WorldWideScience

Sample records for flagellated magnetotactic bacteria

  1. Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature.

    Science.gov (United States)

    Martel, Sylvain; Mohammadi, Mahmood; Felfoul, Ouajdi; Lu, Zhao; Pouponneau, Pierre

    2009-04-01

    Although nanorobots may play critical roles for many applications in the human body such as targeting tumoral lesions for therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots. Here, we show that the flagellated nanomotors combined with the nanometer-sized magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for devices such as nanorobots designed for targeting locations only accessible through the smallest capillaries in humans while being visible for tracking and monitoring purposes using modern medical imaging modalities such as Magnetic Resonance Imaging (MRI). Through directional and magnetic field intensities, the displacement speeds, directions, and behaviors of swarms of these bacterial actuators can be controlled from an external computer.

  2. Geobiology of Marine Magnetotactic Bacteria

    Science.gov (United States)

    2006-06-01

    prokaryotic cells of diverse phylogeny when grown in media containing 45 1mM iron, suggesting some kind of detoxification function . The inclusions were...salt marsh productivity. FISH also showed that aggregates consist of genetically identical cells. QPCR data indicated that populations are finely...my advisor Katrina Edwards for taking a chance on someone who initially knew nothing about magnetotactic bacteria, microbial ecology , or microbiology

  3. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  4. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  5. Magnetosome chain superstructure in uncultured magnetotactic bacteria

    International Nuclear Information System (INIS)

    Abraçado, Leida G; Farina, Marcos; Abreu, Fernanda; Keim, Carolina N; Lins, Ulysses; Campos, Andrea P C

    2010-01-01

    Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1 1 1) and (1-bar 1-bar 1-bar) capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed

  6. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Science.gov (United States)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  7. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  8. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  9. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Moeschler, F.D.

    1999-01-01

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  10. Characterization of Eight Kinds of Marine Magnetotactic Bacteria

    Science.gov (United States)

    Du, H.; Pan, H.; Zhang, W.; Wu, L. F.; Xiao, T.

    2017-12-01

    Eight marine magnetotactic bacteria were isolated from intertidal sediments. Six of them are magnetococci (RO-1, RO-2, RO-3, RO-4, SC-1 and SC-2), and two of them are manetospirilla (SH-1 and HH-1). Strain RO-1, RO-2, RO-3, and RO-4 were from Lake Yuehu, Rongcheng (the Yellow Sea). Strain SC-1, SC-2 and SH-1 were from Sanya (the South China Sea). Strain HH-1 was from Huiquan Bay, Qingdao (the Yellow Sea). Magnetosomes arranged in a disorganized cluster in RO-1 and RO-4, two chains in SC-2, and in one chain in others. All the magnetosome crystals were prismatic magnetites. Phylogenetic analysis revealed that they all belonged to the Alphaproteobacteria. Strain RO-1, RO-2, RO-3, RO-4, SC-2 and SH-1 are novel cultured magnetotactic bacteria.

  11. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine

    International Nuclear Information System (INIS)

    Alphandéry, Edouard

    2014-01-01

    Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetosomes, such as those in magnetic resonance imaging (MRI), magnetic hyperthermia, and drug delivery. Different methods that can be used to prepare the magnetosomes for these applications are described. The toxicity and biodistribution results that have been published are summarized. They show that the magnetosomes can safely be used provided that they are prepared in specific conditions. The advantageous properties of the magnetosomes compared with those of chemically synthesized nanoparticles of similar composition are also highlighted.

  12. Magnetotactic bacteria in marine sediments: clues from recent cores from Brazilian Coast

    Science.gov (United States)

    Jovane, L.; Pellizari, V. H.; Brandini, F. P.; Braga, E. D. S.; Freitas, G. R.; Benites, M.; Rodelli, D.; Giorgioni, M.; Iacoviello, F.; Ruffato, D. G.; Lins, U.

    2014-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of marine magnetotactic bacteria, in conjunction with geophysical, geochemical and oceanographic data from the Brazilian Coast, provide interesting insights regarding the primary productivity distribution in oceans. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a "magnetic fingerprint" for the presence of magnetotactic bacteria. The use of those magnetic properties is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We will also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We studied magnetotactic bacterial concentration and geophysical, geochemical and oceanographic results in marine settings measuring crucially nutrients availability in the water column and in sediments, on particulate delivery to the seafloor, to understand the environmental condition that allow the presence of magnetotactic bacteria and magnetosomes in sediments.

  13. Life with compass: diversity and biogeography of magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei [Institute of Geology and Geophysics; Bazylinski, Dennis A [Ames Laboratory; Xiao, Tian [Chinese Academy of Sciences; Wu, Long-Fei [v; Pan, Yongxin [Institute of Geology and Geophysics

    2013-11-12

    Magnetotactic bacteria (MTB) are unique in their ability to synthesize intracellular nano-sized minerals of magnetite and/or greigite magnetosomes for magnetic orientation. Thus, they provide an excellent model system to investigate mechanisms of biomineralization. MTB play important roles in bulk sedimentary magnetism and have numerous versatile applications in paleoenvironmental reconstructions, and biotechnological and biomedical fields. Significant progress has been made in recent years in describing the composition of MTB communities and distribution through innovative cultivation-dependent and -independent techniques. In this review, the most recent contributions to the field of diversity and biogeography of MTB are summarized and reviewed. Emphasis is on the novel insights into various factors/processes potentially affecting MTB community distribution. An understanding of the present-day biogeography of MTB, and the ruling parameters of their spatial distribution, will eventually help us predict MTB community shifts with environmental changes and assess their roles in global iron cycling.

  14. Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species.

    Science.gov (United States)

    Li, Kefeng; Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Lulu; Song, Tao

    2017-09-01

    Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. From Magnetotactic Bacteria to Sediment Magnetizations: new insights

    Science.gov (United States)

    Egli, R.; Mao, X.; Zhao, X.

    2015-12-01

    Magnetotactic bacteria (MTB) represent one of the most intriguing examples of iron biomineralization and magnetic navigation in nature. MTB synthesize magnetic nanocrystals, called magnetosomes, which act as an incorporated compass for navigation purposes (magnetotaxis). MTB are ubiquitous organisms living in chemically stratified freshwater and marine environments, where they contribute significantly to the Fe cycle. Magnetosomes accumulate as fossil MTB remains in sediment (magnetofossils). The recent development of magnetic measurement protocols enabling to detect small magnetosome concentrations among complex iron mineral mixtures led to the discovery that magnetofossil preservation over geological times is not uncommon. Therefore, magnetofossils can play an important role in sedimentary records of the Earth's magnetic field, as well as conveying selective information about past environmental conditions (e.g. redox conditions and nutrient concentration). Paleomagnetic and environmental applications require us to understand the processes that control MTB occurrence, magnetofossil formation and preservation, and the final alignment with the Earth's magnetic field. Our current knowledge relies mostly on experiments performed with cultured MTB in aqueous solutions, under physical and chemical conditions that do not necessarily reproduce those encountered in sediment. These experiments have been pivotal for understanding magnetosome growth and the fundaments of magnetotaxis. On the other hand, recent investigations of living MTB populations in sediment with specially developed observation techniques led to unexpected findings, with important implications for magnetotaxis models, MTB ecology, and, indirectly, for modeling the acquisition of natural magnetizations in bioturbated sediments. Ludwig, P. et al. (2013), Global Planet. Change 110, 321-339. Mao, X. et al. (2014), Geochem. Geophys. Geosys. 15, doi:10.1002/2013GC005034. Mao, X. et al. (2014). PLoS ONE 9, doi

  16. Interaction of bacteria-feeding soil flagellates and Pseudomonas spp

    DEFF Research Database (Denmark)

    Pedersen, Annette; Ekelund, Flemming; Johansen, Anders

    2010-01-01

    Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation...... resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the difference between Pseudomonas spp. with respect to their predation resistance to and effects...... on the three different and common soil flagellates Bodo caudatus, Cercomonas longicauda, and Neocercomonas jutlandica. Two antagonistic Pseudomonas: Pseudomonas fluorescens CHA0 and P. fluorescens DR54 and two positive control strains: P. fluorescens DSM 50090T and Pseudomonas chlororaphis ATCC 43928 were...

  17. Analysis of magnetite crystals and inclusion bodies inside magnetotactic bacteria from different environmental locations

    Science.gov (United States)

    Oestreicher, Z.; Lower, B.; Lower, S.; Bazylinski, D. A.

    2011-12-01

    Biomineralization occurs throughout the living world; a few common examples include iron oxide in chiton teeth, calcium carbonate in mollusk shells, calcium phosphate in animal bones and teeth, silica in diatom shells, and magnetite crystals inside the cells of magnetotactic bacteria. Biologically controlled mineralization is characterized by biominerals that have species-specific properties such as: preferential crystallographic orientation, consistent particle size, highly ordered spatial locations, and well-defined composition and structure. It is well known that magnetotactic bacteria synthesize crystals of magnetite inside of their cells, but how they mineralize the magnetite is poorly understood. Magnetosomes have a species-specific morphology that is due to specific proteins involved in the mineralization process. In addition to magnetite crystals, magnetotactic bacteria also produce inclusion bodies or granules that contain different elements, such as phosphorus, calcium, and sulfur. In this study we used the transmission electron microscope to analyze the structure of magnetite crystals and inclusion bodies from different species of magnetotactic bacteria in order to determine the composition of the inclusion bodies and to ascertain whether or not the magnetite crystals contain elements other than iron and oxygen. Using energy dispersive spectroscopy we found that different bacteria from different environments possess inclusion bodies that contain different elements such as phosphorus, calcium, barium, magnesium, and sulfur. These differences may reflect the conditions of the environment in which the bacteria inhabit.

  18. Metabolic activity of uncultivated magnetotactic bacteria revealed by NanoSIMS

    Science.gov (United States)

    He, M.; Zhang, W.; Gu, L.; Pan, Y.; Lin, W.

    2017-12-01

    Microorganisms that exhibit magnetotaxis behavior, collectively known as the magnetotactic bacteria (MTB), are those whose motility is influenced by the Earth's magnetic field. MTB are a physiologically diverse group of bacteria with a unique feature of intracellular biomineralization of magnetosomes (Fe3O4 and/or Fe3S4) (Bazylinski et al., 2013). However, the ecophysiology of uncultivated MTB, especially those within the Nitrospirae phylum forming hundreds of bullet-shaped magnetite magnetosomes per cell, is still not well characterized (Lin et al., 2014). Nanoscale secondary ion mass spectrometry (NanoSIMS) is a powerful tool for revealing element distribution in nanometer-scale resolution, which opens exciting possibilities for the study of interactions between microorganisms and environments (Gao et al., 2016; Musat et al., 2016). Here we applied NanoSIMS to investigate the dynamics of carbon and nitrogen assimilations in two magnetotactic Nitrospirae populations at single cell level. Our NanoSIMS results confirmed the metabolic potential of Nitrospirae MTB proposed by genomic and metagenomic analysis and provided additional insights into the ecophysiology of uncultivated MTB. This study suggests that NanoSIMS-based analyses are powerful approaches for investigating and characterizing the ecological function of environmental microorganisms. References: Bazylinski D A., Lefèvre, C T., Schüler D., 2013. Magnetotactic Bacteria. 453-494.Lin W, Bazylinski DA, Xiao T, Wu L- F, Pan Y., 2014. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol, 16: 1462-2920.Gao D., Huang X., Tao Y., 2016. A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol, 36: 884-890.Musat N., Musat F., Weber PK., Pett-Ridge J., 2016. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol, 41: 114-121.

  19. Magnetotactic algae

    International Nuclear Information System (INIS)

    Barros, H.G. de P.L. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    The first observation is reported of an enkaryote micro-organism (chlamydomona), collected in samples from the Rodrigo de Freitas lagune in Rio de Janeiro, which responds to the magnetic field in a similar way as the magnetotactic bacterias. (L.C.) [pt

  20. Characterizing the interactions among a dinoflagellate, flagellate and bacteria in the phycosphere of Alexandrium tamarense (Dinophyta

    Directory of Open Access Journals (Sweden)

    Lidan eHu

    2015-11-01

    Full Text Available A small flagellate alga was isolated from the phycosphere of a toxic red tide dinoflagellate Alexandrium tamarense. Phylogenetic analysis and ultrastructural observations demonstrated that the samll flagellate alga is a species belong to Ochrophyte Ochromonas sp. The process of ingesting bacteria by Ochromonas sp. was recorded by a time lapse capture under a light microscope. Through the use of different assemblages in the co-culture experiment, the species interactions in this phycosphere microenvironment were analyzed. We demonstrated that the growth of Ochromonas sp. was supported by bacteria. Three strains of bacteria ingested by Ochromonas sp. were isolated and identified to belong to α-, δ- and γ-Proteobacteria. The growth of A. tamarense was suppressed when co-cultured with bacteria. In contrast, Ochromonas sp. triggered the growth of A. tamarense by inhibiting the growth of algicidal bacteria. This result firstly demonstrated a positive effect of a flagellate on a dinoflagellate in the phycosphere of A. tamarense. Combined with other negative effects between dinoflagellates and bacteria or bacteria and flagellates, this study showed a series of clear interactions among dinoflagellate, bacterium, and flagellate in the dinoflagellate microenvironment.

  1. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Kasalický, Vojtěch; Jezbera, Jan; Horňák, Karel; Nedoma, Jiří; Hahn, M.W.; Bass, D.; Jost, S.; Boenigk, J.

    2013-01-01

    Roč. 7, č. 8 (2013), s. 1519-1530 ISSN 1751-7362 R&D Projects: GA ČR(CZ) GA13-00243S; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : flagellate community composition * food quality of bacteria * Limnohabitans * 454 pyrosequencing * freshwater * flagellate growth Subject RIV: DA - Hydrology ; Limnology Impact factor: 9.267, year: 2013

  2. Constant Flux of Spatial Niche Partitioning through High-Resolution Sampling of Magnetotactic Bacteria.

    Science.gov (United States)

    He, Kuang; Gilder, Stuart A; Orsi, William D; Zhao, Xiangyu; Petersen, Nikolai

    2017-10-15

    Magnetotactic bacteria (MTB) swim along magnetic field lines in water. They are found in aquatic habitats throughout the world, yet knowledge of their spatial and temporal distribution remains limited. To help remedy this, we took MTB-bearing sediment from a natural pond, mixed the thoroughly homogenized sediment into two replicate aquaria, and then counted three dominant MTB morphotypes (coccus, spirillum, and rod-shaped MTB cells) at a high spatiotemporal sampling resolution: 36 discrete points in replicate aquaria were sampled every ∼30 days over 198 days. Population centers of the MTB coccus and MTB spirillum morphotypes moved in continual flux, yet they consistently inhabited separate locations, displaying significant anticorrelation. Rod-shaped MTB were initially concentrated toward the northern end of the aquaria, but at the end of the experiment, they were most densely populated toward the south. The finding that the total number of MTB cells increased over time during the experiment argues that population reorganization arose from relative changes in cell division and death and not from migration. The maximum net growth rates were 10, 3, and 1 doublings day -1 and average net growth rates were 0.24, 0.11, and 0.02 doublings day -1 for MTB cocci, MTB spirilla, and rod-shaped MTB, respectively; minimum growth rates for all three morphotypes were -0.03 doublings day -1 Our results suggest that MTB cocci and MTB spirilla occupy distinctly different niches: their horizontal positioning in sediment is anticorrelated and under constant flux. IMPORTANCE Little is known about the horizontal distribution of magnetotactic bacteria in sediment or how the distribution changes over time. We therefore measured three dominant magnetotactic bacterium morphotypes at 36 places in two replicate aquaria each month for 7 months. We found that the spatial positioning of population centers changed over time and that the two most abundant morphotypes (MTB cocci and MTB spirilla

  3. Metagenome-assembled genomes of deep-branching magnetotactic bacteria in the Nitrospirae phylum

    Science.gov (United States)

    Zhang, W.; He, M.; Gu, L.; Tang, X.; Pan, Y.; Lin, W.

    2017-12-01

    Magnetotactic bacteria (MTB) are aquatic microorganisms that synthesize intracellular magnetic nanoparticles composed of magnetite and/or greigite. MTB have thus far been identified in the phyla of Proteobacteria, Nitrospirae, Omnitrophica, Latescibacteria and Planctomycetes (Lin et al., 2017b). Among these organisms, MTB belonging to the Nitrospirae phylum are of great interest because of the formation of hundreds of magnetite magnetosomes in a single cell and of the great potential for iron, sulfur, nitrogen, and carbon cycling in natural environments. However, due to the lack of genomic information, our current knowledge on magnetotactic Nitrospirae remains very limited. In the present study, we have identified and characterized two novel populations of uncultivated MTB from freshwater lakes in Shaanxi province, China. 16S rRNA gene-based analyses revealed that they belonged to two different clusters in the Nitrospirae. The draft population genomes of these two Nitrospirae MTB were successfully recovered through genome-resolved metagenomics, both of which containing nearly complete magnetosome gene clusters (MGCs) responsible for magnetosome biomineralization and organization. In consistent with our previous study (Lin et al., 2017a), we found that the gene content and gene organization of the MGCs in the Nitrospirae MTB were highly conserved, indicating that Nitrospirae gene clusters represent one of the ancestral types of MGCs. The population genome sequences suggest that magnetotactic Nitrospirae are capable of CO2 fixtion through Wood-Ljungdahl pathway. They may also reduce sulfate and nitrate/nitrite through sulfate reduction pathway and denitrification pathway, respectively. Our genomic analyses revealed the potential metabolic capability of the Nitrospirae MTB and shed light on their ecology, evolution and biomineralization mechanism. References: Lin W, Paterson GA, Zhu Q, Wang Y, Kopylova E, Li Y, Knight R, Bazylinski DA, Zhu R, Kirschvink JL, Pan Y

  4. Particle-associated flagellates: swimming patterns, colonization rates, and grazing on attached bacteria

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Grossart, H.P.; Ploug, H.

    2004-01-01

    Some pelagic flagellates colonize particles, such as marine snow, where they graze on bacteria and thus impact the dynamics of the attached microbial communities. Particle colonization is governed by motility. Swimming patterns of 2 particle-associated flagellates, Bodo designis and Spumella sp......., are very different, the former swimming slowly in an erratic, random pattern, and the latter faster and along smooth helixes of variable amplitude and frequency. At spatial scales exceeding ca. 50 mum, the motility of B. designis can be described as a random walk and modeled as diffusion. Spumella sp...

  5. The mechanical life of magnetotactic bacteria inside sediments: implications for paleo- and environmental magnetism

    Science.gov (United States)

    Egli, Ramon; Mao, Xuegang

    2015-04-01

    Magnetotactic bacteria (MTB) are responsible for up to almost 100% of the magnetic signature of certain sediments through fossil reminders called magnetofossils. Besides being stable carriers of useful paleomagnetic signals, magnetofossils provide interesting environmental proxies that reflect MTB abundance variations due to nutrient supply and/or dilution by detrital/aeolian inputs. Unfortunately factors affecting MTB abundances in sediment are poorly known and based at best on extrapolations of observations on pure cultures. For example, MTB displacement models have been always based on the assumption that full alignment with the Earth magnetic field is possible, as observed in water. However, we recently found that the alignment of living MTB does not exceed few % inside sediments. This observation raises questions on the true nature of the biologic advantage of such bacteria over other motile organisms, and, ultimatively, on what is controlling their abundance in sediment. Here we report experiments that demonstrate the role of the Earth magnetic field in directing MTB to optimal living depths with the observed poor magnetic alignment. These exerments explain the apparent useless abundance of magnetosomes in certain MTB strains (e.g. M. Bavaricum) and reveal unexpected differences between strains with respect to their ability to cope with chemical signals and absent or reversed magnetic fields.

  6. Integrating Metagenomics and NanoSIMS to Investigate the Evolution and Ecophysiology of Magnetotactic Bacteria

    Science.gov (United States)

    Lin, W.; Zhang, W.; He, M.; Pan, Y.

    2017-12-01

    Magnetotactic bacteria (MTB) synthesize intracellular nano-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals, called magnetosomes, which impart a permanent magnetic dipole moment to the cell causing it to align along the geomagnetic field lines as it swims. MTB play essential roles in global cycling of Fe, S, N and C, and represent an excellent model system not just for the investigation of the mechanisms of microbial engines that drive Earth's biogeochemical cycles but also for magnetotaxis and microbial biomineralization. Most of the previous studies on MTB were based on 16S rRNA gene-targeting analyses, which are powerful approaches to characterize the diversity, ecology and biogeography of MTB in nature. However, these approaches are somewhat limited in the physiological detail they can provide. In the present study, we have combined the genome-resolved metagenomics and nanoscale secondary ion mass spectrometry (NanoSIMS) analyses to study the genomic information, biomineralization mechanism and metabolic potential of environmental MTB. Two nearly complete genomes from uncultivated MTB belonging to the Nitrospirae phylum were reconstructed and their proposed metabolisms were further investigated and confirmed through NanoSIMS analyses. These results improve our understanding about the ecophysiology and evolution of MTB and their environmental function. The development of metagenomics-NanoSIMS integrated approach will provide a powerful tool for the research of geomicrobiology and environmental microbiology.

  7. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province.

    Science.gov (United States)

    Dong, Yi; Li, Jinhua; Zhang, Wuchang; Zhang, Wenyan; Zhao, Yuan; Xiao, Tian; Wu, Long-Fei; Pan, Hongmiao

    2016-04-01

    Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria

    Directory of Open Access Journals (Sweden)

    Ulysses Lins

    2006-09-01

    Full Text Available We report on the application of off-axis electron holography and high-resolution TEM to study the crystal habits of magnetosomes and magnetic microstructure in two coccoid morphotypes of magnetotactic bacteria collected from a brackish lagoon at Itaipu, Brazil. Itaipu-1, the larger coccoid organism, contains two separated chains of unusually large magnetosomes; the magnetosome crystals have roughly square projections, lengths up to 250 nm and are slightly elongated along [111] (width/length ratio of about 0.9. Itaipu-3 magnetosome crystals have lengths up to 120 nm, greater elongation along [111] (width/length ~0.6, and prominent corner facets. The results show that Itaipu-1 and Itaipu-3 magnetosome crystal habits are related, differing only in the relative sizes of their crystal facets. In both cases, the crystals are aligned with their [111] elongation axes parallel to the chain direction. In Itaipu-1, but not Itaipu-3, crystallographic positioning perpendicular to [111] of successive crystals in the magnetosome chain appears to be under biological control. Whereas the large magnetosomes in Itaipu-1 are metastable, single-magnetic domains, magnetosomes in Itaipu-3 are permanent, single-magnetic domains, as in most magnetotactic bacteria.Nós relatamos a aplicação de holografia não-axial e microscopia eletrônica de alta resolução para estudar os hábitos cristalinos de magnetossomos e a microestrutura magnética de dois morfotipos de cocos de bactérias magnetotáticas coletadas em uma lagoa salobra em Itaipu, Brasil. Itaipu-1, o organismo cocóide maior, contémduas cadeias separadas de magnetossomos atipicamente grandes; os cristais dos magnetossomos possuem projeções aproximadamente quadradas, comprimentos deaté 250 nm e são ligeiramente alongados na direção [111] (razão largura/comprimento de aproximadamente 0.9.Os cristais dos magnetossomos em Itaipu-3 possuemcomprimentos até 120 nm, maior alongamento na direção [111

  9. Bacterial Community Sstructure and Novel Species of Magnetotactic Bacteria in Sediments from a Seamount in the Mariana Volcanic Arc

    Science.gov (United States)

    PAN, H.; LIU, J.; Zhang, W.; Xiao, T.; Wu, L. F.

    2017-12-01

    Seamounts are unique ecosystems where undersea mountains rise abruptly from the sea floor and interact dynamically with underwater currents, creating peculiar biological habitats with various microbial community structures. Certain bacteria associated with seamounts form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend knowledge of seamount microorganisms we performed a systematic analysis of the population composition and occurrence of live magnetotactic bacteria (MTB) in sediments of a seamount in the Mariana volcanic arc. Proteobacteria dominated at 13 stations, and were the second in abundance to members of the Firmicutes at a deep station on a steep slope facing the Yap-Mariana trench. We found MTB that synthesize intracellular iron-oxide nanocrystals in biogenic sediments at all 14 stations, at seawater depths ranging from 238 to 2023 m. A novel flagellar apparatus, and the most complex yet reported, was observed in magnetotactic cocci; it comprises one or two bundles of 19 flagella arranged in a 3:4:5:4:3 array. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. The geographic properties at the various stations on the seamount appear to be important in shaping the microbial community structure.

  10. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria.

    Science.gov (United States)

    Arakaki, Atsushi; Yamagishi, Ayana; Fukuyo, Ayumi; Tanaka, Masayoshi; Matsunaga, Tadashi

    2014-08-01

    Magnetotactic bacteria synthesize magnetosomes comprised of membrane-enveloped single crystalline magnetite (Fe3 O4 ). The size and morphology of the nano-sized magnetite crystals (Mms (Mms5, Mms6, Mms7, and Mms13), was previously isolated from the surface of cubo-octahedral magnetite crystals in Magnetospirillum magneticum strain AMB-1. Analysis of an mms6 gene deletion mutant suggested that the Mms6 protein plays a major role in the regulation of magnetite crystal size and morphology. In this study, we constructed various mms gene deletion mutants and characterized the magnetite crystals formed by the mutant strains. Comparative analysis showed that all mms genes were involved in the promotion of crystal growth in different manners. The phenotypic characterization of magnetites also suggested that these proteins are involved in controlling the geometries of the crystal surface structures. Thus, the co-ordinated functions of Mms proteins regulate the morphology of the cubo-octahedral magnetite crystals in magnetotactic bacteria. © 2014 John Wiley & Sons Ltd.

  11. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    NARCIS (Netherlands)

    Qu, Zijie; Temel, Fatma Zeynep; Henderikx, Rene; Breuer, Kenneth S.

    2018-01-01

    Although the motility of the flagellated bacteria, Escherichia coli, has been widely studied, the effect of viscosity on swimming speed remains controversial. The swimming mode of wild-type E. coli is often idealized as a run-and-tumble sequence in which periods of swimming at a constant speed are

  12. Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets.

    Science.gov (United States)

    Khalil, Islam S M; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver G; Abelmann, Leon; Misra, Sarthak

    2013-01-01

    Development of targeted drug delivery systems using magnetic microrobots increases the therapeutic indices of drugs. These systems have to be incorporated with precise motion controllers. We demonstrate closed-loop motion control of microrobots under the influence of controlled magnetic fields. Point-to-point motion control of a cluster of iron oxide nanoparticles (diameter of 250 nm) is achieved by pulling the cluster towards a reference position using magnetic field gradients. Magnetotactic bacterium (MTB) is controlled by orienting the magnetic fields towards a reference position. MTB with membrane length of 5 µm moves towards the reference position using the propulsion force generated by its flagella. Similarly, self-propelled microjet with length of 50 µm is controlled by directing the microjet towards a reference position by external magnetic torque. The microjet moves along the field lines using the thrust force generated by the ejecting oxygen bubbles from one of its ends. Our control system positions the cluster of nanoparticles, an MTB and a microjet at an average velocity of 190 µm/s, 28 µm/s, 90 µm/s and within an average region-of-convergence of 132 µm, 40 µm, 235 µm, respectively.

  13. A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linjie; Chen, Changyou [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wang, Pingping; Chen, Chuanfang [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wu, Long-Fei [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille University, Institut de Microbiologie de la Méditerranée, CNRS, Marseille (France); Song, Tao, E-mail: songtao@mail.iee.ac.cn [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China)

    2017-04-01

    A compound magnetic field generating system was built to kill Staphylococcus aureus (S. aureus) by magnetotactic bacteria (MTB) in a microfluidic chip in this paper. The system was consisted of coil pairs, a switch circuit, a control program and controllable electrical sources. It could produce a guiding magnetic field (gMF) of ±1 mT along arbitrary direction in the horizontal plane, a rotating magnetic field (rMF) and a swing magnetic field (sMF, 2 Hz, 10 mT) by controlling the currents. The gMF was used to guide MTB swimming to the S. aureus pool in the microfluidic chip, and then the rMF enhanced the mixture of S. aureus and MTB cells, therefore beneficial to the attachments of them. Finally, the sMF was used to induce the death of S. aureus via MTB. The results showed that MTB could be navigated by the gMF and that 47.1% of S. aureus were killed when exposed to the sMF. It provides a new solution for the targeted treatment of infected diseases and even cancers. - Highlights: • We built a system which generated a compound magnetic field in one device. • The compoud magnetic field includes guiding, rotating and swing magnetic fields. • MTB was guided and S. aureus attached to MTB was killed in the same device.

