WorldWideScience

Sample records for fission-fragment angular distributions

  1. Reexamination of fission fragment angular distributions and the fission process: Formalism

    International Nuclear Information System (INIS)

    Bond, P.D.

    1985-01-01

    The theory of fission fragment angular distributions is examined and the universally used expression is found to be valid only under restrictive assumptions. A more general angular distribution formula is derived and applied to recent data of high spin systems. At the same time it is shown that the strong anisotropies observed from such systems can be understood without changing the essential basis of standard fission theory. The effects of reaction mechanisms other than complete fusion on fission fragment angular distributions are discussed and possible angular distribution signatures of noncompound nucleus formation are mentioned

  2. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  3. On angular distribution of nucleus fission fragments by fast neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification

  4. Fission fragment angular distribution in the reaction 28Si+176Yb

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Sharma, S.K.; Reddy, A.V.R.; Pujari, P.K.; Dutta, D.; Goswami, A.; Ramachandran, K.

    2009-01-01

    Fission fragment angular distribution has been measured in the reaction 28 Si+ 176 Yb at beam energies of 145 and 155 MeV to investigate the contribution from non-compound nucleus fission. Experiments were carried out at BARC-TIFR Pelletron-LINAC accelerator facility, Mumbai. Experimental angular anisotropies in this reaction were observed to be higher than those calculated using statistical theory, indicating contribution from non-compound nucleus fission in this reaction. (author)

  5. Fission cross section and fission fragment angular distribution for oriented nucleus fission by intermediate energy neutrons (epsilon < or approximately 1 Mev)

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1985-01-01

    General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations

  6. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1982-01-01

    Calculations of anisotropy of angular distribution of oriented 235 U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  7. Staggering of angular momentum distribution in fission

    Science.gov (United States)

    Tamagno, Pierre; Litaize, Olivier

    2018-03-01

    We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  8. Staggering of angular momentum distribution in fission

    Directory of Open Access Journals (Sweden)

    Tamagno Pierre

    2018-01-01

    Full Text Available We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  9. Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Tarrío, D., E-mail: dtarriov@gmail.com [Universidade de Santiago de Compostela (Spain); Leong, L.S.; Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 -Université Paris-Sud - IPN, Orsay (France); Duran, I.; Paradela, C. [Universidade de Santiago de Compostela (Spain); Tassan-Got, L.; Le Naour, C.; Bacri, C.O.; Petitbon, V.; Mottier, J. [Centre National de la Recherche Scientifique/IN2P3 -Université Paris-Sud - IPN, Orsay (France); Caamaño, M. [Universidade de Santiago de Compostela (Spain); Altstadt, S. [Johann-Wolfgang-Goethe Universität, Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Bečvář, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Billowes, J. [University of Manchester, Oxford Road, Manchester (United Kingdom); Boccone, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); and others

    2014-04-11

    A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n{sub T}OF) facility at CERN. The detectors and the samples were tilted 45° with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the {sup 232}Th(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup.

  10. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  11. Angular momenta of fission fragments in the {alpha}-accompanied fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Kliman, J.; Krupa, L.; Morhac, M. [Slovak Academy of Sciences, Department of Nuclear Physics, Bratislava (Slovakia); Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Hamilton, J.H.; Kormicki, J.; Ramayya, A.V.; Hwang, J.K.; Luo, Y.X.; Fong, D.; Gore, P. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Rodin, A.M.; Fomichev, A.S.; Popeko, G.S. [Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Daniel, A.V. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Macchiavelli, A.O.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R.; Cole, J.D.

    2005-06-01

    For the first time, average angular momenta of the ternary fission fragments {sup 100,102}Zr, {sup 106}Mo, {sup 144,146}Ba and {sup 138,140,142}Xe from the {alpha}-accompanied fission of {sup 252}Cf were obtained from relative intensities of prompt {gamma}-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of {sup 252}Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is {proportional_to}1.4{Dirac_h} lower than in binary fission. Consequently, results indicate that the mechanism of the ternary {alpha}-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of {sup 106}Mo and {sup 140}Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed. (orig.)

  12. Influence of mass-asymmetry and ground state spin on fission fragment angular distributions

    International Nuclear Information System (INIS)

    Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.

    2001-01-01

    The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system

  13. Fission fragment angular distributions in proton-induced fission of 209Bi (p,f) and 197Au (p,f)

    International Nuclear Information System (INIS)

    Soheily, S.; Noshad, H.; Lamehi-Rashti, M.

    2002-01-01

    The fission fragment angular distributions have been measured for proton-induced fission of 209 B i and 197 A u nuclei using surface barrier detectors at several energies between 25 MeV and 30 MeV. The experimental anisotropies are found to be in agreement with the predictions of the Standard Saddle-Point Statistical Model. The fission cross sections of 209 B i and 197 A u nuclei were also measured and compared with the previous works

  14. Angular distributions in quasi-fission reactions

    International Nuclear Information System (INIS)

    Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.

    1985-10-01

    Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)

  15. Scission configurations and their implication in fission-fragment angular momenta

    International Nuclear Information System (INIS)

    Bonneau, L.; Quentin, P.; Mikhailov, I. N.

    2007-01-01

    The generation of sizable angular momenta in fragments formed in low-energy nuclear fission is described microscopically within the general quantum-mechanical framework of orientation pumping due to the Heisenberg uncertainty principle. Within this framework, we make use of the results of Skyrme-Hartree-Fock plus BCS-pairing calculations of fragment deformabilities to deduce a distribution of fission-fragment spins as a function of the fragment total excitation energy. We consider a fragmentation corresponding to a pair of deformed fragments and for which fission data are available. The properties of the scission configurations determine to a large extent the fission-fragment spins. This is why we pay particular attention to quantitatively defining the scission configurations and to studying the various implications of such a specific choice. A fair qualitative agreement with data is demonstrated and discussed within the limits of the simple scission-configuration model used here

  16. A reconsideration of fission fragment angular distributions from nuclei of high spin

    International Nuclear Information System (INIS)

    Vaz, L.C.; Alexander, J.M.

    1983-01-01

    It has often been stated that fission fragment angular anisotropy, as predicted by equilibrium statistical theory, should disappear with increasing spin of the composite nucleus. However, several recent experimental studies reveal strong anisotropies for fission fragments from high-spin nuclear systems. We discuss this apparent discrepancy and its relationship to the rigid-rotor approximation used in the standard theory. A systematic comparison is given for fission fragment anisotropies from many experiments via the empirical parameters K 0 2 and Ssub(eff). These systematics indicate a strong regularity, provided one allows for the perturbing effects of fission after transfer reactions. Many of the observed anisotropies exceed the predictions of the standard theory, but, as these predictions are based on a rigid rotor model, this does not seem particularly noteworthy. (orig.)

  17. Fission fragment distributions within dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)

    2017-04-15

    The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)

  18. Influence of angular momentum on fission fragment mass distribution: Interpretation within Langevin dynamics

    International Nuclear Information System (INIS)

    Ryabov, E.G.; Karpov, A.V.; Adeev, G.D.

    2006-01-01

    Dependence of fission fragments mass distribution on the angular momentum within Langevin dynamics is studied. The calculations are performed in the framework of the rotating temperature-dependent finite-range liquid drop model. The calculations are done for the five nuclei, representing heavy fissioning nuclei, medium fissioning nuclei and light fissioning one with the angular momentum varied in the wide range from l=0 to l=70-bar . The dependence coefficients dσ M 2 /dl 2 for the investigated nuclei are extracted. The comparison of the extracted values with the experimental data reveals a good agreement for all the cases (the heavy, medium, and light fissioning nuclei). It is found out that the obtained dependence of σ M 2 on l can be explained with the help of temperature at scission as a function of l. The latter dependence is determined by dependence of the mean prescission neutron multiplicity on l. The analysis of this dependence is done as a competition between fission process and neutron evaporation. 'Remembering of the former large fluctuations of mass asymmetry coordinate during descent from the saddle to scission' is considered. It is shown that the 'remembering effect' takes place, but does not play a crucial role for the investigated dependence of σ M 2 on l

  19. Fission Fragment Angular Distributions in the $^{234}$U(n,f) and $^{236}$U(n,f) reactions

    CERN Multimedia

    We propose to measure the fission fragment angular distribution (FFAD) of the $^{234}$U(n,f) and $^{236}$U (n,f) reactions with the PPAC detection setup used in previous n_TOF-14 experiment. This experiment would take advantage of the high resolution of the n_TOF facility to investigate the FFAD behaviour in the pronounced vibrational resonances that have been observed between 0.1 and 2 MeV for the thorium cycle isotopes. In addition, the angular distribution of these isotopes will be measured for the first time beyond 14 MeV. Furthermore, the experiment will also provide the fission cross section with reduced statistical uncertainty, extending the $^{236}$U(n,f) data up to 1 GeV

  20. Angular distribution of fragments from neutron-induced fission of 238U in the intermediate energy region

    International Nuclear Information System (INIS)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U

  1. Angular distribution in the neutron-induced fission of actinides

    Directory of Open Access Journals (Sweden)

    Leong L.S.

    2013-12-01

    Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.

  2. Measurement of Fission Fragment Angular Distributions for 14 N+ 232 Th and 11 B+ 235 U at Near-Barrier Energies

    International Nuclear Information System (INIS)

    Behera, B.R.; Jena, S.; Satapathy, M.; Ison, V.V.; Kailas, S.; Chatterjee, A.; Shrivastava, A.; Mahata, K.; Satpathy, L.; Basu, P.; Roy, S.; Sharan, M.; Chatterjee, M.L; Datta, S.K.

    2000-01-01

    Fission fragment angular distributions of heavy-ion induced fission in actinide nuclei at near-barrier energies show anomalous fragment anisotropies. At above barrier energies entrance channel dependence is a probable cause and explanation in terms of pre-equilibrium fission and the critical mass asymmetry parameter (Businaro-Gallone) has been tried. Target deformation and ground state spin also seem to influence the measured anisotropy. To understand the extent of importance of some or all of these features, we performed a set of experiments where (i) entrance channel dependence (ii) mass asymmetry on the two sides of Businaro-Gallone and (iii) different ground state spins are present. The channels chosen are 14 N+ 232 Th and 11 B+ 235 U. Experiments were done using the Pelletron accelerators at NSC, New Delhi and BARC-TIFR, Bombay. Compound nucleus populated in both cases is 246 Bk. 232 Th has ground state spin zero and 235 U has spin 7/2. Fragment anisotropies have been measured from 10-15 % above barrier to 10 % below barrier at similar excitation energy (around 40 MeV to 58 MeV). The mean square angular momentum is matched at least at one energy. Results indicate that when both excitation energy and angular momentum are matched, there are differences in the measured values of fission anisotropies. This implies entrance channel dependence consistent with the expectation of pre-equilibrium fission model. (authors)

  3. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  4. Angular Distribution of Gamma Rays from the Fission of {sup 235}U Induced by 14-Mev Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jeki, L.; Kluge, Gy.; Lajtai, A. [Central Research Institute for Physics, Hungarian Academy of Sciences (Hungary)

    1969-12-15

    Experiments are reported which were performed to study the angular distribution of the gamma radiation following fast-neutron-induced nuclear fission. The investigations were, in particular, focussed on the influence which the angular momentum imparted to the compound nucleus by the fast neutrons has on the angular distribution of the {gamma}-rays. The fission of {sup 235}U is induced by 14-MeV-energy neutrons from the T(d, n) {alpha} reaction. The fission fragments are detected by a gas-scintillation counter filled with a mixture of Ar and Ni gases, the {gamma}-rays by 5 cm x 5 cm Nal(Tl) crystal with an energy threshold of 120 keV. The intensity of the {gamma}-rays is measured at 90 Degree-Sign and 174 Degree-Sign to the direction of fragment motion. The flight times of fission neutrons and {gamma}-rays are measured with a 20-ns overlap-type time-to-pulse height converter while the background was covered simultaneously with another converter delayed with respect to the former. The signals from both converters are analysed by a multichannel analyser with divisible memory. The flight path, which is chosen to be about 70 cm, makes it possible to separate the neutron from the gamma counts. The geometry is designed to keep the direction of the outflying fission fragments nearly the same as that of the incident fast neutrons. In this way the angular momenta of the fast neutrons are normal to the flight path of the fragments. The measured gamma intensities are extrapolated to 180 Degree-Sign on a computer using Strutinski's formula n( Greek-Theta-Symbol ) {approx}1 + B sin Greek-Theta-Symbol . On transformation of the measured data from the laboratory system to the system of fragments the anisotropy is found to be A = 1(180 Degree-Sign )/l (90 Degree-Sign ) = 1.33 {+-} 0.05. The main angular momentum of fission fragments is calculated from the anisotropy as 15 h units. As compared with the thermal-neutron-induced fission the present results indicate an additional

  5. Angular distributions of evaporated particles, fission and intermediate-mass fragments: on the search for consistent models

    International Nuclear Information System (INIS)

    Alexander, J.M.

    1987-01-01

    During the last two years there has been a true cacophony concerning the meaning of experimental angular distributions for fission and fission-like fragments. The heavily used, saddle-point, transition-state model has been shown to be of limited value for high-spin systems, and a wide variety of proposals has appeared often with mutual inconsistencies and conflicting views. Even though equilibrium statistical models for fragment emission and particle evaporation must have a very close kinship, this relationship, often left as murky, has now come onto center stage for understanding reactions at ≥ 100 MeV. Basic questions concern the nature of the decision-point configurations, their degrees of freedom, the role of deformation and the relevant moments of inertia. This paper points out serious inconsistencies in several recent scission-point models and discusses conditions for applicability of saddle-point and scission-point approaches

  6. Angular distribution of photofission fragments in 238U at 5.43 MeV

    International Nuclear Information System (INIS)

    Kuniyoshi, S.; Mafra, O.Y.; Renner, C.; Goldemberg, J.

    1974-01-01

    The angular distribution of photofission fragments of 238 U, produced by 5.43 MeV monochromatic photons from the eta,γ reaction in sulphur, has been measured using glass plates as detectors. In the analysis of the results only the contributions from the (J sup(π), K) 1= (1 - ,0), (1 - ,1) and (2 + ,0) terms were considered. The coefficients of the angular distributions of the fission fragments were obtained. An analysis of the data available in the literature on the angular distribution near the photofission threshold is also presented

  7. Angular distribution of photofission fragments in 238U at 5.43 MeV

    International Nuclear Information System (INIS)

    Kuniyoshi, Susumo

    1973-01-01

    The angular distribution of photofission fragments of 238 U, produced by 5.43 MeV monochromatic photons from the η,γ reaction in sulphur, has been measured using glass plates as detectors. In the analysis of the results only the contributions from the (J π , K) 1= (1 - ,0), (1 - ,1) and (2 + ,0) terms were considered. The coefficients of the angular distributions of the fission fragments were obtained. An analysis of the data available in the literature on the angular distribution near the photofission threshold is also presented. (author)

  8. Angular distribution of gamma rays from the fission of {sup 235}U induced by 14-MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jeki, L; Kluge, G; Lajtai, A [Central Research Institute for Physics, Hungarian Academy of Sciences (Hungary)

    1969-12-15

    Experiments are reported which were performed to study the angular distribution of the gamma radiation following fast-neutron-induced nuclear fission. The investigations were, in particular, focussed on the influence which the angular momentum imparted to the compound nucleus by the fast neutrons has on the angular distribution of the {gamma}-rays. The fission of {sup 235}U is induced by 14-MeV-energy neutrons from the T(d, n) {alpha} reaction. The fission fragments are detected by a gas-scintillation counter filled with a mixture of Ar and Ni gases, the {gamma}-rays by 5 cm x 5 cm Nal(Tl) crystal with an energy threshold of 120 keV. The intensity of the {gamma}-rays is measured at 90 deg. and 174 deg. to the direction of fragment motion. The flight times of fission neutrons and {gamma}-rays are measured with a 20-ns overlap-type time-to-pulse height converter while the background was covered simultaneously with another converter delayed with respect to the former. The signals from both converters are analysed by a multichannel analyser with divisible memory. The flight path, which is chosen to be about 70 cm, makes it possible to separate the neutron from the gamma counts. The geometry is designed to keep the direction of the outflying fission fragments nearly the same as that of the incident fast neutrons. In this way the angular momenta of the fast neutrons are normal to the flight path of the fragments. The measured gamma intensities are extrapolated to 180 deg on a computer using Strutinski's formula n({theta}) {approx} 1 + B sin {theta}. On transformation of the measured data from the laboratory system to the system of fragments the anisotropy is found to be A = I(180 deg.)/I (90 deg.) = 1.33 {+-} 0.05. The main angular momentum of fission fragments is calculated from the anisotropy as 15 (h/2{pi}) units. As compared with the thermal-neutron-induced fission the present results indicate an additional contribution from the angular momentum of the compound

  9. Charge distribution of the 236U* fission fragments with accounting for angular momentum of the compound nuclei

    International Nuclear Information System (INIS)

    Volkov, N.G.; Emel'yanov, V.M.; Krajnov, V.P.

    1979-01-01

    In a statistical fission model calculated are charge distributions of fission fragments (CDFF) of a 236 U* nucleus and their dispersions as the functions of excitation energy and angular momentum (AM) of a compound nucleus as well as the effect of one-particle potential parameter on CDFF. The potential of two-center oscillator was choosen as the one-particle potential. The function of fissioning nucleus level density, which is necessary for calculations in the statistical approach, has been determined from one-particle spectrum. The scheme of calculations is realized with a computer. Presented are the results of calculating the dependence of a neutron gap size on nuclear temperature for various projections of total AM; CDFF for different values of E* excitation energy of AM projection and others. Calculated CDFF and experimental data were compared. Notwithstanding the availability of many parameters and a large volume of numerical calculations the model under consideration permits to describe many common regularities of heavy nucleus CDFF (experimental yields of charges, dispersion dependence on excitation energies and masses of nuclear fragments)

  10. Simultaneous investigation of fission fragments and neutrons in 252Cf(s,f)

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Knitter, H.H.

    1986-01-01

    The gridded twin ion chamber developed at CBNM is used to measure the kinetic energy-, mass- and angular distributions of the fission fragments of 252 Cf in an advantageous 4π-geometry. Together with a neutron time-of-flight detector this experimental arrangement permits to measure the correlation between neutron emission, fragment angle, mass and energy in the spontaneous fission of 252 Cf. With the present experimental set-up a mass resolution for fission fragments of 0.5 a.m.u., an angular resolution of Δcosθ = 0.05 and a timing resolution of 0.7 ns FWHM were observed. Preliminary evaluations of the raw experimental data are presented for the fission fragment mass distribution, the average total kinetic energy and their variance as function of mass, the angular distribution between fragments and neutrons, the number of neutrons emitted per fragment as function of fragment mass, the average neutron emission energies as function of mass, and the prompt fission neutron spectrum averaged over all fragments. (author)

  11. Fission and nuclear fragmentation of silver and bromine nuclei by photons of 1-6 GeV

    International Nuclear Information System (INIS)

    Pinheiro Filho, J.D.

    1983-01-01

    The studies of fission and fragmentation of silver and bromine nuclei by Bremsstrahlung photons of 1.6 GeV energy range are presented. The Il ford-KO nuclear emulsion submitted to Bremsstrahlung beams in Deutsches Elektronen Synchrotron (DESY) with total doses of 10'' equivalent photons, was used for nuclear fragment detection. The discrimination of fission and fragmentation events was done analysing angular distribution, range and angles between fragments. The results of fragment range distributions, angular distributions, distributions of angles between fragments, distributions of ratio between range, velocity distributions forward/backward ratio, cross sections of fission and fragmentation, nuclear fissionability and ternary fission frequency are presented and discussed. (M.C.K.)

  12. Target-fragment angular distributions for the interaction of 86 MeV/A 12C with 197Au

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.; Loveland, W.; McGaughey, P.L.; Seaborg, G.T.; Morita, Y.; Hageboe, E.; Haldorsen, I.R.; Sugihara, T.T.

    1985-01-01

    Target-fragment angular distributions were measured using radiochemical techniques for 69 different fragments (44 12 C with 197 Au. The angular distributions in the laboratory system are forward-peaked with some distributions also showing a backward peaking. The shapes of the laboratory system distributions were compared with the predictions of the nuclear firestreak model. The measured angular distributions differed markedly from the predictions of the firestreak model in most cases. This discrepancy could be due, in part, to overestimation of the transferred longitudinal momentum by the firestreak model, the assumption of isotropic angular distributions for fission and particle emission in the moving frame and incorrect assumptions about how the lightest (A 145) fragment distributions were symmetric about 90 0 . (orig.)

  13. What can we learn about heavy ion fusion by studying fission angular distributions

    International Nuclear Information System (INIS)

    Back, B.B.

    1984-01-01

    Determinations of complete fusion reactions leading to fissionable systems are associated with problems of separating fragments from quasi-fission reactions from those arising from fission of the completely fused system. Inferring complete fusion cross sections from the minute cross sections for the evaporation residue channel is hampered by the insufficient knowledge of the branching ratio for neutron emission and fission in the decay sequence of the completely fused system. From a quantitative analysis of the fragment angular distributions it is, however, possible under certain assumptions to deduce the relative contribution of complete fusion and quasi-fission. It is found that the complete fusion process is hindered for heavy projectiles. The excess radial energy over the interaction barrier needed to induce fusion with heavy projectiles is determined in several cases and systematic trends are presented

  14. Fission-fragment angular distributions and total kinetic energies for 235U(n,f) from .18 to 8.83 MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.; Budtz-Joergensen, C.

    1982-01-01

    A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the 235 U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment

  15. Neutron emission during acceleration of 252Cf fission fragments

    International Nuclear Information System (INIS)

    Batenkov, O.I.; Blinov, M.V.; Blinov, A.B.; Smirnov, S.N.

    1991-01-01

    We investigate neutron emission during acceleration of fission fragments in the process of spontaneous fission of 252 Cf. Experimental angular and energy distributions of neutrons are compared with the results of calculations of neutron evaporation during fragment acceleration. (author). 8 refs, 3 figs

  16. Energy and angular distributions of neutrons from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Sidorov, L.V.; Vasil'eva, N.K.

    1982-01-01

    Some results from a first series of measurements of energy and angular distributions of neutrons from 252 Cf spontaneous fission using a spectrometer with high neutron detection efficiency, i.e. a 4π neutron time-of-flight spectrometer, were already presented. Subsequently, a second series of measurements was performed using a more sophisticated technique. For this second series, we used a more intense 252 Cf layer (25,000 spontaneous fissions per second). The angular resolution was improved by a factor of 2-3 by combining the hexahedral counter modules, placed at the same angle with respect to the direction of motion of the fragments, in new panoramic counters. The neutron counters were calibrated against the average 252 Cf neutron spectrum at several positions of the axis of the fragment detector with respect to the neutron counters. In the spectrum measurements and calibration work, the scattered neutron background was not determined theoretically, as in the first series of measurements, but experimentally using four extra scintillation counters with scatter cones; the counters were set up at 60 deg., 80 deg., 100 deg., and 120 deg. to the direction of separation of the fragments

  17. Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pardeep; Kaur, Harjeet [Guru Nanak Dev University, Department of Physics, Amritsar (India)

    2016-11-15

    The fission-fragment mass distribution is analysed for the {sup 208}Pb({sup 18}O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schroedinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process. (orig.)

  18. Fission fragment mass and angular distributions

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the ...

  19. Angular distribution of scission neutrons studied with time-dependent Schrödinger equation

    Science.gov (United States)

    Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae

    2018-03-01

    We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections

  20. Effect of excitation energy and angular momentum on the characteristics of 208Po and 210Po compound nucleus fission fragments

    International Nuclear Information System (INIS)

    Itkis, M.G.; Kalpakchieva, R.; Okolovich, V.N.; Penionzhkevich, Yu.Eh.; Tolstikov, V.N.

    1982-01-01

    To study characteristics of fissioning nucleus fragments, investigated were reactiiiiiiiiiiiiiiiH8Pt+ 12 C → 210 Po in the 12 C ion energy range of 86-110.5 MeV, of 192 Os+ 16 O → 208 Po in 90-131 MeV range, 204 Pb+ 3 He → 207 Po, 206 Pb+ 3 He → 209 Po, 207 Pb+ 3 He → 210 Po with 60 MeV 3 He ion energy. Using a correlation technique for measuring energies of two fragments mass and energy distributions of fission fragments of 208 Po and 210 Po compound nuclei produced in the reactions have been studied. Mass and energy distributions of fragments from fission of 208 Po and 210 Po in the reactions with ions 16 O, 12 C and 3 He were investigated in an ample energy range, using the correlational techniques for measurement of energies of two fragments. An increase in the total kinetic energy with rise of the angular momentum was observed, the fact indicating a weak coupling of one-particle and collective modes of motion in the fissile nucleus resulting in that the rolational energy is transfered mainly to translation energies of the fragments

  1. About total kinetic energy distribution between fragments of binary fission

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Koblik, Yu.N.; Pikul, V.P.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures

  2. Mass and kinetic-energy distributions of fragments formed in the heavy-ion-induced fission of 208Po

    International Nuclear Information System (INIS)

    Cuninghame, J.G.; Goodall, J.A.B.

    1980-01-01

    Fission fragments following the decay of a 208 Po compound nucleus have been observed by using radiochemical and particle-counting techniques. The (α+ 204 Pb), ( 12 C+ 196 Pt) and ( 16 O+ 192 Os) reactions were studied at two or three bombarding energies, covering overlapping ranges of excitation energies. - Radiochemical separations of As, Br, Y, Nb, Tc, Ag, Sb and I isotopes were made from catcher foils sandwiching isotopic targets, and their isotopic yield distributions determined. The distributions are used to estimate the average number of neutrons associated with each fission event, including neutrons emitted before and after fission. - Prompt coincidence measurements of fragments are used to derive the overall mass and kinetic-energy distributions of primary fragments, taking into account the effects of pre- and post-fission neutron emission. The mass distributions are well fitted by the statistical theory, at a temperature corresponding to an excitation about 10 MeV above that at the saddle point. No evidence is found for an increase of kinetic-energy with increasing angular momentum of the compound nucleus. (author)

  3. Angular distribution in ternary cold fission

    International Nuclear Information System (INIS)

    Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.

    2003-01-01

    We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)

  4. Fission and fragmentation of silver and bromine nuclei by 1-6 GeV energy photons

    International Nuclear Information System (INIS)

    Pinheiro Filho, J. de D.

    1983-01-01

    Fission and fragmentation of silver and bromine nuclei induced by bremsstrahlung photons in the maximum energy range of 1-6 GeV are studied. A special technique of nuclear emulsion for the highly ionizing nuclear fragment detection is used in the discrimination between nuclear fission and fragmentation events. Films of Ilford-KO nuclear emulsion (approximatelly 10 20 atoms/cm 2 of Ag, Br) which had been exposed to bremsstrahlung beams in 'Deutsches Elektronen Synchrotron' (DESY, Hamburg) with total doses of approximatelly 10 11 equivalent photons are used. Through a detailed analysis of range, angular and angle between fragment distributions, and empirical relations which permit to estimate nuclear fragment energy, range and velocity, the discrimination between fission and fragmentation events is made. Results related to fragment range distribution, angular distribution, distribution of angle between fragments, distribution of ratio between ranges, velocity distributions, forward/backward ratio, fission and fragmentation cross sections, nuclear fissionability and ternary fission frequency are presented and discussed. The results show that the mean photofragmentation cross section in the internal 1-6 GeV (0,09+-0,02mb) is significant when compared to the photofission (0,29+-0,05mb). It is also shown that the mean photofission cross section between 1 and 6 GeV is great by a factor of approximatelly 10 when compared to the foreseen by the cascade-evaporation nuclear model for monoenergetic photons of 0,6 GeV. (L.C.) [pt

  5. Influence of spin on fission fragments anisotropy

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2005-01-01

    Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.

  6. Mass resolved angular distribution of fission products in 20Ne + 232Th reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Kumar, Amit; Guin, R.

    2011-01-01

    Mass resolved angular distribution of fission products was measured in 20 Ne + 232 Th reaction at beam energy of 120 MeV. A preliminary analysis of the angular distribution data of fission products shows higher average anisotropy compared to that calculated using statistical theory. A signature of rise in anisotropy near symmetry, as reported in earlier studies in literature, is also seen. Further study is in progress to get more detailed information about the contribution from non-compound nucleus fission and dependence of angular anisotropy on asymmetry of mass division

  7. Mass distribution of fission fragments using SSNTDs based image analysis system

    International Nuclear Information System (INIS)

    Kolekar, R.V.; Sharma, D.N.

    2006-01-01

    Lexan polycarbonate track detector was used to obtain mass distribution of fission fragments from 252 Cf planchette source, Normally, if the fission fragments are incident perpendicular to the lexan surface, the diameter of heavy fragment is greater than that of lighter fragment. In practical problems fission fragments are incident on the detector at all angles. So, in the present experiment, lexan detector was exposed to 252 Cf planchette source in 2π geometry. Fission fragments were incident on the detector with various angles. So the projected fission track length for fission fragment of same energy is different because of different angle of incidence. Image analysis software was used to measure the projected track length. But the problem is that for fission fragment having greater angle of incidence the entire track length is not focused on the surface. So reduced track length is measured. This problem is solved by taking two images, one at the surface and one at the tip of track and then overlapping both the images using image analysis software. The projected track length and the depth of the track were used to get the angle of incidence. Fission track lengths were measured for same angle of incidence. In all 500 track lengths were measured and plot for mass distribution for fission fragment was obtained.(author)

  8. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  9. Mass distribution of fission fragments within the Born-Oppenheimer approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, K.; Nerlo-Pomorska, B. [M.C.S. University, Department of Theoretical Physics, Lublin (Poland); Ivanyuk, F.A. [Institute for Nuclear Research, Kiev (Ukraine)

    2017-03-15

    The fission fragments mass-yield of {sup 236} U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. (orig.)

  10. Formation and distribution of fragments in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Zhang, Chunli; Nazarewicz, Witold; Schunck, Nicolas

    2017-12-01

    Background: Fission is a fundamental decay mode of heavy atomic nuclei. The prevalent theoretical approach is based on mean-field theory and its extensions where fission is modeled as a large amplitude motion of a nucleus in a multidimensional collective space. One of the important observables characterizing fission is the charge and mass distribution of fission fragments. Purpose: The goal of this Rapid Communication is to better understand the structure of fission fragment distributions by investigating the competition between the static structure of the collective manifold and the stochastic dynamics. In particular, we study the characteristics of the tails of yield distributions, which correspond to very asymmetric fission into a very heavy and a very light fragment. Methods: We use the stochastic Langevin framework to simulate the nuclear evolution after the system tunnels through the multidimensional potential barrier. For a representative sample of different initial configurations along the outer turning-point line, we define effective fission paths by computing a large number of Langevin trajectories. We extract the relative contribution of each such path to the fragment distribution. We then use nucleon localization functions along effective fission pathways to analyze the characteristics of prefragments at prescission configurations. Results: We find that non-Newtonian Langevin trajectories, strongly impacted by the random force, produce the tails of the fission fragment distribution of 240Pu. The prefragments deduced from nucleon localizations are formed early and change little as the nucleus evolves towards scission. On the other hand, the system contains many nucleons that are not localized in the prefragments even near the scission point. Such nucleons are distributed rapidly at scission to form the final fragments. Fission prefragments extracted from direct integration of the density and from the localization functions typically differ by more than

  11. Correlated spins of complementary fragment pairs in the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Smith, A. G.; Simpson, G. S.; Billowes, J.; Dagnall, P. J.; Durell, J. L.; Freeman, S. J.; Leddy, M.; Phillips, W. R.; Roach, A. A.; Smith, J. F.

    1999-01-01

    A study of the γ-ray decay of low-lying excited states in fragments produced in the spontaneous fission of 252 Cf has revealed a significant correlation between the angles of emission of the 2 1 + →0 1 + transitions of complementary fragment pairs. Calculations of the amount of dealignment that is needed to reproduce the measured a 2 values, and a comparison with the results of previous fragmentangular distribution measurements, suggests that at scission there may be significant population of m≠0 substates associated with the projection of the fragment spin vector on the fission axis. Fragments from the spontaneous fission of 248 Cm emit 2 1 + →0 1 + γ rays that show markedly reduced interfragment correlations, suggesting that either a larger role is played by the relative angular momentum of the fragments, or that the dealignment introduced by the neutron emission and statistical γ decay to the 2 1 + state is larger in 248 Cm than 252 Cf fission. (c) 1999 The American Physical Society

  12. Neutron-induced fission fragment angular distribution at CERN n TOF: The Th-232 case

    CERN Document Server

    Tarrio, Diego; Paradela, Carlos

    This thesis work was done in the frame of the study of the neutron-induced fission of actinides and subactinides at the CERN n TOF facility using a fast Parallel Plate Avalanche Counters (PPACs) setup. This experimental setup provide us with an intense neutron beam with a white spectrum from thermal to 1 GeV and with an outstanding high resolution provided by its flight path of 185 m. In our experiment, fission events were identified by detection of both fission fragments in time coincidence in the two PPAC detectors flanking the corresponding target. This technique allowed us to discriminate the fission events from the background produced by α disintegration of radioactive samples and by particles produced in spallation reactions. Because PPAC detectors are insensitive to the γ flash, it is possible to reach energies as high as 1 GeV. The stripped cathodes provide the spatial position of the hits in the detectors, so that the emission angle of the fission fragments can be measured. Inside the reaction cham...

  13. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  14. Fission fragment mass distributions via prompt γ-ray spectroscopy

    Indian Academy of Sciences (India)

    The distribution of fragment masses formed in nuclear fission is one of the most strik- ing features .... 80. 100. 120. 140. 160. 10. 3. 10. 4. Fragment Mass. Relative yield. Sn. Cd. Te. Pd ... the secondary fragment at Z = 50 and N = 82 shells, where the yields are depleted. Both ... More systematic experimental data are required.

  15. Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu

    Science.gov (United States)

    Verbeke, J. M.; Nakae, L. F.; Vogt, R.

    2018-04-01

    Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.

  16. Decay and fission of the oriented nuclei

    CERN Document Server

    Kadmenskij, S G

    2002-01-01

    The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...

