trained to deal with up to now and which must be addressed by future large-scale surveys. Our catalogues represent the first controlled environment allowing a straightforward implementation of such tests. The data are publicly available within the COINtoolbox (https://github.com/COINtoolbox/photoz_catalogues).

  15. Subwoofer and nanotube butterfly acoustic flame extinction

    Science.gov (United States)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed

    2017-07-01

    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed. Laminar flame control and extinction were achieved using a thermoacoustic ‘butterfly’ projector based on freestanding carbon nanotube sheets.

  16. Recent Advances in Flame Tomographyt

    Institute of Scientific and Technical Information of China (English)

    闫勇; 邱天; 卢钢; M.M.Hossain; G.Gilabert; 刘石

    2012-01-01

    To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed combustion.Flame characteristics under such combustion conditions are expected to be different from those in normal air fired combustion processes.Quantified flame characteristics such as temperature distribution,oscillation frequency,and ignition volume play an important part in the optimized design and operation of the environmentally friendly power generation systems.However,it is challenging to obtain such flame characteristics particularly through a three-dimensional and non-intrusive means.Various tomography methods have been proposed to visualize and characterize flames,including passive optical tomography,laser based tomography,and electrical tomography.This paper identifies the challenges in flame tomography and reviews existing techniques for the quantitative characterization of flames.Future trends in flame tomography for industrial applications are discussed.

  17. Turbulence in laminar premixed V-flames

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoqian(张孝谦); LEI; Yu(雷宇); WANG; Baorui(王宝瑞); WANG; Yue(王岳); WEI; Minggang(韦明罡)

    2003-01-01

    Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

  18. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  19. Measurement of tire tread in urban air by pyrolysis-gas chromatography with flame photometric detection

    Science.gov (United States)

    Kim, Man Goo; Yagawa, Kazuo; Inoue, Hidenari; Lee, Yong Keun; Shirai, Tsuneo

    The concentration of tire tread in suspended particulate matter (SPM) was measured by a new method based on benzothiazole generated by pyrolysis of vulcanization accelerator. The variation of production yields of benzothiazole was examined for 24 kinds of tire treads currently used in Japan Pyrolysis was carried out at 670°C using a Curie-point pyrolyzer. The vertical profile and diurnal pattern of tire tread were investigated with 4-h samples continuously collected for 24 h at a heavy traffic density area in Tokyo. The diurnal percentage of tire tread in SPM at the sampling site of 86 m height showed two peaks following the trend of traffic density throughout the day. The concentration of tire tread collected at the 86 m level was about 30% of that at the 0 m level during the daytime. The seasonal variation of concentration of tire tread in SPM was measured at the sampling site located 20 km SW of Tokyo. The weight percentage of tire tread in SPM varied between 1.3 and 3% in winter with NE-NW wind and varied between 0.5 and 1.5% in spring with SE-SW wind.

  20. Electrical Aspects of Impinging Flames

    Science.gov (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  1. Standard Practice for Calculation of Photometric Transmittance and Reflectance of Materials to Solar Radiation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1988-01-01

    1.1 This practice describes the calculation of luminous (photometric) transmittance and reflectance of materials from spectral radiant transmittance and reflectance data obtained from Test Method E 903. 1.2 Determination of luminous transmittance by this practice is preferred over measurement of photometric transmittance by methods using the sun as a source and a photometer as detector except for transmitting sheet materials that are inhomogeneous, patterned, or corrugated. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Characteristics of soot formation and burnout in turbulent recirculating flames

    Energy Technology Data Exchange (ETDEWEB)

    Touati, A.

    1987-01-01

    The present study represents an investigation of the effect of fuel type, fuel stream heat content, nitrogen dilution, and air jet velocity on soot formation rates and particle burnout in a highly recirculating, turbulent-type flame. Soot particle size and flux measurements have been made using an optical probe based on a large angle ratioing technique to measure the intensity of forward scattered light from individual particles at two off-axis angles. Chemical analyses of soot samples have been made using a gas chromatograph with a flame ionization detector (FID), and a morphological analysis of soot samples has been made using a scanning electron microscope (SEM). Physical probes have been used for temperature measurements and extraction of soot particles. Chemical analysis of the composition of the polycyclic aromatic hydrocarbons (PAHs) extracted from soot samples collected at the face of the burner and on a filter located downstream in the exhaust system suggests that multiple, convergent pathways, rather than one chemical mechanism, lead to the formation of high molecular weight PAHs and soot. Net soot production was found to be the result of the competition of soot particle formation and burnout. The fuel type and the fuel stream heat content appear the main parameters that determine the flame's propensity to soot. The addition of nitrogen to a fuel stream increases the difference in the net soot production among the fuel investigated. Dilution by nitrogen decreases more effectively the oxidation rate of soot particles in flames that use fuels of lower heat content.

  3. Measurement of photometric characteristics of daylighting systems

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, S.; Kaase, H. [Technical Univ., Berlin (Germany); Kischkoweit-Lopin, M. [Institut fuer Licht- und Bautechnik an der FH Koln, Cologne (Germany); Scartezzini, J. L.; Michel, L. [Ecole Poytechnuque Federale de Lausanne (Switzerland); Wienold, J.; Apian-Bennewitz, P. [Frauenhofer Institute for Solar Energy Systems, Freiburg (Germany)

    1998-09-01

    The photometric properties of daylighting systems determine the quality of the daylighting in the interior of a building, as well as the possible energy savings by the daylight responsive artificial lighting control systems. Photometric characteristics of daylighting systems and the principles of their measurements in laboratory facilities are described. Characteristics that depend on light incidence and observation of radiation can be measured using integrating sphere photometers or goniophotometers. Luminous transmittance measurements are usually carried out using integrating sphere photometers (cheaper and less time -consuming than measurements with a goniometer). Although the principles involved in the measurement are well understood, results frequently show certain deviations. The various errors that might be responsible for these deviations, whether attributable to the method, or the instrument, or the sample, are also discussed. 10 refs., 8 figs.

  4. Photometric Variability of Four Coronally Active Stars

    Indian Academy of Sciences (India)

    J. C. Pandey; K. P. Singh; R. Sagar; S. A. Drake

    2002-03-01

    We present photometric observations of four stars that are optical counterparts of soft X-ray/EUV sources, namely 1ES 0829+15.9, 1ES0920-13.6, 2RE J110159+223509 and 1ES 1737+61.2. We have discovered periodic variability in two of the stars, viz., MCC 527 (1ES 0829+15.9; Period = 0.828 ± 0.0047) and HD 81032 (1ES 0920-13.6; Period = ∼ 57.02 ± 0.560 days). HD 95559 (2RE J110159+223509) is found to show a period of 3. HD 160934 (1ES1737+61.2) also shows photometric variability but needs to be monitored further for finding its period. These stars most likely belong to the class of chromospherically active stars.

  5. Asteroid taxonomic signatures from photometric phase curves

    CERN Document Server

    Oszkiewicz, D A; Wasserman, L H; Muinonen, K; Penttilä, A; Pieniluoma, T; Trilling, D E; Thomas, C A

    2012-01-01

    We explore the correlation between an asteroid's taxonomy and photometric phase curve using the H, G12 photometric phase function, with the shape of the phase function described by the single parameter G12. We explore the usability of G12 in taxonomic classification for individual objects, asteroid families, and dynamical groups. We conclude that the mean values of G12 for the considered taxonomic complexes are statistically different, and also discuss the overall shape of the G12 distribution for each taxonomic complex. Based on the values of G12 for about half a million asteroids, we compute the probabilities of C, S, and X complex membership for each asteroid. For an individual asteroid, these probabilities are rather evenly distributed over all of the complexes, thus preventing meaningful classification. We then present and discuss the G12 distributions for asteroid families, and predict the taxonomic complex preponderance for asteroid families given the distribution of G12 in each family. For certain ast...

  6. Photometric Period of the Star PZ Mon

    Science.gov (United States)

    Antonyuk, K. A.; Bondar', N. I.; Pit', N. V.

    2017-09-01

    Results are presented from a search for periodic variations in the brightness and color indices of the active star PZ Mon based on many years of photometric data from 1992 to 2015. The photometric period derived from the entire set of observations is 34.16 days, but the period may vary by 1.5% within individual intervals. The color index V-R varies with the same period. These variations are indicative of reddening of the star with decreasing brightness. A correlation between the values exists over the entire observation interval. The variations in B-V occur over an interval of 26-28 days. A nonuniqueness in these variations shows up in a brightness-color index diagram: a reduction in the color index with decreasing brightness is observed in some epochs, which can be explained in terms of a spottedness model by the presence of cold, as well as hot, formations on the star's surface.

  7. On-line tracking of pulverized coal and biomass fuels through flame spectrum analysis

    Institute of Scientific and Technical Information of China (English)

    迟天阳; 张宏建

    2007-01-01

    This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis. A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible, near-infrared and mid-infrared spectral bands as well as a part of far-infrared band. Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame. Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt. Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig. Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.

  8. Uncertain Photometric Redshifts with Deep Learning Methods

    Science.gov (United States)

    D'Isanto, A.

    2017-06-01

    The need for accurate photometric redshifts estimation is a topic that has fundamental importance in Astronomy, due to the necessity of efficiently obtaining redshift information without the need of spectroscopic analysis. We propose a method for determining accurate multi-modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN) and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is performed.

  9. A Blind Test of Hapke's Photometric Model

    Science.gov (United States)

    Helfenstein, P.; Shepard, M. K.

    2003-01-01

    Hapke's bidirectional reflectance equation is a versatile analytical tool for predicting (i.e. forward modeling) the photometric behavior of a particulate surface from the observed optical and structural properties of its constituents. Remote sensing applications of Hapke s model, however, generally seek to predict the optical and structural properties of particulate soil constituents from the observed photometric behavior of a planetary surface (i.e. inverse-modeling). Our confidence in the latter approach can be established only if we ruthlessly test and optimize it. Here, we summarize preliminary results from a blind-test of the Hapke model using laboratory measurements obtained with the Bloomsburg University Goniometer (B.U.G.). The first author selected eleven well-characterized powder samples and measured the spectrophotometric behavior of each. A subset of twenty undisclosed examples of the photometric measurement sets were sent to the second author who fit the data using the Hapke model and attempted to interpret their optical and mechanical properties from photometry alone.

  10. Photometric defocus observations of transiting extrasolar planets

    CERN Document Server

    Hinse, Tobias C; Yoon, Jo-Na; Lee, Chung-Uk; Kim, Yong-Gi; Kim, Chun-Hwey

    2015-01-01

    We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of order sub-millimagnitude over several hours for a V $\\sim$ 10 host star typical for transiting planets detected from ground-based survey facilities. We compare our results with transit observations with the telescope operated in in-focus mode. High photometric precision is obtained due to the collection of a larger amount of photons resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by probing the same pixels on the CCD. Furthermore, a longer exposure time helps reducing the eff...

  11. Photometric redshifts in the SWIRE Survey

    CERN Document Server

    Rowan-Robinson, Michael; Oliver, Seb; Trichas, Markos; Berta, Stefano; Lonsdale, Carol; Smith, Gene; Shupe, David; Surace, Jason; Arnouts, Stephane; LeFevre, Olivier; Afonso-Luis, Alejandro; Perez-Fournon, Ismael; Hatziminaoglou, Evanthia; Polletta, Maria; Farrah, Duncan; Vaccari, Mattia

    2008-01-01

    We present the SWIRE Photometric Redshift Catalogue, 1024750 redshifts of unprecedented reliability and accuracy. Our method is based on fixed galaxy and QSO templates applied to data at 0.36-4.5 mu, and on a set of 4 infrared emission templates fitted to infrared excess data at 3.6-170 mu. The code involves two passes through the data, to try to optimize recognition of AGN dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, A_V, is allowed as a free parameter. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyze the performance of our method as a function of the number of photometric bands used in the solution and the reduced chi^2. For 7 photometric bands the rms value of (z_{phot}-z_{spec})/(1+z_{spec}) is 3.5%, and the percentage of catastrophic outliers is ~1%. We discuss the redshift distributions at 3.6 and 24 mu. In individual fields, structure in the redshift distribution corr...

  12. Photometric Repeatability of Scanned Imagery: UVIS

    Science.gov (United States)

    Shanahan, Clare E.; McCullough, Peter; Baggett, Sylvia

    2017-08-01

    We provide the preliminary results of a study on the photometric repeatability of spatial scans of bright, isolated white dwarf stars with the UVIS channel of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze straight-line scans from the first pair of identical orbits of HST program 14878 to assess if sub 0.1% repeatability can be attained with WFC3/UVIS. This study is motivated by the desire to achieve better signal-to-noise in the UVIS contamination and stability monitor, in which observations of standard stars in staring mode have been taken from the installation of WFC3 in 2009 to the present to assess temporal photometric stability. Higher signal to noise in this program would greatly benefit the sensitivity to detect contamination, and to better characterize the observed small throughput drifts over time. We find excellent repeatability between identical visits of program 14878, with sub 0.1% repeatability achieved in most filters. These! results support the initiative to transition the staring mode UVIS contamination and photometric stability monitor from staring mode images to spatial scans.

  13. Role of flame generated flow in the formation of tulip flame

    Energy Technology Data Exchange (ETDEWEB)

    Jeung, I.S.; Cho, K.K.; Jeong, K.S.

    1989-01-01

    The role of flame generated flow during the laminar 'tulip' flame formation in a long rectangular combustion vessel was examined by laser Doppler velocimeter measurement, high speed schlieren photographic flame visualization, and combustion vessel pressure measurement. Results of these investigations showed the transition of convex-shaped flame to concave-shaped tulip flame and interactions between the flame shape and flame generated flow in a confined geometry, and gave physical understanding of flow field formation of tulip flame. 15 references.

  14. DES Science Portal: Computing Photometric Redshifts

    Energy Technology Data Exchange (ETDEWEB)

    Gschwend, Julia [LIneA, Rio de Janeiro

    2016-01-01

    An important challenge facing photometric surveys for cosmological purposes, such as the Dark Energy Survey (DES), is the need to produce reliable photometric redshifts (photo-z). The choice of adequate algorithms and configurations and the maintenance of an up-to-date spectroscopic database to build training sets, for example, are challenging tasks when dealing with large amounts of data that are regularly updated and constantly growing. In this paper, we present the first of a series of tools developed by DES, provided as part of the DES Science Portal, an integrated web-based data portal developed to facilitate the scientific analysis of the data, while ensuring the reproducibility of the analysis. We present the DES Science Portal photometric redshift tools, starting from the creation of a spectroscopic sample to training the neural network photo-z codes, to the final estimation of photo-zs for a large photometric catalog. We illustrate this operation by calculating well calibrated photo-zs for a galaxy sample extracted from the DES first year (Y1A1) data. The series of processes mentioned above is run entirely within the Portal environment, which automatically produces validation metrics, and maintains the provenance between the different steps. This system allows us to fine tune the many steps involved in the process of calculating photo-zs, making sure that we do not lose the information on the configurations and inputs of the previous processes. By matching the DES Y1A1 photometry to a spectroscopic sample, we define different training sets that we use to feed the photo-z algorithms already installed at the Portal. Finally, we validate the results under several conditions, including the case of a sample limited to i<22.5 with the color properties close to the full DES Y1A1 photometric data. This way we compare the performance of multiple methods and training configurations. The infrastructure presented here is an effcient way to test several methods of

  15. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated....... The simple hydrocarbon flames are dominated by a series of hydrocarbonic ions and, to a minor extent, protonated oxo-compounds. The introduction of sulfur to the flames leads to significant changes in the ion composition, as sulfur-containing species become dominant. The ability of the technique to study...

  16. Research on flame retardation of wool fibers

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro; Ametani, Kazuo; Sawai, Takeshi (Tokyo Metropolitan Isotope Research Center (Japan))

    1990-01-01

    Flame retardant, vinyl phosphonate oligomer, was uniformly impregnated in wool fibers, and by irradiating low energy electron beam or cobalt-60 gamma ray, the flame retardation of fabrics was attempted, as the results, the following knowledges were obtained. At the rate of sticking of flame retardant lower than that in cotton fabrics, sufficient flame retarding property can be given. The flame retarding property withstands 30 times of washing. The lowering of strength due to the processing hardly arose. For the flame retardation, gamma-ray was more effective than electron beam. Since the accidents of burning clothes have occurred frequently, their flame retardation has been demanded. So far the flame retardation of cotton fabrics has been advanced, but this time the research on the flame retardation of wool fabrics was carried out by the same method. The experimental method is explained. As for the performance of the processed fabrics, the rate of sticking of the flame retardant, the efficiency of utilization, the flame retarding property, the endurance in washing and the tensile and tearing strength were examined. As the oxygen index was higher, the flame retarding property was higher, and in the case of the index being more than 27, the flame retarding property is sufficient, that is, the rate of sticking of 6% in serge and 5% in muslin. (K.I.).

  17. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  18. Photometric Redshifts for the SDSS Early Data Release

    CERN Document Server

    Csabai, I; Connolly, A J; Szalay, A S; Györy, Z; Benítez, N; Annis, J; Brinkmann, J; Eisenstein, D J; Fukugita, M; Gunn, J; Kent, S; Lupton, R; Nichol, R C; Stoughton, C; Csabai, Istvan; Budavari, Tamas; Connolly, Andrew J.; Szalay, Alexander S.; Gyory, Zsuzsanna; Benitez, Narciso; Annis, Jim; Brinkmann, Jon; Eisenstein, Daniel; Fukugita, Masataka; Gunn, Jim; Kent, Stephen; Lupton, Robert; Nichol, Robert C.; Stoughton, Chris

    2003-01-01

    The Early Data Release from the Sloan Digital Sky survey provides one of the largest multicolor photometric catalogs currently available to the astronomical community. In this paper we present the first application of photometric redshifts to the $\\sim 6$ million extended sources within these data (with 1.8 million sources having $r' < 21$). Utilizing a range of photometric redshift techniques, from empirical to template and hybrid techniques, we investigate the statistical and systematic uncertainties present within the redshift estimates for the EDR data. For $r'<21$ we find that the redshift estimates provide realistic redshift histograms with an rms uncertainty in the photometric redshift relation of 0.035 at $r'<18$ and rising to 0.1 at $r'<21$. We conclude by describing how these photometric redshifts and derived quantities, such as spectral type, restframe colors and absolute magnitudes, are stored within the SDSS database. We provide sample queries for searching on photometric redshifts an...

  19. Enhancement of turbulent flame speed of V-shaped flames in fractal-grid-generated turbulence

    NARCIS (Netherlands)

    Verbeek, A.A.; Willems, P.A.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der T.H.

    2016-01-01

    A variety of fractal grids is used to investigate how fractal-grid-generated turbulence affects the turbulent flame speed for premixed flames. The grids are placed inside a rectangular duct and a V-shaped flame is stabilized downstream of the duct, using a metal wire. This flame is characterized usi

  20. 33 CFR 154.822 - Detonation arresters, flame arresters, and flame screens.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Detonation arresters, flame arresters, and flame screens. 154.822 Section 154.822 Navigation and Navigable Waters COAST GUARD... BULK Vapor Control Systems § 154.822 Detonation arresters, flame arresters, and flame screens. (a)...

  1. Photometric monitoring of Luminous Blue Variables

    CERN Document Server

    Buemi, Carla; Leto, Paolo; Schilliro', Francesco; Trigilio, Corrado; Umana, Grazia; Bernabei, Stefano; Cutispoto, Giuseppe; Messina, Sergio

    2010-01-01

    We present some preliminary results from our program of intensive near-infrared photometric monitoring of a sample of confirmed and candidate Luminous Blue Variables (LBVs) conducted from 2008 to 2010. Clear long-term variability has been observed for Wray 17-96 and V481 Sct, with overall brightness variation greater than 1 mag in the J band. Other sources, such as LBV 1806-20 showed detectable variability with amplitudes of few tenths of a magnitude with time-scale of about 60 days.

  2. Photometric monitoring of Luminous Blue Variables

    Science.gov (United States)

    Buemi, Carla; Distefano, Elisa; Leto, Paolo; Schillirò, Francesco; Trigilio, Corrado; Umana, Grazia; Bernabei, Stefano; Cutispoto, Giuseppe; Messina, Sergio

    2011-01-01

    We present some preliminary results from our program of intensive near-infrared photometric monitoring of a sample of confirmed and candidate Luminous Blue Variables (LBVs) conducted from 2008 to 2010. Clear long-term variability has been observed for Wray 17-96 and V481 Sct, with overall brightness variation greater than 1 mag in the J band. Other sources, such as LBV 1806-20 showed detectable variability with amplitudes of few tenths of a magnitude with a time-scale of about 60 days.

  3. Photometric Solutions of Some Contact ASAS Binaries

    CERN Document Server

    Gezer, I

    2015-01-01

    We present the first light curve solution of 6 contact binary systems which are chosen from the ASAS catalog. The photometric elements and the estimated absolute parameters of all systems are obtained with the light curve analyses. We calculated the values of degree of contact for the systems. The location of the targets on the Hertzsprung-Russell diagram and the mass-radius plane is compared to the other well-known contact binaries and the evolutionary status of the systems are also discussed.

  4. Photometric solutions of some contact ASAS binaries

    Science.gov (United States)

    Gezer, İ.; Bozkurt, Z.

    2016-04-01

    We present the first light curve solution of 6 contact binary systems which are chosen from the ASAS catalog. The photometric elements and the estimated absolute parameters of all systems are obtained with the light curve analyses. We calculated the values of degree of contact for the systems. The location of the targets on the Hertzsprung-Russell diagram and the mass-radius plane is compared to the other well-known contact binaries and the evolutionary status of the systems are also discussed.

  5. Hyperspectral photometric stereo for a single capture.

    Science.gov (United States)

    Ozawa, Keisuke; Sato, Imari; Yamaguchi, Masahiro

    2017-03-01

    We present a single-capture photometric stereo method using a hyperspectral camera. A spectrally and spatially designed illumination enables a point-wise estimation of reflectance spectra and surface normals from a single hyperspectral image. The illumination works as a reflectance probe in wide spectral regions where reflectance spectra are measured, and the full spectra are estimated by interpolation. It also works as the resource for shadings in other spectral regions. The accuracy of estimation is evaluated in a simulation. Also, we prepare an experimental setup and demonstrate a surface reconstruction against a real scene.

  6. Difficult cases in photometric studies of asteroids

    Science.gov (United States)

    Marciniak, Anna; Pilcher, Frederick; Oszkiewicz, Dagmara; Bartczak, Przemysław; Santana-Ros, Toni; Kamiński, Krzysztof; Urakawa, Seitaro; Ogłoza, Waldemar; Fauvaud, Stéphane; Kankiewicz, Paweł; Kudak, Viktor; Żejmo, Michał; Nishiyama, Kota; Okumura, Shin-ichiro; Nimura, Tokuhiro; Hirsch, Roman; Konstanciak, Izabella; Tychoniec, Łukasz; Figas, Michał

    2016-06-01

    We present a photometric campaign targeted at asteroids that display both long periods of rotation and small amplitudes of brightness variations. Our aim is to debias available sample of spin and shape modelled asteroids and to correct previous wrong period determinations. Our newest findings are corrected period determinations for asteroids (279) Thule (P=23.896h ± 0.005 h), (673) Edda (P=22.340h ± 0.004 h), and (737) Arequipa (P=7.0259h ± 0.0003 h). Supporting lightcurves are presented in this paper.

  7. Asymptotic analysis of outwardly propagating spherical flames

    Institute of Scientific and Technical Information of China (English)

    Yun-Chao Wu; Zheng Chen

    2012-01-01

    Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.

  8. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  9. Photometric study of the eclipsing binary ET Psc

    Science.gov (United States)

    Özalp, G. Z.; Özkardeş, B.

    2016-03-01

    We present the photometric solution of the eclipsing binary ET Psc (GSC 00608-00490). The ASAS V-band photometric data of the system was modelled using the Wilson-Devinney method. The result shows that the eclipsing pair could be classified as A-subtype of W UMa-type binary system. The absolute dimensions of the system were also estimated based on the photometric solution.

  10. Firefighters and flame retardant activism.

    Science.gov (United States)

    Cordner, Alissa; Rodgers, Kathryn M; Brown, Phil; Morello-Frosch, Rachel

    2015-02-01

    In the past decade, exposure to flame retardant chemicals has become a pressing health concern and widely discussed topic of public safety for firefighters in the United States. Working through local, state, and national unions and independent health and advocacy organizations, firefighters have made important contributions to efforts to restrict the use of certain flame retardants. Firefighters are key members in advocacy coalitions dedicated to developing new environmental health regulations and reforming flammability standards to reflect the best available fire science. Their involvement has been motivated by substantiated health concerns and critiques of deceptive lobbying practices by the chemical industry. Drawing on observations and interviews with firefighters, fire safety experts, and other involved stakeholders, this article describes why firefighters are increasingly concerned about their exposure to flame retardant chemicals in consumer products, and analyzes their involvement in state and national environmental health coalitions.

  11. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  12. A novel solid-phase microextraction using coated fiber based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flame ionization detector.

    Science.gov (United States)

    Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Rounaghi, Gholamhossein; Hosseini, Hossein Eshtiagh

    2011-08-26

    In this study, poly(ethylene glycol) (PEG) grafted onto multi-walled carbon nanotubes (PEG-g-MWCNTs) were synthesized by the covalent functionalization of MWCNTs with hydroxyl-terminated PEG chains. For the first time, functionalized product of PEG-g-MWCNTs was used as selective stationary phase to prepare the sol-gel solid-phase microextraction (SPME) fiber in combination with gas chromatography-flame ionization detector (GC-FID) for the determination of ultra-trace levels of benzene, toluene, ethylbenzene and o-xylene (BTEX) in real water samples. The PEG-g-MWCNTs were characterized by Fourier transform infrared spectra and also thermo-gravimetric analysis, which verified that PEG chains were grafted onto the surface of the MWCNTs. The scanning electron micrographs of the fiber surface revealed a highly porous structure which greatly increases the surface area for PEG-g-MWCNTs sol-gel coating. This fiber demonstrated many inherent advantages, the main being the strong anchoring of the coating to the fused silica resulting from chemical bonding with the silanol groups on the fused-silica fiber surface. The new PEG-g-MWCNTs sol-gel fiber is simple to prepare, robust, with high thermal stability and long lifetime, up to 200 extractions. Important parameters influencing the extraction efficiency such as desorption temperature and time, extraction temperature, extraction time, stirring speed and salt effect were investigated and optimized. Under the optimal conditions, the method detection limits (S/N=3) were in the range of 0.6-3 pg mL(-1) and the limits of quantification (S/N=10) between 2 and 10 pg mL(-1). The relative standard deviations (RSDs) for one fiber (repeatability) (n=5) were obtained from 4.40 up to 5.75% and between fibers or batch to batch (n=3) (reproducibility) in the range of 4.31-6.55%. The developed method was successfully applied to real water samples while the relative recovery percentages obtained for the spiked water samples at 20 pg mL(-1

  13. Droplet and Supercritical Flame Dynamics in Propulsion

    Science.gov (United States)

    2010-03-26

    In order to study the stability of a lifted jet flame by nozzle-generated vortexes, we have developed a chemical explosive mode analysis ( CEMA ) to...runaway can consequently be distinguished. CEMA of the lifted flame shows the existence of two premixed flame fronts, which are difficult to detect

  14. Premixed flame propagation in vertical tubes

    Science.gov (United States)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  15. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant...

  16. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  17. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; Veen, van E.H.; Hanjalic, K.; Meer, van der Th.H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change f

  18. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  19. Environmental Considerations for Flame Resistant Textiles

    Science.gov (United States)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...

  20. Asteroid models from the Lowell Photometric Database

    CERN Document Server

    Durech, J; Oszkiewicz, D; Vanco, R

    2016-01-01

    We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. From the analysis of Lowell photometric data of the first 100,000 numbered asteroids, we derived 328 new ...