  14. Switching between Magnetotactic and Aerotactic Displacement Controls to Enhance the Efficacy of MC-1 Magneto-Aerotactic Bacteria as Cancer-Fighting Nanorobots

    Directory of Open Access Journals (Sweden)

    Sylvain Martel

    2016-05-01

    Full Text Available The delivery of drug molecules to tumor hypoxic areas could yield optimal therapeutic outcomes. This suggests that effective cancer-fighting micro- or nanorobots would require more integrated functionalities than just the development of directional propelling constructs which have so far been the main general emphasis in medical micro- and nanorobotic research. Development of artificial agents that would be most effective in targeting hypoxic regions may prove to be a very challenging task considering present technological constraints. Self-propelled, sensory-based and directionally-controlled agents in the form of Magnetotactic Bacteria (MTB of the MC-1 strain have been investigated as effective therapeutic nanorobots in cancer therapy. Following computer-based magnetotactic guidance to reach the tumor area, the microaerophilic response of drug-loaded MC-1 cells could be exploited in the tumoral interstitial fluid microenvironments. Accordingly, their swimming paths would be guided by a decreasing oxygen concentration towards the hypoxic regions. However, the implementation of such a targeting strategy calls for a method to switch from a computer-assisted magnetotactic displacement control to an autonomous aerotactic displacement control. In this way, the MC-1 cells will navigate to tumoral regions and, once there, target hypoxic areas through their microaerophilic behavior. Here we show not only how the magnitude of the magnetic field can be used for this purpose but how the findings could help determine the specifications of a future compatible interventional platform within known technological and medical constraints.

  15. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields

    Science.gov (United States)

    Fradin, Cécile

    2013-01-01

    Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185

  16. Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans

    Czech Academy of Sciences Publication Activity Database

    Grujčič, Vesna; Kasalický, Vojtěch; Šimek, Karel

    2015-01-01

    Roč. 81, č. 15 (2015), s. 4993-5002 ISSN 0099-2240 R&D Projects: GA ČR(CZ) GA13-00243S; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : freshwater reservoir * heterotrophic flagellate bacterivory * Limnohabitans * bacterial food quality * growth responses of flagellates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.823, year: 2015

  17. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Esquivel, D.M.S.; Barros, H.G. de P.L. de.

    1985-01-01

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author) [pt

  18. Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.

    Science.gov (United States)

    Arakaki, Atsushi; Shibusawa, Mie; Hosokawa, Masahito; Matsunaga, Tadashi

    2010-03-01

    Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using phi29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, "Magnetospirillum magneticum AMB-1," whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.

  19. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  20. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    Science.gov (United States)

    Qu, Zijie; Temel, Fatma; Henderikx, Rene; Breuer, Kenneth

    2017-11-01

    The motility of bacteria E.coli in viscous fluids has been widely studied, although conflicting results on the effect of viscosity on swimming speed abound. The swimming mode of wild-type E.coli is idealized as a run-and-tumble sequence in which periods of straight swimming at a constant speed are randomly interrupted by a tumble, defined as a sudden change of direction with a very low speed. Using a tracking microscope, we follow cells for extended time and find that the swimming behavior of a single cell can exhibit a variety of behaviors including run-and-tumble and ``slow-random-walk'' in which the cells move at relatively low speed without the characteristic run. Although the characteristic swimming speed varies between individuals and in different polymer solutions, we find that the skewness of the speed distribution is solely a function of viscosity, and uniquely determines the ratio of the average speed to the characteristic run speed. Using Resistive Force Theory and the cell-specific measured characteristic run speed, we show that differences in the swimming behavior observed in solutions of different viscosity are due to changes in the flagellar bundling time, which increases as the viscosity rises, due to lower rotation rate of the flagellar motor. National Science Foundation.

  1. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.

    2016-07-27

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  2. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.; Ezzedine, Alaa H.; Abdallah, Abdallah; Sougrat, Rachid; Khashab, Niveen M.

    2016-01-01

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  3. 'David and Goliath' of the soil food web - Flagellates that kill nematodes

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Rønn, Regin

    2008-01-01

    Nematodes and flagellates are important bacterial predators in soil and sediments. Generally, these organisms are considered to be competitors for bacterial food. We studied the interaction among flagellates and nematodes using axenic liquid cultures amended with heat-killed bacteria as food...... and showed for the first time that a small and common soil flagellate (Cercomonas sp.) is able to attack and kill the much larger nematode Caenorhabditis elegans. The killing process is not caused by soluble metabolites but requires direct contact between the flagellate cells and the nematode surface...... and occurs rapidly (within a few hours) at high flagellate density. At lower flagellate density, adult nematodes sometimes avoid attachment of flagellates, feed on them and become the dominant bacterial predator. Considering that bacterial feeders affect bacterial communities differently, and that one...

  4. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  5. Protistan Bacterivory in an Oligomesotrophic Lake: Importance of Attached Ciliates and Flagellates

    Science.gov (United States)

    Carrias; Amblard; Bourdier

    1996-05-01

    Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9x10(3) cells ml-1) and ciliates (6.1 cells ml-1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9x10(6) bacteria 1(-1)h-1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria.

  6. A simple and low-toxic method of preparing small specimens of bacteria, flagellates and their likes for Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Møller, O. S.; Buchman, K.; Dalsgaard, Inger

    2013-01-01

    The preparation of samples of bacteria and other very small organisms (Electron Microscopy is often complex and intricate, which typically involve the use of specialized filter systems, complex handling and toxic chemicals. Based on the methods described in the literature...

  7. A common soil flagellate (Cercomonas sp.) grows slowly when feeding on the bacterium Rhodococcus fascians in isolation, but does not discriminate against it in a mixed culture with Sphingopyxis witflariensis

    DEFF Research Database (Denmark)

    Lekfeldt, Jonas D S; Rønn, Regin

    2008-01-01

    Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates. In this ......Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates....... In this study, we investigated the growth of the flagellate Cercomonas sp. (ATCC 50334) on each of the two bacteria Sphingopyxis witflariensis (Alphaproteobacteria) and Rhodococcus fascians (actinobacteria) separately and in combination. The growth rate of the flagellate was lower and the lag phase was longer...

  8. An analytical model of flagellate hydrodynamics

    DEFF Research Database (Denmark)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders Peter

    2017-01-01

    solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left......–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming......Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical...

  9. Flagellate dermatitis following consumption of shiitake mushroom

    Directory of Open Access Journals (Sweden)

    Hui Voon Loo

    2011-10-01

    Full Text Available Japanese dermatologists were the first to describe the very characteristic flagellate dermatitis following consumption of under-cooked or raw shiitake mushroom (Lentinus edodes. These similar eruptions were also reported in patients treated with bleomycin, in dermatomyositis and adult onset Still’s disease. We report a case where a 40 year old chinese female developed flagellate dermatitis following ingestion of a bun containing shiitake mushroom.

  10. Renal flagellate infections in reptiles: 29 cases.

    Science.gov (United States)

    Juan-Sallés, Caries; Garner, Michael M; Nordhausen, Robert W; Valls, Xavier; Gallego, Miguel; Soto, Sara

    2014-03-01

    Renal infection with flagellated protozoa was retrospectively evaluated in 29 reptiles, including 12 turtles, 7 tortoises, and 6 chameleons; overall, 20 species of reptiles were represented. Most cases presented with nonspecific clinical signs or a combination of several concurrent diseases. Nineteen of 29 reptiles had tubulointerstitial nephritis associated with flagellates, and this lesion was considered contributory to death in 15 cases, although concurrent diseases were frequent. Infection was invasive into the renal interstitium in three reptiles due to tubular rupture and in one chameleon also spread to adjacent tissues, coelomic cavity, and blood vessels due to renal rupture. Cytologic or ultrastructural evaluation of trophozoites in two cases was consistent with diplomonad flagellates. Renal disease was often complicated with soft-tissue mineralization and/or gout. Gastrointestinal and cloacal infection with flagellates and inflammation were frequent in reptiles in which the digestive tract was available for histopathologic examination, and this supports the possibility of infections ascending the urinary tract from the cloaca. Renal disease associated with flagellate protozoa is rare in vertebrates but appears to be relevant in reptiles, particularly chelonians and chameleons.

  11. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    Science.gov (United States)

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  12. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    Science.gov (United States)

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  13. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  14. Flagellation of Pseudomonas aeruginosa in newly divided cells

    Science.gov (United States)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  15. Interaction between Food-borne Pathogens (Campylobacter jejuni, Salmonella Typhimurium and Listeria monocytogenes) and a Common Soil Flagellate (Cercomonas sp.)

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    Free-living protozoa may harbor, protect, and disperse bacteria, including those ingested and passed in viable form in feces. The flagellates are very important predators on bacteria in soil, but their role in the survival of food-borne pathogens associated with fruits and vegetables is not well...

  16. A study of magnetic properties of magnetotatic bacteria

    International Nuclear Information System (INIS)

    Wajnberg, E.; Souza, L.H. de; Barros, H.G. de P.L. de; Esquivel, D.M.S.

    1985-01-01

    The average magnetic moment and its anisotropy are determined in natural samples of magnetotactic bacteria at 4.2 K using a SQUID magnetometer. The results are in good agreement with estimates made from electron micrographs. (Author) [pt

  17. An analytical model of flagellate hydrodynamics

    International Nuclear Information System (INIS)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders

    2017-01-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface. (paper)

  18. The toxicity of the fungicide Propiconazole to soil flagellates

    DEFF Research Database (Denmark)

    Ekelund, Flemming; Westergaard, Kamma; Søe, Dorthe

    2000-01-01

    We investigated the effects of the ergosterol-inhibiting fungicide, propiconazole {1-[[2-(2,4-dichlorphenyl) - 4 - propyl - 1,3 - dioxolan - 2 - yl]methyl] - 1H - 1,2,4 triazole; Tilt}, on mixed natural populations of bacterivorous and fungivorous flagellates in soil and on single species...... of bacterivorous flagellates in liquid culture. The fungicide affected a mixed natural population of fungivorous flagellates less than the population of bacterivorous flagellates. Our results indicated that the effects of propiconazole on flagellates are direct toxic effects and not effects mediated via their food....... All tested types of flagellates were significantly harmed when exposed to the concentration of propiconazole normally applied to agricultural fields (625¿mg l-1). However, when exposed to the concentration of propiconazole which we expect in the soil water phase after application (ca. 0.6¿mg l-1...

  19. Numerical Simulations Of Flagellated Micro-Swimmers

    Science.gov (United States)

    Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey

    2017-11-01

    We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.

  20. Combined genomic and structural analyses of a cultured magnetotactic bacterium reveals its niche adaptation to a dynamic environment

    Directory of Open Access Journals (Sweden)

    Ana Carolina Vieira Araujo

    2016-10-01

    Full Text Available Abstract Background Magnetotactic bacteria (MTB are a unique group of prokaryotes that have a potentially high impact on global geochemical cycling of significant primary elements because of their metabolic plasticity and the ability to biomineralize iron-rich magnetic particles called magnetosomes. Understanding the genetic composition of the few cultivated MTB along with the unique morphological features of this group of bacteria may provide an important framework for discerning their potential biogeochemical roles in natural environments. Results Genomic and ultrastructural analyses were combined to characterize the cultivated magnetotactic coccus Magnetofaba australis strain IT-1. Cells of this species synthesize a single chain of elongated, cuboctahedral magnetite (Fe3O4 magnetosomes that cause them to align along magnetic field lines while they swim being propelled by two bundles of flagella at velocities up to 300 μm s−1. High-speed microscopy imaging showed the cells move in a straight line rather than in the helical trajectory described for other magnetotactic cocci. Specific genes within the genome of Mf. australis strain IT-1 suggest the strain is capable of nitrogen fixation, sulfur reduction and oxidation, synthesis of intracellular polyphosphate granules and transporting iron with low and high affinity. Mf. australis strain IT-1 and Magnetococcus marinus strain MC-1 are closely related phylogenetically although similarity values between their homologous proteins are not very high. Conclusion Mf. australis strain IT-1 inhabits a constantly changing environment and its complete genome sequence reveals a great metabolic plasticity to deal with these changes. Aside from its chemoautotrophic and chemoheterotrophic metabolism, genomic data indicate the cells are capable of nitrogen fixation, possess high and low affinity iron transporters, and might be capable of reducing and oxidizing a number of sulfur compounds. The relatively

  1. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis.

    Science.gov (United States)

    Ruby, E G; Asato, L M

    1993-01-01

    A pure culture of the luminous bacterium Vibrio fischeri is maintained in the light-emitting organ of the sepiolid squid Euprymna scolopes. When the juvenile squid emerges from its egg it is symbiont-free and, because bioluminescence is part of an anti-predatory behavior, therefore must obtain a bacterial inoculum from the surrounding environment. We document here the kinetics of the process by which newly hatched juvenile squids become infected by symbiosis-competent V. fischeri. When placed in seawater containing as few as 240 colony-forming-units (CFU) per ml, the juvenile became detectably bioluminescent within a few hours. Colonization of the nascent light organ was initiated with as few as 1 to 10 bacteria, which rapidly began to grow at an exponential rate until they reached a population size of approximately 10(5) cells by 12 h after the initial infection. Subsequently, the number of bacteria in the established symbiosis was maintained essentially constant by a combination of both a > 20-fold reduction in bacterial growth rate, and an expulsion of excess bacteria into the surrounding seawater. While V. fischeri cells are normally flagellated and motile, these bacteria did not elaborate these appendages once the symbiosis was established; however, they quickly began to synthesize flagella when they were removed from the light organ environment. Thus, two important biological characteristics, growth rate and flagellation, were modulated during establishment of the association, perhaps as part of a coordinated series of symbiotic responses.

  2. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: Literature review and own experiments

    Science.gov (United States)

    Živaljić, Suzana; Schoenle, Alexandra; Nitsche, Frank; Hohlfeld, Manon; Piechocki, Julia; Reif, Farina; Shumo, Marwa; Weiss, Alexandra; Werner, Jennifer; Witt, Madeleine; Voss, Janine; Arndt, Hartmut

    2018-02-01

    Although the abyssal seafloor represents the most common benthic environment on Earth, eukaryotic microbial life at abyssal depths is still an uncharted territory. This is in striking contrast to their potential importance regarding the material flux and bacteria consumption in the deep sea. Flagellate genotypes determined from sedimentary DNA deep-sea samples might originate from vital deep-sea populations or from cysts of organisms sedimented down from surface waters. The latter one may have never been active under deep-sea conditions. We wanted to analyze the principal ability of cultivable heterotrophic flagellates of different phylogenetic groups (choanoflagellates, ancyromonads, euglenids, kinetoplastids, bicosoecids, chrysomonads, and cercozoans) to survive exposure to high hydrostatic pressure (up to 670 bar). We summarized our own studies and the few available data from literature on pressure tolerances of flagellates isolated from different marine habitats. Our results demonstrated that many different flagellate species isolated from the surface waters and deep-sea sediments survived drastic changes in hydrostatic pressure. Barophilic behavior was also recorded for several species isolated from the deep sea indicating their possible genetic adaptation to high pressures. This is in accordance with records of heterotrophic flagellates present in environmental DNA surveys based on clone libraries established for deep-sea environments.

  3. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  4. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites

    Science.gov (United States)

    Desai, Mahesh S; Brune, Andreas

    2012-01-01

    Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., ‘Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of ‘Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host. PMID:22189498

  5. Shiitake Flagellate Dermatitis: the First Case Reported in Ireland

    LENUS (Irish Health Repository)

    Byrne, N

    2017-01-01

    Shiitake (Lentinula edodes) is the second most commonly consumed mushroom worldwide1. It is used in Asian medicine for its anticarcinogenic, antihypertensive and lipid lowering properties2. Furthermore, extracts of these mushrooms are used in over-the-counter dietary supplements designed to improve the immune system1. The first case of shiitake mushroom induced flagellate dermatitis was described in Japan in 1977 and it is now being reported in the western world3. After literary review and consultation with the Irish National Poisons Information Centre, we believe this is the first reported case of shiitake flagellate dermatitis in Ireland

  6. Some heterotrophic flagellates from a cultivated garden soil in Australia

    DEFF Research Database (Denmark)

    Ekelund, Flemming; Patterson, DJ

    1997-01-01

    The flagellates of an Australian garden soil were studied by placing coverslips on wet soil and subsequently examining the coverslips by light microscopy. A number of genera and species were found which have not previously been reported from soil samples. Besides the three new species, Apusomonas...

  7. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Morillo, Viviana [Universidade Federal do Rio de Janeiro; Abreu, Fernanda [Universidade Federal do Rio de Janeiro; Araujo, Ana C [Universidade Federal do Rio de Janeiro; de Almeida, Luiz G [Laboratorio Nacional de Computacao Cientifica; Enrich-Prast, Alex [Universidade Federal do Rio de Janeiro; Farina, Marcos [Universidade Federal do Rio de Janeiro; de Vasconcelos, Ana T [Laboratorio Nacional de Computacao Cientifica; Bazylinski, Dennis A [Ames Laboratory; Lins, Ulysses [Universidade Federal do Rio de Janeiro

    2014-01-01

    Although magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats, they are still considered fastidious microorganisms with regard to growth and cultivation with only a relatively low number of axenic cultures available to date. Here, we report the first axenic culture of an MTB isolated in the Southern Hemisphere (Itaipu Lagoon in Rio de Janeiro, Brazil). Cells of this new isolate are coccoid to ovoid in morphology and grow microaerophilically in semi-solid medium containing an oxygen concentration ([O2]) gradient either under chemoorganoheterotrophic or chemolithoautotrophic conditions. Each cell contains a single chain of approximately 10 elongated cuboctahedral magnetite (Fe3O4) magnetosomes. Phylogenetic analysis based on the 16S rRNA gene sequence shows that the coccoid MTB isolated in this study represents a new genus in the Alphaproteobacteria; the name Magnetofaba australis strain IT-1 is proposed. Preliminary genomic data obtained by pyrosequencing shows that M. australis strain IT-1 contains a genomic region with genes involved in biomineralization similar to those found in the most closely related magnetotactic cocci Magnetococcus marinus strain MC-1. However, organization of the magnetosome genes differs from M. marinus.

  8. The Hidden Diversity of Flagellated Protists in Soil.

    Science.gov (United States)

    Venter, Paul Christiaan; Nitsche, Frank; Arndt, Hartmut

    2018-07-01

    Protists are among the most diverse and abundant eukaryotes in soil. However, gaps between described and sequenced protist morphospecies still present a pending problem when surveying environmental samples for known species using molecular methods. The number of sequences in the molecular PR 2 database (∼130,000) is limited compared to the species richness expected (>1 million protist species) - limiting the recovery rate. This is important, since high throughput sequencing (HTS) methods are used to find associative patterns between functional traits, taxa and environmental parameters. We performed HTS to survey soil flagellates in 150 grasslands of central Europe, and tested the recovery rate of ten previously isolated and cultivated cercomonad species, among locally found diversity. We recovered sequences for reference soil flagellate species, but also a great number of their phylogenetically evaluated genetic variants, among rare and dominant taxa with presumably own biogeography. This was recorded among dominant (cercozoans, Sandona), rare (apusozoans) and a large hidden diversity of predominantly aquatic protists in soil (choanoflagellates, bicosoecids) often forming novel clades associated with uncultured environmental sequences. Evaluating the reads, instead of the OTUs that individual reads are usually clustered into, we discovered that much of this hidden diversity may be lost due to clustering. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  10. Katabia gromovi nov. gen., nov sp. - a new soil flagellate with affinities to Heteromita (Cercomonadida)

    DEFF Research Database (Denmark)

    Karpov, S.A.; Ekelund, Flemming; Moestrup, Øjvind

    2003-01-01

    Katabia gromovi, cercomonads, ultrastructure, cytoskeleton, soil flagellates, partial SSU gene sequence......Katabia gromovi, cercomonads, ultrastructure, cytoskeleton, soil flagellates, partial SSU gene sequence...

  11. MAGNETIC BACTERIA AND THEIR POTENTIAL APPLICATIONS: A REVIEW ARTICLE

    Directory of Open Access Journals (Sweden)

    Sara Rajab Eljmeli

    2017-03-01

    Full Text Available Introduction: This outline explores the scientific discovery concerning the magnetotactic bacteria (MTB. The results of the discovery are used in microbiology, mineralogy, limnology, physics, biophysics, chemistry, biochemistry, geology, crystallography, and astrobiology. Magnetosomes of the MTB are organized in linear chains and orient the cell body along geomagnetic field lines while flagella actively propel the cells, resulting in so-called magnetotaxis. Materials and Methods: The review article about the magnetotactic bacteria is a collection of many research papers from different institutes. The emerging important points about this review lie in: (1 any biological system is capable of producing magnetic biomaterials such as magnetite (Fe3O4 and gregite (Fe3S4; (2 the navigation of these nano-crystals in the biological system is interconnected with the Earth’s magnetic field. Results: The researchers involved in the study have shown that the magnetotactic bacteria do respond to a magnetic field. This makes them attractive for biomedical and industrial applications because of the availability of superior electromagnets, superconducting magnets and permanent magnet. Magnetic bacteria can also be used as a diagnostic tool in the detection of imperfections even at the nanoscale. Discussion and Conclusions: Although the importance of this issue is still limitedly used in medical area, more performance is necessary to explore the world of these bacteria that are candidate for new industry and new therapy strategies in biotechnology and medical fields.

  12. Diplomonad flagellates of some ornamental fish cultured in Thailand

    Directory of Open Access Journals (Sweden)

    Boonkob Viriyapongsutee

    2012-11-01

    Full Text Available The study on diplomonad flagellates infection in some ornamental fishes in the family cichlidae i.e., angelfish(Pterophyllum scalare, oscar (Astronotus ocellatus, blue mbuna (Labeotropheus fuelleborni and the family osphronemidaei.e., Siamese fighting fish (Betta splendens revealed that this parasite infected three out of four ornamental fish species,angelfish, oscar and blue mbuna. The highest infection was recorded in angelfish (90% followed by oscar (75.4% and bluembuna (61%, respectively. Identification of diplomonad flagellates from angelfish by means of morphological studies underlight and electron microscopes indicated that the parasite was Spironucleus vortens. The 14–days LD50 of S. vortens inangelfish was 2.99x103 cells. Histopathological changes of infected angelfish revealed granulomatous liver, numerousnumbers of melanomacrophage in the spleen and inflammation of the intestine. Susceptibility study of S. vortens to goldfish(Carassius auratus, guppy (Poecilia reticulata and platy (Xiphophorus maculatus indicated that they were resistant toartificial infection. In vitro examination of the growth inhibition assay of S. vortens indicated that dimetridazole and metronidazolewere effective in inhibiting parasite growth after 48 hrs exposure at concentrations of >4.0 μg/ml and >6.0 μg/ml,respectively. Magnesium sulfate at a concentration of >60 mg/ml inhibited the parasite growth after 72 hrs exposure. In vivoexamination of the dimetridazole efficiency on S. vortens infection indicated that dimetridazole at 4.0 μg/ml provided thehighest efficiency which could be used for treatment of spironucleosis in angelfish.

  13. Morphological and molecular identification of Tetratrichomonas flagellates from the giant anteater (Myrmecophaga tridactyla).

    Science.gov (United States)

    Ibañez-Escribano, A; Nogal-Ruiz, J J; Delclaux, M; Martinez-Nevado, E; Ponce-Gordo, F

    2013-08-01

    A tetratrichomonad flagellate found in the diarrhoeic faeces of a 5 years-old male giant anteater (Myrmecophaga tridactyla) was characterised by morphological and genetic analysis. This protozoan presents four anterior flagella of unequal length and a recurrent flagellum attached to the undulating membrane without a free end portion, and a broad axostyle projection. Numerous vacuoles of different sizes containing bacteria and digestion products were found. The complete sequence of the DNA coding for the 16S rRNA-ITS1-5.8S rRNA-ITS2 region was also obtained in order to compare this isolate with other tetratrichomonad species. The sequence obtained was identical to others previously obtained by other researchers from bovines and turtles (Geochelone sp.). It is not easily explainable how the same organism could be found in such different hosts and locations; however these results indicate that some tetratrichomonad species could have a wide host range and could survive in a wide range of environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets

    NARCIS (Netherlands)

    Khalil, I.S.M.; Magdanz, V.; Sanchez, Stefan; Sanchez, S.; Schmidt, O.G.; Abelmann, Leon; Misra, Sarthak

    2013-01-01

    Development of targeted drug delivery systems using magnetic microrobots increases the therapeutic indices of drugs. These systems have to be incorporated with precise motion controllers. We demonstrate closed-loop motion control of microrobots under the influence of controlled magnetic fields.

  15. Microcystins do not provide anti-herbivore defence against mixotrophic flagellates

    NARCIS (Netherlands)

    Wilken, S.; Wiezer, S.M.H.; Huisman, J.; Van Donk, E.

    2010-01-01

    While most experiments investigating zooplankton grazing on harmful cyanobacteria have been carried out with metazoan plankton, several protozoa can also feed efficiently on cyanobacteria. We investigated grazing by the mixotrophic flagellate Ochromonas sp. on the toxic cyanobacterium Microcystis

  16. [Eye witnesses and the flagellants in the year 1349].

    Science.gov (United States)

    Jansen-Sieben, R

    1999-01-01

    Deeply affected and often desperately afraid, many contemporaries recorded their observations and emotions. These reports--no matter how obviously subjective they sometimes were--provide valuable information about what happened during the plague pandemic of 1348-1350. Thus many of our fellow countrymen left behind a direct testimony: Bartholomew of Bruges, a canon in Andenne; Gilles li Muisis, the abbot of Saint Martin in Tournai; Ludovicus Sanctus of Beringen; Simon de Couvin, a canon in Liège; Jan van Boendale, an alderman's clerk in Antwerp; John of Burgundy (also known as John of Mandeville), professor of medicine in Liège; but also texts in Middle Dutch that were not known up to now, and therefore not published, such as the important thesis by Arent Schryver, licentiate in medicine (see next article); an account in verse in the Brabant Chronicle, as well as contemporary testimonies in a different language that have been translated into our language, such as that by John of Eschinden, Johannes de Rupescissa or Guy de Chauliac (who had had the plague himself). They describe the precautions, the causes (God, a comet, an eclipse of the sun, the polluted water, the planets, the air), the symptoms, the social groups most likely to be affected (the youth, the lower classes, the clergy), the high mortality, the problems of hygiene,the social and administrative chaos, the general panic, the flight of countless people. One of the most virulent reactions led to the emergence of the flagellant sect. They originated from Hungary and advanced in an unstoppable advance with a growing number of followers as far as our country, singing, praying, dancing and flaying themselves until they drew blood. We only recently discovered what they sang in Dutch: very recently, a unique roll of parchment was discovered that they carried in their processions, and that contains the text of their songs and a flagellant sermon. The existence of this valuable document and its contents are

  17. Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK.

    Directory of Open Access Journals (Sweden)

    Sanjiv Sonkaria

    Full Text Available Magnetotactic bacteria (MTB synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22% and actin (18%, the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.

  18. Rumen bacteria

    International Nuclear Information System (INIS)

    McSweeney, C.S.; Denman, S.E.; Mackie, R.I.

    2005-01-01

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 10 11 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (10 4 -10 6 /g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 10 2 -10 4 /g distributed over 5 genera). The occurrence of bacteriophage is well documented (10 7 -10 9 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  19. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  20. A study of the soil flagellate Phalansterium solitarium Sandon 1924 with preliminary data on its ultrastructure

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    Phalansterium solitarium Sandon 1924, a common soil flagellate, was isolated and a Sandon 1924, a common soil flagellate, was isolated and a clonal culture was examined using light and electron microscopy. The first preliminary observations of its ultrastructure show that the cells of Ph....... solitarium have the same main characters as an earlier investigated species of the genus, Ph. digitatum Stein 1878, including a collarlike structure surrounding the basis of the single emerging flagellum, tubular cristae, a single basal body, surrounded by x, y and z zones with radiating microtubules...

  1. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    Science.gov (United States)

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  2. Differential response of marine flagellate communities to prokaryotic food quality

    Science.gov (United States)

    De Corte, D.; Paredes, G.; Sintes, E.; Herndl, G. J.

    2016-02-01

    Marine prokaryotes play a major role in the biogeochemical cycles. The main predators of prokaryotes are heterotrophic nanoflagellates (HNF). HNF are thus a major link connecting dissolved organic material through prokaryotic grazing to the higher trophic levels. However, little is known about the grazing specificity of HNF on specific prokaryotic taxa. Bacterial and archaeal microbes may have different nutritive values for the HNF communities, thus affecting growth rates and community composition of HNFs. In this study we investigated the influence of prey food quality on Cafeteria roenbergensis and on a natural HNF community isolated in the northern Adriatic Sea. Two Nitrosopumilus maritimus-related strains isolated from the northern Adriatic Sea (Nitrosopumilus adriaticus, Nitrosopumilus piranensis), two Nitrosococcus strains and two fast growing marine Bacteria (Pseudomonas marina and Marinobacter algicola) were fed to the HNFs. The two fast growing bacterial strains resulted in high growth rates of Cafeteria roenbergensis and the mixed HNF community, while the two Nitrosococcus strains did not. Cafeteria roenbergensis fed on N. adriaticus but it did not graze N. piranensis, suggesting that the subtle metabolic and physiological differences between these two closely related thaumarchaeal strains affect the grazing pressure to which they are exposed. Our study also indicates that prokaryotic community composition influences the composition of the HNF community.