  17. Angular distributions of target fragments from the reactions of 292 MeV - 25.2 GeV 12C with 197Au and 238U

    International Nuclear Information System (INIS)

    Morita, Y.

    1983-01-01

    The angular distributions of the 197 Au target fragments were all forwardly peaked. Extensively forward peaked angular distributions were observed at the non-relativistic projectile energies (292 MeV, 1.0 GeV). No obvious differences were observed in the angular distributions at the different relativistic projectile energies of 3.0 GeV, 12.0 GeV and 25.2 GeV. The characteristic angular distribution pattern from the relativistic projectile energy experiments was also observed in the non-relativistic energy experiments. Maximum degree of forward-peaking in the angular distributions at each projectile energy was observed at the product mass number (A) around 190 from the 292 MeV projectile energy, at A = 180 from 1.0 GeV and at A =175 from 3.0 GeV and 12.0 GeV. In general, two different types of angular distributions were observed in the relativistic projectile energy experiments with the 238 U target. Isotropic angular distributions were observed for the fission product nuclides. The angular distributions of the fission products at the intermediate (292 MeV) energy showed slightly forward peaked angular distributions. Because of the long projectile-target interaction time in the primary nuclear reaction, larger momentum was transferred from the projectile to the target nucleus. Steep forward-peaked angular distributions were also observed with the 238 U target

  18. Formation of fission-fragment mass distribution for nuclei lighter than thorium

    International Nuclear Information System (INIS)

    Itkis, M.G.; Mul'gin, S.I.; Rusanov, A.Y.; Okolovich, A.N.; Smirenkin, G.N.

    1986-01-01

    A phenomenological approach to description of fission-fragment mass distribution Y(M) for nuclei in the vicinity of Pb is developed and used to extract from the experimental Y(M) data the nuclear deformation potential energy V(M) and its components: the macroscopic (liquid-drop) part and the shell correction in the transition state. The results of the analysis are compared with the theoretically obtained V(M) and Y(M). The three-hump fragment-mass distributions observed in Ra fission are satisfactorily described within the framework of the approach developed. The properties of the symmetric and asymmetric fission valleys and the related Y(M) components are discussed

  19. Multi-fold correlations between 252Cf (sf) fragments and fission neutrons/γ-rays

    International Nuclear Information System (INIS)

    Duering, I.; Jahnke, U.

    1993-01-01

    Direction-sensitive spectroscopy of fission fragments (twin ionization chamber with Frisch grids) was combined with the measurement of neutron multiplicity distribution (P(ν), average total γ-ray energy (2x2 π Gd-loaded scintillator) as well as energy and angular distribution of neutrons and γ-rays. Based on the careful account for necessary corrections, scission configurations given by mass asymmetry, elongation (total kinetic energy of fragments), and shape asymmetry (ν 1 /ν 2 ) can be studied exclusively in correlation with differential distributions of emission products. The scheme for correcting the neutron multiplicity distribution including its separation into the contributions from the complementary fragments is presented in detail. The mass yield for extreme anti ν 1 / anti ν 2 ratios show fine structures indicating the cold shape-asymmetric fission. (orig.)

  20. Lecture 2: Equilibrium statistical treatment of angular momenta associated with collective modes in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1979-01-01

    The angular momentum effects in deep inelastic processes and fission have been studied in the limit of statistical equilibrium. The model consists of two touching liquid drop spheres. Angular momentum fractionation has been found to occur along the mass asymmetry coordinate. If neutron competition is included (i.e., in compound nucleus formation and fission), the fractionation occurs only to a slight degree, while extensive fractionation is predicted if no neutron competition occurs (i.e., in fusion--fission without compound nucleus formation). Thermal fluctuations in the angular momentum are predicted to occur due to degrees of freedom which can bear angular momentum, like wriggling, tilting, bending, and twisting. The coupling of relative motion to one of the wriggling modes, leading to fluctuations between orbital and intrinsic angular momentum, is considered first. Next the effect of the excitation of all the collective modes on the fragment spin is treated. General expressions for the first and second moments of the fragment spins are derived as a function of total angular momentum and the limiting behavior at large and small total angular momentum is examined. Furthermore, the effect of collective mode excitation on the fragment spin alignment is explored and is discussed in light of recent experiments. The relevance of the present study to the measured first and second moments of the γ-ray multiplicities as well as to sequential fission angular distributions is illustrated by applying the results of the theory to a well studied heavy ion reaction

  1. Parallel theoretical study of the two components of the prompt fission neutrons: Dynamically released at scission and evaporated from fully accelerated fragments

    Directory of Open Access Journals (Sweden)

    Carjan Nicolae

    2017-01-01

    Full Text Available Prompt fission neutrons (PFN angular and energy distributions for the reaction 235U(nth,f are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1 PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10−21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2 PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.

  2. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... In this article, some of our recent results on fission fragment/product angular distributions are discussed in the context of non-compound nucleus fission. Measurement of fission fragment angular distribution in 28Si+176Yb reaction did not show a large contribution from the non-compound nucleus fission.

  3. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum

    International Nuclear Information System (INIS)

    Bonneau, L.

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J 2 in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J 2 operator. (A.C.)

  4. Distribution of nuclear charge and angular momentum in chains 132-137, 99, and 102 of thermal neutron fission of 235U at various kinetic energies and charge states of the fragments

    International Nuclear Information System (INIS)

    Denschlag, H.O.; Braun, H.; Wolfsberg, K.

    1979-01-01

    The fission product yields of the members of the decay chains 132 to 137, 99, and 102 in 235 U(n/sub th/,f) were measured at various kinetic energies and ionic charge states of the fragments using the mass separator for unslowed fission products LOHENGRIN. The results are discussed with respect to four aspects: A preferential formation of neutron rich chain members found at high kinetic energy of the fragments is predominantly due to decreasing prompt neutron evaporation. A particularly large effect in chain 132 is attributed to the double shell closure in Sn-132. The persistence of an even-odd pairing effect in the yields throughout the range of kinetic energies studied leads to the conclusion that the high internal excitation energy of the fragments is tied up mainly in the form of collective energy (e.g., deformation energy) rather than single particle excitation. Generally, the yield distribution at constant kinetic energy is invariant with respect to the ionic charge state of the isotopes separated. Deviations from this behavior found in chains 99, 102, 133, and 136 are interpreted as being due to Auger events following a converted transition in the decay of ns-isomers taking place in the vacuum of the separator. A pronounced variation of the independent formation ratio of single isomeric states with the kinetic energy of the fragments is providing direct information on the controversial topic of the change of angular momentum of fission fragments as a function of deformation (scission distance). 34 references

  5. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  6. Langevin description of fission fragment charge distribution from excited nuclei

    CERN Document Server

    Karpov, A V

    2002-01-01

    A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied

  7. {sup 252}Cf spontaneous prompt fission neutron spectrum measured at 0 degree and 180 degree relative to the fragment motion

    Energy Technology Data Exchange (ETDEWEB)

    Shanglian, Bao; Jinquan, Liu [Beijing Univ., BJ (China); Batenkov, O I; Blinov, M V; Smirnov, S N [V.G. Khlopin Radium Institute, ST. Petersburg (Russian Federation)

    1994-09-01

    The {sup 252}Cf spontaneous prompt fission neutron spectrum at 0 degree and 180 degree relative to the motion direction of corresponding fission fragments was measured. High angular resolution for fragment measurements and high energy resolution for neutron measurements were obtained using multi-parameter TOF spectrometer. The results showed that there is a symmetric distribution of `forward` and `backward` for low energy in C.M.S. neutrons, which was an evidence of nonequilibrium neutrons existed in fission process.

  8. Reassessment of fission fragment angular distributions from continuum states in the context of transition-state theory

    International Nuclear Information System (INIS)

    Vaz, L.C.; Alexander, J.M.

    1983-01-01

    Fission angular distributions have been studied for years and have been treated as classic examples of transition-state theory. Early work involving composite nuclei of relatively low excitation energy Esup(*) ( 2 0 (K 2 0 = Psub(eff)T/(h/2π) 2 ) are presented along with comparissons of Psub(eff) to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermediate spin zone (30 < or approx. I < or approx. 65), while strong shell and/or pairing effects are evident for excitations less than < or approx. 35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximations commonly made in the theory, and suggestions are made toward this end. (orig.)

  9. Study of angular momentum transfer from sequential fission in deeply inelastic collisions 40Ar-209Bi at 255 MeV

    International Nuclear Information System (INIS)

    Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; L'Haridon, M.; Osmont, A.; Patry, J.P.; Steckmeyer, J.C.; Chechik, R.; Guilbault, F.

    We have measured the angular distribution of the target-like reaction product fission fragments emitted in coincidence with the light projectile like reaction product. For the first time, a sequential fission experiment in deeply inelastic collisions has observed an increase of the width of the out of plane angular distributions with the in-plane angle phi. The in-plane distribution exhibits an anisotropy centered in the recoil direction of the heavy fissionning nucleus, and shows up a dealignment mechanism of the transferred angular comparatively to the normal to the reaction plane. The de-aligned spin components have a gaussian distribution with a r.m.s width of about 10h and are lying preferentially in a plane perpendicular to the recoil direction. The mean value of the aligned component is of about 45h in agreement with the sticking limit with deformed nuclei. The dependence of the target-like reaction product fission probabilities on the total kinetic energy loss and Z of the projectile-like reaction product have been measured [fr

  10. Fission fragment mass distribution in the 13C+182W and 176Yb reactions

    International Nuclear Information System (INIS)

    Ramachandran, K.; Hinde, D.J.; Dasgupta, M.; Williams, E.; Wakhle, A.; Luong, D.H.; Evers, M.; Carter, I.P.; Das, S.

    2014-01-01

    Fission fragment mass distributions have been measured for many systems and found to be asymmetric in the fission of nuclei with nucleon number A in the range 228-258 and proton number Z in the range 90-100. For lighter systems, it has been observed that fission fragment mass distributions are usually symmetric. At high excitation energies the shell effects are expected to vanish and the nuclei are expected to behave like a charged liquid drop; hence, only symmetric fission is expected for all the nuclei. Even after much experimental and theoretical work in this field, the rate of damping of shell effects with excitation energy is not well known. This abstract reports our measurements with 13 C beams on 182 W and 176 Yb targets

  11. Charge and angular distributions as well as sequential decay and γ-ray emission in heavy ion collisions viewed in the light of the diffusion model

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1977-08-01

    The hierarchy of the collective relaxation times in heavy ion reactions is briefly reviewed. An improved diffusion model is introduced and applied to interpret the fragment Z and angular distributions for some typical reactions. The equilibrium in the neutron-to-proton ratio as well as the sharing of the excitation energy between fragments is studied by a coincidence method which leads to the measurement of the charge, mass and mean number of nucleons emitted by each fragment. The final destiny of the dissipative energy is determined by measuring the atomic number of two coincident fragments, thus obtaining the missing charge as a function of bombarding energy and the Q of the reaction. The sequential fission probability of the heavy recoil is established as a function of the Z and kinetic energy of the light partner. The out-of-plane angular distribution of the fission fragments is correlated with the fissionability and interpreted in terms of various sources of angular momentum misalignment. The γ-ray multiplicities and the γ-ray angular distributions associated with deep inelastic event are discussed in terms of the angular momentum transfer and in terms of the diffusion model

  12. Neutron-fragment angular correlations in /sup 235/U(n/sub th/,f)

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    1985-01-01

    Neutron-fragment angular correlations in /sup 235/U(n/sub th/,f) as a function of neutron energy and fragment mass are presented. The results obtained in this experiment, together with data for neutron-neutron angular correlations, are compared with a Monte Carlo simulation of the fission process incorporating both a scission neutron component and an anisotropic neutron emission component

  13. Observed mass distribution of spontaneous fission fragments from samples of lime - an SSNTD study

    CERN Document Server

    Paul, D; Ghose, D; Sastri, R C

    1999-01-01

    SSNTD is one of the most commonly used detectors in the studies involving nuclear phenomena. The ease of registration of the presence of alpha particles and fission fragments has made it particularly suitable in studies where stable long exposures are needed to extract reliable information. Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Lime samples from Silchar in Assam of Eastern India have shown the presence of spontaneous fission fragments besides alphas. In the present study we look at the ratio of the average mass distribution of these fission fragments, that gives us an indication of the presence of the traces of transuranic elements.

  14. Angular distributions of target black fragments in nucleus–nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, Fuhu; Abd Allah, N.N.; Zhang, Donghai; Duan, Maiying

    2003-01-01

    The experimental results of space, azimuthal, and projected angular distributions of target black fragments produced in silicon-emulsion collisions at 4.5A GeV/c (the Dubna energy) are reported. A multi-source ideal gas model is suggested to describe the experimental angular distributions. The Monte Carlo calculated results are in agreement with the experimental data. (author)

  15. Analysis of dependence of fission cross section and angular anisotropy of the 235U fission fragment escape induced by neutrons of intermediate energies (epsilon < or approximately200 keV) on target nucleus orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1985-01-01

    Experimental data on dependence of fission cross section Σsub(f) (epsilon) and angular anisotropy W(epsilon, 0 deg)/W(epsilon, 90 deg) of sup(235)U fission fragment escape by neutrons with energy epsilon=100 and 200 keV on orientation of target nuclei are analyzed. 235 U (Isup(πsub(0))=7/2sup(-)) nuclei were orientated at the expense of interaction of quadrupole nucleus momenta with nonuniform electric field of uranyl-rubidium nitrate crystal at crystal cooling to T=0.2 K. The analysis was carried out with three different sets of permeability factors T(epsilon). Results of the analysis weakly depend on T(epsilon) choice. It is shown that a large number of adjusting parameters (six fissionabilities γsup(f)(Jsup(π), epsilon) and six momenta sub(Jsup(π))) permit to described experimental data on Σsub(f)(epsilon) and W(epsilon, 0 deg)/W(epsilon, 90 deg), obtained at epsilon=200 keV by introducing essential dependence of γsup(f)(Jsup(π), epsilon) and sub(Jsup(π)) on Jsup(π). Estimations of fission cross sections Σsub(f)(epsilon) and angular distribution W(epsilon, n vector) up to T approximately equal to 0.01 K in two geometries of the experiment: the orientation axis is parallel and perpendicular to momentum direction p vector of incident neutrons, are conducted

  16. Spatial- and Time-Correlated Detection of Fission Fragments

    Directory of Open Access Journals (Sweden)

    Platkevic M.

    2012-02-01

    Full Text Available With the goal to measure angular correlations of fission fragments in rare fission decay (e.g. ternary and quaternary fission, a multi-detector coincidence system based on two and up to four position sensitive pixel detectors Timepix has been built. In addition to the high granularity, wide dynamic range and per pixel signal threshold, these devices are equipped with per pixel energy and time sensitivity providing more information (position, energy, time, enhances particle-type identification and selectivity of event-by-event detection. Operation of the device with the integrated USB 2.0 based readout interface FITPix and the control and data acquisition software tool Pixelman enables online visualization and flexible/adjustable operation for a different type of experiments. Spatially correlated fission fragments can be thus registered in coincidence. Similarly triggered measurements are performed using an integrated spectrometric module with analogue signal chain electronics. The current status of development together with demonstration of the technique with a 252Cf source is presented.

  17. Mass distribution of fission-like fragments formed in 20Ne + 165Ho system at Elab≈ 8.2 MeV/A

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.

    2017-01-01

    In the present work, an attempt has been made to study CFF and IFF in 20 Ne + 165 Ho system at projectile energy ≈ 8.2 MeV/A. Twelve fission like fragments (FLF) produced through complete fusion-fission (CFF) and/or incomplete fusion-fission (IFF) in the present system have been identified. The production cross-sections of identified fission like fragments have been measured and the mass distribution of fission like fragments studied

  18. Revisiting the even-odd staggering in fission-fragment yields

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Schmidt, K. H.

    2010-01-01

    The even-odd staggering observed in the experimental fission-fragment nuclear-charge yields is investigated over a wide systematics of fission fragments measured at Lohengrin in direct kinematics and at GSI in inverse kinematics. The general increase of the even-odd staggering in the fission-fragment charge yields towards asymmetric charge splits is explained by the absorption of the unpaired nucleons by the heavy fragment. As a consequence, the well established trend of even-odd staggering in the fission fragment charge yields to decrease with the fissility is attributed in part to the asymmetry evolution of the charge distribution. This interpretation is strongly supported by the data measured at GSI, which cover the complete charge distribution and include precise yields at symmetry. They reveal that the even-odd effect around symmetry remains constant over a large range of fissility. (authors)

  19. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  20. Measurement of Plutonium-240 Angular Momentum Dependent Fission Probabilities Using the Alpha-Alpha' Reaction

    Science.gov (United States)

    Koglin, Johnathon

    8:0MeV and one bin from 4:5MeV to 5:5MeV. Across energy bins the fission probability increases approximately linearly with increasing alpha' scattering angle. At 90° the fission probability increases from 0:069(6) in the lowest energy bin to 0:59(2) in the highest. Likewise, within a single energy bin the fission probability increases with alpha' scattering angle. Within the 6:5MeV and 7:0MeV energy bin, the fission probability increased from 0:41(1) at 60° to 0:81(10) at 140°. Fission fragment angular distributions were also measured integrated over each energy bin. These distributions were fit to theoretical distributions based on combinations of transitional nuclear vibrational and rotational excitations at the saddle point. Contributions from specific K vibrational states were extracted and combined with fission probability measurements to determine the relative fission probability of each state as a function of nuclear excitation energy. Within a given excitation energy bin, it is found that contributions from K states greater than the minimum K = 0 state tend to increase with the increasing alpha' scattering angle. This is attributed to an increase in the transferred angular momentum associated with larger scattering angles. The 90° alpha' scattering angle produced the highest quality results. The relative contributions of K states do not show a discernible trend across the energy spectrum. The energy-binned results confirm existing measurements that place a K = 2 state in the first energy bin with the opening of K = 1 and K = 4 states at energies above 5:5MeV. This experiment represents the first of its kind in which fission probabilities and angular distributions are simultaneously measured at a large number of scattering angles. The acquired fission probability, angular distribution, and K state contribution provide a diverse dataset against which microscopic fission models can be constrained and further the understanding of the properties of the 240Pu

  1. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  2. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  3. Neighbouring charge fragmentations in low energy fission

    International Nuclear Information System (INIS)

    Montoya, M.

    1986-10-01

    Shell and odd-even effects in fission have been largely studied until now. The structure in fragment mass, charge and kinetic energy distributions of fragments were interpreted as shell and even-odd effects. In this paper, we want to show that the discret change of fragment charge symmetry should produce also structures in those distribution. 19 refs

  4. A new statistical scission-point model fed with microscopic ingredients to predict fission fragments distributions

    International Nuclear Information System (INIS)

    Heinrich, S.

    2006-01-01

    Nucleus fission process is a very complex phenomenon and, even nowadays, no realistic models describing the overall process are available. The work presented here deals with a theoretical description of fission fragments distributions in mass, charge, energy and deformation. We have reconsidered and updated the B.D. Wilking Scission Point model. Our purpose was to test if this statistic model applied at the scission point and by introducing new results of modern microscopic calculations allows to describe quantitatively the fission fragments distributions. We calculate the surface energy available at the scission point as a function of the fragments deformations. This surface is obtained from a Hartree Fock Bogoliubov microscopic calculation which guarantee a realistic description of the potential dependence on the deformation for each fragment. The statistic balance is described by the level densities of the fragment. We have tried to avoid as much as possible the input of empirical parameters in the model. Our only parameter, the distance between each fragment at the scission point, is discussed by comparison with scission configuration obtained from full dynamical microscopic calculations. Also, the comparison between our results and experimental data is very satisfying and allow us to discuss the success and limitations of our approach. We finally proposed ideas to improve the model, in particular by applying dynamical corrections. (author)

  5. The angular momentum dependence of complex fragment emission

    International Nuclear Information System (INIS)

    Sobtka, L.G.; Sarantites, D.G.; Li, Z.

    1987-01-01

    Large fragment (A > 4) production at high angular momentum is studied via the reaction, 200 MeV 45 Sc + 65 Cu. Comparisons of the fragment yields from this reaction (high angular momentum) to those from 93 Nb + Be (low angular momentum) are used to verify the strong angular momentum dependence of large fragment production predicted by equilibrium models. Details of the coincident γ-ray distributions not only confirm a rigidly rotating intermediate but also indicate that the widths of the primary L-wave distributions decrease with increasing symmetry in the decay channel. These data are used to test the asymmetry and L-wave dependence of emission barriers calculated from a rotating, finite range corrected, liquid drop model. 21 refs., 10 figs

  6. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  7. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  8. Experimental study of fission process by fragment-neutron correlation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan). Faculty of Engineering

    1997-07-01

    Fragment-neutron correlation measurement of {sup 235}U(n{sub th}, f) was carried out. The obtained results showed more statistical accuracy than that of reported thermal neutron reaction. Experimental results and it`s analysis made clear the following facts. The minimum values of <{eta}> (m*) are shown at about 90 and 145 {mu} and <{eta}> (m*) showed the symmetrical form with an axis of symmetrical fission. This tendency is same as the distribution of {sup 252}Cf(s.f). -dV/dTKE(m*) indicates the saw-teethed distribution as same as <{nu}>(m*). The distribution seems depend on stiffness of fission fragment affected by the shell effect. The level density parameter a(m*) of fission fragment obtained from {sup 235}U(n{sub th}, f) expresses the saw-teethed distribution as same as that of {sup 252}Cf(s.f). This distribution can be explained by the empirical equation under consideration of the fission fragment depending on the shell effect and the collective motion. (S.Y.)

  9. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  10. Study of scission shapes in spontaneous ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Singer, P.; Schwalm, D.; Thirolf, P.; Goennenwein, F.; Hesse, M.

    1995-06-01

    A new kinematic study on the ternary fission of 252 Cf has been conducted by registering prompt neutrons and fission γ rays coincidence with light charged particles (LCP) and fission fragments. The aim is to investigate changes in fragment deformation energy between the binary and ternary fission modes from measured prompt neutron angular distributions and multiplicities, and to explore the influence of light particle emission on the energy distribution, multiplicity and angular anisotropy of γ rays emitted during fragment de-excitation. The experiment was performed at the MPI Heidelberg using the Darmstadt-Heidelberg crystal ball spectrometer as γ-ray and neutron detector. Fragments were identified by a double-E measurement with an angular sensitive twin ionization chamber (IC). Light charged particles from fission were measured by ΔE-E telescopes composed of ΔE ICs and silicon PIN diodes. The telescopes enable to identify various LCPs which are emitted much more rarely than ternary α particles. The parameters of the experiment and the method of data analysis are described and first results presented. (orig.)

  11. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  12. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  13. Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

    Science.gov (United States)

    Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.

    2018-04-01

    The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.

  14. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  15. Nuclear fission studies: from LOHENGRIN to FIPPS

    International Nuclear Information System (INIS)

    Chebboubi, Abdelaziz

    2015-01-01

    Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the

  16. Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes

    Science.gov (United States)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2018-03-01

    The charge (mass) distributions of fission fragments resulting from low- and high-energy fission of the even-even nuclei 254 -260 ,264Fm , 258 -264No , and 262 -266Rf are studied with the statistical scission-point model. The calculated results are compared with the available experimental data. In contrast to the experimental data, the calculated mass distribution for 258Fm (s.f.) is strikingly similar to the experimental one for 257Fm (s.f.). The transformation of the shape of charge distribution with increasing isospin and excitation energy occurs gradually and in a similar fashion like that of the mass distribution, but slower. For 254Fm(i.f.), 257Fm(nt h,f), and 260Fm (s.f.), the unexpected difference (symmetric or asymmetric) between the shapes of charge and mass distributions is predicted for the first time. At some critical excitation energy, the saturation of the symmetric component of charge (mass) yields is demonstrated.

  17. Ternary fission induced by polarized neutrons

    Directory of Open Access Journals (Sweden)

    Gönnenwein Friedrich

    2013-12-01

    Full Text Available Ternary fission of (e,e U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  18. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  19. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O+232Th reaction

    Directory of Open Access Journals (Sweden)

    R. Léguillon

    2016-10-01

    Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.

  20. Gamma-ray multiplicity measurements for the determination of the initial angular momentum ranges in normal and fast fission processes

    International Nuclear Information System (INIS)

    El Masri, Y.; Steckmeyer, J.C.; Martin, V.; Bizard, G.; Brou, R.; Laville, J.L.; Regimbart, R.; Tamain, B.; Peter, J.

    1990-01-01

    Gamma-ray multiplicities (first and second moments) have been measured, in the 220 MeV 20 Ne+ nat Re and 315 meV 40 Ar+ 165 Ho reactions, as a function of fission fragment masses and centre-of-mass total kinetic energies. The two reactions lead to the same fusion nucleus, 205 At, at the same excitation energy (167 MeV). The experimental critical angular momentum for the fission process in the Ne+Re system (91±3) ℎ is close to I Bf=0 (∝80 ℎ) while in the Ar+Ho reaction this critical angular momentum (136±4) ℎ is much larger than I Bf=0 value, favoring the occurrence of the fast fission process. The observed widths of the fission fragment mass distribution: (42±2) u in the Ne+Re system and (56±4) u in the Ar+Ho reaction strengthen this hypothesis. For both compound nucleus fission and fast fission components in Ar+Ho, the total spin values obtained in absolute magnitude and in their dependence on the mass asymmetry are well described by assuming rigid rotation of the fissioning complex and statistical excitation of some collective rotational modes such as 'Bending' and 'Wriggling' according to the Schmitt-Pacheco model. These modes, however, are not all fully excited, their degrees of excitation are approximately the same for both fission components. From theoretical estimates of equilibration times, one anticipates the 'Tilting' mode to be by far the last to be excited, and from its non-excitation in the present data together with the excitation of bending and wriggling, a time interval of about 10 -21 s to 2x10 -20 s can be derived for the reaction time of both normal fission and fast fission. (orig./HSI)

  1. Langevin description of mass distributions of fragments originating from the fission of excited nuclei

    International Nuclear Information System (INIS)

    Vanin, D.V.; Nadtochy, P.N.; Adeev, G.D.; Kosenko, G.I.

    2000-01-01

    A stochastic approach to fission dynamics is proposed. The approach, which is based on Langevin equations, is used to calculate the mass distributions of fragments originating from the fission of excited nuclei. The effect of viscosity and light-particle emission on the variance of mass distributions is studied. The results of the calculations based on the above approach reveal that, in order to obtain a simultaneous description of mass-distribution parameters and the multiplicities of prescission particles, it is necessary to use sufficiently large values of nuclear viscosity both for the one-body and for the two-body viscosity mechanism, anomalously large values of the viscosity coefficient being required in the latter case

  2. Goodness of isospin in neutron rich systems from the fission fragment distribution

    Science.gov (United States)

    Garg, Swati; Jain, Ashok Kumar

    2017-09-01

    We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.

  3. Angular distributions of intermediate mass fragments emitted in 30 MeV/u 40Ar induced reactions

    International Nuclear Information System (INIS)

    Gou Quanbu; Zhu Yongtai; Xu Hushan; Wei Zhiyong; Lu Jun; Zhang Yuhu; Wang Qi; Li Songlin; Wu Zhongli

    1999-01-01

    The angular distributions of intermediate mass fragments with charge numbers from 3 to 24 emitted in 30 MeV/u 40 Ar + 58,64 Ni and 115 In reactions over an angular range of 5 degree-140 degree have been measured. In different angular region an exponential distribution function dσ/dΩ = N exp(-θ/α) was used to fit the measured angular distributions. The decay factor α which can be connected with the interaction time τ and the factor N which is related to the intensity of the emission sources have been extracted. The relationship of α(Z) and N(Z) with Z for different reaction systems and different angular regions has been discussed. The different behavior of dσ/dΩ, α(Z), and N(Z) for the three studied reaction systems exists mainly in the middle and backward angular regions. The dependencies of angular distributions on isospin and the size of reaction systems have also been discussed

  4. Prompt neutron emission; Emission des neutrons prompts de fission

    Energy Technology Data Exchange (ETDEWEB)

    Sher, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    It is shown that Ramanna and Rao's tentative conclusion that prompt fission neutrons are emitted (in the fragment system) preferentially in the direction of fragment motion is not necessitated by their angular distribution measurements, which are well explained by the usual assumptions of isotropic emission with a Maxwell (or Maxwell-like) emission spectrum. The energy distribution (Watt spectrum) and the angular distribution, both including the effects of anisotropic emission, are given. (author) [French] On montre que la conclusion experimentale de Ramanna et Rao selon laquelle les neutrons prompts de fission sont emis (dans le systeme de reference des fragments) preferentiellement dans la direction du mouvement du fragment, ne decoule pas necessairement de leurs mesures de distribution angulaire. Celles-ci sont bien expliquees par l'hypothese classique de l'emission isotrope et d'un spectre d'emission maxwellien (ou quasi-maxwellien). On donne la distribution en energie (ou spectre de Watt) et la distribution angulaire, comprenant toutes les deux les effets d'emission anisotrope. (auteur)

  5. Prompt neutron emission from fragments in spontaneous fission of {sup 244,248}Cm and {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyev, A. S.; Shcherbakov, O. A. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188300 (Russian Federation); Dushin, V. N.; Jakovlev, V. A.; Kalinin, V. A.; Petrov, B. F. [V.G. Khlopin Radium Institute, St. Petersburg, 194021 (Russian Federation); Hambsch, F.J [EC-JRC-Institute for Reference Materials and Measurements Retieseweg 111, B-2440 Geel (Belgium); Laptev, A. B. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188300 (Russian Federation); Japan Nuclear Cycle Development Institute, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2005-07-01

    Neutrons emitted in fission were measured separately for each complementary fragment in correlation with fission fragment energies. Two high efficiency Gd-loaded liquid scintillator tanks were used for neutron registration. Fission fragment energies were measured using a twin Frisch gridded ionization chamber with a pin-hole collimator. The neutron multiplicity distributions were obtained for each value of the fission fragment mass and energy and corrected for neutron registration efficiency, background and pile-up. The dependencies of these distributions on fragment mass and energy for different energy and mass bins, as well as the mass and energy distribution of the fission fragments are presented and discussed. (authors)

  6. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    1998-02-01

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  7. New experimental approaches to investigate the fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J., E-mail: j.benlliure@usc.es; Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Ayyad, Y.; Cortina-Gil, D.; Paradela, C.; Pietras, B.; Ramos, D.; Vargas, J. [Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Audouin, L.; Boutoux, G. [Institut de Physique Nucléaire d’Orsay, F-91406 Orsay (France); Bélier, G.; Chatillon, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Taïeb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Casarejos, E. [Universidad de Vigo, E-36200 Vigo (Spain); Heinz, A. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); and others

    2016-07-07

    The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of {sup 208}Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.

  8. Fragment properties in the fission of 237Np with fast neutrons - an experimental investigation of fission dynamics

    International Nuclear Information System (INIS)

    Naqvi, A.A.

    1980-03-01

    Fission fragment properties such as mass distribution, kinetic energy distribution or number of prompt emitted neutrons as a function of fragment mass can be used to characterize the scission point configuration. The present experiment allows for the first time to investigate these quantities for neutron induced fission in the MeV range. In this way the influence of excitation energy of the saddle point deformation of the fissioning system ( 237 Np + n) can be studied. Neutrons with energies of 0.8 and 5.5 MeV were produced by the Karlsruhe pulsed 3MV Van de Graaff accelerator. Kinetic energies and velocities of correlated fragments were determined by solid state detectors using the time-of-flight technique. The experimentally determined distributions of fragment properties were compared to a recent model suggested by Wilkins et al. which assumes only relatively weak coupling between internal and collective degrees of freedom. At least qualitative agreement is found for most of the results. (orig.) [de

  9. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  10. Simultaneous measurement of fission fragments and prompt neutrons for thermal neutron-induced fission of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)

  11. Study of fission fragments produced by 14N + 235U reaction

    International Nuclear Information System (INIS)

    Yalcinkaya, M.; Erduran, M.N.; Ganioglu, E.; Akkus, B.; Bostan, M.; Gurdal, G.; Erturk, S.; Balabanski, D.; Minkova, A.; Danchev, M.

    2005-01-01

    This work was performed to understand the structure of neutron rich fission fragments around ∼ 130 region. A thin metallic 235 U target was bombarded by 14 N beam with 10 MeV/A from the Separated Sector Cyclotron at the National Accelerator Centre, Cape Town, South Africa. The main goal to detect and identify fission fragments and to obtain their mass distribution was achieved by using Solar Cell detectors in the AFRODITE (African Omnipurpose Detector for Innovative Techniques and Experiments) spectrometer. The X-rays emitted from fission fragments were detected by LEP detectors and γ rays emitted from excited states of the fission fragments were detected by CLOVER detectors in the spectrometer. (author)

  12. Influence of primary fragment excitation energy and spin distributions on fission observables

    Science.gov (United States)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  13. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  14. Angular momentum distribution of primary fission fragments by measurement of the relative yield of isomeric fission products

    International Nuclear Information System (INIS)

    Dornhoefer, H.