  1. Photometric Redshift Estimation Using Spectral Connectivity Analysis

    CERN Document Server

    Freeman, P E; Lee, A B; Richards, J W; Schafer, C M

    2009-01-01

    The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of non-linear techniques for transforming observed data (e.g., photometric colours for each galaxy, where the data lie on a complex subset of p-dimensional space) to a simpler, more natural coordinate system wherein we apply regression to make redshift predictions. As SCA relies upon eigen-decomposition, our training set size is limited to ~ 10,000 galaxies; we use the Nystrom extension to quickly estimate diffusion coordinates for objects not in the training set. We apply our method to 350,738 SDSS main sample galaxies, 29,816 SDSS luminous red galaxies, and 5,223 galaxies from DEEP2 with CFHTLS ugriz photometry. For all three datasets, we achieve prediction accuracies on ...

  2. Photometric Redshifts in the IRAC Shallow Survey

    Energy Technology Data Exchange (ETDEWEB)

    Brodwin, M; Brown, M; Ashby, M; Bian, C; Brand, K; Dey, A; Eisenhardt, P; Eisenstein, D; Gonzalez, A; Huang, J; Kochanek, C; McKenzie, E; Pahre, M; Smith, H; Soifer, B; Stanford, S; Stern, D; Elston, R

    2006-06-13

    Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of {approx} 13 {micro}Jy in the 8.5 deg{sup 2} Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural-net and template-fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of {sigma} = 0.06 (1+z) is achieved for 95% of galaxies at 0 < z < 1.5. The accuracy is {sigma} = 0.12 (1 + z) for 95% of AGN at 0 < z < 3. Redshift probability functions, central to several ongoing studies of the galaxy population, are computed for the full sample. We demonstrate that these functions accurately represent the true redshift probability density, allowing the calculation of valid confidence intervals for all objects. These probability functions have already been used to successfully identify a population of Spitzer-selected high redshift (z > 1) galaxy clusters. We present one such spectroscopically confirmed cluster at = 1.24, ISCS J1434.2+3426. Finally, we present a measurement of the 4.5 {micro}m-selected galaxy redshift distribution.

  3. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  4. Cars Spectroscopy of Propellant Flames

    Science.gov (United States)

    1983-11-01

    Harris, K. Aron, and J. Fendell "N2 and 00 Vibrational CARS and H2 Rotational CARS Spectroscopy of CHI/N20 Flames," Proceedings of the Nineteenth...JANNAF Combustion Meeting, CIIA Publication No. 366, 1982, p 123. 21. K. Aron, L. E. Harris, and J. Fendell , "N and CO Vibrational CARS and H2 Rotational...9 6 5 . p 3 8 4 . . . . . 23. J. Fendell , L. E, Harris, and K. Aron, "Theoretical Calculation of 11 CARS S-Branches for Propellant Flames

  5. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  6. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  7. Asteroid models from the Lowell photometric database

    Science.gov (United States)

    Ďurech, J.; Hanuš, J.; Oszkiewicz, D.; Vančo, R.

    2016-03-01

    Context. Information about shapes and spin states of individual asteroids is important for the study of the whole asteroid population. For asteroids from the main belt, most of the shape models available now have been reconstructed from disk-integrated photometry by the lightcurve inversion method. Aims: We want to significantly enlarge the current sample (~350) of available asteroid models. Methods: We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. Results: From the analysis of Lowell photometric data of the first 100 000 numbered asteroids, we derived 328 new models. This almost doubles the number of available models. We tested the reliability of our results by comparing models that were derived from purely Lowell data with those based on dense lightcurves, and we found that the rate of false-positive solutions is very low. We also present updated plots of the distribution of spin obliquities and pole ecliptic longitudes that confirm previous findings about a non-uniform distribution of spin axes. However, the models reconstructed from noisy sparse data are heavily biased towards more elongated bodies with high

  8. Imaging Invisible Flames Without Additives

    Science.gov (United States)

    Weiland, Karen J.

    1996-01-01

    Image intensifiers, video cameras, and image-data-processing computers used to study combustion. Possible to view and analyze methane, hydrogen, and other flames dim or invisible to human eye and difficult to image by use of conventional photographic and video cameras.

  9. Olympic Flame Burning In Athens

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>At 6:00pm March 25 (Beijing time), 2004 Athens Olympic flame was lit in Greece’s ancient sanctuary, indicating that the torch relay started.The torch relay, established at the Berlin Games in 1936, will for the first time visit all five continents

  10. The VLT FLAMES Tarantula Survey

    NARCIS (Netherlands)

    Evans, C.; Taylor, W.; Sana, H.; Hénault-Brunet, V.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.; Bonanos, A.; Bressert, E.; Brott, I.; Campbell, M.; Cantiello, M.; Carraro, G.; Clark, S.; Costa, E.; Crowther, P.; de Koter, A.; de Mink, S.; Doran, E.; Dufton, P.; Dunstall, P.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I.; Izzard, R.; Köhler, K.; Langer, N.; Lennon, D.; Maíz Apellániz, J.; Markova, N.; Najarro, P.; Puls, J.; Ramirez, O.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Smartt, S.; Stroud, V.; van Loon, J.; Vink, J.S.; Walborn, N.

    2011-01-01

    We introduce the VLT FLAMES Tarantula Survey, an ESO Large Programme from which we have obtained optical spectroscopy of over 800 massive stars in the spectacular 30 Doradus region of the Large Magellanic Cloud. A key feature is the use of multi-epoch observations to provide strong constraints on

  11. Flame monitoring enhances burner management

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Bailey, R.; Fuller, T.; Daw, S.; Finney, C.; Stallings, J. [Babcock & Wilcox Research Center (USA)

    2003-02-01

    A new burner monitoring and diagnostic system called Flame Doctor offers users a more precise and discriminating understanding of burner conditions. Alpha testing on Unit 4 at AmerenUE's Meramec power plant in St. Louis, MO, USA and Beta testing is underway at plants owned by Dynegy and Allegheny Energy. 6 refs., 3 figs.

  12. Enhancements of Impinging Flame by Pulsation

    Institute of Scientific and Technical Information of China (English)

    AySu; Ying-ChiehLiu

    2000-01-01

    Experimental investigations on the pulsating jet-impinging diffusion flame were executed.A soleoid valve was aligned upstream of the jet orifice and the methane fuel was controlled in open-closed cycles from 0 Hz to 20Hz.Results show that the open-closed cycles,indeed increase the fluctuations of the methane fuel obviously.The evolutions of pulsating flame therefore develop faster than the continuous impinging flame.The optimized pulating frequencies are near 9 to 11 hz from the Re=170 to 283.The temperature differences between that under optimized pulsating rate and full open condition(no pulsation)are ranging from 100 to 150 degree.The pulsating effect is more singnificant at low Reynolds number.The cross section of continuous impinging flame behaves as elliptic shape with axial ratio equals to 2/3.The tip of the impinging flame obviously crosses at 42mm above the impinging point.ecause of the phenomenon of pulsation flame,the flame sheet or flame front may not be identified clearly in the averaged temperature contours.Results shows that the averaged end-contour of pulsation flame rears at 38mm above the impinging point.By observation and experiment,the pulsating flame behaves more stable and efficient than the continuous impinging flame.

  13. Turbulent Oxygen Flames in Type Ia Supernovae

    CERN Document Server

    Aspden, A J; Woosley, S E; 10.1088/0004-637X/730/2/144

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damk\\"ohler numbers ($\\Da_{16}$) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when $\\Da_{16}1$, turbulence enhances heat transfer and drives the propagation of a flame that is {\\em narrower} than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not ...

  14. Sooting limit of a double diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Michio; Kobayashi, Hideaki; Nishiki, Nobuhiko (Tohoku Univ., Faculty of Engineering, Sendai, Japan Sony Corp., Tokyo (Japan))

    1989-07-25

    The soot exhaust from the flame of pot type burner for the domestic heating use was basically studied. Inside a fuel (secondary) diffusion flame in air atmosphere, which was an ordinary diffusion flame, an air (primary) diffusion flame in fuel atmosphere, which was reverse in relation between them, was formed by using propane fuel. For the sooting limit of that double diffusion flame, the effect of primary air ratio, distance between primary and secondary flames, thermal condition on wall surface and flow stretch being investigated by use of three different types of burner, the double diffusion flame method was studied in effectiveness on the soot exhaust and known to heighten the control against it, which heightening however depended in degree upon the locative relation between both the flames. The control was more heightened with a more lengthening in the secondary flame. Because the sooting limit is governed by the secondary flame temperature, the establishment of condition so as to heighten the flame temperature is necessary for the effective control against the soot exhaust. 11 refs., 11 figs.

  15. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.;

    2013-01-01

    This paper describes the processing applied to the HFI cleaned time-ordered data to produce photometrically calibrated maps. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration on such a large range, two different photometric ca...

  16. Flame Reconstruction Using Synthetic Aperture Imaging

    CERN Document Server

    Murray, Preston; Tree, Dale; Truscott, Tadd

    2011-01-01

    Flames can be formed by burning methane (CH4). When oxygen is scarce, carbon particles nucleate into solid particles called soot. These particles emit photons, making the flame yellow. Later, methane is pre-mixed with air forming a blue flame; burning more efficiently, providing less soot and light. Imaging flames and knowing their temperature are vital to maximizing efficiency and validating numerical models. Most temperature probes disrupt the flame and create differences leading to an inaccurate measurement of the flame temperature. We seek to image the flame in three dimensions using synthetic aperture imaging. This technique has already successfully measured velocity fields of a vortex ring [1]. Synthetic aperture imaging is a technique that views one scene from multiple cameras set at different angles, allowing some cameras to view objects that are obscured by others. As the resulting images are overlapped different depths of the scene come into and out of focus, known as focal planes, similar to tomogr...

  17. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  18. Photometrical research geostationary satellite "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  19. Photometric Supernova Classification With Machine Learning

    CERN Document Server

    Lochner, Michelle; Peiris, Hiranya V; Lahav, Ofer; Winter, Max K

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Telescope (LSST), given that spectroscopic confirmation of type for all supernovae discovered with these surveys will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees. We test the pipeline on simulated multi-ba...

  20. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    CERN Document Server

    Leistedt, Boris; Peiris, Hiranya V

    2016-01-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometri...

  1. New insights on the accuracy of photometric redshift measurements

    CERN Document Server

    Massarotti, M; Buzzoni, A; Valls-Gabaud, D

    2001-01-01

    We use the deepest and most complete redshift catalog currently available (the Hubble Deep Field (HDF) North supplemented by new HDF South redshift data) to minimize residuals between photometric and spectroscopic redshift estimates. The good agreement at z_spec 2.0, the systematic shift between photometric and spectroscopic redshifts decreases when the modeling of the absorption by the interstellar and intergalactic media is refined. As a result, in the entire redshift range 0 < z < 6, residuals between photometric and spectroscopic redshifts are roughly halved. For objects fainter than the spectroscopic limit, the main source of uncertainty in photometric redshifts is related to photometric errors, and can be assessed with Monte Carlo simulations.

  2. The discrete regime of flame propagation

    Science.gov (United States)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  3. Photometric Supernova Classification with Machine Learning

    Science.gov (United States)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  4. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  5. The effect of photometric and geometric context on photometric and geometric lightness effects

    OpenAIRE

    Lee, Thomas Y.; Brainard, David H

    2014-01-01

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geo...

  6. Strategy for copper speciation in white wine by differential pulse anodic stripping voltammetry, potentiometry with an ion-selective electrode and kinetic photometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, C. [Inst. fuer Anorganische und Analytische Chemie, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Schwedt, G. [Inst. fuer Anorganische und Analytische Chemie, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany)

    1997-07-01

    Differential pulse anodic stripping voltammetry (DPASV), potentiometry with a copper ion-selective electrode and a kinetic photometric method were used to determine copper species in white wines. The kinetic method is based on the catalytic effect of labile copper(II) species on the oxidation of 3-hydroxybenzaldehyde azine by potassium peroxidisulfate in an ammonical medium at room temperature. The total copper concentrations were determined by flame atomic absorption spectrometry. Free copper(II) ions, labile and tightly bound copper species could be quantified in 16 non pre-treated wine samples. (orig.). With 3 figs., 5 tabs.

  7. Numerical simulation of tulip flame dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  8. Numerical simulation of tulip flame dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  9. The initial development of a tulip flame

    Energy Technology Data Exchange (ETDEWEB)

    Matalon, M.; Mcgreevy, J.L. [Northwestern Univ., Evanston, IL (United States)

    1994-12-31

    The initial development of a ``tulip flame``, often observed during flame propagation in closed tubes, is attributed to a combustion instability. The roles of hydrodynamic and of the diffusional-thermal processes on the onset of instability are investigated through a linear stability analysis in which the growth or decay of small disturbances, superimposed on an otherwise smooth and planar flame front, are followed. A range of the Markstein parameter, related to the mixture composition through an appropriately defined Lewis number, has been identified where a tulip flame could be observed. For a given value of the Markstein parameter within this range, a critical wavelength is identified as the most unstable mode. This wavelength is directly related to the minimal aspect ratio of the tube where a tulip flame could be observed. The time of onset of instability is identified as the time when the most unstable disturbance, associated with the critical wavelength, grows at a faster rate than the flame front itself and exceeds a certain threshold. This occurs after the flame has propagated a certain distance down the tube: a value which has been explicitly determined in terms of the relevant parameters. Experimental records on the tulip flame phenomenon support the finding of the analysis. That is, the tulip flame forms after the flame has traveled half the tube`s length, it does not form in short tubes, and its formation depends on the mixture composition and on the initial pressure in the tube.

  10. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  11. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  12. Photometric normalization of LROC WAC images

    Science.gov (United States)

    Sato, H.; Denevi, B.; Robinson, M. S.; Hapke, B. W.; McEwen, A. S.; LROC Science Team

    2010-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) acquires near global coverage on a monthly basis. The WAC is a push frame sensor with a 90° field of view (FOV) in BW mode and 60° FOV in 7-color mode (320 nm to 689 nm). WAC images are acquired during each orbit in 10° latitude segments with cross track coverage of ~50 km. Before mosaicking, WAC images are radiometrically calibrated to remove instrumental artifacts and to convert at sensor radiance to I/F. Images are also photometrically normalized to common viewing and illumination angles (30° phase), a challenge due to the wide angle nature of the WAC where large differences in phase angle are observed in a single image line (±30°). During a single month the equatorial incidence angle drifts about 28° and over the course of ~1 year the lighting completes a 360° cycle. The light scattering properties of the lunar surface depend on incidence(i), emission(e), and phase(p) angles as well as soil properties such as single-scattering albedo and roughness that vary with terrain type and state of maturity [1]. We first tested a Lommel-Seeliger Correction (LSC) [cos(i)/(cos(i) + cos(e))] [2] with a phase function defined by an exponential decay plus 4th order polynomial term [3] which did not provide an adequate solution. Next we employed a LSC with an exponential 2nd order decay phase correction that was an improvement, but still exhibited unacceptable frame-to-frame residuals. In both cases we fitted the LSC I/F vs. phase angle to derive the phase corrections. To date, the best results are with a lunar-lambert function [4] with exponential 2nd order decay phase correction (LLEXP2) [(A1exp(B1p)+A2exp(B2p)+A3) * cos(i)/(cos(e) + cos(i)) + B3cos(i)]. We derived the parameters for the LLEXP2 from repeat imaging of a small region and then corrected that region with excellent results. When this correction was applied to the whole Moon the results were less than optimal - no surprise given the

  13. Flame Propagation Through Concentration Gradient

    Institute of Scientific and Technical Information of China (English)

    JunyaIINO; MitsuakiTANABE; 等

    2000-01-01

    The experiment was carried out in homogeneous propane-air mixture and in several concentration gradient of mixture.Igniter is put on the upper side of the combustion chamber,In concentration gradient experiment.ixture was ignited from lean side.An experimental study was conducted in a combustion chamber.The combustion chamber has glass windows for optical measurements at any side.For the measurement of distribution of fuel concentration,infraed absorption method using 3.39μm He-Ne laser was used,and for the observation of proagating flams,Schlieren method was employed.As a measurment result of flame propagation velocity and flammable limit,for a mixture of an identical local equivalence ratio.flame propagation velocity in concentration gradient is faster than that in homogeneous mixture,and rich flammable limit in concentration gradient shows a tendency to be higher than that in homogeneous mixture.

  14. The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure

    CERN Document Server

    Poludnenko, Alexei Y; 10.1016/j.combustflame.2009.11.018

    2011-01-01

    We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model represents a stoichiometric H2-air mixture. The system being modeled represents turbulent combustion with the Damkohler number Da = 0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zon...

  15. One Moon, many measurements 2: Photometric corrections

    Science.gov (United States)

    Besse, S.; Yokota, Y.; Boardman, J.; Green, R.; Haruyama, J.; Isaacson, P.; Mall, U.; Matsunaga, T.; Ohtake, M.; Pieters, C.; Staid, M.; Sunshine, J.; Yamamoto, S.

    2013-09-01

    Observations of the lunar surface within the past 10 years have been made with various lunar remote sensing instruments, the Moon Mineralogy Mapper (M3) onboard the Chandrayaan-1 mission, the Spectral Profiler (SP), the Multiband Imager (MI), the Terrain Camera (TC) onboard the SELENE mission, and the ground based USGS Robotic Lunar Observatory (ROLO) for some of them. The lunar phase functions derived from these datasets, which are used in the photometric modeling to correct for the various illumination conditions of the data, are compared to assess their differences and similarity in order to improve interpretations of lunar surface spectra. The phase functions are found to be similar across various phase angles except in the 0-20° range. Differences across the 0-20° range likely result from two different inputs in the photometric modeling of the M3 and SP data: (1) M3 has larger emission angles due to the characteristics of the instrument and the attitude of the spacecraft, and (2) M3 viewing geometry was derived from the local topography whereas SP used a spherical Moon (no topography). The combination of these two different inputs affects the phase function at small phase angles where shadows play a more substantial role, with spatial resolution differences between M3 and SP being another possible source for the differences. SP data are found to be redder (i.e., steeper slope with increasing wavelengths) than MI, M3 and ROLO. Finally, the M3 overall reflectance is also found to be lower than that the other instruments (i.e., MI, SP, and ROLO), generally at least 10% darker than MI. These differences can be observed at local scales in specific examples at hundreds of meters resolutions. At regional and global scales, the same differences are found, which demonstrates the overall stability of the various datasets. The observations from M3, TC, SP and MI are very stable and agree well; however caution should be used when making interpretations based on the

  16. Photometric Redshift Estimation on SDSS Data Using Random Forests

    CERN Document Server

    Carliles, Samuel; Heinis, Sebastien; Priebe, Carey; Szalay, Alexander

    2007-01-01

    Given multiband photometric data from the SDSS DR6, we estimate galaxy redshifts. We employ a Random Forest trained on color features and spectroscopic redshifts from 80,000 randomly chosen primary galaxies yielding a mapping from color to redshift such that the difference between the estimate and the spectroscopic redshift is small. Our methodology results in tight RMS scatter in the estimates limited by photometric errors. Additionally, this approach yields an error distribution that is nearly Gaussian with parameter estimates giving reliable confidence intervals unique to each galaxy photometric redshift.

  17. Heat and mass transfer in flames

    Science.gov (United States)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  18. Metal Detectors.

    Science.gov (United States)

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  19. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  20. Flame Suppression Agent, System and Uses

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2013-01-01

    Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.

  1. Photometric immersion refractometry of bacterial spores.

    Science.gov (United States)

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  2. Results from the Supernova Photometric Classification Challenge

    CERN Document Server

    Kessler, Richard; Belov, Pavel; Bhatnagar, Vasudha; Campbell, Heather; Conley, Alex; Frieman, Joshua A; Glazov, Alexandre; Hlozek, Santiago Gonzalez-Gaitan Renee; Jha, Saurabh; Kuhlmann, Stephen; Kunz, Martin; Lampeitl, Hubert; Mahabal, Ashish; Newling, James; Nichol, Robert C; Parkinson, David; Philip, Ninan Sajeeth; Poznanski, Dovi; Richards, Joseph W; Rodney, Steven A; Sako, Masao; Schneider, Donald P; Smith, Mathew; Stritzinger, Maximilian; Varughese, Melvin

    2010-01-01

    We report results from the Supernova Photometric Classification Challenge (SNPCC), a publicly released mix of simulated SNe, with types (Ia, Ibc, II) selected in proportion to their expected rate. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point spread function and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host galaxy photo-z for each SN, and 9 entries for the sample that had no redshi...

  3. ASTEP South: a first photometric analysis

    CERN Document Server

    Crouzet, N; Mékarnia, D; Szulágyi, J; Abe, L; Agabi, A; Fanteï-Caujolle, Y; Gonçalves, I; Barbieri, M; Schmider, F -X; Rivet, J -P; Bondoux, E; Challita, Z; Pouzenc, C; Fressin, F; Valbousquet, F; Blazit, A; Bonhomme, S; Daban, J -B; Gouvret, C; Bayliss, D; Zhou, G

    2012-01-01

    The ASTEP project aims at detecting and characterizing transiting planets from Dome C, Antarctica, and qualifying this site for photometry in the visible. The first phase of the project, ASTEP South, is a fixed 10 cm diameter instrument pointing continuously towards the celestial South pole. Observations were made almost continuously during 4 winters, from 2008 to 2011. The point-to-point RMS of 1-day photometric lightcurves can be explained by a combination of expected statistical noises, dominated by the photon noise up to magnitude 14. This RMS is large, from 2.5 mmag at R=8 to 6% at R=14, because of the small size of ASTEP South and the short exposure time (30 s). Statistical noises should be considerably reduced using the large amount of collected data. A 9.9-day period eclipsing binary is detected, with a magnitude R=9.85. The 2-season lightcurve folded in phase and binned into 1000 points has a RMS of 1.09 mmag, for an expected photon noise of 0.29 mmag. The use of the 4 seasons of data with a better d...

  4. Comparative Analysis of Flame Characteristics of Castor Oil and ...

    African Journals Online (AJOL)

    Flame Retardants Used in Polyurethane Foam Systems. Polycarp .O. Ikeh ... such as ignition time, flame propagation rate, after glow, char rate, add-on and glow time. These properties .... hours before the flame test to ensure complete curing.

  5. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  6. Photometric Calibrations for 21st Century Science

    OpenAIRE

    Kent, Stephen; Kaiser, Mary Elizabeth; Deustua, Susana E.; Smith, J. Allyn; Adelman, Saul; Allam, Sahar; Baptista, Brian; Bohlin, Ralph C.; Clem, James L.; Conley, Alex; Edelstein, Jerry; Elias, Jay; Glass, Ian; Henden, Arne; Howell, Steve

    2009-01-01

    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rath...

  7. Soot zone structure and sooting limit in diffusion flames: Comparison of counterflow and co-flow flames

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.T.; Hwang, J.Y.; Chung, S.H. [Seoul National Univ. (Korea, Republic of). Dept. of Mechanical Engineering; Lee, W. [Dankook Univ., Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    1997-04-01

    Soot zone structures of counterflow and co-flow diffusion flames have been studied experimentally using the soot extinction-scattering, polycyclic aromatic hydrocarbon fluorescence, and laser Doppler velocimetry measurements. The counterflow flame has been numerically modelled with detailed chemistry. Results show that two different categories of sooting flame structures can be classified depending on the relative transport of soot particles to flames. These are the soot formation-oxidation flame and the soot formation flame. The soot formation-oxidation flame characteristics are observed in counterflow flames when located on the fuel side and in normal co-flow flames. In this case, soot particles are transported toward the high temperature region or the flame and experience soot inception, coagulation-growth, and oxidation. The soot formation flame characteristics are observed in counterflow flames when located on the oxidizer side and in inverse co-flow flames. In this case, soot particles are transported away from the flame without experiencing oxidation and finally leak through the stagnation plane in counterflow flames or leave the flame in inverse co-flow flames. Sooting limit measurements in both flames also substantiate the two different sooting flame structures and their characteristics.

  8. A photometricity and extinction monitor at the Apache Point Observatory

    CERN Document Server

    Hogg, D W; Schlegel, D J; Gunn, J E; Hogg, David W.; Finkbeiner, Douglas P.; Schlegel, David J.; Gunn, James E.

    2001-01-01

    An unsupervised software ``robot'' that automatically and robustly reduces and analyzes CCD observations of photometric standard stars is described. The robot measures extinction coefficients and other photometric parameters in real time and, more carefully, on the next day. It also reduces and analyzes data from an all-sky $10 \\mu m$ camera to detect clouds; photometric data taken during cloudy periods are automatically rejected. The robot reports its findings back to observers and data analysts via the World-Wide Web. It can be used to assess photometricity, and to build data on site conditions. The robot's automated and uniform site monitoring represents a minimum standard for any observing site with queue scheduling, a public data archive, or likely participation in any future National Virtual Observatory.

  9. AR Ser: photometric observations of a Blazhko star

    Science.gov (United States)

    Bonnardeau, Michel; Hambsch, Franz-Josef

    2015-02-01

    Photometric observations in 2010-2014 of the RR Lyrae star AR Serpentis are presented and analysed. Two Blazhko modulations of comparable amplitude are detected, with the periods 89 and 108 days, and with evidence for irregularities.

  10. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco Kind, Matias [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are crucial

  11. Energetic constraints to chemo-photometric evolution of spiral galaxies

    CERN Document Server

    Buzzoni, Alberto

    2011-01-01

    The problem of chemo-photometric evolution of late-type galaxies is dealt with relying on prime physical arguments of energetic self-consistency between chemical enhancement of galaxy mass, through nuclear processing inside stars, and luminosity evolution of the system. Chemical enhancement is assessed in terms of the so-called "yield metallicity", that is the metal abundance of processed mass inside stars, as constrained by the galaxy photometric history.

  12. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    Science.gov (United States)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  13. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  14. The unusual photometric variability of the PMS star GM Cep

    CERN Document Server

    Semkov, E; Peneva, S; Milanov, T; Stoyanov, K; Stateva, I; Kjurkchieva, D; Dimitrov, D; Radeva, V

    2015-01-01

    Results from UBVRI photometric observations of the pre-main sequence star GM Cep obtained in the period April 2011 - August 2014 are reported in the paper. Presented data are a continuation of our photometric monitoring of the star started in 2008. GM Cep is located in the field of the young open cluster Trumpler 37 and over the past years it has been an object of intense photometric and spectral studies. The star shows a strong photometric variability interpreted as a possible outburst from EXor type in previous studies. Our photometric data for a period of over six years show a large amplitude variability (Delta V ~ 2.3 mag.) and several deep minimums in brightness are observed. The analysis of the collected multicolor photometric data shows the typical of UX Ori variables a color reversal during the minimums in brightness. The observed decreases in brightness have a different shape, and evidences of periodicity are not detected. At the same time, high amplitude rapid variations in brightness typical for th...

  15. The Unusual Photometric Variability of the PMS Star GM Cep

    Science.gov (United States)

    Semkov, E. H.; Ibryamov, S. I.; Peneva, S. P.; Milanov, T. R.; Stoyanov, K. A.; Stateva, I. K.; Kjurkchieva, D. P.; Dimitrov, D. P.; Radeva, V. S.

    2015-03-01

    Results from UBVRI photometric observations of the pre-main sequence star GM Cep obtained in the period 2011 April-2014 August are reported in the paper. Presented data are a continuation of our photometric monitoring of the star started in 2008. GM Cep is located in the field of the young open cluster Trumpler 37 and over the past years it has been an object of intense photometric and spectral studies. The star shows a strong photometric variability interpreted as a possible outburst from EXor type in previous studies. Our photometric data for a period of over six years show a large amplitude variability (ΔV ~ 2.3 mag) and several deep minimums in brightness are observed. The analysis of the collected multicolour photometric data show the typical of UX Ori variables a colour reversal during the minimums in brightness. The observed decreases in brightness have a different shape, and evidences of periodicity are not detected. At the same time, high amplitude rapid variations in brightness typical for the classical T Tauri stars also present on the light curve of GM Cep. The spectrum of GM Cep shows the typical of classical T Tauri stars wide Hα emission line and absorption lines of some metals. We calculate the outer radius of the Hα emitting region as 10.4 ± 0.5 R⊙ and the accretion rate as 1.8 × 10- 7 M⊙ yr- 1.