  3. Combined effects of the herbicide terbuthylazine and temperature on different flagellates from the Northern Adriatic Sea.

    Science.gov (United States)

    Fiori, Emanuela; Mazzotti, Matilde; Guerrini, Franca; Pistocchi, Rossella

    2013-03-15

    The triazinic herbicide terbuthylazine (TBA) is becoming an emergent contaminant in Italian rivers and in coastal and groundwater. A preliminary analysis of the sensitivity of marine flagellates to TBA was performed by monitoring the photosynthetic efficiency of nine species (belonging to the Dinophyceae or Raphidophyceae class) isolated from the Adriatic Sea. Different sensitivity levels for each flagellate were observed and the most sensitive microalgae, based on PSII inhibition, were: Gonyaulax spinifera>Fibrocapsa japonica>Lingulodinium polyedrum while the most resistant were two species belonging to the Prorocentrum genus. Then the response of two microalgae to drivers, such as temperature and terbuthylazine, applied in combination was also investigated. Two potentially toxic flagellates, Prorocentrum minimum and G. spinifera, were exposed, under different temperature conditions (15, 20 and 25°C), to TBA concentrations that did not completely affect PSII. For both flagellates, effects of TBA on algal growth, measured through cell density and carbon analysis, as well as on the photosynthetic activity are reported. All parameters analyzed showed a negative effect of TBA from the exponential phase. TBA effect on algal growth was significantly enhanced at the optimal temperature conditions (20 and 25°C), while no difference between control and herbicide treatments were detected for G. spinifera grown at 15°C, which represented a stress condition for this species. The maximum inhibition of photosynthetic efficiency was found at 20°C for both organisms. Both flagellates increased cell carbon and nitrogen content in herbicide treatments compared to the control, except G. spinifera grown at 15°C. Chlorophyll-a production was increased only in G. spinifera exposed to 5 μg L(-1) of TBA and the effect was enhanced with the increase of temperature. Herbicide-induced variations in cellular components determined changes in cellular carbon:nitrogen (C:N) and

  4. A population of giant tailed virus-like particles associated with heterotrophic flagellates in a lake-type reservoir

    Czech Academy of Sciences Publication Activity Database

    Weinbauer, M.G.; Dolan, J. R.; Šimek, Karel

    2015-01-01

    Roč. 76, č. 2 (2015), s. 111-116 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : viral infection * virus induced mortality * burst size * heterotrophic flagellates Subject RIV: EE - Microbiology, Virology Impact factor: 2.109, year: 2015

  5. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    Science.gov (United States)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  6. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].

    Science.gov (United States)

    Kovtunov, E A; Shelud'ko, A V; Chernyshova, M P; Petrova, L P; Katsy, E I

    2013-11-01

    Bacteria Azospirillum brasilense have mixed flagellation: in addition to the polar flagellum, numerous lateral flagella are formed in their cells on medium with increased density. Flagella determine the active swimming and swarming capacities of azospirilla. Using A. brasilense Sp245 as an example, we showed that the Omegon-Km artificial transposon insertion into the chromosomal gene for 3-hydroxyisobutyrate dehydrogenase (mmsB) was concurrent with the appearance of significant defects in the formation of polar flagella and with the paralysis of lateral flagella. The Sp245 mutant with the Omegon insertion into the plasmid AZOBR_p1-borne gene for 3-oxoacyl-[acyl-carrier protein]-reductase (fabG) showed the complete loss of flagella and the swarming capacity, as well as significant defects in polar flagellar assembly (though some cells are still motile in liquid medium). The viability of the A. brasilense Sp245 mutants with the Omegon insertion into the mmsB or fabG gene was not reduced. No considerable differences in the fatty acid composition of whole cell lipid extracts were found for the A. brasilense Sp245 strain and its mmsB and fabG mutants.

  7. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  8. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  9. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  10. Symbiotic flagellate protists as cryptic drivers of adaptation and invasiveness of the subterranean termite Reticulitermes grassei Clément.

    Science.gov (United States)

    Duarte, Sónia; Nobre, Tânia; Borges, Paulo A V; Nunes, Lina

    2018-06-01

    Changes in flagellate protist communities of subterranean termite Reticulitermes grassei across different locations were evaluated following four predictions: (i) Rural endemic (Portugal mainland) termite populations will exhibit high diversity of symbionts; (ii) invasive urban populations (Horta city, Faial island, Azores), on the contrary, will exhibit lower diversity of symbionts, showing high similarity of symbiont assemblages through environmental filtering; (iii) recent historical colonization of isolated regions-as the case of islands-will imply a loss of symbiont diversity; and (iv) island isolation will trigger a change in colony breeding structure toward a less aggressive behavior. Symbiont flagellate protist communities were morphologically identified, and species richness and relative abundances, as well as biodiversity indices, were used to compare symbiotic communities in colonies from urban and rural environments and between island invasive and mainland endemic populations. To evaluate prediction on the impact of isolation (iv), aggression tests were performed among termites comprising island invasive and mainland endemic populations. A core group of flagellates and secondary facultative symbionts was identified. Termites from rural environments showed, in the majority of observed colonies, more diverse and abundant protist communities, probably confirming prediction (i). Corroborating prediction (ii), the two least diverse communities belong to termites captured inside urban areas. The Azorean invasive termite colonies had more diverse protist communities than expected and prediction (iii) which was not verified within this study. Termites from mainland populations showed a high level of aggressiveness between neighboring colonies, in contrast to the invasive colonies from Horta city, which were not aggressive to neighbors according to prediction (iv). The symbiotic flagellate community of R. grassei showed the ability to change in a way that might

  11. Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea

    Directory of Open Access Journals (Sweden)

    Sergio Rossi

    2013-09-01

    Full Text Available Total lipid and fatty acid concentrations were studied in a late spring-early summer flagellate-dominated bloom in the Weddell Sea. These indicators were considered a good tool for assessing the quality of organic matter settling from surface to deep-water layers (epibenthic water layers. The results showed different patterns between the early (11-15 December 2003 and the late sampling period (18-27 December 2003 at all studied depths (5 m, 50 m and near-bottom water layers. Low phytoplankton biomass (mainly flagellates in the first half of the study corresponded to low total lipid and fatty acid concentrations. In the second sampling period a spring bloom (mainly flagellates and diatoms was detected, increasing the total lipid and fatty acid concentrations in the water column. The amount of settling organic matter from surface waters to the near-bottom water layers was high, especially in the late sampling period. Trophic markers showed evidence of a sink of available organic matter rich in quality and quantity, especially in terms of polyunsaturated fatty acids, for benthic organisms from surface layers to bottom layers in only a few days. The importance of studying short-time cycles in order to detect organic matter availability for benthic biota in view of the pulse-like dynamics of primary production in Antarctic waters is discussed.

  12. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    International Nuclear Information System (INIS)

    Glogger, M; Subota, I; Spindler, M-C; Engstler, M; Fenz, S F; Stichler, S; Bertlein, S; Teßmar, J; Groll, J

    2017-01-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μ s. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. (paper)

  13. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    Directory of Open Access Journals (Sweden)

    Sascha eSjollema

    2014-06-01

    Full Text Available Photosynthetically Active Radiation (PAR and Ultraviolet Radiation (UVR of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants in the field. Therefore the present study aimed to determine the toxicity of two model contaminants, the herbicides diuron and Irgarol®1051, under simulated irradiance conditions mimicking different seasons. Irradiance conditions of spring and autumn were simulated with a set of Light Emitting Diodes (LEDs. Toxicity of both herbicides was measured individually and in a mixture by determining the inhibition of photosystem II efficiency (ΦPSII of the marine flagellate Dunaliella teriolecta using Pulse Amplitude Modulation (PAM fluorometry. Toxicity of the single herbicides was higher under simulated spring irradiance than under autumn irradiance and this effect was also observed for mixtures of the herbicides. This irradiance dependent toxicity indicates that herbicide toxicity in the field is seasonally variable. Consequently toxicity tests under standard light conditions may overestimate or underestimate the toxic effect of phytotoxic compounds.

  14. Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis

    International Nuclear Information System (INIS)

    Haeder, D.-P.

    1986-01-01

    The effect of solar irradiation on the percentage of motile cells, their average speed and their phototactic orientation to white actinic light was studied in the flagellate, Euglena gracilis. Unfiltered solar radiation in midsummer during mid-day at a location near Lisboa, Portugal, was found to impair motility within 2 h. This effect is exclusively due to the UV-B component of the radiation and not due to UV-A, visible light or a temperature increase. Likewise, phototactic orientation was drastically impaired. Reduction of the solar UV-B irradiation by insertion of an ozone-flooded plexiglass cuvette partially reduced the inhibition and covering the cuvettes with glass prevented any decrease in motility and photoorientation. Similar results were found with artificial irradiation (Xe lamps). After inoculation, the motility of the population follows an optimum curve (optimum at 8 days). Also, the UV-B effect on motility was smallest after about one week and increased for younger and older cultures. (author)

  15. Identification criteria of the rare multi-flagellate Lophomonas blattarum: comparison of different staining techniques.

    Science.gov (United States)

    Alam-Eldin, Yosra Hussein; Abdulaziz, Amany Mamdouh

    2015-09-01

    Bronchopulmonary lophomoniasis (BPL) is an emerging disease of potential importance. BPL is presented by non-specific clinical picture and is usually accompanied by immunosuppression. Culture of Lophomonas blattarum is difficult and its molecular diagnosis has not yet been developed. Therefore, microscopic examination of respiratory samples, e.g., bronchoalveolar lavage (BAL) or sputum, is the mainstay of BPL diagnosis. Creola bodies and ciliocytophthoria are two forms of bronchial cells which occur in chest diseases with non-specific clinical picture like that of BPL. Both forms could be misrecognized as multi-flagellates because of their motile cilia in the wet mounts and due to shape variability of L. blattarum in stained smears. The aim of the study is to compare different staining techniques for visualizing L. blattarum to improve the recognition and diagnosis of BPL, to distinguish respiratory epithelial cells from L. blattarum and to decide which stain is recommended in suspected cases of BPL. BAL samples from patients which contain L. blattarum, creola bodies, and ciliocytophthoria were collected then wet mounts were examined. The BAL samples were also stained by Papanicolaou (PAP), Giemsa, hematoxylin and eosin (H & E), trichrome, Gram, and Diff-Quik (DQ) stains. The different staining techniques were compared regarding the stain quality. In wet mounts, the ciliary movement was coordinate and synchronous while the flagellar movement was wavy and leaded to active swimming of L. blattarum. In stained slides, bronchial cells were characterized by the presence of basal nucleus and the terminal bar from which the cilia arise. Trichrome was the best stain in demonstration of cellular details of L. blattarum. H & E, PAP, and Giemsa stains showed good quality of stains. Gram and DQ stains showed only pale hues of L. blattarum. We recommended adding Wheatley's trichrome staining to the differential diagnosis workup of cases of non-specific chest infections

  16. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates

    Directory of Open Access Journals (Sweden)

    A. Monier

    2013-06-01

    Full Text Available The ubiquity of heterotrophic flagellates (HFL in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter, mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada, targeting the surface, the subsurface chlorophyll maximum layer (SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1 to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.

  17. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    Science.gov (United States)

    Glogger, M.; Stichler, S.; Subota, I.; Bertlein, S.; Spindler, M.-C.; Teßmar, J.; Groll, J.; Engstler, M.; Fenz, S. F.

    2017-02-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μs. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Susanne Fenz was selected by the Editorial Board of J Phys D as an Emerging Talent/Leader.

  18. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    Science.gov (United States)

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  19. EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta: Implications for the evolution of green plants (Viridiplantae

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2006-02-01

    Full Text Available Abstract Background The Viridiplantae (land plants and green algae consist of two monophyletic lineages, the Chlorophyta and the Streptophyta. The Streptophyta include all embryophytes and a small but diverse group of freshwater algae traditionally known as the Charophyceae (e.g. Charales, Coleochaete and the Zygnematales. The only flagellate currently included in the Streptophyta is Mesostigma viride Lauterborn. To gain insight into the genome evolution in streptophytes, we have sequenced 10,395 ESTs from Mesostigma representing 3,300 independent contigs and compared the ESTs of Mesostigma with available plant genomes (Arabidopsis, Oryza, Chlamydomonas, with ESTs from the bryophyte Physcomitrella, the genome of the rhodophyte Cyanidioschyzon, the ESTs from the rhodophyte Porphyra, and the genome of the diatom Thalassiosira. Results The number of expressed genes shared by Mesostigma with the embryophytes (90.3 % of the expressed genes showing similarity to known proteins is higher than with Chlamydomonas (76.1 %. In general, cytosolic metabolic pathways, and proteins involved in vesicular transport, transcription, regulation, DNA-structure and replication, cell cycle control, and RNA-metabolism are more conserved between Mesostigma and the embryophytes than between Mesostigma and Chlamydomonas. However, plastidic and mitochondrial metabolic pathways, cytoskeletal proteins and proteins involved in protein folding are more conserved between Mesostigma and Chlamydomonas than between Mesostigma and the embryophytes. Conclusion Our EST-analysis of Mesostigma supports the notion that this organism should be a suitable unicellular model for the last flagellate common ancestor of the streptophytes. Mesostigma shares more genes with the embryophytes than with the chlorophyte Chlamydomonas reinhardtii, although both organisms are flagellate unicells. Thus, it seems likely that several major physiological changes (e.g. in the regulation of photosynthesis

  20. Use of genetically marked minicells as a probe in measurement of predation on bacteria in aquatic environments

    International Nuclear Information System (INIS)

    Wikner, J.; Andersson, A.; Normark, S.; Hagstroem, A.

    1986-01-01

    Minicells produced by Escherichia coli M2141 were used as probes to measure predation on pelagic bacteria in situ. The minicells, labeled with [ 35 S]methionine in one specific protein, were shown to disappear in the presence of a microflagellate (Ochromonas sp.), as seen by a decrease in the amount of labeled marker protein with time. Incubation in filtered (pore size, 0.2 μm) and autoclaved seawater did not affect the amount of labeled marker protein in the minicell. The generation time of flagellates feeding on minicells was determined to be similar to that found for flagellates grown on seawater bacteria or living E. coli NC3. Data indicate that minicells are seen as true food particles by the flagellates. The minicell probe was used in recapture experiments, in which predation in situ on pelagic bacteria was demonstrated. The rate of bacterial production showed a clear covariation with the rate of predation, both in different sea areas and in depth profiles. The obtained results (11 field experiments) showed that the rate of predation, on average, accounts for the consumption of 62% of the bacteria produced

  1. Clinical and pathological observations on natural infections of cryptosporidiosis and flagellate protozoa in leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Taylor, M A; Geach, M R; Cooley, W A

    1999-12-11

    A group of adult leopard geckos (Eublepharis macularius) which had been losing weight for several months were found to be infected with Cryptosporidium species. Histological and electron microscopical investigations on the intestines of five of the lizards revealed the presence of large numbers of the developmental stages of Cryptosporidium species attached to the mucosal surface of the lower intestine, and large numbers of flagellate protozoa, suspected to be predominantly Trichomonas species, in the gut lumen. The clinical signs were attributed to the presence of one or both types of parasites.

  2. Development and application of a most probable number-PCR assay to quantify flagellate populations in soil samples

    DEFF Research Database (Denmark)

    Fredslund, Line; Ekelund, Flemming; Jacobsen, Carsten Suhr

    2001-01-01

    This paper reports on the first successful molecular detection and quantification of soil protozoa. Quantification of heterotrophic flagellates and naked amoebae in soil has traditionally relied on dilution culturing techniques, followed by most-probable-number (MPN) calculations. Such methods...... are biased by differences in the culturability of soil protozoa and are unable to quantify specific taxonomic groups, and the results are highly dependent on the choice of media and the skills of the microscopists. Successful detection of protozoa in soil by DNA techniques requires (i) the development...

  3. Trypanosoma cruzi alkaline 2-DE: Optimization and application to comparative proteome analysis of flagellate life stages

    Directory of Open Access Journals (Sweden)

    Santana Jaime M

    2008-09-01

    Full Text Available Abstract Background Trypanosoma cruzi, a flagellate protozoan, is the etiological agent of Chagas disease, a chronic illness that causes irreversible damage to heart and digestive tract in humans. Previous 2-DE analyses of T. cruzi proteome have not focused on basic proteins, possibly because of inherent difficulties for optimizing 2-DE in the alkaline pH range. However, T. cruzi wide pH range 2-DE gels have shown few visible spots in the alkaline region, indicating that the parasite either did not have an appreciable amount of alkaline proteins or that these proteins were underrepresented in the 2-DE gels. Results Different IEF conditions using 6–11 pH gradient strips were tested for separation of T. cruzi alkaline proteins. The optimized methodology described here was performed using anodic "paper bridge" sample loading supplemented by increased concentration of DTT and Triton X-100 on Multiphor II (GE Healthcare equipment and an electrode pad embedded in DTT- containing solution near the cathode in order to avoid depletion of reducing agent during IEF. Landmark proteins were identified by peptide mass fingerprinting allowing the production of an epimastigote 2-DE map. Most identified proteins corresponded to metabolic enzymes, especially those related to amino acid metabolism. The optimized 2-DE protocol was applied in combination with the "two-in-one gel" method to verify the relative expression of the identified proteins between samples from epimastigote and trypomastigote life stages. Conclusion High resolution 2-DE gels of T. cruzi life forms were achieved using the optimized methodology and a partial epimastigote alkaline 2-DE map was built. Among 700 protein spots detected, 422 were alkaline with a pI above 7.0. The "two-in-one gel" method simplified the comparative analysis between T. cruzi life stages since it minimized variations in spot migration and silver-stained spot volumes. The comparative data were in agreement with

  4. Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp.

    Directory of Open Access Journals (Sweden)

    Fanxiang Kong

    2012-01-01

    Full Text Available Induced colony formation under grazing pressure has been reported in our previous results. However, the colonies induced in these studies comprised only tens of cells which are far smaller than the naturally occurring colonies. In this work, unicellular Microcystis aeruginosa Kützing were co-cultivated with flagellate Ochromonas sp. for 50 d to investigate colony formation in M. aeruginosa under continuous grazing pressure. Results revealed that colonial M. aeruginosa formed on the 10th d under the grazing pressure of flagellate. These algal colonies resulted from the daughter cells of freshly dividing cells that failed to separate during the reproductive process. The diameters and cell numbers of the colonies increased slowly with time. Under continuous grazing pressure by Ochromonas sp. for 50 d, the diameter of some colonies reached over 180 μm. Analysis showed that the extracellular polysaccharide (EPS content and relative gas vesicle (RGV of each cell increased significantly after colony formation. However, there was no significant difference on the monosaccharide composition between unicellular and colonial M. aeruginosa. The loose aggregation of cells in the floating colonies suggests that a correlation probably exists between cell compactness and colony buoyancy.

  5. Interactions between the intestinal flagellates Giardia muris and Spironucleus muris and the blood parasites Babesia microti, Plasmodium yoelii and Plasmodium berghei in mice.

    Science.gov (United States)

    Brett, S J; Cox, F E

    1982-08-01

    In mice infected with the intestinal flagellates Giardia muris or Spironucleus muris, together with the blood parasites Babesia microti or Plasmodium yoelii, there is a temporary decrease of flagellate cyst output coincident with the peak of the blood parasite infections, followed by a rapid return to normal levels. This decrease in cyst output is correlated with decreased numbers of trophozoites in the small intestine. The effect on S. muris is more marked than that on G. muris. Neither blood parasites has any effect on the total duration of the flagellate infection and the flagellates do not affect the blood parasites. In mice infected with G. muris or S. muris and P. berghei there is also a decrease in cyst output but this is less apparent than in infections with B. microti or P. yoelii because of the fatal nature of the P. berghei infection. It is suggested that the decrease in cyst output is probably due to changes in the contents of the small intestine or to non-specific immunological factors rather than to specific immunological changes.

  6. Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter–spring transition

    DEFF Research Database (Denmark)

    Harðardóttir, Sara; Lundholm, Nina; Moestrup, Øjvind

    2014-01-01

    Pyramimonas Schmarda is a genus of unicellular green flagellates, recorded in marine water and sea ice samples. Pyramimonas is within the prey size range of the most important protozoan grazers in Disko Bay, West Greenland, where this study took place. Despite the potential ecological importance...

  7. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Traore, Mahama A.; Behkam, Bahareh, E-mail: behkam@vt.edu [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States); School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061 (United States); Damico, Carmen M. [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-10-27

    Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration is strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.

  8. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  9. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  10. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  11. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    Science.gov (United States)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  12. Removal of bacteria from boar ejaculates by Single Layer Centrifugation can reduce the use of antibiotics in semen extenders.

    Science.gov (United States)

    Morrell, J M; Wallgren, M

    2011-01-01

    There is considerable interest world-wide in reducing the use of antibiotics to stem the development of antibiotic-resistant strains of bacteria. An alternative to the routine addition of antibiotics to semen extenders in livestock breeding would be to separate the spermatozoa from bacterial contaminants in the semen immediately after collection. The present study was designed to determine whether such separation was possible by Single Layer Centrifugation (SLC) using the colloid Androcoll™-P. The results showed that complete removal (6 out of 10 samples), or considerable reduction of bacterial contaminants (4 out of 10 samples) was possible with this method. The type of bacteria and/or the length of time between collection and SLC-processing affected the removal of bacteria, with motile flagellated bacteria being more likely to be present after SLC than non-flagellated bacteria. Although further studies are necessary, these preliminary results suggest that the use of SLC when processing boar semen for AI doses might enable antibiotic usage in semen extenders to be reduced. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi

    Directory of Open Access Journals (Sweden)

    Zhenfeng eLiu

    2012-05-01

    Full Text Available Prior to the recent discovery of Ignavibacterium album (I. album, anaerobic photoautotrophic green sulfur bacteria (GSB were the only cultivated members of the bacterial phylum Chlorobi. In contrast to GSB, sequence analysis of the 3.7-Mbp genome of I. album shows that this recently described member of the phylum Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for photosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis. The occurrence of genes for multiple electron transfer complexes suggests that I. album is capable of organoheterotrophy under both oxic and anoxic conditions. The occurrence of genes encoding enzymes for CO2 fixation as well as other enzymes of the reductive TCA cycle suggests that mixotrophy may be possible under certain growth conditions. However, known biosynthetic pathways for several amino acids are incomplete; this suggests that I. album is dependent upon on exogenous sources of these metabolites or employs novel biosynthetic pathways. Comparisons of I. album and other members of the phylum Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite different from that of modern GSB.

  14. Numerical Analysis of Small Deformation of Flexible Helical Flagellum of Swimming Bacteria

    Science.gov (United States)

    Takano, Yasunari; Goto, Tomonobu

    Formulations are conducted to numerically analyze the effect of flexible flagellum of swimming bacteria. In the present model, a single-flagellate bacterium is assumed to consist of a rigid cell body of the prolate spheroidal shape and a flexible flagellum of the helical form. The resistive force theory is applied to estimate the force exerted on the flagellum. The torsional as well as the bending moments determine the curvature and the torsion of the deformed flagellum according to the Kirchhoff model for an elastic rod. The unit tangential vector along the deformed flagellum is calculated by applying evolution equations for space curves, and also a deformed shape of the flagellum is obtained.

  15. Bacteria are not too small for spatial sensing of chemical gradients: An experimental evidence

    DEFF Research Database (Denmark)

    Thar, Roland; Kühl, Michael

    2003-01-01

    By analyzing the chemotactic behavior of a recently described marine bacterial species, we provide experimental evidence that bacteria are not too small for sensing chemical gradients spatially. The bipolar flagellated vibrioid bacteria (typical size 2 × 6 µm) exhibit a unique motility pattern...... as they translate along as well as rotate around their short axis, i.e., the pathways of the cell poles describe a double helix. The natural habitat of the bacteria is characterized by steep oxygen gradients where they accumulate in a band at their preferred oxygen concentration of ˜2 µM. Single cells leaving...... the band toward the oxic region typically return to the band within 16 s following a U-shaped track. A detailed analysis of the tracks reveals that the cells must be able to sense the oxygen gradient perpendicular to their swimming direction. Thus, they can detect oxygen gradients along a distance of ˜5 µm...

  16. Gravitaxis in the flagellate Euglena gracilis--results from NiZeMi, clinostat and sounding rocket flights.

    Science.gov (United States)

    Häder, D P

    1994-05-01

    Many motile microorganisms including flagellates such as the green Euglena gracilis move up and down within the water column and use a number of external clues for their orientation, the most important of which may be light and gravity. The cells use positive phototaxis and negative gravitaxis to move closer to the surface of the water column which for energetic reasons is vital for their survival. However, most phytoplankton organisms cannot tolerate the bright irradiance of unfiltered solar radiation at the surface which also bleaches the photosynthetic pigments, disables the photosynthetic apparatus and impairs phototaxis, gravitaxis and motility in Euglena. Thus, it is not surprising that at higher irradiances negative phototaxis operates antagonistically to the responses described above to guide the cells into deeper water where they are protected from excessive radiation. Phototaxis and gravitaxis are not independent from one another: in a vertically positioned cuvette negative gravitaxis can be "titrated" by light impinging from above and is compensated at about 30 W m-2. While the photoreceptor for phototaxis has been identified in Euglena gracilis biochemically and spectroscopically, the gravireceptor is not yet known. Young cultures of Euglena gracilis show a positive gravitaxis, the ecological signficance of which is not yet understood while older cultures show negative gravitaxis. One hypothesis concerning the nature of graviperception is based on a passive physical process such as an asymmetric distribution of the mass within the cell. However, the observation that short term UV irradiation decreases the precision of negative gravitaxis rather indicates the involvement of an active physiological gravireceptor. Furthermore, some heavy metal ions have been found to change the direction of movement from positive to negative gravitaxis in young cells.

  17. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter

    International Nuclear Information System (INIS)

    Kottuparambil, Sreejith; Kim, Youn-Jung; Choi, Hoon; Kim, Mi-Sung; Park, Areum; Park, Jihae; Shin, Woongghi; Han, Taejun

    2014-01-01

    Highlights: • Rapid phenol toxicity tests (1 h) were developed based on Chl a fluorescence and the movement parameters of Euglena agilis. • Phenol significantly reduced F v /F m of PS II and rETRmax with EC50 values of 8.94 and 4.67 mM, respectively. • Among the movement parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. • The EC50 values for F v /F m , motility, and velocity appear to overlap the environmental permissible levels of phenol. - Abstract: Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1 h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (F v /F m ) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETR max ) with median effective concentration (EC 50 ) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC 50 of 3.17 mM. The EC 50 values for F v /F m , motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents

  18. High genetic diversity and fine-scale spatial structure in the marine flagellate Oxyrrhis marina (Dinophyceae uncovered by microsatellite loci.

    Directory of Open Access Journals (Sweden)

    Chris D Lowe

    2010-12-01

    Full Text Available Free-living marine protists are often assumed to be broadly distributed and genetically homogeneous on large spatial scales. However, an increasing application of highly polymorphic genetic markers (e.g., microsatellites has provided evidence for high genetic diversity and population structuring on small spatial scales in many free-living protists. Here we characterise a panel of new microsatellite markers for the common marine flagellate Oxyrrhis marina. Nine microsatellite loci were used to assess genotypic diversity at two spatial scales by genotyping 200 isolates of O. marina from 6 broad geographic regions around Great Britain and Ireland; in one region, a single 2 km shore line was sampled intensively to assess fine-scale genetic diversity. Microsatellite loci resolved between 1-6 and 7-23 distinct alleles per region in the least and most variable loci respectively, with corresponding variation in expected heterozygosities (H(e of 0.00-0.30 and 0.81-0.93. Across the dataset, genotypic diversity was high with 183 genotypes detected from 200 isolates. Bayesian analysis of population structure supported two model populations. One population was distributed across all sampled regions; the other was confined to the intensively sampled shore, and thus two distinct populations co-occurred at this site. Whilst model-based analysis inferred a single UK-wide population, pairwise regional F(ST values indicated weak to moderate population sub-division (0.01-0.12, but no clear correlation between spatial and genetic distance was evident. Data presented in this study highlight extensive genetic diversity for O. marina; however, it remains a substantial challenge to uncover the mechanisms that drive genetic diversity in free-living microorganisms.