    1980-01-01

    The fission products 132 I and 136 I produced in the fission reactions 238 U(α,f) and 238 U(d,f) were spectroscoped using a gas transport system. Thereby was taken advantage of the fact that at the transport with pure helium without aerosols only iodine activities were collected in a membrane filter. The relative independent yields of the isomeric fission products of 132 I and 136 I were determined for different excitation energies. Thereby was taken advantage of the fact that the transport yield of the gas transport system for 136 I directly produced from the fission was greater than for iodine indirectly produced by β-decay. (orig./HSI) [de

  15. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  16. Fragment angular momentum and descent dynamics in {sup 252}Cf spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Popeko, G.S.; Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [JINR, Dubna, 141980 (Russia); Ter-Akopian, G.M.; Hamilton, J.H.; Kormicki, J.; Daniel, A.V.; Ramayya, A.V.; Hwang, J.K.; Sandulescu, A.; Florescu, A.; Greiner, W. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Florescu, A.; Greiner, W. [JIHIR, Oak Ridge, Tennessee 37831 (United States); Greiner, W. [ITP, J.W. Goethe University, D-60054, Frankfurt am Main (Germany); Florescu, A. [IAP, Bucharest, P.O. Box MG-6, (Russian Federation); Kliman, J.; Morhac, M. [IP SASc, Bratislava (Slovak Republic); Rasmussen, J.O. [LBNL, Berkeley, California 94720 (United States); Stoyer, M.A. [LLNL, Livermore , California 94550 (United States); Cole, J.D. [INEL, Idaho Falls, Idaho 83415 (United States)

    1998-12-01

    Fragment angular momenta as a function of neutron multiplicity were extracted for the first time for the Mo-Ba and Zr-Ce charge splits of {sup 252}Cf by studying prompt coincident {gamma}-rays. The obtained primary fragment angular momenta do not continuously rise with the increase in the number of neutrons evaporated. In frame of the scission point bending oscillation model such regularity is explained due the decrease of the bending temperature. Adiabatic bending oscillations (T=0) are obtained at large ({nu}{sub tot}{gt}5) and small ({nu}{sub tot}=0) scission point elongation. These oscillations are excited to the temperature of 2{endash}3 MeV for the most probable scission configurations indicating a weak coupling between collective and internal degrees of freedom. A strong coupling between the collective bending and dipole oscillations was found. {copyright} {ital 1998 American Institute of Physics.}

  17. Fission dynamics as brought out in cold fragmentation studies

    International Nuclear Information System (INIS)

    Signarbieux, G.

    1986-10-01

    Fission dynamics problem has been addressed since the beginning. This paper is specifically concerned by ''even-odd effects '' in fragment distribution. These effects are reinterpreted, some complementary thoughts on double ionization chamber are given together with a study of fission dymanics at low energy [fr

  18. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    Higbie, Jack

    1969-10-01

    The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  19. Gamma Radiation from Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-10-15

    The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.

  20. Mathematical processing of experimental data on neutron yield from separate fission fragments

    International Nuclear Information System (INIS)

    Basova, B.G.; Rabinovich, A.D.; Ryazanov, D.K.

    1975-01-01

    The algorithm is described for processing the multi-dimensional experiments on measurements of prompt emission of neutrons from separate fission fragments. While processing the data the effect of a number of experimental corrections is correctly taken into account; random coincidence background, neutron spectrum, neutron detector efficiency, instrument angular resolution. On the basis of the described algorithm a program for BESM-4 computer is realized and the treatment of experimental data is performed according to the spontaneous fission of 252 Cf

  1. Anisotropy in angular distributions of 238U fission fragments by photons, produced in high energy electron interaction with Si monocrystal

    International Nuclear Information System (INIS)

    Kasilov, V.I.; Lapin, N.N.

    1981-01-01

    An enhancement is detected under the angle of 90 deg in the fission fragment yield from 238 U nuclei produced by photons emitted by high-energy electrons passing through a silicon monocrystal. The results enable one to select the most optimal conditions to obtain maximal yields of nuclear particles [ru

  2. Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Derkx, X.; Schmidt, K. H.; Andouin, L.; Bacri, C. O.; Barreau, G.; Benlliure, J.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Navin, A.; Rejmund, M.; Roger, T.; Shrivastava, A.; Schmitt, C.; Taieb, J.

    2010-01-01

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238 U beam and a 12 C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)

  3. Fission Fragment Yield Data in Support of Advanced Reactor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Adam [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-11-21

    Within the 3 year POP we propose to continue to test and further develop the fission spectrometers, to do development tests and full data acquisition run at the national laboratory neutron beam facilities, to measure correlated fission fragment yields at low neutron energies with 235 U fission targets, and make these data available to the nuclear community. The spectrometer development will be both on the university based r\\prototype and on the National Laboratory Spectrometer, and measurements will be performed with both. Over the longer time frame of the collaboration, we will take data over a range of low energies, and use other fission targets available to the laboratory. We will gather energy specific fragment distributions and reaction cross sections. We will further develop the data acquisition capabilities to take correlated fission fragment'gamma ray/neurton data, all on an event-by-event basis. This really is an enabling technology.

  4. Dissipative effects in fission investigated with proton-on-lead reactions

    Directory of Open Access Journals (Sweden)

    Rodríguez-Sánchez J. L.

    2016-01-01

    Full Text Available The complete kinematic measurement of the two fission fragments permitted us to investigate dissipative effects at large deformations, between the saddle-point and the corresponding scission configurations. Up to now, this kind of study has only been performed with fusionfission reactions using a limited number of observables, such as the mass distribution of the fission fragments or the neutron multiplicities. However, the large angular momenta gained by the compound nucleus could affect the conclusions drawn from such experiments. In this work, the use of spallation reactions, where the fissioning systems are produced with low angular momentum, small deformations and high excitation energies, favors the study of dissipation, and allowed us to define new observables, such as postscission neutron multiplicities and the neutron excess of the final fission fragments as a function of the atomic number of the fissioning system. These new observables are used to investigate the dissipation at large deformations.

  5. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  6. Angular distributions in the neutron-induced fission of actinides

    CERN Multimedia

    In 2003 the n_TOF Collaboration performed the fission cross section measurement of several actinides ($^{232}$Th, $^{233}$U, $^{234}$U, $^{237}$Np) at the n_TOF facility using an experImental setup made of Parallel Plate Avalanche Counters (PPAC). The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. We have been therefore able to cover the very broad neutron energy range 1eV-1GeV, taking full benefit of the unique characteristics of the n_TOF facility. Figure 1 shows an example obtained in the case of $^{237}$Np where the n_ TOF measurement showed that the cross section was underestimated by a large factor in the resonance region.

  7. Influence of nuclear dissipation on fission dynamics of the excited ...

    Indian Academy of Sciences (India)

    A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear ...

  8. Mass and angular distributions of the reaction products in heavy ion collisions

    Science.gov (United States)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  9. Fission fragment spins and spectroscopy

    International Nuclear Information System (INIS)

    Durell, J.L.

    1988-01-01

    Prompt γ-ray coincidence experiments have been carried out on γ-rays emitted from post-neutron emission fission fragments produced by the aup 19F + 197 Au and 18 O + 232 Th reactions. Decay schemes have been established for even-even nuclei ranging from 78 Se to 148 Nd. Many new states with spin up to ∼ 12h have been observed. Apart from providing a wealth of new information on the spectroscopy of neutron-rich nuclei, the data have been analyzed to determine the average spin of primary fission fragments as a function of fragment mass. The results suggest that the fragment spins are determined by the temperature and shape of the primary fragments at or near to scission

  10. Study of fission mechanism with the reactions 230Th, 231Pa, 235U, 237Np(n,f) and 252Cf(fs)

    International Nuclear Information System (INIS)

    Benfoughal, T.

    1983-01-01

    In this work, the different stages of the nuclear fission process have been investigated. The analysis of fission cross-section and fission fragment angular distribution measurements are made using the hypothesis of asymmetrically deformed states. From the correlation between fissioning nucleus excitation energy and fragment total kinetic energy measurement for several fissioning systems, it is shown that the nuclear viscosity is relatively strong during the saddle-point to scission-point transition. The study of the spontaneous fission of 252 Cf shows that the fragment mass and kinetic energy distributions are mainly determinated by the nucleon shell effects and pairing correlations [fr

  11. Inverse kinematics technique for the study of fission-fragment isotopic yields at GANIL energies

    International Nuclear Information System (INIS)

    Delaune, O.

    2012-01-01

    The characteristics of the fission-products distributions result of dynamical and quantum properties of the deformation process of the fissioning nucleus. These distributions have also an interest for the conception of new nuclear power plants or for the transmutation of the nuclear wastes. Up to now, our understanding of the nuclear fission remains restricted because of experimental limitations. In particular, yields of the heavy fission products are difficult to get with precision. In this work, an innovative experimental technique is presented. It is based on the use of inverse kinematics coupled to the use of a spectrometer, in which a 238 U beam at 6 or 24 A MeV impinges on light targets. Several actinides, from 238 U to 250 Cf, are produced by transfer or fusion reactions, with an excitation energy ranges from ten to few hundreds MeV depending on the reaction and the beam energy. The fission fragments of these actinides are detected by the VAMOS spectrometer or the LISE separator. The isotopic yields of fission products are completely measured for different fissioning systems. The neutron excess of the fragments is used to characterise the isotopic distributions. Its evolution with excitation energy gives important insights on the mechanisms of the compound-nucleus formation and its deexcitation. Neutron excess is also used to determine the multiplicity of neutrons evaporated by the fragments. The role of the proton and neutron shell effects into the formation of fission fragments is also discussed. (author) [fr

  12. Fission mode analysis of the reaction 237Np(n,f) - possibilities and perspectives

    International Nuclear Information System (INIS)

    Siegler, P.

    1996-01-01

    Fission fragment properties for the reaction 237 Np(n,f) have been measured at the Van de Graaff Laboratory of the IRMM. Using a double gridded ionization chamber the mass, kinetic energy and the angular distribution for both fission fragments could be determined simultaneously for an incident neutron energy range from E n =0.3 MeV upto E n =5.5 MeV. Complete datasets have been acquired for 13 different neutron energies covering sub barrier fission as well as fission in the plateau region. A detailed analysis of the fragment distributions and the respective momenta has been carried out, checking the coherence against the excitation energy of the compound nucleus. The consideration of multi-modal fission offers an improved possibility for the description of the fragment distributions backed up by theoretical calculations on the basis of the multi-model random-neck rupture model of Brosa, Grossmann and Mueller. The changes of the fission fragment properties under investigation are completely described and an interpretation of the findings is presented. (author)

  13. Wealth of information derivable from Evaporation Residue (ER) angular momentum distributions

    International Nuclear Information System (INIS)

    Madhavan, N.

    2016-01-01

    Understanding fusion-fission dynamics is possible by studying the fission process, or, alternatively, by studying the complementary fusion-evaporation process. Though the latter method is difficult to implement, requiring sophisticated recoil separators/spectrometers for selecting the ERs in the direction of the primary beam, it provides more clarity with better accuracy and is indispensible for probing the pre-saddle region in heavy nuclei. Super Heavy Element (SHE) search crucially depends on understanding the fusion-fission process, the choice of entrance channel and excitation energy of the Compound Nucleus (CN), ER cross-section and, more importantly, the angular momenta populated in ERs which survive fission. The measurement of ER angular momentum distributions, through coincidence technique involving large gamma multiplicity detector array and recoil separator, throws up a wealth of information such as, nuclear viscosity effects, limits of stability of ERs, shape changes at high spins, snapshot of frozen set of barriers using a single-shot experiment and indirect information about onset of quasi-fission processes. There is a paucity of experimental data with regard to angular momentum distributions in heavy nuclei due to experimental constraints. In this talk, the variety of information which could be derived through experimental ER angular momentum distributions will be elaborated with examples from work carried out at IUAC using advanced experimental facilities. (author)

  14. A semi-empirical formula on the pre-neutron-emission fragment mass distribution in nuclear fission

    International Nuclear Information System (INIS)

    Wang Fucheng; Hu Jimin

    1988-03-01

    A 5-Gauss semi-empirical formula on the pre-neutron-emission fragment mass distribution is given. The absolute standard deviation and maximum departure between calculated values and experimental data for (n,f) and (n,n'f) fission reactions from 232 Th to 245 Cm are approximately 0.4% and 0.8%, respectively. The error will get bigger if the formula is used at higher excitation energies

  15. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saettone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of 235 U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution (σ e (m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  16. Simultaneous measurement of neutrons and fission fragments of thermal neutron fission of U-233

    International Nuclear Information System (INIS)

    Itsuro Kimura; Katsuhisa Nishio; Yoshihiro Nakagome

    2000-01-01

    The multiplicity and the energy of prompt neutrons from the fragments for 233 U(n th , f) were measured as functions of fragment mass and total kinetic energy. Average neutron energy against the fragment mass showed a nearly symmetric distribution about the half mass division with two valleys at 98 and 145 u. The slope of the neutron multiplicity with total kinetic energy depended on the fragment mass and showed the minimum at about 130 u. The obtained neutron data were applied to determine the total excitation energy of the system, and the resulting value in the typical asymmetric fission lied between 22 and 25 MeV. The excitation energy agreed with that determined by subtracting the total kinetic energy from the Q-value within 1 MeV, thus satisfied the energy conservation. In the symmetric fission, where the mass yield was drastically suppresses, the total excitation energy is significantly large and reaches to about 40 MeV, suggesting that fragment pairs are preferentially formed in a compact configuration at the scission point [ru

  17. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  18. Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)

    1998-10-01

    Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}

  19. Angular correlation between the heavy fragments and the light charged particles in tripartition of 236U and 252Cf

    International Nuclear Information System (INIS)

    Sowinski, M.

    1975-05-01

    The energy distributions and relative intensities of protons, deuterons, tritons and alpha-particles emitted along the fission axis during thermal neutron fission of 236 U are measured simultaneously with the energies of the two fission fragments. The mass distributions of the fragments, the total kinetic energy (TKE), the dependence of the mean TKE on the fragment mass, as well as the mean kinetic energy dependence of polar particles on the fragment mass and energy are deduced from these data. Although some experimental results agree remarkably well with the hypothesis that polar particles are evaporated in-flight from fission fragments, the general conclusion is that these particles are emitted according to some other mechanism

  20. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  1. Kinetic-energy distribution for symmetric fission of 236U

    International Nuclear Information System (INIS)

    Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.

    1980-01-01

    Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)

  2. Mass distributions in nucleon-induced fission at intermediate energies

    CERN Document Server

    Duijvestijn, M C; Hambsch, F J

    2001-01-01

    Temperature-dependent fission barriers and fission-fragment mass distributions are calculated in the framework of the multimodal random neck-rupture model (MM-RNRM). It is shown how the distinction between the different fission modes disappears at higher excitation energies, due to the melting of shell effects. The fission-fragment mass yield calculations are coupled to the nuclear reaction code ALICE-91, which takes into account the competition between the other reaction channels and fission. With the combination of the temperature-dependent MM-RNRM and ALICE-91 nucleon-induced fission is investigated at energies between 10 and 200 MeV for nuclei varying from Au to Am. (72 refs).

  3. Measurement of Fragment Mass Distributions in Neutron-induced Fission of 238U and 232Th at Intermediate Energies

    International Nuclear Information System (INIS)

    Simutkin, V.D.

    2008-01-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  4. A uniform semi-classical approach to the Coulomb fission problem

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1978-01-01

    A semi-classical theory based on the path integral formalism is applied to the description of Coulomb fission. Complex classical trajectories are used to compute the classically forbidden transitions from the target's ground state to fission. In a simple model the energy spectrum and angular distributions of the fragments are calculated for the Coulomb fission in the Xe + U collision. Theoretical predictions are made which may be checked experimentally. (author)

  5. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Document Server

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  6. Fission-fragment mass distribution and estimation of the cluster emission probability in the γ + 232Th and 181Ta reactions

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Adam, J.; Belov, A.G.; Chaloun, P.; Norseev, Yu.V.; Stegajlov, V.I.

    1997-01-01

    Fission-fragment mass distribution has been measured by the cumulative yields of radionuclides detected in the 232 Th(γ,f)-reaction at the Bremsstrahlung endpoint energies of 12 and 24 MeV. The yield upper limits have been estimated for the light nuclei 24 Na, 28 Mg, 38 S etc. at the Th and Ta targets exposure to the 24 MeV Bremsstrahlung. The results are discussed in terms of the multimodal fission phenomena and cluster emission >from a deformed fissioning system or from a compound nucleus

  7. Towards the high spin–isospin frontier using isotopically-identified fission fragments

    OpenAIRE

    Navin, A.GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France; Rejmund, M.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Schmitt, C.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Bhattacharyya, S.(Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India); Lhersonneau, G.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Van Isacker, P.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Caamaño, M.(USC, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain); Clément, E.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Delaune, O.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Farget, F.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); de France, G.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France); Jacquot, B.(GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France)

    2014-01-01

    Measurements of prompt γ rays in coincidence with isotopically-identified fission fragments, produced in collisions of 238 U on a 9 Be target, at an energy around the Coulomb barrier are reported. This technique provides simultaneous access to the spectroscopy of many nuclei, extending to very neutron-rich isotopes and fairly high angular momenta. The structural evolution of the neutron-rich zirconium isotopes is discussed in the light of the present measurements in Zr105,106 and in the conte...

  8. Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Saettone, E. [Facultad de Ciencias, Universidad Nacional de lngenieria, Av. Tupac Amaru 210, Apartado 31-139, Lima (Peru)

    2007-07-01

    The mass and kinetic energy distribution of nuclear fragments from the thermal neutron-induced fission of {sup 235}U have been studied using a Monte Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution ({sigma}{sub e}(m)) around the mass number m = 109, our simulation also produces a second broadening around m = 125 that is in agreement with the experimental data obtained by Belhafaf et al. These results are a consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy, and the yield as a function of the mass. (Author)

  9. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  10. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  11. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of 235U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of 235 U(n th ,f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions

  12. Neutron multiplicity of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)

    1995-10-01

    The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.

  13. The multi-step prompt particle emission from fission fragments

    International Nuclear Information System (INIS)

    Zhivopistsev, A.; Oprea, C.; Oprea, I.

    2003-01-01

    The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)

  14. Percolation-fission model study of the fragment mass distribution for the 1 GeV proton induced reaction

    International Nuclear Information System (INIS)

    Katsuma, Masahiko; Kobayashi, Hiroshi; Sawada, Tetsuo; Sasa, Toshinobu

    2005-01-01

    The 1 GeV proton induced reaction on 208 Pb targets is analyzed by using the percolation model combined with the Atchison fission model. The fragment mass distribution and the isotopic production cross sections obtained from our model are compared with the experimental data. The trends of the fragment mass distribution for the 1 GeV proton induced reaction can be reproduced by our calculation in some degree. The order of magnitude for the calculated isotopic production cross sections at the calculated peak positions is similar to that of the experimental peak values. The calculated peak positions of the isotopic production cross sections are shifted to the heavier region than those of the experimental data. (author)

  15. Dynamic effects in neutron induced fission of 230Th and 232Th

    International Nuclear Information System (INIS)

    Trochon, J.; Frehaut, J.; Pranal, Y.; Simon, G.; Boldeman, J.W.

    1982-09-01

    The fission fragment characteristics of the two thorium isotopes 230 Th and 232 Th have been measured in an attempt to study the evolution of the fissioning nucleus from saddle point to scission. The partial fission channel at the saddle point have been deduced from a fission fragment angular distribution and fission cross section analysis. Changes with energy in the average number of prompt neutron (νsub(p)) emitted per fission and the total fragment kinetic energy (TKE) have been observed in the fission threshold region. A rather good fit of νsub(p) and TKE values has been obtained on the basis of a correlation of these quantities and the partial fission channel ratios. This leads to expect for these isotopes a passage from saddle point to scission sufficiently rapid for the coupling between collective and intrinsic excitation to be very weak [fr

  16. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  17. Gamma-ray multiplicity measurements and angular momentum transfer in deeply inelastic collisions

    International Nuclear Information System (INIS)

    Perrin, N.; Peter, J.

    1977-01-01

    In DIC, the part of the initial orbital angular momentum l which is transferred into internal angular momenta Δl of the fragments depends on the degree of cohesion of the composite system. The (few) measured gamma-rays multiplicities are compared to those observed for similar compound nuclei and for fission fragments. Δl increases with the kinetic energy relaxation. For medium-mass systems, the cohesion varies continuously from the rolling to the sticking situation when the decay time of the composite system increases. The rigid body situation is obtained for a small part of the relaxed events. For heavy systems, rigid rotation seems to be much more common, which will allow to extract information on the deflection function. The time needed to reach the rigid situation is intermediate between those of kinetic energy relaxation and mass asymmetry relaxation. An additional angular momentum can be added in the fragments, due to a bending mode at the scission-point, like in fission. That can explain the observed low anisotropy of the gamma-rays angular distribution

  18. Gamma ray multiplicity study associated at fast fission in Ne + Re at 220 MeV and Ar + Ho at 315 MeV collisions

    International Nuclear Information System (INIS)

    Martin, V.

    1987-11-01

    Angular momentum transfer to fission fragments has been studied with the measurement of gamma-ray deexcitation in the 220 MeV Ne + Re and 315 MeV Ar + Ho systems. These reactions lead to the same fusion nucleus with the same excitation energy. The critical angular momentum for fission in the Ne + Re system is close to the angular momentum where the fission barrier of the fusion nucleus vanishes. In the Ar + Ho system, the critical angular momentum is much more larger than the angular momentum and the fast fission process is then expected to occur in that system. The measurement of the widths of the fission fragment mass distribution strengthens this hypothesis: the width is equal to 42 ± 2 u.m.a in the Ne + Re system and 56 ± 4 u.m.a in the Ar + Ho system. The results obtained by measuring the gamma-ray multiplicity associated with the fission modes show that the spin transferred to the fragments is large and confirm the excitation of some collective rotational modes in the exit channel such as bending and wriggling modes. The evolution of the gamma-ray multiplicity as a function of the total kinetic energy shows a marked behaviour in the two systems: in the Ne + Re system, the multiplicity decreases when the kinetic energy increases in the Ar + Ho system the multiplicity increases when the kinetic energy increases. The information extracted from these results show that the mass distribution associated with the fast fission process has a symetric shape, but this information is not sufficient to isolate unambiguously the partial wave domain associated with the conventional fission and the fast fission phenomena, respectively [fr

  19. Fission profits of thorium: Distribution in charge and mass

    International Nuclear Information System (INIS)

    Guarnieri, A.A.

    1985-01-01

    It is presented the improvement of a semi-empiric model to describe behavior fo the 235 U + thermal neutrons system. The model is applied to fission of the 232 Th case reproducing the distribution of mass profits of fission products from the behavior of independent profits of fragments related the mass and charge, and the emission of prompt neutrons per fragment. (M.C.K.) [pt

  20. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  1. Investigation of the fission fragment properties of the reaction 238U(N,F) at incident neutron energies up to 5.8 MeV

    International Nuclear Information System (INIS)

    Vives, F.

    1998-01-01

    The 238 U(n,f) reaction has been studied at various incident neutrons energies from 1,2 at 5,8 MeV. The author shows that the vibrational resonances presence in the cross section threshold area and the protons parity effect, lead to variations in the fission fragments properties. The mass, the total kinetic energy (TKE) and the fragments angular distribution have been obtained thanks a ionisation double chamber use. Mass function changes in the mass and kinetic energy distributions and their respectively contributions to the TKE variations, have also been studied. The two-dimension distributions adjustments mass-TKE have been compared to the theoretical calculus, compiled with the multi-modal random neck-rupture model: two solutions are possible. Meanwhile, only one leads to significant physical interpretation in terms of layers effects. (A.L.B.)

  2. Measurement of Fragment Mass Distributions in Neutron-induced Fission of {sup 238}U and {sup 232}Th at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Simutkin, V.D. [Uppsala University, P.O Box 525, SE-751 20 Uppsala (Sweden)

    2008-07-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the {sup 238}U(n,f) and {sup 232}Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both {sup 238}U and {sup 232}Th. Up to now, the intermediate energy measurements have been performed for {sup 238}U only, and there are no data for the {sup 232}Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the {sup 232}Th(n,f) and {sup 238}U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  3. Towards the high spin–isospin frontier using isotopically-identified fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Navin, A., E-mail: navin@ganil.fr [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Rejmund, M.; Schmitt, C. [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Lhersonneau, G.; Van Isacker, P. [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Caamaño, M. [USC, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Clément, E.; Delaune, O.; Farget, F.; France, G. de; Jacquot, B. [GANIL, CEA/DSM–CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France)

    2014-01-20

    Measurements of prompt γ rays in coincidence with isotopically-identified fission fragments, produced in collisions of {sup 238}U on a {sup 9}Be target, at an energy around the Coulomb barrier are reported. This technique provides simultaneous access to the spectroscopy of many nuclei, extending to very neutron-rich isotopes and fairly high angular momenta. The structural evolution of the neutron-rich zirconium isotopes is discussed in the light of the present measurements in {sup 105,106}Zr and in the context of the interacting boson model with a global parameterization that includes triaxiality but no shape coexistence.

  4. Towards the high spin–isospin frontier using isotopically-identified fission fragments

    International Nuclear Information System (INIS)

    Navin, A.; Rejmund, M.; Schmitt, C.; Bhattacharyya, S.; Lhersonneau, G.; Van Isacker, P.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; France, G. de; Jacquot, B.

    2014-01-01

    Measurements of prompt γ rays in coincidence with isotopically-identified fission fragments, produced in collisions of 238 U on a 9 Be target, at an energy around the Coulomb barrier are reported. This technique provides simultaneous access to the spectroscopy of many nuclei, extending to very neutron-rich isotopes and fairly high angular momenta. The structural evolution of the neutron-rich zirconium isotopes is discussed in the light of the present measurements in 105,106 Zr and in the context of the interacting boson model with a global parameterization that includes triaxiality but no shape coexistence

  5. A possible mechanism in heavy ion induced reactions: 'fast fission process'

    International Nuclear Information System (INIS)

    Borderie, B.; Gardes, D.; Berlanger, M.

    1980-01-01

    The influence of the orbital angular momentum l on the mass distribution of fission fragments is studied, both on previously available data on heavy ion induced fission and in new specifically planned experiments: systems 40 Ar + 165 Ho and 24 Mg + 181 Ta at bombarding energies ranging from 180 up to 391 MeV and leading to the same fissionning nucleus 205 At wigh different l distributions. When l values corresponding to a vanished fission barrier are reached, the mass distribution broadens. This suggest the existence of a specific process, 'fast fission', at l-values leading to compound nucleus formation and deep inelastic collisions, respectively. This process and its conditions of occurrence are discussed; of special interest are the correlated differences between the limitations to the fission cross-section and the fission mass distributions broadenings, respectively, for the Ar + Ho and Mg + Ta systems

  6. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    Science.gov (United States)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  7. Dynamical effects and time scale in fission processes in nuclear collisions in the Fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.

    1999-10-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn...) obtained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distribution of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mi-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, we observed two components: the first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, we present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component we extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component we propose a scenario to explain such process and we discuss the physical parameters which can be extracted. (authors)

  8. Dynamical effects and time scale in fission processes in nuclear collisions in the fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.; Bellaize, N.; Bougault, R.; Brou, R.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Le Neindre, N.; Lopez, O.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Brun, C. le; Genoux-Lubain, A.

    1999-01-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn... o btained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distributions of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, authors observed two components: The first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, authors present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component authors extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component authors propose a scenario to explain such process and authors discuss the physical parameters which can be extracted

  9. Correlated prompt fission data in transport simulations

    Science.gov (United States)

    Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.

    2018-01-01

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in

  10. Correlated prompt fission data in transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Talou, P.; Jaffke, P.; Kawano, T.; Stetcu, I. [Los Alamos National Laboratory, Nuclear Physics Group, Theoretical Division, Los Alamos, NM (United States); Vogt, R. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Randrup, J. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Rising, M.E.; Andrews, M.T.; Sood, A. [Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group, Los Alamos, NM (United States); Pozzi, S.A.; Clarke, S.D.; Marcath, M.J. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States); Verbeke, J.; Nakae, L. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); Jandel, M. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States); University of Massachusetts, Department of Physics and Applied Physics, Lowell, MA (United States); Meierbachtol, K. [Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation, Los Alamos, NM (United States); Rusev, G.; Walker, C. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States)

    2018-01-15

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n-n, n-γ, and γ-γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX-PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation

  11. What do we learn on the dynamics of fission from α-accompanied fission data

    International Nuclear Information System (INIS)

    Guet, C.; Asghar, M.; Nifenecker, H.; Perrin, P.

    1978-01-01

    Measurements of the angular distribution of α-particles emitted by thermal fission of 236 U are presented. Also the dependence of the angular distribution on the kinetic energy of the fission products is studied. (WL) [de

  12. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  13. Nuclear structure via isomer tagging of fission fragments

    Science.gov (United States)

    Wu, C. Y.; Cline, D.; Simon, M. W.; Stoyer, M. A.

    1997-10-01

    The high efficiency for detecting high-fold γ rays by large Ge arrays makes it possible to study the detailed spectroscopy of many neutron-rich nuclei produced by fission. Major progress has been made using sealed spontaneous fission sources. Considerable improvement in selectivity is provided, with an open source, both by gating on isomers and by detection of both fission fragments in coincidence with the deexcitation γ rays (see the preceding contribution). The reconstructed kinematics allows a measure of fragment mass and the Doppler shift correction of γ rays. In a recent experiment, fission fragments were detected using half of the CHICO array and an annular PPAC in coincidence with deexcitation γ rays detected by the Rochester array of eight Compton-suppressed Ge detectors. The annular PPAC was located only 1.0" from a 3.7 μCi ^252Cf source for efficient isomer tagging. The correlation was studied between delayed, within a time window between 150 ns and 10 μs after a fission occurring, and prompt γ rays. Several prominent feeding patterns to isomers in the mass region around 100 and 130 are identified by such correlation study. Experimental details and results will be presented.

  14. Dispersions and correlations of the distributions of products of 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vidyakin, G.S.; Vyrodov, V.N.; Gurevich, I.I.; Kirillov, B.F.; Kozlov, Y.V.; Martem'yanov, V.P.; Sukhotin, S.V.; Tarasenkov, V.G.; Khakimov, S.K.

    1982-01-01

    We report the results of two experiments on study of the dispersions and correlations of the distributions of products of the spontaneous fission of 252 Cf. In each experiment about 10 8 fissions were recorded with simultaneous measurement of the number of neutrons produced and in one case the fragment kinetic energy and in the other case the energy of the prompt #betta# rays. The quantities obtained were the probabilities of production of a given number of neutrons per fission, the dispersions of the distributions of the number of neutrons produced and of the fragment kinetic energy, and the dependence of the average #betta#-ray energy and the average fragment kinetic energy on the number of neutrons produced. A calculation is made of the spectrum of the total energy carried away by fragments and neutrons, and its dispersion is determined. An estimate of the total energy release in the 252 Cf fission process is made

  15. Study of the neutron-photon competition during fission fragment de-excitation

    International Nuclear Information System (INIS)

    Min, Dong Pil.

    1976-01-01

    A program was developed to study in detail the competition between neutron and photon emissions during the different stages of the nucleus de-excitation. The main conclusions of this work are the following: the neutron-photon competition fairly depends of the initial spin of the primary fragment. It has a strong effect on the mean number of emitted neutrons, on the photon energy, and to a lower degree, on the mean energy per neutron. A relation between the mean initial spin of the heavy fragment for the almost symmetrical fission, the mean initial spin of the heavy fragment for a very asymmetric fission and the corresponding values of the mean number of emitted neutrons is given. The mean initial excitation energy must increase of about 9MeV for the nucleus to emit one more neutron. Two reasons are given to explain the fact that the measured neutron multiplicity variance is higher for the heavy fragment than for the light one: either the existence of a covariance between spin and excitation energy distribution, or a dispersion of the values of the mean number of emitted neutrons due to the mass and charge distribution resulting from experimental incertitudes. The mean energy per neutron calculated with the program is in good agreement with measured values [fr

  16. Multiplicity and energy of neutrons from {sup 233}U(n{sub th},f) fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1998-03-01

    The correlation between fission fragments and prompt neutrons from the reaction {sup 233}U(n{sub th},f) was measured with improved accuracy. The results determined the neutron multiplicity and emission energy as a function of fragment mass and total kinetic energy. The average energy as a function of fragment mass followed a nearly symmetric distribution centered about the equal mass-split and formed a remarkable contrast with the saw-tooth distribution of the average neutron multiplicity. The neutron multiplicity from the specified fragment decreases linearly with total kinetic energy, and the slope of multiplicity with kinetic energy had the minimum value at about 130 u. The level density parameter versus mass determined from the neutron data showed a saw-tooth structure with the pronounced minimum at about 128 and generally followed the formula by Gilbert and Cameron, suggesting that the neutron emission process was very much affected by the shell-effect of the fission fragment. (author)

  17. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-01-01

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons (ν(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239 Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σ E *(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σ E (A)). As a result of the simulation we obtain the dependence σ E *(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  18. Percolation versus microcanonical fragmentation - comparison of fragment size distribution: Where is the liquid-gas transition in nuclei?

    International Nuclear Information System (INIS)

    Jaqaman, H.R.; Birzeit Univ.; Papp, G.; Eoetvoes Lorand Tudomanyegyetem, Budapest; Gross, D.H.E.; Freie Univ. Berlin

    1990-01-01

    The distributions of fragments produced by microcanonical multifragmentation of hot nuclei are compared with the cluster distributions predicted by a bond percolation model on a finite lattice. The conditional moments of these distributions are used together with the correlations between the largest three fragments in each event. Whereas percolation and statistical nuclear fragmentation agree in many details as in the usual plots of the averaged moments of the fragment distributions which yield the critical exponents, they turn out to be essentially different when less averaged quantities or correlations are considered. The differences between the predictions of the two models are mainly due to the particularities of the nuclear problem, especially the effect of the long-range Coulomb force which favours the break-up of the highly excited nucleus into two large fragments (pseudo-fission) and, to a somewhat lesser extent, enhances the possibility for the cracking of the nucleus into more than two large fragments. The fission events are, however, clearly separated from a second branch of critical correlations which shows up clearly in both nuclear fragmentation and percolation. We think that this critical correlation branch is due to the liquid-gas phase transition in finite nuclei. (orig.)

  19. Characteristic relation for the mass and energy distribution of the nuclear fission products

    International Nuclear Information System (INIS)

    Alexandru, G.

    1977-01-01

    The dispersion relation for nuclear fission is written in the two part fragmentation approach which allows to obtain the characteristic relation for the mass and energy distribution of the nuclear fission products. One explains the resonance approximation in the mass distribution of the fission products taking into account the high order resonances too. (author)

  20. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    Directory of Open Access Journals (Sweden)

    K. Nishio

    2015-09-01

    Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  1. On widths of mass distributions in statistical theory of fission

    International Nuclear Information System (INIS)

    Volkov, N.G.; Emel'yanov, V.M.