  16. Photometric followup investigations on LAMOST survey target Ly And

    Science.gov (United States)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Pi, Qing-feng; Wang, Dai-mei

    2017-02-01

    We present a low-dispersion spectrum and two sets of CCD photometric light curves of the eclipsing binary LY And for the first time. The spectrum of LY And was classified as G2. We derived an updated ephemeris based on all previously available and our newly acquired minimum light times. Our analyses of LY And light curve minimum times reveals that the differences between calculated and observed minimum times for LY And can be represented by an upward parabolic curve, which means its orbital period is increasing with a rate of 1.88 (± 0.13) × 10-7 days/year. This increase in orbital period may be interpreted as mass transfer from the primary component to the secondary component, with a rate of dM1/dt = -4.54 × 10-8M⊙/year. By analyzing our CCD photometric light curves obtained in 2015, we obtained its photometric solution with the Wilson-Devinney program. This photometric solution also fits very well our light curves obtained in 2014. Our photometric solution shows that LY And is a contact eclipsing binary and its contact factor is f = (17.8 ± 1.9)%. Furthermore, both our spectroscopic and photometric data show no obvious chromospheric activity of LY And.

  17. Unsteady planar diffusion flames: Ignition, travel, burnout

    Science.gov (United States)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  18. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  19. Photometric Covariance in Multi-Band Surveys: Understanding the Photometric Error in the SDSS

    CERN Document Server

    Scranton, R; Szalay, A S; Lupton, R H; Johnston, D; Budavari, T; Brinkmann, J; Fukugita, M; Scranton, Ryan; Connolly, Andrew J.; Szalay, Alexander S.; Lupton, Robert H.; Johnston, David; Budavari, Tamas; Brinkman, John; Fukugita, Masatake

    2005-01-01

    In this paper we describe a detailed analysis of the photometric uncertainties present within the Sloan Digital Sky Survey (SDSS) imaging survey based on repeat observations of approximately 200 square degrees of the sky. We show that, for the standard SDSS aperture systems (petrocounts, counts_model, psfcounts and cmodel_counts), the errors generated by the SDSS photometric pipeline under-estimate the observed scatter in the individual bands. The degree of disagreement is a strong function of aperture and magnitude (ranging from 20% to more than a factor of 2). We also find that the photometry in the five optical bands can be highly correlated for both point sources and galaxies, although the correlation for point sources is almost entirely due to variable objects. Without correcting for this covariance the SDSS color errors could be in over-estimated by a factor of two to three. Combining these opposing effects, the SDSS errors on the colors differ from the observed color variation by approximately 10-20% f...

  20. Improved Photometric Calibrations for Red Stars Observed with the SDSS Photometric Telescope

    CERN Document Server

    Davenport, James R A; Covey, Kevin R; Hawley, Suzanne L; West, Andrew A; Schneider, Donald P

    2007-01-01

    We present a new set of photometric transformations for red stars observed with the Sloan Digital Sky Survey (SDSS) 0.5-m Photometric Telescope (PT) and the SDSS 2.5-m telescope at the Apache Point Observatory in New Mexico. Nightly PT observations of US Naval Observatory standards are used to determine extinction corrections and calibration terms for SDSS 2.5-m photometry. Systematic differences between the PT and native SDSS 2.5-m {\\it ugriz} photometry require conversions between the two systems which have previously been undefined for the reddest stars. By matching $\\sim 43,000$ stars observed with both the PT and SDSS 2.5-m, we extend the present relations to include low-mass stars with colors $0.6 \\le r-i \\le 1.7$. These corrections will allow us to place photometry of bright, low-mass trigonometric parallax stars previously observed with the PT on the 2.5-m system. We present new transformation equations and discuss applications of these data to future low-mass star studies using the SDSS.

  1. Calibration of the MEarth Photometric System: Optical Magnitudes and Photometric Metallicity Estimates for 1802 Nearby M-dwarfs

    CERN Document Server

    Dittmann, Jason A; Charbonneau, David; Newton, Elisabeth R

    2015-01-01

    The MEarth Project is a photometric survey systematically searching the smallest stars nearest to the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the $MEarth$ system, identify photometric nights, and obtain an optical magnitude with $1.5\\%$ precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color-magnitude-metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitude...

  2. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  3. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  4. Numerical Study on Laminar Burning Velocity and Flame Stability of Premixed Methane/Ethylene/Air Flames

    Institute of Scientific and Technical Information of China (English)

    陈珊珊; 蒋勇; 邱榕; 安江涛

    2012-01-01

    A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.

  5. On the transition from a highly turbulent curved flame into a tulip flame

    Energy Technology Data Exchange (ETDEWEB)

    Kratzel, T.; Pantow, E.; Fischer, M. [German Aerospace Research Establishment, Stuttgart (Germany). Institute of Technical Thermodynamics

    1998-12-31

    Experimental and numerical investigations of premixed flame propagation behaviour associated with vortex interactions due to planar pressure waves crossing a curved flame front have been carried out. The resulting ``tulip flame`` formation in such a closed tube has been studied by Schlieren visualization. The ``tulip flame`` phenomenon was observed only closed tubes, while cellular flame fronts appeared in half-open tubes. A physical model has been developed and implemented in a discrete vortex method combined with a flame tracking algorithm. The numerical method has been applied to model and understand the processes that cause the flame to change from a curved to a tulip shape. The results of the simulation are in good agreement with the experimental observations. (author)

  6. Monitoring Atmospheric Transmission with FLAME

    Science.gov (United States)

    Zimmer, Peter C.; McGraw, J. T.; Zirzow, D. C.; Koppa, M.; Buttler-Pena, K.

    2014-01-01

    Calibration of ground-based observations in the optical and near-infrared requires precise and accurate understanding of atmospheric transmission, at least as precise and accurate as that required for the spectral energy distributions of science targets. Traditionally this has used the Langley extrapolation method, observing targets and calibrators over a range of airmass and extrapolating to zero airmass by assuming a plane-parallel homogeneous atmosphere. The technique we present uses direct measurements of the atmosphere to derive the transmission along the line of sight to science targets at a few well-chosen wavelengths. The Facility Lidar Atmospheric Monitor of Extinction (FLAME) is a 0.5m diameter three Nd:YAG wavelength (355nm, 532nm & 1064nm) elastic backscatter lidar system. Laser pulses are transmitted into the atmosphere in the direction of the science target. Photons scattered back toward the receiver by molecules, aerosols and clouds are collected and time-gated so that the backscatter intensity is measured as a function of range to the scattering volume. The system is housed in a mobile calibration lab, which also contains auxiliary instrumentation to provide a NIST traceable calibration of the transmitted laser power and receiver efficiency. FLAME was designed to create a million photons per minute signal from the middle stratosphere, where the atmosphere is relatively calm and dominated by molecules of the well-mixed atmosphere (O2 & N2). Routine radiosonde measurements of the density at these altitudes constrain the scattering efficiency in this region and, combined with calibration of the transmitter and receiver, the only remaining unknown quantity is the two-way transmission to the stratosphere. These measurements can inform atmospheric transmission models to better understand the complex and ever-changing observatory radiative transfer environment. FLAME is currently under active development and we present some of our ongoing measurements.

  7. Physical and Chemical Processing in Flames

    Science.gov (United States)

    2013-08-12

    than the classical Troe formula, and the development of a Chemical Explosive Mode Analysis ( CEMA ) computation algorithm that allows on-the-fly...6-311++G(d,p) method. 3. Flame Stabilization and Chemical Explosive Mode Analysis ( CEMA ) Flame stabilization is essential in the understanding of

  8. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  9. Chemical processes in the HNF flame

    NARCIS (Netherlands)

    Ermolin, N.E.; Zarko, V.E.; Keizers, H.L.J.

    2006-01-01

    Results of modeling the HNF flame structure are presented. From an analysis of literature data on the thermal decomposition and combustion of HNF, it is concluded that the dissociative vaporization of HNF proceeds via the route HNFliq → (N2H4)g + (HC(NO 2)3)g. The flame structure is modeled using a

  10. Flaming in CMC: Prometheus' Fire or Inferno's?

    Science.gov (United States)

    Abrams, Zsuzsanna Ittzes

    2003-01-01

    Reports on a descriptive study with 75 intermediate college learners of German participating in two sessions of synchronous computer mediated communication during the course of a semester that investigated students' flaming behavior--aggressive interpersonal language and rude behavior. Shows that not only is flaming a very infrequent occurrence,…

  11. Flame retardant cotton barrier nonwovens for mattresses

    Science.gov (United States)

    According to regulation CPSC 16 CFR 1633, every new residential mattress sold in the United States since July 2007 must resist ignition by open flame. An environmentally benign “green”, inexpensive way to meet this regulation is to use a low-cost flame retardant (FR) barrier fabric. In this study, a...

  12. Flame retardant cotton based highloft nonwovens

    Science.gov (United States)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  13. Flaming in CMC: Prometheus' Fire or Inferno's?

    Science.gov (United States)

    Abrams, Zsuzsanna Ittzes

    2003-01-01

    Reports on a descriptive study with 75 intermediate college learners of German participating in two sessions of synchronous computer mediated communication during the course of a semester that investigated students' flaming behavior--aggressive interpersonal language and rude behavior. Shows that not only is flaming a very infrequent occurrence,…

  14. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ RTE Arlington, Virginia 22203 Air Force Research...two-year subject program, conducted through tight coupling between experiment, theory and computation, and reported in high impact journal articles ...The thrust for this program constitutes of three major areas of turbulent combustion: (1) Flame surface statistics , (2) Flame-turbulence interaction

  15. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  16. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert

    2016-01-05

    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  17. nvestigation on influencing factors in determination of hydrocarbons in heavy oils by thin-layer chromatography flame/ionization detector.%棒状薄层色谱/氢火焰离子化检测器法测定重油烃族组成影响因素的探讨

    Institute of Scientific and Technical Information of China (English)

    杨海鹰; 顾洁; 蔺玉贵

    2001-01-01

    The influencing factors in the determination of hydrocarbons (saturates, aromatics, resins) in heavy oils by thin layer chromatography/flame ionization detection (TLC/FID) were investigated. It has been found that the solvent co -volatization may cause sample loss during the spotting and developing process, and that the quantitative calibration factors can not be used universally. Because the flame temperature of TLC/FLD is much lower than that of GC/FID, the transformation of different compounds in the flame of FID is varied.%对应用棒状薄层色谱/氢火焰离子化检测器(TLC/FID)测定重油烃族组成(饱和烃、芳烃、胶质)时的影响因素作了探讨。研究发现,在点样及展开过程中,溶剂共挥发可引起样品损失;而且,由于TLC/FID的火焰温度远低于一般GC条件下FID的火焰温度,使不同化合物在FID上的燃烧转化情况有差异,因而其定量校正因子不具有通用性。

  18. Edge Diffusion Flame Propagation and Stabilization Studied

    Science.gov (United States)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  19. Interaction Between Flames and Electric Fields Studied

    Science.gov (United States)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  20. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor

    Science.gov (United States)

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-01-01

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250

  1. An LMS Programming Scheme and Floating-Gate Technology Enabled Trimmer-Less and Low Voltage Flame Detection Sensor.

    Science.gov (United States)

    Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio

    2017-06-14

    In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.

  2. Long Photometric Cycles in Hot Algols

    Science.gov (United States)

    Mennickent, R. E.

    2017-06-01

    We summarize the development of the field of Double Periodic Variables (DPVs, Mennickent et al. 2003) during the last fourteen years, placing these objects in the context of intermediate-mass close interacting binaries similar to β Persei (Algol) and β Lyrae (Sheliak) which are generally called Algols.DPVs show enigmatic long photometric cycles lasting on average about 33 times the orbital period, and have physical properties resembling, in some aspects, β Lyrae. About 200 of these objects have been found in the Galaxy and the Magellanic Clouds. Light curve models and orbitally resolved spectroscopy indicate that DPVs are semi-detached interacting binaries consisting of a near main-sequence B-type star accreting matter from a cooler giant and surrounded by an optically thick disc. This disc contributes a significant fraction of the system luminosity and its luminosity is larger than expected from the phenomenon of mass accretion alone. In some systems, an optically thin disc component is observed in well developed Balmer emission lines. The optically thick disc shows bright zones up to tens percent hotter than the disc, probably indicating shocks resulting from the gas and disc stream dynamics. We conjecture that a hotspot wind might be one of the channels for a mild systemic mass loss, since evidence for jets, winds or general mass loss has been found in β Lyrae, AU Mon, HD 170582, OGLE 05155332-6925581 and V 393 Sco. Also, theoretical work by Van Rensbergen et al. (2008) and Deschamps et al. (2013) suggests that hotspot could drive mass loss from Algols. We give special consideration to the recently published hypothesis for the long cycle, consisting of variable mass transfer driven by a magnetic dynamo (Schleicher and Mennickent 2017). The Applegate (1992) mechanism should modify cyclically the equatorial radius of the chromospherically active donor producing cycles of enhanced mass loss through the inner Lagrangian point. Chromospheric emission in V 393 Sco

  3. Cool Sooting Flames of Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Z.A. MANSUROV

    2001-01-01

    This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under atmospheric pressure at the reactor temperatures of 670-1170 K. The temperature profiles of the flames were studied. The sampling was carried out with a quartz sampler and the samples were frozen with liquid nitrogen. A number of polyaromatic hydrocarbons such as pyrene, fluoranthene, coronene, anthanthrene, 1,12-benzperylene,were identified by spectroscopic methods in the extract of soot. The processes of soot formation at methaneoxygen mixture combustion in the electric field with applied potential changed from 0 to 2,2 kV at different polarity of electrodes have been investigated. It has been stated that at the electrical field application, an increase in soot particle sizes and soot yield occurs; besides, at the application of the field, speeding up the positively charged particles, the interplanar distance decreases. On the basis of investigation of soot particles paramagnetism, it was shown that initially soot particles have high carcinogetic activity and pollute the environment owing to a rapid decrease of the number of these radical centers. The reduction of the radical concentration is connected with radical recombination on soot.

  4. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  5. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  6. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  7. Photometric redshifts for the SDSS Data Release 12

    Science.gov (United States)

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2016-08-01

    We present the methodology and data behind the photometric redshift data base of the Sloan Digital Sky Survey (SDSS) Data Release 12. We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalogue was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of 1976 978 galaxies, and extends up to redshift z ≈ 0.8, with a useful coverage of up to z ≈ 0.6. We provide photometric redshifts and realistic error estimates for the 208 474 076 galaxies of the SDSS primary photometric catalogue. We achieve an average bias of overline{Δ z_{norm}} = {5.84 × 10^{-5}}, a standard deviation of σ(Δznorm) = 0.0205, and a 3σ outlier rate of Po = 4.11 per cent when cross-validating on our training set. The published redshift error estimates and photometric error classes enable the selection of galaxies with high-quality photometric redshifts. We also provide a supplementary error map that allows additional, sophisticated filtering of the data.

  8. Photometric Calibration of the Supernova Legacy Survey Fields

    CERN Document Server

    Regnault, N; Guy, J; Sullivan, M; Cuillandre, J -C; Astier, P; Balland, C; Basa, S; Carlberg, R G; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J

    2009-01-01

    We present the photometric calibration of the Supernova Legacy Survey (SNLS) fields. The SNLS aims at measuring the distances to SNe Ia at (0.3photometric calibration of the survey dominates the systematic uncertainty of the key measurement of the survey, namely the dark energy equation of state. The photometric calibration of the SNLS requires obtaining a uniform response across the imager, calibrating the science field stars in each survey band (SDSS-like ugriz bands) with respect to standards with known flux in the same bands, and binding the calibration to the UBVRI Landolt standards used to calibrate the nearby SNe from the literature necessary to produce cosmological constraints. The spatial non-uniformities of the imager photometric response are mapped using dithered observations of dense stellar fields. Photometric zero-points against Landolt standards are obtained. The linearity o...

  9. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    Science.gov (United States)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  10. Flaming: More than a Necessary Evil for Academic Mailing Lists?

    Science.gov (United States)

    Wang, Hongjie

    1996-01-01

    States that although Internet "gurus" advocate that users refrain from "flaming," in fact, flaming permeates the Internet. Explores the nature of flaming in its characteristics and forms as seen in academic discussion groups. Argues that flaming educates the ignorant, tames the uncouth, and promotes effective communication. (PA)

  11. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  12. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  13. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  14. Structure of a poly(ethylene) opposed flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W.J.; Brown, N.J.; Sawyer, R.F.

    1980-08-01

    Structural measurements were obtained and compared with other investigations of diffusion flames. Departures from the commonly assumed collapsed flame model of laminar diffusion flames were observed in terms of excessive CO concentrations and oxygen penetration into the fuel side of the flame. An upper bound on the importance of oxygen diffusion to the fuel surface and subsequent surface oxidation was placed at 20% of the energy required for fuel pyrolysis, with the remainder of the energy being delivered to the surface from the flame through heat transfer processes. As the oxygen concentration in the oxidizer flow was decreased and extinction conditions approached, the CO/CO/sub 2/ ratio at the flame increased slightly, the oxygen concentration at the luminous flame zone decreased, the flame stand-off distance decreased, and the flame temperature decreased. Radial similarity in the composition and temperature profiles was established experimentally which confirms predictions and greatly simplifies the modeling of the opposed flow diffusion flame.

  15. The Cousins of Stuxnet: Duqu, Flame, and Gauss

    Directory of Open Access Journals (Sweden)

    Márk Félegyházi

    2012-11-01

    Full Text Available Stuxnet was the first targeted malware that received worldwide attention forcausing physical damage in an industrial infrastructure seemingly isolated from the onlineworld. Stuxnet was a powerful targeted cyber-attack, and soon other malware samples were discovered that belong to this family. In this paper, we will first present our analysis of Duqu, an information-collecting malware sharing striking similarities with Stuxnet. Wedescribe our contributions in the investigation ranging from the original detection of Duquvia finding the dropper file to the design of a Duqu detector toolkit. We then continue with the analysis of the Flame advanced information-gathering malware. Flame is unique in thesense that it used advanced cryptographic techniques to masquerade as a legitimate proxyfor the Windows Update service. We also present the newest member of the family, called Gauss, whose unique feature is that one of its modules is encrypted such that it can onlybe decrypted on its target system; hence, the research community has not yet been able to analyze this module. For this particular malware, we designed a Gauss detector serviceand we are currently collecting intelligence information to be able to break its very specialencryption mechanism. Besides explaining the operation of these pieces of malware, wealso examine if and how they could have been detected by vigilant system administrators manually or in a semi-automated manner using available tools. Finally, we discuss lessonsthat the community can learn from these incidents. We focus on technical issues, and avoidspeculations on the origin of these threats and other geopolitical questions.

  16. ELM-KNN for photometric redshift estimation of quasars

    Science.gov (United States)

    Zhang, Yanxia; Tu, Yang; Zhao, Yongheng; Tian, Haijun

    2017-06-01

    We explore photometric redshift estimation of quasars with the SDSS DR12 quasar sample. Firstly the quasar sample is separated into three parts according to different redshift ranges. Then three classifiers based on Extreme Learning Machine (ELM) are created in the three redshift ranges. Finally k-Nearest Neighbor (kNN) approach is applied on the three samples to predict photometric redshifts of quasars with multiwavelength photometric data. We compare the performance with different input patterns by ELM-KNN with that only by kNN. The experimental results show that ELM-KNN is feasible and superior to kNN (e.g. rms is 0.0751 vs. 0.2626 for SDSS sample), in other words, the ensemble method has the potential to increase regressor performance beyond the level reached by an individual regressor alone and will be a good choice when facing much more complex data.

  17. First photometric study of W UMa binary star LU Lac

    Science.gov (United States)

    Liao, W.-P.; Qian, S.-B.; Zhao, E.-G.; Jiang, L.-Q.

    2014-08-01

    LU Lac is a neglected W UMa binary star in photometric investigations. In this paper, we present BVRI CCD photometric light curves obtained on one night in 2012. The first photometric solutions of this system are computed by using the Wilson-Devinney code. It is shown that LU Lac is a marginal contact W-type system with a degree of contact factor of f=8.9%, a mass ratio of q=2.085 and a high inclination of i=82°.20. From the first analyses of orbital period changes, we found the period variation of the system includes an oscillation (A3=0.0125 days and T3=51.92 years). The cyclic change may be attributed to the light-travel time effect through the presence of a third body.

  18. Semi-supervised Learning for Photometric Supernova Classification

    CERN Document Server

    Richards, Joseph W; Freeman, Peter E; Schafer, Chad M; Poznanski, Dovi

    2011-01-01

    We present a semi-supervised method for photometric supernova typing. Our approach is to first use the nonlinear dimension reduction technique diffusion map to detect structure in a database of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template based methods. Applied to supernova data simulated by Kessler et al. (2010b) to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 96% Type Ia purity and 86% Type Ia efficiency on the spectroscopic sample, but only 56% Type Ia purity and 48% efficiency on the photometric sample due to their spectroscopic followup strategy. To improve the performance on the photometric sample...

  19. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bertincourt, B; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Filliard, C; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Jeune, M Le; Lellouch, E; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Maurin, L; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Moreno, R; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Techene, S; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper describes the processing applied to the HFI cleaned time-ordered data to produce photometrically calibrated maps. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration on such a large range, two different photometric calibration schemes have to be used. The 545 and 857 \\GHz\\ data are calibrated using Uranus and Neptune flux density measurements, compared with models of their atmospheric emissions to calibrate the data. The lower frequencies (below 353 GHz) are calibrated using the cosmological microwave background dipole.One of the components of this anisotropy results from the orbital motion of the satellite in the Solar System, and is therefore time-variable. Photometric calibration is thus tightly linked to mapmaking, which also addresses low frequency noise removal. The 2013 released HFI data show some evidence for apparent gain variations of the HFI bolometers' detection chain. These variations were identified by comparing obse...

  20. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    Science.gov (United States)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  1. Accurate photometric redshift probability density estimation - method comparison and application

    CERN Document Server

    Rau, Markus Michael; Brimioulle, Fabrice; Frank, Eibe; Friedrich, Oliver; Gruen, Daniel; Hoyle, Ben

    2015-01-01

    We introduce an ordinal classification algorithm for photometric redshift estimation, which vastly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift, that can be used to estimate the full redshift PDF of a galaxy sample. This method is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitudes less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular Neural Network code (ANNz). In our use case, this improvemen...

  2. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  3. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  4. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  5. Novel Flame-Based Synthesis of Nanowires for Multifunctional Application

    Science.gov (United States)

    2015-05-13

    laser-based diagnostics for in-situ Raman characterization of as- synthesized nanomaterials, (iv) flame synthesis of graphene , (v) flame synthesis of...laser- based diagnostics for in-situ Raman characterization of as-synthesized nanomaterials, (iv) flame synthesis of graphene , (v) flame synthesis of...Stephen D. Tse, Manish Chhowalla, Bernard H. Kear. Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films, Proceedings

  6. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames

    Science.gov (United States)

    2016-05-15

    visualized for both reacting and nonreacting cases. The jet flame was studied unforced, without acoustics , and forced, with transverse acoustic waves in...liquid rocket injector flames react to acoustic waves . In this study, a representative coaxial gaseous hydrogen / liquid oxygen (LOX) jet flame is...hydrogen / liquid oxygen (LOX) jet flame is visualized for both reacting and nonreacting cases. The jet flame was studied unforced, without acoustics , and

  7. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    Energy Technology Data Exchange (ETDEWEB)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd, U-3139, Storrs, CT 06269 (United States); King, Galen B. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  8. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  9. XMASS detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Nishiie, H; Ogawa, H; Oka, N; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Nishitani, Y; Masuda, K; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2013-01-01

    The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  10. XMASS detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-11

    The XMASS project aims to detect dark matter, pp and {sup 7}Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  11. Photometric stability analysis of the Exoplanet Characterisation Observatory

    CERN Document Server

    Waldmann, I P; Swinyard, B; Tinetti, G; Amaral-Rogers, A; Spencer, L; Tessenyi, M; Ollivier, M; Foresto, V Coudé du

    2013-01-01

    Photometric stability is a key requirement for time-resolved spectroscopic observations of transiting extrasolar planets. In the context of the Exoplanet Characterisation Observatory (EChO) mission design, we here present and investigate means of translating spacecraft pointing instabilities as well as temperature fluctuation of its optical chain into an overall error budget of the exoplanetary spectrum to be retrieved. Given the instrument specifications as of date, we investigate the magnitudes of these photometric instabilities in the context of simulated observations of the exoplanet HD189733b secondary eclipse.

  12. Steps Toward a Common Near-Infrared Photometric System

    CERN Document Server

    Tokunaga, A T

    2007-01-01

    The proliferation of near-infrared (1--5 $\\mu$m) photometric systems over the last 30 years has made the comparison of photometric results difficult. In an effort to standardize infrared filters in use, the Mauna Kea Observatories near-infrared filter set has been promoted among instrument groups through combined filter production runs. The characteristics of this filter set are summarized, and some aspects of the filter wavelength definitions, the flux density for zero magnitude, atmospheric extinction coefficients, and color correction to above the atmosphere are discussed.

  13. Comparision of approaches to photometric redshift estimation of quasars

    Science.gov (United States)

    Tu, Yang; Zhang, Yanxia; Zhao, Yongheng; Tian, Haijun

    2015-08-01

    Based on databases from various different band photometric surveys (optical from SDSS, infrared from UKIDSS and WISE), we compare k-nearest neighbor regression based on KD-tree and Ball-tree, LASSO, PLS (Partial Least Squares), SDG, ridge regression and kernel ridge regression applied for photometric redshift estimation of quasars. The experimental result shows that the perfomance order of these methods is KD-tree kNN, Ball-tree kNN, kernal ridge regression, ridge regression, PLS, SGD, LASSO.

  14. High pressure flame system for pollution studies with results for methane-air diffusion flames

    Science.gov (United States)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  15. Theory of DDT in unconfined flames

    CERN Document Server

    Khokhlov, A M; Wheeler, J C; Wheeler, J Craig

    1996-01-01

    This paper outlines a theoretical approach for predicting the onset of detonation in unconfined turbulent flames which is relevant both to problems of terrestrial combustion and to thermonuclear burning in Type Ia supernovae. Two basic assumuptions are made: 1) the gradient mechanism is the inherent mechanism that leads to DDT in unconfined conditions, and 2) the sole mechanism for preparing the gradient in induction time is by turbulent mixing and local flame quenching. The criterion for DDT is derived in terms of the one-dimensional detonation wave thickness, the laminar flame speed, and the laminar flame thickness in the reactive gas. This approach gives a lower-bound criterion for DDT for conditions where shock preheating, wall effects, and interactions with obstacles are absent. Regions in parameter space where unconfined DDT can and cannot occur are determined. A subsequent paper will address these issues specifically in the astrophysical context.

  16. Flaming Pear Creative Pack1.0

    Institute of Scientific and Technical Information of China (English)

    Kane

    2003-01-01

    Flaming Pear是个一直给我留下深刻印象的软件开发公司。我以前评论过很多这个公司的插件,每一次都是不错的经历。同样的优良传统同样体现在Flaming Pear的新品Creative Pack1.0

  17. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  18. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  19. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...... for the analysis of particle formation in flames. Good results for a wide range of operating conditions were obtained. Therefore, the method should be useful as a tool for the optimization and/or design of flame processes for particle production.......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...... flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...

  20. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  1. Perceptual preferences in depth stratification of transparent layers: Photometric and non-photometric factors.