  19. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter

    Energy Technology Data Exchange (ETDEWEB)

    Kottuparambil, Sreejith [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Kim, Youn-Jung [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Department of Marine Science, Incheon National University, Incheon 406 840 (Korea, Republic of); Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840 (Korea, Republic of); Choi, Hoon; Kim, Mi-Sung; Park, Areum; Park, Jihae [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Shin, Woongghi [Department of Biology, Chungnam University, Daejeon 306 764 (Korea, Republic of); Han, Taejun, E-mail: hanalgae@hanmail.net [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Department of Marine Science, Incheon National University, Incheon 406 840 (Korea, Republic of); Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840 (Korea, Republic of)

    2014-10-15

    Highlights: • Rapid phenol toxicity tests (1 h) were developed based on Chl a fluorescence and the movement parameters of Euglena agilis. • Phenol significantly reduced F{sub v}/F{sub m} of PS II and rETRmax with EC50 values of 8.94 and 4.67 mM, respectively. • Among the movement parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. • The EC50 values for F{sub v}/F{sub m}, motility, and velocity appear to overlap the environmental permissible levels of phenol. - Abstract: Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1 h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (F{sub v}/F{sub m}) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETR{sub max}) with median effective concentration (EC{sub 50}) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC{sub 50} of 3.17 mM. The EC{sub 50} values for F{sub v}/F{sub m}, motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents.

  20. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.

    Science.gov (United States)

    Kühn, Marco J; Schmidt, Felix K; Eckhardt, Bruno; Thormann, Kai M

    2017-06-13

    Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.

  1. Persistent Flagellate Hyperpigmentation

    Science.gov (United States)

    2017-04-28

    medical research or technical information as a publication/presentation, a new 59 MOW Form 3039 must be submitted for review and approval.) IA 6...directives.) D DISAPPROVED 40. PRINTED NAME. RANK/GRADE, TITLE OF REVIEWER 41 . REVIEWER SIGNATURE 42 . DATE Kevin linuma, SSgt/E-5, 59 MDW Public

  2. Extra-chromosomal DNA maintenance in Bacillus subtilis, dependence on flagellation factor FliF and moonlighting mediator EdmS.

    Science.gov (United States)

    Hakumai, Yuichi; Shimomoto, Kouko; Ashiuchi, Makoto

    2015-05-15

    Extra-chromosomal DNA maintenance (EDM) as an important process in the propagation and genetic engineering of microbes. Bacillus subtilis EdmS (formerly PgsE), a protein comprising 55 amino acids, is a mediator of the EDM process. In this study, the effect of mutation of global regulators on B. subtilis EDM was examined. Mutation of the swrA gene abolished EdmS-mediated EDM. It is known that swrA predominantly regulates expression of the fla/che operon in B. subtilis. We therefore performed EDM analysis using fla/che-deletion mutants and identified an EDM-mediated EDM cooperator in the flgB-fliL region. Further genetic investigation identified the flagellation factor FliF is a crucial EDM cooperator. To our knowledge, this is the first observation of the moonlighting function of FliF in DNA maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Killing the killer: predation between protists and predatory bacteria.

    Science.gov (United States)

    Johnke, Julia; Boenigk, Jens; Harms, Hauke; Chatzinotas, Antonis

    2017-05-01

    Predation by microbes is one of the main drivers of bacterial mortality in the environment. In most ecosystems multiple micropredators compete at least partially for the same bacterial resource. Predatory interactions between these micropredators might lead to shifts within microbial communities. Integrating these interactions is therefore crucial for the understanding of ecosystem functioning. In this study, we investigated the predation between two groups of micropredators, i.e. phagotrophic protists and Bdellovibrio and like organisms (BALOs). BALOs are obligate predators of Gram-negative bacteria. We hypothesised that protists can prey upon BALOs despite the small size and high swimming speed of the latter, which makes them potentially hard to capture. Predation experiments including three protists, i.e. one filter feeder and two interception feeder, showed that BALOs are a relevant prey for these protists. The growth rate on BALOs differed for the respective protists. The filter feeding ciliate was growing equally well on the BALOs and on Escherichia coli, whereas the two flagellate species grew less well on the BALOs compared to E. coli. However, BALOs might not be a favourable food source in resource-rich environments as they are not enabling all protists to grow as much as on bacteria of bigger volume. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Single bacteria movement tracking by online microscopy--a proof of concept study.

    Directory of Open Access Journals (Sweden)

    Andreas Ziegler

    Full Text Available In this technical report we demonstrate a low-cost online unit allowing movement tracking of flagellated bacteria on a single-cell level during fermentation processes. The system's ability to distinguish different metabolic states (viability of bacteria by movement velocity was investigated. A flow-through cuvette with automatically adjustable layer thickness was developed. The cuvette can be used with most commercially available laboratory microscopes equipped with 40× amplification and a digital camera. In addition, an automated sample preparation unit and a software module was developed measuring size, moved distance, and speed of bacteria. In a proof of principle study the movement velocities of Bacillus amyloliquefaciens FZB42 during three batch fermentation processes were investigated. In this process the bacteria went through different metabolic states, vegetative growth, diauxic shift, vegetative growth after diauxic shift, and sporulation. It was shown that the movement velocities during the different metabolic states significantly differ from each other. Therefore, the described setup has the potential to be used as a bacteria viability monitoring tool. In contrast to some other techniques, such as electro-optical techniques, this method can even be used in turbid production media.

  5. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions

    Science.gov (United States)

    Felfoul, Ouajdi; Mohammadi, Mahmood; Taherkhani, Samira; de Lanauze, Dominic; Zhong Xu, Yong; Loghin, Dumitru; Essa, Sherief; Jancik, Sylwia; Houle, Daniel; Lafleur, Michel; Gaboury, Louis; Tabrizian, Maryam; Kaou, Neila; Atkin, Michael; Vuong, Té; Batist, Gerald; Beauchemin, Nicole; Radzioch, Danuta; Martel, Sylvain

    2016-11-01

    Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref. 4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system. We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in severe combined immunodeficient beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.

  6. Accumulation of Dissolved DMSP by Marine Bacteria and its Degradation Via Bacterivory

    Science.gov (United States)

    Wolfe, Gordon V.

    1996-01-01

    Several bacterial isolates enriched from seawater using complex media were able to accumulate dimethylsulfoniopropionate (DMSP) from media into cells over several hours without degrading it. Uptake only occurred in metabolically active cells, and was repressed in some strains by the presence of additional carbon sources. Accumulation was also more rapid in osmotically-stressed cells, suggesting DMSP is used as an osmotic solute. Uptake could be blocked by inhibitors of active transport systems (2,4-dinitrophenol, azide, arsenate) and of protein synthesis (chloramphenicol). Some structural analogs such as glycine betaine and S-methyl methionine also blocked DMSP uptake, suggesting that the availability of alternate organic osmolytes may influence DMSP uptake. Stresses such as freezing, heating, or osmotic down shock resulted in partial release of DMSP back to the medium. One strain which contained a DMSP-lyase was also able to accumulate DMSP, and DMS was only produced in the absence of alternate carbon sources. Bacteria containing DMSP were prepared as prey for bacterivorous ciliates and flagellates, to examine the fate of the DMSP during grazing. In all cases, predators metabolized the DMSP in bacteria. In some cases, DMS was produced, but it is not clear if this was due to the predators or to associated bacteria in the non-axenic grazer cultures. Bacterivores may influence DMSP cycling by either modulating populations of DMSP-metabolizing bacteria, or by metabolizing DMSP accumulated by bacterial prey.

  7. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

    Science.gov (United States)

    Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon

    2003-09-01

    The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.

  8. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  9. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  10. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    Science.gov (United States)

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  11. Minimum Requirements of Flagellation and Motility for Infection of Agrobacterium sp. Strain H13-3 by Flagellotropic Bacteriophage 7-7-1

    Science.gov (United States)

    Yen, Jiun Y.; Broadway, Katherine M.

    2012-01-01

    The flagellotropic phage 7-7-1 specifically adsorbs to Agrobacterium sp. strain H13-3 (formerly Rhizobium lupini H13-3) flagella for efficient host infection. The Agrobacterium sp. H13-3 flagellum is complex and consists of three flagellin proteins: the primary flagellin FlaA, which is essential for motility, and the secondary flagellins FlaB and FlaD, which have minor functions in motility. Using quantitative infectivity assays, we showed that absence of FlaD had no effect on phage infection, while absence of FlaB resulted in a 2.5-fold increase in infectivity. A flaA deletion strain, which produces straight and severely truncated flagella, experienced a significantly reduced infectivity, similar to that of a flaB flaD strain, which produces a low number of straight flagella. A strain lacking all three flagellin genes is phage resistant. In addition to flagellation, flagellar rotation is required for infection. A strain that is nonmotile due to an in-frame deletion in the gene encoding the motor component MotA is resistant to phage infection. We also generated two strains with point mutations in the motA gene resulting in replacement of the conserved charged residue Glu98, which is important for modulation of rotary speed. A change to the neutral Gln caused the flagellar motor to rotate at a constant high speed, allowing a 2.2-fold-enhanced infectivity. A change to the positively charged Lys caused a jiggly motility phenotype with very slow flagellar rotation, which significantly reduced the efficiency of infection. In conclusion, flagellar number and length, as well as speed of flagellar rotation, are important determinants for infection by phage 7-7-1. PMID:22865074

  12. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  13. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  14. Carbon partitioning in the food web of a high mountain lake: from bacteria to zooplankton

    Directory of Open Access Journals (Sweden)

    Alessandra PUGNETTI

    1999-08-01

    Full Text Available The organisms of the microbial loop in Lake Paione Superiore (LPS, a high mountain lake in the Italian Alpine region, were studied together with phytoplankton and zooplankton for three successive years. The biomass of bacteria, HNF (heterotrophic nanoflagellates, ciliates and phytoplankton, as mean carbon concentration in the three years, was 30 and 37 μg C l-1 near the surface (SUR and the bottom (BOT respectively. Under the ice-cover the mean biomass carbon decreased especially at the BOT, whereas at SUR the decrease was less evident due to the maintenance of higher phytoplankton biomass (mixotrophic flagellates. In LPS ~50% of the carbon was confined in bacteria, 20% in protozoa and 30% in phytoplankton. The ratio Autotrophs/Heterotrophs was lower than 1 (mean: 0,97 at SUR and 0,58 at BOT thus indicating a system with a predominance of the heterotrophs. This might be the result of light inhibition of algal growth coupled to a production of dissolved carbon, utilized by bacteria. During late summer the peak of Daphnia longispina, the main component of the zooplankton of LPS, increased the carbon content in the lake to a total of 158 and 300 μg C l-1 in 1997 and 1998 respectively. At the late summer peaks, zooplankton represented from 78 to 89% of the total carbon of the pelagic communities. Furthermore, the presence of Daphnia could be responsible for a decrease in the biomass carbon of a variety of organisms (algae, protozoa and bacteria. It may be possible that this is an instance of zooplankton grazing on algae, protozoa and also bacteria, as Daphnia has very broad niches and may eat pico-, nanoplankton and small ciliates. In the oligotrophic LPS, a diet which also includes protozoa could give Daphnia a further chance of survival, as ciliates are an important source of fatty acids and sterols.

  15. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  16. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  17. Do Bacteria Age?

    Indian Academy of Sciences (India)

    Bacteria are thought to be examples of organisms that do not age. They divide by .... carry genetic material to the next generation through the process of reproduction; they are also .... molecules, and modified proteins. This report revealed that ...

  18. Social Behaviour in Bacteria

    Indian Academy of Sciences (India)

    Administrator

    the recipient. • Social behaviours can be categorized according to the fitness ... is actually the flagella of symbiotic spirochete bacteria that helps it to swim around .... Normal population. Responsive switching. (Environmental stress). Stochastic.

  19. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  20. Lipopolysaccharides in diazotrophic bacteria

    OpenAIRE

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are...

  1. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    Science.gov (United States)

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  2. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  3. Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73

    DEFF Research Database (Denmark)

    Pedersen, Annette; Nybroe, Ole; Winding, Anne

    2009-01-01

    How bacterial feeding fauna affects colonization and survival of bacteria in soil is not well understood, which constrains the applicability of bacterial inoculants in agriculture. This study aimed to unravel how food quality of bacteria and bacterial feeders with different feeding habits (the......50090 or one of two biocontrol strains P. fluorescens CHA0 or Pseudomonas sp. DSS73) or combinations of two bacterial strains. DSM50090 is a suitable food bacterium, DSS73 is of intermediate food quality, and CHA0 is inedible to the bacterial feeders. Bacterial and protozoan cell numbers were measured...... predation pressure. Hence, the results suggested that the outcome of competition among bacteria depended on their ability to cope with the prevailing bacterial predator....

  4. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  5. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    International Nuclear Information System (INIS)

    Zhou, Shuang; Harvard University, Cambridge, MA; Tovkach, Oleh; University of Massachusetts, Amherst, MA; Golovaty, Dmitry

    2017-01-01

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable of overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. Finally, in the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90°; the new direction of swimming does not correlate with the previous swimming direction.

  6. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites

    Science.gov (United States)

    Noda, Satoko; Hongoh, Yuichi; Sato, Tomoyuki; Ohkuma, Moriya

    2009-01-01

    Background The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community. Results Molecular phylogeny of 31 taxa of Bacteroidales symbionts from 17 protist genera in 10 families was examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three related protist families, the symbionts of different protist genera were usually dispersed among several phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were distantly related to the ectosymbionts examined so far. Conclusion The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex. We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a pool of diverse bacteria in the gut community. In this sense, the gut could serve as a

  7. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  8. Longitudinal variation of attributes from flagellate protozoan community in tropical streams = Variação longitudinal dos atributos da comunidade de protozoários flagelados de riachos tropicais

    Directory of Open Access Journals (Sweden)

    Janielly Carvalho Camargo

    2011-04-01

    Full Text Available This study verified the existence of longitudinal patterns in speciescomposition, richness, density and biomass of flagellate protozoan in tropical streams and investigated whether the possible zonation patterns are different between two periods of the year. For this, samplings were carried out in three regions from 10 streams, during the summer and winter. The flagellate community may be considered species-rich, because it was represented by 106 taxa, belonging to 8 orders and 1 residual group. The values of density and biomass are greater than those commonly found in other lotic environments, with mean values close to 2.3x104 cels. mL-1 and 150.8 ƒÊgC L-1. We did not observe any conspicuous and significant longitudinal pattern of the attributes from flagellates community. Only temporal variations of these attributes were verified. The Pearson Correlation evidenced that this temporal patterns was mainly driven by the nutrients availability, temperature and dissolved oxygen, since, the higher values of species richness, density and biomass were recorded during the winter, when the higher concentrations of nutrients and dissolved oxygen and lower temperatures were registered. In summary, the absence of patterns may be ascribed to the unidirectional and continuous flow from lotic environments.O presente estudo objetivou verificar a existencia de padroes longitudinais de composicao, riqueza de especies, densidade e biomassa da comunidade de protozoarios flagelados de riachos tropicais e, ainda, investigar se os possiveis padroes de zonacao sao diferentes entre dois periodos do ano. Foram realizadas coletas em tres regioes ao longo de dez riachos, durante os periodos de verao e inverno. A comunidade de protozoarios flagelados pode ser considerada bastante rica, sendo representada por 106 taxons pertencentes a oito ordens e um grupo residual. Os valores de densidade e biomassa registrados encontram-se acima dos valores comumente encontradosem

  9. Communication among Oral Bacteria

    Science.gov (United States)

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  10. PATHOGENICITY OF BIOFILM BACTERIA

    Science.gov (United States)

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  11. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  12. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  13. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  14. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  15. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  16. Caspase-1 but Not Caspase-11 Is Required for NLRC4-Mediated Pyroptosis and Restriction of Infection by Flagellated Legionella Species in Mouse Macrophages and In Vivo.

    Science.gov (United States)

    Cerqueira, Daiane M; Pereira, Marcelo S F; Silva, Alexandre L N; Cunha, Larissa D; Zamboni, Dario S

    2015-09-01

    Gram-negative bacteria from the Legionella genus are intracellular pathogens that cause a severe form of pneumonia called Legionnaires' disease. The bacteria replicate intracellularly in macrophages, and the restriction of bacterial replication by these cells is critical for host resistance. The activation of the NAIP5/NLRC4 inflammasome, which is readily triggered in response to bacterial flagellin, is essential for the restriction of bacterial replication in murine macrophages. Once activated, this inflammasome induces pore formation and pyroptosis and facilitates the restriction of bacterial replication in macrophages. Because investigations related to the NLRC4-mediated restriction of Legionella replication were performed using mice double deficient for caspase-1 and caspase-11, we assessed the participation of caspase-1 and caspase-11 in the functions of the NLRC4 inflammasome and the restriction of Legionella replication in macrophages and in vivo. By using several species of Legionella and mice singly deficient for caspase-1 or caspase-11, we demonstrated that caspase-1 but not caspase-11 was required for pore formation, pyroptosis, and restriction of Legionella replication in macrophages and in vivo. By generating F1 mice in a mixed 129 × C57BL/6 background deficient (129 × Casp-11(-/-) ) or sufficient (129 × C57BL/6) for caspase-11 expression, we found that caspase-11 was dispensable for the restriction of Legionella pneumophila replication in macrophages and in vivo. Thus, although caspase-11 participates in flagellin-independent noncanonical activation of the NLRP3 inflammasome, it is dispensable for the activities of the NLRC4 inflammasome. In contrast, functional caspase-1 is necessary and sufficient to trigger flagellin/NLRC4-mediated restriction of Legionella spp. infection in macrophages and in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  18. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  19. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  20. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  1. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  2. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  3. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  4. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  5. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  6. Colonization of overlaying water by bacteria from dry river sediments.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released

  7. Ecophysiology of the Anammox Bacteria

    NARCIS (Netherlands)

    Kartal, M.B.

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a

  8. Money and transmission of bacteria.

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  9. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  10. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  11. Magnetic fingerprint in marine sediments: clues from cultivated Magnetovibrio blakemorei and recent cores from Brazilian Coast

    Science.gov (United States)

    Jovane, L.; Florindo, F.; Bazylinski, D. A.; Pellizari, V. H.; Brandini, F. P.; de Almeida, L. A.; Carneiro, F. R.; Braga, E. D.; Lins, U.

    2013-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of Magnetovibrio blakemorei strain MV-1, a marine magnetotactic bacterium, differ from those of other magnetotactic species from sediments deposited in lakes and marine habitats previously studied. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a 'magnetic fingerprint' for a specific magnetotactic bacterium. The technique used to determine this fingerprint is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We focused on studying the environmental conditions that allow for the presence of magnetotactic bacteria and magnetosomes in sediments including determining magnetotactic bacterial populations in marine settings, measuring crucial nutrient availability in the water column and in sediments, and examining particulate delivery to the seafloor.

  12. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  13. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  14. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  15. Gut Bacteria Affect Immunotherapy Response

    Science.gov (United States)

    Three new studies have identified intestinal bacteria that appear to influence the response to checkpoint inhibitors. This Cancer Currents blog post explains how the researchers think their findings could be used to improve patients’ responses to these immunotherapy drugs.

  16. hydroxyalkanoate (PHAs) producing bacteria isolated

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... ium (MSM), having inhibitors for Gram positive bacteria and fungi and a mixed ... Two techniques were used for detecting the presence of polymer: staining ... was saline solution at 600 nm wavelength on VARIAN DSM 100.

  17. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  18. Anaerobic bacteria that dechlorinate perchloroethene.

    Science.gov (United States)

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  19. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Horizontal gene transfer between bacteria.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  1. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  2. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  3. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  4. Alternative sources of Legionella bacteria

    NARCIS (Netherlands)

    van Heijnsbergen, H.H.L.

    2017-01-01

    Legionella bacteria can cause Legionnaires’ disease (LD) in humans. Symptoms of LD can range from mild disease to severe pneumonia with sometimes fatal outcome. In the Netherlands, the most important infective agent is Legionella pneumophila. L. pneumophila infection is associated with aquatic

  5. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  6. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  7. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  8. Deodorant bacteria; Des bacteries desodorisantes

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole Nationale Superieure des Mines, 30 - Ales (France)

    1998-02-01

    Purifying bacteria: if this concept is not new, its application to gases cleansing has only been developed recently. This method allows to eliminate the volatile organic compounds and the gaseous effluents odors which come from industrial sites. Three bioreactors types exist at the present time. Their principles are explained. (O.M.) 6 refs.

  9. Evolution of parasitism in kinetoplastid flagellates

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Skalický, Tomáš; Týč, Jiří; Votýpka, Jan; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 195, č. 2 (2014), s. 115-122 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Evolution * Phylogeny * Vectors * Diversity * Parasitism * Trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  10. 124 Prevalence of Henneguya Chrysichthys (Flagellated Protozoa ...

    African Journals Online (AJOL)

    User

    oil immersion objectives (XL 00) of the microscope. Also a drop of whole blood was placed on a slide and allowed to clot, contraction of the clot left a circle of .... parasites invading fish body during wet season. The length of fish is usually.

  11. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  12. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  13. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  14. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  15. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  16. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  17. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in

  18. Ecology of mycophagous collimonas bacteria in soil

    NARCIS (Netherlands)

    Höppener-Ogawa, Sachie

    2008-01-01

    Bacteria belonging to the genus Collimonas consist of soil bacteria that can grow at expense of living fungal hyphae i.e. they are mycophagous. This PhD studies deals with the ecology of mycophagous bacteria in soil using collimonads as model organisms. Collimonads were found to be widely

  19. AIDS: "it's the bacteria, stupid!".

    Science.gov (United States)

    Broxmeyer, Lawrence; Cantwell, Alan

    2008-11-01

    Acid-fast tuberculous mycobacterial infections are common in AIDS and are regarded as secondary "opportunistic infections." According to the National Institute of Allergy and Infectious Diseases, TB is the major attributable cause of death in AIDS patients. Could such bacteria play a primary or causative role in AIDS? Certainly, In screening tests for HIV, there is frequent, up to 70%, cross-reactivity, between the gag and pol proteins of HIV and patients with mycobacterial infections such as tuberculosis. By 1972, five years before gays started dying in the U.S., Rolland wrote Genital Tuberculosis, a Forgotten Disease? And ironically, in 1979, on the eve of AIDS recognition, Gondzik and Jasiewicz showed that even in the laboratory, genitally infected tubercular male guinea pigs could infect healthy females through their semen by an HIV-compatible ratio of 1 in 6 or 17%, prompting him to warn his patients that not only was tuberculosis a sexually transmitted disease, but also the necessity of the application of suitable contraceptives, such as condoms, to avoid it. Gondzik's solution and date of publication are chilling; his findings significant. Since 1982 Cantwell et al found acid-fast bacteria closely related to tuberculosis (TB) and atypical tuberculosis in AIDS tissue. On the other hand molecular biologist and virologist Duesberg, who originally defined retroviral ultrastructure, has made it clear that HIV is not the cause of AIDS and that the so-called AIDS retrovirus has never been isolated in its pure state. Dr. Etienne de Harven, first to examine retroviruses under the electron, agrees. In 1993 HIV co-discoverer Luc Montagnier reported on cell-wall-deficient (CWD) bacteria which he called "mycoplasma" in AIDS tissue. He suspected these as a necessary "co-factor" for AIDS. Remarkably, Montagnier remained silent on Cantwell's reports of acid-fast bacteria which could simulate "mycoplasma" in AIDS tissue. Mattman makes clear that the differentiation between

  20. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Denoncourt, Alix M.; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  1. Endocarditis caused by anaerobic bacteria.

    Science.gov (United States)

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  4. Money and transmission of bacteria.

    Science.gov (United States)

    Gedik, Habip; Voss, Timothy A; Voss, Andreas

    2013-08-28

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people's behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider.

  5. Resistance of Bacteria to Biocides.

    Science.gov (United States)

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  6. Differential scanning calorimetry of bacteria.

    Science.gov (United States)

    Miles, C A; Mackey, B M; Parsons, S E

    1986-04-01

    Thermograms obtained by differential scanning calorimetry of a range of bacteria of different heat resistances were compared. Equations were derived to calculate the rate at which the numbers of viable organisms in a calorimeter decline as the temperature is raised at a constant rate. Vegetative bacteria scanned at 10 degrees C min-1 showed multi-peaked thermograms with four major peaks (denoted m, n, p and q) occurring in the regions 68-73, 77-84, 89-99 and 105-110 degrees C respectively. Exceptions were that peak m (the largest peak) occurred at 79-82 degrees C in Bacillus stearothermophilus and an additional peak, r, was detected in Escherichia coli at 119 degrees C. At temperatures below the main peak m there were major differences in thermograms between species. There was a direct relationship between the onset of thermal denaturation and the thermoresistance of different organisms. Heat-sensitive organisms displayed thermogram features which were absent in the more heat-resistant types. When samples were cooled to 5 degrees C and re-heated, a small endothermic peak, pr, was observed at the same temperature as p. Peaks p and pr were identified as the melting endotherms of DNA. In all vegetative organisms examined, maximum death rates, computed from published D and z values, occurred at temperatures above the onset of thermal denaturation, i.e. cell death and irreversible denaturation of cell components occurred within the same temperature range.

  7. A Feasibility Study for Microwave Breast Cancer Detection Using Contrast-Agent-Loaded Bacterial Microbots

    Directory of Open Access Journals (Sweden)

    Yifan Chen

    2013-01-01

    Full Text Available We propose a new approach to microwave breast tumor sensing and diagnosis based on the use of biocompatible flagellated magnetotactic bacteria (MTB adapted to operate in human microvasculature. It has been verified experimentally by Martel et al. that externally generated magnetic gradients could be applied to guide the MTB along preplanned routes inside the human body, and a nanoload could be attached to these bacterial microbots. Motivated by these useful properties, we suggest loading a nanoscale microwave contrast agent such as carbon nanotubes (CNTs or ferroelectric nanoparticles (FNPs onto the MTB in order to modify the dielectric properties of tissues near the agent-loaded bacteria. Subsequently, we propose a novel differential microwave imaging (DMI technique to track simultaneously multiple swarms of MTB microbots injected into the breast. We also present innovative strategies to detect and localize a breast tissue malignancy and estimate its size via this DMI-trackable bacterial microrobotic system. Finally, we use an anatomically realistic numerical breast phantom as a platform to demonstrate the feasibility of this tumor diagnostic method.

  8. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    Science.gov (United States)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  9. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  10. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  11. Differential staining of bacteria: acid fast stain.

    Science.gov (United States)

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  12. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  13. Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria

    Directory of Open Access Journals (Sweden)

    Leander Brian S

    2009-01-01

    Full Text Available Abstract Background The Euglenozoa is a large group of eukaryotic flagellates with diverse modes of nutrition. The group consists of three main subclades – euglenids, kinetoplastids and diplonemids – that have been confirmed with both molecular phylogenetic analyses and a combination of shared ultrastructural characteristics. Several poorly understood lineages of putative euglenozoans live in anoxic environments, such as Calkinsia aureus, and have yet to be characterized at the molecular and ultrastructural levels. Improved understanding of these lineages is expected to shed considerable light onto the ultrastructure of prokaryote-eukaryote symbioses and the associated cellular innovations found within the Euglenozoa and beyond. Results We collected Calkinsia aureus from core samples taken from the low-oxygen seafloor of the Santa Barbara Basin (580 – 592 m depth, California. These biflagellates were distinctively orange in color and covered with a dense array of elongated epibiotic bacteria. Serial TEM sections through individually prepared cells demonstrated that C. aureus shares derived ultrastructural features with other members of the Euglenozoa (e.g. the same paraxonemal rods, microtubular root system and extrusomes. However, C. aureus also possessed several novel ultrastructural systems, such as modified mitochondria (i.e. hydrogenosome-like, an "extrusomal pocket", a highly organized extracellular matrix beneath epibiotic bacteria and a complex flagellar transition zone. Molecular phylogenies inferred from SSU rDNA sequences demonstrated that C. aureus grouped strongly within the Euglenozoa and with several environmental sequences taken from low-oxygen sediments in various locations around the world. Conclusion Calkinsia aureus possesses all of the synapomorphies for the Euglenozoa, but lacks traits that are specific to any of the three previously recognized euglenozoan subgroups. Molecular phylogenetic analyses of C. aureus

  14. Bioenergetics of photoheterotrophic bacteria in the oceans.

    Science.gov (United States)

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  16. Isolation and characterization of methanogenic bacteria from ...

    African Journals Online (AJOL)

    Isolation and characterization of methanogenic bacteria from brewery wastewater in Kenya. Sylvia Injete Murunga, Duncan Onyango Mbuge, Ayub Njoroge Gitau, Urbanus Ndungwa Mutwiwa, Ingrid Namae Wekesa ...

  17. Fewer bacteria in warm water

    International Nuclear Information System (INIS)

    Bagh, Lene

    1999-01-01

    There has been many suggestions to how the ideal warm water system should be. Particularly whether warm water containers or heat exchangers in larger houses are the best solutions in order to maintain a water quality with low levels of bacteria. In an investigation made by Statens Byggeforskningsinstitutt (Denmark) regarding ''Bacterial growth in warm water installations with heat exchangers'' there were used several heat exchangers made by Gjelsted and Lund of three of which had HWAT heating cables. The bacterial content was low from these exchangers compared to exchangers with circulation. The article presents promising results from a study where the method was investigated over a longer period in two new larger warm water systems. Some energy conservation aspects are discussed

  18. Modeling Political Populations with Bacteria

    Science.gov (United States)

    Cleveland, Chris; Liao, David

    2011-03-01

    Results from lattice-based simulations of micro-environments with heterogeneous nutrient resources reveal that competition between wild-type and GASP rpoS819 strains of E. Coli offers mutual benefit, particularly in nutrient deprived regions. Our computational model spatially maps bacteria populations and energy sources onto a set of 3D lattices that collectively resemble the topology of North America. By implementing Wright-Fishcer re- production into a probabilistic leap-frog scheme, we observe populations of wild-type and GASP rpoS819 cells compete for resources and, yet, aid each other's long term survival. The connection to how spatial political ideologies map in a similar way is discussed.