    1979-01-01

    The process of nucleon tunneling from one fragment to another near the point of the compoUnd-nucleus fragmentation has been studied in the model of a two-center oscillator. The effect of the number of transferred nucleons on the mass distribution of fragments is estimated. Sensitivity of the model to the form of the single-particle potential, excitation eneraies and deformation of fragments is examined. The calculations performed show that it is possible to calculate the mass distributions at the point of fragment contact in the statistical fission model, taking account of the nucleon exchange between fragments

  2. Fusion-fission in Ar-heavy nuclei collisions

    International Nuclear Information System (INIS)

    Zaric, Alexandre

    1984-01-01

    Fusion-fission products have been studied for three reactions: Ar + Au, Ar + Bi and Ar + U (5.25-7.5 MeV/u). By measuring symmetric fragmentation components (fission-like events), cross sections for fusion were deduced and compared with the prediction of static and dynamic models. With increasing projectile energy, the width of the mass distributions strongly increases for the two lighter systems. By contrast, for Ar + U it remains essentially constant at a very large value. These results clearly demonstrate that the large increase of the width of the mass distribution cannot be attributed simply to large values of the angular momentum. However, they can be explained by the occurrence of a different dissipative process, fast fission, which can be expected if there is no barrier to fission. For the reaction Ar + Au, the total kinetic-energy distributions were also studied in detail. In this case fast fission occurs only at high incident energy. The average total kinetic energy (TKE) was found to be constant with increasing energy. (author) [fr

  3. A fast-fission component with small mass drift in the reaction 84Kr + 27Al at ELab = 5.9 MeV/u

    International Nuclear Information System (INIS)

    Heusch, B.; Freiesleben, H.; Schneider, W.F.W.; Kohlmeyer, B.; Stege, H.; Puehlhofer, F.

    1985-01-01

    All reaction products in the range from target- and projectile-like to fission-like fragments were measured for the system 84 Kr + 27 Al at 5.9 MeV/u beam energy. They are assigned to the various reaction mechanisms on the basis of experimental signatures (energy dissipation, mass and angular distribution). The sum of the measured partial cross sections, including the evaporation residue yield obtained previously, agrees with the total reaction cross section derived from elastic scattering. A small fast-fission component was found, discernible from deep-inelastic reactions by its 1/sinθ angular distribution, and distinguished from compound-nucleus fission by an incomplete mass asymmetry relaxation

  4. Measurements of jet fragmentation and the angular distributions of charged particles within and around jets in $pp$ and Pb+Pb with ATLAS

    CERN Document Server

    Rybar, Martin; The ATLAS collaboration

    2018-01-01

    Highly energetic jets produced in ultra-relativistic nuclear collisions are considered to be direct probes to study the properties of the hot and dense QCD matter created in these collisions. The measurement of the fragmentation functions of jets into charged particles in Pb+Pb collisions is sensitive to the strength and mechanism of jet quenching. In this talk, we present the latest measurement of the internal structure of jets and the angular distributions of charged particles within and around jets performed with the ATLAS detector. Fragmentation functions in Pb+Pb collisions and distributions of the transverse momentum of charged particles are compared to the same quantities measured in pp collisions at the same collision energy. Measurements are presented as a function of collision centrality, jet transverse momentum, and jet rapidity at 2.76 and 5.02 TeV. Furthermore, a new measurement of the angular distributions of charged-particles with respect to jet axis extended to distances outside the jet radius...

  5. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  6. Effectiveness in detecting fission fragments with ionization chambers

    International Nuclear Information System (INIS)

    Manrique Garcia, J.; Monne, G.

    1991-01-01

    Detection of fission fragments is important in nuclear measurements. When a high detection accuracy is required it is necessary to take in account the detection losses due to the absorption of fragments in the fissionable material. The losses corrections might change the final results in 2-3%. The traditional expression used in the calculation of the detection efficiency does not consider neither the density variation of the fissionable substance with its width, because it depends on the target material. That's why actually in many labs it is being searched new methods that allow to find the efficiency for each target. In this work a new method for determination of absorption efficiency is presented. The obtained results are analyzed

  7. Coupling of mass and charge distributions for low excited nuclear fission

    International Nuclear Information System (INIS)

    Salamatin, V.S.; )

    2000-01-01

    The simple model for calculation of charge distributions of fission fragments for low exited nuclear fission from experimental mass distributions is offered. The model contains two parameters, determining amplitude of even-odd effect of charge distributions and its dependence on excitation energy. Results for reactions 233 U(n th ,f), 235 U(n th ,f), 229 Th(n th ,f), 249 Cf(n th ,f) are spent [ru

  8. Evaluation of excitation energy and spin in fission fragments using the statistical model, and the FIPPS project

    International Nuclear Information System (INIS)

    Faust, H.; Koester, U.; Kessedjian, G.; Sage, C.; Chebboubi, A.

    2013-01-01

    We review the statistical model and its application for the process of nuclear fission. The expressions for excitation energy and spin distributions for the individual fission fragments are given. We will finally emphasize the importance of measuring prompt gamma decay to further test the statistical model in nuclear fission with the FIPPS project. (authors)

  9. Prompt Gamma Radiation from Fragments in the Thermal Fission of 235U

    International Nuclear Information System (INIS)

    Albinsson, H.; Lindow, L.

    1970-06-01

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from 252 Cf-fission. Attention is drawn to some features which seem to be the same in 235 U and 252 Cf-fission

  10. Critical angles for fission fragment registrations in some solid state track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A D; Bahromi, I I; Beresina, N V [AN Uzbekskoj SSR, Tashkent. Inst. Yadernoj Fiziki; and others

    1980-03-01

    In studies of the registration efficiency of various solid state track detectors (polycarbonate, polyethyleneterephthalate, cellulose nitrate and muscovite) the detectors were irradiated with spontaneous fission fragments from /sup 252/Cf and with fission fragments from /sup 235/U separated according to mass and energy. Experimental details are given. Critical angles for the registration of fission fragments in the various detectors are given for specified energies and masses.

  11. Microscopical descriptions of the fission fragmentation developed at CEA Bruyeres (France)

    International Nuclear Information System (INIS)

    Sida, J. L.

    2007-01-01

    The fission process has been studied from 1939 but there is no full theoretical description of the process. Two approaches have been developped at CEA Bruyeres le Chatel (France) in the basis of microscopic calculations with the Gogny Force. The first one is based on mean field calculations of the fission parameters (Potential enegy landscape, inertial parameters). The evolution of the wave function of the system is followed from the saddle point to the scission line in an adiabatic dynamical approach in order to determine the fission fragment distributions [GOU04]. The second one used the theoretical nuclear database AMEDEE (http://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire.htm) which includes the mean field potential of more than 7000 nuclei. A precise energy balance is done at the scission point in order to define the available energy for each possible fragmentation. A statistical model is than used to determine the fragments distributions [HEI06]. This work is an improvement of the statistical scission point model of Wilkins et al [WIL76]. The free parameters of the previous description have been reduced to the minimum and there is still one parameter value that define the scission configuration which is not used ass a free parameter but has been fixed for the systematic that will be presented. This two microscopical models will be presented and the results will be discussed and compared to experiments. We will also point on their possible use to realize data evaluation for the burn-up of minor actinides, wastes of nuclear plants. (Author)

  12. Polarization and alignment of nucleus fission fragments

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Correlation of fragment orientation with orientation axis of fissile nucleus and with n-vector f vector of fragment divergence is considered. Estimations of polarization and alignment of fission fragments of preliminarily oriented nuclei in correlation (with n-vector f recording) and integral (with n-vector f averaging) experiments were conducted. It is shown that high sensitivity of polarization and fragment alignment to the character of nucleus movement at the stage of descent from barrier to rupture point exists

  13. Complete isotopic distributions of fragments produced in transfer- and fusion-induced reactions

    International Nuclear Information System (INIS)

    Delaune, O.; Caamano, M.; Farget, F.; Tarasov, O. B.; Derkx, X.; Schmidt, K. H.; Audouin, L.; Amthor, A. M.; Bacri, C. O.; Barreau, G.; Bastin, B.; Bazin, D.; Benlliure, J.; Blank, B.; Caceres, L.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Grevy, S.; Jurado, B.; Kamalou, O.; Lemasson, A.; Lukyanov, S. M.; Mittig, W.; Morrissey, D. J.; Navin, A.; Pereira, J.; Perrot, L.; Rejmund, M.; Roger, T.; Saint-Laurent, M. G.; Savajols, H.; Schmitt, C.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C. C.

    2013-01-01

    Two fission experiments have been performed at GANIL using 238 U beams at different energies and light targets. Different fissioning systems were produced with centre of mass energies from 10 to 240 MeV and their decay by fission was investigated with GANIL spectrometers. Fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of the fusion-fission mechanism. (authors)

  14. Upgrading DRACULA setup to be used for light products - fission fragments coincidence measurements

    International Nuclear Information System (INIS)

    Simion, V.; Petrovici, M.; Pop, A.; Berceanu, I.; Duma, M.; Moisa, D.; Pagano, A.; Geraci, E.

    1999-01-01

    At low bombarding energy (E/A 238 U give rise to a number of fission processes, all leading to very similar fission products. Therefore, in order to understand the fission processes in this energy domain it is of interest to determine the amount of fission occurring after a peripheral interaction relative to that originating from compound nucleus formation. Although the detection of a projectile residue (PLF) in coincidence with the fission fragments is a very promising probe for the macroscopic features of the mechanism of induced fission, at incident energies in the vicinity of the Coulomb barrier (E/A 2 cross section area uses the phoswich technique by coupling a thin fast NE102A plastic scintillator to a 10 cm long BaF 2 crystal of hexagonal section. The BaF 2 crystal detectors have been successfully used in modular multielement detector ARGOS in the context of GANCT and HOTCT researches at LNS. The light response of the phoswich configuration as a function of the plastic thickness and of the energy and charge of the incident ion has been studied at Tandem energies. Both arrays will be placed in separate vacuum chambers attached to the remaining large angular opening windows of the reaction chamber. By rotating the whole device the fission fragment detection arrays will cover a range of 96 angle in the horizontal plane. The main advantage of this setup is that it allows to perform continuous measurements in energy and angle of the reaction products. The geometry of the whole device has been tested by Monte Carlo calculations using the code ELPHIC. The coincidence condition is completely fulfilled for the first two positions of the setup and partially for the third one. Measurements are intended to be performed at the SMP Tandem from LNS-Catania using light beams ( 16 O, 19 F, 20 Ne, 32 S) at ∼ 6 MeV/A on high fissility parameter targets. (authors)

  15. High-precision spectrometer for studies of ion-induced and spontaneous fission dynamics

    International Nuclear Information System (INIS)

    Batenkov, O.; Elmgren, K.; Majorov, M.; Blomgren, J.; Conde, H.; Hultqvist, S.; Olsson, N.; Rahm, J.; Ramstroem, E.; Smirnov, S.; Veshikov, A.

    1997-01-01

    A spectrometer has been designed and built to investigate the dynamics of spontaneous and ion-induced fission processes. It consists of 8 neutron detectors surrounding a low mass scattering chamber containing the fissionable targets and two fission fragment telescopes. The spectrometer measures neutron spectra, and energy and angular correlations of neutrons, as well as kinetic energy, mass, and relative angle of fission fragments. A 252 Cf fission reference source is used for calibration. (orig.)

  16. New insight on the high radiation resistance of UO{sub 2} against fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Szenes, G., E-mail: szenesgyorgy@caesar.elte.hu

    2016-12-15

    Track radii are derived for semiconductors from a temperature distribution Θ(r) in which the width of the distribution is the only materials parameter. Analysis of track data for GeS, InP, GaAs and GaN show that the projectile velocity has no effect on track radii in semiconductors. Due to the missing velocity effect, the threshold for track formation, S{sub et} = 20 keV/nm is high in semiconducting UO{sub 2} in the whole range of projectile velocities. This is the origin of the high radiation resistance for fission fragments. Consequences for the simulation experiments with insulating CeO{sub 2} are discussed. It is verified that sputtering is described accurately by the Arrhenius equation for various materials including UO{sub 2}. The ion-induced surface potential has a strong effect on the activation energy. - Highlights: • Uniform features of track formation are demonstrated. • Semiconductors are more stable than insulators against fission fragments. • Melting point and width of the thermal spike control the track size. • High threshold for tracks S{sub et} = 20 keV/nm for fission fragments in semiconducting UO{sub 2}. • An Arrhenius equation describes the inelastic sputtering in UO{sub 2} and other solids.

  17. Alkaline glass as induced fission fragment detectors

    International Nuclear Information System (INIS)

    Amorim, A.M.M.

    1986-01-01

    The slide glass, registered trade marks INLAB, INVICT and PERFECTA were compared. For the three kinds of glasses the following studies were done: chemical composition; general dissolution rate for hydrofluoric acid solutions of concentrations between 1 and 10M, at 30 0 C and ultrasound shaking; relative efficiency for recording fission fragment tracks from 252 Cf. The INLAB glass was selected due to the better quality of its surface after chemical etching. The HF concentration 2.5M was determined for chemical etching of INLAB glass, and the optimum etching time was chosen between 8 and 10 minutes. The thermal attenuation of latent tracks in the environmental temperature was observed for intervals uo to 31 days between the detector exposure to the fission fragment source and etching of tracks. Several methods were used for determining the detector parameters, such as: critical angle, angle of the cone and efficiency of etching. The effects of gamma irradiation from 60 Co and reactor neutrons in material properties as track detector were studied. Attenuation of latent tracks and saturation of color centers were observed for doses over 100M Rad. Since this kind of material contains uranium as impurity, uniformely distributed, slide glass were calibrated to be applied as a monitor of thermal neutron flux in nuclear reactor. (Author) [pt

  18. Delayed β ray spectrum of 235U fission fragments

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1973-01-01

    The time-dependent electron spectra of fission fragments from the thermal-neutron-induced fission of 235 U are calculated. The Gross theory of nuclear beta decay is used to obtain the decay constant and individual electron spectra. The mean energy per fission carried by the electrons and the number of electrons per fission are also calculated. Comparison of these calculated spectra to experimental ones shows good agreements. (Author) [pt

  19. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 234U

    International Nuclear Information System (INIS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-01-01

    The standard deviation of the final kinetic energy distribution (σ e ) as a function of mass of final fragments (m) from low energy fission of 234 U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution (σ E ) as a function of primary fragment mass (A). The second peak is attributed to a real peak on σ E (A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on σ E (A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on σ e (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the σ E (A) curve, and the observed peaks on σ e (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  20. SSNTD study of the probable influence of alpha activity on the mass distribution of sup 2 sup 5 sup 2 Cf fission fragments

    CERN Document Server

    Paul, D; Sastri, R C; Ghose, D

    1999-01-01

    The SSNTD has come a long way in its application for the study of nuclear phenomena. Spontaneous fission of transuranic elements is one such phenomena wherein use of SSNTD offers easy registration of the signature of the fission fragments. The object of the present study is to explore whether any one of the track parameters such as the diameter can be used to estimate the atomic mass ratios of the spontaneous fission fragments. The spontaneous fission data from sup 2 sup 5 sup 2 Cf recorded almost at the end of one and four half-life periods for alpha decay are analysed, taking a plot of the number of tracks versus the track diameter. From these plots it is seen that initially, when significant alpha activity of sup 2 sup 5 sup 2 Cf persists, the fission fragments appear to cluster into two predominant groups as indicated by two peaks. The ratio of the diameters at these peak positions appear to be related to the ratio of average mass numbers of the light and heavy groups of fission fragments. However, absenc...

  1. Prompt Gamma Radiation from Fragments in the Thermal Fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goteborg (Sweden); Lindow, L [AB Atomenergi, Nykoeping (Sweden)

    1970-06-15

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of {sup 235}U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from {sup 252} Cf-fission. Attention is drawn to some features which seem to be the same in {sup 235}U and {sup 252} Cf-fission.

  2. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  3. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  4. Projectile fission of 238U relativistic ions in a Pb target and discovery of new fission fragments

    International Nuclear Information System (INIS)

    Bernas, M.; Donzaud, C.; Dessagne, Ph.; Miehe, Ch.; Hanelt, E.; Heinz, A.

    1994-01-01

    With the 238 U beam accelerated at relativistic energies by the heavy ion synchrotron (SIS) at GSI, fission was investigated using inverse kinematics. This geometry is well suited for analyzing fragments with the fragment separator. The fragments are identified by in flight measurements of their energy loss and time of flight signals. More than forty new isotopes have been discovered focusing on the light branch of fission products. (K.A.) 12 refs., 5 figs., 1 tab

  5. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV {sup 208}Pb + p reaction; Etude de la production des fragments de fission issus de la reaction {sup 208}Pb + p a 500 AMeV

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Dominguez, B

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction {sup 208}Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z{sub fis}, A{sub fis}, E*{sub fis}). In addition, the number of post-fission neutrons emitted from the fission fragments, v{sub post}, has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  6. Fission distribution measurements of Atucha's fuel pellets with solid state track detectors

    International Nuclear Information System (INIS)

    Ricabarra, M.D. Bovisio de; Waisman, Dina.

    1979-08-01

    Distribution of fissions in a UO 2 rod has been measured by means of solid state detectors. Mica muscovite and Makrofol-N detectors were used in the experiment. The merits of mica muscovite relative to the Makrofol-N for the detection of fission fragments have been verified. However both fission track detectors closely agree (0,5%) in the final fission distribution of the UO 2 rod. Sensitivity of the detectors shows to be linear in the range between 50.000and 360.000 fission tracks per square centimeter. Due to the high spatial resolution this method is better than any other technique. Determination were made in UO 2 pellets similar to the fuel element of the Atucha reactor. The average fission rate in the rod has been measured within 0,8% error, and provides an accurate determination for the distribution of fissions in the rod wich is needed for the determination of energy liberated per fission in the natural uranium rod.(author) [es

  7. Orbital angular momentum transfer and spin desalignment mechanisms in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1984-10-01

    Angular momentum transfer and spin dealignment mechanisms have been studied in the deep inelastic collisions Ar+Bi and Ni+Pb using the sequential fission method. This experimental technique consists to measure the angular distribution of the fission fragments of a heavy nucleus in coincidence with the reaction partner, and leads to a complete determination of the heavy nucleus spin distribution. High spin values are transferred to the heavy nucleus in the interaction and indicate that the dinuclear system has reached the rigid rotation limit. A theoretical model, taking into account the excitation of surface vibrations of the nuclei and the nucleon transfer between the two partners, is able to reproduce the high spin values measured in our experiments. The spin fluctuations are important, with values of the order of 15 to 20 h units. These fluctuations increase with the charge transfer from the projectile to the target and the total kinetic energy loss. The spin dealignment mechanisms act mainly in a plane approximately perpendicular to the heavy recoil direction in the laboratory system. These results are well described by a dynamical transport model based on the stochastic exchange of individual nucleons between the two nuclei during the interaction. The origin of the dealignment mechanisms in the spin transfer processes is then related to the statistical nature of the nucleon exchange. However other mechanisms can contribute to the spin dealignment as the surface vibrations, the nuclear deformations as well their relative orientations [fr

  8. Decay times for second-chance fission of 239U studied by crystal blocking

    International Nuclear Information System (INIS)

    Andersen, J.U.; Chechenin, N.G.; Jensen, A.S.; Joergensen, K.; Laegsgaard, E.

    1979-01-01

    Neutron-induced fission of 238 U has been studied by the crystal-blocking technique for neutron energies just below and above the threshold for second-chance fission. In agreement with earlier measurements, in this energy range the lifetime for first-chance fission is found to be too short to have an observable effect on the blocking dips. Above the threshold, however, an appreciable filling-in of the dips is observed. The results are analyzed in the terms of a two-component lifetime distribution and then indicate an average lifetime of a few fsec for second-chance fission at a neutron energy of Esub(n)approximately7.2 MeV, in agreement with results from a simple calculation. It is shown that in this analysis it is important to take into account the anisotropy of the fission-fragment distribution and, in particular, the difference between the angular distributions for first- and second-chance fission. (Auth.)

  9. A new statistical scission-point model fed with microscopic ingredients to predict fission fragments distributions; Developpement d'un nouveau modele de point de scission base sur des ingredients microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, S

    2006-07-01

    Nucleus fission process is a very complex phenomenon and, even nowadays, no realistic models describing the overall process are available. The work presented here deals with a theoretical description of fission fragments distributions in mass, charge, energy and deformation. We have reconsidered and updated the B.D. Wilking Scission Point model. Our purpose was to test if this statistic model applied at the scission point and by introducing new results of modern microscopic calculations allows to describe quantitatively the fission fragments distributions. We calculate the surface energy available at the scission point as a function of the fragments deformations. This surface is obtained from a Hartree Fock Bogoliubov microscopic calculation which guarantee a realistic description of the potential dependence on the deformation for each fragment. The statistic balance is described by the level densities of the fragment. We have tried to avoid as much as possible the input of empirical parameters in the model. Our only parameter, the distance between each fragment at the scission point, is discussed by comparison with scission configuration obtained from full dynamical microscopic calculations. Also, the comparison between our results and experimental data is very satisfying and allow us to discuss the success and limitations of our approach. We finally proposed ideas to improve the model, in particular by applying dynamical corrections. (author)

  10. Amplifier channel for a fission fragment semiconductor detector

    International Nuclear Information System (INIS)

    Tyurin, G.P.

    1981-01-01

    To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru

  11. The Study of Prompt and Delayed Muon Induced Fission. I.Total kinetic energies and mass distributions

    NARCIS (Netherlands)

    David, P; Hartfiel, J.; Janszen, H.; Petitjean, C.; Reist, H.W.; Polikanov, S.M.; Konijn, J.; Laat, de C.T.A.M.; Taal, A.; Krogulski, T.; Johansson, T.; Tibell, G.; Achard van Enschut, d' J.F.M.

    1987-01-01

    Mass yield and total kinetic energy release (TKE) distributions of fragments from prompt and delayed muon induced fission, separately, have been measured for the isotopes235U,238U,237Np and242Pu. The distributions from prompt muon induced fission are compared with the corresponding distributions

  12. Nucleus fragmentation induced by a high-energy hadron

    International Nuclear Information System (INIS)

    Zielinski, P.

    1982-10-01

    The author presents a review about the spallation in hadron reactions. Especially he considers proton-proton correlations at low relative momentum, angular distributions of 30-100 MeV protons, emission of fast deuterons, the vanishing of the Coulomb barrier, fission-like processes, the rise of the heavy fragment yield with energy transfer, proton-deuteron breakup reactions, and the backward emission of fast protons. (HSI)

  13. Fission of spin-aligned projectile-like nuclei in the interactions of 29 MeV/nucleon 208Pb with 197Au

    International Nuclear Information System (INIS)

    Bresson, S.; Morjean, M.; Jastrzebski, J.; Skulski, W.; Kordyasz, A.; Lott, B.

    1992-01-01

    Binary fission of projectile-like nuclei was investigated in the interaction of 29 MeV/nucleon Pb on Au, together with the associated neutron multiplicity. Fission is only observed in rather peripheral collisions and represents approximately 20% of the total reaction cross-section. The fission process occurs after collisions in which up to 550 MeV have been dissipated. The angular and energy distribution of the fragments can be accounted for by assuming a noticeable spin alignment of the fissioning nuclei. (author) 18 refs.; 3 figs

  14. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  15. Systematic experimental survey on projectile fragmentation and fission induced in collisions of 238U at 1 A GeV with lead

    International Nuclear Information System (INIS)

    Enqvist, T.; Benlliure, J.; Farget, F.; Schmidt, K.H.; Armbruster, P.; Bernas, M.; Tassan-Got, L.; Boeckstiegel, C.; Jong, M. de; Dufour, J.P.

    1999-03-01

    Projectile fragmentation and fission, induced in collisions of 238 U at 1 A GeV with lead, have systematically been studied. A complete survey on the isotopic production cross sections of all elements between vanadium (Z = 23) and rhenium (Z = 75) down to a cross section of 0.1 mb is given. About 600 isotopes produced in fragmentation and about 600 isotopes produced in fission were identified in the GSI fragment separator FRS from magnetic rigidities, time-of-flight values, and the energy loss in an ionisation chamber. In addition, the velocity distributions of all these reaction products have been mapped, and the products are unambiguously attributed to the different reaction mechanisms due to their kinematical properties. The results are compared with empirical systematics and previous data. The velocity of the fragments obtained in the fission process by the Coulomb repulsion allows to reconstruct the TKE-value of the break-up and to identify the atomic number of the fissioning nucleus in hot fission. The mean velocities of light projectile fragments were found to be higher than the beam velocity. (orig.)

  16. Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments

    International Nuclear Information System (INIS)

    Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.

    1983-11-01

    Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)

  17. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of {sup 234}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado Postal 31-139, Lima (Peru)]. e-mail: mmontoya@ipen.gob.pe

    2008-07-01

    The standard deviation of the final kinetic energy distribution ({sigma}{sub e}) as a function of mass of final fragments (m) from low energy fission of {sup 234}U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution ({sigma}{sub E}) as a function of primary fragment mass (A). The second peak is attributed to a real peak on {sigma}{sub E}(A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on {sigma}{sub E}(A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on {sigma}{sub e} (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the {sigma}{sub E} (A) curve, and the observed peaks on {sigma}{sub e} (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  18. Systematic features of mass yield curves in low-energy fission of actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    1999-01-01

    excitation energy and angular distribution. (9) Based on the systematic analysis of the heavy asymmetric mass yield curves in thermal neutron- and proton-induced fission of actinides, and spontaneous fission of medium and heavy actinides, the relation between the fragment shell structure and the shape of the mass yield curves which reflect the final mass division process is discussed. (author)

  19. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV 208Pb + p reaction

    International Nuclear Information System (INIS)

    Fernandez-Dominguez, B.

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction 208 Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z fis , A fis , E* fis ). In addition, the number of post-fission neutrons emitted from the fission fragments, v post , has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  20. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Derkx, X.

    2010-10-01

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238 U beam and a 12 C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  1. Statistical and off-equilibrium production of fragments in heavy ion collisions at intermediate energies; Production statistique et hors-equilibre de fragments dans les collisions d`ions lourdes aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Bocage, Frederic [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-12-15

    The study of reaction products, fragments and light charged particles, emitted during heavy-ion collisions at intermediate energies has shown the dominant binary dissipative character of the reaction, which is persisting for almost all impact parameters. However, in comparison with this purely binary process, an excess of nuclear matter is observed in-between the quasi-projectile and the quasi-target. To understand the mechanisms producing such an excess, this work studies more precisely the breakup in two fragments of the quasi-projectile formed in Xe+Sn, from 25 to 50 MeV/u, and Gd+C and Gd+U at 36 MeV/u. The data were obtained during the first INDRA experiment at GANIL. The angular distributions of the two fragments show the competition between statistical fission and non-equilibrated breakup of the quasi-projectile. In the second case, the two fragments are aligned along the separation axis of the two primary partners. The comparison of the fission directions and probabilities with statistical models allows us to measure the fission time, as well as the angular momentum, temperature and size of the fissioning residue. The relative velocities are compatible with Coulomb and thermal effects in the case of statistical fission and are found much higher for the breakup of a non-equilibrated quasi-projectile, which indicates that the projectile was deformed during interaction with the target. Such deformations should be compared with dynamical calculations in order to constrain the viscosity of nuclear matter and the parameters of the nucleon-nucleon interaction, (author) 148 refs., 77 figs., 11 tabs.

  2. Progress report on the 14-MeV fission cross section measurements

    International Nuclear Information System (INIS)

    1979-01-01

    The development of a recoil proton monitor was completed. It will be used to measure the neutron flux in the 14-MeV fisson cross section measurements. Extensive calculations of the efficiency of this monitor were made and compared with the calculations of other authors. It is clear that a major source of uncertainty in the efficiency is the lack of precise knowledge of the angular distribution of the n-p elastic scattering cross section. This leads to a change in efficiency of 3% depending on the form of the angular distribution that is used. A 4πβ-γ coincidence system was assembled to investigate the K-correction in determining the absolute activity of foil sources. Iron foils will be used as secondary flux standards in comparing the 14-MeV neutron flux with the fluxes in other laboratories, so this is an important correction to measure. The target and target holders that will be used in the 14-MeV measurements were designed and constructed. Preparations were completed to measure the angular distribution of the fission fragments produced in neutron-induced fission at 14 MeV. 2 figures

  3. Prompt neutrons from {sup 236}U fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boldeman, J W; Musgrove, A.R. de L.; Walsch, R L

    1971-03-01

    Measurements were made of prompt neutron emission in the thermal neutron fission of {sup 235}U. The mean neutron emission per fragment was obtained for particular values of the fragment mass and total kinetic energy. A direct neutron counting method was employed and a comparison made with data from previous experiments of this type. (author)

  4. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  5. Angular distribution measurement of fragment ions from a molecule using a new beamline consisting of a Grasshopper monochromator

    Science.gov (United States)

    Saito, Norio; Suzuki, Isao H.; Onuki, Hideo; Nishi, Morotake

    1989-07-01

    Optical characteristics of a new beamline consisting of a premirror, a Grasshopper monochromator, and a refocusing mirror have been investigated. The intensity of the monochromatic soft x-ray was estimated to be about 108 photons/(s 100 mA) at 500 eV with the storage electron energy of 600 MeV and the minimum slit width. This slit width provides a resolution of about 500. Angular distributions of fragment ions from an inner-shell excited nitrogen molecule have been measured with a rotatable time-of-flight mass spectrometer by using this beamline.

  6. Angular distribution measurement of fragment ions from a molecule using a new beamline consisting of a Grasshopper monochromator

    International Nuclear Information System (INIS)

    Saito, N.; Suzuki, I.H.; Onuki, H.; Nishi, M.

    1989-01-01

    Optical characteristics of a new beamline consisting of a premirror, a Grasshopper monochromator, and a refocusing mirror have been investigated. The intensity of the monochromatic soft x-ray was estimated to be about 10 8 photons/(s 100 mA) at 500 eV with the storage electron energy of 600 MeV and the minimum slit width. This slit width provides a resolution of about 500. Angular distributions of fragment ions from an inner-shell excited nitrogen molecule have been measured with a rotatable time-of-flight mass spectrometer by using this beamline

  7. High mass-asymmetry distributions of fissioning nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Lusting, H.J.; Hahn, J.; Greiner, W.

    1978-07-01

    It is shown that new mass-asymmetry valleys are appearing in the fragmentation potential V(l,eta) as function of the length l and mass-asymmetry coordinate eta = (A 1 - A 2 )to a correct treatment of the shell effects such that for separated fragments the shell effects equal the sum of the shell effects of the individual fragments and correspond to the double magic fragments 48 Ca, 78 Ni, 132 Sn and 208 Pb or may be 56 Ni. Also is shown that the fission mass-distributions have additional peaks corresponding to the bottom of these new valleys. The calculations are illustrated for 252 No and 238 U. The preliminary results show for 238 U relatively high percent yields in agreement with present available experimental data. (author)

  8. (3He,xn), (3He,pxn) and (3He, fission) reactions on 206Pb between 80 and 200MeV

    International Nuclear Information System (INIS)

    Andre, C.; Gauvin, H.; Le Beyec, Y.; Porile, N.T.

    1976-01-01

    The reactions induced in 206 Pb by 3 He particles having energies between 80 and 200MeV have been studied. Excitation functions for ( 3 He,xn) with x=3 to 14 and for ( 3 He,pxn) with x=2 to 5 have been obtained. Angular distributions of fission fragments were measured at 100, 125, 150 and 175MeV and total fission cross-sections were deduced from the data. On the basis of these results, analysis is attempted to examine the characteristics of reaction mechanisms. From these results it is concluded that non-compound processes play an important role in the reactions. Two features are characteristic of these processes: large cross-sections for charged particle emission and angular distribution of fission fragments closed to isotropy in the laboratory system. In the energy range 25 to 45MeV/nucleon, a comparison was made between the present results and those from an experimental study of α-particle induced reactions on 206 Pb. Also a comparison was made with an α-nucleus collision model applied to 206 Pb. All the observations strongly suggest a breakup of the projectile 3 He followed by the interactions of the fragments with the target nucleus [fr

  9. Spontaneous fission of 259Md

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.; Ghiorso, A.; Nitschke, J.M.

    1979-01-01

    The mass and kinetic energy distributions of fission fragments from the spontaneous fission of th newly discovered nuclide 259 Md were obtained. 259 Md was identified as the E. C. daughter of 259 No, and was found to decay entirely (> 95%) by spontaneous fission with a 95-min half-life. From the kinetic energies measured for 397 pairs of coincident fragments, a mass distribution was derived that is symmetric with sigma = 13 amu. 259 Md, together with 258 Fm and 259 Fm, form a select group of three nuclides whose mass division in spontaneous fission is highly symmetric. Unlike the total-kinetic-energy (TKE) distributions of 258 Fm and 259 Fm, which peak at approx. = to 240 MeV, this distribution for 259 Md is broad and is 50 MeV lower in energy. Analysis of the mass and energy distributions shows that events near mass symmetry also exhibit a broad TKE distribution, with one-third of the symmetric events having TKEs less than 200 MeV. The associated of low TKEs with symmetric mass division in the fission of very heavy actinides is anomalous and inconsistent with theories based upon the emergence of fragment shells near the scission point. Either three-body fragmentation or peculiar fragment shapes are assumed as the cause for the large consumption of Coulomb energy observed for a significant fraction of symmetric fissions in 259 Md. 6 figures

  10. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  11. Critical angular momentum dependence of the fission barriers and the stability of superheavy nuclei

    International Nuclear Information System (INIS)

    Magda, M.T.; Sandulescu, A.

    1978-10-01

    Measured complete fusion and evaporation cross section data are used to determine the critical angular momenta for which the fission barriers are vanishing in the region of nuclei with Z = 102 - 116. It is shown that, in order to fit these data, larger values of the critical angular momenta are obtained for superheavy nuclei (Z = 110 - 112) than for heavy ones (Z = 102 - 107), which indicates a relatively higher stability against fission for superheavy nuclei, in agreement with the theoretically predicted island of stability. (author)

  12. Recent results in heavy-ion-induced fission

    International Nuclear Information System (INIS)

    Plasil, F.; Awes, T.C.; Cheynis, B.