    Science.gov (United States)

    Delogu, Franco; Fedorov, George; Belardinelli, Marta Olivetti; van Leeuwen, Cees

    2010-02-23

    In three experiments, using a two-alternative forced-choice task, we obtained depth judgments of displays containing transparent regions. The regions varied in lightness, size, and animation. Observers nearly always strongly preferred one certain depth ordering among the regions, even though their lightness conditions were expected to give rise to ambiguity among possible orderings. This expectation was based on the contrast polarity model, which expects ambiguity in the absence of contrast polarity reversal. The expectation was founded also on a stronger condition based on the transmittance anchoring principle, which gives preference to the largest lightness contrast between regions. In the absence of contrast polarity reversal and in conditions of balanced regional contrast, preferences were shown to depend on additional conditions of contrast between two respective regions and their overlap. Depth ordering judgment seems to be based on a critical decision threshold, independently of the coordinate system used to specify lightness. We also investigated the role of non-photometric factors such as motion and relative size, and concluded that these variables can modulate depth ordering judgments in transparency.

  2. A photometric approach to parametric modelling for optimising multisegmented photodetector rings

    Science.gov (United States)

    Yoon, P. S.; Siddons, D. P.

    2013-06-01

    An analytical (theoretical) method for parametric modelling to optimise fluorescent-type x-ray photodetectors has been developed. The primary purpose of this method is to maximise detector's photon-detection efficiency, thereby enhancing its spatial sensitivity. On the basis of the definition of the solid angle, its sensor-target subsystem was fully parametrised in three dimensions. And afterwards real-valued analytical functions of detector's solid angle were derived, leading to a series of further calculations. As a result of this parametric modelling, a miniaturised ultrasensitive photodetector system was designed with its peak total solid angle as large as 0.70 (steradian) at a practical optimum working distance of 3.0 (mm). Subsequent difference-over-sum calculations yield an enhancement in spatial resolution by a factor of four within its linear band. With the application of this optimisation algorithm embedded in this analytical model, one round of prototyping is sufficient to reach its desired spatial sensitivity, resulting in a drastic reduction of prototyping time and cost. Accordingly, this analytical model with full parametrisation has proved itself to be an indispensable and versatile design tool to utilise in a design phase of such position-sensitive photodetectors. It is therefore envisioned that this photometric approach to modelling photodetectors can be augmented for designing different types of optical instruments in a wide range of scientific disciplines.

  3. Kernel PCA for type Ia supernovae photometric classification

    CERN Document Server

    Ishida, Emille E O

    2013-01-01

    The problem of photometric identification will be extremely important for large surveys in the next decade. In this work, we propose the use of KPCA combined with k = 1 nearest neighbor algorithm (KPCA+1NN) as a framework for SNe photometric classification. The method does not rely on information about redshift or local enviromental variables, so it is less sensitive to bias than its template fitting counterparts. We applied the method to $\\approx$ 20000 SNe light curve released after the \\textit{Supernova Photometric Classification Challenge} (SNPCC). Results for the photometric sample achieved up to 89% efficiency (eff), 97% purity (pur), 96% successful classification (SC) rates and figure of merit (FoM) of 0.79 (SNR$\\geq$5). If we impose no SNR cuts, we obtain up to 64% eff, 43% pur, 46% SC and FoM of 0.10. We also present the classification results using only pre-maximum epoches, obtaining 80% eff, 73% pur, 84% SC and FoM of 0.32 (SNR$\\geq$5). Comparing the performance of our classifier with MLCS2k2 fit p...

  4. Photometric Redshift and Classification for the XMM-COSMOS Sources

    NARCIS (Netherlands)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Zamorani, G.; Brusa, M.; Scoville, N. Z.; Rau, A.; Capak, P.; Arnouts, S.; Aussel, H.; Bolzonella, M.; Buongiorno, A.; Cappelluti, N.; Caputi, K.; Civano, F.; Cook, R.; Elvis, M.; Gilli, R.; Jahnke, K.; Kartaltepe, J. S.; Impey, C. D.; Lamareille, F.; Le Floch, E.; Lilly, S.; Mainieri, V.; McCarthy, P.; McCracken, H.; Mignoli, M.; Mobasher, B.; Murayama, T.; Sasaki, S.; Sanders, D. B.; Schiminovich, D.; Shioya, Y.; Shopbell, P.; Silverman, J.; Smolcic, V.; Surace, J.; Taniguchi, Y.; Thompson, D.; Trump, J. R.; Urry, M.; Zamojski, M.

    2009-01-01

    We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require templat

  5. Photometric Redshift and Classification for the XMM-COSMOS Sources

    NARCIS (Netherlands)

    Salvato, M.; Hasinger, G.; Ilbert, O.; Zamorani, G.; Brusa, M.; Scoville, N. Z.; Rau, A.; Capak, P.; Arnouts, S.; Aussel, H.; Bolzonella, M.; Buongiorno, A.; Cappelluti, N.; Caputi, K.; Civano, F.; Cook, R.; Elvis, M.; Gilli, R.; Jahnke, K.; Kartaltepe, J. S.; Impey, C. D.; Lamareille, F.; Le Floch, E.; Lilly, S.; Mainieri, V.; McCarthy, P.; McCracken, H.; Mignoli, M.; Mobasher, B.; Murayama, T.; Sasaki, S.; Sanders, D. B.; Schiminovich, D.; Shioya, Y.; Shopbell, P.; Silverman, J.; Smolcic, V.; Surace, J.; Taniguchi, Y.; Thompson, D.; Trump, J. R.; Urry, M.; Zamojski, M.

    2009-01-01

    We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require

  6. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Tedeschi, Henry; James, Joseph M.; Anthony, William

    1963-01-01

    Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105

  7. Solving the uncalibrated photometric stereo problem using total variation

    DEFF Research Database (Denmark)

    Quéau, Yvain; Lauze, Francois Bernard; Durou, Jean-Denis

    2013-01-01

    In this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both th...

  8. Photometric CCD observations of four Pre-cataclysmic binary candidates

    Science.gov (United States)

    Hinojosa, R.; Vogt, N.; Colque, Juan Pablo

    We present preliminary results of differential photometric observations of Abell 65, HZ 9, GD 1401 and BPM 46460, obtained between September and December 2006 with the 42 cm telescope of the Cerro Armazones Observatory which belongs to the Universidad Catolica del Norte, Antofagasta. All four stars are close red dwarf/white dwarf binaries which could have formed be recent common envelope events. In two of the four cases we detected (or confirmed) significant variability. In one of them, the central star of a planetary nebula Abell 65, we confirmed the rather strong photometric variability with a period very near to 24 hours (Bond and Livio, 1990). In the white dwarf binary HZ9 we detected, for the first time, photometric variations with a period near 0.58 days which corresponds to the known orbital period (Lanning and Pesch, 1981; Stauffer, 1987). The amplitude of this variation is 0.08 mag, it probably refers to reflection of the white dwarf radiation on the surface of the red companion. - These observations are part of a larger on-going project which pretends to identify and to study pre-cataclysmic binaries by means of photometric and spectroscopic methods and to improve, this way, the hitherto poor statistics on the properties of these interesting stars.

  9. Photometric redshifts of galaxies from SDSS and 2MASS

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Jia-Sheng Huang; Qiu-Sheng Gu

    2009-01-01

    In order to find the physical parameters which determine the accuracy of pho- tometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of ~ 80 000 SDSS-2MASS galaxies. Photo-z's in this paper are es- timated by using the artificial neural network photometric redshift method (ANNz). For a subset of~40000 randomly selected galaxies, we find that the photometric redshift recovers the spectroscopic redshifi distribution very well with rms of 0.016. Our main results are as follows: (1) Using magnitudes directly as input parameters produces more accurate photo-z's than using colors; (2) The inclusion of 2MASS (3, H, Ks) bands does not improve photo-z's significantly, which indicates that near infrared data might not be important for the low-redshift sample; (3) Adding the concentration index (essentially the steepness of the galaxy brightness profile) as an extra input can improve the photo-z's estimation up to~10 percent; (4) Dividing the sample into early- and late-type galaxies by using the concentration index, normal and abnormal galaxies by using the emission line flux ratios, and red and blue galaxies by using color index (g - r), we can improve the accuracy of photo-z's significantly; (5) Our analysis shows that the outliers (where there is a big difference between the spectroscopic and photometric redshifts) are mainly correlated with galaxy types, e.g., most outliers are late-type (blue) galaxies.

  10. Comparison of Approaches to Photometric Redshift Estimation of Quasars

    Science.gov (United States)

    Tu, Yang; Zhang, Yan-Xia; Zhao, Yong-Heng; Tian, Hai-Jun

    We probe many kinds of approaches used for photometric redshift estimation of quasars, including KNN (K-nearest neighbor algorithm), Lasso (Least Absolute Shrinkage and Selection Operator), PLS (Partial Least Square regression), ridge regression, SGD (Stochastic Gradient Descent) and Extra-Trees.

  11. Classical variables in the era of space photometric missions

    Directory of Open Access Journals (Sweden)

    Molnár L.

    2015-01-01

    Full Text Available The space photometric missions like CoRoT and Kepler transformed our view of pulsating stars, including the well-known RR Lyrae and Cepheid classes. The K2, TESS and PLATO missions will expand these investigations to larger sample sizes and to specific stellar populations.

  12. The Angular Power Spectra of Photometric SDSS LRGs

    CERN Document Server

    Thomas, Shaun A; Lahav, Ofer

    2010-01-01

    We construct new galaxy angular power spectra based on the extended, updated and final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey: MegaZ DR7. Encapsulating 7746 deg^{2} we utilise 723,556 photometrically determined LRGs between 0.45 < z < 0.65 in a 3.3 (Gpc h^{-1})^3 spherical harmonic analysis of the galaxy distribution. By combining four photometric redshift bins we find preliminary parameter constraints of f_{b} = \\Omega_{b}/\\Omega_{m} = 0.173 +/- 0.046 and \\Omega_{m} = 0.260 +/- 0.035 assuming H_{0} = 75 km s^{-1} Mpc^{-1}, n_{s}=1 and \\Omega_{k} = 0. These limits are consistent with the CMB and the previous data release (DR4). The C_{\\ell} are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of \\beta ~ \\Omega_{m}^{0.55}/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined...

  13. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  14. Adventures in the World of Pulsating Variable Stars: Multisite Photometric Campaigns

    Science.gov (United States)

    Szabó, R.

    2004-06-01

    Advantages of photometric multisite campaigns are discussed, then published or prospective results of four - preceding and ongoing - observing runs are presented. Prospects and limits of photometric observations carried out from Hungary with small (~ 1m) telescopes are also outlined.

  15. Precision Cosmology with a New Probabilistic Photometric Redshifts Approach

    Science.gov (United States)

    Carrasco Kind, Matias; Brunner, R. J.

    2013-06-01

    A complete understanding of both dark energy and dark matter remains one of most important challenges in astrophysics today. Recent theoretical and numerical computations have made important progress in quantifying the role of these dark components on the formation and evolution of galaxies through cosmic time, but observational verification of these predictions and the development of new, more stringent constraints has not kept pace. It is in this context that, photometric redshifts have become more important with the growth of large imaging surveys, such as DES and LSST, that have been designed to address this issue. But their basic implementation has not changed significantly from their original development, as most techniques provide a single photometric redshift estimate and an associated error for the an extragalactic source. In this work, we present a unique and powerful solution that leverages the full information contained in the photometric data to address this cosmological challenge with a new approach that provides accurate photometric redshift probability density functions (PDF) for galaxies. This new approach, which scales efficiently to massive data, efficiently combines standard template fitting techniques with powerful machine learning methods. Included in this framework is our recently developed technique entitled Trees for PhotoZ (TPZ); a new, robust, parallel photometric redshift code that uses prediction trees and random forests to generate photo-z PDFs in a reliable and fast manner. In addition, our approach also provides ancillary information about the internal structure of the data, including the relative importance of variables used during the redshift estimation, an identification of areas in the training sample that provide poor predictions, and an accurate outlier rejection method. We will also present current results of this approach on a variety of datasets and discuss, by using specific examples, how the full photo-z PDF can be

  16. Exploring the SDSS photometric galaxies with clustering redshifts

    Science.gov (United States)

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-07-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  17. Autoignition and flame stabilisation processes in turbulent non-premixed hot coflow flames

    NARCIS (Netherlands)

    Oldenhof , E.

    2012-01-01

    This dissertation examines stabilisation processes in turbulent non-premixed jet flames, created by injecting gaseous fuel into a co-flowing stream of hot, low-oxygen combustion products. Being able to predict whether and how a flame achieves stable and reliable combustion is a matter of great pract

  18. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  19. Modeling Candle Flame Behavior In Variable Gravity

    Science.gov (United States)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process. This is the limiting case that the mass

  20. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  1. Structure of Flame Balls at Low Lewis-Number

    Science.gov (United States)

    Weiland, Karen J.; Ronney, Paul

    1998-01-01

    The Structure of Flame Balls at Low Lewis-Number (SOFBALL) experiment explored the behavior of a newly discovered flame phenomena called "flame balls." These spherical, stable, stationary flame structures, observed only in microgravity, provide a unique opportunity to study the interactions of the two most important processes necessary for combustion (chemical reaction and heat and mass transport) in the simplest possible configuration. The previously unobtainable experimental data provided a comparison with models of flame stability and flame propagation limits that are crucial both in assessing fire safety and in designing efficient, clean-burning combustion engines.

  2. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom

    2017-01-05

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  3. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    Science.gov (United States)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  4. Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation

    CERN Document Server

    Laurino, Omar; Longo, Giuseppe; Riccio, Giuseppe

    2011-01-01

    With the availability of the huge amounts of data produced by current and future large multi-band photometric surveys, photometric redshifts have become a crucial tool for extragalactic astronomy and cosmology. In this paper we present a novel method, called Weak Gated Experts (WGE), which allows to derive photometric redshifts through a combination of data mining techniques. \

  5. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Discrete photometric chemistry analyzer for... Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a) Identification. A discrete photometric chemistry analyzer for clinical use is a device intended to...

  6. Engineering Flame Retardant Biodegradable Nanocomposites

    Science.gov (United States)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  7. A, a Brominated Flame Retardant

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshita

    2013-01-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a brominated flame retardant, has been found to exacerbate pneumonia in respiratory syncytial virus- (RSV- infected mice. We examined the effect of Brazilian propolis (AF-08 on the exacerbation of RSV infection by TBBPA exposure in mice. Mice were fed a powdered diet mixed with 1% TBBPA alone, 0.02% AF-08 alone, or 1% TBBPA and 0.02% AF-08 for four weeks and then intranasally infected with RSV. TBBPA exposure increased the pulmonary virus titer and level of IFN-γ, a representative marker of pneumonia due to RSV infection, in the lungs of infected mice without toxicity. AF-08 was significantly effective in reducing the virus titers and IFN-γ level increased by TBBPA exposure. Also, AF-08 significantly reduced proinflammatory cytokine (TNF-α and IL-6 levels in the lungs of RSV-infected mice with TBBPA exposure, but Th2 cytokine (IL-4 and IL-10 levels were not evidently increased. Neither TBBPA exposure nor AF-08 treatment affected the anti-RSV antibody production in RSV-infected mice. In flow cytometry analysis, AF-08 seemed to be effective in reducing the ratio of pulmonary CD8a+ cells in RSV-infected mice with TBBPA exposure. TBBPA and AF-08 did not exhibit anti-RSV activity in vitro. Thus, AF-08 probably ameliorated pneumonia exacerbated by TBBPA exposure in RSV-infected mice by limiting excess cellular immune responses.

  8. Sooting turbulent jet flame: characterization and quantitative soot measurements

    Science.gov (United States)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  9. The Photometric Classification Server for Pan-STARRS1

    Science.gov (United States)

    Saglia, R. P.; Tonry, J. L.; Bender, R.; Greisel, N.; Seitz, S.; Senger, R.; Snigula, J.; Phleps, S.; Wilman, D.; Bailer-Jones, C. A. L.; Klement, R. J.; Rix, H.-W.; Smith, K.; Green, P. J.; Burgett, W. S.; Chambers, K. C.; Heasley, J. N.; Kaiser, N.; Magnier, E. A.; Morgan, J. S.; Price, P. A.; Stubbs, C. W.; Wainscoat, R. J.

    2012-02-01

    The Pan-STARRS1 survey is obtaining multi-epoch imaging in five bands (g P1 r P1 i P1 z P1 y P1) over the entire sky north of declination -30 deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors and the measurement of photometric redshifts for extragalactic objects, and will constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium-Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited data set down to the SDSS spectroscopic limits, and therefore potentially improvable, show that stars are correctly classified as such in 85% of cases, galaxies in 97%, and QSOs in 84%. False positives are less than 1% for galaxies, ≈19% for stars, and ≈28% for QSOs. Moreover, photometric redshifts for 1000 luminous red galaxies up to redshift 0.5 are determined to 2.4% precision (defined as 1.48 × Median|z phot - z spec|/(1 + z)) with just 0.4% catastrophic outliers and small (-0.5%) residual bias. For bluer galaxies up to the same redshift, the residual bias (on average -0.5%) trend, percentage of catastrophic failures (1.2%), and precision (4.2%) are higher, but still interestingly small for many science applications. Good photometric redshifts (to 5%) can be obtained for at most 60% of the QSOs of the sample. PCS will create a value-added catalog with classifications and photometric redshifts for eventually many millions of sources.

  10. Launch Pad Flame Trench Refractory Materials

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  11. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.

    1998-11-01

    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  12. Second Law Analysis of Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Yalcin Gogus

    2001-03-01

    Full Text Available The objective of this paper is to investigate the sources of volumetric irreversibilities in both laminar and turbulent diffusion flames. The theoretical background of analysis relies on the local exergy transport equation, which allows the microscopic formulation of the well-known Gouy-Stodola theorem. For laminar reacting flows, the volumetric entropy generation rate expression includes the viscous, thermal, diffusion and chemical components. Their expressions show that the corresponding irreversibilities are uncoupled if the combustion process occurs at constant pressure. The numerical simulation of a methane-air combustion process shows that the thermal, chemical and diffusive irreversibilities represent, in order of enumeration, the predominant irreversibilities in the laminar diffusion reacting flows. In the case of turbulent diffusion flames, the viscous, thermal, diffusion and chemical mean components have to be expressed in accordance with the combustion model. Two combustion models are used: the multi-species approach based on the eddy-break formulation of mean reaction rate, and the assumed probability density function for a conserved scalar that relies on the flame sheet model. For a diffusion methane-air jet flame, the distribution of mean irreversibility components is presented. Taking into account the technical importance of diffusion flames, the analysis could serve to improve the combustion geometry and the flow condition.

  13. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-04-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify, and to confirm or determine rate constants for, the main benzene oxidation reactions in flames, and to characterize soot and fullerenes and their formation mechanisms and kinetics. Stable and radical species profiles in the aromatics oxidation study are measured using molecular beam sampling with on-line mass spectrometry. The rate of soot formation measured by conventional optical techniques is found to support the hypotheses that particle inception occurs through reactive coagulation of high molecular weight PAH in competition with destruction by OHattack, and that the subsequent growth of the soot mass occurs through addition reactions of PAH and C[sub 2]H[sub 2] with the soot particles. During the first year of this reporting period, fullerenes C[sub 60] and C[sub 70] in substantial quantities were found in the flames being studied. The fullerenes were recovered, purified and spectroscopically identified. The yields of C[sub 60] and C[sub 70] were then determined over ranges of conditions in low-pressure premixed flames of benzene and oxygen.

  14. Distributed Flames in Type Ia Supernovae

    CERN Document Server

    Aspden, A J; Woosley, S E; 10.1088/0004-637X/710/2/1654

    2011-01-01

    In the distributed burning regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning depends on the turbulent Damkohler number (Da), which steadily declines from much greater than one to less that one as the density decreases to a few 10^6 g/cc. Scaling arguments predict that the turbulent flame speed s, normalized by the turbulent intensity u, follows s/u=Da^1/2 for Da1, and that localized excursions to as much as five times u can occur. The lambda-flame speed and width can be predicted based on the turbulence in the star and the turbulent nuclear burning time scale of the fuel. We propose a practical method for measuring these based on the scaling relations and small-scale computationally-inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed supernovae flames.

  15. A Novel UV Photon Detector with Resistive Electrodes

    CERN Document Server

    Bidault, J M; Francke, T; Galy, P; Peskov, Vladimir; Rodionov, I

    2006-01-01

    In this study we present first results from a new detector of UV photons: a thick gaseous electron multiplier (GEM) with resistive electrodes, combined with CsI or CsTe/CsI photocathodes. The hole type structure considerably suppresses the photon and ion feedback, whereas the resistive electrodes protect the detector and the readout electronics from damage by any eventual discharges. This device reaches higher gains than a previously developed photosensitive RPC and could be used not only for the imaging of UV sources, flames or Cherenkov light, for example, but also for the detection of X-rays and charged particles.

  16. Pulsating instability and self-acceleration of fast turbulent flames

    CERN Document Server

    Poludnenko, A Y

    2015-01-01

    (Abridged) A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully-resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damk\\"ohler numbers Da = 0.1-6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. 1) Turbulent flame speed develops pulsations with the observed peak-to-peak amplitude > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. 2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when the flame s...

  17. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  18. Daphnid life cycle response to new generation of flame retardants

    NARCIS (Netherlands)

    Waaijers, S.L.; Bleyenberg, T.E.; Dits, A; Schoorl, M.; Schütt, J; Kools, S.A.E.; de Voogt, P.; Admiraal, W.; Parsons, J.R.; Kraak, M.H.S.

    2013-01-01

    Relatively hazardous brominated flame retardants (BFRs) are currently substituted with halogen-free flame retardants (HFFRs). Consequently, information on their persistence, bioaccumulation and toxicity (PBT) is urgently needed. Therefore, we investigated the chronic toxicity to the water flea

  19. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun

    2017-07-03

    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  20. The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

    CERN Document Server

    Poludnenko, Alexei Y; 10.1016/j.combustflame.2010.09.002

    2011-01-01

    (Abridged) Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S_T, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S_L, resulting in the Damkohler number Da = 0.05. Here we show that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S_T is predominantly determined by the increase of the flame surface area, A_T, caused by turbulence. (4) The observed increase of S_T relative to S_L exceeds the corresponding increase of A_T relative to the surface area of...

  1. Galaxy clustering with photometric surveys using PDF redshift information

    Science.gov (United States)

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-06-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colours, that are obtained through multiband imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are Δz = 0.1, the use of the entire PDF reduces the typical measurement bias from 5 per cent, when using single point estimates, to 3 per cent.

  2. Galaxy clustering with photometric surveys using PDF redshift information

    CERN Document Server

    Asorey, J; Sevilla-Noarbe, I; Brunner, R J; Thaler, J

    2016-01-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are $\\Delta z=0.1$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.

  3. DNF - Galaxy photometric redshift by Directional Neighbourhood Fitting

    Science.gov (United States)

    De Vicente, J.; Sánchez, E.; Sevilla-Noarbe, I.

    2016-07-01

    Wide field images taken in several photometric bands allow simultaneous measurement of redshifts for thousands of galaxies. A variety of algorithms to make this measurement have appeared in the last few years, the majority of which can be classified as either template- or training-based methods. Among the latter, nearest neighbour estimators stand out as one of the most successful, in terms of both precision and the quality of error estimation. In this paper we describe the Directional Neighbourhood Fitting (DNF) algorithm based on the following: a new neighbourhood metric (Directional Neighbourhood), a photo-z estimation strategy (Neighbourhood Fitting) and a method for generating the photo-z probability distribution function. We compare DNF with other well-known empirical photometric redshift tools using different public data sets (Sloan Digital Sky Survey, VIMOS VLT Deep Survey and Photo-z Accuracy Testing). DNF achieves high-quality results with reliable error.

  4. Exploring the SDSS Photometric Galaxies with Clustering Redshifts

    CERN Document Server

    Rahman, Mubdi; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J; Morrison, Christopher B; Budavári, Tamás

    2015-01-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SED). We identify and locate star-forming, quiescent galaxies, and AGN, as well as colour changes due to spectral features, such as the 4000 \\AA{} break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ~ 0.8. While the overall shape agrees with that infer...

  5. Modelling multimodal photometric redshift regression with noisy observations

    CERN Document Server

    Kügler, S D

    2016-01-01

    In this work, we are trying to extent the existing photometric redshift regression models from modeling pure photometric data back to the spectra themselves. To that end, we developed a PCA that is capable of describing the input uncertainty (including missing values) in a dimensionality reduction framework. With this "spectrum generator" at hand, we are capable of treating the redshift regression problem in a fully Bayesian framework, returning a posterior distribution over the redshift. This approach allows therefore to approach the multimodal regression problem in an adequate fashion. In addition, input uncertainty on the magnitudes can be included quite naturally and lastly, the proposed algorithm allows in principle to make predictions outside the training values which makes it a fascinating opportunity for the detection of high-redshifted quasars.

  6. Calibrating photometric redshift distributions with cross-correlations

    CERN Document Server

    Schulz, A E

    2009-01-01

    The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshifts by two orders of magnitude, drastically expanding both redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair sub-sample of this new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys. We examine a promising alternative to direct spectroscopic follow up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is effective, but the estimator is weakened by two factors. 1) The correlation function of the spectroscopic sample must be measured i...

  7. Multi-parameter estimating photometric redshifts with artificial neural networks

    CERN Document Server

    Li, L; Zhao, Y; Yang, D; Li, Lili; Zhang, Yanxia; Zhao, Yongheng; Yang, Dawei

    2006-01-01

    We calculate photometric redshifts from the Sloan Digital Sky Survey Data Release 2 Galaxy Sample using artificial neural networks (ANNs). Different input patterns based on various parameters (e.g. magnitude, color index, flux information) are explored and their performances for redshift prediction are compared. For ANN technique, any parameter may be easily incorporated as input, but our results indicate that using reddening magnitude produces photometric redshift accuracies often better than the Petrosian magnitude or model magnitude. Similarly, the model magnitude is also superior to Petrosian magnitude. In addition, ANNs also show better performance when the more effective parameters increase in the training set. Finally, the method is tested on a sample of 79, 346 galaxies from the SDSS DR2. When using 19 parameters based on the reddening magnitude, the rms error in redshift estimation is sigma(z)=0.020184. The ANN is highly competitive tool when compared with traditional template-fitting methods where a...

  8. A Sparse Gaussian Process Framework for Photometric Redshift Estimation

    CERN Document Server

    Almosallam, Ibrahim A; Jarvis, Matt J; Roberts, Stephen J

    2015-01-01

    Accurate photometric redshift are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Data from a simulated survey was used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementation of most regression algorithms has as the objective the minimization of the sum of squared errors. For redshift inference, however, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper we optimize to directly target minimizing $\\Delta z = (z_\\textrm{s} - z_\\textrm{p})/(1+z_\\textrm{s})$ and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with ot...

  9. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  10. Kepler Mission Design, Realized Photometric Performance, and Early Science

    CERN Document Server

    Koch, David G; Basri, Gibor; Batalha, Natalie M; Brown, Timothy M; Caldwell, Douglas; Christensen-Dalsgaard, Joergen; Cochran, William D; DeVore, Edna; Dunham, Edward W; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Gould, Alan; Jenkins, Jon; Kondo, Yoji; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey; Monet, David; Sasselov, Dimitar; Boss, Alan; Brownlee, Donald; Caldwell, John; Dupree, Andrea K; Howell, Steve B; Kjeldsen, Hans; Meibom, Soeren; Morrison, David; Owen, Tobias; Reitsema, Harold; Tarter, Jill; Bryson, Stephen T; Dotson, Jessie L; Gazis, Paul; Haas, Michael R; Kolodziejczak, Jeffrey; Rowe, Jason F; Van Cleve, Jeffrey E; Allen, Christopher; Chandrasekaran, Hema; Clarke, Bruce D; Li, Jie; Quintana, Elisa V; Tenenbaum, Peter; Twicken, Joseph D; Wu, Hayley

    2010-01-01

    The Kepler Mission, launched on Mar 6, 2009 was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just forty-three days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.