  19. Cell Size Regulation in Bacteria

    Science.gov (United States)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  20. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  1. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  2. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere,

    Science.gov (United States)

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  3. Characterization of (per)chlorate-reducing bacteria

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains

  4. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  5. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  6. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  7. Analyzing Arthropods for the Presence of Bacteria

    OpenAIRE

    Andrews, Elizabeth S.

    2013-01-01

    Bacteria within arthropods can be identified using culture-independent methods. This unit describes protocols for surface sterilization of arthropods, DNA extraction of whole bodies and tissues, touchdown PCR amplification using 16S rDNA general bacteria primers and profiling the bacterial community using denaturing gradient gel electrophoresis.

  8. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B T; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  9. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  10. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  11. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  12. Coryneform bacteria associated with canine otitis externa

    DEFF Research Database (Denmark)

    Aalbæk, Bent; Bemis, David A.; Schjærff, Mette

    2010-01-01

    This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total...... of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by partial 16S rRNA gene sequencing. Corynebacterium auriscanis was the most common coryneform species (10...... cases). Small colony variants of this species were also observed. Other coryneform isolates were identified as Corynebacterium amycolatum (3 cases), Corynebacterium freneyi (2 cases) and an Arcanobacterium-like species (1 case). The coryneform bacteria were in all cases isolated together with other...

  13. Hyphae colonizing bacteria associated with Penicillium bilaii

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat

    shown that mycorrhizal helper bacteria presenting in mycorrhizal fungi could stimulate fungal growth, promote establishment of root-fungus symbiosis and enhance plant production. But it is unknown if the comparable relationship exist between the non-mycorrhizal fungus P. bilaii and its hyphae associated...... bacteria. In the current PhD thesis, we assumed that hyphae-associated microbiome of P. bilaii might harbor helper bacteria with ability to improve fungal growth and P solubilization performance. Therefore, we aimed to isolate bacteria associated with the P. bilaii hyphae and identify the fungal growth...... stimulating bacteria with the perspective of promoting efficiency of Jumpstart in soil – plant system. For this purpose, most of the work within the current project was carried out by development of suitable model systems by mimicking the natural soil habitat to reach to the reliable performance in soil...

  14. [Unique properties of highly radioresistant bacteria].

    Science.gov (United States)

    Romanovskaia, V A; Rokitko, P V; Malashenko, Iu R

    2000-01-01

    In connection with the Chernobyl Nuclear Power Plant (ChNPP) accident and the negative ecological after-effects for biota in this zone the interest has arisen to radioresistant bacteria, as to the most dynamic model of the given ecosystem, and to mechanisms which provide resistance of bacteria to ionizing radiation. The analysis of published data has shown that the radioresistant bacteria are not interrelated taxonomically and phylogenetically. The extreme radioresistant bacteria are represented by the Deinococcus species, which form a group phylogenetically close to the line Thermus-Meiothermus. Other radioresistant bacteria are the representatives of the genera Rubrobacter, Methylobacterium, Kocuria, Bacillus and some archebacteria. Data on natural habitats, of radioresistant bacteria are not numerous. In a number of cases it is difficult to distinguish their natural habitats, as they were isolated from the samples which were previously exposed to X-ray or gamma-irradiation, or from the ecosystems with the naturally raised radioactivity. To understand the strategy of survival of radioresistant bacteria, we briefly reviewed the mechanism of action of various species of radiation on cells and macromolecules; physiological signs of the cell damage caused by radiation; mechanisms eliminating (repairing) these damages. More details on mechanisms of the DNA repair in D. radiodurans are described. The extreme resistance of D. radiodurans to the DNA damaging factors is defined by 1) repair mechanisms which fundamentally differ from those in other procaryotes; 2) ability to increase the efficiency of a standard set of the DNA repairing proteins. Literary and own data on the effect of radiation on survival of various groups of bacteria in natural ecosystems are summarized. The ecological consequences of the ChNPP accident for soil bacteria in this region were estimated. The reduction of the number of soil bacteria and recession of microbial diversity under the effect of

  15. Comparative cytotoxicity of periodontal bacteria

    International Nuclear Information System (INIS)

    Stevens, R.H.; Hammond, B.F.

    1988-01-01

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species

  16. Tape Cassette Bacteria Detection System

    Science.gov (United States)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  17. Antioxidant Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-05-01

    Full Text Available Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  18. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  19. Bacteria classification using Cyranose 320 electronic nose

    Directory of Open Access Journals (Sweden)

    Gardner Julian W

    2002-10-01

    Full Text Available Abstract Background An electronic nose (e-nose, the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds. Method Linear Principal Component Analysis (PCA method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM and Self Organizing Map (SOM network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP, Probabilistic Neural network (PNN and Radial basis function network (RBF, were used to classify the six bacteria classes. Results A [6 × 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network. Conclusion This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

  20. Folate Production by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2011-01-01

    Full Text Available Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-type lactobacilli cannot synthesize folate, generally require it for growth, and provide a negative contribution to folate levels in fermented dairy products. Lactobacillus plantarum constitutes an exception among lactobacilli, since it is capable of folate production in presence of para-aminobenzoic acid (pABA and deserves to be used in animal trials to validate its ability to produce the vitamin in vivo. On the other hand, several folate-producing strains have been selected within the genus Bifidobacterium, with a great variability in the extent of vitamin released in the medium. Most of them belong to the species B. adolescentis and B. pseudocatenulatum, but few folate producing strains are found in the other species as well. Rats fed a probiotic formulation of folate-producing bifidobacteria exhibited increased plasma folate level, confirming that the vitamin is produced in vivo and absorbed. In a human trial, the same supplement raised folate concentration in feces. The use of folate-producing probiotic strains can be regarded as a new perspective in the specific use of probiotics. They could more efficiently confer protection against inflammation and cancer, both exerting the beneficial effects of probiotics and preventing the folate deficiency that is associated with premalignant changes in the colonic epithelia.

  1. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria

    Directory of Open Access Journals (Sweden)

    Eveline M. van den Berg

    2017-09-01

    results of this study clearly show that not only the ratio of available substrates, but also the nature of the electron donor influences the outcome of competition between DNRA and denitrification. Apparently, fermentative bacteria are competitive for the electron donor and thereby alter the ratio of available substrates for nitrate reduction.

  2. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  3. Labelling of bacteria with indium chelates

    International Nuclear Information System (INIS)

    Kleinert, P.; Pfister, W.; Endert, G.; Sproessig, M.

    1985-01-01

    The indium chelates were prepared by reaction of radioactive indiumchloride with 10 μg oxine, 15 μg tropolone and 3 mg acetylacetone, resp. The formed chelates have been incubated with 10 9 germs/ml for 5 minutes, with labelling outputs from 90 to 95%. Both gram-positive (Streptococcus, Staphylococcus) and gram-negative bacteria (Escherichia coli) can be labelled. The reproductive capacity of the bacteria was not impaired. The application of indium labelled bacteria allows to show the distribution of microorganisms within the living organism and to investigate problems of bacterial adherence. (author)

  4. Mortality of fecal bacteria in seawater

    International Nuclear Information System (INIS)

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G.

    1991-01-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which [ 3 H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate

  5. Pu sorption to activated conglomerate anaerobic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Takayuki; Kudo, Akira

    2001-01-01

    The sorption of Pu to the anaerobic bacteria activated under specific conditions of temperature, pH and depleted nutrients after long dormant period was investigated. After 4 h at neutral pH, the distribution coefficient (K d ) between bacteria and aqueous phase at 308 and 278 K had around 10 3 to 10 4 . After over 5 days, however, the K d at only 308 K had increased to over 10 5 . Sterilized (dead) and dormant anaerobic bacteria adsorbed Pu to the same extent. (author)

  6. Bacteria Culture Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/bacteriaculturetest.html Bacteria Culture Test To use the sharing features on this page, please enable JavaScript. What is a Bacteria Culture Test? Bacteria are a large group of ...

  7. Flow cytometry, fluorescent probes, and flashing bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.

    2002-01-01


    Key words: fluorescent probes, flow cytometry, CSLM, viability, survival, microbial physiology, lactic acid bacteria, Lactococcus lactis , Lactobacillus plantarum , cheese, milk,

  8. Effect of leukocyte hydrolases on bacteria

    International Nuclear Information System (INIS)

    Cohen, D.; Michel, J.; Ferne, M.; Bergner-Rabinowitz, S.; Ginsburg, I.

    1979-01-01

    Leukocyte extracts, trypsin, and lysozyme are all capable of releasing the bulk of the LPS from S. typhi, S. typhimurium, and E. coli. Bacteria which have been killed by heat, ultraviolet irradiation, or by a variety of metabolic inhibitors and antibiotics which affect protein, DNA, RNA, and cell wall synthesis no longer yield soluble LPS following treatment with the releasing agents. On the other hand, bacteria which are resistant to certain of the antibiotics yield nearly the full amount of soluble LPS following treatment, suggesting that certain heatabile endogenous metabolic pathways collaborate with the releasing agents in the release of LPS from the bacteria. It is suggested that some of the beneficial effects of antibiotics on infections with gram-negative bacteria may be the prevention of massive release of endotoxin by leukocyte enzymes in inflammatory sites

  9. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  10. Lactic acid bacteria: microbiological and functional aspects

    National Research Council Canada - National Science Library

    Lahtinen, Sampo

    2012-01-01

    "Updated with the substantial progress made in lactic acid and bacteria research since the third edition, this fourth volume discusses improved insights in genetics and new molecular biological techniques...

  11. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  12. Do bacteria, not fish, produce 'fish kairomone'?

    NARCIS (Netherlands)

    Ringelberg, J.; Van Gool, E.

    1998-01-01

    Fish-associated chemicals enhance phototactic downward swimming in Daphnia. If perch were treated with the antibiotic ampicillin, this enhancement was significantly decreased. Therefore, not fish, but bacteria associated with fish, seem to produce this kairomone. [KEYWORDS: Diel vertical migration;

  13. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  14. Abundance, viability and culturability of Antarctic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    The viability of total number of bacteria decide the mineralisation rate in any ecosystem and ultimately the fertility of the region. This study aims at establishing the extent of viability in the standing stock of the Antarctic bacterial population...

  15. Interactions between phototrophic bacteria in marine sediments

    NARCIS (Netherlands)

    de Wit, Rutger

    1989-01-01

    Phototrophic bacteria are the most consicious organisms occuring in laminated microbial sediment ecosystems (microbial mats). In the Waddensea area ecosystems consisting of a toplayer of the cyanobacterium Microleus chthonoplastes overlying a red layer of the purple sulfur bacterium Thiocapsa

  16. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  17. Ecology: Electrical Cable Bacteria Save Marine Life

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2016-01-01

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide.......Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide....

  18. Extracellular deoxyribonuclease production by periodontal bacteria.

    Science.gov (United States)

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  19. Occurrence of diazotrophic bacteria in Araucaria angustifolia

    OpenAIRE

    Neroni,Rafaela de Fátima; Cardoso,Elke Jurandy Bran Nogueira

    2007-01-01

    Araucaria angustifolia is an environmentally threatened tree and the whole biota of the Araucaria Forest should be investigated with the aim of its preservation. Diazotrophic bacteria are extremely important for the maintenance of ecosystems, but they have never been studied in Araucaria Forests. In this study, diazotrophic bacteria were isolated from Araucaria roots and soil, when grown in semi-specific, semi-solid media. The diazotrophic character of some recovered isolates could be confirm...

  20. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  1. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as solidif......Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... as solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bacterial counts (CFU/g) from algal exudates from brown algae were highest on media containing algal...... polymers. In general, bacteria isolated from algal exudates preferred more rich media than bacteria isolated from seawater. Overall, culturability ranged from 0.01 to 0.8% as compared to total cell count. Substitution of agar with gellan gum increased the culturability of seawater bacteria approximately...

  2. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  3. Nanotextile membranes for bacteria Escherichia coli capturing

    Directory of Open Access Journals (Sweden)

    Jaroslav Lev

    2010-01-01

    Full Text Available The article describes an experimental study dealing with the possibility of nanotextile materials usa­ge for microbiologically contaminated water filtration. The aim of the study is to verify filtration ability of different nanotextile materials and evaluate the possibilities of practical usage. Good detention ability of these materials in the air filtration is the presumption for nanotextile to be used for bacteria filtration from a liquid. High nanotextile porosity with the nanotextile pores dimensions smaller than a bacteria size predicates the possibility of a successful usage of these materials. For the experiment were used materials made from electrospinning nanofibres under the label PA612, PUR1, PUR2 s PUR3 on the supporting unwoven textiles (viscose and PP. As a model simulation of the microbial contamination, bacteria Escherichia coli was chosen. Contaminated water was filtered during the overpressure activity of 105Pa on the input side of the filter from the mentioned material. After three-day incubation on the nutrient medium, cultures found in the samples before and after filtration were compared. In the filtrated water, bacteria E. coli were indicated, which did not verify the theoretical presumptions about an absolut bacteria detention. However, used materials caught at least 94% of bacteria in case of material PUR1 and up to 99,996% in case of material PUR2. These results predict the possibility of producing effective nanotextile filters for microbiologically contaminated water filtration.Recommendation: For the production of materials with better filtrating qualities, experiments need to be done, enabling better understanding of the bacteria detention mechanisms on the nanotextile material, and parameters of the used materials that influence the filtrating abilities need to be verified.

  4. [Spectrum and susceptibility of preoperative conjunctival bacteria].

    Science.gov (United States)

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2013-12-01

    To describe the conjunctival bacterial spectrum of our patients undergoing intraocular surgery and their antibiotic sensitivity during the study period. A retrospective study of preoperative conjunctival culture of patients consecutively scheduled for intraocular surgery from 21 February 2011 to 1 April 2013. Specimens were directly seeded onto blood-agar and MacConkey-agar (aerobiosis incubation, 2 days), and on chocolate-agar (6% CO2 incubation, 7 days). The identified bacteria were divided into 3 groups according to their origin; the bacteria susceptibility tests were performed on those more pathogenic and on some of the less pathogenic when more than 5 colonies were isolated. The sensitivity of the exigent growing bacteria was obtained with disk diffusion technique, and for of the non-exigent bacteria by determining their minimum inhibitory concentration. The Epidat 3.1 program was used for statistical calculations. A total of 13,203 bacteria were identified in 6,051 cultures, with 88.7% being typical colonizers of conjunctiva (group 1), 8.8% typical of airways (group 2), and the remaining 2.5% of undetermined origin (group 3). 530 cultures (8.8%) were sterile. The sensitivity of group 1 was: 99% vancomycin, 95% rifampicin, 87% chloramphenicol, 76% tetracycline. Levels of co-trimoxazole, aminoglycosides, quinolones, β-lactams and macrolides decreased since 2007. The group 2 was very sensitive to chloramphenicol, cefuroxime, rifampicin, ciprofloxacin and amoxicillin/clavulanate. In group 3, to levofloxacin 93%, ciprofloxacin 89%, tobramycin 76%, but ceftazidime 53% and cefuroxime 29% decreased. None of the tested antibiotics could eradicate all possible conjunctival bacteria. Bacteria living permanently on the conjunctiva (group 1) have achieved higher resistance than the eventual colonizers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. Chemically enhanced sunlight for killing bacteria

    International Nuclear Information System (INIS)

    Block, S.S.; Goswami, D.Y.

    1995-01-01

    Solar ultraviolet (UV) photocatalyzed oxidation of chemicals with titanium dioxide (TiO 2 ) has received considerable attention. Much less recognized, however, is the ability of the same system to destroy bacteria. This study examined this phenomenon and the conditions that affect it. Bacteria in aqueous solution were given solar exposure with titanium dioxide and their survival with time was determined. Lamps with a predominantly solar ultraviolet spectrum were also used in the experiments. Without exposure to UV light, TiO 2 had no deleterious effect on the bacteria. However, several common bacteria on solar exposure in the presence of TiO 2 were killed in just a few minutes, whereas without TiO 2 it took over an hour to destroy them. A concentration of 0.01% TiO 2 was most effective in killing bacteria and 10-fold concentrations lower or higher were successively less effective. Inorganic and organic compounds in solution, even in small amounts, interfered with the efficiency of killing. Alkaline solution also reduced the bactericidal activity. Circulation and agitation provided by stirring to keep the TiO 2 particles suspended reduced the time necessary to kill the bacteria. Time-intensity curves for killing bacteria were the same general shape with or without TiO 2 , indicating that TiO 2 served merely as a catalyst to increase the rate of the reaction but that the mechanism of action was not changed. The shape of the curves show that the organisms are sensitized with a minimum intensity of radiation and that an increase doesn't greatly increase the rate of kill. Below this critical intensity, however, the time required for killing markedly increases as the intensity is decreased

  6. Using Bacteria to Store Renewable Energy (Text Version) | News | NREL

    Science.gov (United States)

    Using Bacteria to Store Renewable Energy (Text Version) Using Bacteria to Store Renewable Energy is a text version of the video entitled "Using Bacteria to Store Renewable Energy." ; Bacteria from some of the Earth's harshest environments now have a new home at NREL. [A natural spring has

  7. Rapid diagnostics of the bacteria in air

    Energy Technology Data Exchange (ETDEWEB)

    Belov Nikolai, N. [ATECH KFT, Budapest (Hungary)

    2000-07-01

    Presence of the bacteria and viruses in the air is great problem now. Terrorists are going to use the bacteria weapon. Now biotechnology provides very cheap equipment ({approx} $500) for modification of the bacteria sorts. It may be used for receiving of new variants of the bacteriological weapon. And presence of one small bacteria aerosol generator in the international airport during several days will start the dangerous epidemic incidence the entire world. From another side - poor countries with hot and wet weather are continuously producing new and new dangerous bacteria. Every year epidemic waves of influence are going from China, India or Africa. And once up a time it will be epidemic explosive with fast lethal finish. Methods of estimation of the bio-aerosols in Air of City are very poor. Standard Bio-aerosol sampler has two conflicting demands. From one side the bio-sampler needs in great air volume of sample with great efficiency of separation of aerosol particles from measured air. From another side all selected particles needs in great care. This demand carried out from method of measurement of bacteria in sample by counting of colonies that grew from bacteria on nutrient media after incubation time. It is a problem to prevent bacterial flora from death during collecting aerosol sample. This time of growth and counting of colony is so long that result of this measurement will be unusable if it will be terrorist action of start of bacteriological was. Here presented new methods for fast diagnostics of the bacteria in the air. It consists from 4 general parts: (1) Micro-droplet method for diagnostics of biological active substances in aerosol sample. This method allows to control the bio-particle position on the plate, to use series of biochemistry species for analytical reaction for this small bio-particle. Small volume of biochemical reaction reduces noise. This method provides extremely high sensitivity for discovering of biological material. (2

  8. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  9. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  10. Overlapping riboflavin supply pathways in bacteria.

    Science.gov (United States)

    García-Angulo, Víctor Antonio

    2017-03-01

    Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.

  11. Bacteria and plutonium in marine environments

    International Nuclear Information System (INIS)

    Carey, A.E.; Bowen, V.T.

    1978-01-01

    Microbes are important in geochemical cycling of many elements. Recent reports emphasize biogenous particulates and bacterial exometabolites as controlling oceanic distribution of plutonium. Bacteria perform oxidation/reduction reactions on metals such as mercury, nickel, lead, copper, and cadmium. Redox transformations or uptake of Pu by marine bacteria may well proceed by similar mechanisms. Profiles of water samples and sediment cores were obtained along the continental shelf off Nova Scotia and in the Gulf of St. Lawrence. Profiles of water samples, and sediment cores were obtained. Epifluorescent microscopy was used to view bacteria (from water or sediment) after concentration on membrane filters and staining with acridine orange. Radiochemical analyses measured Pu in sediments and water samples. Studies of 237 Pu uptake used a strain of Leucothrix mucor isolated from a macroalga. Enumeration shows bacteria to range 10 4 to 10 5 cells/ml in seawater or 10 7 to 10 8 cells/gram of sediment. These numbers are related to the levels and distrbution of Pu in the samples. In cultures of L. mucor amended with Pu atom concentrations approximating those present in open ocean environments, bacterial cells concentrated 237 Pu slower and to lower levels than did clay minerals, glass beads, or phytoplankton. These data further clarify the role of marine bacteria in Pu biogeochemistry

  12. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  13. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for

  14. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  15. Effects of ionizing radiation on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1976-10-01

    The differences of radiosensitivities among bacteria in addition to the dependence upon the species or strains also depends on the environmental condition during irradiation (temperature, medium, the presence of protective or sensitizing agents, the gas phase or atmosphere, and water activity, or degree of hydration) and on the effects of the environmental condition before and after irradiation treatment (temperature of incubation, age of culture and growth medium). In general, spores are more resistant to radiation than vegetatic bacteria, with the exception that a few cocci are the most radiation resistant bacteria (Micrococcus and Streptococcus). The application of ionizing radiation in the fields of microbiology supports the radiation sterilization of medical and pharmaceutical products. In addition, microbiological aspects of food preservation, especially radurization, radicidation, and immunization studies by using irradiated microorganisms, are also important.

  16. Threats and opportunities of plant pathogenic bacteria.

    Science.gov (United States)

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Hydrodynamic interaction between bacteria and passive sphere

    Science.gov (United States)

    Zhang, Bokai; Ding, Yang; Xu, Xinliang

    2017-11-01

    Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.

  18. Interactions among sulfide-oxidizing bacteria

    Science.gov (United States)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  19. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  20. Lethal photosensitization of biofilm-grown bacteria

    Science.gov (United States)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  1. Gastric spiral bacteria in small felids.

    Science.gov (United States)

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  2. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Differential staining of bacteria: gram stain.

    Science.gov (United States)

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  4. Motile bacteria in a critical fluid mixture

    Science.gov (United States)

    Koumakis, Nick; Devailly, Clémence; Poon, Wilson C. K.

    2018-06-01

    We studied the swimming of Escherichia coli bacteria in the vicinity of the critical point in a solution of the nonionic surfactant C12E5 in buffer solution. In phase-contrast microscopy, each swimming cell produces a transient trail behind itself lasting several seconds. Comparing quantitative image analysis with simulations show that these trails are due to local phase reorganization triggered by differential adsorption. This contrasts with similar trails seen in bacteria swimming in liquid crystals, which are due to shear effects. We show how our trails are controlled, and use them to probe the structure and dynamics of critical fluctuations in the fluid medium.

  5. Bacteria Provide Cleanup of Oil Spills, Wastewater

    Science.gov (United States)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  6. Functional Encyclopedia of Bacteria and Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  7. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  8. Pathogenic Assay of Probiotic Bacteria Producing Proteolytic Enzymes as Bioremediation Bacteria Against Vannamei Shrimp Larvae (Litopenaeus vannamei)

    OpenAIRE

    Wilis Ari Setyati; Muhammad Zainuddin; Person Pesona Renta

    2017-01-01

    Application of bacteria in bioremediation of shrimp culture ponds is one of the methods used to clean internal pollutants. This study aimed to evaluate the pathogenicity of extracellular proteolytic enzyme produced by the probiotic bacteria as bioremediation bacteria on vannamei shrimp larvae culture. There were five probiotic bacteria, which were successfully isolated from the sediments served as substrate in mangrove area. The isolated bacteria were coded in number as 13, 19, 30, 33, and 36...

  9. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna.

    Science.gov (United States)

    Manakul, Patcharaporn; Peerakietkhajorn, Saranya; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-07-01

    The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria

    OpenAIRE

    Bertelsen, Hans; Andersen, Hans; Tvede, Michael

    2011-01-01

    A number of 174 normal or pathogenic human enteric bacteria and dairy lactic acid bacteria were screened for D-tagatose fermentation by incubation for 48 hours. Selection criteria for fermentation employed included a drop in pH below 5.5 and a distance to controls of more than 0.5. Only a few of the normal occurring enteric human bacteria were able to ferment D-tagatose, among those Enterococcus faecalis, Enterococcus faecium and Lactobacillus strains. D-Tagatose fermentation seems to be comm...

  11. Brilliant glyconanocapsules for trapping of bacteria.

    Science.gov (United States)

    Yan, Xibo; Sivignon, Adeline; Alcouffe, Pierre; Burdin, Béatrice; Favre-Bonté, Sabine; Bilyy, Rostyslav; Barnich, Nicolas; Fleury, Etienne; Ganachaud, François; Bernard, Julien

    2015-08-28

    Nanoprecipitation of miglyol into droplets surrounded by a functional glycopolymer generates nanocapsules of biointerest. Fluorophores are trapped in situ or post-grafted onto the crosslinked polymer shell for efficient imaging. The resulting colloids induce aggregation of bacteria through strong specific interactions and promote their facile removal.

  12. Brilliant glyconanocapsules for trapping of bacteria

    OpenAIRE

    Yan, Xibo; Sivignon, Adeline; Alcouffe, Pierre; Burdin, Béatrice; Favre-Bonté, Sabine; Bilyy, Rostyslav; Barnich, Nicolas; Fleury, Etienne; Ganachaud, François; Bernard, Julien

    2015-01-01

    Nanoprecipitation of miglyol into droplets surrounded by a functional glycopolymer generates nanocapsules of biointerest. Fluorophores are trapped in situ or post-grafted onto the crosslinked polymer shell for efficient imaging. The resulting colloids induce aggregation of bacteria through strong specific interactions and promote their facile removal.

  13. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  14. The effects of bacteria on crystalline rock

    International Nuclear Information System (INIS)

    Brown, D.A.

    1994-01-01

    Many reactions involving inorganic minerals at water-rock interfaces have now been recognized to be bacterially mediated; these reactions could have a significant effect in the excavation of vaults for toxic and radioactive waste disposal. To investigate the role that bacteria play in the natural aqueous environment of crystalline rock the microbial growth factors of nutrition, energy and environment are described. Microbial activity has been investigated in Atomic Energy of Canada's Underground Research Laboratory (URL), situated in the Archean granitic Lac du Bonnet Batholith, Winnipeg, Manitoba. Faults, initiated in the Early Proterozoic, and later-formed fractures, provide ground-water pathways. Planktonic bacteria, free-swimming in the groundwater, have been observed in over 100 underground borehole samples. The number of bacteria varied from 10 3 to 10 5 mL -1 and appeared to decrease with depth and with increased salinity of the water. However, in the natural environment of deep (100-500 m) crystalline rocks, where nutrition is limited, formation of biofilms by sessile bacteria is a successful survival strategy. Natural biofilms at the URL and biofilms grown in bioreactors have been studied. The biofilms can accumulate different elements, depending upon the local environment. Precipitates of iron have been found in all the biofilms studied, where they are either passively accumulated or utilized as an energy source. Within the biofilm active and extensive biogeochemical immobilization of dissolved elements is controlled by distinct bacterial activities which are sufficiently discrete for hematite and siderite to be precipitated in close proximity

  15. Solvent-tolerant bacteria in biocatalysis.

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1998-01-01

    The toxicity of fine chemicals to the producer organism is a problem in several biotechnological production processes. In several instances, an organic phase can be used to extract the toxic product from the aqueous phase during a fermentation. With the discovery of solvent-tolerant bacteria, more

  16. OCCURRENCE OF PATHOGENIC BACTERIA ASSOCIATED WITH ...

    African Journals Online (AJOL)

    USER

    With the diminishing rate of natural fish resources globally, a reasonable percentage of fish and fish products .... from these artificial fish habitat, one may not be out of place to ... condition for bacteria reproduction and development in their host ...

  17. Identification of bacteria using mass spectrometry techniques

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Hynek, R.; Hochel, I.

    2013-01-01

    Roč. 353, NOV 2013 (2013), s. 67-79 ISSN 1387-3806 R&D Projects: GA ČR GAP503/10/0664 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Bacteria * Identification Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2013

  18. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter...

  19. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson,Vânia da Silva; Duran,Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  20. (VAM) and phosphate solubilizing bacteria (PSB)

    African Journals Online (AJOL)

    User

    2013-09-18

    Sep 18, 2013 ... mycorrhiza (VAM), and phosphate solubilising bacteria (PSB) individually and in .... Two-way analysis of variance (ANOVA) was carried out at a 0.05 level of significance on the data and SPSS version 13.0 was used.

  1. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    The pathogenic bacteria indigenous to the aquatic and general environment are listed. Their distribution in nature, prevalence in seafood and the possibilities for growth of these organisms in various types of products are outlined These data, combined with what is known regarding the epidemiology...