    1984-01-01

    A systematic investigation of angular-momentum-dependent fission barriers has been completed. Fission excitation functions were measured for the compound nuclei 153 Tb, 158 Er, 181 Re, 186 Os, and 204 206 208 210 Po. In the case of 153 Tb and 181 Re, evaporation residue cross sections were also measured. With the exception of some of the Po systems, two to five different reactions were used to produce the same compound nucleus with projectiles ranging from 9 Be to 64 Ni. 12 C reactions with 174 Yb, 198 Pt, and 238 U at energies from 95 to 291 MeV; 16 O reactions with 142 Nd, 170 Er, 192 Os, and 238 U at energies from 140 to 315 Mev; 32 S reactions with 126 Te, 144 Nd, and 238 U at energies from 350 to 700 MeV; and 58 Ni reactions with 96 Zr, 116 Cd, and 238 U at 352 and 875 MeV have also been studied. Also, fission fragment angular distributions were measured for the above 12 C- and 16 O-induced reactions. The results were analyzed in terms of saddle-point moments of inertia obtained from the RFRM

  13. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  14. Nuclear isomerism in fission fragments produced by the spontaneous fission of {sup 252}Cf; Isomerisme nucleaire dans les fragments de fission produits dans la fission spontanee du {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C

    1997-09-01

    This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)

  15. Controlled isotropic fission fragment sources on the base of nuclear-physical facilities

    International Nuclear Information System (INIS)

    Sevast'yanov, V.D.; Maslov, G.N.

    1995-01-01

    Isotropic fission fragment sources (IFFS) are developed on the base of a neutron generator and pulse fast reactor. IFFS permit to calibrate fission fragment detectors. The IFFS consist of radiators with 235 U. The radiators are placed in a thermal neutron field of the neutron generator or in the reactor core center. The fragment activity is controlled by indications of an α-particle counter or by indications of a monitor of energy release in the core. 14 refs.; 1 fig.; 1 tab

  16. Light particles emitted with the fission fragments of thorium

    Energy Technology Data Exchange (ETDEWEB)

    San-Tsiang, T; Faraggi, H

    1947-01-01

    The traces produced by the fission of thorium with fast neutrons have been recorded photographically and studied. The formation of a light fragment of long range by either quadripartition or tripartition was not observed. The release of a short-range light fragment by bipartition was observed about one hundred times more frequently than was the release of such a fragment by tripartition. The ratio of the range of the two heavy fragments produced by tripartition was 1:2; this compares with a ratio of 1:3 for the heavy fragments produced by bipartition.

  17. Systematic experimental survey on projectile fragmentation and fission induced in collisions of {sup 238}U at 1 A GeV with lead

    Energy Technology Data Exchange (ETDEWEB)

    Enquist, T.; Benlliure, J.; Farget, F.; Schmidt, K.H.; Armbruster, P. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Bernas, M.; Tassan-Got, L. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Boudard, A.; Legrain, R.; Volant, C. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee (DAPNIA); Boeckstiegel, C.; Jong, M. de [Technische Univ. Darmstadt (Germany); Dufour, J.P. [CEA Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 - Gradignan (France)

    1999-03-01

    Projectile fragmentation and fission, induced in collisions of {sup 238}U at 1 A GeV with lead, have systematically been studied. A complete survey on the isotopic production cross sections of all elements between vanadium (Z = 23) and rhenium (Z = 75) down to a cross section of 0.1 mb is given. About 600 isotopes produced in fragmentation and about 600 isotopes produced in fission were identified in the GSI fragment separator FRS from magnetic rigidities, time-of-flight values, and the energy loss in an ionisation chamber. In addition, the velocity distributions of all these reaction products have been mapped, and the products are unambiguously attributed to the different reaction mechanisms due to their kinematical properties. The results are compared with empirical systematics and previous data. The velocity of the fragments obtained in the fission process by the Coulomb repulsion allows to reconstruct the TKE-value of the break-up and to identify the atomic number of the fissioning nucleus in hot fission. The mean velocities of light projectile fragments were found to be higher than the beam velocity. (orig.) 41 refs.

  18. The Munich accelerator for fission fragments MAFF

    International Nuclear Information System (INIS)

    Habs, D.; Gross, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.

    2003-01-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (∼3x10 11 s -1 ) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV·A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups

  19. Nuclear dissipation effects on fission and evaporation in systems of intermediate fissility

    Directory of Open Access Journals (Sweden)

    Gelli N.

    2010-03-01

    Full Text Available The systems of intermediate fissility 132Ce and 158Er have been studied experimentally and theoretically in order to investigate the dissipation properties of nuclear matter. Cross sections of fusion-fission and evaporation residues channels together with charged particles multiplicities in both channels, their spectra, angular correlations and mass-energy distribution of fission fragments have been measured. Theoretical analysis has been performed using multi-dimensional stochastic approach with realistic treatment of particle evaporation. The results of analysis show that full one-body or unusually strong two-body dissipation allows to reproduce experimental data. No temperature dependent dissipation was needed.

  20. Choice of initial conditions in dynamical calculations of distributions of nuclear fission fragments

    International Nuclear Information System (INIS)

    Kosenko, G.I.

    1993-01-01

    The distribution function in the coordinates and momenta for a fissioning system traversing a barrier is determined in terms of Langevin fluctuation-dissipation dynamics. It is shown that this distribution is best described by the Kramers distribution. The equilibrium distribution can be used as the initial condition, provided that the system is in the overdamping regime. 28 refs., 5 figs., 3 tabs

  1. Evolution of uranium fission-fragment charge yields with neutron number. Strong effect of multi-chance fission on yield asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Schmitt, Christelle [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds, Caen (France)

    2017-01-15

    We use the Brownian shape-motion model, with its recent extensions, which allow modeling of odd-even staggering, to calculate the evolution of fission-fragment charge distributions with neutron number for the compound-system sequence {sup 234}U, {sup 236}U, {sup 238}U, and {sup 240}U. We compare to experimental data where available, for neutron- and electromagnetic-induced fission over a compound-nucleus excitation energy range from about 6 to 20 MeV. A notable result of the study is that the evolution of the location of the peak charge yield from Z = 54 in {sup 234}U towards Z = 52 in heavier isotopes, seen in the experimental data, is present also in the calculated yields. We further show that to describe yields at higher compound-nucleus excitation energies, then, already at 20 MeV, it is necessary to take multi-chance fission into account. (orig.)

  2. α and p emission before, during, and after fission of the fusion nucleus 169Ta: Nuclear deformation, field emission, and nuclear shadow

    International Nuclear Information System (INIS)

    Brucker, A.

    1986-01-01

    In the asymmetric system 318 MeV 28 Si + 141 Pr the angular and energy distributions of α particles and protons were measured in coincidence with fission fragments. Identification and separation of the sources of sequential emission before (CN) and after (F) fission of the compound-nucleus 169 Ta yields following multiplicities: M CN α =0.38±0.04, M CN p =0.6±0.15; M F α =0.16±0.03, M F p =0.54±0.15. Measurement of the cross sections δ ER =(608±81) mb and δ F =(679±159) mb for residual nucleus formation respectively fission fixes the mean angular momentum for fission l F =(94±7)ℎ and the maximal angular momentum l F,max =(110±10)ℎ (sharp cut-off model). From the angular correlation relative to the spin direction of the compound-nucleus an anisotropy parameter of A α =6.7±0.8 and A p =1.3±0.2 for α respectively proton emission from the compound-nucleus is measured, and by means of the semiclassical model of Dossing a quadrupole deformation parameter of the compound-nucleus of vertical strokeδvertical stroke=0.43±0.05 consistent within the uncertainties of the analysis determined. Apart from pre-equilibrium emission under small angles to the beam significant deviations from sequential emission are observed only in the α emission and detailedly studied by means of angular correlation and energy spectra: (I) an strong nuclear shadowing of the fragment emission of 1/7 of its sequential value in a narrow angular range (≅40 0 (FWHM)) in the direction of the detected fission fragment. From this a mean lifetime of the compound nucleus τ CN =(140-240).10 -22 s is obtained. (II) A perpendicularly to the scission axis strongly pronounced surplus M SC α =(1.7±0.4).10 -2 and an observed deficit of equal magnitude in direction of the scission axis. (orig./HSI) [de

  3. Fission-fragment and neutron data traced back to the macroscopic and microscopic properties of the fissioning systems

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2010-10-01

    Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.

  4. Fission barriers in the quasi-molecular shape path

    International Nuclear Information System (INIS)

    Royer, G.; Bonilla, C.; Zbiri, K.; Gherghescu, R.A.

    2003-01-01

    New observed phenomena like asymmetric fission of intermediate mass nuclei, nuclear molecules in light nuclei, super and hyperdeformations, cluster radioactivity, fast-fission of heavy systems and fragmentation have renewed interest in investigating the fusion-like fission valley which leads rapidly to two touching spherical fragments and quasi-molecular shapes. Furthermore, rotating super and hyperdeformed nuclear states and superheavy nuclei can be formed only in heavy-ion collisions for which the initial configuration is two close quasi-spherical nuclei. For these shapes the balance between the Coulomb forces and surface tension forces does not allow to link the sheets of the potential energy surface corresponding to one-body shapes and to two separated fragments, respectively. It is necessary to add another term called proximity energy reproducing the finite-range effects of the nuclear force in the neck or the gap between the nascent fission fragments. A generalized liquid drop model has been developed to take into account this nuclear proximity energy, the mass and charge asymmetry, an accurate nuclear radius and the temperature effects. The initial value of the surface energy coefficient has been kept. Microscopic corrections have been determined within the asymmetric two center shell model or simpler algebraic approximations. With this model and deformation valley first studies had led to the following results: (i) good agreement between the potential barrier heights and the experimental fission barrier heights in the whole mass range; (ii) saddle-point corresponding to two separated fragments maintained in unstable equilibrium by the balance between the repulsive Coulomb forces and the attractive proximity forces; (iii) strong enhancement of the maximal angular momentum against fission; (iv) reasonable agreement with experimental data on the double-humped barriers of actinides. Within this same approach we have recently shown that the calculated potential

  5. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Berlanger, M.; Deleplanque, M.A.; Gerschel, C.; Hanappe, F.; Leblanc, M.; Mayault, J.F.; Ngo, C.; Paya, D.; Perrin, N.; Peter, J.; Tamain, B.; Valentin, L.

    The γ-ray multiplicity has been measured for the quasi-fission events in the Cu + Au reaction at 443MeV. Using the usual assumption on the γ-ray multipolarity and estimating the angular momentum carried away by the evaporated particles, a value of 57h is obtained for the angular momentum transferred to the fragments, in agreement with the sticking hypothesis [fr

  6. The temperature of fission fragments from spontaneous fission of 252Cf measured by time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Popkiewicz, M.; Osuch, S.; Szeflinski, Z.; Sztampke, A.; Wilhelmi, Z.; Wolinska, M.; Zaganczyk, R.

    1997-01-01

    The detection system MONA (Modular Neutron Array) consisting of eight large BC-501A liquid scintillators, was applied to determine the temperature of fission fragments emitted in spontaneous fission of 252 Cf. The determination of the temperature was based on the measurement of the neutron spectra

  7. Direct fission fragment energy converter - Magnetic collimator option

    International Nuclear Information System (INIS)

    Tsvetkov, P. V.; Hart, R. R.

    2006-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. In addition to the extensive computational effort, the scaled prototype experimental proof-of-principle program was conducted to validate basic physics of the concept. The program was focused on electromagnetic components and experimental demonstration of performance. This paper summarizes the final results of the 6-years research program including both computational and experimental efforts. Potential future research and development and anticipated applications are discussed. (authors)

  8. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of {sup 238}U at 1 A GeV as a function of the target mass, and, for the reaction of {sup 238}U at 1 A GeV on a (CH{sub 2}){sub n} target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  9. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J.; Junghans, A.R.

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of 238 U at 1 A GeV as a function of the target mass, and, for the reaction of 238 U at 1 A GeV on a (CH 2 ) n target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  10. SOFIA: An innovative setup to measure complete isotopic yield of fission fragments

    Directory of Open Access Journals (Sweden)

    Pellereau E.

    2013-12-01

    Full Text Available We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra.

  11. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  12. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction ...

  13. Complex fragment emission in the reaction 197Au → 197Au at an incident energy of 15 MeV/u

    International Nuclear Information System (INIS)

    Schmoll, R.

    1988-07-01

    For the study of the dominant decay processes in the reaction 15 MeV/u 197 Au → 197 Au in one-particle inclusive experiments the emission characteristics of all ejectiles in the mass range 24 ≤ A ≤ 197 were studied. The deflection function of the projectile-like fragments is for all energy losses at the grazing angle Θ cm gr =27.5 degrees peaked and in fact even for scattering events in which the whole available kinetic energy was dissipated in the collisions. The systematic analysis of the velocity spectra shows that the lightest fragments are formed in double-sequential fission of the highly excited gold-like fragments from the first deep inelastic reaction stage before reaching of a global equilibrium. On the other side symmetrical fission products, which are part of the narrow branch of the mass distribution, are emitted in simple-sequential non-equilibrium fission. This simple-sequential breakup is very closely limited to excitation energies of 75 ≤ E * ≤ 275 MeV of the primary, gold-like fragments, while the probability for double-sequential fission above E * ≅ 200 MeV increases very strongly. Contrarily to equilibrated compound-nucleus fission these processes are characterized by a in the source system strongly anisotropic angular distribution with distinct foreward/backward asymmetry and by an extremely asymmetric mass split. The study of the mass distribution shows that non-equilibrium fission at 15 MeV/u is both in view of the reaction cross section and regarding the creation of the complex fragments is the dominant decay process. The integral cross section of the broad four-body distribution corresponds to 60% of the total reaction cross section; the integral cross section of the narrow three-body distribution corresponds to 10%. (orig./HSI) [de

  14. Measurement of mass distribution of U-235 fission products in the intermediate neutron region

    International Nuclear Information System (INIS)

    Nakagomi, Yoshihiro; Kobayashi, Shohei; Yamamoto, Shuji; Kanno, Ikuo; Wakabayashi, Hiroaki.

    1982-01-01

    The mass distribution and the momentum distribution of U-235 fission products in the intermediate neutron region were measured by using a combination system of the Yayoi intermediate neutron column and an electron linear accelerator. The double energy measurement method was applied. A fission chamber, which consists of an enriched uranium target and two Si surface barrier detectors, was used for the measurement of the neutrons with energy above 1.3 eV. The linear accelerator was operated at the repetition rate of 100 Hz and the pulse width of 10 ns. The data obtained by the two-dimensional pulse height analysis were analyzed by the Schmitt's method. The preliminary results of the mass distribution and the momentum distribution of fission fragments were obtained. (Kato, T.)

  15. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Moritz Pascal

    2015-07-01

    , alpha spectroscopy of short lived nuclides ({sup 220}Ra, 17.9 ms) were performer. Due to the selective stopping of only one nuclide in the stopping cell the characteristic alphas of 24 nuclides were measured with almost zero background and their Q-alpha-values could be confirmed. Following a new approach, data from gamma spectroscopy, alpha spectroscopy and high resolution mass spectrometry of {sup 211}Po were combined to study the angular momentum distribution arising from in-flight projectile fragmentation. This was possible by measuring the isomer ratio of {sup 211}Po and comparing it to current predictions from the two-step abrasion-ablation model. It was shown that current models can not describe the angular momentum distribution of in-flight projectile fragmentation and that new measurements of isomer ratios are required in order to understand the angular momentum distribution.

  16. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    International Nuclear Information System (INIS)

    Reiter, Moritz Pascal

    2015-01-01

    lived nuclides ("2"2"0Ra, 17.9 ms) were performer. Due to the selective stopping of only one nuclide in the stopping cell the characteristic alphas of 24 nuclides were measured with almost zero background and their Q-alpha-values could be confirmed. Following a new approach, data from gamma spectroscopy, alpha spectroscopy and high resolution mass spectrometry of "2"1"1Po were combined to study the angular momentum distribution arising from in-flight projectile fragmentation. This was possible by measuring the isomer ratio of "2"1"1Po and comparing it to current predictions from the two-step abrasion-ablation model. It was shown that current models can not describe the angular momentum distribution of in-flight projectile fragmentation and that new measurements of isomer ratios are required in order to understand the angular momentum distribution.

  17. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  18. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    Science.gov (United States)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  19. Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-04-15

    Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments

  20. Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U

    International Nuclear Information System (INIS)

    Albinsson, H.

    1971-04-01

    Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments

  1. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved

  2. Electron spin resonance of gamma, electron, neutron and fission fragments irradiated K2SO4

    International Nuclear Information System (INIS)

    Kamali, J.; Walton, G.N.

    1985-01-01

    The electron spin resonance (ESR) of K 2 SO 4 irradiated by γ, electron, neutron and fission fragments has been investigated. The ESR spectra are attributed mainly to the formation of SO 3 - , SO 4 - , SO 2 - , and O 3 - radical ions. The most intense radical ion observed was due to the SO 3 - , and the other radicals were relatively much lower in intensity. Thermal annealing showed a significant decrease in the concentration of radical ions. The concentration of SO 3 - was measured in γ-irradiated K 2 SO 4 and K 2 SO 4 containing fission fragments. In fission fragments irradiated K 2 SO 4 , the G-value observed for SO 3 - radical formation was about eight times higher than that of γ-irradiated K 2 SO 4 . This was attributed to the high LET (Linear Energy Transfer) of the fission fragments. (author)

  3. Measurement and role of linear and angular momenta transferred in peripheral collisions Kr + Au and Kr + Th at 43 MeV/u

    International Nuclear Information System (INIS)

    Delaunay, F.

    1990-01-01

    In this experiment performed at GANIL, the use of the gaseous multidetectors DELF and XYZT allows the detection of the heavy fragments (Z ≥ 5) whose velocity is larger than 3 cm/ns when the emission angle is lower than 30 0 and whose velocity is larger than 0.5 cm/ns when the emission angle is greater than 30 0 . For the reactions Kr + Au and Kr + Th at 43 MeV/u, we have observed with a still significative occurrence, events where 6 fragments are produced and we have studied the events where at least 3 heavy fragments were detected. In order to separate the peripheral collisions from the central ones, a collective variable measuring the dispersion of the relative velocity between each couple of fragment is used for events where 3 or 4 heavy fragments are recorded. Afterwards, a selection method is presented for the peripheral events in order to deal only with almost complete events. The atomical number of the fragment whose velocity is nearly equal to the beam velocity, is used to estimate the impact parameter. We find that for a given impact parameter, some different mechanisms are present. A method of measurement of the angular momentum is elaborated from the angular distribution of the fission fragments. A study of incomplete linear momentum transfer leads to a transfer rate of about 40%. The angular momentum of the target like fragment just before fission is also small. The results of the abrasion-ablation model and of the two-step model are quite close to the experimental results [fr

  4. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  5. The temperature of fission fragments from spontaneous fission of {sup 252}Cf measured by time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Popkiewicz, M.; Osuch, S.; Szeflinski, Z.; Sztampke, A.; Wilhelmi, Z.; Wolinska, M.; Zaganczyk, R. [Warsaw Univ., Inst. of Experimental Physics, Nuclear Physics Div., Warsaw (Poland)

    1997-12-31

    The detection system MONA (Modular Neutron Array) consisting of eight large BC-501A liquid scintillators, was applied to determine the temperature of fission fragments emitted in spontaneous fission of {sup 252}Cf. The determination of the temperature was based on the measurement of the neutron spectra. 5 refs, 2 figs.

  6. Finite pt contribution to relativistic Coulomb excitation: A possible explanation for the clean fission puzzle

    International Nuclear Information System (INIS)

    Galetti, D.; Kodama, T.; Nemes, M.C.

    1986-10-01

    The quantum relativistic Coulomb excitation process including reccil effects is studied in the plane wave Born approximation. Quantum and relativistic recoil effects allow for relatively large transverse momentum transfers, usually neglected. This specific feature is shown to modify the angular distribution of Coulomb induced fission fragmentation in an essential manner. In contrast with usual treatments it is found that these results compare favourably with recent data. (Authors) [pt

  7. Resonance structure in the fission of ( sup 235 U+n)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, M.S. (Los Alamos National Lab. (LANL), NM (USA). Physics Div.); Leal, L.C.; De Saussure, G.; Perez, R.B.; Larson, N.M. (Oak Ridge National Lab., TN (USA))

    1989-10-09

    A new multilevel reduced R-matrix analysis of the neutron-induced resonance cross sections of {sup 235}U has been carried out. We used as a constraint in the analysis the angular anisotropy measurements of Pattenden and Postma, obtaining a Bohr-channel (or J, K channel) representation of the resonances in a two-fission vector space for each spin state. Hambsch et al., have reported definitive measurements of the mass- and kinetic-energy distributions of fission fragments of ({sup 235}U+n) in the resonance region and analyzed their results according to the fission-channel representation of Brosa et al., extracting relative contributions of the two asymmetric and one symmetric Brosa fission channels. We have explored the connection between Bohr-channel and asymmetric Brosa-channel representations. The results suggest that a simple rotation of coordinates in channel space may be the only transformation required; the multilevel fit to the total and partial cross sections is invariant to such a transformation. (orig.).

  8. Fission fragment excited laser system

    Science.gov (United States)

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  9. Photofragment angular momentum distribution beyond the axial recoil approximation: Predissociation

    International Nuclear Information System (INIS)

    Kuznetsov, Vladislav V.; Vasyutinskii, Oleg S.

    2007-01-01

    We present the quantum mechanical expressions for the angular momentum distribution of the photofragments produced in slow predissociation. The paper is based on our recent theoretical treatment [J. Chem. Phys. 123, 034307 (2005)] of the recoil angle dependence of the photofragment multipole moments which explicitly treat the role of molecular axis rotation on the electronic angular momentum polarization of the fragments. The electronic wave function of the molecule was used in the adiabatic body frame representation. The rigorous expressions for the fragment state multipoles which have been explicitly derived from the scattering wave function formalism have been used for the case of slow predissociation where a molecule lives in the excited quasibound state much longer than a rotation period. Possible radial nonadiabatic interactions were taken into consideration. The optical excitation of a single rotational branch and the broadband incoherent excitation of all possible rotational branches have been analyzed in detail. The angular momentum polarization of the photofragments has been treated in the high-J limit. The polarization of the photofragment angular momenta predicted by the theory depends on photodissociation mechanism and can in many cases be significant

  10. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  11. Anomalies in the Charge Yields of Fission Fragments from the ^{238}U(n,f) Reaction.

    Science.gov (United States)

    Wilson, J N; Lebois, M; Qi, L; Amador-Celdran, P; Bleuel, D; Briz, J A; Carroll, R; Catford, W; De Witte, H; Doherty, D T; Eloirdi, R; Georgiev, G; Gottardo, A; Goasduff, A; Hadyńska-Klęk, K; Hauschild, K; Hess, H; Ingeberg, V; Konstantinopoulos, T; Ljungvall, J; Lopez-Martens, A; Lorusso, G; Lozeva, R; Lutter, R; Marini, P; Matea, I; Materna, T; Mathieu, L; Oberstedt, A; Oberstedt, S; Panebianco, S; Podolyák, Zs; Porta, A; Regan, P H; Reiter, P; Rezynkina, K; Rose, S J; Sahin, E; Seidlitz, M; Serot, O; Shearman, R; Siebeck, B; Siem, S; Smith, A G; Tveten, G M; Verney, D; Warr, N; Zeiser, F; Zielinska, M

    2017-06-02

    Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

  12. Inverse-kinematics study of 78Kr + 40Ca at 10 AMeV

    Directory of Open Access Journals (Sweden)

    Henry E.

    2015-01-01

    Full Text Available The CHIMERA multi-detector array at LNS Catania has been used to study the inverse-kinematics reaction of 78Kr + 40Ca at a bombarding energy of 10 A MeV. Analysis of the experimental data focused on a class of selected events consistent with the complete fusion and subsequent binary split of the of the reacting system. This class of events features a broad A, Z distribution of fission fragments centered about symmetric fission while exhibiting relative velocities significantly higher than given by Viola systematics. The center-of-mass angular distribution (dσ/dΘ of the fission fragments exhibit an unexpected anisotropy inconsistent with a compound-nucleus reaction and indicates a dynamic fusion-fission like process. The observed angular distribution features an asymmetric forward-backward peaking most prevalent for mass-asymmetric events. Furthermore, the more massive fragment of mass-asymmetric events appears to emerge preferentially in the forward direction, along the beam axis, in analogy to dynamic fragmentation of projectile-like fragments. Analysis of the angular distribution of alpha particles emitted from these fission fragments suggests the events are associated mostly with central collisions.

  13. Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Goesta

    1964-02-15

    The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.

  14. Measurement of p-odd asymmetry of fragment escape in ternary fission of plutonium 239

    International Nuclear Information System (INIS)

    Belozerov, A.V.; Vodennikov, B.D.; Danilyan, G.V.; Korobkina, E.I.; Pavlov, V.S.; Pevchev, Yu.F.; Sadchikov, A.G.

    1988-01-01

    Values of effects of parity nonconservation in binary and ternary fission of plutonium 239 by polarized thermal neutrons were measured simultaneously. The ratio of asymmetry coefficient (AC) of ternary fission to the AC of binary fission was equal to 0.67+-0.20. The obtained result testifies to insignificant disagreement of AC of fragment escape in studied fission types

  15. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    Science.gov (United States)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  16. Fission observables from 4D Langevin calculations with macroscopic transport coefficients

    Directory of Open Access Journals (Sweden)

    Usang Mark D.

    2018-01-01

    Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.

  17. Development of an experimental device based on the digitalization of the signal and dedicated to the characterization of fission fragments and prompt neutrons; Developpement d'un dispositif experimental base sur la digitalisation des signaux et dedie a la caracterisation des fragments de fission et des neutrons prompts emis

    Energy Technology Data Exchange (ETDEWEB)

    Varapai, N

    2006-12-15

    The present work demonstrates the application of the digital technique for nuclear measurements. This new technique is based on the digitalization of the signals from the detectors and has several advantages. This technique allows us to extract the maximum amount of information contained in the signal shape. In the case of an ionization chamber this signal contains the necessary information on the particle kinetic energy, emission angle and mass. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from {sup 252}Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. This work displays how delicate analysis of the digitalized signals permitted us to infer the mass and kinetic energy distributions of the fission fragments as well as the neutron energy spectrum and multiplicity. The outline of this thesis is as follows: Chapter 2 gives an overview of the experimental tools used in this work. Chapter 3 explains the analysis procedure of the digitalized anode signal from an ionization chamber. Chapter 4 gives a detailed explanation of the analysis procedure of the digitalized signal from a neutron detector. In Chapter 5 the analysis procedure of the fission fragment events in coincidence with neutrons is given.

  18. Characterization of a facility for the measurement of fission fragment transport effects: experimental determination of the fission rates for fissile and fissionable isotopes

    International Nuclear Information System (INIS)

    Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.

    2002-01-01

    The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)

  19. Proposal to represent neutron absorption by fission products by a single pseudo-fragment

    International Nuclear Information System (INIS)

    Tsibulya, A.M.; Kochetkov, A.L.; Kravchenko, I.V.; Nikolaev, M.N.

    1991-01-01

    The concentration of fission products during reactor operation is analyzed. The dependence of a composite fission product capture cross-section as a function of time and on the nature of the A of the fissile nuclide are investigated, and the neutron radiative capture in fission products of a thermal reactor is evaluated. It is concluded that neutron absorption by fission products can be described by pseudo-fragments. (author). 18 refs, 2 figs, 3 tabs

  20. Planetary Surface Power and Interstellar Propulsion Using Fission Fragment Magnetic Collimator Reactor

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; King, Don B.; Rochau, Gary E.

    2006-01-01

    Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light

  1. Gamma Radiation from Fission Fragments Experimental Apparatus-Mass Spectrum Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-08-15

    The gamma-radiation from fission fragments was studied as a function of the fragment mass. The mass was determined from the fragment energies using solid state detectors. The mass resolution which can be achieved by this method is treated in detail. The average initial fragment mass and the initial mass resolution is calculated as a function of the measured (apparent) mass yield for three different thicknesses of the fissile material deposit. This treatment gives a clear indication of those factors most important for good mass resolution work. A detailed description of the experimental apparatus is given in the appendices.

  2. Binary scission configurations in fission of light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.

    1997-07-01

    Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)

  3. Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons

    International Nuclear Information System (INIS)

    Nix, J.R.; Madland, D.G.; Sierk, A.J.

    1985-01-01

    With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown

  4. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  5. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  6. Fission before mass equilibration in heavy ion reactions

    International Nuclear Information System (INIS)

    Yadav, C.; Thomas, R.G.; Mohanty, A.K.

    2013-01-01

    For compound nucleus (CN) fission, it is expected that the width of the fragment mass distribution is independent of the entrance channel. In quasifission reaction, however, recent experiments reported anomalous broadening of mass distribution for more symmetric systems forming the same compound nucleus in fissile (fissility ∼ 0.8) and less fissile (fissility ∼ 0.7) systems. These measurements have not shown any mass-angle correlation, but width of fission fragment mass distribution was found to be consistently higher than that expected for fusion-fission

  7. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1992-01-01

    Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to 132 Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of 264 Fm

  8. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  9. Fission dynamics in the proton induced fission of heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rubchenya, V.A. E-mail: rubchen@phys.jyu.fi; Trzaska, W.H.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Pokrovski, I.V.; Voskressenski, V.M.; Hanappe, F.; Materna, T.; Dorvaux, O.; Stuttge, L.; Chubarian, G.; Khlebnikov, S.V.; Vakhtin, D.N.; Lyapin, V.G

    2004-04-05

    Multi-parameter correlation study of the reaction {sup 242}Pu(p, f) at E{sub p} 13, 20 and 55 MeV has been carried out. Fission fragment mass and kinetic energy distributions and the double differential neutron spectra have been measured. It was observed that the two-humped shape of mass distributions prevailed up to highest proton energy. Manifestation of the nuclear shell Z 28 near fragment mass A{sub fr} = 70 has been detected. The experimental results were analyzed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process. The multi-parameter correlation study of the reaction.

  10. Double-energy double-velocity measurement system for fission fragments and its application

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    1987-10-01

    A new system of double-energy double-velocity (DEDV) measurement for fission fragments has been developed. In this system, the energies of fission fragments are measured by silicon surface barrier detectors (SSB) and the velocities by the time-of-flight (TOF) method utilizing thin film detectors (TFD) as start detectors and SSBs as stop detectors of TOF. Theoretical and experimental studies on TFDs and SSBs have been performed before the construction of the DEDV measurement system. The TFD consists of a thin plastic scintillator film and light guide. The author proposes a new model of the luminescence production in a scintillator film. This model takes into account the thickness of the scintillator film and uses only one parameter. The calculated TFD response to charged particles shows good agreement with other experiments. The dependence of the TFD response to the thickness of the scintillator film has been studied experimentally and analyzed by the luminescence production model. The results of this analysis shows the validity of the luminescence production model. The time resolution of the DEDV measurement system using TFDs and SSBs was 133 ps. As an application of this system, the DEDV measurement for the thermal neutron-induced fission of 233 U has been carried out at the super mirror neutron guide tube facility of Kyoto University Reactor (KUR). The energy and velocity of each fission fragment have been stored on magnetic disk event by event in a list mode. The analyzed results of masses, energies and velocities of light and heavy fragments agree well with other authors' works. The value of the total neutron emission number is 2.53 and shows good agreement within experimental error, with the JENDL-2 value, 2.49. The light fragment shows a slightly greater number of neutrons emitted than the other works. This suggests the possibility of larger deformation of light fragments at the scission point. (author)

  11. Conceptual Analysis of Fission Fragment Magnetic Collimator Reactors

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Parish, Theodore A.

    2002-01-01

    As part of the current research work within the US DOE NERI Direct Electricity Conversion (DEC) Project on methods for utilizing direct electricity conversion in nuclear reactors, a detailed study of a Fission Fragment Magnetic Collimator Reactor (FFMCR) has been performed. The FFMCR concept is an advanced DEC system that combines advantageous design solutions proposed for application in both fission and fusion reactors. The present study was focused on determining the electrical efficiency and other important operational aspects of the FFMCR concept. In principle, acceptable characteristics have been demonstrated, and results obtained are presented in the paper. Technological visibility of the FFMCR concept and required further design development are discussed. Preliminary characteristics of the promising design are outlined. (authors)

  12. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    Full text: Fission induced by nucleons transfer has been investigated in the reaction 28 Si + 232 Th at 340 MeV. Looking at the projectile-like-fragments (PLF), the fission yield increases as the transfer increases, but a decreases is observed for transfers with DZ . Light charged particles in coincidence with PLF and Fission have been detected with large solid angle and show an increasing multiplicity as the Z of PLF is reduced and a constant value when fission is requested. The present results indicate inhibition of transfer induced fission reaction for higher Z transfer and increasing probability for decay through charged particle evaporation. Fission is the dominant decay process in heavy reactions involving fissile systems but the dynamical evolution of the composite system is largely governed by the formation and decay mechanisms. Important insight into the formation and the survival probability of the heavy composite nuclei formed in heavy ion collisions can be gained by simultaneously investigate the fission process and light particle emission over a continuous range of excitation energy, angular momentum and fissility. This can be achieved by studying fission induced by transfer of nucleons between the interacting projectile and the target nucleus. In the present work, we have carried out measurements on multinucleon transfer induced fission reactions in 28 Si + 232 Th system at Elab = 340 MeV. The experiment has been performed at the Laboratori Nazionale di Legnaro (LNL) using the 8pLP detector in its final configuration with 257 DE-E telescopes. The backward detectors were used to measure both light charged particles and fission fragments. The projectile-like fragments were detected using separate DE-E telescopes around the grazing angle. Two neutron detectors were placed at a distance of 115.5 cm from the target to measure neutrons emitted in coincidence with fission fragments. Here we present the results of the data analysis of transfer induced fission

  13. Fission modelling with FIFRELIN

    International Nuclear Information System (INIS)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie

    2015-01-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  14. On the nuclear fragmentation mechanisms in nuclear collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Jipa, Al.; Besliu, C.; Felea, D.; Iliescu, B.; Ristea, O.; Ristea, M.; Calin, C.; Horbuniev, A.; Arsene, I.; Esanu, T.; Ochesanu, S.; Caramarcu, C.; Bordeianu, C.; Rosu, I.; Grossu, V.; Zgura, I.S.; Stan, E.; Mitu, C.; Potlog, M.; Cherciu, M.; Stefan, I.