  11. Photometric Redshift with Bayesian Priors on Physical Properties of Galaxies

    CERN Document Server

    Tanaka, Masayuki

    2015-01-01

    We present a proof-of-concept analysis of photometric redshifts with Bayesian priors on physical properties of galaxies. This concept is particularly suited for upcoming/on-going large imaging surveys, in which only several broad-band filters are available and it is hard to break some of the degeneracies in the multi-color space. We construct model templates of galaxies using a stellar population synthesis code and apply Bayesian priors on physical properties such as stellar mass and star formation rate. These priors are a function of redshift and they effectively evolve the templates with time in an observationally motivated way. We demonstrate that the priors help reduce the degeneracy and deliver significantly improved photometric redshifts. Furthermore, we show that a template error function, which corrects for systematic flux errors in the model templates as a function of rest-frame wavelength, delivers further improvements. One great advantage of our technique is that we simultaneously measure redshifts...

  12. The Photometric Properties of Galaxies in the Early Universe

    CERN Document Server

    Wilkins, Stephen M; Di-Matteo, Tiziana; Croft, Rupert; Stanway, Elizabeth R; Bunker, Andrew; Waters, Dacen; Lovell, Christopher

    2016-01-01

    We use the large cosmological hydro-dynamic simulation BlueTides to predict the photometric properties of galaxies during the epoch of reionisation ($z=8-15$). These properties include the rest-frame UV to near-IR broadband spectral energy distributions, the Lyman continuum photon production, the UV star formation rate calibration, and intrinsic UV continuum slope. In particular we focus on exploring the effect of various modelling assumptions, including the assumed choice of stellar population synthesis model, initial mass function, and the escape fraction of Lyman continuum photons, upon these quantities. We find that these modelling assumptions can have a dramatic effect on photometric properties leading to consequences for the accurate determination of physical properties from observations. For example, at $z=8$ we predict that nebular emission can account for up-to $50\\%$ of the rest-frame $R$-band luminosity, while the choice of stellar population synthesis model can change the Lyman continuum productio...

  13. Photometric Supernova Cosmology with BEAMS and SDSS-II

    CERN Document Server

    Hlozek, Renée; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Bernstein, Joe; Campbell, Heather; Dilday, Ben; Falck, Bridget; Frieman, Joshua; Kulhmann, Steve; Lampeitl, Hubert; Marriner, John; Nichol, Robert C; Riess, Adam G; Sako, Masao; Schneider, Donald P

    2011-01-01

    Supernova cosmology without spectroscopic confirmation is an exciting new frontier which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of supernovae with their probabilities derived from their multi-band lightcurves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10^4 supernovae, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric supernova cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples which have been cut using typical selection criteria. The latter typically are eith...

  14. The Photometric Software for Transits (PhoS-T)

    Science.gov (United States)

    Mislis, D.; Heller, R.; Fernandez, J.; Seemann, U.; Ioannidis, P.; Avdellidou, C.

    2012-01-01

    We present the Photometric Software for Transits (Phos-T), a user-friendly stand-alone astronomical software built to study in detail photometric data of transiting extra-solar planets. Through a simple and clean graphical environment, PhoS-T can perform data calibration, point-source differential photometry, and transit light curve modelling. Here we present a detailed description of the software, together with the analysis of a recent transit of the extra-solar planet HAT-P-19b, observed from Holomon astronomical station. The results obtained using PhoS-T are in good agreement with previous works, and provide a precise time-of-transit for HAT-P-19b.

  15. Photometric redshifts for supernovae Ia in the Supernova Legacy Survey

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Pascal, S; Rich, J; Guy, J; Bazin, G; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M

    2009-01-01

    We present a method using the SALT2 light curve fitter to determine the redshift of Type Ia supernovae in the Supernova Legacy Survey (SNLS) based on their photometry in g', r', i' and z'. On 289 supernovae of the first three years of SNLS data, we obtain a precision $\\sigma_{\\Delta z/(1+z)} = 0.022$ on average up to a redshift of 1.0, with a higher precision of 0.016 for z0.45. The rate of events with $|\\Delta z|/(1+z)>0.15$ (catastrophic errors) is 1.4%. Both the precision and the rate of catastrophic errors are better than what can be currently obtained using host galaxy photometric redshifts. Photometric redshifts of this precision may be useful for future experiments which aim to discover up to millions of supernovae Ia but without spectroscopy for most of them.

  16. Measuring photometric redshifts using galaxy images and Deep Neural Networks

    Science.gov (United States)

    Hoyle, B.

    2016-07-01

    We propose a new method to estimate the photometric redshift of galaxies by using the full galaxy image in each measured band. This method draws from the latest techniques and advances in machine learning, in particular Deep Neural Networks. We pass the entire multi-band galaxy image into the machine learning architecture to obtain a redshift estimate that is competitive, in terms of the measured point prediction metrics, with the best existing standard machine learning techniques. The standard techniques estimate redshifts using post-processed features, such as magnitudes and colours, which are extracted from the galaxy images and are deemed to be salient by the user. This new method removes the user from the photometric redshift estimation pipeline. However we do note that Deep Neural Networks require many orders of magnitude more computing resources than standard machine learning architectures, and as such are only tractable for making predictions on datasets of size ≤50k before implementing parallelisation techniques.

  17. Assessing the Photometric Calibration of the ASAS Survey

    Science.gov (United States)

    Berdnikov, L. N.; Dambis, A. K.

    2016-05-01

    We compare bona fide calibrated mean VIC magnitudes of several hundred stars found in the CCD frames taken in 2012 during our photometric observations of 109 Cepheids and RR Lyrae type stars made at the South African Astronomical Observatory to the corresponding mean VIC magnitudes measured in the course of the ASAS survey to assess the quality of ASAS photometry and derive the appropriate transformation equations. We conclude that as far as the only serious caveat due to photometric errors, which range from ˜ 0.05m for relatively bright stars to about ˜ 0.15m for ˜ 14m stars and translates into extra fractional distance error of 0.025-0.07.

  18. Luminous Flame Temperature Distribution Measurement Using the Emission Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Flame temperature distribution is one of the most important characteristic parameters in combustion research. The emission method is a good way to measure the luminous flame temperature field. The maximum entropy method is introduced to the temperature distribution measurement of a luminous flame using the emission method. A simplified mathematical model was derived by combining the thermal radiation theory, reconstruction algorithm and maximum entropy method. Suitable parameters were selected in the computing process. Good experimental results were obtained with pulverized coal flames.

  19. CARS Temperature Measurements in Sooting, Laminar Diffusion Flames.

    Science.gov (United States)

    1984-07-30

    ethylene-air discussed above raise ques- tions about structure of a sooting flame and energy loss due to thermal radia- tion from soot. These questions do...certainly suggest that thermal radiation from soot may I, not be the only significant energy loss from a sooting flame . Nonluminous emission from CO2...CARS thermometry in a sooting flame . * Combust. Flame, 36, 87. Farrow, R. L., Lucht, R. P., Flower, W. L., and Palmer, R. E. (1984). Coherent anti

  20. Annealing effect and stability of carbon nanotubes in hydrogen flame

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Annealing of carbon nanotubes (CNTs) by the hydrogen flame in air was investigated in this study. Raman spectroscopy and scanning electron microscopy were used to characterize the products. The peak width of Raman spectra decreased with the increase in the annealing time. The CNTs were not stable in the hydrogen flame and the etching rate of the CNTs by hydrogen flame was very high. The hydrogen flame annealing had some effects on improving the crystallinity of CNTs.

  1. The Influences of Electric Fields on Soot Formation and Flame Structure of Diffusion Flames

    Institute of Scientific and Technical Information of China (English)

    LinXie; TakeyukiKishi; 等

    1993-01-01

    The influences of DC and AC electric fields,at frequencies up to 1.48 MHz and the maximum strength of about 6 kV/cm,on soot formation and flame structure were investigated using a counterflow type acetylene diffusion flame.The distributioons of flame luminosity,soot volume fraction,Flame temperature and OH concentration in flame were measured by non-invasive detection methods.Under the influence of electric fields,the changes in distribution of the soot volume fraction were confirmed.Electric fields of high frequency and high intensity reduced the soot volume fraction.whereas other electric fields increased it.The maximum values of flame temperature and OH concentration decreased.In the relationship between the maximum value of the soot volume fraction and the maximum temperature,the maximum soot volum fraction showed toth increase and decrease with maximum temperatures depending on the frequencies and intensities of the electric fields,and both of them occurred at temperatures lower than 1990 K.The production of the incipient particles seemed to be the dominant process controlling the soot volume fraction due to the electric fields.The luminosity of a sooting diffusion flame was found to depend on the volume fraction and temperature of the soot particles in the flame,As for the behavior of the flame in the electric fields.the ionic wind effect was not found to be dominant in the present work,and the result of the precious simulation based on the ionic wind theory was not consistent with the present experimental results.

  2. The Flame Challenge and Communicating Science

    Science.gov (United States)

    Ames, Ben

    2013-04-01

    When famed actor and science enthusiast Alan Alda was 11 years-old he was itching to know the science behind a flame. He asked his science teacher but her blunt response didn't exactly satisfy his curiosity. ``It's oxidation,'' she said. 65 years later, Alan Alda launched ``The Flame Challenge,'' an annual contest encouraging scientists to improve their communication to the general public. In this talk, last year's winner discusses his approach to successfully explaining the science behind a flame to a wide audience. Because communicating science is a pillar of the scientific method, he shares key elements of successful communication important for engaging funders, policy-makers, students, the general public, and even other scientists.

  3. MYRaf: A new Approach with IRAF for Astronomical Photometric Reduction

    Science.gov (United States)

    Kilic, Y.; Shameoni Niaei, M.; Özeren, F. F.; Yesilyaprak, C.

    2016-12-01

    In this study, the design and some developments of MYRaf software for astronomical photometric reduction are presented. MYRaf software is an easy to use, reliable, and has a fast IRAF aperture photometry GUI tools. MYRaf software is an important step for the automated software process of robotic telescopes, and uses IRAF, PyRAF, matplotlib, ginga, alipy, and Sextractor with the general-purpose and high-level programming language Python and uses the QT framework.

  4. A sparse Gaussian process framework for photometric redshift estimation

    Science.gov (United States)

    Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-01-01

    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.

  5. Asteroid phase curves from Lowell observatory photometric database

    Directory of Open Access Journals (Sweden)

    D. A. Oszkiewicz

    2011-09-01

    Full Text Available We present results obtained from processing large photometric data base. We make use of low-precision (generally rounded to 0.1 mag and low-accuracy (rms magnitude uncertainties of ±0.2 to 0.3 mag data obtained from the Minor Planet Center and modified at Lowell Observatory. We explore first correlations between slope parameter(s and albedo, and second distributions of slope parameter(s in asteroid families and taxa.

  6. The photometric method of extrasolar planet detection revisited

    Science.gov (United States)

    Hale, Alan; Doyle, Laurance R.

    1994-01-01

    We investigate the geometry concerning the photometric method of extrasolar planet detection, i.e., the detection of dimunition of a parent star's brightness during a planetary transit. Under the assumption that planetary orbital inclinations can be defined by a Gaussian with a sigma of 10 deg centered on the parent star's equatorial plane, Monte Carlo simulations suggest that for a given star observed at an inclination of exactly 90 deg, the probability of at least one Earth-sized or larger planet being suitably placed for transits is approximately 4%. This probability drops to 3% for a star observed at an inclination of 80 deg, and is still approximately 0.5% for a star observed at an inclination of 60 deg. If one can select 100 stars with a pre-determined inclination equal or greater than 80 deg, the probability of at least one planet being suitably configured for transits is 95%. The majority of transit events are due to planets in small-a orbits similar to the Earth and Venus; thus, the photometric method in principle is the method best suited for the detection of Earthlike planets. The photometric method also allows for testing whether or not planets can exist within binary systems. This can ge done by selecting binary systems observed at high orbital inclinations, both eclipsing binaries and wider visual binaries. For a 'real-world' example, we look at the alpha Centauri system (i = 79.2 deg). If we assume that the equatorial planes of both components coincide with the system's orbital plane, Monte Carlo simulations suggest that the probability of at least one planet (of either component) being suitably configured for transits is approximately 8%. In conclusion, we present a non-exhaustive list of solar-type stars, both single and within binary systems, which exhibit a high equatorial inclination. These objects may be considered as preliminary candidates for planetary searches via the photometric method.

  7. Photometric redshift and classification for the XMM-COSMOS sources

    CERN Document Server

    Salvato, M; Ilbert, O; Zamorani, G; Brusa, M; Scoville, N; Rau, A; Capak, P; Arnouts, S; Aussel, H; Bolzonella, M; Buongiorno, A; Cappelluti, N; Caputi, K; Civano, F; Cook, R; Elvis, M; Gilli, R; Jahnke, K; Kartaltepe, J S; Impey, C D; Lamareille, F; Le Floc'h, E; Lilly, S; Mainieri, V; McCarthy, P; McCracken, H; Mignoli, M; Mobasher, B; Murayama, T; Sasaki, S; Sanders, D B; Schiminovich, D; Shioya, Y; Shopbell, P; Silvermann, J; Smolcic, V; Surace, J; Taniguchi, Y; Thompson, D; Trump, J R; Urry, M; Zamojski, M

    2008-01-01

    We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as non-active galaxies, while the remaining 1032 require templates with an AGN contribution. High accuracy in the derived photometric redshifts was accomplished as the result of 1) photometry in up to 30 bands with high significance detections, 2) a new set of SED templates including 18 hybrids covering the far-UV to mid-infrared, which have been constructed by the combination of AGN and non-active galaxies templates, and 3) multi-epoch observations that have been used to correct for variability (most important for type 1 AGN). The reliability of the photometric redshifts is evaluated using the sub-sample of 442 sources with measured spectroscopic redshifts. We achieved an accuracy of $\\sigma_{\\Delta z/(1+z_{spec})} = 0.014$ for i$_{AB}^*<$22.5 ($\\sigma_{\\Delta z/(1+z_{spec...

  8. Calibration of LSST Instrumental and Atmospheric Photometric Passbands

    Energy Technology Data Exchange (ETDEWEB)

    Burke, David L.; /SLAC; Axelrod, T.; /Arizona U., Astron. Dept. - Steward Observ.; Barrau, Aurelien; Baumont, Sylvain; /LPSC, Grenoble; Blondin, Stephane; /Marseille, CPPM; Claver, Chuck; /NOAO, Tucson; Gorecki, Alexia; /LPSC, Grenoble; Ivezic, Zeljko; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Krabbendam, Victor; Liang, Ming; Saha, Abhijit; /NOAO, Tucson; Smith, Allyn; /Austin Peay State U.; Smith, R.Chris; /Cerro-Tololo InterAmerican Obs.; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-07-06

    The Large Synoptic Survey Telescope (LSST) will continuously image the entire sky visible from Cerro Pachon in northern Chile every 3-4 nights throughout the year. The LSST will provide data for a broad range of science investigations that require better than 1% photometric precision across the sky (repeatability and uniformity) and a similar accuracy of measured broadband color. The fast and persistent cadence of the LSST survey will significantly improve the temporal sampling rate with which celestial events and motions are tracked. To achieve these goals, and to optimally utilize the observing calendar, it will be necessary to obtain excellent photometric calibration of data taken over a wide range of observing conditions - even those not normally considered 'photometric'. To achieve this it will be necessary to routinely and accurately measure the full optical passband that includes the atmosphere as well as the instrumental telescope and camera system. The LSST mountain facility will include a new monochromatic dome illumination projector system to measure the detailed wavelength dependence of the instrumental passband for each channel in the system. The facility will also include an auxiliary spectroscopic telescope dedicated to measurement of atmospheric transparency at all locations in the sky during LSST observing. In this paper, we describe these systems and present laboratory and observational data that illustrate their performance.

  9. Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs

    CERN Document Server

    Kind, M Carrasco

    2014-01-01

    The estimation and utilization of photometric redshift (photo-z) PDFs has become increasingly important over the last few years. Primarily this is because of the prominent role photo-z PDFs play in enabling photometric survey data to be used to make cosmological constraints, especially when compared to single estimates. Currently there exist a wide variety of algorithms to compute photo-z's, each with their own strengths and weaknesses. In this paper, we present a novel and efficient Bayesian framework that combines the results from different photo-z techniques into a more powerful and robust estimate by maximizing the information from the photometric data. To demonstrate this we use a supervised machine learning technique based on prediction trees and a random forest, an unsupervised method based on self organizing maps and a random atlas, and a standard template fitting method but can be easily extend to other existing techniques. We use data from the DEEP2 survey and more than $10^6$ galaxies from the SDSS...

  10. Photometric monitoring of the young star Par 1724 in Orion

    Science.gov (United States)

    Neuhäuser, R.; Koeltzsch, A.; Raetz, St.; Schmidt, T. O. B.; Mugrauer, M.; Young, N.; Bertoldi, F.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Vaňko, M.; Ginski, C.; Rammo, W.; Moualla, M.; Broeg, C.

    2009-05-01

    We report new photometric observations of the ˜ 200 000 year old naked weak-line run-away T Tauri star Par 1724, located north of the Trapezium cluster in Orion. We observed in the broad band filters B, V, R, and I using the 90 cm Dutch telescope on La Silla, the 80 cm Wendelstein telescope, and a 25 cm telescope of the University Observatory Jena in Großschwabhausen near Jena. The photometric data in V and R are consistent with a ˜ 5.7 day rotation period due to spots, as observed before between 1960ies and 2000. Also, for the first time, we present evidence for a long-term 9 or 17.5 year cycle in photometric data (V band) of such a young star, a cycle similar to that to of the Sun and other active stars. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University; a telescope of the University Observatory Munich on Mount Wendelstein, the 0.9m ESO-Dutch telescope on La Silla, Chile, and with the All Sky Automated Survey (ASAS) project (www.astrouw.edu.pl/asas).

  11. Photometric redshifts for the SDSS Data Release 12

    CERN Document Server

    Beck, Róbert; Budavári, Tamás; Szalay, Alexander S; Csabai, István

    2016-01-01

    We present the methodology and data behind the photometric redshift database of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalog was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of $1,976,978$ galaxies, and extends up to redshift $z\\approx 0.8$, with a useful coverage of up to $z\\approx 0.6$. We provide photometric redshifts and realistic error estimates for the $208,474,076$ galaxies of the SDSS primary photometric catalog. We achieve an average bias of $\\overline{\\Delta z_{\\mathrm{norm}}} = -0.0012$, a standard deviation of $\\sigma \\left(\\Delta z_{\\mathrm{norm}}\\right)=0.0249$, and a $3\\sigma$ outlier rate of $P_o=1.6\\%$ when cross-validating on our training set. The published...

  12. A comprehensive photometric study of the eclipsing binary EP Aurigae

    Science.gov (United States)

    Li, H.-L.; Wei, J.-Y.; Yang, Y.-G.; Li, K.; Zhang, X.-B.

    2015-02-01

    We present new observations for the eclipsing binary EP Aurigae, which were performed by using three small telescopes in China from 2003 December to 2014 January. With the updated 2003 version of the Wilson-Devinney code, the photometric elements were deduced from three sets of light curves. Based on all available eclipsing times, the orbital period changes were investigated. It is discovered that the (O-C) curve may show an existence of light-time effect due to an unseen third body, which was weakly identified by the photometric solution. The modulated period and amplitude of the cyclic variation are P3=71.2(±8.0) yr and A=0.0101(±0.0008) day, respectively. In the co-planar orbit with the binary system, the mass of the third body is M3=0.18(±0.02) M⊙. The photometric results imply that EP Aur is an Algol-type binary with a mass ratio of q=0.831(±0.004). Its primary component almost fills its Roche lobe. Therefore, EP Aur may consist of a normal main-sequence star and a cool Roche-lobe filling subgiant, which may be undergoing rapid mass transfer.

  13. Photometric Study of the Possible Cool Quadruple System PY Virginis

    Science.gov (United States)

    Zhu, L. Y.; Qian, S. B.; Liu, N. P.; Liu, L.; Jiang, L. Q.

    2013-02-01

    Complete CCD photometric light curves in BV(RI)c bands obtained in 2012 for the short-period close binary system PY Virginis are presented. A new photometric analysis with the Wilson—Van Hamme code shows that PY Vir is an A-type marginal contact binary system. The absolute parameters of PY Vir are derived using spectroscopic and photometric solutions. Combining new determined times of minimum light with others published in the literature, the O - C diagram of the binary star is investigated. A periodic variation, with a period of 5.22(±0.05) years and an amplitude of 0.0075(±0.0004) days, was discovered. Since the spectrum of a third component has been detected by Rucinski et al., we consider this cyclic period oscillation to be the result of the light-time effect due to the presence of a third body. This third component may also be a binary itself. Therefore, PY Vir should be a quadruple system composed of two cool-type binary systems. This system is a good astrophysical laboratory to study the formation and evolution of close binaries and multiple systems.

  14. Can Self-Organizing Maps accurately predict photometric redshifts?

    CERN Document Server

    Way, M J

    2012-01-01

    We present an unsupervised machine learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization approach called Self--Organizing Mapping (SOM). A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's Main Galaxy Sample, Luminous Red Galaxy, and Quasar samples along with the PHAT0 data set from the PHoto-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root mean square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches such as Artificial Neural Networks and Gaussian Process Regression. SOM RMSE--results (using $\\Delta$z=z$_{phot}$--z$_{spec}$) for the Main Galaxy Sample are 0.023, for the Luminous Red Galaxy sample 0.027, Quasars are 0.418, and PHAT0 synthetic data are 0.022. The results demonstrate th...

  15. Cosmological parameters from a million photometric redshifts of SDSS LRGs

    CERN Document Server

    Blake, C; Bridle, S; Lahav, O; Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2006-01-01

    We analyze MegaZ-LRG, a new photometric-redshift catalogue of Luminous Red Galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains > 10^6 photometric redshifts derived with ANNz, an Artificial Neural Network method, constrained by a spectroscopic sub-sample of ~13,000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4photometric redshift survey. Combining the redshift slices with appropriate covariances, we determine the matter density Omega_m and baryon density Omega_b in the combinations Omega_m h = 0.20+/-0.03 and Omega_b/Omega_m = 0.14+/-0.04. These results are in agreement with and independent of the latest studies of the Cosmic Microwave Background radiation, and their precision is comparable to analyses of conte...

  16. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  17. Long-term Photometric Behavior of Outbursting AM CVn Systems

    CERN Document Server

    Levitan, David; Prince, Thomas A; Kulkarni, Shrinivas R; Laher, Russ; Ofek, Eran O; Sesar, Branimir; Surace, Jason

    2014-01-01

    The AM CVn systems are a class of He-rich, post-period minimum, semi-detached, ultra-compact binaries. Their long-term light curves have been poorly understood due to the few systems known and the long (hundreds of days) recurrence times between outbursts. We present combined photometric light curves from the LINEAR, CRTS, and PTF synoptic surveys to study the photometric variability of these systems over an almost 10 yr period. These light curves provide a much clearer picture of the outburst phenomena that these systems undergo. We characterize the photometric behavior of most known outbursting AM CVn systems and establish a relation between their outburst properties and the systems' orbital periods. We also explore why some systems have only shown a single outburst so far and expand the previously accepted phenomenological states of AM CVn systems. We conclude that the outbursts of these systems show evolution with respect to the orbital period, which can likely be attributed to the decreasing mass transfe...

  18. A Fourteen-Band Photometric Study of A2443

    Institute of Scientific and Technical Information of China (English)

    Zhong-Lue Wen; Yan-Bin Yang; Qi-Rong Yuan; Xu Zhou; Jun Ma; Zhao-Ji Jiang

    2007-01-01

    We present a multi-color photometric study of the galaxy cluster A2443 (z = 0.108) with the Beijing-Arizona-Taiwan-Connecticut (BATC) system. The spectral energy distributions (SEDs) in 14 intermediate bands are obtained for 5975 detected from ~1deg2 of the BATC images. Color-color diagrams are used for star-galaxy separation, then a photometric redshift technique is applied to the galaxy sample for cluster membership determination. There are 301 galaxies with photometric redshifts between 0.08 and 0.14 determined as member candidates of A2443, including 289 new ones. Based on this enlarged sample, the luminosity function and color magnitude relation of the cluster are studied. With an evolutionary synthesis model, we find that the fainter galaxies tend to have longer time scales of star formation than the brighter ones. Morphologically, we show an elongated spatial distribution associating with the galaxy cluster ZwCl 2224.2+ 1651, which contains more blue galaxies. This result indicates that galaxy cluster ZwCl 2224.2+1651 may be falling into A2443, and cluster-cluster interaction could have triggered star formation activities in ZwCl 2224.2+1651.

  19. Evolution of Galaxy Luminosity Function Using Photometric Redshifts

    CERN Document Server

    Ramos, B H F; Benoist, C; da Costa, L N; Maia, M A G; Makler, M; Ogando, R L C; de Simoni, F; Mesquita, A A

    2011-01-01

    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end we compare LFs obtained using photometric redshifts from the CFHT Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ~4800 galaxies. We find that for z<2, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of CFHTLS comprising ~386000 galaxies to compute the LF of the combined fields and estimate directly the error in the parameters based on field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ~0.7mag from z~1.8 to z~0.3, while the characteristic density phi* increases by a factor of ~4 in the same redshift bin. We use the galaxy classification provided by the templ...

  20. The Photometric Classification Server for Pan-STARRS1

    CERN Document Server

    Saglia, R P; Bender, R; Greisel, N; Seitz, S; Senger, R; Snigula, J; Phleps, S; Wilman, D; Bailer-Jones, C A L; Klement, R J; Rix, H -W; Smith, K; Green, P J; Burgett, W S; Chambers, K C; Heasley, J N; Kaiser, N; Magnier, E A; Morgan, J S; Price, P A; Stubbs, C W; Wainscoat, R J

    2011-01-01

    The Pan-STARRS1 survey is obtaining multi-epoch imaging in 5 bands (gps rps ips zps yps) over the entire sky North of declination -30deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors, the measurement of photometric redshifts for extragalactic objects, and constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited dataset down to the SDSS spectroscopic limits and therefore potentially improv...

  1. A Photometric Study of Stars in the MBM 12 Association

    Science.gov (United States)

    Herbst, William; Williams, Eric C.; Hawley, Wendy P.

    2004-03-01

    We have monitored four fields containing nine previously identified members of the MBM 12 association to search for photometric variability and periodicity in these pre-main-sequence stars. Seven of the nine are found to be variable and definite periodicity (of 1.2, 2.6, and 6.2 days) is found for three of them, including the classical T Tauri star LkHα 264. Two other members are possibly periodic, but each requires confirmation. In addition, a ``field'' star that is associated with the X-ray source RX J0255.9+2005 was discovered to be a variable with a period of 4.2 days. Our results indicate that the photometric variability characteristics of the known MBM 12 association members are typical of what is found in roughly few-million-year-old stellar groups such as IC 348, supporting arguments for a similar age. In particular, there is a mix of periodic and nonperiodic variables with typical amplitudes (in Cousins I) of 0.1-0.5 mag, in addition to a small number of larger amplitude variables. The periods, as a group, are somewhat shorter than in IC 348, but when allowance is made for the known dependence of period on mass in pre-main-sequence stars the difference may not be significant. Our data confirm and illustrate the value of photometric monitoring as a tool for identifying likely association members and for studying rotation in extremely young stellar groups.

  2. Front roughening of flames in discrete media

    Science.gov (United States)

    Lam, Fredric; Mi, XiaoCheng; Higgins, Andrew J.