  2. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  3. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  4. Identification of marine methanol-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M; Iwaki, H; Kouno, K; Inui, T

    1980-01-01

    A taxonomical study of 65 marine methanol-utilizing bacteria is described. They were Gram-negative, non-spore-forming rods with a polar flagellum and had marine bacterial properties and required vitamin B/sub 12/ for growth. All of them assimilated fructose in addition to C/sub 1/-compounds and produced acid oxidatively from fructose. Twenty-four strains assimilated only C/sub 1/-compounds. They were resistant to penicillin, oxytetracycline and 0/129 substance (Vibrio stat), and tolerant to 12% NaCl. Guanine-cytosine contents of deoxyribonucleic acid in typical strains fell in the range of 43.8 to 47.6%. Other morphological and physiological properties were almost the same as those of terrestrial methanol-utilizers. Bacteria in the first group (41 strains) were facultative methylotrophs and were divided into three subgroups by the assimilation of methylated amines, that is, subgroup I (30 strains) assimilated mono-, di- and tri-methylamine, subgroup II (9 strains) assimilated only mono-methylamine, the bacteria of subgroups I and II were named Alteromonas thalassomethanolica sp. nov. and subgroup III (2 strains) did not assimilate methylated amines, and was tentatively assigned as Alteromonas sp. The second group of bacteria (24 strains) was obligate methylotrophs, named Methylomonas thalassica sp. nov. and was divided into subgroup IV (15 strains) which assimilated mono-, di and tri-methylamine and subgroup V (9 strains) which assimilated mono-methylamine.

  5. Bacteria Isolated from Post-Partum Infections

    Directory of Open Access Journals (Sweden)

    Nahid Arianpour

    2009-06-01

    Full Text Available Objective: This study was undertaken with an aim to determine bacterial species involved in post partum infections and also their abundance in patients admitted to at Khanevadeh hospital. In this study out of three different kinds of postpartum infections (i.e. genital, breast and urinary tract, only genital infection is considered.Materials and Methods: Post partum infection among 6077 patients (inpatients and re-admitted patients of Khanevadeh hospital from 2003 till 2008 was studied in this descriptive study. Samples were collected from patients for laboratory diagnosis to find out the causative organisms.Results: Follow up of mothers after delivery revealed 7.59% (461 patients had post partum infection, out of which 1.03% (63 patients were re-hospitalized. Infection was more often among younger mothers. Bacteria isolated and identified were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora of the site of infection. Though, some pathogenic bacteria like Staphylococcus aureus, Neisseria gonorrhea, Chlamydia trachomatis,were also the causative agents. The commonest infection was infection at the site of episiotomy. Conclusion: Puerperal infection was detected in of 7.59% mothers. Bacteria isolated were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora. However; some pathogenic bacteria were isolated.

  6. Serpins in unicellular Eukarya, Archaea, and Bacteria:

    DEFF Research Database (Denmark)

    Roberts, T.H.; Hejgaard, Jørn; Saunders, N.F.W

    2004-01-01

    , where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics...

  7. Bacteria as transporters of phosphorus through soil

    DEFF Research Database (Denmark)

    Glæsner, N.; Bælum, Jacob; Jacobsen, C. S.

    2016-01-01

    The transport of phosphorus (P) from agricultural land has led to the eutrophication of surface waters worldwide, especially in areas with intensive animal production. In this research, we investigated the role of bacteria in the leaching of P through three agricultural soils with different...

  8. Multidrug transporters in lactic acid bacteria

    NARCIS (Netherlands)

    Mazurkiewicz, P; Sakamoto, K; Poelarends, GJ; Konings, WN

    Gram-positive lactic acid bacteria possess several Multi-Drug Resistance systems (MDRs) that excrete out of the cell a wide variety of mainly cationic lipophilic cytotoxic compounds as well as many clinically relevant antibiotics. These MDRs are either proton/drug antiporters belonging to the major

  9. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  10. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta ...

    African Journals Online (AJOL)

    Utilization of three petroleum hydrocarbons (Mobil SAE 40 Engine Oil, Diesel and Bonny light Crude Oil) by four bioluminescent bacteria (Vibrio harveyi, V. fisheri, Photobacterium leiognathi and P. Phosphoreum isolated from the Bonny estuary in the Niger Delta, Nigeria was investigated. Microbial utilization was monitored ...

  11. Pathomorphology and aerobic bacteria associated with pneumonia ...

    African Journals Online (AJOL)

    Pneumonia occurs in all ages of sheep and goats, in all breeds, in every country of the world causing heavy economic losses. The aim of this study was to determine the prevalence of pneumonia and aerobic bacteria flora associated with it in small ruminants slaughtered at the Nsukka abattoir. Pneumonic lung of small ...

  12. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    Science.gov (United States)

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  13. Chitinolytic bacteria of the mammal digestive tract

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Hodrová, Blanka; Bartoňová, H.; Kopečný, Jan

    2001-01-01

    Roč. 46, č. 1 (2001), s. 76-78 ISSN 0015-5632 R&D Projects: GA ČR GA525/00/0984; GA AV ČR KSK5052113 Keywords : chitinolytic bacteria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.776, year: 2001

  14. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  15. The proteolytic systems of lactic acid bacteria

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Mierau, Igor; Hagting, Anja; Poolman, Bert; Konings, Wil N.

    1996-01-01

    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The

  16. Proteolytic enzymes of lactic acid bacteria

    NARCIS (Netherlands)

    Law, J; Haandrikman, A

    The proteolytic system of lactic acid bacteria is essential for their growth in milk and contributes significantly to flavour development in fermented milk products where these microorganisms are used as starter cultures. The proteolytic system is composed of proteinases which initially cleave the

  17. Biological Potential of Chitinolytic Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using...

  18. Exopolysaccharides produced by lactic acid bacteria

    NARCIS (Netherlands)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-01-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and

  19. Radiographic markers - A reservoir for bacteria?

    International Nuclear Information System (INIS)

    Tugwell, Jenna; Maddison, Adele

    2011-01-01

    Introduction: Amongst the most frequently handled objects in the radiology department are radiographic markers. They are personal accessories used with every patient, and are kept in the radiographers pockets when not utilised. Upon enquiry it was discovered that many radiographers disregarded the potential of these accessories to become a vector for cross-contamination thus never or rarely clean them. The aims of this study were therefore to identify if radiographic markers are a reservoir for bacteria and to establish an effective cleaning method for decontaminating them. Methodology: 25 radiographers/student radiographers were selected for this study. Swabbing of their markers prior and post cleaning took place. The microbiology laboratory subsequently analyzed the results by quantifying and identifying the bacteria present. The participants also completed a closed questionnaire regarding their markers (e.g. frequency of cleaning and type of marker) to help specify the results gained from the swabbing procedure. Results: From the sample swabbed, 92% were contaminated with various organisms including Staphylococcus and Bacillus species, the amount of bacteria present ranged from 0 to >50 CFU. There were no significant differences between disinfectant wipes and alcohol gel in decontaminating the markers. Both successfully reduced their bacterial load, with 80% of the markers post cleaning having 0 CFU. Conclusion: The results indicated that radiographic markers can become highly contaminated with various organisms thus serve as a reservoir for bacteria. In addition, the markers need to be cleaned on a regular basis, with either disinfectant wipes or alcohol gel to reduce their bacterial load.

  20. Heterotrophic bacteria associated with the green alga

    NARCIS (Netherlands)

    Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Bouhaouala-Zahar, B.; Stal, L.J.; Boudabbous, A.; El Bour, M.

    2018-01-01

    Heterotrophic bacteria associated with the green alga Ulva rigida, collected from the coast of Tunisia, were isolated andsubsequently identified by their 16S rRNA gene sequences and by phylogenetic analysis. The 71 isolates belong to four phyla:Proteobacteria (Alpha-and Gamma- subclasses),

  1. The interaction of bacteria and metal surfaces

    International Nuclear Information System (INIS)

    Mansfeld, Florian

    2007-01-01

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential E corr became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V)-current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions

  2. The interaction of bacteria and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), The Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)

    2007-10-10

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential E{sub corr} became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V) - current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions. (author)

  3. [Methanotrophic bacteria of acid sphagnum bogs].

    Science.gov (United States)

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  4. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  5. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    Science.gov (United States)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  6. Interactions between Paramyxoviruses and Bacteria: Implications for Pathogenesis and Intervention

    NARCIS (Netherlands)

    D.T. Nguyen (Tien)

    2014-01-01

    markdownabstract__Abstract__ Globally, respiratory tract diseases caused by bacteria and viruses are an important burden of disease. Respiratory bacteria (Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus) can colonize the upper respiratory tract.

  7. Time related total lactic acid bacteria population diversity and ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... the diversity and dynamics of lactic acid bacteria (LAB) population in fresh ..... combining morphological, biochemical and molecular data are important for ..... acid bacteria from fermented maize (Kenkey) and their interactions.

  8. Oh What a Tangled Biofilm Web Bacteria Weave

    Science.gov (United States)

    ... Home Page Oh What a Tangled Biofilm Web Bacteria Weave By Elia Ben-Ari Posted May 1, ... a suitable surface, some water and nutrients, and bacteria will likely put down stakes and form biofilms. ...

  9. The Effect of Bacteria Penetration on Chalk Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Nielsen, Sidsel Marie

    number of B. licheniformis was detected on the effluent compared with P. putida. However, in the experiment with B. licheniformis mainly spores were detected in the effluent. The core permeability decreased rapidly during injection of bacteria and a starvation period of 12 days did not allow......Bacteria selective plugging is one of the mechanisms through which microorganisms can be applied for enhanced oil recovery. Bacteria can plug the water-bearing zones of a reservoir, thus altering the flow paths and improving sweep efficiency. It is known that the bacteria can penetrate deeply...... into reservoirs, however, a complete understanding of the penetration behavior of bacteria is lacking, especially in chalk formations where the pore throat sizes are almost comparable with the sizes of bacteria vegetative cells. This study investigates the penetration of bacteria into chalk. Two bacteria types...

  10. Developing new bacteria subroutines in the SWAT model

    Science.gov (United States)

    Fecal bacteria observations from four different sites in Korea and the US demonstrate seasonal variability, showing a significant relationship with temperature (Figure 1); fecal indicator bacteria (FIB) concentrations are relatively higher in summer and lower in winter , including Stillwater river (...

  11. Bacteria Associated with Fresh Tilapia Fish (Oreochromis niloticus ...

    African Journals Online (AJOL)

    acer

    Keywords: Bacteria, Tilapia fish and Sokoto central market. INTRODUCTION ... The bacteria are transmitted by fish that have made contact ... with which a product spoils is also related to the .... Base on the percentage frequency of occurance ,.

  12. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    Directory of Open Access Journals (Sweden)

    B Davari

    2010-12-01

    Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  13. Have sex or not? Lessons from bacteria.

    Science.gov (United States)

    Lodé, T

    2012-01-01

    Sex is one of the greatest puzzles in evolutionary biology. A true meiotic process occurs only in eukaryotes, while in bacteria, gene transcription is fragmentary, so asexual reproduction in this case really means clonal reproduction. Sex could stem from a signal that leads to increased reproductive output of all interacting individuals and could be understood as a secondary consequence of primitive metabolic reactions. Meiotic sex evolved in proto-eukaryotes to solve a problem that bacteria did not have, namely a large amount of DNA material, occurring in an archaic step of proto-cell formation and genetic exchanges. Rather than providing selective advantages through reproduction, sex could be thought of as a series of separate events which combines step-by-step some very weak benefits of recombination, meiosis, gametogenesis and syngamy. Copyright © 2012 S. Karger AG, Basel.

  14. Mucosal immunity to pathogenic intestinal bacteria.

    Science.gov (United States)

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  15. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R

    2007-01-01

    -term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence...... geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long...... that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability....

  16. Protein-Injection Machines in Bacteria.

    Science.gov (United States)

    Galán, Jorge E; Waksman, Gabriel

    2018-03-08

    Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Seeing Streptococcus pneumoniae, a Common Killer Bacteria

    DEFF Research Database (Denmark)

    Kjærgaard, Rikke Schmidt; Andersen, Ebbe Sloth

    2014-01-01

    Look around you. The diversity and complexity of life on earth is overwhelming and data continues to grow. In our desire to understand and explain everything scientifically from molecular evolution to supernovas we depend on visual representations. This paper investigates visual representations...... of the bacteria Streptococcus pneumoniae by use of ink, watercolours and computer graphics. We propose a novel artistic visual rendering of Streptococcus pneumoniae and ask what the value of these kind of representations are compared to traditional scientific data. We ask if drawings and computer......-assisted representations can add to our scientific knowledge about this dangerous bacteria. Is there still a role for the scientific illustrator in the scientific process and synthesis of scientific knowledge?...

  18. [Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria].

    Science.gov (United States)

    Boiandin, A N; Kalacheva, G S; Rodicheva, E K; Volova, T G

    2008-01-01

    The ability of marine luminescent bacteria to synthesize polyesters of hydroxycarboxylic acids (polyhydroxyalkanoates, PHA) as reserve macromolecules was studied. Twenty strains from the collection of the luminescent bacteria CCIBSO (WDSM839) of the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, assigned to different taxa (Photobacterium leiognathi, Ph. phosphoreum, Vibrio harveyi, and V. fischeri) were analyzed. The most productive strains were identified, and the conditions ensuring high polymer yields in batch culture (40-70% of the cell dry mass weight) were determined. The capacity of synthesizing two- and three-component polymers containing hydroxybutyric acid as the main monomer and hydroxyvaleric and hydroxyhexanoic acids was revealed in Ph. leiognathi and V. harveyi strains. The results allow luminescent microorganisms to be regarded as new producers of multicomponent polyhydroxyalkanoates.

  19. New Insight on the Response of Bacteria to Fluoride

    OpenAIRE

    Breaker, R.R.

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biolog...

  20. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    OpenAIRE

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-01-01

    This article belongs to the Special Issue Selected Papers from the 14th International Symposium on Marine Natural Products Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S...

  1. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria.

    OpenAIRE

    Eng, R H; Padberg, F T; Smith, S M; Tan, E N; Cherubin, C E

    1991-01-01

    Antimicrobial agents are most often tested against bacteria in the log phase of multiplication to produce the maximum bactericidal effect. In an infection, bacteria may multiply less optimally. We examined the effects of several classes of antimicrobial agents to determine their actions on gram-positive and gram-negative bacteria during nongrowing and slowly growing phases. Only ciprofloxacin and ofloxacin exhibited bactericidal activity against nongrowing gram-negative bacteria, and no antib...

  2. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    Science.gov (United States)

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  3. Cellulase Production by Bacteria: A Review

    OpenAIRE

    Sadhu Sangrila; Maiti Tushar Kanti

    2013-01-01

    Cellulose is an abundant natural biopolymer on earth and most dominating Agricultural waste. This cellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. It can be degraded by cellulase produced by cellulolytic bacteria. This enzyme has various industrial applications and now considered as major group of industrial enzyme. The review discusses application of cellulase, classification of cellulase, quantification...

  4. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  5. Chemotactic waves of bacteria at the mesoscale

    OpenAIRE

    Calvez, Vincent

    2016-01-01

    The existence of travelling waves for a model of concentration waves of bacteria is investigated. The model consists in a kinetic equation for the biased motion of cells following a run-and-tumble process, coupled with two reaction-diffusion equations for the chemical signals. Strong mathematical difficulties arise in comparison with the diffusive regime which was studied in a previous work. The cornerstone of the proof consists in establishing monotonicity properties of the spatial density o...

  6. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  7. Intracellular bacteria: the origin of dinoflagellate toxicity.

    Science.gov (United States)

    Silva, E S

    1990-01-01

    Dinoflagellate blooms of the same species have been registered either as toxic or nontoxic and, in the latter case, toxicity may be of different types. A hypothesis has been formulated according to which the bacteria having in some way taken part in the toxin formation are either inside the dinoflagellate cell or in the nutritive liquid. The presence of intracellular bacteria in those microorganisms has been studied mainly in material from cultures, a few from the sea, and several strains were isolated from different species. Experiments with crossed inoculations have shown that the bacterial strain from Gonyaulax tamarensis caused the cells of some other species to become toxic. From nontoxic clonal cultures of Prorocentrum balticum, Glenodinium foliaceum, and Gyrodinium instriatum, after inoculation of that bacterial strain, cultures were obtained whose cell extracts showed the same kind of toxicity as G. tamarensis. No toxic action could be found in the extracts of the bacterial cells form the assayed strains. The interference of intracellular bacteria in the metabolism of dinoflagellates must be the main cause of their toxicity.

  8. Acoustic manipulation of bacteria cells suspensions

    Science.gov (United States)

    GutiéRrez-Ramos, Salomé; Hoyos, Mauricio; Aider, Jean Luc; Ruiz, Carlos; Acoustofluidics Team Team; Soft; Bio Group Collaboration

    An acoustic contacless manipulation gives advantages in the exploration of the complex dynamics enviroment that active matter exhibits. Our works reports the control confinement and dispersion of Escherichia coliRP437-pZA3R-YFP suspensions (M9Glu-Ca) via acoustic levitation.The manipulation of the bacteria bath in a parallel plate resonator is achieved using the acoustic radiation force and the secondary radiation force. The primary radiation force generates levitation of the bacteria cells at the nodal plane of the ultrasonic standing wave generated inside the resonator. On the other side, secondary forces leads to the consolidation of stable aggregates. All the experiments were performed in the acoustic trap described, where we excite the emission plate with a continuous sinusoidal signal at a frequency in the order of MHz and a quartz slide as the reflector plate. In a typical experiment we observed that, before the input of the signal, the bacteria cells exhibit their typical run and tumble behavior and after the sound is turned on all of them displace towards the nodal plane, and instantaneously the aggregation begins in this region. CNRS French National Space Studies, CONACYT Mexico.

  9. Fecal indicator bacteria at Havana Bay

    International Nuclear Information System (INIS)

    Lopez Perez, Lisse; Gomez D'Angelo, Yamiris; Beltran Gonzalez, Jesus; Alvarez Valiente, Reinaldo

    2013-01-01

    Aims: Fecal indicator bacteria concentrations were evaluated in Havana Bay. Methods: Concentrations of traditional fecal indicator bacteria were calculated between April 2010 and February 2011, by MPN methods. Concentrations of thermo tolerant coliform (CTT), Escherichia coli, fecal streptococci (EF), intestinal enterococci (ENT) in seawater, and Clostridium perfringens in sediment surface, were determined. Results: CTT and E. coli levels were far above Cuban water quality standard for indirect contact with water, showing the negative influence of sewage and rivers on the bay. The EF and ENT were measured during sewage spills at the discharge site and they were suitable indicators of fecal contamination, but these indicators didn't show the same behavior in other selected sites. This result comes from its well-known inactivation by solar light in tropical zones and the presumable presence of humid acids in the waters of the bay. Conclusion: Fecal indicator bacteria and its statistical relationships reflect recent and chronic fecal contamination at the bay and near shores.

  10. Alkaline phosphatase activity of rumen bacteria.

    Science.gov (United States)

    Cheng, K J; Costerton, J W

    1977-11-01

    Of the 54 strains of rumen bacteria examined for alkaline phosphatase (APase) production, 9 of 33 gram-negative strains and none of 21 gram-positive strains produced the enzyme. The APase of the cells of the three strains of Bacteroides ruminicola that produced significant amounts of the enzyme was located in the periplasmic area of the cell envelope, whereas the enzyme was located in the strains of Selenomonas ruminantium and Succinivibrio dextrinosolvens was associated with the outer membrane. The localization of APase production in the cells of natural populations of rumen bacteria from hay-fed sheep was accomplished by reaction product deposition, and both the proportion of APase-producing bacteria and the location of the enzyme in the cell envelope of the producing cells could be determined. We suggest that this procedure is useful in detecting shifts in the bacterial population and the release of cell-bound APase that accompany feedlot bloat and other sequelae of dietary manipulation in ruminants.

  11. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D; Bastiaens, L; Carpels, M; Mergaey, M; Diels, L

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  12. Magnesium and manganese content of halophilic bacteria

    International Nuclear Information System (INIS)

    de Medicis, E.; Paquette, J.; Gauthier, J.J.; Shapcott, D.

    1986-01-01

    Magnesium and manganese contents were measured by atomic absorption spectrophotometry in bacteria of several halophilic levels, in Vibrio costicola, a moderately halophilic eubacterium growing in 1 M NaCl, Halobacterium volcanii, a halophilic archaebacterium growing in 2.5 NaCl, Halobacterium cutirubrum, an extremely halophilic archaebacterium growing in 4 M NaCl, and Escherichia coli, a nonhalophilic eubacterium growing in 0.17 M NaCl. Magnesium and manganese contents varied with the growth phase, being maximal at the early log phase. Magnesium and manganese molalities in cell water were shown to increase with the halophilic character of the logarithmically growing bacteria, from 30 mmol of Mg per kg of cell water and 0.37 mmol of Mn per kg of cell water for E. coli to 102 mmol of Mg per kg of cell water and 1.6 mmol of Mn per kg of cell water for H cutirubrum. The intracellular concentrations of manganese were determined independently by a radioactive tracer technique in V. costicola and H. volcanii. The values obtained by 54 Mn loading represented about 70% of the values obtained by atomic absorption. The increase of magnesium and manganese contents associated with the halophilic character of the bacteria suggests that manganese and magnesium play a role in haloadaptation

  13. Fish skin bacteria: Colonial and cellular hydrophobicity.

    Science.gov (United States)

    Sar, N; Rosenberg, E

    1987-05-01

    Bacteria were desorbed from the skin of healthy, fast-swimming fish by several procedures, including brief exposure to sonic oscillation and treatment with nontoxic surface active agents. The surface properties of these bacteria were studied by measuring their adhesion to hexadecane, as well as by a newly developed, simple method for studying the hydrophobicity of bacterial lawns. This method, referred to as the "Direction of Spreading" (DOS) method, consists of recording the direction to which a water drop spreads when introduced at the border between bacterial lawns and other surfaces. Of the 13 fish skin isolates examined, two strains were as hydrophobic as polystyrene by the DOS method. Suspended cells of one of these strains adhered strongly to hexadecane (84%), whereas cells of the other strain adhered poorly (13%). Another strain which was almost as hydrophobic as polystyrene by the DOS method did not adhere to hexadecane at all. Similarly, lawns of three other strains were more hydrophobic than glass by the DOS method, but cell suspensions prepared from these colonies showed little or no adhesion to hexadecane. The high colonial but relatively low cellular hydrophobicity could be due to a hydrophobic slime that is removed during the suspension and washing procedures. The possibility that specific bacteria assist in fish locomotion by changing the surface properties of the fish skin and by producing drag-reducing polymers is discussed.

  14. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA biosynthesis

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2017-09-01

    Full Text Available Polyhydroxyalkanoates (PHA have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.

  15. Contaminant bacteria in traditional-packed honey

    Directory of Open Access Journals (Sweden)

    Hening Tjaturina Pramesti

    2007-03-01

    Full Text Available Honey may be contaminated by microorganisms during its harvesting, processing, and packaging. Honey selected for clinical purposes must safe, sterile, and contain antimicrobial activity, so it must be evaluated using laboratory testing. The aim of this descriptive laboratory study was to isolate and identify the bacterial contaminant in the traditional-packed honey dealing with the use of honey for medical purposes. the colony forming units of honey sample cultured on blood agar were counted using Stuart bacterial colony counter. The suspected bacterial colonies were isolated and identified based on cultural morphology characteristics. The isolates of suspected bacterial colonies were stained according to Gram and Klein method and then were examined by the biochemical reaction. The results showed that there were two contaminant bacteria. Gram-positive cocci which were presumptively identified as coagulase-negative Staphylococci and gram-positive rods which were presumptively identified as Bacillus subtilis. In conclusion, the contaminant bacteria were regarded as low pathogen bacteria. The subtilin enzyme of B subtilis may cause an allergic reaction and coagulase-negative Staphylococci, Staphylococcus epidermidis is also an opportunist pathogen. Inevitably, for medical purposes, traditional-packed honey must be well filtered, water content above 18%, and standardized sterilization without loss of an antibacterial activity or change in properties.

  16. Excitons in intact cells of photosynthetic bacteria.

    Science.gov (United States)

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  17. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  18. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    NARCIS (Netherlands)

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and

  19. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    This study is aimed at isolating and characterizing new culturable feather degrading bacteria from soils of the University of Mauritius Farm. Bacteria that were isolated were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified ...

  20. Bacteria associated with cultures of psathyrella atroumbonata (Pleger)

    African Journals Online (AJOL)

    These bacteria include Bacillus licheniformis, Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas aeruginosa, Bacillus cereus and Staphylococcus aureus. The average bacteria count was 1.0 x 106 cfu/ml and these bacteria grew within pH range of 5.0 and 9.0. the optimum temperature range of growth lied ...

  1. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  2. Bacteria associated with contamination of ready-to-eat (RTE ...

    African Journals Online (AJOL)

    The bacteria associated with contamination of ready-to-eat (RTE) cooked rice in Lagos, Nigeria were studied using standard microbiological methods. The objective of this study was to investigate the distribution of pathogenic bacteria recovered from RTE cooked rice in Lagos, assess bacteria load in the contaminated RTE ...

  3. Bacteria-Targeting Nanoparticles for Managing Infections

    Science.gov (United States)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA

  4. Isolation and Presumptive Identification of Adherent Epithelial Bacteria (“Epimural” Bacteria) from the Ovine Rumen Wall

    OpenAIRE

    Mead, Lorna J.; Jones, G. A.

    1981-01-01

    One hundred sixty-one strains of adherent bacteria were isolated under anaerobic conditions from four sites on the rumen epithelial surface of sheep fed hay or a hay-grain ration. Before isolation of bacteria, rumen tissue was washed six times in an anaerobic dilution solution, and viable bacteria suspended in the washings were counted. Calculation indicated that unattached bacteria would have been removed from the tissue by this procedure, but a slow and progressive release of attached bacte...

  5. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    Malkin, A.J.

    2010-01-01

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  6. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    Science.gov (United States)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  7. Microbial synthesis of iron-based nanomaterials—A review

    Indian Academy of Sciences (India)

    Nanoparticles; biosynthesis; microbes; iron reducing bacteria; sulphate reducing bacteria; magnetotactic bacteria. 1. Introduction. Nanoparticles are considered to be the building blocks for nanotechnology and are referred to as the particles having one or more dimensions of the order of 100 nm or less. (Huber 2005).

  8. Screening and biological characteristics of fufenozide degrading bacteria

    Science.gov (United States)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  9. Probiotic bacteria: selective enumeration and survival in dairy foods.

    Science.gov (United States)

    Shah, N P

    2000-04-01

    A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.

  10. Introduce of Viable But Nonculturable Bacteria

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshahian

    2008-03-01

    Full Text Available Viable-But-Nonculturable-State (VBNC is the condition in which bacteria fail to grow on their routine bacteriological media where they would normally grow and develop into colonies, but are still alive and capable of renewed metabolic activity. VBNC state is useful for evaluating public health and for ascertaining the sterility of drinking water, pharmaceuticals, and foodstuff. A number of bacteria, mostly pathogenic to humans, have been proved to enter into this state in response to natural stresses such as starvation, incubation out of optimum growth temperature, increased osmotic pressure, etc. Once in the VBNC state, they undergo various physiological, structural, and genetic alterations. These alterations result in reduced cell size, conversion from bacilli to coccid, thickened cell walls, and peptidoglycan gaining many cross links. Metabolic changes also occur that include reductions in growth, nutrient transport, and respiratory rate; biosynthesis of new protein, and ATP remaining at a constant level. It has been shown that in the VBNC state, some pathogens conserve their virulence properties. Gene expression continues in the VBNC cell. Nucleic acids remain intact in the early VBNC phase but they gradually undergo degradation with prolonged VBNC. Cytological methods such as direct viable count and reduction of tetrazolium salts, and molecular methods such as reverse transcription polymerase chain reaction and green fluorescent protein have been used for the study of VBNC. Resuscitation from VBNC state starts when the inducing factor(s is/are lifted. Factors that help the resuscitation of VBNC bacteria include addition of certain nutrients and chemicals, introduction of a few culturable cells into the VBNC cell population, and passage through the animal host. As virulence properties are sustained during the VBNC phase, special care must be paid when evaluating sterility of drinking water.