    2004-01-01

    The nuclear fragmentation mechanisms can be discussed taking into account different scales. These scales are related to the fragment sizes. Taking into account the possible different fragmentation mechanisms of the nuclei at the same incident energy an analysis of the experimental results obtained in different experiments performed at the JINR Dubna (Russia), KEK Tsukuba (Japan), GSI Darmstadt (Germany) is done. Results on apparent temperatures, angular distributions, fragment momentum spectra, multiplicities of the intermediate mass fragments are used to analyse the competition between two possible nuclear fragmentation mechanisms, namely: a sudden fragmentation by explosive mechanisms, like shock waves, and a slow fragmentation by the 'fission' of the spectator regions, mainly, because of the interactions with the particles or fragments emitted from the participant region at transverse angles on the incident nucleus, in CMS.Some connections with chaos dynamics and fractal structure of the fragmentation patterns are included. (authors)

  15. Development of an experimental device based on the digitalization of the signal and dedicated to the characterization of fission fragments and prompt neutrons

    International Nuclear Information System (INIS)

    Varapai, N.

    2006-12-01

    The present work demonstrates the application of the digital technique for nuclear measurements. This new technique is based on the digitalization of the signals from the detectors and has several advantages. This technique allows us to extract the maximum amount of information contained in the signal shape. In the case of an ionization chamber this signal contains the necessary information on the particle kinetic energy, emission angle and mass. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from 252 Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. This work displays how delicate analysis of the digitalized signals permitted us to infer the mass and kinetic energy distributions of the fission fragments as well as the neutron energy spectrum and multiplicity. The outline of this thesis is as follows: Chapter 2 gives an overview of the experimental tools used in this work. Chapter 3 explains the analysis procedure of the digitalized anode signal from an ionization chamber. Chapter 4 gives a detailed explanation of the analysis procedure of the digitalized signal from a neutron detector. In Chapter 5 the analysis procedure of the fission fragment events in coincidence with neutrons is given

  16. The REX-ISOLDE-project and the Munich Accelerator for Fission Fragments MAFF

    CERN Document Server

    Habs, D; Assmann, R W; Emhofer, S; Engels, O; Gross, M; Kester, O; Maier, H J; Reiter, P; Sieber, T; Thirolf, P G

    2001-01-01

    After a general discussion of ISOL-facilities in Europe we focus on the present status of the REX-ISOLDE facility at CERN and the Munich Accelerator for Fission Fragments MAFF. At REX-ISOLDE in 2001 radioactive beams of ISOLDE will be accelerated to (0.8-2.4) MeV/u. At the new Munich high-flux reactor FRM-II a production target of MAFF with 10$^{14}$ fissions/s is under design. Probably in 2003 intense low-energy beams ( approximately=10$^{11}$/s) of very neutron-rich fission fragments will be available. For MAFF a linac is being developed, which will accelerate the ions after charge breeding to energies between 3.7 and 5.9 MeV/u. In the long term a recycling ring with large momentum acceptance will further increase the radioactive beam intensities by a factor of 10$^{2}$-10$^{3}$ for specific experiments. (33 refs).

  17. Theoretical study of intermediate-mass fragments in proton-nucleus reactions at 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sabra, Mohammad S. [NASA Marshall Space Flight Center, USRA Space Science Department, Huntsville, AL (United States)

    2017-03-15

    We have analyzed energy spectra, angular distributions, and mass and charge distributions of intermediate-mass fragments (IMFs) from the interaction of {sup 27}Al, {sup 59}Co, and {sup 197}Au with 200 MeV protons. Calculations within the modified statistical model with final-state interaction were performed using SAPTON code. Within the experimental uncertainty and constraint, SAPTON shows good agreement with the data, and suggests that the IMFs are produced after the intra-nuclear cascade stage, and during the surface coalescence, as well as the evaporation/fission stages. (orig.)

  18. New approach to determine the angular transmission in zero-degree magnetic spectrometers

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira-Conca, J.; Schmidt, K.H.

    2000-11-01

    A new method to estimate the angular transmission in zero-degree magnetic spectrometers is presented. This method is based on a parameterisation of the angular aperture of the spectrometer for any possible value of the magnetic rigidity of the transmitted particles. This parameterisation of the angular aperture together with a description of the kinematics of the reaction mechanism allows to determine the angular transmission analytically, avoiding tedious Monte-Carlo calculations. The analytical solutions are implemented for residual nuclei produced in fission, projectile-fragmentation and fusion-evaporation reactions. (orig.)

  19. Ranges of the fragments from thermal (slow) neutron fission of /sup 235/U in water

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H; Chao, Z; Sheng, Z; Wang, L; Feng, X

    1980-05-01

    According to the principle of thick target, we used the aqueous solutions of uranyl chloride of various concentrations as thick targets and platinum plates of known surface area as absorbers immersed in the target solutions. The ranges of the U(n, f) fission fragments /sup 89/Sr, /sup 91/Y, /sup 140/Ba, /sup 141/Ce and /sup 144/Ce in the aqueous solutions of uranyl chloride of various concentrations were determined. In the concentration region of 0.16 U% - 6.2 U%, the uranium concentration had no significant effect on the measurement of the range. Therefore, the ranges of the fission fragments in diluted UO/sub 2/Cl/sub 2/ solutions are very close to those in pure water, and the mean value of the ranges in UO/sub 2/Cl/sub 2/ solutions of various concentrations was taken as the range in water. The experimental results of the ranges of these five fission fragments in water were: R/sub Sr-90/ = 2.39 +- 0.04 mgcm/sup -2/, R/sub Y-91/ = 2.35 +- 0.09 mgcm/sup -2/, R/sub Ba-140/ = 1.92 +- 0.07 mgcm/sup -2/, R/sub Ce-141/ = 1.91 +- 0.12 mgcm/sup -2/, R/sub Ce-144/ = 1.84 +- 0.10 mgcm/sup -2/. In order to estimate the effect of back scattering of fission fragments in platinum plate, we did the experiments using stainless steel plate as absorber (the aqueous solutions of uranyl chloride as thick targets). The results were similar. Thus, the effect of back scattering was not significant. This work provides a convenient means for determining the ranges of the fission fragments in a liquid.

  20. On the mechanism of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.; Richter, D.; Seeliger, D.

    1986-01-01

    This review represents the present knowledge of the mechanism of prompt fission neutron emission. Starting with a brief fission process characterization related with neutron emission, possible emission mechanisms are discussed. It is emphasized that the experimental study of special mechanisms, i.e. scission neutron emission processes, requires a sufficiently correct description of emission probabilities on the base of the main mechanism, i.e. the evaporation from fully accelerated fragments. Adequate statistical-model approaches have to account for the complexity of nuclear fission reflected by an intricate fragment distribution. The present picture of scission neutron emission is not clarified neither experimentally nor theoretically. Deduced data are contradictory and depend on the used analysis procedures often involving rough discriptions of evaporated-neutron distributions. The contribution of two secondary mechanisms of fission neutron emission, i.e. the neutron evaporation during fragment acceleration and neutron emission due to the decay of 5 He after ternary fission, is estimated. We summarize the recent progress of the theoretical description of fission neutron spectra in the framework of statistical models considering the standard spectrum of 252 Cf(sf) neutrons especially. The main experimental basis for the study of fission neutron emission is the accurate measurement of emission probabilities as a function of emission energy and angle (at least) as well as fragment parameters (mass number ratio and kinetic energy). The present status is evaluated. (author)

  1. Target conception for the Munich fission fragment accelerator

    CERN Document Server

    Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P

    1999-01-01

    For the new high-flux reactor FRM II, the fission fragment accelerator MAFF is under design. MAFF will supply intense mass-separated radioactive ion beams of very neutron-rich nuclei with energies around the Coulomb barrier. A central part of this accelerator is the ion source with the fission target, which is operated at a neutron flux of 1.5x10 sup 1 sup 4 cm sup - sup 2 s sup - sup 1. The target consists of typically 1 g of sup 2 sup 3 sup 5 U dispersed in a cylindrical graphite matrix, which is encapsulated in a Re container. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2400 deg. C during operation. It has to stand this temperature for at least one reactor cycle of 1250 h. Comprehensive tests are required to study the long-term behaviour of the involved materials at these conditions prior to operation in the reactor. The present paper gives details of the target conception and the projected tests.

  2. Fission via compound states and JπK A. Bohr's channels: what we can learn from recent studies with slow neutrons

    Directory of Open Access Journals (Sweden)

    Furman W.I.

    2012-02-01

    Full Text Available Last data on angular correlations of fission fragments from slow (s-wave neutron induced binary fission of spin-aligned nuclei 235U are discussed in the context of JπK A. Bohrs channels. Special attention is paid to K = 0 channel. Reasons for its suppression are specified for compound nucleus states of negative parity. A brief overview of recent data on T-odd angular correlations in ternary and binary (with emission of a third particle, a neutron or γ-quantum fission induced by slow polarized neutrons is presented. On the basis of the developed theoretical approach it is shown that a valuable information on JπK fission channels at scission point can be inferred from these T-odd angular correlations.

  3. Yield of Prompt Gamma Radiation in Slow-Neutron Induced Fission of 235U as a Function of the Total Fragment Kinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-07-01

    Fission gamma radiation yields as functions of the total fragment kinetic energy were obtained for 235U thermal-neutron induced fission. The fragments were detected with silicon surface-barrier detectors and the gamma radiation with a Nal(Tl) scintillator. In some of the measurements mass selection was used so that the gamma radiation could also be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. Fission-neutron and gamma-ray data of previous experiments were used for comparisons of the yields, and estimates were made of the variation of the prompt gamma-ray energy with the total fragment kinetic energy

  4. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  5. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Modesto, Montoya

    2014-01-01

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).

  6. A model for particle emission from a fissioning system

    International Nuclear Information System (INIS)

    Milek, B.; Reif, R.; Revai, J.

    1987-04-01

    The differential emission probability for a neutron emitted in a binary fission process due to non-adiabatic effects in the coupling of the single particle degrees of freedom to the accelerated relative motion of the fragments is investigated wihtin a model, which represents each nucleus by a non-deformed one-term separable potential. The derivation of measurable quantities from the asymptotic solution of the time-dependent Schroedinger equation for the single particle wave function is examined. Numerical calculations were performed for parameter values, which correspond to 252 Cf(sf). The calculated energy spectra and angular distributions of the emitted particles are presented in dependence on the mass asymmetry. (author)

  7. Sequential character of low-energy ternary and quaternary nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O. [Voronezh State University (Russian Federation)

    2016-09-15

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  8. Sequential character of low-energy ternary and quaternary nuclear fission

    International Nuclear Information System (INIS)

    Kadmensky, S. G.; Bulychev, A. O.

    2016-01-01

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  9. Contributions to the theory of fission neutron emission

    International Nuclear Information System (INIS)

    Seeliger, D.; Maerten, H.; Ruben, A.

    1990-03-01

    This report gives a compilation of recent work performed at Technical University, Dresden by D. Seeliger, H. Maerten and A. Ruben on the topic of fission neutron emission. In the first paper calculated fission neutron spectra are presented using the temperature distribution model FINESSE for fissioning actinide nuclei. In the second paper, starting from a general energy balance, Terrell's approach is generalized to describe average fragment energies as a function of incident energy; trends of fragment energy data in the Th-Pu region are well reproduced. In the third contribution, prompt fission neutron spectra and fragment characteristics for spontaneous fission of even Pu-isotopes are presented and discussed in comparison with experimental data using a phenomenological scission point model including temperature dependent shell effects. In the fourth paper, neutron multiplicities and energy spectra as well as average fragment energies for incident energies from threshold to 20 MeV (including multiple-chance fission) for U-238 are compared with traditional data representations. (author). Refs, figs and tabs

  10. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  11. Binary fragmentation based studies for the near super-heavy compound nucleus {sup 256}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Meenu; Behera, B.R.; Mahajan, Ruchi; Kaur, Gurpreet; Sharma, Priya; Kapoor, Kushal; Rani, Kavita [Panjab University, Department of Physics, Chandigarh (India); Saneesh, N.; Dubey, R.; Yadav, A.; Sugathan, P.; Jhingan, A.; Chatterjee, A.; Chatterjee, M.B. [Inter University Accelerator Centre, New Delhi (India); Kumar, Neeraj; Mandal, S. [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Kumar, S. [Andhra University, Department of Nuclear Physics, Visakhapatnam (India); Saxena, A.; Kailas, S. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Pal, Santanu [CS, Kolkata (India); Nasirov, Avazbek [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National University, Department of Physics, Tashkent (Uzbekistan); Kayumov, Bakhodir [National University, Department of Physics, Tashkent (Uzbekistan)

    2017-06-15

    Binary fragmentation of the near super-heavy compound nucleus {sup 256}Rf has been studied through the reaction {sup 48}Ti + {sup 208}Pb at a bombarding energy well above the Coulomb barrier. For a better understanding of its reaction dynamics, the mass distribution, mass-energy distribution and mass-angle distribution of the fission fragments produced from {sup 256}Rf have been investigated thoroughly. The masses and kinetic energies of the fission fragments were reconstructed event-by-event from their measured velocities and emission angles. From the mass-energy analysis, a sizeable contribution from the asymmetric fission was observed on the edges of symmetric mass distribution. Evidence of asymmetric fission was also clued from the observed correlation between the masses and emission angles of the fission fragments. Contribution of the quasi-fission products has also been estimated by performing the theoretical dinuclear system calculations. (orig.)

  12. Fission fragment mass and angular distributions: Probes to study ...

    Indian Academy of Sciences (India)

    In the following discussion, we shall attempt to broadly classify the nuclear landscape. (what we ... need for extra push energy (excess energy over the Coulomb barrier) to achieve fusion. It ... τM (∼ 5 × 10−21 s) of mass degree of freedom. 304.

  13. Spin and isospin fluctuations in heavy ion collisions and their dependence upon the shape of the dinuclear complex

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.

    1980-08-01

    The relevance of higher multipoles of giant isovector modes in the charge distribution of deep inelastic fragments is discussed and found to depend strongly on mass asymmetry. The sources of angular momentum fluctuations are investigated. Quantal effects are considered as well as effects arising from non-equilibrium and equilibrium statistical fluctuations. A model based upon equilibrium statistical mechanics is considered in detail, and used to predict both 2nd moments of the angular momentum distributions and the angular momentum misalignment. Analytical expressions are derived to calculate the angular distributions of sequentially emitted particles, fission fragments, as well as gamma rays in terms of the angular momentum misalignment. Recent data on the angular distributions of sequential alphas, fission and gamma rays are analyzed in terms of the model. 29 figures, 1 table.

  14. Spin and isospin fluctuations in heavy ion collisions and their dependence upon the shape of the dinuclear complex

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1980-08-01

    The relevance of higher multipoles of giant isovector modes in the charge distribution of deep inelastic fragments is discussed and found to depend strongly on mass asymmetry. The sources of angular momentum fluctuations are investigated. Quantal effects are considered as well as effects arising from non-equilibrium and equilibrium statistical fluctuations. A model based upon equilibrium statistical mechanics is considered in detail, and used to predict both 2nd moments of the angular momentum distributions and the angular momentum misalignment. Analytical expressions are derived to calculate the angular distributions of sequentially emitted particles, fission fragments, as well as gamma rays in terms of the angular momentum misalignment. Recent data on the angular distributions of sequential alphas, fission and gamma rays are analyzed in terms of the model. 29 figures, 1 table

  15. Different fission behavior induced by heavy ion central and peripheral collisions

    International Nuclear Information System (INIS)

    Wu Enjiu; Zheng Jiwen; Xiao Zhigang; Zhang Chun; Tan Jilian; Yin Shuzhi; Wang Sufang; Jin Genming; Yin Xu; Song Mingtao; Jin Weiyang; Peng Xingping; Li Zuyu; Wu Heyu; He Zhiyong; Jiang Dongxing; Qian Xing

    2000-01-01

    Correlated fission fragments from the 40 Ar + 209 Bi reaction and their further correlation with α particles have been studied for peripheral and central collisions simultaneously. The existence of different fission behavior of hot nuclei formed in central and peripheral collisions was found from the systematic analysis of the mass and energy distributions of fission fragments as a function of the initial temperature of hot fissioning nuclei

  16. Towards a microscopic description of the fission process

    CERN Document Server

    Goutte, H; Berger, J F

    2010-01-01

    One major issue in nuclear physics is to develop a consistent model able to describe on the same footing the different aspects of the fission process, i.e. properties of the fissioning system, fission dynamics and fragment distributions. Microscopic fission studies based on the mean-field approximation are here presented.

  17. Identification of fission-like events in the 16O + 181Ta system: Mass and isotopic yield distribution

    International Nuclear Information System (INIS)

    Sharma, Vijay R.; Yadav, Abhishek; Singh, Devendra P.; Unnati,; Singh, B. P.; Prasad, R.; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Golda, K. S.; Sinha, A. K.

    2011-01-01

    In this paper, nuclear reaction cross sections for 24 fission-like fragments (30≤Z≤60) have been measured for the 6.5 MeV/A 16 O + 181 Ta system. The recoil-catcher activation technique was employed followed by off-line γ spectroscopy. The isotopic yield distributions for yttrium and indium isotopes have been obtained from the experimental data. The variance of the presently measured isotopic yield distributions have been found to be in agreement with the literature values. However, the variance of the mass distribution of fission residues has found to be narrower as compared to other relatively heavier systems. A self-consistent approach to determining the isobaric charge dispersion parameters has been adopted. The measured fission cross sections at 97 and 100 MeV are satisfactorily described by a statistical model code. An attempt has been made to explain the production cross sections of intermediate mass residues in the fission of heavy residues populated via complete and/or incomplete fusion processes.

  18. Element Distribution and Multiplicity of Heavy Fragments

    CERN Multimedia

    2002-01-01

    This experiment will measure the energy and angular distribution of heavy fragments produced in the reactions of |1|2C on several targets between |2|7Al and |2|3|8U at 86~MeV/u. The systematic investigation of a highly excited interaction region (fireball) by means of a clean N and Z identification of heavy tar fragments, may result in a better understanding of temperature concept and of the degree of equilibration of the local interaction region with respect to the total system. For this investigation a large-area position sensitive ionization chamber of 50~msr solid angle in conjunction with a time-of-flight telescope consisting of parallel-plate detectors will be used. \\\\ \\\\ In order to get information on the transverse momentum transfer and the inelasticity of the collision, the energy of the PROJECTILE-FRAGMENTS will be measured at forward angles with a plastic scintillator hodoscope. In addition to this inclusive measurement correlations between heavy fragments will be investigated by means of three pos...

  19. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  20. Contribution to the design, fulfillment, and data analysis of fission fragment yields of the SOFIA experiment at GSI

    International Nuclear Information System (INIS)

    Pellereau, Eric

    2013-01-01

    The isotopic fission yields of U 238 following the SOFIA experiment, conducted at the GSI facility (Darmstadt), are presented here. This experiment takes advantage of the inverse kinematics technique at relativistic energies. Benefits are several: fission fragments are highly focused (high geometrical efficiency) and are also completely stripped, which greatly simplifies their nuclear charge measurement. The first detector of the SOFIA setup is an active target in which fission occurs via electromagnetic excitation, followed by an ionization chamber to measure the nuclear charge and the horizontal angle of both fission fragments. The masses are deduced by the bending radius measurement of the fragments, deflected by a strong magnet (ALADIN), thanks to two position detectors (MWPC), and also by a highly resolved time-of-flight measurement (40 ps FWHM) so that heavy neighboring isotopes can be separated. The data analysis shows that the main goals are achieved since the isotopic separation is reached over the whole range of the fission fragments. A strong even-odd effect is seen in the charge spectrum, which also exhibits a mean heavy charge close to Z = 54. Surprisingly, the neutron even-odd effect of the light region is seen to be very close to the one in thermal neutron induced fission. The peak-to-valley ratio of the mass spectrum confirms that the mean excitation energy at fission is close to the expected one (14 MeV). The GEF code is used for comparison and always gives results very close to ours. (author) [fr

  1. Fusion barrier distributions and fission anisotropies

    International Nuclear Information System (INIS)

    Hinde, D.J.; Morton, C.R.; Dasgupta, M.; Leigh, J.R.; Lestone, J.P.; Lemmon, R.C.; Mein, J.C.; Newton, J.O.; Timmers, H.; Rowley, N.; Kruppa, A.T.

    1995-01-01

    Fusion excitation functions for 16,17 O+ 144 Sm have been measured to high precision. The extracted fusion barrier distributions show a double-peaked structure interpreted in terms of coupling to inelastic collective excitations of the target. The effect of the positive Q-value neutron stripping channel is evident in the reaction with 17 O. Fission and evaporation residue cross-sections and excitation functions have been measured for the reaction of 16 O+ 208 Pb and the fusion barrier distribution and fission anisotropies determined. It is found that the moments of the fusion l-distribution determined from the fusion and fission measurements are in good agreement. ((orig.))

  2. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  3. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  4. Delayed fission of the 238U muonic atom

    International Nuclear Information System (INIS)

    Ganzorig, Dz.; Krogulski, T.; Kuznetsov, V.D.; Polikanov, S.M.; Sabirov, B.M.

    1975-01-01

    The time distributions of fission and muon free decay events with respect to the moment of the muon-stop event have been measured for double and triple coincidences between these three events. The triple-coincidence time distributions give an indication of the o-curence of two new effects: the delayed fission of muonic 238 U atom and conversion of muons from the fission fragments

  5. An improved technique for fission track dating

    International Nuclear Information System (INIS)

    Zhao Yunlong; Wu Zhaohui; Xia Yuliang

    1996-01-01

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB 1 and UB 2 . An established new method σ·Φ ρ d /b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO 3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  6. Fission of {sup 209}Bi and {sup 197}Au nuclei induced by 30 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, Houshyar; Soheyli, Saeed [Amir-Kabir University of Technology, Physics and Nuclear Science Department, Tehran (Iran); Lamehi-Rachti, Mohammad [Atomic Energy Organization of Iran (AEOI), Nuclear Research Center, Van de Graaff Laboratory, Tehran (Iran)

    2001-10-01

    Thin targets of {sup 209}Bi and {sup 197}Au were bombarded with 30 MeV protons at the Cyclotron Department of Nuclear Research Center for Agriculture and Medicine (NRCAM). Correlated measurements of kinetic energies of fission fragment pairs, and their time-of-flights were made using pair spectrometry. The fission cross sections, fragment mass distributions, and total kinetic energy distributions of the fragments were measured in our experiment. The accurate values of cross sections for fission of {sup 209}Bi and {sup 197}Au nuclei with 30 MeV protons were obtained to be 1,100{+-}100 and 62{+-}5.6 {mu}b, respectively. The cross section of {sup 209}Bi fission with its associated error, through using this method, has not been reported previously. The interpretation in terms of liquid-drop model of fissioning nucleus {sup 210}Po at the excitation energy of 35 MeV was confirmed by the dispersion of the distribution in fragment mass for bismuth fission. (author)

  7. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  8. Lifetime measurements on fission fragments in the A ∼ 100 region

    International Nuclear Information System (INIS)

    Grente, L.; Salsac, M. D.; Korten, W.; Goergen, A.; Hagen, T. W.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clement, E.; Delaune, O.; Dijon, A.; Drouart, A.; Ertuerk, S.; Farget, F.; De France, G.; Gottardo, A.; Hackstein, M.; Jacquot, B.; Libert, J.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Navin, A.; Pillet, N.; Pipidis, A.; Recchia, F.; Rejmund, M.; Rother, W.; Sahin, E.; Schmitt, C.; Siem, S.; Sulignano, B.; Valiente-Dobon, J. J.; Zell, K. O.

    2013-01-01

    Lifetimes of first 4 + and 6 + states have been measured in neutron-rich isotopes of Zr, Mo, Ru and Pd using the recoil distance Doppler shift method at GANIL. The nuclei were produced through a fusion-fission reaction in inverse kinematics. The fission fragments were fully identified in the large-acceptance VAMOS spectrometer and γ-rays were detected in coincidence with the EXOGAM germanium array. Lifetimes of excited states in the range of 1-100 ps were measured with the Cologne plunger. Preliminary lifetime results are presented as well as a discussion on the evolution of the collectivity in this region. (authors)

  9. Measurements of the effective range of fission fragments in UO2 and the disintegration constant for spontaneous fission of 238U

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1978-01-01

    The results of measuments of the disintegration constant for spontaneous fission in 238 U are presented, with a discussion on the method used for the detection of fission tracks in muscovite mica. Samples of muscovite mica sandwiched between two natural uranium dioxide cylinders were irradiated with fragments of spontaneous fission and the etched tracks counted with projetion optical microscope. The effective thickness of the UO 2 layer which contributed to the observed tracks was measured through irradiation of mica samples, in contact with the UO 2 cylinder with 14,0 MeV neutrons from a (d,t) reaction. (Author) [pt

  10. Growth of fine holes in polyethyleneterephthalate film irradiated by fission fragments

    International Nuclear Information System (INIS)

    Komaki, Y.; Tsujimura, S.

    1975-01-01

    Growth of fine holes by chemical etching in polyethyleneterephthalate films exposed to fission fragments were followed by measuring gas flow through films. The etching rate along tracks and the radial etching rate were determined at hole diameters of 100--3000 A and hole densities of 10 6 --10 8 /cm 2

  11. Correlation studies of neutron multiplicities in the 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kovalenko, S.S.; Kuznetsov, A.V.; Malkin, L.Z.; Petrzhak, K.A.; Petrov, B.F.; Shpakov, V.I.

    1988-01-01

    Correlations between the numbers of neutrons emitted by the 252 Cf spontaneous fission fragments have been studied as a function of the fragment mass and total kinetic energy. Behaviour of the neutron number dispersions and covariances was studied for the region of symmetric fission. Parameters of the complementary fragment excitation energy distribution (mean values, dispersions, covariances) were determined. Various factors describing correlations between the complementary fragment excitation energies are considered

  12. Light nuclides observed in the fission and fragmentation of 238U

    International Nuclear Information System (INIS)

    Ricciardi, M.V.; Schmidt, K.H.; Benlliure, J.

    2001-05-01

    Light nuclides produced in collisions of 1 A.GeV 238 U with protons and titanium have been fully identified with a high-resolution forward magnetic spectrometer, the fragment separator (FRS), at GSI, and for each nuclide an extremely precise determination of the velocity has been performed. The so-obtained information on the velocity shows that the very asymmetric fission of uranium, in the 238 U + p reaction, produces neutron-rich isotopes of elements down to around charge 10. New important features of the fragmentation of 238 U, concerning the velocity and the N/Z-ratio of these light fragments, and a peculiar even-odd structure in N=Z nuclei, have also been observed. (orig.)

  13. Investigation of prompt gamma-ray yields as a function of mass and charge of 236U fission fragments

    International Nuclear Information System (INIS)

    Bogdzel', A.A.; Gundorin, N.A.; Duka-Zojomi, A.; Kliman, Ya.; Krishtiak, J.

    1987-01-01

    New experimental results determining yields of the prompt gamma-rays from the excited states decay of fission fragments are presented. 80 gamma-transitions were observed in 51 fission fragments. The measurements were performed by Ge(Li)-spectrometry in coincidence with fast ionization chamber (10g 235 U). The beam of the resonance neutrons with energy range from 0.7 to 36 eV was used

  14. Timing characteristics of a two-dimensional multi-wire cathode strip detector for fission fragments

    International Nuclear Information System (INIS)

    Vind, R.P.; Joshi, B.N.; Jangale, R.V.; Inkar, A.L.; Prajapati, G.K.; John, B.V.; Biswas, D.C.

    2014-01-01

    In the recent past, a gas filled two-dimensional multi-wire cathode strip detector (MCSD) was developed for the detection of fission fragments (FFs). The position resolution was found to be about 1.0 and 1.5 mm in X and Y directions respectively. The detector has three electrode planes consisting of cathode strip (X-plane), anode wires and split-cathode wires (Y-plane). Each thin wire of the anode plane placed between the two cathode planes is essentially independent and behaves like a proportional counter. The construction of the detector in detail has been given in our earlier paper. The position information has been obtained by employing high impedance discrete delay line read out method for extracting position information in X and Y-directions. In this work, the timing characteristics of MCSD detector are reported to explore the possible use of this detector for the measurement of the mass of the fission fragments produced in heavy ion induced fission reactions

  15. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  16. Fission properties of very heavy actinides

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1979-01-01

    The existing data on neutron-emission, kinetic-energy and mass distributions, and half-lives for spontaneous fission of the heavy actinides are reviewed. A comparison of the data for the Fm isotopes with heavier and lighter nuclides suggests that the properties of the heavy Fm isotopes may be unique and can qualitatively be explained on the basis of fragment shell effects, i.e., symmetric fission results in two fragments with configurations close to the doubly magic 132 Sn nucleus. The effect of excitation energy and the use of systematics and theoretical predictions of fission properties and half-lives in the identification of new heavy element isotopes is discussed. 54 references

  17. Angular distributions of light projectile fragments in deep inelastic Pb+Em interactions at 160 A GeV

    CERN Document Server

    Adamovich, M I; Alexandrov, Yu A; Andreeva, N P; Badyal, S K; Basova, E E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Yu; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; El-Chenawi, K F; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S I A; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Sen-Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Lepekhin, F G; Levitskaya, O V; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Röper, M D; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Seliverstov, D M; Simonov, B B; Sethi, R; Singh, B; Skelding, D; Söderström, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, V; Vokal, S; Vrláková, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-01-01

    The nuclear emulsion was exposed at CERN by the lead projectile at 160 A GeV. The angles between any pair of fragments with Z=2-4 have been measured in the emulsion plane for the events which did not contain heavy fragments. The constant characterizing the normal angle ( phi ) distribution of the fragment momentum projection onto the emulsion plane with respect to initial projectile momentum p/sub 0/ is found to be sigma /sub phi /=(0.37+or-0.02) mrad. Corresponding value sigma /sub 0/=(121+or-6) MeV/c of nucleon momentum distribution in the lead nucleus coincides with that expected from Fermi momentum distribution for this nucleus. The peak in the pair-angle distribution of double-charged fragments, /sup 8/Be to 2 alpha , is presented for the region of small angles (<0.1 mrad). The fraction of alpha -particles coming from the decay of the ground state /sup 8/Be is found to be (13+or-2)601130f their whole number. (14 refs).

  18. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Energy Technology Data Exchange (ETDEWEB)

    Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)

    2015-12-15

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  19. Experimental fusion excitation functions and derived barrier distributions for heavy ion systems involving prolate and oblate target nuclei

    International Nuclear Information System (INIS)

    Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.

    1996-01-01

    Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed

  20. Evidence for bimodal fission in the heaviest elements

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.

    1987-08-01

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: 258 Fm, 259 Md, 260 Md 258 No, and 260 [104]. Each was produced by heavy-ion reactions with either 248 Cm, 249 Bk, or 254 Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, 258 No and 260 [104], were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for 260 [104], indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of 260 Md. 25 refs., 9 figs

  1. Determination of the effective range of fission fragments in UO2 and of the disintegration constant for the spontaneous fission of Uranium 238

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1980-01-01

    Results are presented of measurements realized aiming to determine the disintegration constant of spontaneous fission of U-238, with a discussion of the method utilized in the detection of fission tracks in muscovite. Several blades of mica were placed between two cylinders of Uo 2 to be irradiated with the fragments of spontaneous fission of U-238, and the fission tracks duly enlarged after a convenient chemical action were observed with a projection optical microscope. The effective thickness of UO 2 contributing to the observed tracks was measured through the irradiation of mica samples juxtaposed to the UO 2 cylinder, with 14,0 MeV neutrons from the (d,t 2 ) reaction. The detection efficiency of fission tracks originated in that thickness is practically 100% [pt

  2. Effect of fission fragment on thermal conductivity via electrons with an energy about 0.5 MeV in fuel rod gap

    Directory of Open Access Journals (Sweden)

    F Golian

    2017-02-01

    Full Text Available The heat transfer process from pellet to coolant is one of the important issues in nuclear reactor. In this regard, the fuel to clad gap and its physical and chemical properties are effective factors on heat transfer in nuclear fuel rod discussion. So, the energy distribution function of electrons with an energy about 0.5 MeV in fuel rod gap in Busherhr’s VVER-1000 nuclear reactor was investigated in this paper. Also, the effect of fission fragments such as Krypton, Bromine, Xenon, Rubidium and Cesium on the electron energy distribution function as well as the heat conduction via electrons in the fuel rod gap have been studied. For this purpose, the Fokker- Planck equation governing the stochastic behavior of electrons in absorbing gap element has been applied in order to obtain the energy distribution function of electrons. This equation was solved via Runge-Kutta numerical method. On the other hand, the electron energy distribution function was determined by using Monte Carlo GEANT4 code. It was concluded that these fission fragments have virtually insignificant effect on energy distribution of electrons and therefore, on thermal conductivity via electrons in the fuel to clad gap. It is worth noting that this result is consistent with the results of other experiments. Also, it is shown that electron relaxation in gap leads to decrease in thermal conductivity via electrons

  3. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  4. Damage saturation effects on volume and resistivity changes induced by fission-fragment irradiation of copper

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Blewitt, T.H.

    1981-01-01

    Damage production and saturation has been monitored in copper by simultaneous electrical resistivity- and length-change measurements. Damage was introduced by 235 U fission fragments at either 7 or 85 K. At both temperatures, the resistivity and length changes were linearly related to each other for resistivity changes less than 80% saturation resistivity. The linear relationship was the same for both irradiation temperatures and was the same as that observed previously for 10 B fission fragment irrations at 4 K. These results are interpreted to show that the resistivity change per defect is unaffected by irradiation under conditions which lead to interstitial clustering. (orig.)