    2017-07-01

    The morphology of flame fronts propagating in reactive systems composed of randomly positioned, pointlike sources is studied. The solution of the temperature field and the initiation of new sources is implemented using the superposition of the Green's function for the diffusion equation, eliminating the need to use finite-difference approximations. The heat released from triggered sources diffuses outward from each source, activating new sources and enabling a mechanism of flame propagation. Systems of 40 000 sources in a 200 ×200 two-dimensional domain were tracked using computer simulations, and statistical ensembles of 120 realizations of each system were averaged to determine the statistical properties of the flame fronts. The reactive system of sources is parameterized by two nondimensional values: the heat release time (normalized by interparticle diffusion time) and the ignition temperature (normalized by adiabatic flame temperature). These two parameters were systematically varied for different simulations to investigate their influence on front propagation. For sufficiently fast heat release and low ignition temperature, the front roughness [defined as the root mean square deviation of the ignition temperature contour from the average flame position] grew following a power-law dependence that was in excellent agreement with the Kardar-Parisi-Zhang (KPZ) universality class (β =1 /3 ). As the reaction time was increased, lower values of the roughening exponent were observed, and at a sufficiently great value of reaction time, reversion to a steady, constant-width thermal flame was observed that matched the solution from classical combustion theory. Deviation away from KPZ scaling was also observed as the ignition temperature was increased. The features of this system that permit it to exhibit both KPZ and non-KPZ scaling are discussed.

  3. Large Scale Flame Spread Environmental Characterization Testing

    Science.gov (United States)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  4. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  5. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant....

  6. Preparation and characterizations of flame retardant polyamide 66 fiber

    Science.gov (United States)

    Li, Y. Y.; Liu, K.; Xiao, R.

    2017-06-01

    The polyamide 66 (PA66) is one of the most important thermoplastic materials, but it has the drawback of flammability. So the flame retardant PA66 was prepared by condensation polymerization using nylon salt and DOPO-based flame retardant in this paper. Then the flame retardant PA66 fiber was manufactured via melt spinning. The properties of flame retardant PA66 and flame retardant PA66 fiber were investigated by relative viscosity, differential scanning calorimetry (DSC), tensile test, vertical burning test (UL94) and limiting oxygen index (LOI) test. Although the loading of the DOPO-based flame retardant decreased the molecular weight, the melting temperature, the crystallinity and the mechanical properties of flame retardant PA66, the flame retardancy properties improved. The flame retardant PA66 loaded with 5.5 wt% of DOPO-based flame retardant can achieve a UL94 V-0 rating with a LOI value of 32.9%. The tenacity at break decreased from 4.51 cN·dtex-1 for PA66 fiber to 2.82 cN·dtex-1 for flame retardant PA66 fiber which still satisfied the requirements for fabrics. The flame retardant PA66 fiber expanded the application of PA66 materials which had a broad developing prospect.

  7. 30 CFR 56.6904 - Smoking and open flames.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  8. Entrainment regimes and flame characteristics of wildland fires

    Science.gov (United States)

    Ralph M. Nelson; Bret W. Butler; David R. Weise

    2012-01-01

    This paper reports results from a study of the flame characteristics of 22 wind-aided pine litter fires in a laboratory wind tunnel and 32 field fires in southern rough and litter-grass fuels. Flame characteristic and fire behaviour data from these fires, simple theoretical flame models and regression techniques are used to determine whether the data support the...

  9. New UV detectors for solar observations

    Science.gov (United States)

    Hochedez, Jean-Francois E.; Schuehle, Udo H.; Pau, Jose L.; Alvarez, Jose; Hainaut, Olivier; Appourchaux, Thierry P.; Auret, F. D.; Belsky, Andrei; Bergonzo, Philippe; Castex, M. C.; Deneuville, A.; Dhez, Pierre; Fleck, Bernhard; Haenen, Ken; Idir, Mourad; Kleider, Jean Paul; Lefeuvre, Elie; Lemaire, Philippe; Monroy, E.; Muret, P.; Munoz, Elias; Nesladek, Milos; Omnes, Franck; Pace, Emanuele; Peacock, Anthony J.; Van Hoof, Chris A.

    2003-02-01

    BOLD (Blind to the Optical Light Detectors) is an international initiative dedicated to the development of novel imaging detectors for UV solar observations. It relies on the properties of wide bandgap materials (in particular diamond and Al-Ga-nitrides). The investigation is proposed in view of the Solar Orbiter (S.O.) UV instruments, for which the expected benefits of the new sensors -primarily visible blindness and radiation hardness- will be highly valuable. Despite various advances in the technology of imaging detectors over the last decades, the present UV imagers based on silicon CCDs or microchannel plates exhibit limitations inherent to their actual material and technology. Yet, the utmost spatial resolution, fast temporal cadence, sensitivity, and photometric accuracy will be decisive for the forthcoming solar space missions. The advent of imagers based on wide-bandgap materials will permit new observations and, by simplifying their design, cheaper instruments. As for the Solar Orbiter, the aspiration for wide-bandgap material (WBGM) based UV detectors is still more sensible because the spacecraft will approach the Sun where the heat and the radiation fluxes are high. We describe the motivations, and present the program to achieve revolutionary flight cameras within the Solar Orbiter schedule as well as relevant UV measurements.

  10. Global and Spatially Resolved Photometric Properties of the Nucleus of Comet 67P/C-G from OSIRIS Images

    Science.gov (United States)

    Lamy, P.

    2014-04-01

    Following the successful wake-up of the ROSETTA spacecraft on 20 January 2014, the OSIRIS imaging system was fully re-commissioned at the end of March 2014 confirming its initial excellent performances. The OSIRIS instrument includes two cameras: the Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) with respective fieldsofview of 2.2° and 12°, both equipped with 2K by 2K CCD detectors and dual filter wheels. The NAC filters allow a spectral coverage of 270 to 990 nm tailored to the investigation of the mineralogical composition of the nucleus of comet P/Churyumov- Gerasimenko whereas those of the WAC (245-632 nm) aim at characterizing its coma [1]. The NAC has already secured a set of four complete light curves of the nucleus of 67P/C-G between 3 March and 24 April 2014 with a primary purpose of characterizing its rotational state. A preliminary spin period of 12.4 hours has been obtained, similar to its very first determination from a light curve obtained in 2003 with the Hubble space telescope [2]. The NAC and WAC will be recalibrated in the forthcoming weeks using the same stellar calibrators VEGA and the solar analog 16 Cyg B as for past inflight calibration campaigns in support of the flybys of asteroids Steins and Lutetia. This will allow comparing the pre- and post-hibernation performances of the cameras and correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters) if required. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appear as either slightly defocused images offset from the primary images or large round or elliptical halos. We will first present results on the global

  11. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  12. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    Science.gov (United States)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical

  13. Computatonal and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, M.D.; Long, M.B. [Yale Univ., New Haven, CT (United States)

    1993-12-01

    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  14. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  15. 4H-SiC Schottky photodiodes for ultraviolet flame detection

    Science.gov (United States)

    Mazzillo, M.; Sciuto, A.

    2015-10-01

    In the last few years silicon carbide (SiC) has emerged as an appropriate material for the detection of very low ultraviolet photon fluxes even at elevated temperatures. In this paper we report on the electro-optical characteristics of large area interdigit Ni2Si/4H-SiC photodiodes in TO metal can package with a suitable molded cap quartz window with high transmission in the ultraviolet wavelength range. The detectors have been tested for the detection of the ultraviolet component of the yellow flame emitted by a small candle, showing good sensitivity for very weak photon fluxes notwithstanding the linear operation condition of the photodiodes.

  16. CALIBRATION OF THE MEARTH PHOTOMETRIC SYSTEM: OPTICAL MAGNITUDES AND PHOTOMETRIC METALLICITY ESTIMATES FOR 1802 NEARBY M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Newton, Elisabeth R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2016-02-20

    The MEarth Project is a photometric survey systematically searching the smallest stars near the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color–magnitude–metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance, assuming solar neighborhood metallicity. We find that the median metallicity for a volume-limited sample of stars within 20 pc of the Sun is [Fe/H] = −0.03 ± 0.008, and that 29/565 of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity distribution of nearby G dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important for assessing the significance of any putative planet–metallicity correlation.

  17. Analysis of the photometric and astrometric fidelity of high-resistivity, p- channel CCDs

    Science.gov (United States)

    Abunaemeh, Malek Amir Mahmoud

    effective lateral diffusion increase of 0.19% in the vertical direction and no additional diffusion in the x -direction. Comparison of the photometric performance of normally dithered images to the phase dithered images found a mean difference of only 0.33% with the deviation between runs being 0.06% for the dithered and as little as 0.19% for the phase dithered. We conclude that the implications for performing precision cosmology experiments such as Supernova la Cosmology and Gravitational Weak Lensing are not adversely affected by intrapixel sensitivity variations in these devices; however, increased lateral diffusion near the device edges must be considered. Also, improvements in the photometric and astrometric fidelity of these detectors provided by the normal dithering process are available via the more efficient technique of CCD phase dithering.

  18. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  19. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  20. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-01-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  1. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  2. Radiative Structures of Lycopodium-Air Flames in Low Gravity

    Science.gov (United States)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.

    1989-01-01

    Initially uniform clouds of fuel particulates in air sustain processes which may lead to particle cloud nonuniformities. In low gravity, flame-induced Kundt's Tube phenomena are observed to form regular patterns of nonuniform particle concentrations. Irregular patterns of particle concentrations also are observed to result from selected nonuniform mixing processes. Low gravity flame propagation for each of these classes of particle cloud flames has been found to depend importantly on the flame-generated infrared radiative fields. The spatial structures of these radiative fields are described. Application is made for the observed clases of lycopodium-air flames.

  3. Response of fire detectors to different smokes

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, J.; Keski-Rahkonen, O. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1997-12-31

    The purpose of this work is to characterize the behavior of fire alarm systems based on smoke detectors on smoldering fires especially cable fires in nuclear power plants (NPP). Full-scale fire experiments were carried out in a laboratory designed according to the standard EN54-9. The laboratory was instrumented with additional equipment such as thermocouples and flow meters which are not used in standard fire sensitivity tests. This allows the results to be used as experimental data for validation tasks of numerical fire simulation computerized fluid dynamics (CFD)-codes. The ultimate goal of the research is to model theoretically smoldering and flaming cable fires, their smoke production, transfer of smoke to detectors, as well as the response of detectors and fire alarm systems to potential fires. This would allow the use of numerical fire simulation to predict fire hazards in different fire scenarios found important in PSA (probability safety assessment) of NPPs. This report concentrates on explaining full-scale fire experiments in the smoke sensitivity laboratory and experimental results from fire tests of detectors. Validation tasks with CFD-codes will be first carried out `blind` without any idea about corresponding experimental results. Accordingly, the experimental results cannot be published in this report. (orig.). 12 refs.

  4. FLARE FLAME INSTABILITY AND BURNER COMBUSTION CONTROL

    OpenAIRE

    БОНДАРЕНКО А.В.; В. Э. Волков; Максимов, М. В.

    2014-01-01

    Research of the flare instability development and the laminar-to-turbulent transition for the flares was executed. It was proved that the effects of viscosity and compressibility have the stabilizing influence on the gas flame. The study of the individual flare stability makes the theoretical basis of the fuel burning technology in combustion chambers and for the burner combustion control.

  5. Radical recombinations in acetylene-air flames

    NARCIS (Netherlands)

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    1965-01-01

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to th

  6. Numerical study of one swirling flame

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    This paper presents numerical study of one of Sydney swirl flames. Good agreements gained between numerical results and the experimental data. Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods show different flow patterns in isothermal and reacting case. The influence...

  7. The VLT-FLAMES Tarantula survey

    NARCIS (Netherlands)

    Taylor, W.D.; Evans, C.J.; Henault-Brunet, V.; Bastian, N.; Beletsky, Y.; Bestenlehner, J.; Brott, I.; Cantiello, M.; Carraro, G.; Clark, J.S.; Crowther, P.A.; de Koter, A.; de Mink, S.E.; Doran, E.; Dufton, P.L.; Dunstall, P.; Gieles, M.; Grafener, G.; Herrero, A.; Howarth, I.D.; Langer, N.; Lennon, D.J.; Maiz-Apellaniz, J; Markova, N.; Najarro, P.; Puls, J.; Sana, H.A.A.; Simon-Diaz, S.; Smartt, S.J.; Stroud, V.E.; van Loon, J.T.; Vink, J.S.; Walborn, N.R.

    2011-01-01

    The VLT-FLAMES Tarantula Survey is an ESO Large Programme that has provided multi-epoch spectroscopy of over 1000 stars in the 30 Doradus region in the Large Magellanic Cloud. Armed with this unique dataset the assembled consortium is now addressing a broad range of fundamental questions in both ste

  8. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  9. Experiments and modelling on vertical flame spread

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Mangs, J. [VTT Building and Transport, Espoo (Finland)

    2004-07-01

    he principle and some preliminary results are shown of a new vertical flame spread modelling effort. Quick experimental screenings on relevant phenomena are made, some models are evaluated, and a new set of needed measuring instruments is proposed. Finally a single example of FRNC cable is shown as application of the methods. (orig.)

  10. Brominated flame retardants and endocrine disruption

    NARCIS (Netherlands)

    Vos, J.G.; Becher, G.; Berg, van den M.; Boer, de J.; Leonards, P.E.G.

    2003-01-01

    From an environmental point of view, an increasing important group of organohalogen compounds are the brominated flame retardants (BFRs), which are widely used in polymers and textiles and applied in construction materials, furniture, and electronic equipment. BFRs with the highest production volume

  11. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.

    2016-01-27

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  12. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    CERN Document Server

    Liberman, M A; Kiverin, A D

    2015-01-01

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  13. The flame anchoring mechanism and associated flow structure in bluff-body stabilized lean premixed flames

    Science.gov (United States)

    Michaels, Dan; Shanbhogue, Santosh; Ghoniem, Ahmed

    2015-11-01

    We present numerical analysis of a lean premixed flame anchoring on a heat conducting bluff-body. Different mixtures of CH4/H2/air are analyzed in order to systematically vary the burning velocity, adiabatic flame temperature and extinction strain rate. The study was motivated by our experimental measurements in a step combustor which showed that both the recirculation zone length and stability map under acoustically coupled conditions for different fuels and thermodynamic conditions collapse using the extinction strain rate. The model fully resolves unsteady two-dimensional flow with detailed chemistry and species transport, and without artificial flame anchoring boundary conditions. The model includes a low Mach number operator-split projection algorithm, coupled with a block-structured adaptive mesh refinement and an immersed boundary method for the solid body. Calculations reveal that the recirculation zone length correlates with the flame extinction strain rate, consistent with the experimental evidence. It is found that in the vicinity of the bluff body the flame is highly stretched and its leading edge location is controlled by the reactants combustion characteristics under high strain. Moreover, the flame surface location relative to the shear layer influences the vorticity thus impacting the velocity field and the recirculation zone. The study sheds light on the experimentally observed collapse of the combustor dynamics using the reactants extinction strain rate.

  14. Flame retardancy and its mechanism of polymers flame retarded by DBDPE/Sb2O3

    Institute of Scientific and Technical Information of China (English)

    ZUO Jian-dong; LI Rong-xun; FENG Shao-hua; LIU Guang-ye; ZHAO Jian-qing

    2008-01-01

    The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane(DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The results show thatABS/DBDPE/Sb2O3 has the similar flammability parameters and thermal composition curves to ABS/DBDPO/Sb3O3. It suggests thatDBDPE/Sb2O3 has the similar flame retardant behavior to DBDPO/Sb2O3. The heat release rate (HRR) and the effect heat combustion (EHC) curves of polymers flame retarded by DBDPE/Sb2O3 all decrease, but the mass loss rate (MLR) curve slightly increase. It shows that the decrease of HRR is not due to the increase of char formation ratio but the generation of incombustible gases. The major flame retardant mechanism of DBDPE/Sb2O3 is gas phase flame retardant mechanism. Increasing content of Sb2O3in DBDPE/Sb2O3 can improve the flame retardant property and thermal stability of aerylonitrile butadiene styrene. Sb203 has a good synergistic effect with DBDPE.

  15. [Determination of three organophosphorous flame retardants in textiles by gas chromatography].

    Science.gov (United States)

    Mu, Junze; Li, Xuan; Zhang, Bin; Jiang, Liyuan

    2007-05-01

    A method of simultaneous determination of three organophosphorous flame retardants in textiles by capillary gas chromatograph (GC) combined with nitrogen phosphorus detector (NPD) was developed. The samples were extracted by ultrasonic extraction, filtered by 0.22 microm microporous film and then directly analyzed by GC-NPD. The ultrasonic extraction key factors optimized by the orthogonal design were as follows: the volume ratio of acetone to n-hexane was 2 : 8, the extraction time was 40 min and the solvent volume was 35 mL. The linear ranges of tris (2-chloroethyl) phosphate (TCEP), tri-o-cresyl phosphate (TOCP) and tris (2,3-dibromopropyl) phosphate (TRIS) were 0.375 8 - 36.38 microg/mL, 0.384 1 - 38.41 microg/mL and 15.78 - 1 010 microg/mL, respectively, and the detection limits were 0.044 mg/kg, 0.053 mg/kg and 0.82 mg/kg, respectively. Textile samples including cotton, flax, nylon, silk and terylene spiked with different levels of the three flame retardants were employed to investigate the method precision and recovery. For aforementioned analytes, the method precisions were 6.2%, 7.7% and 6.5%, respectively and the method recoveries based on spiked studies were in the range of 83.2% - 115.4%. The method is suitable for the determination of three organophosphorous flame retardant residues in textiles in commodity inspection.

  16. Numerical assessment of accurate measurements of laminar flame speed

    Science.gov (United States)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano

    2016-12-01

    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  17. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    Science.gov (United States)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  18. Modeling and simulation of axisymmetric stagnation flames

    Science.gov (United States)

    Sone, Kazuo

    Laminar flame modeling is an important element in turbulent combustion research. The accuracy of a turbulent combustion model is highly dependent upon our understanding of laminar flames and their behavior in many situations. How much we understand combustion can only be measured by how well the model describes and predicts combustion phenomena. One of the most commonly used methane combustion models is GRI-Mech 3.0. However, how well the model describes the reacting flow phenomena is still uncertain even after many attempts to validate the model or quantify uncertainties. In the present study, the behavior of laminar flames under different aerodynamic and thermodynamic conditions is studied numerically in a stagnation-flow configuration. In order to make such a numerical study possible, the spectral element method is reformulated to accommodate the large density variations in methane reacting flows. In addition, a new axisymmetric basis function set for the spectral element method that satisfies the correct behavior near the axis is developed, and efficient integration techniques are developed to accurately model axisymmetric reacting flow within a reasonable amount of computational time. The numerical method is implemented using an object-oriented programming technique, and the resulting computer program is verified with several different verification methods. The present study then shows variances with the commonly used GRI-Mech 3.0 chemical kinetics model through a direct simulation of laboratory flames that allows direct comparison to experimental data. It is shown that the methane combustion model based on GRI-Mech 3.0 works well for methane-air mixtures near stoichiometry. However, GRI-Mech 3.0 leads to an overprediction of laminar flame speed for lean mixtures and an underprediction for rich mixtures. This result is slightly different from conclusion drawn in previous work, in which experimental data are compared with a one-dimensional numerical solutions

  19. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  20. Flame quenching process in cavity based on model scramjet combustor

    Institute of Scientific and Technical Information of China (English)

    Yu Pan; Jing Lei; Jian-Han Liang; Wei-Dong Liu; Zhen-Guo Wang

    2012-01-01

    The flame quenching process in combustors was observed by high speed camera and Schlieren system,at the inflow conditions of Ma =2.64,To =1 483 K,P0 =1.65 MPa,T =724 K and P =76.3 kPa.Changing process of the flame and shock structure in the combustor was clearly observed.The results revealed that the precombustion shock disappeared accompanied with the process in which the flame was blown out and withdrawed from the mainflow into the cavity and vanished after a short while.The rime of quenching process was extended by the cavity flame holder,and the ability of flame holding was enhanced by arranging more cavities in the downstream as well.The flame was blown from the upstream to the downstream,so the flame in the downstream of the cavity was quenched out later than that in the upstream.

  1. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  2. Flame Propagation of Butanol Isomers/Air Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Egolfopoulos, Fokion N.

    2011-01-01

    An experimental and computational study was conducted on the propagation of flames of saturated butanol isomers. The experiments were performed in the counterflow configuration under atmospheric pressure, unburned mixture temperature of 343 K, and for a wide range of equivalence ratios. The experiments were simulated using a recent kinetic model for the four isomers of butanol. Results indicate that n-butanol/air flames propagate somewhat faster than both sec-butanol/air and iso-butanol/air flames, and that tert-butanol/air flames propagate notably slower compared to the other three isomers. Reaction path analysis of tert-butanol/air flames revealed that iso-butene is a major intermediate, which subsequently reacts to form the resonantly stable iso-butenyl radical retarding thus the overall reactivity of tert-butanol/air flames relatively to the other three isomers. Through sensitivity analysis, it was determined that the mass burning rates of sec-butanol/air and iso-butanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 2} hydrocarbon kinetics and not to fuel-specific reactions similarly to n-butanol/air flames. However, for tert-butanol/air flames notable sensitivity to fuel-specific reactions exists. While the numerical results predicted closely the experimental data for n-butanol/air and sec-butanol/air flames, they overpredicted and underpredicted the laminar flame speeds for iso-butanol/air and tert-butanol/air flames respectively. It was demonstrated further that the underprediction of the laminar flame speeds of tert-butanol/air flames by the model was most likely due to deficiencies of the C{sub 4}-alkene kinetics.

  3. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames

    Science.gov (United States)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.

    1997-01-01

    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient

  4. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations

    Science.gov (United States)

    Santos, Willy G.; Cavalheiro, E´der T. G.

    2015-01-01

    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  5. Assembling and Using an LED-Based Detector to Monitor Absorbance Changes during Acid-Base Titrations

    Science.gov (United States)

    Santos, Willy G.; Cavalheiro, E´der T. G.

    2015-01-01

    A simple photometric assembly based in an LED as a light source and a photodiode as a detector is proposed in order to follow the absorbance changes as a function of the titrant volume added during the course of acid-base titrations in the presence of a suitable visual indicator. The simplicity and low cost of the electronic device allow the…

  6. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  7. Photometric Variations In The Sun And Solar-Type Stars

    Science.gov (United States)

    Giampapa, Mark

    The rich array of solar magnetic field-related phenomena we see occurs not only on stellar counterparts of our Sun but in stars that represent significant departures in their fundamental parameters from those of the Sun. Though these phenomena appear energetically negligible when compared to the total luminosity of stars, they nevertheless govern the angular momentum evolution and modulate the radiative and particle output of the Sun and late-type stars. The term "The Solar-Stellar Connection" has been coined to describe the solar-stellar synergisms in the investigation of the generation, emergence and coupling of magnetic fields with the outer solar-stellar atmosphere to produce what we broadly refer to as magnetic activity. With the discovery of literally thousands of planets beyond our solar system, the Solar-Stellar-Planet Connection is quickly emerging as a new area of investigation of the impacts of magnetic activity on exoplanet atmospheres. In parallel with this rapid evolution in our perspectives is the advent of transformative facilities for the study of the Sun and the dynamic Universe. The primary focus of this invited talk will be on photometric variations in solar-type stars and the Sun. These brightness variations are associated with thermal homogeneities typically defined by magnetic structures that are also spatially coincident with key radiative proxies. Photometric variability in solar-type stars and the Sun includes transient brightening, rotational modulation by cool spots and cycle-related variability, each with a characteristic signature in time and wavelength. The emphasis of this presentation will be on the relationship between broadband photometric variations and magnetic field-related activity in solar-type stars and the Sun. Facets of this topic will be discussed both retrospectively and prospectively as we enter a revolutionary, new era for astronomy.

  8. The SNAP near infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tarle, G.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.D.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, Anne; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kim, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Lampton, M.; Levi, M.E.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Massey, R.; Miguel, R.; McKay, T.; McKee, S.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tomasch, A.; von der Lippe, H.; Vincent, R.; Walder, J.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.

  9. Stereo-photometric techniques for scanning micrometer scale

    Directory of Open Access Journals (Sweden)

    Rocio Cachero

    2015-11-01

    Full Text Available This paper describes a new methodology based on the combination of photogrammetric and stereo-photometric techniques that allows creating virtual replicas reproducing the relief in micrometric scale, with a geometric resolution until 7 microns. The finest details of the texture obtained by photogrammetric methods are translated to the relief of the mesh to provide quality 3D printing by additive manufacturing methods. These results open new possibilities for virtual and physical reproduction of archeological items that need a great accuracy and geometric resolution.

  10. A photometric function for diffuse reflection by particulate materials

    Science.gov (United States)

    Meador, W. E.; Weaver, W. R.

    1975-01-01

    A photometric function is proposed to describe the diffuse reflection of radiation by particulate materials. Both multiple scattering and the dominant effects of particle shadowing are included and the function is verified by comparisons with the photometries of laboratory surfaces. Brightness measurements of planetary and other diffusely scattering surfaces can be used to calculate the brightness for geometries other than those used in the measurements and for which the Minnaert function does not apply. The measurements also can be directly related to such surface characteristics as particle size, single-particle albedo, and compactness.

  11. Photometric correction of VIR high space resolution data of Ceres

    Science.gov (United States)

    Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Giacomo Carrozzo, Filippo; Capria, Maria Teresa; Zambon, Francesca; Raponi, Andrea; Ammannito, Eleonora; Zinzi, Angelo; Raymond, Carol; Russell, Christopher T.; VIR-Dawn Team

    2016-10-01

    NASA's Dawn spacecraft [1] has been orbiting Ceres since early 2015. The mission is divided into five stages, characterized by different spacecraft altitudes corresponding to different space resolutions, i.e. Approach (CSA), Rotational Characterization (CSR), Survey (CSS), High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO).Ceres is a dark body (i.e. average albedo at 1.2 um is 0.08 [2]), hence photometric correction is much more important than for brighter asteroids (e.g. S-type and achondritric). Indeed, the negligible role of multiple scattering increases the reflectance dependence on phase angle.A photometric correction of VIR data at low spatial resolution (i.e. CSA, CSR, CSS) has already been applied with different methodologies (e.g. [2], [3]), These techniques highlight a reflectance and band depths dependency on the phase angle which is homogeneous on the entire surface in agreement with C-type taxonomy.However, with increasing spatial resolution (i.e. HAMO and LAMO data), the retrieval of a unique set of parameters for the photometric correction is no longer sufficient to obtain reliable albedo/band depth maps. In this work, a new photometric correction is obtained and applied to all the high resolution VIR data of Ceres, taking into account the reflectance variations observed at small scales. The developed algorithm will be implemented on the MATISSE tool [4] in order to be visualized on the Ceres shape model.Finally, an interpretation of the obtained phase functions is given in terms of optical and physical properties of the Ceres regolith.AcknowledgementsVIR was funded and coordinated by the Italian Space Agency, and built by SELEX ES, with the scientific leadership of IAPS-INAF, Rome, Italy, and is operated by IAPS-INAF, Rome, Italy. Support of the Dawn Science, Instrument, and Operation Teams is gratefully acknowledged.References[1] Russell, C. T. et al., 2012, Science 336, 686[2] Longobardo A., et al., 2016, LPSC, 2239

  12. Satellite-Mounted Light Sources as Photometric Calibration Standards

    CERN Document Server

    Albert, Justin; Battat, James; Dupuis, Grace; Fransham, Kyle; Koopmans, Kristin; Jarrett, Michael

    2009-01-01

    A significant and growing portion of systematic error on a number of fundamental parameters in astrophysics and cosmology is due to uncertainties from absolute photometric and flux standards. A path toward achieving major reduction in such uncertainties may be provided by satellite-mounted light sources, resulting in improvement in the ability to precisely characterize atmospheric extinction, and thus helping to usher in the coming generation of precision results in astronomy. Toward this end, we have performed a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite, using a portable network of cameras and photodiodes, to precisely measure atmospheric extinction.