  11. Catecholate siderophores protect bacteria from pyochelin toxicity.

    Directory of Open Access Journals (Sweden)

    Conrado Adler

    Full Text Available Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of

  12. Repair by genetic recombination in bacteria: overview

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1975-01-01

    DNA molecules that have been damaged in both strands at the same level are not subject to repair by excision but instead can be repaired through recombination with homologous molecules. Examples of two-strand damage include postreplication gaps opposite pyrimidine dimers, two-strand breaks produced by x-rays, and chemically induced interstrand cross-links. In ultraviolet-irradiated bacteria, and newly synthesized DNA is of length equal to the interdimer spacing. With continued incubation, this low-molecular-weight DNA is joined into high-molecular-weight chains (postreplication repair), a process associated with sister exchanges in bacteria. Recombination is initiated by pyrimidine dimers opposite postreplication gaps and by interstrand cross-links that have been cut by excision enzymes. The free ends at the resulting gaps presumably initiate the exchanges. Postreplication repair in Escherichia coli occurs in recB - and recC - but is greatly slowed in recF - mutants. RecB and recC are the structural genes for exonuclease V, which digests two-stranded DNA by releasing oligonucleotides first from one strand and then from the other. The postreplication sister exchanges in ultraviolet-irradiated bacteria result in the distribution of pyrimidine dimers between parental and daughter strands, indicating that long exchanges involving both strands of each duplex occur. The R1 restriction endonuclease from E. coli has been used to cut the DNA of a bacterial drug-resistance transfer factor with one nuclease-sensitive site, and also DNA from the frog Xenopus enriched for ribosomal 18S and 28S genes. The fragments were annealed with the cut plasmid DNA and ligated, producing a new larger plasmid carrying the eukaryotic rDNA and able to infect and replicate in E. coli

  13. Close Encounters of Lymphoid Cells and Bacteria

    Science.gov (United States)

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  14. Electroactive biofilms of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Cordas, Cristina M.; Guerra, L. Tiago; Xavier, Catarina; Moura, Jose J.G.

    2008-01-01

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m -2 that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces

  15. Isolation and biochemical characterizations of the bacteria ...

    African Journals Online (AJOL)

    These isolates yielded off white convex colonies on potato dextrose agar (PDA) media at 29°C with 1.7 to 1.9 mm diameter and were yellow on yeast extract dextrose chalk agar (YDC) media at 27°C with 1.8 to 2.0 mm diameter. The bacteria were rod shape measuring 0.5 to 0.6 × 1.4 to 1.6 μm on PDA and 0.6 to 0.7 × 1.5 to ...

  16. Bioluminescent bacteria: lux genes as environmental biosensors

    Directory of Open Access Journals (Sweden)

    Nunes-Halldorson Vânia da Silva

    2003-01-01

    Full Text Available Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.

  17. Polymorphic transformation of helical flagella of bacteria

    Science.gov (United States)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  18. Ethylene-producing bacteria that ripen fruit.

    Science.gov (United States)

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  19. Are Bacteria more dangerous in space?

    International Nuclear Information System (INIS)

    Leys, N.; Baatout, S.

    2010-01-01

    With a mission to Mars and a permanent base on the moon as the ultimate dream, space travel is continually pushing back the frontiers. But long space missions present great challenges for science, for example in the field of microbiology. Together with the European Space Agency (ESA), SCK-CEN is studying the effects of space travel conditions on the behaviour of bacteria. In 2009 the SCK-CEN experts completed four innovative research projects at the cutting edge of microbiology, radiation sciences and space travel.

  20. Electroactive biofilms of sulphate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cordas, Cristina M.; Guerra, L. Tiago; Xavier, Catarina [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Moura, Jose J.G. [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)], E-mail: jose.moura@dq.fct.unl.pt

    2008-12-01

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m{sup -2} that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces.

  1. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase‐sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof‐of‐concept of the responsive...

  2. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  3. Bacteria in atmospheric waters: Detection, characteristics and implications

    Science.gov (United States)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  4. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  5. Metabolism of polychlorinated biphenyls by marine bacteria

    International Nuclear Information System (INIS)

    Carey, A.E.; Harvey, G.R.

    1978-01-01

    There have been no reports of laboratory studies of PCB metabolism by marine organisms. A few workers have analyzed marine animals for products of PCB metabolism. A search for hydroxylated PCBs in marine fish proved inconclusive. Phenolic metabolites of PCBs have been identified in seals and guillemot. PCBs that had been hydroxylated and excreted by marine organisms would most likely be found in the sediments, so in our laboratory we conducted a search for these compounds in marine sediments. Two kilograms of organic-rich surface sediment from Buzzards Bay, Massachusetts, were extracted. The phenolic fraction was isolated and analyzed by gas chromatography-mass spectrometry (GC-MS). Neither wide mass scans nor selected mass searches produced any evidence of hydroxylated PCB derivatives. It was felt that if any marine organisms were capable of metabolism of PCBs, some marine bacteria should have that capability. Thus a series of laboratory experiments was conducted to test this possibility. Reported here is the finding of PCB metabolism by marine bacteria in batch culture

  6. Long-term preservation of anammox bacteria.

    Science.gov (United States)

    Rothrock, Michael J; Vanotti, Matias B; Szögi, Ariel A; Gonzalez, Maria Cruz Garcia; Fujii, Takao

    2011-10-01

    Deposit of useful microorganisms in culture collections requires long-term preservation and successful reactivation techniques. The goal of this study was to develop a simple preservation protocol for the long-term storage and reactivation of the anammox biomass. To achieve this, anammox biomass was frozen or lyophilized at two different freezing temperatures (-60°C and in liquid nitrogen (-200°C)) in skim milk media (with and without glycerol), and the reactivation of anammox activity was monitored after a 4-month storage period. Of the different preservation treatments tested, only anammox biomass preserved via freezing in liquid nitrogen followed by lyophilization in skim milk media without glycerol achieved stoichiometric ratios for the anammox reaction similar to the biomass in both the parent bioreactor and in the freshly harvested control treatment. A freezing temperature of -60°C alone, or in conjunction with lyophilization, resulted in the partial recovery of the anammox bacteria, with an equal mixture of anammox and nitrifying bacteria in the reactivated biomass. To our knowledge, this is the first report of the successful reactivation of anammox biomass preserved via sub-zero freezing and/or lyophilization. The simple preservation protocol developed from this study could be beneficial to accelerate the integration of anammox-based processes into current treatment systems through a highly efficient starting anammox biomass.

  7. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health.

    Science.gov (United States)

    Landete, J M; Arqués, J; Medina, M; Gaya, P; de Las Rivas, B; Muñoz, R

    2016-08-17

    Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.

  8. Inoculation of sugarcane with diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Nivaldo Schultz

    2014-04-01

    Full Text Available The sugarcane industry, a strategic crop in Brazil, requires technological improvements in production efficiency to increase the crop energy balance. Among the various currently studied alternatives, inoculation with diazotrophic bacteria proved to be a technology with great potential. In this context, the efficiency of a mixture of bacterial inoculant was evaluated with regard to the agronomic performance and N nutrition of sugarcane. The experiment was carried out on an experimental field of Embrapa Agrobiologia, in Seropédica, Rio de Janeiro, using a randomized block, 2 × 3 factorial design (two varieties and three treatments with four replications, totaling 24 plots. The varieties RB867515 and RB72454 were tested in treatments consisting of: inoculation with diazotrophic bacteria, N-fertilized control with 120 kg ha-1 N and absolute control (no inoculation and no N fertilizer. The inoculum was composed of five strains of five diazotrophic species. The yield, dry matter accumulation, total N in the shoot dry matter and the contribution of N by biological fixation were evaluated, using the natural 15N abundance in non-inoculated sugarcane as reference. The bacterial inoculant increased the stalk yield of variety RB72454 similarly to fertilization with 120 kg ha-1 N in the harvests of plant-cane and first ratoon crops, however the contribution of biological N fixation was unchanged by inoculation, indicating that the benefits of the inoculant in sugarcane may have resulted from plant growth promotion.

  9. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  10. Starvation-survival of subsurface bacteria

    International Nuclear Information System (INIS)

    Magill, N.G.

    1988-01-01

    The ability of four subsurface isolates to survive starvation was examined and the results were compared to survival curves obtained for Escherichia coli B and Serratia marcescens. To examine the starvation-survival phenomenon further, several experimental parameters including nutritional history, initial cell density, growth phase, temperature of growth and starvation, and aeration. Nutritional history, initial cell density, and growth phases of the cells had some effect on the ability of these bacteria to survive whereas temperature and limited aeration had no effect under the conditions tested. No conditions were found where E. coli B or Serratia marcescens died rapidly or where less than 10% of the original cell number of viable cells remained. Because the apparent survival of these bacteria may be due to cryptic growth, cross-feeding experiments with 14 C-labeled cells and unlabeled cells were carried out with E. coli B and Pseudomonas Lula V. Leaked extracellular 14 C-compounds were not used for growth or maintenance energy, and were not taken up by either bacterium. Cryptic growth did not occur; the cells were truly starving under the experimental conditions used

  11. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  12. Sulphur bacteria mediated formation of Palaeoproterozoic phosphorites

    Science.gov (United States)

    Joosu, Lauri; Lepland, Aivo; Kirsimäe, Kalle

    2014-05-01

    Modern phosphorite formation is typically associated with high productivity in upwelling areas where apatite (Ca-phosphate) precipitation is mediated by sulphur oxidising bacteria [1]. They inhabit the oxic/anoxic interface within the upper few centimetres of sediment column, accumulating phosphate in their cells under oxic conditions and releasing it rapidly when conditions become anoxic. Sulphur bacteria are known to live in close association with a consortium of anaerobic methane oxidising archaea and syntrophic sulphate-reducing bacteria. Paleoproterozoic, c. 2.0 Ga Zaonega Formation in Karelia, Russia contains several P-rich intervals in the upper part of 1500 m thick succession of organic-rich sedimentary rocks interlayered with mafic tuffs and lavas. Apatite in these P-rich intervals forms impure laminae, lenses and round-oval nodules which diameters typically range from 300 to 1000 μm. Individual apatite particles in P-rich laminae and nodules commonly occur as cylinders that are 1-8 μm long and have diameters of 0.5-4 μm. Cross-sections of best preserved cylindrical apatite particles reveal a thin outer rim whereas the internal parts consist of small anhedral elongated crystallites, intergrown with carbonaceous material. During recrystallization the outer rim thickens towards interior and cylinders may attain hexagonal crystal habit, but their size and shape remains largely unchanged [2]. The sizes of Zaonega nodules are similar to giant sulphide-oxidising bacteria known from modern and ancient settings [3, 4]. Individual apatite cylinders and aggregates have shapes and sizes similar to the methanotrophic archaea that inhabit microbial mats in modern seep/vent areas where they operate in close associations with sulphur-oxidising microbial communities [5]. Seep/vent influence during the Zaonega phosphogenesis is indicated by variable, though positive Eu anomaly, expected in magmatically active sedimentary environment experiencing several lava flows

  13. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  14. [Effects of transgenic Bt + CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2014-03-04

    The effect of transgenic cotton on the rhizosphere bacteria can be important to the risk assessment for the genetically modified crops. We studied the rhizosphere microbial community with cultivating genetically modified cotton. The effects of transgenic Bt + CpTI Cotton (SGK321) and its receptor cotton (SY321) on rhizosphere total bacteria and ammonia oxidizing bacteria population size were studied by using droplet digital PCR. We collected rhizosphere soil before cotton planting and along with the cotton growth stage (squaring stage, flowering stage, belling stage and boll opening stage). There was no significant change on the total bacterial population between the transgenic cotton and the receptor cotton along with the growth stage. However, the abundance of ammonia oxidizing bacteria (AOB) in both type of cottons showed significant difference between different growth stages, and the variation tendency was different. In squaring stage, the numbers of AOB in rhizosphere of SY321 and SGK321 increased 4 and 2 times, respectively. In flowering stage, AOB number in rhizosphere of SY321 significantly decreased to be 5.96 x 10(5) copies/g dry soil, however, that of SGK321 increased to be 1.25 x 10(6) copies/g dry soil. In belling stage, AOB number of SY321 greatly increased to be 1.49 x 10(6) copies/g dry soil, but no significant change was observed for AOB number of SGK321. In boll opening stage, both AOB number of SY321 and SGK321 clearly decreased and they were significantly different from each other. Compared to the non-genetically modified cotton, the change in abundance of ammonia oxidizing bacteria was slightly smooth in the transgenic cotton. Not only the cotton growth stage but also the cotton type caused this difference. The transgenic cotton can slow down the speed of ammonia transformation through impacting the number of AOB, which is advantageous for plant growth.

  15. Reactivity of the Bacteria-Water Interface: Linking Nutrient Availability to Bacteria-Metal Interactions

    Science.gov (United States)

    Fowle, D. A.; Daughney, C. J.; Riley, J. L.

    2002-12-01

    Identifying and quantifying the controls on metal mobilities in geologic systems is critical in order to understand processes such as global element cycling, metal transport in near-surface water-rock systems, sedimentary diagenesis, and mineral formation. Bacteria are ubiquitous in near-surface water-rock systems, and numerous laboratory and field studies have demonstrated that bacteria can facilitate the formation and dissolution of minerals, and enhance or inhibit contaminant transport. However, despite the growing evidence that bacteria play a key role in many geologic processes in low temperature systems, our understanding of the influence of the local nutrient dynamics of the system of interest on bacteria-metal interactions is limited. Here we present data demonstrating the effectiveness of coupling laboratory experiments with geochemical modeling to isolate the effect of nutrient availability on bacterially mediated proton and metal adsorption reactions. Experimental studies of metal-bacteria interactions were conducted in batch reactors as a function of pH, and solid-solute interactions after growth in a variety of defined and undefined media. Media nutrient composition (C,N,P) was quantified before and after harvesting the cells. Surface complexation models (SCM) for the adsorption reactions were developed by combining sorption data with the results of acid-base titrations, and in some cases zeta potential titrations of the bacterial surface. Our results indicate a clear change in both buffering potential and metal binding capacity of the cell walls of Bacillus subtilis as a function of initial media conditions. Combining current studies with our past studies on the effects of growth phase and others work on temperature dependence on metal adsorption we hope to develop a holistic surface complexation model for quantifying bacterial effects on metal mass transfer in many geologic systems.

  16. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability

    Czech Academy of Sciences Publication Activity Database

    Kořený, Luděk; Sobotka, Roman; Kovářová, Julie; Gnipová, Anna; Flegontov, Pavel; Horváth, A.; Oborník, Miroslav; Ayala, F. J.; Lukeš, Julius

    2012-01-01

    Roč. 109, č. 10 (2012), s. 3808-3813 ISSN 0027-8424 R&D Projects: GA ČR GA204/09/1667; GA ČR GA206/08/1423; GA ČR(CZ) GAP305/11/2179 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : cytochromes * respiration * sterols * protist Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.737, year: 2012 http://www.pnas.org/content/109/10/3808.full.pdf+html

  17. Reducing gas content of coal deposits by means of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Lipowa, A A; Kozlowski, B

    1981-07-01

    This paper discusses the results of experiments carried out in Poland under laboratory conditions on efficiency of methane control using bacteria from Methanosarcina and Methanomonas groups. Malashenko and Whittenburry culture mediums were used. Bacteria growth in an atmosphere of air and methane (48.2%, 8.6% and 5.21%) was observed. Temperature ranged from 19 to 20 C. Investigations show that the bacteria are characterized by high oxidation activity. Depending on methane concentration in the air the bacteria consume from 75% to 100% of methane during biosynthesis. The bacteria reduce methane and oxygen content and increase carbon dioxide content in the air. Using bacteria methane concentration in the air was reduced from 48.2% to 12.3%, from 8.6% to 0.0% and from 5.21% to 0.01%. (7 refs.) (In Polish)

  18. Influence of irradiation of bacteria on their thermoresistance

    International Nuclear Information System (INIS)

    Szulc, M.; Stefaniakowa, A.; Tropilo, J.; Stanczak, B.; Peconek, J.; Mierzewska, H.; Bielecka, J.

    1979-01-01

    The influence of x-radiation on thermoresistance of bacteria was determined. The studies were carried out on: E. coli, Pr. vulgaris, S. typhimurium, Staph. aureus and Str. faecalis. The bacteria were irradiated in PBS (physiological buffer solution) and in broth (containing about 1% of protein) with x-rays at radium absorbed doses of 100, 1000, 5000 and 10 000, which was followed immediately by heating at temperatures causing death of part of the bacteria. The results obtained indicate that irradiation of bacteria with small x-ray doses distinctly decreases their thermoresistance. Synergetic action of irradiation and heating of bacteria was observed, increasing with increased irradiation dose. The greatest changes of thermoresistance occurred with Pr. vulgaris, the smallest with S. typhimurium. Thermoresistance of bacteria decreased more strongly on their irradiation in protein-free medium (PBS). (author)

  19. Deployable micro-traps to sequester motile bacteria

    Science.gov (United States)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  20. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  1. Transmission of Nephridial Bacteria of the Earthworm Eisenia fetida

    OpenAIRE

    Davidson, Seana K.; Stahl, David A.

    2006-01-01

    The lumbricid earthworms (annelid family Lumbricidae) harbor gram-negative bacteria in their excretory organs, the nephridia. Comparative 16S rRNA gene sequencing of bacteria associated with the nephridia of several earthworm species has shown that each species of worm harbors a distinct bacterial species and that the bacteria from different species form a monophyletic cluster within the genus Acidovorax, suggesting that there is a specific association resulting from radiation from a common b...

  2. Heme and menaquinone induced electron transport in lactic acid bacteria

    OpenAIRE

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacill...

  3. Biodegradation of endosulfan by mixed bacteria culture strains of ...

    African Journals Online (AJOL)

    Biodegradation of endosulfan by mixed bacteria culture strains of Pseudomonas aeruginosa and Staphylococcus aureus. Nsidibeabasi Calvin Nwokem, Calvin Onyedika Nwokem, Casmir Emmanuel Gimba, Beatrice Nkiruka Iwuala ...

  4. Effect of radiation on activity of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Agaev, N.M.; Smorodin, A.E.; Gusejnov, M.M.

    1985-01-01

    The effect of γ-radiation on activity of sulphate reducing bacteria has been studied. Concentration of biogenic hydrogen, generated in the medium, is the main criterion, characterizing corrosion activity of the bacteria studied. The developed method of suppression of active development of sulfate reducing bacteria considerably reduces, and at lethal doses of γ-radiation eliminates altogether the bacteria activity and formation of the main corrosion agent-hydrogen sulphide-in the medium and that, in its turn, liquidates hydrogen sulphide corrosion

  5. Characterization of Bacteria Associated with Pinewood Nematode Bursaphelenchus xylophilus

    Science.gov (United States)

    Vicente, Claudia S. L.; Nascimento, Francisco; Espada, Margarida; Barbosa, Pedro; Mota, Manuel; Glick, Bernard R.; Oliveira, Solange

    2012-01-01

    Pine wilt disease (PWD) is a complex disease integrating three major agents: the pathogenic agent, the pinewood nematode Bursaphelenchus xylophilus; the insect-vector Monochamus spp.; and the host pine tree, Pinus sp. Since the early 80's, the notion that another pathogenic agent, namely bacteria, may play a role in PWD has been gaining traction, however the role of bacteria in PWD is still unknown. The present work supports the possibility that some B. xylophilus-associated bacteria may play a significant role in the development of this disease. This is inferred as a consequence of: (i) the phenotypic characterization of a collection of 35 isolates of B. xylophilus-associated bacteria, in different tests broadly used to test plant pathogenic and plant growth promoting bacteria, and (ii) greenhouse experiments that infer the pathogenicity of these bacteria in maritime pine, Pinus pinaster. The results illustrate the presence of a heterogeneous microbial community associated with B. xylophilus and the traits exhibited by at least, some of these bacteria, appear to be related to PWD symptoms. The inoculation of four specific B. xylophilus-associated bacteria isolates in P. pinaster seedlings resulted in the development of some PWD symptoms suggesting that these bacteria likely play an active role with B. xylophilus in PWD. PMID:23091599

  6. Characterization of carbofuran-degrading bacteria isolated from ...

    African Journals Online (AJOL)

    Workstation

    Key words: Pesticides, carbofuran, methomyl, biodegradation, bacteria. INTRODUCTION .... polymerase chain reaction (PCR) amplification and partial sequence analysis of ..... Beutel KK (1986). Chlorinated hydrocarbon, In W. Gerhartz (ed.),.

  7. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  8. Physical mode of bacteria and virus coevolution

    Science.gov (United States)

    Han, Pu; Niestemski, Liang; Deem, Michael

    2013-03-01

    Single-cell hosts such as bacteria or archaea possess an adaptive, heritable immune system that protects them from viral invasion. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences from viruses or plasmids. The sequences form what are called ``spacers'' in the CRISPR. Spacers in the CRISPR loci provide a record of the host and predator coevolution history. We develop a physical model to study the dynamics of this coevolution due to immune pressure. Hosts and viruses reproduce, die, and evolve due to viral infection pressure, host immune pressure, and mutation. We will discuss the differing effects of point mutation and recombination on CRISPR evolution. We will also discuss the effect of different spacer deletion mechanisms. We will describe population structure of hosts and viruses, how spacer diversity depends on position within CRISPR, and match of the CRISPR spacers to the virus population.

  9. Streptomyces bacteria as potential probiotics in aquaculture

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2016-02-01

    Full Text Available In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  10. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  11. REGEN: Ancestral Genome Reconstruction for Bacteria

    Directory of Open Access Journals (Sweden)

    João C. Setubal

    2012-07-01

    Full Text Available Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  12. Synthesis of Metal Nanoparticles by Bacteria

    Directory of Open Access Journals (Sweden)

    Fikriye Alev Akçay

    2018-04-01

    Full Text Available Metal particles reduced to nano size by nanotechnological methods are confronted in many different fields such as biomedical and physicochemical, pharmaceutical, electric-electronic, automotive and food industries. Nanoparticles can be produced using chemical, physical and biological methods, of which chemical processes are in common use. However, physical and chemical methods are not environmentally friendly and economical because they require the use of high temperature, high pressure and toxic chemicals. For this reason, interest in the production of metal nanoparticles by biological methods, also called green technology, an environmentally friendly and sustainable approach, has increased in recent years. With some plant extracts and intracellular and extracellular secretions of microorganisms, some reduction reactions take place and metal nanoparticles are produced. Bacteria have been actively involved in nanotechnology in recent years due to their diversity in nature, their ease of isolation, and ease of nanoparticle synthesis. In this article, production and application of metal nanoparticles by using bacterial methods have been reviewed.

  13. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  14. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  15. REGEN: Ancestral Genome Reconstruction for Bacteria.

    Science.gov (United States)

    Yang, Kuan; Heath, Lenwood S; Setubal, João C

    2012-07-18

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  16. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Zhang, Liwen; Petersen, Elijah J.; Habteselassie, Mussie Y.; Mao, Liang; Huang, Qingguo

    2013-01-01

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14 C-labeled MWCNTs into 14 CO 2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14 C-labeled multiwall carbon nanotubes can be degraded to 14 CO 2 and other byproducts by a bacteria community under natural conditions

  17. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  18. Phosphate Solubilizing Bacteria Adaptive to Vinasse

    Directory of Open Access Journals (Sweden)

    Kahar Muzakhar

    2015-06-01

    Full Text Available Microorganisms identified as phosphate solubilizing bacteria (PSB adaptive to vinasse were successfully screened from sugarcane soil from an agriculatural estate in Jatiroto. By conducting a screening on Pikovskaya’s agar medium (PAM, we found that five different isolates were detected as PSB (pvk-5a, pvk-5b, pvk-6b, pvk-7a, and pvk-8a. Of the five isolates only three could be grown and were found to be adaptive to vinasse based medium without any nutrients added (pvk-5a, pvk-5b and pvk-7a. The three isolates were characterized as coccus and Gram negative with no endospores detected. We suggest that these three isolates can be used as biofertilizer agent to support organic farming.

  19. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    Mukherjee, S.; Barot, M.; Levine, A.D.

    1996-01-01

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 C

  20. Diversity of rumen bacteria in canadian cervids.

    Directory of Open Access Journals (Sweden)

    Robert J Gruninger

    Full Text Available Interest in the bacteria responsible for the breakdown of lignocellulosic feedstuffs within the rumen has increased due to their potential utility in industrial applications. To date, most studies have focused on bacteria from domesticated ruminants. We have expanded the knowledge of the microbial ecology of ruminants by examining the bacterial populations found in the rumen of non-domesticated ruminants found in Canada. Next-generation sequencing of 16S rDNA was employed to characterize the liquid and solid-associated bacterial communities in the rumen of elk (Cervus canadensis, and white tailed deer (Odocoileus virginianus. Despite variability in the microbial populations between animals, principle component and weighted UniFrac analysis indicated that bacterial communities in the rumen of elk and white tail deer are distinct. Populations clustered according to individual host animal and not the association with liquid or solid phase of the rumen contents. In all instances, Bacteroidetes and Firmicutes were the dominant bacterial phyla, although the relative abundance of these differed among ruminant species and between phases of rumen digesta, respectively. In the elk samples Bacteroidetes were more predominant in the liquid phase whereas Firmicutes was the most prevalent phyla in the solid digesta (P = 1×10(-5. There were also statistically significant differences in the abundance of OTUs classified as Fibrobacteres (P = 5×10(-3 and Spirochaetes (P = 3×10(-4 in the solid digesta of the elk samples. We identified a number of OTUs that were classified as phylotypes not previously observed in the rumen environment. Our results suggest that although the bacterial diversity in wild North American ruminants shows overall similarities to domesticated ruminants, we observed a number of OTUs not previously described. Previous studies primarily focusing on domesticated ruminants do not fully represent the microbial diversity of the

  1. Stress Physiology of Lactic Acid Bacteria

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  2. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    Science.gov (United States)

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd

  3. Cadmium resistance of endophytic bacteria and rizosféricas bacteria isolated from Oriza sativa in Colombia

    Directory of Open Access Journals (Sweden)

    Nataly Ayubb T

    2017-12-01

    Full Text Available The present study had as objective to evaluate in vitro the resistance of endophytic bacteria and rizospheric bacteria to different concentrations of Cadmium.This bacteria were isolated fron different tissues of commercial rice varieties and from bacteria isolated from the rhizosphere in rice plantations of the Nechí (Antioquía and Achí (Bolivar.  Plant growth promotion was evaluated in vitro by nitrogen fixation, phosphate solubilization and siderophores production of endophytic bacteria. Of each tissue isolated from rice plants was carried out isolation in culture medium for endophytic bacteria, and the soil samples were serially diluted in peptone water. Each sample was determined the population density by counting in CFU / g of tissue and morphotypes were separated by shape, color, size and appearance in culture media. Significant differences were observed for density population of bacteria with respect to tissue, with higher values in root (4x1011 g/root, followed of the stem (3x1010g/etem, leaf (5x109 g/ leaf, flag leaf (3x109 g/ flag leaf and with less density in panicle (4x108 g/panicle. The results of the identification with kit API were confirmed the presence of endophytic bacteria Burkholderia cepaceae and rizospheric bacteria Pseudomona fluorescens With the ability to tolerate different concentrations of Cd, fix nitrogen, solubilize phosphates and produce siderophores.

  4. Pathogenic Assay of Probiotic Bacteria Producing Proteolytic Enzymes as Bioremediation Bacteria Against Vannamei Shrimp Larvae (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Wilis Ari Setyati

    2017-06-01

    Full Text Available Application of bacteria in bioremediation of shrimp culture ponds is one of the methods used to clean internal pollutants. This study aimed to evaluate the pathogenicity of extracellular proteolytic enzyme produced by the probiotic bacteria as bioremediation bacteria on vannamei shrimp larvae culture. There were five probiotic bacteria, which were successfully isolated from the sediments served as substrate in mangrove area. The isolated bacteria were coded in number as 13, 19, 30, 33, and 36. Pathogenic bacteria Vibrio harveyi was used as positive control. Pathogenic assay was carried out in two different bacterial concentrations, i.e. 10⁸ and 10⁶ cells.mL-1. The results showed that the lowest survival rate (SR of shrimp larvae in positive control V. harveyi was 53 and 65%. Whereas isolates with the highest SR value (100% were obtained from bacteria coded as 13 and 30. Isolates no. 19, 33 and 36 had SR of more than 90%. Total plate count (TPC data showed that the bacteria increased significantly at the end of the study with an average increase value of 24%. The smallest TPC value was shown by bacterial isolate no. 19, while the largest was obtained from the isolate no. 13. These results suggest that all probiotic bacteria were not pathogenic to the vannamei shrimp larvae.   Keywords: aquaculture, shrimp, bioremediation, pathogenesis, vibrio.

  5. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  6. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  7. Bacteria, some permanent tenants Space Station; Bacteria, unos inquilinos permanentes de la estacion espacial

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, B.

    2015-07-01

    Vacuum cleaners to operate the vacuum or rags with ethanol they are the products of cleaning of the astronauts. Is there tight spaces fully sterilized? It seems not, even in the Space Station International (ISS). When it comes to bacteria, they are able to travel more than 400 kilometers housed in costumes, bodies and interior of the astronauts themselves and settle in a enclosed space where-unlike in a {sup c}leanroom 'terrestre- the air is not recycled. A NASA study has found an abundance of bacteria 'opportunists' which, although harmless on Earth, they might derivasen cause infections in inflammations or skin irritations. Not forgetting those fungi that could damage or affect the infrastructure equipment space. (Author)

  8. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  9. BioNLP Shared Task--The Bacteria Track.

    Science.gov (United States)

    Bossy, Robert; Jourde, Julien; Manine, Alain-Pierre; Veber, Philippe; Alphonse, Erick; van de Guchte, Maarten; Bessières, Philippe; Nédellec, Claire

    2012-06-26

    We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.