  5. On some uses of the recording op fission fragments occurring in insulators; Sur quelques utilisations de l'enregistrement des fragments de fission dans les isolants

    Energy Technology Data Exchange (ETDEWEB)

    Mory, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    The passage of fission fragments is manifested in insulators by the formation of damage lines which can easily be observed by transparence using the electron microscope after a suitable chemical attack. Since the recording efficiency is 100 per cent for mica and plastics this phenomenon has a certain number of applications. After briefly recalling the interaction processes between charged particles and matter, and giving a quantitative study of the relationships connecting the various parameters, the author considers here some of these applications: - thermal neutron dosimetry: it is possible to measure integrated fluxes of between lO{sup 3} and 10{sup 21} n/cm{sup 2}, according to the method used; - fast neutron dosimetry: by using fission fragment threshold sources it is easy to measure biological type doses of about 1 rem: - dosage of very low fissile impurity concentrations: atomic concentrations of about 10{sup -9}; can be measured; this limit has never been attained by conventional methods; - study of fissile elements occurring in atmospheric dusts. Results are then briefly given of an automated counting test for traces effected by measuring the electrical resistivity, of the irradiated membrane. Finally are given the advantages and disadvantages of these solid detectors, especially with respect to nuclear emulsions whose uses are approximately identical. (author) [French] Le passage des fragments de fission se materialise dans les isolants par des lignes de dommages que l'on peut facilement observer par transparence au microscope optique apres une attaque chimique appropriee. L'efficacite d'enregistrement etant de 100 pour cent dans le mica et les plastiques, ce phenomene peut avoir un certain nombre d'applications. Apres un bref rappel des processus d'interaction entre particules chargees et matiere, et une etude quantitative des relations unissant les differents parametres, on etudie ici quelques-unes de ces applications: - dosimetrie de neutrons

  6. Emission of light charged particles from fragments produced on fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions

    International Nuclear Information System (INIS)

    Belovitzky, G.E.; Shteingrad, O.M.

    2000-01-01

    The mechanism underlying the emission of light charged particles (LCP) with Z = 1, 2 from fragments produced in fission of uranium nuclei by 153 MeV protons and 1700 MeV negative pions was studied. It was found that LCP accompanying the fission by pions are emitted from non-accelerated fragments immediately after the fission, whereas in the case of 153 MeV protons, the LCP are emitted from the accelerated heavy fragments. The number of LCP emitted in the course of pion-induced fission is 0.7 per fission event, which exceeds by a factor of 30 the corresponding number for 153 MeV protons [ru

  7. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  8. Fusion-fission of superheavy nuclei at low excitation energies

    International Nuclear Information System (INIS)

    Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.

    2000-01-01

    The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied

  9. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    International Nuclear Information System (INIS)

    Wright, S.A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures

  10. Development of the fission fragment track registration technique for the determination of the uranium contamination

    International Nuclear Information System (INIS)

    Tanaka, E.M.

    1979-01-01

    The Fission Fragment Track Registration Technique is developed to measure the uranium concentration about microgram of uranium per litre of liquid samples. The drying method of drops on the detector (Makrofol KG) and a special sampling procedure to avoid the cumbersome high density of tracks formation at the edge of the deposition surface as a 'ring' is adopted. The samples are irradiated by neutrons produced by the IEA-R1 Reactor (thermal neutron flux about 10 12 neutrons/cm 2 .s) inducing the uranium fission. The tracks registered by the fission fragments in the detector are chemically enlarged and counted by an automatic couting system. By this method the uranium concentrations ranging from 0,9 to 7,6 microgram of uranium per litre, can be determined with precisions between 2,7% the greater and 23% to the lower concentration. The uranium concentration measurements in human hair and urine are made showing that this method is very useful to control and detect eventual uranium contamination [pt

  11. Study of momentum distributions for projectile fragments of 22Ne and 28Si nuclei in collisions with emulsion

    International Nuclear Information System (INIS)

    Abou-Steit, S.A.H.

    2000-01-01

    The charge and mass yield curves and the momentum distributions of the projectile fragments produced in the interactions of 4.1 A GeV/c 22 Ne and 4.5 A GeV/c 28 Si with emulsion have been studied. The overall charge distributions of the projectile fragments resulting from these interactions are presented. The dependence of the mass yield distributions of the projectile fragments on the impact parameter has been tested. The momentum distributions for the considered reactions have been investigated by two methods. First, the projected momentum distributions in the plane of the microscope have been achieved by fitting the projected angular distributions to gaussian ones. It has been found that the width of the distribution changes with the charge of the projectile fragment and it decreases with the increase of the projectile fragment charge. Secondly, the transverse momentum distributions have been compared with previous studies. The momentum distribution, in the forward cone, is a typically narrow gaussian one

  12. The etching property of the surface of CR-39 and the track core radius of fission fragment

    CERN Document Server

    Mineyama, D; Yamauchi, T; Oda, K; El-Rahman, A

    2002-01-01

    The etch pits of fission fragments in CR-39 detector have been observed carefully using an atomic force microscope (AFM) after extremely short chemical etching in stirred 6N KOH solution kept at 70degC. It was found that there existed a thin layer where the bulk etch rate is relativity from large the etch-pit growth curve for the etching duration between 10 and 1800 seconds. The track core radius of fission fragment was evaluated to be about 6 nm from the extrapolation of the growth curve in a thinner region. (author)

  13. Detection of fission fragments using thick samples in contact with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1987-01-01

    Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt

  14. Transverse momentum and angular distributions of hadrons in e+e- jets from QCD

    International Nuclear Information System (INIS)

    Kramer, G.; Schierholz, G.

    1978-10-01

    Hadron jets in e + e - annihilation will broaden at high energies due to gluon bremsstrahlung. With nonperturbative PT effects dying out rapidly, the basic features of hadron jets can be calculated in perturbation theory. We examine the PT distribution of secondarily produced hadrons. This is uniquely connected with the deviation from the 1 cos 2 THETA dependence of single particle inclusive distributions. We discuss what can be learned about the gluon fragmentation given the PT and/or angular distributions. A sum rule is derived which establishes a relationship between the average P 2 T and αs. (orig.) [de

  15. Angular evolution of peripheral heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Chomaz, P.; Frascaria, N.; Garron, J.P.; Jacmart, J.C; Roynette, J.C

    1985-01-01

    Energy spectra and angular distributions of projectile-like fragments have been measured in the vicinity of the grazing angle for the 40 Ar+ 40 Ca and 40 Ar+ 208 Pb reactions at 44MeV/nucleon. Measurements of the 40 Ar+ 40 Ca system at 27MeV/nucleon and 20 Ne+ 208 Pb reaction at 44MeV/nucleon at one angle have also been performed. For fragments with charge and mass close to the projectile numerous deviations from the standard fragmentation model have been observed including rapidly changing shapes of the angular distributions with the fragment mass. Moreover the isotopic distributions and mean fragment velocities are strongly dependent on detection angle. A surface transfer reaction component dominant at the grazing angle can be separated from a second component which cannot be entirely accounted for by a simple fragmentation mechanism

  16. Study of dissociative collisions of hydrogen-line ions by mean of angular and energy distributions

    International Nuclear Information System (INIS)

    Martinez, H.; Urquijo, J. de; Cisneros, C.; Alvarez, J.

    1988-01-01

    Angular and energy distribution of fragments produced in a collision, employed in conjunction with the 'step-model' that means excitation and binary dissociation, are used to determine the binding energy of H 3 (D 3 ) and HD + 2 and also to identify the principal channels in the dissociation processes. (A.C.A.S.) [pt

  17. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    Energy Technology Data Exchange (ETDEWEB)

    Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.

    2016-12-15

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)

  18. Chemical Production using Fission Fragments; Emploi des fragments de fission dans la production de substances chimiques; Ispol'zovanie produkto v raspada v khimicheskom proizvodstve; Empleo de los fragmentos de fision en la industria quimica

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J K; Moseley, F [AERE, Harwell (United Kingdom)

    1960-07-15

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [French] En ce qui concerne la construction de reacteurs, certaines considerations relatives a l'emploi de l'energie des fragments de fission de recul pour la production de certaines substances chimiques d'importance industrielle ont deja ete examinees dans un memoire soumis a la deuxieme Conference internationale sur l'utilisation de l'energie atomique a des fins pacifiques [A/Conf. 15/PP. 76]. Le present memoire donne un apercu des progres accomplis depuis lors dans ce domaine par 1'Atomic Energy Research Establishment a Harwell. Les auteurs etudient la relation entre le parcours et l'energie pour des fragments de fission a propos du choix du combustible pour un reacteur destine a la production de substances chimiques; ils decrivent aussi une variation d'effet chimique observee le long de la trajectoire d'un fragment de fission pendant l'irradiation de melanges azote-oxygene. Les auteurs fournissent les resultats de recherches recentes relatives a l'effet des fragments de fission sur des melanges oxyde de carbone-hydrogen e et sur la vapeur d

  19. Effects of fuel particle size and fission-fragment-enhanced irradiation creep on the in-pile behavior in CERCER composite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunmei [Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433 (China); Ding, Shurong, E-mail: dsr1971@163.com [Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433 (China); Zhang, Xunchao; Wang, Canglong; Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-15

    The micro-scale finite element models for CERCER pellets with different-sized fuel particles are developed. With consideration of a grain-scale mechanistic irradiation swelling model in the fuel particles and the irradiation creep in the matrix, numerical simulations are performed to explore the effects of the particle size and the fission-fragment-enhanced irradiation creep on the thermo-mechanical behavior of CERCER pellets. The enhanced irradiation creep effect is applied in the 10 μm-thick fission fragment damage matrix layer surrounding the fuel particles. The obtained results indicate that (1) lower maximum temperature occurs in the cases with smaller-sized particles, and the effects of particle size on the mechanical behavior in pellets are intricate; (2) the first principal stress and radial axial stress remain compressive in the fission fragment damage layer at higher burnup, thus the mechanism of radial cracking found in the experiment can be better explained. - Highlights: • A grain-scale gas swelling model considering the development of recrystallization and resolution is adopted for particles. • The influence of fission-gas-induced porosity is considered in the constitutive relations for particles. • A simulation method is developed for the multi-scale thermo-mechanical behavior. • The effects of fuel particle size and fission-fragment-enhanced irradiation creep are investigated in pellets.

  20. New type of asymmetric fission in proton-rich nuclei

    CERN Document Server

    Andreyev, A N; Huyse, M; Van Duppen, P; Antalic, S; Barzakh, A; Bree, N; Cocolios, T E; Comas, V F; Diriken, J; Fedorov, D; Fedosseev, V; Franchoo, S; Heredia, J A; Ivanov, O; Koster, U; Marsh, B A; Nishio, K; Page, R D; Patronis, N; Seliverstov, M; Tsekhanovich, I; Van den Bergh, P; Van De Walle, J; Venhart, M; Vermote, S; Veselsky, M; Wagemans, C; Ichikawa, T; Iwamoto, A; Moller, P; Sierk, A J

    2010-01-01

    A very exotic process of ${\\beta}$-delayed fission of $^{180}$Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-${\\beta}$-decay daughter nucleus $^{180}$Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two $^{90}$Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for $\\beta$-delayed fission of $^{180}$Tl is 3.6(7)×10$^{-3}$%, approximately 2 orders of magnitude larger than in an earlier study.

  1. Prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Madland, D.G.; Nix, J.R.

    1983-01-01

    We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of 235 U and the spontaneous fission of 252 Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references

  2. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    International Nuclear Information System (INIS)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2011-01-01

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235 U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10 −5 . The upper limit for the asymmetry coefficient has been set to vertical bar D n vertical bar −5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10 −5 . This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10 −4 , while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.

  3. Photon beam polarization and non-dipolar angular distributions

    International Nuclear Information System (INIS)

    Peshkin, M.

    1996-01-01

    Angular distributions of ejecta from unoriented atoms and molecules depend upon the polarization state of the incident x-rays as well as upon the dynamics of the physical systems being studied. I recommend a simple geometrical way of looking at the polarization and its effects upon angular distributions. The polarization is represented as a vector in a parameter space that faithfully represents the polarization of the beam. The simple dependence of the angular dependence of the angular distributions on the polarization vector enables easy extraction of the dynamical information contained in those angular distributions. No new physical results emerge from this geometrical approach, but known consequences of the symmetries appear in an easily visualized form that I find pleasing and that has proved to be useful for planning experiments and for analyzing data

  4. Some studies on the fission of uranium with the help of a self-controlled wilson chamber; Quelques etudes sur la fission de l'uranium a l'aide d'une chambre de wilson autocommandee

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H de; Tzara, C; Olkowsky, J [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The authors applied the method of Wilson's chamber self intern control to the survey of the uranium fission with neutrons of the core. This method allowed them: 1) - to establish a distribution of the courses of the fission fragments in argon on a big number of events. 2) - to search for the probability of production of tri-partitions to third fragment of short course. The authors succeed to the conclusion that in relation to ordinary fission, this, probability is lower to (1 {+-} 3)/1000, what permits to doubt the existence of the phenomenon. (author) [French] Les auteurs ont applique la methode de la chambre de Wilson a autocommande interne a l'etude de la fission de l'uranium par neutrons de pile. Cette methode leur a permis: 1) - d'etablir une distribution des parcours des fragments de fission dans l'argon portant sur un grand nombre d'evenements. 2) - de rechercher la probabilite de production de tripartitions a troisieme fragment de court parcours. Les auteurs aboutissent a la conclusion que par rapport a la fission ordinaire, cette probabilite est inferieure a (1 {+-} 3)/1000, ce qui permet de douter de l'existence du phenomene. (auteur)

  5. Nuclear molecules in low energy fission of actinides?

    International Nuclear Information System (INIS)

    Pyatkov, Yu.V.; Pashkevich, V.V.; Tishchenko, V.G.; Unzhakova, A.V.; )

    2000-01-01

    A comparison is presented of the fine structure (FS) of the both energy-mass and energy-charge distributions of the fission fragments of thermal neutron induced fission of uranium in the data obtained at different spectrometers. Some peculiarities of the FS observed can be treated as a manifestation of two different types of collective vibrations of the fissioning system on its way to scission [ru

  6. Irradiation of Methane by Recoiling Fission-Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. R.; Galley, M. R. [Imperial College of Science and Technology, London (United Kingdom)

    1963-11-15

    Pure methane gas (containing <0.003% oxygen and <5 mg H{sub 2}O per m{sup 3}) has been irradiated at pressures ranging from 5 to 50 atmospheres pressure and at 30{sup o}C with recoiling fission - fragments. The gas is contained in a silica ampoule of volume about 9 cm{sup 3} and which also contains a platinum cylinder coated on the inside with 0.5 mg/cm{sup 2} highly enriched uranium oxide. When the ampoule is irradiated in a nuclear reactor with thermal neutrons, about half the fission-fragments recoil from the uranium and dissipate their energy in the methane. In a typical irradiation, methane at 10 atm pressure receives a dose of 5 x 10{sup 21} eV at an integrated reactor flux of 5 x 10{sup 15} neutrons/cm{sup 2}. Neutron flux i s measured by means of a gold-foil flux monitor. The activity of the Au{sup 198} is counted in a 4 {pi} proportional counter. The irradiation products have been detected by using beta-ionization detectors for gas-phase chromatography with suitable columns. The following products have been found: hydrogen, ethane, propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, the seven hexanes. Traces of higher hydrocarbons are undoubtedly present but the analysis of these has not been attempted. Hydrogen is present in greatest yield and the yields of the hydrocarbons decrease in the order given above. Despite previously reported yields of ethylene (G-value-0.1) from gamma and fast - electron irradiations, no ethylene or other unsaturated products have been detected in this work. It would have been possible to detect 10 ppm in the products. This is to be expected as any double bonds which may be produced would almost immediately be hydrogenated by the hydrogen present. Yields for hydrogen, ethane and propane lie within the range of values that have been reported by other workers for gamma and fast electron irradiations. (author)

  7. Yields of some fragments on 235U, 238U and 239Pu fission due to the neutrons of the SBR-1 reactors

    International Nuclear Information System (INIS)

    Yurova, L.N.; Bushuev, A.V.; Ozerkov, V.N.; Chachin, V.V.; Zvonarev, A.V.; Liforov, Yu.G.; Koleganov, Yu.V.; Miller, V.V.; Gorbatyuk, O.V.

    1979-01-01

    Determined are the values of the yields of fission fragments in spectrum close to that of the neutron fission using the data on yields at fission by thermal neutrons. The relation between the activities of fragments in samples irradiated in the BR-1 center and in the thermal colomn of the same reactor was measured with the help of the Ge(Li). The relative rate of fissions in uranium and plutonium samples in the center or in thermal colomn were measured by track detectors. The comparison of the yields obtained and the data of other authors is being made

  8. Optical efficiency for fission fragment track counting in Muscovite solid state track recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1984-01-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid State Track Recorders, it is necessary to know the efficiency with which fission fragment tracks are recorded. In this paper, a redetermination of the 'optical efficiency', i.e. the fraction of fission events recorded and observed in the Muscovite is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. (author)

  9. Concentration of E2 strength near the fission barrier of 232Th

    International Nuclear Information System (INIS)

    Arruda Neto, J.D.T.; Vannucci, M.F.B.M.; Herdade, S.B.; Vannucci, A.; Nascimento, I.C. do.

    1981-08-01

    The electrofission angular distribution of 232 Th, in the energy interval 5.5-7 MeV, was measured. The analysis of substantial amount of E2 fission strength is concentrated near the fission barrier, corresponding to (8 +- 2)% of one energy weighted sum rule unity. (Author) [pt

  10. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  11. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  12. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  13. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  14. Mass spectrometry with ionization induced by 252Cf fission fragments

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Artaev, V.B.

    1991-01-01

    The review deals with mass-spectrometry with ionization induced by 252 Cf fission fragments. Equipment and technique of the analysis, analytic possibilities of the method are considered. The method permits to determine molecular masses of large nonvolatile biological molecules. The method is practically nondestructive, it possesses a high resolution over the depth and surface, which permits to use it for the analysis of surface of semiconductors, dielectrics, catalysts, for the study of formation kinetics of complex unstable molecules on the surface

  15. Angular distributions in pre-equilibrium reactions

    International Nuclear Information System (INIS)

    Chatterjee, A.; Gupta, S.K.; Bhabha Atomic Research Centre, Bombay

    1982-10-01

    A new model is proposed for calculating angular distributions in preequilibrium reactions. In this model, as in the model of Feshbach et al. the system consisting of target plus projectile initially branches into two sets of states with either no particle in the continuum (multistep compound states) or with at least one particle in the continuum (multistep direct states). The two chains of states are treated independently by solving two sets of master equations. The multistep compound emission is assumed to be isotropic while the angular distribution of the multistep direct emission is described using the fast particle model of Mantzouranis et al. The angular distributions for 14.6 MeV neutrons calculated using this model are found to be in better agreement with the data than the fast particle model. (author)

  16. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  17. Experimental measurement of fission fragments paths in uranium gold, molybdenum, zirconium and silicon; Mesure experimentale des parcours des fragments de fission dans l'uranium, l'or, le molybdene, le zirconium et le silicium

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H; Garin-Bonnet, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The measurement of total number of fissiongments emerging from an homogeneous, thick alloy composed of uranium plus another element (the concentration of uranium being known) allows to obtain the range of the fragments in this alloy. By varying the concentration, the range of the fragments in uranium and in the other element can be deduced. (author)Fren. [French] La mesure du nombre total de fragments de fission sortant d'un alliage homogene epais d'uranium et d'un autre element, pour lequel la concentration en uranium est donnee, permet la mesure du parcours des fragments dans cet alliage. En faisant varier la concentration, on peut deduire de ces mesures le parcours des fragments dans l'uranium et dans l'autre element. (auteur)

  18. Studies of Fission-Induced Surface Damage in Actinides Using Ultracold Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, Leah J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-05

    This report describes the results of the fission-induced actinide studies at LANL. Previously, there was no fission data at these energies though there were initial characterizations of UCN energy dependence and material thickness. The proof of principle was demonstrated and the initial characterizations of sputtered rates, angular and size distribution are underway.

  19. Transverse momentum and angular distributions of hadrons in e+e- jets from QCD

    International Nuclear Information System (INIS)

    Kramer, G.

    1979-01-01

    Hadron jets in e + e - annihilation will broaden at high energies due to gluon bremsstrahlung. With nonperturbative psub(T) effects dying out rapidly, the basic features of hadron jets can be calculated in perturbation theory. The authors examine the psub(T) distribution of secondarily produced hadrons. This is uniquely connected with the deviation from the 1 + cos 2 theta dependence of single particle inclusive distributions. The authors discuss what can be learned about the gluon fragmentation given the psub(T) and/or angular distributions. A sum rule is derived which establishes a relationship between the average p 2 sub(T) and αsub(S). (Auth.)

  20. Morphologies of fission fragment impacts in diamond and silica

    International Nuclear Information System (INIS)

    Gammage, R.B.; Espinosa, G.; Vazquez, C.; Moreno, A.

    2005-01-01

    The morphologies of fission-fragment impact craters in diamond and silica were investigated by atomic force microscopy. The impacts produced micron-sized craters that were especially obvious in diamond; irradiations in air may have allowed the cratering in carbon to be oxidally enhanced. The eject deposit preferentially at ordered sites and have the appearance of hillocks of a few tenths microns in size. On quartz, the hillocks have a parallel-perpendicular, x-y pattern; on diamond, the hillocks form one dimensional, parallel rows. In contrast, the hillocks on amorphous silica fiber show a random pattern. (Author)

  1. Angular distributions of sputtered particles from NiTi alloy

    International Nuclear Information System (INIS)

    Neshev, I.; Hamishkeev, V.; Chernysh, V.S.; Postnikov, S.; Mamaev, B.

    1993-01-01

    The angular distributions of sputtered Ni and Ti from a polycrystalline NiTi (50-50%) alloy are investigated by Auger electron spectroscopy and Rutherford backscattering spectroscopy. A difference in the angular distributions is observed with Ni being sputtered preferentially near the surface normal. A computer program for the calculation of the angular distributions of constituents sputtered from binary targets is created and used. The mechanisms responsible for the observed differences in the angular distributions are discussed. It is found that the collisional cascade theory is not directly applicable to the results of the constituents' angular distributions obtained in the presence of oxygen. The fitted coefficients of bombardment-induced segregation are found to be greater than the experimentally obtained ones. (author)

  2. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  3. Ability of Accelerator-Driven Systems (ADS) to Transmute Long Lived Fission Fragments

    International Nuclear Information System (INIS)

    Nguyen Mong Giao; Nguyen Thi Ai Thu; Tu Thanh Danh; Tran Thanh Dung; Huynh, Thi Kim Chi

    2010-12-01

    This paper presents the research results of the possibility to transmute the long-lived radioactive isotopes into stable or short-lived, mainly the long-lived fission fragments as 99 Tc, 127 I, 129 I, 181 Ta, 107 Ag, 109 Ag by accelerator-driven systems. We use semi-empirical formulas to establish our calculating code with the support of computer programs. (author)

  4. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  5. Fission yield calculation using toy model based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jubaidah; Kurniadi, Rizal

    2015-01-01

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R c ), mean of left curve (μ L ) and mean of right curve (μ R ), deviation of left curve (σ L ) and deviation of right curve (σ R ). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  6. Fission yield calculation using toy model based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  7. Fission product range effects on HEU fissile gas monitoring for UF6 gas

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.; Valentine, T.E.; Perez, R.B.

    1997-01-01

    The amount of 235 U in UF 6 flowing in a pipe can be monitored by counting gamma rays emitted from fission fragments carried along by the flowing gas. Neutron sources are mounted in an annular sleeve that is filled with moderator material and surrounds the pipe. This provides a source of thermal neutrons to produce the fission fragments. Those fragments that remain in the gas stream following fission are carried past a gamma detector. A typical fragment will be quite unstable, giving up energy as it decays to a more stable isotope with a significant amount of this energy being emitted in the form of gamma rays. A given fragment can emit several gamma rays over its lifetime. The gamma ray emission activity level of a distribution of fission fragments decreases with time. The monitoring system software uses models of these processes to interpret the gamma radiation counting data measured by the gamma detectors

  8. Optical efficiency for fission-fragment track counting in Muscovite Solid-State Track Recorders

    International Nuclear Information System (INIS)

    Roberts, J.H.; Ruddy, F.H.; Gold, R.

    1983-07-01

    In order to determine absolute fission rates from thin actinide deposits placed in direct contact with Muscovite Solid-State Track Recorders, it is necessary to know the efficiency with which fission-fragment tracks are recorded. In this paper, a redetermination of the optical efficiency, i.e., the fraction of fission events recorded and observed in the Muscovite, is reported. The value obtained from a well-calibrated thin deposit of 252 Cf and Muscovite etched about 90 min. in 49% HF at room temperature, is 0.9875 +- 0.0085. Manual counting was used. Preliminary results from a deposit of 242 Pu are also reported, along with preliminary comparisons of track counting with an automated system. Reasons for the discrepancy of the optical efficiency reported here with an earlier measurement are also reported. 5 references, 1 figure, 3 tables

  9. Measurements of isomeric yield ratios of fission products from proton-induced fission on natU and 232Th via direct ion counting

    Directory of Open Access Journals (Sweden)

    Rakopoulos Vasileios

    2017-01-01

    Full Text Available Independent isomeric yield ratios (IYR of 81Ge, 96Y, 97Y, 97Nb, 128Sn and 130Sn have been determined in the 25 MeV proton-induced fission of natU and 232Th. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL facility at the University of Jyväskylä. A direct ion counting measurement of the isomeric fission yield ratios was accomplished for the first time, registering the fission products in less than a second after their production. In addition, the IYRs of natU were measured by means of γ-spectroscopy in order to verify the consistency of the recently upgraded experimental setup. From the obtained results, indications of a dependence of the production rate on the fissioning system can be noticed. These data were compared with data available in the literature, whenever possible. Using the TALYS code and the experimentally obtained IYRs, we also deduced the average angular momentum of the fission fragments after scission.

  10. Prompt neutron emission

    International Nuclear Information System (INIS)

    Sher, R.

    1959-01-01

    It is shown that Ramanna and Rao's tentative conclusion that prompt fission neutrons are emitted (in the fragment system) preferentially in the direction of fragment motion is not necessitated by their angular distribution measurements, which are well explained by the usual assumptions of isotropic emission with a Maxwell (or Maxwell-like) emission spectrum. The energy distribution (Watt spectrum) and the angular distribution, both including the effects of anisotropic emission, are given. (author) [fr

  11. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    technology can play such a vital role in a nation's development subsequently motivated ... fragments with a broad mass distribution is a unique nuclear phenomenon ... low energy and spontaneous fission of actinide nuclei and how these ...

  12. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  13. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tornyi, T.G., E-mail: tornyitom@atomki.hu [Department of Physics, University of Oslo (Norway); Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Görgen, A.; Guttormsen, M.; Larsen, A.C.; Siem, S. [Department of Physics, University of Oslo (Norway); Krasznahorkay, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Csige, L. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Max-Planck-Institute for Quantum Optics, D-85748 Garching (Germany)

    2014-02-21

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2π. It was designed to be used in conjunction with the SiRi array of ΔE−E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and γ decay as a function of excitation energy.

  14. Growth of fine holes in polyethylenenaphthalate film irradiated by fission fragments

    International Nuclear Information System (INIS)

    Komaki, Y.; Tsujimura, S.

    1976-01-01

    Growth of fine holes by chemical etching in polyethylenenaphthalate films exposed to fission fragments were examined by measuring gas flow through the films. The etching rate along tracks, the radial etching rate, and the bulk etching rate were determined at effective hole diameters of 100 to 1000 A and hole densities of approximately 10 8 cm -2 . The effects of ethanol and surfactants on the etching rates were studied from the viewpoint of attaining less-tapered holes

  15. Angular Distribution of GRBs

    Directory of Open Access Journals (Sweden)

    L. G. Balázs

    2012-01-01

    Full Text Available We studied the complete randomness of the angular distribution of BATSE gamma-ray bursts (GRBs. Based on their durations and peak fluxes, we divided the BATSE sample into 5 subsamples (short1, short2, intermediate, long1, long2 and studied the angular distributions separately. We used three methods to search for non-randomness in the subsamples: Voronoi tesselation, minimal spanning tree, and multifractal spectra. To study any non-randomness in the subsamples we defined 13 test-variables (9 from Voronoi tesselation, 3 from the minimal spanning tree and one from the multifractal spectrum. We made Monte Carlo simulations taking into account the BATSE’s sky-exposure function. We tested therandomness by introducing squared Euclidean distances in the parameter space of the test-variables. We recognized that the short1, short2 groups deviate significantly (99.90%, 99.98% from the fully random case in the distribution of the squared Euclidean distances but this is not true for the long samples. In the intermediate group, the squared Euclidean distances also give significant deviation (98.51%.

  16. Anisotropy in highly charged ion induced molecule fragmentation

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Fremont, F.; Chesnel, J.Y.; Hajaji, A.

    2006-01-01

    Complete text of publication follows. Studying fragmentation processes of biologically relevant molecules due to highly charged ion impact is important to understand radiation damage in biological tissues. Energy spectra of the charged molecule fragments may reveal the different fragmentation patterns meanwhile the angular distributions of the fragments characterize the dependence of fragmentation probability on the initial orientation of the molecule. The research to explore the angular distribution of the molecule fragments has only recently been started[1]. In 2006 we performed measurements at ARIBE facility at GANIL, Caen (France), in order to investigate orientation effects in molecule fragmentation. Fragmentation of H 2 O, C 6 H 6 and CH 4 , which represent different level of symmetry, have been studied by 60 keV N 6+ ion impact. Energy spectra of the charged fragments at different observation angles have been taken. As our example spectra show the different protonic peaks can be attributed to different fragmentation processes. Significant anisotropy can be seen in the different processes. The strongest evidence for the anisotropy can be seen in the spectra of C 6 H 6 , where the spectra appear isotropic in almost the whole observed energy range except one peak, which has a strong angular dependence and is maximal around 90 deg. (author)

  17. Near-barrier Fusion Evaporation and Fission of 28Si+174Yb and 32S+170Er

    Science.gov (United States)

    Wang, Dongxi; Lin, Chengjian; Jia, Huiming; Ma, Nanru; Sun, Lijie; Xu, Xinxing; Yang, Lei; Yang, Feng; Zhang, Huanqiao; Bao, Pengfei

    2017-11-01

    Fusion evaporation residues and fission fragments have been measured, respectively, at energies around the Coulomb barrier for the 28Si+174Yb and 32S+170Er systems forming the same compound nucleus 202Po. The excitation function of fusion evaporation, fission as well as capture reactions were deduced. Coupled-channels analyses reveal that couplings to the deformations of targets and the two-phonon states of projectiles contribute much to the enhancement of capture cross sections at sub-barrier energies. The mass and total kinetic energy of fission fragments were deduced by the time-difference method assuming full momentum transfer in a two-body kinematics. The mass-energy and mass-angle distributions were obtained and no obvious quasi-fission components were observed in this bombarding energy range. Further, mass distributions of fission fragments were fitted to extract their widths. Results show that the mass widths decrease monotonically with decreasing energy, but might start to increase when Ec.m./VB < 0.95 for both systems.

  18. Primary Distributions of Nuclear Charge for Fission-Fragment Masses 132, 134, 136 and 137 from Thermal Fission of U{sup 235}; Repartition Primaire de la Charge Nucleaire pour les Fragments de Masse 132, 134, 136 et 137, Provenant de la Fission de {sup 235}U par Neutrons Thermiques; 041f 0415 0420 0414 ; Distribuciones Primarias de las Cargas Nucleares de los Fragmentos de Masa 132, 134, 136 y 137, Resultantes de la Fision del {sup 235}U por Neutrones Termicos

    Energy Technology Data Exchange (ETDEWEB)

    Konecny, E.; Opower, H.; Guenther, H.; Goebel, H. [Physik-Department der Technischen Hochschule Muenchen, Munich and II. Physikalisches Institut der Justus Liebig-Universitaet Giessen, Federal Republic of Germany (Germany)

    1965-07-15

    By a mass spectrometer fission fragments from thermal fission of U{sup 235} are exactly separated with respect to mass and kinetic energy within a time of 10{sup -6} s after fission. The separated fragments are caught in a {beta}-sensitive Ilford G 5 emulsion that is located in the focal plane of the spectrometer. Development of the irradiated emulsions is carried out, if possible, after a time long compared with the longest half-life of the regarded decay chain. Half-lives of days or longer are not taken into account, but corrections can be easily made for them. After development of the emulsions all beta tracks emerging from the end of every fission-fragment track can be seen under the microscope. The possibility of correlating every single {beta}-track with a particular fission-fragment track allows the evaluation of the number n(x) of fission fragments possessing x {beta}-tracks, thus giving not only the mean chain length but also the {beta}-particle distribution. As the stable end product of each decay chain is known, this {beta}-distribution is an exact image of the primary nuclear charge distribution. In the measurements done up to now only {beta}-particles emitted into the half solid angle formed by the emulsion plate were registered, buta simple statistical calculation enables the desired 4{pi}-distribution to be evaluated. By this method {beta}-distributions at fixed kinetic energies near the mean kinetic energy of each fragment mass are given for the masses 132, 134, 136 and 137. For the lower masses 132 and 134 the neutron shell N = 82 is responsible for the most probable primary charges near 50 and 52 respectively. For M = 136 and 137 the primary charge is about 53 and 53.2. Additional approximative corrections in respect of conversion electrons (by omitting very short {beta}-tracks corresponding to very low {beta}-energies) and to delayed neutrons (for mass 137) were not very large. Similar measurements carried out directly in 4{pi}-geometry to avoid

  19. A study on the angular distributions and multiplicities of the P-Em reactions at 400 GeV

    International Nuclear Information System (INIS)

    Shin, S.A.; Lee, K.O.

    1983-01-01

    Rapidities and multiplicities among shower particles emitted from the proton-emulsion nuclei interactions have been studied at 400 GeV. We have analysed the angular distribution by means of the pseudorapidity variable eta. R.E. Gibbs reported that the distance between the centroids of the hardon-target distribution etasub(H), and the excess particle distribution etasub(X), deltaeta= sub(H)- sub(X), is independent of energy, target mass, and projectile. We determined deltaeta by the method of R.E. Gibbs. The result is not consistent with his expermental result but collective tube model. The rapidity distribution difference(d) and the ratio(r) between P-A and P-N reactions at 400 GeV are calculated. We found that the larger nsub(h), the stronger deformation of angular distribution in target-fragmentation region, and also d=0 at eta approximately equal to 5. Finally, the KNO scaling behaviors are fitted will with our multiplicity distributions. (Author)

  20. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Mazur, C.; Ribrag, M.