  13. Photometric data analysis of the eclipsing binary system AH Tauri

    CERN Document Server

    El-Sadek, M A; Essam, A; Rassem, M A

    2014-01-01

    Two sets of photometric observations of the system AH Tauri have been analyzed using the latest version of the Wilson-Devinney code. The results show that AH Tauri may classified as A-type of W-UMa eclipsing binary. The mass ratio of q = 0.81, an over-contact degree of f = 0.095, and a slightly temperature difference between the two components have been obtained. The asymmetry of its light curve explained by the presence of a dark spot on the massive component. The physical, geometrical, and absolute parameters have been derived and compared with previous work.

  14. Comparing photometric results of real and N-body bars

    CERN Document Server

    Athanassoula, E; Carrasco, L; Bosma, A; De Souza, R E; Recillas, E

    2009-01-01

    We compare the results of the photometrical analysis of barred galaxies with those of a similar analysis from N-body simulations. The photometry is for a sample of nine barred galaxies observed in the J and Ks bands with the CANICA near infrared (NIR) camera at the 2.1-m telescope of the Observatorio Astrofisico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. The comparison includes radial ellipticity profiles and surface brightness (density for the N-body galaxies) profiles along the bar major and minor axes. We find very good agreement, arguing that the exchange of angular momentum within the galaxy plays a determinant role in the evolution of barred galaxies.

  15. Kepler Mission Design, Realized Photometric Performance, and Early Science

    DEFF Research Database (Denmark)

    Koch, David G.; Borucki, William J.; Basri, Gibor

    2010-01-01

    The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five...... show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial...

  16. Photometric and Spectroscopic Properties of Type II-P Supernovae

    OpenAIRE

    Faran, Tamar; Poznanski, Dovi; Filippenko, Alexei V.; Chornock, Ryan; Foley, Ryan J.; Ganeshalingam, Mohan; Leonard, Douglas C.; Li, Weidong; Modjaz, Maryam; Nakar, Ehud; Serduke, Frank J. D.; Silverman, Jeffrey M.

    2014-01-01

    We study a sample of 23 Type II Plateau supernovae (SNe II-P), all observed with the same set of instruments. Analysis of their photometric evolution confirms that their typical plateau duration is 100 days with little scatter, showing a tendency to get shorter for more energetic SNe. The rise time from explosion to plateau does not seem to correlate with luminosity. We analyze their spectra, measuring typical ejecta velocities, and confirm that they follow a well behaved power-law decline. W...

  17. Broad-band photometric evolution of star clusters

    OpenAIRE

    Girardi, Leo

    2001-01-01

    I briefly introduce a database of models that describe the evolution of star clusters in several broad-band photometric systems. Models are based on the latest Padova stellar evolutionary tracks - now including the alpha-enhanced case and improved AGB models - and a revised library of synthetic spectra from model atmospheres. As of today, we have revised isochrones in Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Thuan-Gunn, and Washington systems. Several other filter sets are included in a ...

  18. Photometric entropy of stellar populations and related diagnostic tools

    CERN Document Server

    Buzzoni, A

    2005-01-01

    We discuss, from a statistical point of view, some leading issues that deal with the study of stellar populations in fully or partially unresolved aggregates, like globular clusters and distant galaxies. A confident assessment of the effective number and luminosity of stellar contributors can provide, in this regard, a very useful interpretative tool to properly assess the observational bias coming from crowding conditions or surface brightness fluctuations. These arguments have led us to introduce a new concept of "photometric entropy" of a stellar population, whose impact on different astrophysical aspects of cluster diagnostic has been reviewed here.

  19. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.-X. [Photonics Center, College of Physical Science, Nankai University, Tianjin (China); Department of Chemistry, Humboldt Universitaet zu Berlin (Germany); Wuerth, C.; Resch-Genger, U. [Federal Institute for Materials Research and Testing, Berlin (Germany); Zhao, L. [Photonics Center, College of Physical Science, Nankai University, Tianjin (China); Ernsting, N. P.; Sajadi, M. [Department of Chemistry, Humboldt Universitaet zu Berlin (Germany)

    2011-06-15

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  20. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    Science.gov (United States)

    Zhang, X.-X.; Würth, C.; Zhao, L.; Resch-Genger, U.; Ernsting, N. P.; Sajadi, M.

    2011-06-01

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  1. Spectroscopic and Photometric Observations of Kepler Asteroseismic Targets

    CERN Document Server

    Molenda-Zakowicz, J; Kopacki, G; Frasca, A; Catanzaro, G; Latham, D W; Niemczura, E; Narwid, A; Steslicki, M; Arentoft, T; Kubat, J; Drobek, D; Dimitrow, W; 10.1063/1.3246557

    2012-01-01

    We summarize our ground-based program of spectroscopic and photometric observations of the asteroseismic targets of the Kepler space telescope. We have already determined atmospheric parameters, projected velocity of rotation, and radial velocity of 62 Kepler asteroseismic targets and 33 other stars in the Kepler field of view. We discovered six single-lined and two double-lined spectroscopic binaries, we determined the interstellar reddening for 29 stars in the Kepler field of view, and discovered three delta Sct, two gamma Dor and 14 other variable stars in the field of NGC 6866.

  2. Effects of side walls on facade flame entrainment and flame height from opening in compartment fires

    Directory of Open Access Journals (Sweden)

    Hu L.H.

    2013-11-01

    Full Text Available This paper presents an investigation of the side wall effects on facade flames ejected from the opening (such as a window of an under-ventilated room fire. Experiments are carried out in a reduced-scale experimental setup, consisting of a cubic fire compartment having an opening with a vertical facade wall and two side walls normal to the façade wall. By changing the distance of the two side walls, the facade flame heights for different opening conditions (width, height are recorded by a CCD camera. It is found that as the distance of the two side walls decreases the behavior the flame height can be distinguished into two regimes characterized by the dimensionless excess heat release rate, $skew5dot{Q}_{ex}^{ast}$ See Formula in PDF , outside the opening: (a for the “wall fire” (skew5dot{Q}_{ex}^{ast }$See Formula in PDF ≤ 1.3 , the flame height is shown to change little with decrease of side wall distance as the dominant entrainment is from the front direction (normal to the facade wall independent of the side wall distances; (b for the “axis-symmetrical fire” (\\skew5dot{Q}_{ex}^{ast}$ > 1.3, the flame height increases significantly with a decrease in side wall distance as both the entrainment from the two side directions (parallel to the facade wall and that from the front direction (normal to the facade wall together apply. A global physically based non-dimensional factor K is then brought forward based on the side wall constraint effect on the facade flame entrainment to characterize the side wall effect on the flame height, by accounting for the dimensionless excess heat release rate, the characteristic length scales of the opening as well as the side wall separation distance. The experimental data for different opening dimensions and side wall distances collapse by using this global non-dimensional factor.

  3. Assessing Pediatric Nurses' Knowledge About Chemical Flame Retardants.

    Science.gov (United States)

    Distelhorst, Laura; Bieda, Amy; DiMarco, Marguerite; Tullai-McGuinness, Susan

    Chemical flame retardants are routinely applied to children's products and are harmful to their health. Pediatric nurses are in a key position to provide education to caregivers on methods to decrease their children's exposure to these harmful chemicals. However, a critical barrier is the absence of any program to educate nurses about chemical flame retardants. In order to overcome this barrier, we must first assess their knowledge. This article provides key highlights every pediatric nurse should know about chemical flame retardants and reports the results of a knowledge assessment study. The purpose of this study was to (1) assess pediatric nurses' knowledge of chemical flame retardants, (2) determine what topic areas of chemical flame retardants pediatric nurses lack knowledge in, and (3) determine the best method to educate nurses about chemical flame retardants. A single sample cross-sectional questionnaire design was used. A total sample of 417 advanced practice registered nurses and registered nurses completed an online survey about chemical flame retardants. Pediatric nurses' knowledge of chemical flame retardants was low (M=13.4 out of 51). Articles, webinars, and e-mails were the primary preferred methods for education on the subject identified as a result of the survey. Pediatric nurses have a large knowledge deficit related to chemical flame retardants. The data collected from this study will help structure future educational formats for pediatric nurses on chemical flame retardants to increase their knowledge. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Flame Retardation Modification of Paper-Based PVC Wallcoverings

    Directory of Open Access Journals (Sweden)

    Lin Hui

    2016-01-01

    Full Text Available The flame-retarded paper-based polyvinyl chloride (PVC wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives. Flame retardancy, thermostability, smoke suppression and mechanical properties were tested regarding to the prepared wallcoverings. The results showed that 2ZnO·3B2O3·3.5H2O could improve flame retardancy and thermostability of paper-based PVC wallcoverings; plasticizer tricresyl phosphate increased flame retardancy of the prepared materials auxiliarily. Also, flame-retarded paper-based PVC wallcoverings with higher flame retardancy, smoke suppression and mechanical property was prepared using plant fiber paper with fix quantity of 90 g/m3 as base material, using 2ZnO·3B2O3·3.5H2O as inorganic flame retardant, and using tricresyl phosphate as plasticizer. For the flame-retarded paper-based PVC wallcoverings in this study, the limit oxygen index (LOI reaches 32.3, maximal smoke density is 16.91 %, and the horizontal and longitudinal wet tensile strength reaches 1.38 kN·m−1 and 1.51 kN·m−1 respectively. Meanwhile, its flame retardancy meets the requirements about flame retardancy for material Class B1 listed in Chinese National Standards GB 8624-2012, Classification for burning behavior of building materials and products. This research creates an effective path to prepare paper-based PVC wallcoverings with high flame retardancy.

  5. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  6. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  7. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... with an aqueous solution of 6 mmol L-1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass...... spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 sigma) achieved by the HPLC-FAAS system was 1 mg L-1 of selenium (100 mu L injections) for each of the four...

  8. Reddening Behaviors of Galaxies in the SDSS Photometric System

    CERN Document Server

    Kim, Sungsoo S

    2008-01-01

    We analyze the behaviors of reddening vectors in the SDSS photometric system for galaxies of different morphologies, ages, and redshifts. As seen in other photometric systems, the dependence of reddening on the spectral energy distribution (SED) and the nonlinearity of reddening are likewise non-negligible for the SDSS system if extinction is significant (~> 1 mag). These behaviors are most significant for the g filter, which has the largest bandwidth-to-central wavelength ratio among SDSS filters. The SDSS colors involving adjacent filters show greater SED-dependence and nonlinearity. A procedure for calculating the correct amount of extinction from an observed color excess is provided. The relative extinctions between (i.e., the extinction law for) SDSS filters given by Schlegel et al., which were calculated with an older version of filter response functions, would underestimate the amount of extinction in most cases by ~5 to 10 % (maximum ~20 %). We recommend A/A_{5500} values of 1.574, 1.191, 0.876, 0.671...

  9. Photometric Calibration of the Gemini South Adaptive Optics Imager

    Science.gov (United States)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  10. Sparse Representation of Photometric Redshift PDFs: Preparing for Petascale Astronomy

    CERN Document Server

    Kind, M Carrasco

    2014-01-01

    One of the consequences of entering the era of precision cosmology is the widespread adoption of photometric redshift probability density functions (PDFs). Both current and future photometric surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these PDFs will be non-trivial and even more severe if a survey plans to compute and store multiple different PDFs. In this paper we propose the use of a sparse basis representation to fully represent individual photo-$z$ PDFs. By using an Orthogonal Matching Pursuit algorithm and a combination of Gaussian and Voigt basis functions, we demonstrate how our approach is superior to a multi-Gaussian fitting, as we require approximately half of the parameters for the same fitting accuracy with the additional advantage that an entire PDF can be stored by using a 4-byte integer per basis function, and we can achieve better accuracy by increasing the number of bases. By using data from the CFHTLenS, we demonstrate th...

  11. Photometric analysis of the overcontact binary CW Cas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G., E-mail: wjjbxw@ynao.ac.cn [National Astronomical Observatories/Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, 650011 Kunming (China)

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O – C curves, the period of the system shows a cyclic period change (P {sub 3} = 69.9 yr, A {sub 3} = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  12. Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

    Science.gov (United States)

    Murtagh, Fionn

    2017-06-01

    This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.

  13. Bayesian Single-Epoch Photometric Classification of Supernovae

    CERN Document Server

    Poznanski, D; Gal-Yam, A; Poznanski, Dovi; Maoz, Dan; Gal-Yam, Avishay

    2006-01-01

    (abridged) Ongoing supernova (SN) surveys find hundreds of candidates, that require confirmation for their use. Traditional classification based on followup spectroscopy of all candidates is virtually impossible for these large samples. We present an automatic Bayesian classifying algorithm for supernovae, the SN-ABC. We rely solely on single-epoch multiband photometry and host-galaxy (photometric) redshift information to sort SN candidates into the two major types, Ia and core-collapse supernovae. We test the SN-ABC performance on published samples of SNe from the SNLS and GOODS projects that have both broad-band photometry and spectroscopic classification (so the true type is known). The SN-ABC correctly classifies up to 97% (85%) of the type Ia (II-P) SNe in SNLS, and similar fractions of the GOODS SNe, depending on photometric redshift quality. We further test our method on large artificial samples to explore possible biases, and find that, in deep surveys, SNe Ia are best classified at redshifts z >~ 0.6...

  14. Spectroscopic Needs for Calibration of LSST Photometric Redshifts

    CERN Document Server

    Schmidt, Samuel J; Abate, Alexandra

    2014-01-01

    This white paper summarizes the conclusions of the Snowmass White Paper "Spectroscopic Needs for Imaging Dark Energy Experiments" (arXiv:1309.5384) which are relevant to the calibration of LSST photometric redshifts; i.e., the accurate characterization of biases and uncertainties in photo-z's. Any significant miscalibration will lead to systematic errors in photo-z's, impacting nearly all extragalactic science with LSST. As existing deep redshift samples have failed to yield highly-secure redshifts for a systematic 20%-60% of their targets, it is a strong possibility that future deep spectroscopic samples will not solve the calibration problem on their own. The best options in this scenario are provided by cross-correlation methods that utilize clustering with objects from spectroscopic surveys (which need not be fully representative) to trace the redshift distribution of the full sample. For spectroscopy, the eBOSS survey would enable a basic calibration of LSST photometric redshifts, while the expected LSST...

  15. Gamma photometric redshifts for long gamma-ray bursts

    CERN Document Server

    Bagoly, Z; Mészáros, A; Mészáros, P; Horváth, I; Balázs, L G; Vavrek, R

    2003-01-01

    It is known that the soft tail of the gamma-ray bursts' spectra show excesses from the exact power-law dependence. In this article we show that this departure can be detected in the peak flux ratios of different BATSE DISCSC energy channels. This effect allows to estimate the redshift of the bright long gamma-ray bursts in the BATSE Catalog. A verification of these redshifts is obtained for the 8 GRB which have both BATSE DISCSC data and measured optical spectroscopic redshifts. There is good correlation between the measured and esti redshifts, and the average error is $\\Delta z \\approx 0.33$. The method is similar to the photometric redshift estimation of galaxies in the optical range, hence it can be called as "gamma photometric redshift estimation". The estimated redshifts for the long bright gamma-ray bursts are up to $z \\simeq 4$. For the the faint long bursts - which should be up to $z \\simeq 20$ - the redshifts cannot be determined unambiguously with this method.

  16. Fuzzy Based Auto-coagulation Control Through Photometric Dispersion Analyzer

    Institute of Scientific and Technical Information of China (English)

    白桦; 李圭白

    2004-01-01

    The main role of water treatment plants is to supply high-quality safe drinking water. Coagulation is one of the most important stages of surface water treatment. The photometric dispersion analyzer(PDA) is a new optical method for flocculation monitoring, and is feasible to realize coagulation feedback control. The on line modification of the coagulation control system' s set point( or optimum dosing coagulant) has influenced the application of this technology in water treatment plant for a long time. A fuzzy control system incorporating the photometric dispersion analyzer was utilized in this coagulation control system. Proposed is a fuzzy logic inference control system by using Takagi and Sugeno' s fuzzy if-then rule for the self-correction of set point on line. Programmed is the dosing rate fuzzy control system in SIEMENS small-scale programmable logic controller. A 400 L/min middle-scale water treatment plant was utilized to simulate the reaction. With the changes of raw water quality, the set point was modified correctly in time, as well as coagulant dosing rate, and residual turbility before filtration was eligible and stable. Results show that this fuzzy inference and control system performs well on the coagulation control system through PDA.

  17. A Photometric Study of Stars in the MBM 12 Association

    CERN Document Server

    Herbst, W; Hawley, W P; Herbst, William; Williams, Eric C.; Hawley, Wendy P.

    2004-01-01

    We have monitored four fields containing nine previously identified members of the MBM 12 association to search for photometric variability and periodicity in these pre-main sequence stars. Seven of the nine are found to be variable and definite periodicity (of 1.2, 2.6 and 6.2 days) is found for three of them, including the classical T Tauri star LkH-alpha 264. Two other members are possibly periodic but each requires confirmation. In addition, a "field" star that is associated with the X-ray source RX J0255.9+2005 was discovered to be a variable with a period of 4.2 days. Our results indicate that the photometric variability characteristics of the known MBM 12 association members are typical of what is found in ~few My old stellar groups such as IC 348, supporting arguments for a similar age. In particular, there is a mix of periodic and non-periodic variables with typical amplitudes (in Cousins I) of 0.1-0.5 mag, in addition to a small number of larger amplitude variables. The periods, as a group, are some...

  18. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  19. Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames

    KAUST Repository

    Guiberti, Thibault F.

    2016-11-08

    This paper presents a comprehensive study of the effects of pilot parameters on flame stability in a turbulent jet flame. The Sydney inhomogeneous piloted burner is employed as the experimental platform with two main fuels, namely, compressed natural gas and liquefied petroleum gas. Various concentrations of five gases are used in the pilot stream, hydrogen, acetylene, oxygen, nitrogen, and argon, to enable a sufficient range in exploring the following parameters: pilot heat release, temperature, burnt gas velocity, equivalence ratio, and H/C ratio. The experimental results are mainly presented in the form of blow-off limits and supported by simple calculations, which simulate various conditions of the pilot–mixture interface. It is found that increasing the pilot adiabatic flame temperature benefits the flame stability and has an even greater influence than the heat release, which is also known to enhance the blow-off limits. Conversely, increasing the pilot burnt gas velocity reduces the blow-off velocity, except for the limiting case when the jet is fully non-premixed. The H/C ratio has negligible effects, while resorting to lean pilots significantly increases the stability of globally rich partially premixed and premixed jets. Such findings are consistent with trends obtained from laminar flame calculations for rich fuel/air mixtures issuing against hot combustion products to simulate the pilot stream.

  20. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    Science.gov (United States)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  1. Flame Retardant Polyamide Fibres: The Challenge of Minimising Flame Retardant Additive Contents with Added Nanoclays

    Directory of Open Access Journals (Sweden)

    Richard Horrocks

    2016-08-01

    Full Text Available This work shows that halogen-free, flame retarded polyamide 6 (PA6, fabrics may be produced in which component fibres still have acceptable tensile properties and low levels (preferably ≤10 wt % of additives by incorporating a nanoclay along with two types of flame retardant formulations. The latter include (i aluminium diethyl phosphinate (AlPi at 10 wt %, known to work principally in the vapour phase and (ii ammonium sulphamate (AS/dipentaerythritol (DP system present at 2.5 and 1 wt % respectively, believed to be condense phase active. The nanoclay chosen is an organically modified montmorillonite clay, Cloisite 25A. The effect of each additive system is analysed in terms of its ability to maximise both filament tensile properties relative to 100% PA6 and flame retardant behaviour of knitted fabrics in a vertical orientation. None of the AlPi-containing formulations achieved self-extinguishability, although the presence of nanoclay promoted lower burning and melt dripping rates. The AS/DP-containing formulations with total flame retardant levels of 5.5 wt % or less showed far superior properties and with nanoclay, showed fabric extinction times ≤ 39 s and reduced melt dripping. The tensile and flammability results, supported by thermogravimetric analysis, have been interpreted in terms of the mechanism of action of each flame retardant/nanoclay type.

  2. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  3. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes

    CERN Document Server

    Kazakov, Kirill A

    2013-01-01

    The problem of spontaneous acceleration of premixed flames propagating in open horizontal tubes with smooth walls is revisited. It is proved that in long tubes, this process can be considered quasi-steady, and an equation for the flame front position is derived using the on-shell description. Numerical solutions of this equation are found which show that as in the case of uniform flame movement, there are two essentially different regimes of flame propagation. In the type I regime, the flame speed and its acceleration are comparatively low, whereas the type II regime is characterized by significant flame acceleration that rapidly increases as the flame travels along the tube. A detailed comparison of the obtained results with the experimental data on flame acceleration in methane-air mixtures is given. In particular, it is confirmed that flames propagating in near-stoichiometric mixtures and mixtures near the limits of inflammability belong to the types II and I, respectively, whereas flames in transient mixt...

  4. Flame Imaging of Gas-Turbine Relight

    DEFF Research Database (Denmark)

    Read, Robert; Rogerson, J.W.; Hochgreb, S.

    2010-01-01

    High-altitude relight inside a lean-direct-injection gas-turbine combustor is investigated experimentally by highspeed imaging. Realistic operating conditions are simulated in a ground-based test facility, with two conditions being studied: one inside and one outside the combustor ignition loop....... The motion of hot gases during the early stages of relight is recorded using a high-speed camera. An algorithm is developed to track the flame movement and breakup, revealing important characteristics of the flame development process, including stabilization timescales, spatial trajectories, and typical...... velocities of hot gas motion. Although the observed patterns of ignition failure are in broad agreement with results from laboratory-scale studies, other aspects of relight behavior are not reproduced in laboratory experiments employing simplified flow geometries and operating conditions. For example, when...

  5. Parametric Erosion Investigation: Propellant Adiabatic Flame Temperature

    Directory of Open Access Journals (Sweden)

    P. J. Conroy

    2002-01-01

    Full Text Available The influence of quasi-independent parameters and their potential influence on erosion in guns have been investigated. Specifically, the effects of flame temperature and the effect of assuming that the Lewis number (ratio of mass-to-heat transport to the surface, Le = 1, has been examined. The adiabatic flame temperature for a propellant was reduced by the addition of a diluent from a high temperature of 3843 K (similar to that of M9 down to 3004 K, which is near the value for M30A1 propellant. Mass fractions of critical species at the surface with and without the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach the surface providing varied conditions for the surface reactions. The results for gun tube bore surface regression qualitatively agree with previous studies and with current experimental data.

  6. The advanced flame quality indicator system

    Energy Technology Data Exchange (ETDEWEB)

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A. [Insight Technologies, Inc., Bohemia, NY (United States)

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  7. Soot Deposit Properties in Practical Flames

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, Ignacio [University of Utah; Eddings, Eric G. [University of Utah; Sarofim, Adel F. [University of Utah; Dinwiddie, Ralph Barton [ORNL; Porter, Wallace D [ORNL; Lance, Michael J [ORNL

    2009-01-01

    Soot deposition from hydrocarbon flames was investigated in order to evaluate the evolution of the deposits during the transient process of heating an object that starts with a cold metal surface that is exposed to a flame. The study focused on the fire/metal surface interface and the critical issues associated with the specification of the thermal boundaries at this interface, which include the deposition of soot on the metal surface, the chemical and physical properties of the soot deposits and their subsequent effect on heat transfer to the metal surface. A laboratory-scale device (metallic plates attached to a water-cooled sampling probe) was designed for studying soot deposition in a laminar ethylene-air premixed flame. The metallic plates facilitate the evaluation of the deposition rates and deposit characteristics such as deposit thickness, bulk density, PAH content, deposit morphology, and thermal properties, under both water-cooled and uncooled conditions. Additionally, a non-intrusive Laser Flash Technique (in which the morphology of the deposit is not modified) was used to estimate experimental thermal conductivity values for soot deposits as a function of deposition temperature (water-cooled and uncooled experiments), location within the flame and chemical characteristics of the deposits. Important differences between water-cooled and uncooled surfaces were observed. Thermophoresis dominated the soot deposition process and enhanced higher deposition rates for the water-cooled experiments. Cooler surface temperatures resulted in the inclusion of increased amounts of condensable hydrocarbons in the soot deposit. The greater presence of condensable material promoted decreased deposit thicknesses, larger deposit densities, different deposit morphologies, and higher thermal conductivities.

  8. Computational and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, Mitchell [Yale Univ., New Haven, CT (United States)

    2015-05-29

    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  9. Flexible PVC flame retarded with expandable graphite

    CSIR Research Space (South Africa)

    Focke, WW

    2014-02-01

    Full Text Available by the polymer matrix and the exfoliating graphite prevents the formation of a flammable air fuel mixture. Keywords: Expandable graphite; graphite oxide; graphite intercalation compound; exfoliation; thermal analysis ________________ *Corresponding author: Tel... char residue [6] and this contributes to the mechanisms of flame retardant action [5]. Expandable graphite (EG) is a partially oxidized form of graphite containing intercalated guest species (e.g., sulfuric acid anions) in-between the stacked...

  10. Thermal Insulation System for Large Flame Buckets

    Science.gov (United States)

    Callens, E. Eugene, Jr.; Gamblin, Tonya Pleshette

    1996-01-01

    The objective of this study is to investigate the use of thermal protection coatings, single tiles, and layered insulation systems to protect the walls of the flame buckets used in the testing of the Space Shuttle Main Engine, while reducing the cost and maintenance of the system. The physical behavior is modeled by a plane wall boundary value problem with a convective frontface condition and a backface condition designed to provide higher heat rates through the material.

  11. Physical and Chemical Processes in Flames

    Science.gov (United States)

    2007-09-01

    reaction rate constants was developed to model these measured laminar flame speeds as well as a wide spectrum of other experimental data. The kinetic ...temperatures of dimethyl ether ( DME ) and 1,3-butadiene, allowing developments of detailed and reduced reaction mechanisms. A mathematical theory and...and improvement of the existing reaction mechanisms. Furthermore, the ignition temperatures of counterflowing dimethyl ether ( DME ) and 1,3-butadiene

  12. The research of far infrared flame retardant polyester staple fiber

    Science.gov (United States)

    Li, Qingshan; Zhang, Kaijun; Luo, Jinqong; Li, Ji’an; Jiang, Jian; Liang, Qianqian; Jin, Yongxia; Liu, Bing

    2017-01-01

    Far infrared flame retardant slices was prepared, fiber with far infrared flame retardant composite function was also prepared by the method of melt spinning. Scanning electron microscopy (SEM) was used to observe the fibrous microscopic structure. In the SEM images, functional ultrafine powder particle size and distribution in the fiber were visible. The results show that the functional ultrafine powder is evenly distributed on the fibrous surface, which is closely combined with fiber, and the far infrared emissivity is F, which is more than (8 to 14 microns) 0.88. Far infrared flame retardant polyester fiber has not only good flame retardant, but also environmental health effect: releasing negative ions and launch far-infrared, which shows wide application prospect. The fiber was processed into far-infrared flame retardant electric blanket, whose functional indicators and flame retardant properties are not reduced.

  13. New developments in the theory of flame propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sivashinsky, G.I. [City College of the City Univ. of New York, NY (United States)

    1996-12-31

    Two topics in combustion fluid mechanics are discussed. The first is a theory of the outward propagating spherical flame in the regime of well-developed hydrodynamic instability. In a qualitative agreement with experimental observations it is shown that the flame assumes a fractal-like wrinkled structure resulting in the overall burning rate acceleration. In contrast to hydrodynamically unstable flames, the expanding flame subject exclusively to the effect of diffusive instability does not indicate any disposition toward acceleration. The second topic concerns the dynamics of diffusively unstable flames subjected to radiative heat losses. At high enough heat losses the flame breaks up into separate self-propagating cap-like flamelets while a significant portion of the fuel remains unconsumed.