  10. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues

    Directory of Open Access Journals (Sweden)

    Lúcio de Souza Gonçalves

    2014-01-01

    Full Text Available Aim: To detect for the presence of sulphate-reducing bacteria (SRB and evaluate the possible association between SRB and cultivable facultative bacterial of oral sites with different periodontal conditions. Methods: The study was carried out on 9 samples from different oral sites in 8 patients (two samples were collected from the same patient. Material was collected using modified Postgate E culture medium, indicated for the growth and isolation of SRB. In addition, a reducing solution for anaerobic bacteria was used as a transport solution for facultative bacteria and identified by polymerase chain reaction amplification (PCR and sequencing of the 16S rRNA gene. Results: SRB was found in 3 patient samples: the first in a root fragment, the second in a root fragment and a healthy tooth with vertical bone loss and a mobility degree of 3; and the third in a healthy tooth extracted for orthodontic treatment. In the final patient, the cultivable facultative species Lactobacillus casei was identified. Other facultative bacterial species were identified in patient 5 (Kurthia Gibsonii and patient 7 (Pseudomonas aeruginosa. Conclusions: The detection of SRB in different dental tissues with distinct periodontal features demonstrated that new studies need to be developed in order to determine the true role of SRB in the oral microbiota. In addition, it was possible to verify the presence of Lactobacillus casei together with SRB in one sample.

  12. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  14. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...... (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus...... a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic...

  15. Biochanin A improves fiber fermentation by cellulolytic bacteria

    Science.gov (United States)

    The objective was to determine the effect of the isoflavone biochanin A (BCA) on rumen cellulolytic bacteria and consequent fermentative activity. When bovine microbial rumen cell suspensions (n = 3) were incubated (24 h, 39 °C) with ground hay, cellulolytic bacteria proliferated, short chain fatty...

  16. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  17. Fecal bacteria source characterization and sensitivity analysis of SWAT 2005

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) version 2005 includes a microbial sub-model to simulate fecal bacteria transport at the watershed scale. The objectives of this study were to demonstrate methods to characterize fecal coliform bacteria (FCB) source loads and to assess the model sensitivity t...

  18. Lactic Acid Bacteria : embarking on 30 more years of research

    NARCIS (Netherlands)

    Kok, Jan; Johansen, Eric; Kleerebezem, Michiel; Teusink, Bas

    2014-01-01

    The 11th International Symposium on Lactic Acid Bacteria Lactic Acid Bacteria play important roles in the pro- duction of food and feed and are increasingly used as health-promoting probiotics. The incessant scientific interest in these microorganisms by academic research groups as well as by

  19. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims...

  20. Population dynamics of bacteria introduced into bentonite amended soil

    NARCIS (Netherlands)

    Heijnen, C.

    1992-01-01

    Bacteria have frequently been introduced into the soil environment, e.g. for increasing crop production or for biological control purposes. Many applications require high numbers of surviving organisms in order to be effective. However, survival of bacteria after introduction into soil is

  1. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    ... varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through contaminated hunted games and bite wound. Keywords: Aerobic bacteria, Antimicrobial resistance, Dogs, Oral cavity, ...

  2. Glass bead transformation method for gram-positive bacteria

    OpenAIRE

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-01-01

    A simple, inexpensive and reproducible transformation method was developed for Gram-positive bacteria. It was based on agitation of bacterial protoplasts with glass beads in the presence of DNA and polyethylene glycol. By using this method, introduction of pGK12 into protoplasts of several strains of Gram-positive bacteria was achieved.

  3. Sulphur oxidising bacteria in mangrove ecosystem: A review ...

    African Journals Online (AJOL)

    Sulphur-oxidizing bacteria such as photoautotrophs, chemolithotrophs and heterotrophs play an important role in the mangrove environment for the oxidation of the toxic sulphide produced by sulphur reducing bacteria and act as a key driving force behind all sulphur transformations in the mangrove ecosystem which is ...

  4. Heme and menaquinone induced electron transport in lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait.

  5. The identification of anaerobic bacteria using MALDI-TOF MS

    NARCIS (Netherlands)

    Veloo, A. C. M.; Welling, G. W.; Degener, J. E.

    Matrix Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has gained more and more popularity for the identification of bacteria. Several studies show that bacterial diagnosticis is being revolutionized by the application of MALDI-TOF MS. For anaerobic bacteria,

  6. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  7. Hydrocarbon-degrading Capability of Bacteria isolated from a Maize ...

    African Journals Online (AJOL)

    Hydrocarbon-degrading Capability of Bacteria isolated from a Maize-Planted, Kerosene-contaminated Ilorin Alfisol. ... also revealed that some bacteria survive and even thrive in kerosene contaminated soil and hence have the potential to be used in biodegradation and/or bioremediation of oil contaminated soils and water.

  8. Rapid separation of bacteria from blood - Chemical aspects.

    Science.gov (United States)

    Alizadeh, Mahsa; Wood, Ryan L; Buchanan, Clara M; Bledsoe, Colin G; Wood, Madison E; McClellan, Daniel S; Blanco, Rae; Ravsten, Tanner V; Husseini, Ghaleb A; Hickey, Caroline L; Robison, Richard A; Pitt, William G

    2017-06-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000rpm for 1min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. unanswerable questions just as interesting as unculturable bacteria!

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. UNANSWERABLE QUESTIONS JUST AS INTERESTING AS UNCULTURABLE BACTERIA! How can landmark research be done in a college? What is the need to isolate novel bacteria when the ones already isolated are not completely studied? How can one do ...

  10. Bacteria isolated from the airways of paediatric patients with ...

    African Journals Online (AJOL)

    Knowledge of which bacteria are found in the airways of paediatric patients with bronchiectasis unrelated to cystic fibrosis. (CF) is important in defining empirical antibiotic guidelines for the treatment of acute infective exacerbations. Objective. To describe the bacteria isolated from the airways of children with non-CF ...

  11. Effect of inulin and probiotic bacteria on growth, survival, immune ...

    African Journals Online (AJOL)

    The effect of inulin and probiotic bacteria on the growth, survival, immune response and viral prevalence of white spot syndrome virus (WSSV) in white shrimp was evaluated. Presumptive bacilli and lactic acid bacteria (LAB) were characterized for hemolytic and enzymatic activity, hydrophobicity and antagonism against ...

  12. Isolation and characterization of heavy metal tolerant bacteria from ...

    African Journals Online (AJOL)

    Panteka stream is a flowing stream polluted with wastes from the activities of mechanics. Water samples collected at different points of the stream were analysed in order to determine the level of heavy metal contamination and bacteria diversity with the view to elucidating the bioremediating potentials of the bacteria isolates ...

  13. 9th International Symposium on Lactic Acid Bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Poolman, Berend; Hugenholtz, Jeroen

    What’s new in the field of lactic acid bacteria? The 9th International Symposium on Lactic Acid Bacteria (LAB9) will take place 31 August to 4 September 2008 in Egmond aan Zee, The Netherlands. Traditionally, the triannual LAB symposium focuses on the themes of genetics, physiology, and applications

  14. Unusual rise in mercury-resistant bacteria in coastal environs

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; De, J.

    A sharp rise in mercury-resistant bacteria (MRB) capable of tolerating very high concentration of Hg was observed over the last 3-4 years in the coastal environs of India. While none or negligible colony-forming units (CFU) of bacteria were counted...

  15. Screening of endophytic plant growth-promoting bacteria isolated ...

    African Journals Online (AJOL)

    Probiotic bacteria, inhabiting the endosphere of plants, presents a major opportunity to develop cheap and eco-friendly alternatives to synthetic agrochemicals. Using standard microbiological procedures, culturable bacteria were isolated from the endosphere (root, stem and leaf) of two Nigerian rice varieties (Ofada and ITA ...

  16. Stalking Antibiotic-Resistant Bacteria in Common Vegetables

    Science.gov (United States)

    Brock, David; Boeke, Caroline; Josowitz, Rebecca; Loya, Katherine

    2004-01-01

    The study developed a simple experimental protocol for studying antibiotic resistant bacteria that will allow students to determine the proportion of such bacteria found on common fruit and vegetable crops. This protocol can open up the world of environmental science and show how human behavior can dramatically alter ecosystems.

  17. Effects of supplementing lactic acid bacteria on fecal microbiota ...

    African Journals Online (AJOL)

    Results: The results indicated that Lactobacillus plantarum strain L.p X3-2B increased fecal lactic acid bacteria(LAB) and Bifidobacterium while resisting the growth of harmful bacteria. Viable counts of LAB and Bifidobacterium reached 8 log cfu/mL after feeding for 14 days. Fecal pH in the control group was high in ...

  18. Compatible solutes in lactic acid bacteria subjected to water stress

    NARCIS (Netherlands)

    Kets, E.P.W.

    1997-01-01

    The goal of the research project described in this thesis was to investigate the protective effect of compatible solutes on tactic acid bacteria subjected to drying. Dried preparations of lactic acid bacteria are applied as starter cultures in feed and food industries. Dried starter

  19. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens

    DEFF Research Database (Denmark)

    Forsberg, Kevin J.; Reyes, Alejandro; Wang, Bin

    2012-01-01

    protocol to assemble short-read sequence data after antibiotic selection experiments, using 12 different drugs in all antibiotic classes, and compared antibiotic resistance gene sequences between soil bacteria and clinically occurring pathogens. Sixteen sequences, representing seven gene products, were...... discovered in farmland soil bacteria within long stretches of perfect nucleotide identity with pathogenic proteobacteria....

  20. Flow cytometric assessment of viability of lactic acid bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F.M.; Abee, T.

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA

  1. Performance of shcc with bacteria for concrete patch repair

    NARCIS (Netherlands)

    Sierra Beltran, M.G.; Jonkers, H.M.; Schlangen, E.

    2014-01-01

    The overall performance of concrete patch repair systems depends on the durability of and compatibility between the concrete substrate and the repair material. This paper investigates the performance of a new type of SHCC material with embedded bacteria as a repair material. The bacteria are a

  2. CcpA-dependent carbon catabolite repression in bacteria

    NARCIS (Netherlands)

    Warner, JB; Lolkema, JS; Warner, Jessica B.

    2003-01-01

    Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a

  3. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  4. Transmission of nephridial bacteria of the earthworm Eisenia fetida.

    Science.gov (United States)

    Davidson, Seana K; Stahl, David A

    2006-01-01

    The lumbricid earthworms (annelid family Lumbricidae) harbor gram-negative bacteria in their excretory organs, the nephridia. Comparative 16S rRNA gene sequencing of bacteria associated with the nephridia of several earthworm species has shown that each species of worm harbors a distinct bacterial species and that the bacteria from different species form a monophyletic cluster within the genus Acidovorax, suggesting that there is a specific association resulting from radiation from a common bacterial ancestor. Previous microscopy and culture studies revealed the presence of bacteria within the egg capsules and on the surface of embryos but did not demonstrate that the bacteria within the egg capsule were the same bacteria that colonized the nephridia. We present evidence, based on curing experiments, in situ hybridizations with Acidovorax-specific probes, and 16S rRNA gene sequence analysis, that the egg capsules contain high numbers of the bacterial symbiont and that juveniles are colonized during development within the egg capsule. Studies exposing aposymbiotic hatchlings to colonized adults and their bedding material suggested that juvenile earthworms do not readily acquire bacteria from the soil after hatching but must be colonized during development by bacteria deposited in the egg capsule. Whether this is due to the developmental stage of the host or the physiological state of the symbiont remains to be investigated.

  5. Response of resident bacteria in a tropical detergent effluent ...

    African Journals Online (AJOL)

    Bacteria were isolated from a tropical detergent-polluted stream, and their responses to linear alkylbenzene sulfonate (LAS) were investigated. The responses of the resident bacteria were assessed in terms of their ability or failure to grow in the presence of LAS and of their potential to degrade the surfactant. Eighteen ...

  6. Anti-fungal properties of chitinolytic dune soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Lafeber, P.; Janse, J.H.; Spit, B.E.; Woldendorp, J.W.

    1998-01-01

    Anti-fungal properties of chitinolytic soil bacteria may enable them to compete successfully for chitin with fungi. Additionally, the production of chitinase may be part of a lytic system that enables the bacteria to use living hyphae rather than chitin as the actual growth substrate, since chitin

  7. Gram-positive bacteria persisting in the food production environment

    DEFF Research Database (Denmark)

    Knøchel, Susanne; Harmsen, Morten; Knudsen, Bettina

    2008-01-01

    Many gram-positive bacteria are able to form aggregates or biofilms and resist external stress factors and some gram-positive pathogenic bacteria such as Listeria monocytogenes and Bacillus cereus may persist in the food production environment for extended periods. Most research has focussed...

  8. Prevalence and drug resistance in bacteria of the urinary tract ...

    African Journals Online (AJOL)

    Objective: To obtain data on the prevalence of antibiotic resistance in bacteria isolated from patients with suspected urinary tract infection in Bulawayo province, Zimbabwe. Method: Over a period of one year, 257 urine samples were analyzed for bacteria by standard procedures. Antimicrobial susceptibility testing of isolated ...

  9. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Al-Maghrabi, I.M.A.; Bin Aqil, A.O.; Chaalal, O.; Islam, M.R.

    1999-01-01

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  10. Removal of crude petroleum hydrocarbons by heterotrophic bacteria ...

    African Journals Online (AJOL)

    Nitrogenous fertilizer (NPK) plant effluents from NAFCON were used in amending plots of land experimentally polluted with crude oil. Counts of heterotrophic bacteria (THBC) and fungi (TF), and of petroleum utilizing bacteria (PUB) and fungi (PUF) were monitored during an 8 weeks period. Counts obtained showed that ...

  11. Bacteriocins and lactic acid bacteria - a minireview | Savadogo ...

    African Journals Online (AJOL)

    Fermentation of various foods by lactic acid bacteria (LAB) is one of the oldest forms of biopreservation practised by mankind. Bacterial antagonism has been recognized for over a century but in recent years this phenomenon has received more scientific attention, particulary in the use of various strains of lactic acid bacteria.

  12. Selection of local extremophile lactic acid bacteria with high capacity ...

    African Journals Online (AJOL)

    This study is related to the isolation and identification of strains of local thermophilic lactic acid bacteria belonging to the species, Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria can exist under extreme conditions of the digestive tract (acidity and high concentration of bile salts) and have a high ...

  13. The bacteria profiles of wounds in diabetic patients hospitalized in ...

    African Journals Online (AJOL)

    Diabetic wound infections still remain a health concern such that correct identification of bacteria is essential in monitoring the spread of the infections as well as in the administration of the correct treatment. This study therefore focuses on isolating and identifying bacteria present in diabetic wounds of hospitalized patients in ...

  14. Antibacterial Activities of Lactic Acid Bacteria Isolated from Selected ...

    African Journals Online (AJOL)

    Members of lactic acid bacteria (LAB) are known probiotics and have been reported to have antimicrobial properties. Although various researchers have documented the isolation of these bacteria from fruits and vegetables, studies on LAB associated with lettuce, cucumber and cabbage are limited and non-existing in ...

  15. Screening and identification of lactic acid bacteria isolated from ...

    African Journals Online (AJOL)

    The lactic acid bacteria (LAB) isolated from sorghum (Sorghum bicolor. L.) silage were identified during different periods of evolution of sorghum silage in west Algeria. Morphological, physiological, biochemical and technological techniques were used to characterize lactic acid bacteria isolates. A total number of 27 ...

  16. Damage mechanisms of pathogenic bacteria in drinking water ...

    African Journals Online (AJOL)

    This study aimed at elucidating the inactivation mechanisms of pathogenic bacteria in drinking water during chlorine and solar disinfection using a simple plating method. The well-known bacterial model Escherichia coli was used as pathogenic bacteria for the experiments. The damage mechanisms of E. coli were ...

  17. Utilization of Cypermethrin by bacteria isolated from irrigated soils ...

    African Journals Online (AJOL)

    Soil bacteria capable of utilizing Cypermethrin as a source of carbon were isolated using enrichment technique. The bacteria were Psuedomonas aeruginosa, Serratia spp Micrococcus sp, Staphylococci and Streptococcus sp. Growth of P. aeruginosa was determined in the presence of 1:106 and 1:105 Cypermethrin in ...

  18. The Effect of Antioxidants on Antibiotic Sensitivity of Bacteria

    OpenAIRE

    Azade ATTAR; Akif İ. QURBANOV

    2007-01-01

    Objective: The effect of different concentrations of antioxidants (ascorbic acid, emoxipin, tocopherol acetate and ionol) on antibiotic sensitivity of bacteria was studied. Method: Bacteria belong to different respiration types: Pseudomonas aeruginosa as aerobe and Escherichia coli as facultative anaerobe were used. Antibiotic sensitivity of microorganisms was determined as minimum inhibitory concentration (MIC) by dilution test. Results: Different concentrations of antioxidants increased the...

  19. 'Atypical' bacteria are a common cause of community-acquired ...

    African Journals Online (AJOL)

    Objectives. To assess the proportion of cases of community· acquired pneumonia caused by 'atypical' bacteria, inclUding the recently discovered Chlamydia pneumoniae, and to compare the clinical, radiographic and laboratory features of patients with and without 'atypical' bacteria. Methods. A prospective serological ...

  20. Degradation of riverine dissolved organic matter by seawater bacteria

    NARCIS (Netherlands)

    Rochelle-Newall, E.J.; Pizay, M-D.; Middelburg, J.J.; Boschker, H.T.S.; Gattuso, J.P.

    2004-01-01

    The functional response of a seawater bacterial community transplanted into freshwater dissolved organic matter (DOM) was investigated together with the response of natural populations of bacteria to size-fractioned natural source water. Seawater bacteria were incubated over a period of 8 d in

  1. Pathogen detection and gut bacteria identification in Apis cerana ...

    African Journals Online (AJOL)

    acer

    other lactic acid bacteria, were isolated from larvae and adult workers, but gave conflicting preliminary identities based on their biochemistry-morphology versus sequence analysis of a partial fragment (1.4 kb) of their 16S rRNA. Key words: Apis cerana indica, bee pathogens, gut bacteria, multiplex polymerase chain ...

  2. Antimicrobial properties of probiotic bacteria from various sources

    African Journals Online (AJOL)

    OKEREKE HOPE C

    2012-05-15

    May 15, 2012 ... The lactic acid bacteria (LAB), a component of several fermented foods including ... lactic acid bacteria grown in MRS broth for 20 to 24 h using centrifugation .... vacuum packed chill-stored meat has potential application for ...

  3. Simple and convenient method for culturing anaerobic bacteria.

    OpenAIRE

    Behbehani, M J; Jordan, H V; Santoro, D L

    1982-01-01

    A simple and convenient method for culturing anaerobic bacteria is described. Cultures can be grown in commercially available flasks normally used for preparation of sterile external solutions. A special disposable rubber flask closure maintains anaerobic conditions in the flask after autoclaving. Growth of a variety of anaerobic oral bacteria was comparable to that obtained after anaerobic incubation of broth cultures in Brewer Anaerobic Jars.

  4. The Bacteria Quality Of The Indigenously Fermented Milk Product ...

    African Journals Online (AJOL)

    Fifty samples of 'nono', a fermented milk product akin to yoghurt, were carefully collected from three markets in Maiduguri municipality, and were examined for the presence of pathogenic bacteria. Twenty-eight percent of the samples were found to be contaminated with aciduric pathogenic bacteria that may cause ...

  5. The bacteriological safety and antimicrobial susceptibility of bacteria ...

    African Journals Online (AJOL)

    In developing countries the major sources of food-borne illnesses are street vended foods. The aim of this study was thus to assess the prevalence and antibiogram of bacteria from white lupin in Bahir Dar Town. METHODS: A total of 40 samples were processed for detection of indicator bacteria and pathogens from ...

  6. Energy sources of yoghurt bacteria and enhancement of their ...

    African Journals Online (AJOL)

    The energy sources of yoghurt bacteria (Streptococcus thermophilus and Lactobacillus bulgaricus) were examined with a focus on probable impact of sucrose on their galactose uptake. Yoghurt bacteria were isolated from samples of yoghurt which were purchased from different outlets and kept under refrigeration ...

  7. [Bacteriophages in the battle against multidrug resistant bacteria

    NARCIS (Netherlands)

    Meer, J.W.M. van der; Vandenbroucke-Grauls, C.

    2018-01-01

    Bacteriophages are viruses that infect bacteria. They are highly specific for a bacterial species. The so-called 'lytic phages' can lyse bacteria when they infect them; these phages can be used to treat bacterial infections. Despite a century of experience with phage therapy, the evidence for

  8. Mutagenesis of metal compounds in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H

    1974-01-01

    The mutagenic activity of 41 metal compounds was examined by applying the Rec-assay method with Bacillus subtilis H17 (rec/sup +/) and M45 (rec/sup -/) strains. Among these compounds, Na/sub 2/HAsO/sub 4/, CdCl/sub 2/, K/sub 2/CrO/sub 4/, K/sub 2/Cr/sub 2/O/sub 7/, CH/sub 3/HgCl, C/sub 2/H/sub 5/HgCl, CH/sub 3/COOHgC/sub 6/H/sub 5/, MnCl/sub 2/, MnNO/sub 3/, MnSO/sub 4/, Mn(CH/sub 3/COO)/sub 2/, (NH/sub 4/)/sub 2/MoO/sub 4/ and KMoO/sub 4/ showed positive results. The reactions of K/sub 2/Cr/sub 2/O/sub 7/ and (NH/sub 4/)/sub 2/MoO/sub 4/ were especially strong in the assay. Therefore, mutation induction to reversion (try/sup +/) and streptomycin resistance (SM/sup r/) of E. coli B/r WP2 try/sup -/ (hcl/sup +/ and hcr/sup -/) by the two compounds were examined by the following two experimental procedures. Stationary phase bacteria were exposed to the compounds at high concentrations (6.9 x 10/sup -3/ approx. 3.44 x 10/sup -2/M) in M9 buffer for 15 min at 37/sup -/ with shaking. After incubation at 37/sup 0/ for 48 h visible colonies on the plates were scored. Bacteria in M9 buffer were plated in media supplemented with low concentrations (1.7 x 10/sup -5/ approx. 3.4 x 10/sup -5/M) of the compounds. K/sub 2/Cr/sub 2/O/sub 7/ and (NH/sub 4/)/sub 2/MoO/sub 4/ increased the mutation rate of SM/sup r/ and try/sup +/ in both strains treated with either procedure. No marked differences in mutation rate were found between hcr/sup +/ and hcr/sup -/. After treatment with high concentrations of compounds one can imagine that a peroxidation state produced by these peroxides in the media might affect the killing and mutation induction. These results suggest the possibility that the mutagenesis of the metals relate to their atomic values, rather than the peroxidation state as far as these two compounds are concerned.

  9. Sensitivity of certain bacteria to antibiotics and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harsojo,; Andini, L S; Siagian, E G; Lina, M R; Zuleiha, S [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1981-07-01

    An experiment has been conducted to find vegetative forms of certain bacteria in Indonesia which are resistant to irradiation, the resistance of which will be compared to that of known radioresistant bacteria micrococcus radiodurans. To inactivate the vegetative forms of resistant bacteria to irradiation high doses are needed, while for storage purposes lower doses change the physical and chemical properties of the stored commodity are preferred. For this purpose the bacteria were irradiated in aerobic condition with gamma radiation doses of 0.1, 0.2 and 0.3 kGy, or treated with antibiotics e.g. tetracycline HCl or chloramphenicol with concentrations of 0.1, 0.2 and 0.3 ..mu..g/ml respectively. The results indicated that doses of 0.2 kGy and 0.1 ..mu..g/ml reduced the ability of the bacteria for multiplication.

  10. Presence of Pathogenic Bacteria and Viruses in the Daycare Environment.

    Science.gov (United States)

    Ibfelt, Tobias; Engelund, Eva Hoy; Permin, Anders; Madsen, Jonas Stenløkke; Schultz, Anna Charlotte; Andersen, Leif Percival

    2015-10-01

    The number of children in daycare centers (DCCs) is rising. This increases exposure to microorganisms and infectious diseases. Little is known about which bacteria and viruses are present in the DCC environment and where they are located. In the study described in this article, the authors set out to determine the prevalence of pathogenic bacteria and viruses and to find the most contaminated fomites in DCCs. Fifteen locations in each DCC were sampled for bacteria, respiratory viruses, and gastrointestinal viruses. The locations were in the toilet, kitchen, and playroom areas and included nursery pillows, toys, and tables, among other things. Coliform bacteria were primarily found in the toilet and kitchen areas whereas nasopharyngeal bacteria were found mostly on toys and fabric surfaces in the playroom. Respiratory viruses were omnipresent in the DCC environment, especially on the toys.

  11. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geisy, J P; Paine, D

    1978-01-01

    Algae and bacteria are important factors in the transport and mobilization of elements in the biosphere. These factors may be involved in trophic biomagnification, resulting in a potential human hazard or environmental degradation. Although americium, one of the most toxic elements known, is not required for plant growth, it may be concentrated by algae and bacteria. Therefore, the availability of americium-241 to algae and bacteria was studied to determine their role in the ultimate fate of this element released into the environment. Both algae and bacteria concentrated americium-241 to a high degree, making them important parts of the biomagnification process. The ability to concentrate americium-241 makes algae and bacteria potentially significant factors in cycling this element in the water column. (4 graphs, numerous references, 3 tables)

  12. High resistance of some oligotrophic bacteria to ionizing radiation

    International Nuclear Information System (INIS)

    Nikitin, D.I.; Tashtemirova, M.A.; Pitryuk, I.A.; Sorokin, V.V.; Oranskaya, M.S.; Nikitin, L.E.

    1994-01-01

    The resistance of seven cultures of eutrophic and oligotrophic bacteria to gamma radiation (at doses up to 360 Gy) was investigated. The bacteria under study were divided into three groups according to their survival ability after irradiation. Methylobacterium organophilum and open-quotes Pedodermatophilus halotoleransclose quotes (LD 50 = 270 Gy) were highly tolerant. By their tolerance, these organisms approached Deinococcus radiodurans. Aquatic ring-shaped (toroidal) bacteria Flectobacillus major and open-quotes Arcocella aquaticaclose quotes (LD 5 = 173 and 210 Gy, respectively) were moderately tolerant. Eutrophic Pseudomonas fluorescens and Escherichia coli (LD 50 = 43 and 38 Gy, respectively) were the most sensitive. X-ray microanalysis showed that in tolerant bacteria the intracellular content of potassium increased and the content of calcium decreased after irradiation. No changes in the element composition of the eutrophic bacterium E. coli were detected. Possible mechanisms of the resistance of oligotrophic bacteria to gamma radiation are discussed

  13. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  14. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    Science.gov (United States)

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  15. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  16. Roseobacter-clade bacteria as probiotics in marine larvaeculture

    DEFF Research Database (Denmark)

    Grotkjær, Torben

    Disease caused by fish pathogenic bacteria can cause large scale crashes in marine fish larval rearing units. One of the biggest challenges for aquaculture is the management of these bacterial outbreaks. Vaccines can be admitted to fish but only the juvenile and the adult fish because they need...... to have a mature immune system. This means that the larvae of the fish, until they are 2-3 weeks old are more prone to bacterial infections. A short term solution is antibiotics but this leaves way for the selection for antibiotic resistance among the pathogenic bacteria, which again can be transferred...... to human pathogens. Alternatives are therefore needed and one could be the use of probiotic bacteria. Marine bacteria from the Roseobacter clade (Phaeobacter inhibens) have shown great potential as probiotic bacteria, and we have hypothesized that they could be used to antagonize pathogenic fish...

  17. 3D printing of bacteria into functional complex materials.

    Science.gov (United States)

    Schaffner, Manuel; Rühs, Patrick A; Coulter, Fergal; Kilcher, Samuel; Studart, André R

    2017-12-01

    Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.

  18. Influence of disturbances on bacteria level in an operating room

    DEFF Research Database (Denmark)

    Brohus, Henrik; Hyldig, Mikkel; Kamper, Simon

    2008-01-01

    In operating rooms great effort is manifested to reduce the bacteria level in order to decrease the risk of infections. The main source of bacteria is the staff and the patient, thus, the resulting bacteria concentration is roughly speaking a combination of the ventilation system and the emission...... from the occupants. This study investigates the influence of two main disturbances in an operating room namely the door opening during the operation and the activity level of the staff. It is found that the frequent door opening in this case does not cause significant transport of air from outside...... the operating room to the wound area of the patient. However, a significant influence of the activity level on the bacteria emission and concentration is found. Counting the number of persons in an operating room to estimate the bacteria source strength is not sufficient, the corresponding activity level must...

  19. A porous silicon optical microcavity for sensitive bacteria detection

    International Nuclear Information System (INIS)

    Li Sha; Huang Jianfeng; Cai Lintao

    2011-01-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (∼10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml -1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml -1 . The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  20. A porous silicon optical microcavity for sensitive bacteria detection

    Science.gov (United States)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.