  14. Real-time Flame Rendering with GPU and CUDA

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2011-02-01

    Full Text Available This paper proposes a method of flame simulation based on Lagrange process and chemical composition, which was non-grid and the problems associated with there grids were overcome. The turbulence movement of flame was described by Lagrange process and chemical composition was added into flame simulation which increased the authenticity of flame. For real-time applications, this paper simplified the EMST model. GPU-based particle system combined with OpenGL VBO and PBO unique technology was used to accelerate finally, the speed of vertex and pixel data interaction between CPU and GPU increased two orders of magnitude, frame rate of rendering increased by 30%, which achieved fast dynamic flame real-time simulation. For further real-time applications, this paper presented a strategy to implement flame simulation with CUDA on GPU, which achieved a speed up to 2.5 times the previous implementation.

  15. Camera calibration for multidirectional flame chemiluminescence tomography

    Science.gov (United States)

    Wang, Jia; Zhang, Weiguang; Zhang, Yuhong; Yu, Xun

    2017-04-01

    Flame chemiluminescence tomography (FCT), which combines computerized tomography theory and multidirectional chemiluminescence emission measurements, can realize instantaneous three-dimensional (3-D) diagnostics for flames with high spatial and temporal resolutions. One critical step of FCT is to record the projections by multiple cameras from different view angles. For high accuracy reconstructions, it requires that extrinsic parameters (the positions and orientations) and intrinsic parameters (especially the image distances) of cameras be accurately calibrated first. Taking the focus effect of the camera into account, a modified camera calibration method was presented for FCT, and a 3-D calibration pattern was designed to solve the parameters. The precision of the method was evaluated by reprojections of feature points to cameras with the calibration results. The maximum root mean square error of the feature points' position is 1.42 pixels and 0.0064 mm for the image distance. An FCT system with 12 cameras was calibrated by the proposed method and the 3-D CH* intensity of a propane flame was measured. The results showed that the FCT system provides reasonable reconstruction accuracy using the camera's calibration results.

  16. Candle Flames in Microgravity: USML-1 Results - 1 Year Later

    Science.gov (United States)

    Ross, H. D.; Dietrich, D. L.; Tien, J. S.

    1994-01-01

    We report on the sustained behavior of a candle flame in microgravity determined in the glovebox facility aboard the First United States Microgravity Labomtofy. In a quiescent, microgmvjfy environment, diffusive transport becomes the dominant mode of heat and mass transfer; whether the diffusive transport rate is fast enough to sustain low-gravity candle flames in air was unknown to this series of about 70 tests. After an initial transient in which soot is observed, the microgravity candle flame in air becomes and remains hemispherical and blue (apparently soot-Ne) with a large flame standoff distance. Near flame extinction, spontaneous flame oscillations are regularly observed; these are explained as a flashback of flame through a premixed combustible gas followed by a retreat owed to flame quenching. The frequency of oscillations can be related to diffusive transport rates, and not to residual buoyant convective flow. The fact that the flame tip is the last point of the flame to survive suggests that it is the location of maximum fuel reactivity; this is unlike normal gravity, where the location of maximum fuel reactivity is the flame base. The flame color, size, and shape behaved in a quasi-steady manner; the finite size of the glovebox, combined with the restricted passages of the candlebox, inhibited the observation of true steady-state burning. Nonetheless, through calculations, and inference from the series of shuttle tests, if is concluded that a candle can burn indefinitely in a large enough ambient of air in microgravity. After igniting one candle, a second candle in close pximity could not be lit. This may be due to wax coating the wick and/or local oxygen depletion around the second, unlit candle. Post-mission testing suggests that simultaneous ignition may overcome these behaviors and enable both candles to be ignited.

  17. Structure of low-stretch methane nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bai; Ibarreta, Alfonso F.; Sung, Chih-Jen; T' ien, James S. [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2007-04-15

    The present study experimentally and numerically investigates the structure associated with extremely low-stretch ({proportional_to}2 s{sup -1}) gaseous nonpremixed flames. The study of low-stretch flames aims to improve our fundamental understanding of the flame radiation effects on flame response and extinction limits. Low-stretch flames are also relevant to fire safety in reduced-gravity environments and to large buoyant fires, where localized areas of low stretch are attainable. In this work, ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. The large thickness of the resulting nonpremixed flame allows detailed mapping of the flame structure. Several advanced nonintrusive optical diagnostics are used to study the flame structure. Gas phase temperatures are measured by Raman scattering, while the burner surface temperatures are obtained by IR imaging. In addition, OH-PLIF and chemiluminescence imaging techniques are used to help characterize the extent of the flame reaction zone. These experimental results allow direct comparison with a quasi-one-dimensional numerical model including detailed chemistry, thermodynamic/transport properties, and radiation treatment. In addition, the radiative interactions between the flame and porous burner (modeled as a gray surface) are accounted for in the present model. The numerical modeling is demonstrated to be able to simulate the low-stretch flame structure. Using the current model, the extinction limits under different conditions are also examined. The computational results are consistent with experimental observations. (author)

  18. FLAME MONITORING IN POWER STATION BOILERS USING IMAGE PROCESSING

    OpenAIRE

    K Sujatha; VENMATHI, M.; N. Pappa

    2012-01-01

    Combustion quality in power station boilers plays an important role in minimizing the flue gas emissions. In the present work various intelligent schemes to infer the flue gas emissions by monitoring the flame colour at the furnace of the boiler are proposed here. Flame image monitoring involves capturing the flame video over a period of time with the measurement of various parameters like Carbon dioxide (CO2), excess oxygen (O2), Nitrogen dioxide (NOx), Sulphur dioxide (SOx) and Carbon monox...

  19. Effect of Intense Sound Waves on a Stationary Gas Flame

    Science.gov (United States)

    Hahnemann, H; Ehret, L

    1950-01-01

    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  20. The MINOS Detectors

    CERN Document Server

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  1. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  2. The TALE Tower Detector

    Science.gov (United States)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  3. Photometric modeling of viscous overstability in Saturn's rings

    Science.gov (United States)

    Salo, H.; Schmidt, J.

    2011-10-01

    The viscous overstability of dense planetary rings offers a plausible mechanism for the generation of observed ~ 150 m radial density variations in the B and the inner A ring of Saturn [1, 12]. Viscous overstability, in the form of spontaneous growth of axisymmetric oscillations, arises naturally in N-body simulations, in the limit of high impact frequency and moderately weak selfgravity [4, 8, 9, 10]. For example, a selfgravitating system of identical particles with internal density ~ half of solid ice, becomes overstable for optical depths τ > 1, forming oscillations on about 100 meter scale. Like self-gravity wakes (with typical ~ 20° trailing pitch angle), overstable oscillations lead to alongitude-dependent brightness of the rings. Due to their axisymmetric nature, the expected longitude of minimum brightness is shifted closer to ring ansae (for small phase angles). Moreover, according to simulations, the axisymmetric oscillations may coexist with the inclined selfgravity wake structures, which can lead to complicated photometric behavior as a function of illumination and viewing geometries, depending on properties of the simulated system. For example, at low viewing elevations, the vertical thickenings associated with the density crests should cast shadows on the nearby ring particles (see Fig. 1 for an example; darker areas are due to shadows, not due to depletion of particles). Though these shadows would be unresolved, they might still affect the integrated brightness at certain geometries. The overstable systems may also exhibit amplitude variations (in km-scales), arising from the mutual beating patterns of the basic sub-km overstable oscillations [3]. Such modulations of oscillation amplitude may lead to associated brightness variations. New results of photometric modeling of viscously overstable dynamical simulations systems are reported, related to the above mentioned topics. The Monte Carlo method of [5] is used, previously applied to modeling of

  4. Photometric Properties of the Most Massive High-Redshift Galaxies

    Science.gov (United States)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  5. FIELD TEST OF THE FLAME QUALITY INDICATOR

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion

  6. Research on Alkaline Filler Flame-Retarded Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; ZHANG Houji; WANG Jiaolan

    2006-01-01

    Used as flame retardant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame-retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel pavement.

  7. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid;

    High-temperature flame processes can be applied as a tool for chemical product engineering. The general principle behind flame synthesis is the decomposition/oxidation of evaporated metal-precursors in a flame, thereby forming metal oxide monomers which nucleate, aggregate, and - to some extent...... product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed...

  8. Analytical Interaction of the Acoustic Wave and Turbulent Flame

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2007-01-01

    A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically.Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

  9. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker

    2014-01-01

    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite...... properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information...

  10. Modeling Burns for Pre-Cooled Skin Flame Exposure

    Directory of Open Access Journals (Sweden)

    Torgrim Log

    2017-09-01

    Full Text Available On a television show, a pre-cooled bare-skinned person (TV host passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated.

  11. Flame dynamics in a micro-channeled combustor

    Science.gov (United States)

    Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  12. Laser-induced fluorescence in high pressure solid propellant flames.

    Science.gov (United States)

    Edwards, T; Weaver, D P; Campbell, D H

    1987-09-01

    The application of laser-induced fluorescence (LIF) to the study of high pressure solid propellant flames is described. The distribution of the OH and CN radicals was determined in several solid propellant flames at pressures up to 3.5 MPa. The greatest difficulty in these measurements was the separation of the desired LIF signals from the large scattering at the laser wavelength from the very optically thick propellant flames. Raman experiments using 308-nm excitation were also attempted in the propellant flames but were unsuccessful due to LIF interferences from OH and NH.

  13. Flame fronts in Supernovae Ia and their pulsational stability

    CERN Document Server

    Glazyrin, S I; Dolgov, A D

    2013-01-01

    The structure of the deflagration burning front in type Ia supernovae is considered. The parameters of the flame are obtained: its normal velocity and thickness. The results are in good agreement with previous work of different authors. After that the question of pulsational instability of the flame subject to plane perturbations is considered. The flame can be unstable if hydrodynamics can be ignored, e.g. in solid-body propellants. However, with account of hydrodynamics we find that the flame in type Ia supernovae is pulsationally stable with realistic parameters of reactions and thermal conduction.

  14. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  15. TG-FTIR characterization of flame retardant polyurethane foams materials

    Science.gov (United States)

    Liu, W.; Tang, Y.; Li, F.; Ge, X. G.; Zhang, Z. J.

    2016-07-01

    Dimethyl methylphosphonate (DMMP) and trichloroethyl phosphtate (TCEP) have been used to enhance the flame retardancy of polyurethane foams materials (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results indicate that the excellent flame retardancy can be achieved due to the presence of the flame retardant system containing DMMP and TCEP. TG-FTIR reveals that the addition of DMMP/TCEP can not only improve the thermal stability of PUF samples but can also affect the gaseous phase at high temperature.

  16. POLYAMIDE 6 WITH A FLAME RETARDANT ENCAPSULATED BY POLYAMIDE 66: FLAME RETARDATION, THERMO-DECOMPOSITION AND THE POTENTIAL MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Wei-cheng Xiong; Li Chen; Bin Zhao; De-yi Wang; Yu-zhong Wang

    2012-01-01

    A novel encapsulated flame retardant containing phosphorus-nitrogen (MSMM-Al-P) was prepared by encapsulating with polyamide 66 (PA66-MSMM-Al-P) for the flame retardation of polyamide 6 (PA6).The structure and thermal properties of PA66-MSMM-Al-P were characterized by Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy and thermogravimetric analysis.The flammability of PA6 containing' flame retardants (MSMMAl-P and PA66-MSMM-Al-P) was investigated by the limiting oxygen index test,vertical burning test and cone calorimeter.The flame retardancy and cone calorimetric analyses suggested a synergistic effect between PA66 and MSMM-Al-P in the flame-retardant PA6.Thermal stability of the flame-retardant PA6 was also investigated.

  17. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redsh

  18. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redsh

  19. Precision of Color Measurement with the GE Spectrophotometer. II: Photometric Accuracy.

    Science.gov (United States)

    Rhodes, E C; Billmeyer, F W

    1969-04-01

    The supplementary light method of Reule was applied to calibrate a simple phototube photometer to an absolute accuracy of +/-0.006% (95% confidence limits). The photometer was then used to determine the photometric accuracy of a General Electric recording spectrophotometer. The photometric scale of this instrument was shown to be accurate to within 0.1% over its entire range.

  20. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric

  1. On specific features of investigation of fluid flows by photometric techniques

    Science.gov (United States)

    Vologdin, V. A.; Davydov, V. V.; Velichko, E. N.

    2016-08-01

    Specific features of investigation of the fluid flow structure in a pipeline by photometric techniques are considered. The applicability of the photometric techniques based on the Doppler effect to such studies is discussed. A new method for detecting defects on inner walls of a pipeline that involves the use of the laser radiation scattered from particles in a flowing fluid is suggested.

  2. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  3. A photometric study of the close binary Delta Orionis A

    Science.gov (United States)

    Koch, R. H.; Hrivnak, B. J.

    1981-08-01

    Green and blue photoelectric light curves show the historical intrinsic variability of the Delta Ori A close binary superposed on the interaction and eclipse effects. There is a considerable measure of agreement between spectrographic and photometric determinations of the rate of apsidal advance. The determinacy of orbital eccentricity, however, is confused because few minima of indifferent precision exist to check the spectrographic value. No physical mechanism can be found to account for a possible diminution of orbital eccentricity, and this is probably best attributed to unrecognized complications of at least one of the existing light curves. After numerous trials, a less-than-perfect theoretical representation of the light curve was achieved and shows the system to be detached. The absolute stellar parameters make clear that both components have evolved substantially. A mean stellar structure constant k2 is derived but cannot be compared usefully to existing theoretical values. The importance of the recently discovered visual companion, hz 42, is emphasized.

  4. Cepheids with the eyes of photometric space telescopes

    Directory of Open Access Journals (Sweden)

    Molnár László

    2017-01-01

    Full Text Available Space photometric missions have been steadily accumulating observations of Cepheids in recent years, leading to a flow of new discoveries. In this short review we summarize the findings provided by the early missions such as WIRE, MOST, and CoRoT, and the recent results of the Kepler and K2 missions. The surprising and fascinating results from the high-precision, quasi-continuous data include the detection of the amplitude increase of Polaris, and exquisite details about V1154 Cyg within the original Kepler field of view. We also briefly discuss the current opportunities with the K2 mission, and the prospects of the TESS space telescope regarding Cepheids.

  5. Combining Spectroscopic and Photometric Surveys: Same or different sky?

    CERN Document Server

    Eriksen, Martin

    2014-01-01

    This article looks at the combined constraints from a photometric and spectroscopic survey. These surveys will measure cosmology using weak lensing (WL), galaxy cluster- ing, baryon acoustic oscillations (BAO) and redshift space distortions (RSD). We find, contrary to some findings in the recent literature, that overlapping surveys can give important benefits when measuring dark energy. We therefore try to clarify the status of this issue with a full forecast of two stage-IV surveys using a new approach to prop- erly account for covariance between the different probes in the overlapping samples. The benefit of the overlapping survey can be traced back to two factors: additional observables and sample variance cancellation. Both needs to be taken into account and contribute equally when combining 3D power spectrum and 2D correlations for lensing. With an analytic example we also illustrate that for optimal constraints, one should minimize the (Pearson) correlation coefficient between cosmological and nui- sanc...

  6. Photometric classification of emission line galaxies with Machine Learning methods

    CERN Document Server

    Cavuoti, Stefano; D'Abrusco, Raffaele; Longo, Giuseppe; Paolillo, Maurizio

    2013-01-01

    In this paper we discuss an application of machine learning based methods to the identification of candidate AGN from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine learning algorithms, namely the Multi Layer Perceptron (MLP), trained respectively with the Conjugate Gradient, Scaled Conjugate Gradient and Quasi Newton learning rules, and the Support Vector Machines (SVM), to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs vs non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features we discuss also the behavior of the classifiers on finer AGN classification tasks, namely Seyfert I vs Seyfert II and Seyfert vs LINER. Furthermore we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure follow...

  7. A Photometric Method for Quantifying Asymmetries in Disk Galaxies

    CERN Document Server

    Kornreich, D A; Lovelace, R V E; Kornreich, David A.; Haynes, Martha P.; Lovelace, Richard V.E.

    1998-01-01

    A photometric method for quantifying deviations from axisymmetry in optical images of disk galaxies is applied to a sample of 32 face-on and nearly face-on spirals. The method involves comparing the relative fluxes contained within trapezoidal sectors arranged symmetrically about the galaxy center of light, excluding the bulge and/or barred regions. Such a method has several advantages over others, especially when quantifying asymmetry in flocculent galaxies. Specifically, the averaging of large regions improves the signal-to-noise in the measurements; the method is not strongly affected by the presence of spiral arms; and it identifies the kinds of asymmetry that are likely to be dynamically important. Application of this "method of sectors" to R-band images of 32 disk galaxies indicates that about 30% of spirals show deviations from axisymmetry at the 5-sigma level.

  8. A Photometrically and Spectroscopically Confirmed Population of Passive Spiral Galaxies

    CERN Document Server

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A; Dolley, Tim; Crossett, Jacob P; Bonne, Nicolas J

    2016-01-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z<0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph (WiFeS) to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000\\AA\\ breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and IFU spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  9. Photometric and Spectroscopic Properties of Type II-P Supernovae

    CERN Document Server

    Faran, Tamar; Filippenko, Alexei V; Chornock, Ryan; Foley, Ryan J; Ganeshalingam, Mohan; Leonard, Douglas C; Li, Weidong; Modjaz, Maryam; Nakar, Ehud; Serduke, Frank J D; Silverman, Jeffrey M

    2014-01-01

    We study a sample of 23 Type II Plateau supernovae (SNe II-P), all observed with the same set of instruments. Analysis of their photometric evolution confirms that their typical plateau duration is 100 days with little scatter, showing a tendency to get shorter for more energetic SNe. The rise time from explosion to plateau does not seem to correlate with luminosity. We analyze their spectra, measuring typical ejecta velocities, and confirm that they follow a well behaved power-law decline. We find indications of high-velocity material in the spectra of six of our SNe. We test different dust extinction correction methods by asking the following - does the uniformity of the sample increase after the application of a given method? A reasonably behaved underlying distribution should become tighter after correction. No method we tested made a significant improvement.

  10. Photometric asymmetry between clockwise and counterclockwise spiral galaxies in SDSS

    CERN Document Server

    Shamir, Lior

    2016-01-01

    While galaxies with clockwise and counterclockwise handedness are visually different, they are expected to be symmetric in all of their other characteristics. Previous experiments using both manual analysis and machine vision have shown that the handedness of Sloan Digital Sky Survey (SDSS) galaxies can be predicted with accuracy significantly higher than mere chance using its photometric data alone, showing that SDSS photometry pipeline is sensitive to the handedness of the galaxy. However, some of these previous experiments were based on manually classified galaxies, and the results may therefore be subjected to bias originated from the human perception. This paper describes an experiment based on a set of 162,514 celestial objects classified as clockwise and counterclockwise spiral galaxies in a fully automatic process, showing that the source of the asymmetry is more than the human perception bias. The results are compared to two smaller datasets, and confirm the observation that the handedness of SDSS ga...

  11. A Detailed Spectroscopic and Photometric Analysis of DQ White Dwarfs

    CERN Document Server

    Dufour, P; Fontaine, G

    2005-01-01

    We present an analysis of spectroscopic and photometric observations of cool DQ white dwarfs based on improved model atmosphere calculations. In particular, we revise the atmospheric parameters of the trigonometric parallax sample of Bergeron, Leggett, & Ruiz, and discuss the astrophysical implications on the temperature scale and mean mass, as well as the chemical evolution of these stars. We also analyze 40 new DQ stars discovered in the first data release of the Sloan Digital Sky Survey. Our analysis confirms that effective temperatures derived from model atmospheres including carbon are significantly lower than the temperatures obtained from pure helium models. Similarly the mean mass of the trigonometric parallax sample, = 0.62 Mo, is significantly lower than that obtained from pure helium models, = 0.73 Mo, and more consistent with the spectroscopic mean mass of DB stars, = 0.59 Mo, the most likely progenitors of DQ white dwarfs. We find that DQ stars form a remarkably well defined sequence in a ...

  12. Asteroseismology of red giants: photometric observations of Arcturus by SMEI

    CERN Document Server

    Tarrant, N J; Elsworth, Y; Spreckley, S A; Stevens, I R

    2007-01-01

    We present new results on oscillations of the K1.5 III giant Arcturus (alpha Boo), from analysis of just over 2.5 yr of precise photometric observations made by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. A strong mode of oscillation is uncovered by the analysis, having frequency 3.47 +/- 0.03 micro-Hz. By fitting its mode peak, we are able offer a highly constrained direct estimate of the damping time (tau = 21.7 +/- 0.5 days). The data also hint at the possible presence of several radial-mode overtones, and maybe some non-radial modes. We are also able to measure the properties of the granulation on the star, with the characteristic timescale for the granulation estimated to be 0.51 to 0.70 days

  13. Spectroscopic Needs for Training of LSST Photometric Redshifts

    CERN Document Server

    Abate, Alexandra; Schmidt, Samuel J

    2014-01-01

    This white paper summarizes those conclusions of the Snowmass White Paper "Spectroscopic Needs for Imaging Dark Energy Experiments" (arXiv:1309.5384) which are relevant to the training of LSST photometric redshifts; i.e., the use of spectroscopic redshifts to improve algorithms and reduce photo-z errors. The larger and more complete the available training set is, the smaller the RMS error in photo-z estimates should be, increasing LSST's constraining power. Among the better US-based options for this work are the proposed MANIFEST fiber feed for the Giant Magellan Telescope or (with lower survey speed) the WFOS spectrograph on the Thirty Meter Telescope (TMT). Due to its larger field of view and higher multiplexing, the PFS spectrograph on Subaru would be able to obtain a baseline training sample faster than TMT; comparable performance could be achieved with a highly-multiplexed spectrograph on Gemini with at least a 20 arcmin diameter field of view.

  14. The first decade of RR Lyrae space photometric observations

    CERN Document Server

    Molnár, Lászlo

    2016-01-01

    Space-based photometric telescopes stirred up stellar astrophysics in the last decade, and RR Lyrae stars have not been an exception from that either. The long, quasi-continuous, high-precision data from MOST, CoRoT and Kepler revealed a wealth of new insights about this well-known variable class. One of the most surprising mysteries turned out to be the apparent omnipresence of a common additional mode in all RRd and RRc stars. Moreover, fundamental-mode stars seem to populate two distinct classes, one of which is characterized by the presence of additional modes and/or modulation, and another limited to strict single-mode pulsation. The presence of additional modes and multiple modulations in RRab stars allowed us to construct Petersen diagrams for these parameters: while the pulsation modes show clear structures according to period ratios, there seems to be no relation between the modulation periods themselves.

  15. NIF ReShock/Shear Photometrics Design Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-12

    The design of the photometrics for the NIF Shock/Shear campaign was driven by three linked considerations: the backlighter (BL) material had to be chosen such that it’s He-α emission line gave high enough contrast to measure mix width and see the shock propagation in the target wall, the BL beam geometry had to give sufficient BL spot dimensions and intensity to produce a uniform He-α radiograph of the target, and the BL/pinhole system had to have a high enough resolution and signal to be able to measure the quantities of interest. The design considerations are linked such that the required contrast determines the BL material, the BL material determines what laser intensity range is need for He-α emission, and the resulting He-α emission intensity helps determine whether or not there will be sufficient signal for analysis.

  16. METAPHOR: A machine learning based method for the probability density estimation of photometric redshifts

    CERN Document Server

    Cavuoti, Stefano; Brescia, Massimo; Vellucci, Civita; Tortora, Crescenzo; Longo, Giuseppe

    2016-01-01

    A variety of fundamental astrophysical science topics require the determination of very accurate photometric redshifts (photo-z's). A wide plethora of methods have been developed, based either on template models fitting or on empirical explorations of the photometric parameter space. Machine learning based techniques are not explicitly dependent on the physical priors and able to produce accurate photo-z estimations within the photometric ranges derived from the spectroscopic training set. These estimates, however, are not easy to characterize in terms of a photo-z Probability Density Function (PDF), due to the fact that the analytical relation mapping the photometric parameters onto the redshift space is virtually unknown. We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method designed to provide a reliable PDF of the error distribution for empirical techniques. The method is implemented as a modular workflow, whose internal engine for photo-z estimation makes use...

  17. Reconstructing the galaxy density field with photometric redshifts: I. Methodology and validation on stellar mass functions

    CERN Document Server

    Malavasi, Nicola; Cucciati, Olga; Bardelli, Sandro; Cimatti, Andrea

    2016-01-01

    Measuring environment for large numbers of distant galaxies is still an open problem, for which we need galaxy positions and redshifts. Photometric redshifts are more easily available for large numbers of galaxies, but at the price of larger uncertainties than spectroscopic ones. In this work we study how photometric redshifts affect the measurement of galaxy environment and how this may limit an analysis of the galaxy stellar mass function (GSMF) in different environments. Using mock galaxy catalogues, we measured the environment with a fixed aperture method, using each galaxy's true and photometric redshifts. We varied the fixed aperture volume parameters and the photometric redshift uncertainties. We then computed GSMF as a function of redshift and environment. We found that only when using high-precision photometric redshifts with $\\sigma_{\\Delta z/(1+z)} \\le 0.01$, the most extreme environments can be reconstructed in a fairly accurate way, with a fraction $\\ge 60\\div 80\\%$ of galaxies placed in the corr...

  18. Miniature photometric stereo system for textile surface structure reconstruction

    Science.gov (United States)

    Gorpas, Dimitris; Kampouris, Christos; Malassiotis, Sotiris

    2013-04-01

    In this work a miniature photometric stereo system is presented, targeting the three-dimensional structural reconstruction of various fabric types. This is a supportive module to a robot system, attempting to solve the well known "laundry problem". The miniature device has been designed for mounting onto the robot gripper. It is composed of a low-cost off-the-shelf camera, operating in macro mode, and eight light emitting diodes. The synchronization between image acquisition and lighting direction is controlled by an Arduino Nano board and software triggering. The ambient light has been addressed by a cylindrical enclosure. The direction of illumination is recovered by locating the reflection or the brightest point on a mirror sphere, while a flatfielding process compensates for the non-uniform illumination. For the evaluation of this prototype, the classical photometric stereo methodology has been used. The preliminary results on a large number of textiles are very promising for the successful integration of the miniature module to the robot system. The required interaction with the robot is implemented through the estimation of the Brenner's focus measure. This metric successfully assesses the focus quality with reduced time requirements in comparison to other well accepted focus metrics. Besides the targeting application, the small size of the developed system makes it a very promising candidate for applications with space restrictions, like the quality control in industrial production lines or object recognition based on structural information and in applications where easiness in operation and light-weight are required, like those in the Biomedical field, and especially in dermatology.

  19. DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Shporer, Avi [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Jenkins, Jon M.; Seader, Shawn E.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Rowe, Jason F.; Sanderfer, Dwight T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Still, Martin D. [Bay Area Environmental Research Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Welsh, William F., E-mail: ashporer@lcogt.net [Astronomy Department, San Diego State University, San Diego, CA 92182 (United States)

    2011-12-15

    We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm, aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms: the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude to estimate the planet's minimum mass, which results in M{sub p} sin i = 9.2 {+-} 1.1 M{sub J} (assuming the host star parameters derived by Szabo et al.). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission of 3.5 years will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.

  20. Forward Global Photometric Calibration of the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.L.; et al.

    2017-06-05

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadband $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $m_b^{\\mathrm{std}}$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $m_b^{\\mathrm{std}}$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $\\sigma=5-6\\,\\mathrm{mmag}$ per exposure. The accuracy of the calibration is uniform across the $5000\\,\\mathrm{deg}^2$ DES footprint to within $\\sigma=7\\,\\mathrm{mmag}$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $5\\,\\mathrm{mmag}$ for main sequence stars with $0.5