    Pronounced structures in the time of flight distribution of fission fragments, having a given energy, were recently reported. This experiment has been reproduced with a better time resolution and structures are not observed [fr

  1. Use of the photovoltaic cells as fission fragment sensors and study of a preamplifier adapted to the cells

    International Nuclear Information System (INIS)

    Jin Yimeng.

    1989-04-01

    In the detection of heavy ions and fission fragments, the photovoltaic cells can take the place of traditional silicon surface barrier detectors, if we need a great number of detectors as in the case of 4π multidetector, and do not expect excellent energy and time resolutions at the same time. Made for the purpose of converting the solar energy to the electrical energy, the photovoltaic cells have the similar structure as silicon surface barrier detectors, except for their much thinner pn junctions and, as a result much larger junction capacities, which is a major disadvantage for photovoltaic cells as fission fragment detectors. In order to get an acceptable energy resolution and a time resolution as good as possible, it is necessary to design a preamplifier specially adapted to cells, which plays a very important role in the utilization of photovoltaic cells as detectors. In the present work we analyze the electrical signal from a cell when hit by a fission fragment, and propose a new type cell oriented preamplifier of voltage, with which we can use a cell up to 10 cm 2 , and obtain a time resolution better than 16 ns [fr

  2. Trajectory calculations for the ternary cold fission of 252Cf

    International Nuclear Information System (INIS)

    Misicu, S.

    1998-01-01

    We compute the final kinetic energies of the fragments emitted in the light charged particle accompanied by cold fission of 252 Cf taking into account the deformation and the finite-size effects of the fragments and integrating the equations of motion for a three-body system subjected only to Coulomb forces. The initial conditions for the trajectory calculations were derived in the framework of a deformed cluster model which includes also the effect due to the absorbative nuclear part. Although the distributions of initial kinetic energies are rather broad we show that in cold fission the initial conditions can be better determined than in the usual spontaneous fission

  3. Method of reproducing images using fission fragments and/or alpha ray etch tracks from toned photographs

    International Nuclear Information System (INIS)

    Thackray, M.

    1976-01-01

    A method is described for producing a photographic image on a normally non-photo-receptive surface comprising the steps of 1) toning the photograph with substances which combine with or replace the silver grains so that the photograph emits either spontaneously or indirectly fission fragments or alpha particles in amounts related to the distribution of the silver grains in the photograph, 2) placing the toned photograph contiguous with the surface on which the image is to be reproduced, for sufficient time for the emissions from the photograph to reproduce the image as a radiation-damage image on the surface, the damage areas having a close positional relationship to the silver grains in the original photograph. (author)

  4. Daniel Gogny's vision for a microscopic theory of fission

    Science.gov (United States)

    Younes, W.

    2017-05-01

    Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated.

  5. Fission-track studies of uranium distribution in geological samples

    International Nuclear Information System (INIS)

    Brynard, H.J.

    1983-01-01

    The standard method of studying uranium distribution in geological material by registration of fission tracks from the thermal neutron-induced fission of 235 U has been adapted for utilisation in the SAFARI-1 reactor at Pelindaba. The theory of fission-track registration as well as practical problems are discussed. The method has been applied to study uranium distribution in a variety of rock types and the results are discussed in this paper. The method is very sensitive and uranium present in quantities far below the detection limit of the microprobe have been detected

  6. $\\beta$-delayed fission in proton-rich nuclei in the lead region

    CERN Document Server

    AUTHOR|(CDS)2085005; Huyse, Mark; Popescu, Lucia

    Nuclear fission is the breakup of an atomic nucleus into two (sometimes three) fragments, thereby releasing a large amount of energy. Soon after its discovery in the late 1930’s, the gross properties of the fission phenomenon were explained by macroscopic nuclear models. Certain features however, such as asymmetric fission-fragment mass distributions in the actinide region, require the inclusion of microscopic effects. This interplay of the microscopic motion of individual nucleons on this macroscopic process is, until today, not yet fully understood. The phenomenon of fission has therefore been of recurring interest for both theoretical and experimental studies. This thesis work focuses on the $\\beta$-delayed fission ($\\beta$DF) process, an excellent tool to study low-energy fission of exotic nuclei, which was discovered in 1966 in the actinide region. In this two-step process, a precursor nucleus first undergoes $\\beta$-decay to an excited level in the daughter nucleus, which may subsequently fission. Rec...

  7. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  8. Comparative measurements of independent yields of 239Pu fission fragments induced by thermal and resonance neutrons

    International Nuclear Information System (INIS)

    Gundorin, N.A.; Kopach, Y.N.; Telezhnikov, S.A.

    1994-01-01

    The independent yields of 239 Pu fission fragments by means of gamma-spectroscopy method were measured for light and heavy groups on the IBR-30 reactor in Dubna. Comparative analysis of experimental data for fission induced by thermal and resonance neutrons was performed. The possibilities to increase the measurement's precision consist of the employment of a HPGe detector with high efficiency and its open-quotes activeclose quotes shielding in the gamma spectrometer, as well as a high speed electronics system. In this way the number of identified fragments will be increased and independent yields will be measured to a precision of 1-3%. Measurements at the source with shorter neutron pulse duration to increase neutron energy resolution will be possible after the reconstruction of a modern neutron source in Dubna in accordance with the IREN project

  9. Study of dissipative collisions of 20Ne (MeV/≅7-11 nucleon)+ 27Al

    International Nuclear Information System (INIS)

    Dey, Aparajita; Bhattacharya, C.; Bhattacharya, S.; Rana, T. K.; Kundu, S.; Banerjee, K.; Mukhopadhyay, S.; Banerjee, S. R.; Gupta, D.; Saha, R.

    2007-01-01

    The inclusive energy distributions of complex fragments (3≤9) emitted in the reactions 20 Ne (145, 158, 200, 218 MeV) + 27 Al have been measured in the angular range 10 deg. - 50 deg. The fusion-fission and the deep-inelastic components of the fragment yield have been extracted using multiple Gaussian functions from the experimental fragment energy spectra. The elemental yields of the fusion-fission component have been found to be fairly well explained in the framework of the standard statistical model. It is found that strong competition occurs between the fusion-fission and the deep-inelastic processes at these energies. The time scale of the deep-inelastic process was estimated to be typically in the range of ∼10 -21 -10 -22 s, and it was found to decrease with increasing fragment mass. The angular momentum dissipations in the fully energy damped deep-inelastic process have been estimated from the average energies of the deep-inelastic components of the fragment energy spectra. The estimated angular momentum dissipations, for lighter fragments in particular, are found to be greater than those predicted by the empirical sticking limit

  10. Study of electrochemical corrosion parameters in the detection of fission fragments in solid state trace detectors (SSTD)

    International Nuclear Information System (INIS)

    Silva Oliveira, S. da; Rogers, J.D.

    1980-01-01

    The basic properties of the electrochemical corrosion method, for the Makrofol E plastic, irradiated with fission fragments from a 252 Cf source were studied and discussed in this paper. (A.C.A.S.) [pt

  11. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  12. Germanium-gated γ–γ fast timing of excited states in fission fragments using the EXILL and FATIMA spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Régis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Simpson, G.S., E-mail: Gary.Simpson@uws.ac.uk [Laboratoire de Physique Subatomique et de Cosmologie Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); School of Engineering, University of the West of Scotland, Paisley PA1 2BE, Scotland (United Kingdom); Blanc, A. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); France, G. de [Grand Accélérateur National d' Ions Lourds, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Jentschel, M.; Köster, U.; Mutti, P. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Paziy, V. [Grupo de Física Nuclear, FAMN, Universidad Complutense, CEI Moncloa, 28040 Madrid (Spain); Saed-Samii, N. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Soldner, T. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Ur, C.A. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Urban, W. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warsaw (Poland); Bruce, A.M. [School of Computing, Engineering and Mathematics, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Drouet, F. [Laboratoire de Physique Subatomique et de Cosmologie Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); and others

    2014-11-01

    A high-granularity mixed spectrometer consisting of high-resolution Ge and very fast LaBr{sub 3}(Ce)-scintillator detectors has been installed around a fission target at the cold-neutron guide PF1B of the high-flux reactor of the Institut Laue–Langevin. Lifetimes of excited states in the range of 10 ps to 10 ns can be measured in around 100 exotic neutron-rich fission fragments using Ge-gated LaBr{sub 3}(Ce)–LaBr{sub 3}(Ce) or Ge–Ge–LaBr{sub 3}(Ce)–LaBr{sub 3}(Ce) coincidences. We report on various characteristics of the EXILL and FATIMA spectrometer for the energy range of 40 keV up to 6.8 MeV and present results of ps-lifetime test measurements in a fission fragment. The results are discussed with respect to possible systematic errors induced by background contributions.

  13. Charge degree of freedom as a sensitive probe for fission mechanism

    International Nuclear Information System (INIS)

    Yokoyama, A.; Baba, H.; Takahashi, N.; Duh, M.C.; Saito, T.

    1997-01-01

    The role of the charge degree of freedom in the heavy-ion-induced fission was investigated by carrying out a systematic analysis of radiochemically observed charge distribution in the fission of 238 U with 12 C ions of the incident energy between 85 and 140 MeV, particularly in connection with the energy given to the compound system. The charge distribution was found to follow essentially identical systematics as those which govern the light-ion fission except for the extremely weak energy dependence of the most probable charge Z p . That is, values of the derivative of Z p with respect to the energy were found to be quite small, or nearly zero, in the heavy-ion fission as compared to those of the light-ion fission. According to an analysis combining the derivatives of Z p and fission neutron data, it was deduced that the excess energy given to the fused system was spent completely in the form of pre-scission neutrons and hence the number of post-scission neutrons remained constant as in the case of light-ion fission. The observed charge distribution was reproduced under the conditions that the relaxation of the charge degree of freedom be very fast and that the separation between the two potential fragments at the moment when the charge degree of freedom has been frozen is determined by using Viola's systematics on the fragment kinetic energy. (author)

  14. Analysis for fragmentation products of proton-induced reactions on Pb with energy up to GeV

    International Nuclear Information System (INIS)

    Fan Sheng; Li Zhuxia; Zhao Zhixiang; Ding Dazhao

    2002-01-01

    The mass and charge distribution of residual products produced in the spallation reaction needs to be studied because it can provide useful information for the disposal of nuclear and the radiation damage in the spallation target. The mass and charge distribution of the spallation products is studied by using quantum molecular dynamic (QMD) models. The simulation results are well agreed with the experimental data of the spallation fragment and empirical formula. However, QMD model does not include the fission process; the calculations can not reproduce the fission fragment. The fission model is introduced into QMD model to investigate the fragment products from proton-induced reactions on Pb. The results are in good agreement with the experimental data

  15. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  16. Asymmetrically deformed states of thorium isotopes during fission process

    International Nuclear Information System (INIS)

    Blons, J.

    1982-05-01

    Some theoretical considerations are recalled on fission barriers calculated from macroscopic, microscopic or macroscopic-microscopic and ''thorium anomaly'' problem is set. Experimental techniques used to measure fission cross sections in (n,f) reactions near the threshold are described. Fission dectector is described; stray resonance problems and retrodiffused neutrons are discussed. Results obtained in experimental study of 230 Th(n,f) and 232 Th(n,f) reactions are presented. They are compared with results obtained in other laboratories. The analysis model which allows to describe a (n,f) reaction is exposed. The compound nucleus formation cross section and transmission coefficients in neutron and gamma output channel are presented according to neutron energy for each value of angular moment and parity. Cross-section analysis and angular distribution obtained respectively in 230 Th(n,f) and 232 Th(n,f) reactions is exposed. Result interpretation show new aspects of nuclei rotational spectra and new nuclear forms [fr

  17. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  18. Short Lived Fission Product Yield Measurements in 235U, 238U and 239Pu

    Science.gov (United States)

    Silano, Jack; Tonchev, Anton; Tornow, Werner; Krishichayan, Fnu; Finch, Sean; Gooden, Matthew; Wilhelmy, Jerry

    2017-09-01

    Yields of short lived fission products (FPYs) with half lives of a few minutes to an hour contain a wealth of information about the fission process. Knowledge of short lived FPYs would contribute to existing data on longer lived FPY mass and charge distributions. Of particular interest are the relative yields between the ground states and isomeric states of FPYs since these isomeric ratios can be used to determine the angular momentum of the fragments. Over the past five years, a LLNL-TUNL-LANL collaboration has made precision measurements of FPYs from quasi-monoenergetic neutron induced fission of 235U, 238U and 239Pu. These efforts focused on longer lived FPYs, using a well characterized dual fission chamber and several days of neutron beam exposure. For the first time, this established technique will be applied to measuring short lived FPYs, with half lives of minutes to less than an hour. A feasibility study will be performed using irradiation times of < 1 hour, improving the sensitivity to short lived FPYs by limiting the buildup of long lived isotopes. Results from this exploratory study will be presented, and the implications for isomeric ratio measurements will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  19. Photoelectron angular distributions from strong-field ionization of oriented molecules

    DEFF Research Database (Denmark)

    Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line

    2010-01-01

    The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...

  20. Fragment production in 12-GeV proton-induced reactions

    International Nuclear Information System (INIS)

    Hirata, Yuichi; Ohnishi, Akira; Ohtsuka, Naohiko; Nara, Yasushi; Niida, Koji; Chiba, Satoshi; Takada, Hiroshi

    2000-01-01

    We study mass and angular distribution of Intermediate Mass Fragment (IMF) produced from p(12 GeV)+ 197 Au reaction by using JAM cascade model combined with percolation model. Although the mass distribution of IMF is well reproduced, the experimentally observed sideward peak of IMF angular distribution is not explained within present JAM + percolation model. (author)

  1. Heavy residue properties in intermediate energy nuclear collisions with gold

    International Nuclear Information System (INIS)

    Aleklett, K.; Sihver, L.; Liljenzin, J.O.; Seaborg, G.T.

    1990-10-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 32, 44 and 93 MeV/nucleon argon, 35 and 43 MeV/nucleon krypton with gold. The fragment isobaric yield distributions, moving frame angular distributions and velocities have been deduced from these data. This fission cross section decreases with increasing projectile energy and the heavy residue cross section increases. The ratio v parallel /v cn increases approximately linearly with mass removed from the target. 21 refs., 8 figs

  2. Prediction of fission mass-yield distributions based on cross section calculations

    International Nuclear Information System (INIS)

    Hambsch, F.-J.; G.Vladuca; Tudora, Anabella; Oberstedt, S.; Ruskov, I.

    2005-01-01

    For the first time, fission mass-yield distributions have been predicted based on an extended statistical model for fission cross section calculations. In this model, the concept of the multi-modality of the fission process has been incorporated. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode are taken into account. De-convoluted fission cross sections for S1, S2 and SL modes for 235,238 U(n, f) and 237 Np(n, f), based on experimental branching ratios, were calculated for the first time in the incident neutron energy range from 0.01 to 5.5 MeV providing good agreement with the experimental fission cross section data. The branching ratios obtained from the modal fission cross section calculations have been used to deduce the corresponding fission yield distributions, including mean values also for incident neutron energies hitherto not accessible to experiment

  3. Ternary fission of 184466,476X formed in U + U collisions

    International Nuclear Information System (INIS)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-01-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 184 466,476 X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2 MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 184 466 X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners. (orig.)

  4. Angular distributions of ions channeled in the Si crystals

    International Nuclear Information System (INIS)

    Petrovic, S.; Korica, S.; Kokkoris, M.; Neskovic, N.

    2002-01-01

    In this study we analyze the angular distributions of Ne 10+ ions channeled in the Si crystals. The ion energy is 60 MeV and the crystal thickness is varied from 286 to 3435 nm. This thickness range corresponds to the reduced crystal thickness range from 0.5 to 6, i.e. from the second to the twelfth rainbow cycle. The angular distributions were obtained via the numerical solution of the ion equations of motion and the computer simulation method. The analysis shows that the angular distribution has a periodic behavior. We also analyze the transmission patterns corresponding to the angular distributions. These patterns should be compared to the experimental patterns obtainable by a two-dimensional position sensitive detector. We demonstrate that, when the ion beam divergence is sufficiently large, i.e. much larger than the critical angle for channeling, the channeling star effect occurs in the transmission patterns

  5. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  6. Data compilation of angular distributions of sputtered atoms

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Takiguchi, Takashi; Tawara, Hiro.

    1990-01-01

    Sputtering on a surface is generally caused by the collision cascade developed near the surface. The process is in principle the same as that causing radiation damage in the bulk of solids. Sputtering has long been regarded as an undesirable dirty effect which destroys the cathodes and grids in gas discharge tubes or ion sources and contaminates plasma and the surrounding walls. However, sputtering is used today for many applications such as sputter ion sources, mass spectrometers and the deposition of thin films. Plasma contamination and the surface erosion of first walls due to sputtering are still the major problems in fusion research. The angular distribution of the particles sputtered from solid surfaces can possibly provide the detailed information on the collision cascade in the interior of targets. This report presents a compilation of the angular distribution of sputtered atoms at normal incidence and oblique incidence in the various combinations of incident ions and target atoms. The angular distribution of sputtered atoms from monatomic solids at normal incidence and oblique incidence, and the compilation of the data on the angular distribution of sputtered atoms are reported. (K.I.)

  7. EVALPLOT2007, ENDF Plots Cross Section, Angular Distribution and Energy Distribution

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: EVALPLOT is designed to plot evaluated cross sections in the ENDF/B format. The program plots cross sections, angular distributions, energy distributions and other parameters. IAEA1322/16: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: Evalplot Vers. 2007-1 (Jan. 2007): - checked against all ENDF/B-VII; - increased page size from 600,000 to 2,400,000; - increased the number of energies vs. legendre coefficients from 20,000 to 80,000 (must be 1/30 page size); - added (n,remainder) to first plot. 2 - Method of solution: In the case of processing neutron and photon cross sections (MF=3 or 23) and parameters (MF=1 or 27), all data in a file (MF) is read, grouped together by type, and plotted. All reactions of a data type appear on the same plot. The data types for MF=1 and 3 (neutrons) are: (1) total, elastic, capture, fission and total inelastic; (2) (n,2n), (n,3n) and (n,n' charged particle); (3) (n,charged particle); (4) particle production (proton, deuteron, etc.) and damage; (5) total, first, second, etc. chance fission; (6) total inelastic, inelastic discrete levels and continuum; (7) (n,p) total and levels (only if levels are given); (8) (n,d) total and levels (only if levels are given); (9) (n,t) total and levels (only if levels are given); (10) (n, 3 He) total and levels (only if levels are given); (11) (n, 4 He) total and levels (only if levels are given); (12) parameters mu-bar, xi and gamma; (13) nu-bar - total, prompt an delayed. The data types for MF=23 and 27 (photons) are: (14) total, coherent

  8. The FRS Ion Catcher : A facility for high-precision experiments with stopped projectile and fission fragments

    NARCIS (Netherlands)

    Plass, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knoebel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfuetzner, M.; Pietri, S.; Prochazka, A.; Rink, A. -K.; Rinta-Antila, S.; Schaefer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-01-01

    At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass

  9. Statistical fission parameters for nuclei at high excitation and angular momenta

    International Nuclear Information System (INIS)

    Blann, M.; Komoto, T.A.

    1982-01-01

    Experimental fusion/fission excitation functions are analyzed by the statistical model with modified rotating liquid drop model barriers and with single particle level densities modeled for deformation for ground state (a/sub ν/) and saddle point nuclei (a/sub f/). Values are estimated for the errors in rotating liquid drop model barriers for the different systems analyzed. These results are found to correlate well with the trends predicted by the finite range model of Krappe, Nix, and Sierk, although the discrepancies seem to be approximately 1 MeV greater than the finite range model predictions over the limited range tested. The a priori values calculated for a/sub f/ and a/sub ν/ are within +- 2% of optimum free parameter values. Analyses for barrier decrements explore the importance of collective enhancement on level densities and of nuclear deformation in calculating transmission coefficients. A calculation is performed for the 97 Rh nucleus for which a first order angular momentum scaling is used for the J = 0 finite range corrections. An excellent fit is found for the fission excitation function in this approach. Results are compared in which rotating liquid drop model barriers are decremented by a constant energy, or alternatively multiplied by a constant factor. Either parametrization is shown to be capable of satisfactorily reproducing the data although their J = 0 extrapolated values differ markedly from one another. This underscores the dangers inherent in arbitrary barrier extrapolations

  10. Daniel Gogny's vision for a microscopic theory of fission

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-05-15

    Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated. (orig.)

  11. Asymmetry of mass and charge division in spontaneous fission

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Ganguly, A.K.

    The order-disorder model (ODM) has been used to explain asymmetry of mass and charge division and related phenomena in fission. According to this model the fission process involves two steps consisting of charge polarisation into two impending fragments with beta stable neutron numbers and subsequent distribution of the balance neutrons between the two. The statistics developed on the principle of equal a priori probability of all charge polarisation is used. The shell effects comes into play only in deciding stable neutron number for the charges. The total isotopic yield distribution for a number of fission reactions are presented. These show asymmetry in the actinide region which reduces with increasing mass/charge of the fissioning nuclide and bunching of the higher z peaks. The mass yields obtained therefrom for a number of fission reactions are compared with experimental results. Though there is general agreement with experimental data, the peaks of the distributions are slightly shifted away from the symmetric point and the distributions are somewhat narrower. Charge distribution parameters obtained from these results are also presented. The model predicts preference of asymmetric division for super heavy nuclides. (author)

  12. Macroscopic model description of heavy-ion induced complex-fragment emission

    International Nuclear Information System (INIS)

    Carjan, N.

    1988-01-01

    The Yukawa-plus-exponential finite-range model and the standard liquid-drop model are shortly reviewed and compared. The dependence of the barrier heights and of the saddle-point shapes on mass-asymmetry and on angular momentum is studied for the compound nuclei 110 Sn, 149 Tb and 194 Hg. The predicted asymmetric-fission barriers, charge yields and total kinetic energies are compared with experimental data obtained from the deexcitation of compound nuclei by complex-fragment emission

  13. Measurement of fission yields far from the center of isotopic distributions in the thermal neutron fission of 235U

    International Nuclear Information System (INIS)

    Shmid, M.

    1979-08-01

    The main purpose of this work was to measure independent yields, in the thermal neutron fission of 235 U, of fission products which lie far from the centers of the isotopic and isobaric yield distributions. These measurements were used to test the predictions of semi-empirical systematics of fission yields and theoretical fission models. Delay times were measured as a function of temperature in the range 1200-2000degC. The very low delay times achieved in the present work permitted expanding the measurable region to the isotopes 147 , 148 Cs and 99 Rb which are of special interest in the present work. The delay times of Sr and Ba isotopes achieved were more than two orders of magnitude lower than values reported in the literature and thus short-lived isotopes of these elements could be separated for the first time by mass spectrometry. The half-lives of 147 Ba, 148 Ba, 149 La and 149 Ce were measured for the first time. The isotopic distributions of fission yields were measured for the elements Rb, Sr, Cs and Ba in the thermal neutron fission of 235 U, those of 99 Rb, 147 Cs and 148 Cs having been measured for the first time. A comparison of the experimental yields with the predictions of the currently accepted semi-empirical systematics of fission yields, which is the odd-even effect systematics, shows that the systematics succeeds in accounting for the strong odd-even proton effect and the weaker odd-even neutron effect and also in predicting the shape of the distributions in the central region. It is shown that prompt neutron emission broadens the distribution only slightly in the wing of heavy isotopes and more significantly in the wing of light isotopes. But the effect of prompt neutron emission cannot explain the large discrepancies existing between the predictions of fission models and the experimentally measured fission yield in the wings of the isotopic distributions. (B.G.)

  14. Fusion barrier distributions from capture and quasi-elastic excitation functions measured in reaction 36S, 48Ca, 64Ni+238U

    International Nuclear Information System (INIS)

    Kozulin, E. M.

    2009-01-01

    The subbarrier fusion enhancement in reactions with heavy ions were explained by taking into account coupling between relative motion and intrinsic degrees of freedom of interacting nuclei. The coupling of reaction channels manifests itself in the potential barrier between interacting nuclei giving rise to a distribution of fusion barrier instead of single barrier.Capture and quasi-elastic scattering excitation functions at backward angles were measured for 3 6S , 4 8C a, 6 4N i+2 38U reactions systems at energies close and below the Coulomb barrier (i.e. when the influence of the shell effects on the fusion and characteristics of the decay of the composite system is considerable). Representations of the barrier distributions were extracted from both capture and quasi-elastic data. The experimental representations of barrier distributions were compared with coupled-channel calculations using CCFULL code. The major part of these experiments has been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Dubna); at the TANDEM-ALPI accelerator of the LNL (INFN, Legnaro, Italy) and at the Accelerator Laboratory of University of Jyvaeskylae (JYFL, Finland) using a time-of-flight spectrometer of fission fragments CORSET (CORrelation SET-up.) The extraction of the masses and Total Kinetic Energy (TKE) of the binary reaction products is based upon the analysis of the two-body velocity In the case of the fusion-fission and quasi-fission processes, the observed peculiarities of mass and energy distributions of the fragments, the ratio between the fusion-fission and quasi-fission cross sections are determined deformations of interaction nuclei and angular momentum carried in the di-nuclear system and the shell structure of the formed fragments. In this work, the high-precision capture and quasi-elastic scattering excitation function data are presented.The influence of projectile and target excitations and nucleon transfer on fusion barrier

  15. Calculating the mass distribution of heavy nucleus fission product by neutrons

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Koldobskij, A.B.; Kolobashkin, V.M.; Semenova, E.V.

    1981-01-01

    The technique of calculating the fission product mass yields by neutrons which are necessary for performing nucleus physical calculations in designing nuclear reactor cores is considered. The technique is based on the approximation of fission product mass distribution over the whole mass range by five Gauss functions. New analytical expressions for determining energy weights of used gaussians are proposed. The results of comparison of experimental data with calculated values for fission product mass obtained for reference processes in the capacity of which the fission reactions are chosen: 233 U, 235 U fission by thermal neutrons, 232 Th, 233 U, 235 U, 238 U by fission spectrum neutrons and 14 MeV neutrons and for 232 Th fission reactions by 11 MeV neutrons and 238 U by 7.7 MeV neutrons. On the basis of the analysis of results obtained the conclusion is drawn on a good agreement of fission product mass yield calculation values obtained using recommended values of mass distribution parameters with experimental data [ru

  16. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, Stefano; Lemaître, Jean-Francois; Sida, Jean-Luc [CEA Centre de Saclay, Gif-sur-Ivette (France); Dubray, Noëel [CEA, DAM, DIF, Arpajon (France); Goriely, Stephane [Institut d' Astronomie et d' Astrophisique, Universite Libre de Bruxelles, Brussels (Belgium)

    2014-07-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed. (author)

  17. The Growth of Sea cucumber Stichopus herrmanni After Transverse Induced Fission in Two and Three Fission Plane

    Directory of Open Access Journals (Sweden)

    Retno Hartati

    2016-06-01

    Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill  after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks.  The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and  the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane.  The middle fragment (M1 and M2 both fission plane was able to grow but very low.  It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni

  18. Metastable decay of photoionized niobium clusters: Evaporation vs fission fragmentation

    International Nuclear Information System (INIS)

    Cole, S.K.; Liu, K.; Riley, S.J.

    1986-01-01

    The metastable decay of photoionized niobium clusters (Nb/sub n/ + ) has been observed in a newly constructed cluster beam machine. The decay manifests itself in the time-of-flight (TOF) mass spectrum as an asymmetric broadening of daughter ion peaks. Pulsed ion extraction has been used to measure the decay rate constants and to establish the mechanism of the fragmentation, evaporation and/or fission of the photoionized clusters. It is found that within the experimental time window evaporation dominates for the smaller clusters (n 6 sec -1 . The average kinetic energy release is also determined and is found to be on the order of 5 MeV. 8 refs., 3 figs., 1 tab

  19. Method of photo-etching and photogravure using fission fragment and/or alpha ray etch tracks from toned photographs

    International Nuclear Information System (INIS)

    Thackray, M.

    1973-01-01

    A method is described for reproducing a photographic image on a normally non-photo-receptive surface comprising the steps of: 1) toning the photograph with substances which combine with or replace the silver grains so that the photograph emits either spontaneously or indirectly fission fragments or alpha particles in amounts related to the distribution of the silver grains in the photograph; 2) placing the toned photograph contiguous with the surface on which the image is to be reproduced, for sufficient time for the emissions from the photograph to reproduce the image as a radiation-damage image on the surface, the damage areas having a close positional relationship to the silver grains in the original photograph. (author)

  20. Phase-space distributions and orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Pasquini B.

    2014-06-01

    Full Text Available We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.

  1. Fission-fragment attachment to aerosols and their transport through capillary tubes

    International Nuclear Information System (INIS)

    Novick, V.J.; Alvarez, J.L.; Greenwood, R.C.

    1981-01-01

    The transport of radioactive aerosols was studied using equipment, collectively called the Helium jet, that has been constructed to provide basic nuclear physics data on fission product nuclides. The transport of the fission products in the system depends on their attachment to aerosol particles. The system consists of 1) a tube furnace which generates aerosols by the sublimation or evaporation of source material, 2) a helium stream used to transport the aerosols, 3) a 25 m settling tube to eliminate the larger aerosols and smaller aerosols that would deposit in the capillary, 4) a Californium-252 self-fissioning source of fission product nuclides, and 5) a small capillary to carry the radioactive aerosols from the hot cell to the laboratory. Different source materials were aerosolized but NaCl is generally used because it yielded the highest transport efficiencies through the capillary. Particle size measurments were made with NaCl aerosols by using a cascade impactor, an optical light scattering device, and the capillary itself as a diffusion battery by performing radiation measurements and/or electrical conductivity measurements. Both radioactive and nonradioactive aerosols were measured in order to investigate the possibility of a preferential size range for fission product attachment. The measured size distributions were then used to calculate attachment coefficients and finally an attachment time

  2. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of 232Th

    Science.gov (United States)

    Naik, H.; Goswami, A.; Kim, G. N.; Kim, K.; Suryanarayana, S. V.

    2013-10-01

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of 232Th have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for 232Th(p,f) and 238U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for 232Th(p,f), 232Th(n,f), and 232Th( γ,f) at various energies were compared with those for 238U(p,f), 238U(n,f), and 238U( γ,f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of 232Th was discussed with the similar data in 238U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/ Z ratio, and fissility parameter.

  3. Energy partition in nuclear fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs

  4. Possible Mechanisms of Ternary Fission in the 197Au+197 Au System at 15 AMeV

    International Nuclear Information System (INIS)

    Jun-Long, Tian; Xian, Li; Shi-Wei, Yan; Xi-Zhen, Wu; Zhu-Xia, Li

    2009-01-01

    Ternary fission in 197 Au+ 197 Au collisions at 15 A MeV is investigated by using the improved quantum molecular dynamical (ImQMD) model. The experimental mass distributions for each of the three fragments are reproduced for the first time without any freely adjusting parameters. The mechanisms of ternary fission in central and semi-central collisions are dynamically studied. In direct prolate ternary fission, two necks are found to be formed almost simultaneously and rupture sequentially in a very short time interval. Direct oblate ternary fission is a very rare fission event, in which three necks are formed and rupture simultaneously, forming three equally sized fragments along space-symmetric directions in the reaction plane. In sequential ternary fission a binary division is followed by another binary fission event after hundreds of fm/c. (nuclear physics)

  5. Recent progress in fission at saddle point and scission point

    International Nuclear Information System (INIS)

    Blons, J.; Paya, D.; Signarbieux, C.

    High resolution measurements of 230 Th and 232 Th fission cross sections for neutrons exhibit a fine structure. Such a structure is interpreted as a superposition of two rotational bands in the third, asymmetric, well of the fission barrier. The fragment mass distribution in the thermal fission of 235 U and 233 U does not show any even-odd effect, even at the highest kinetic energies. This is the mark of a strong viscosity in the descent from saddle point to scission point [fr

  6. Probing the time scale of asymmetric fission

    International Nuclear Information System (INIS)

    Kamanin, D.

    1999-12-01

    The author describes the measurement of the mass-energy distributions of fission fragments in the reactions 197 Au( 14 N,X) at 34 A.MeV and 232 Th( 7 Li,X) at 43 A.MeV. He presents results on the mass-asymmetry and excitation energy sharing. (HSI)

  7. Survey of neutron spectra generated by the fission of heavy nuclei induced by fast neutrons

    International Nuclear Information System (INIS)

    Lovchikova, G.N.; Trufanov, A.M.

    1997-01-01

    A review of neutron fission spectra measurements is presented. This review and the results of this analysis was performed with the participation of the authors. It is shown that there is a need for additional measurements of the energy and angular distributions of secondary neutrons in order to improve the understanding of the neutron emission mechanism in fission. (author). 21 refs, 6 figs

  8. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  9. Angular distribution of sputtered atoms from Al-Sn alloy and surface topography

    International Nuclear Information System (INIS)

    Wang Zhenxia; Pan Jisheng; Zhang Jiping; Tao Zhenlan

    1992-01-01

    If an alloy is sputtered the angular distribution of the sputtered atoms can be different for each component. At high ion energies in the range of linear cascade theory, different energy distributions for components of different mass in the solid are predicted. Upon leaving the surface, i.e. overcoming the surface binding energy, these differences should show up in different angular distributions. Differences in the angular distribution are of much practical interest, for example, in thin-film deposition by sputtering and surface analysis by secondary-ion mass spectroscopy and Auger electron spectroscopy. Recently our experimental work has shown that for Fe-W alloy the surface microtopography becomes dominant and determines the shape of the angular distribution of the component. However, with the few experimental results available so far it is too early to draw any general conclusions for the angular distribution of the sputtered constituents. Thus, the aim of this work was to study further the influence of the surface topography on the shape of the angular distribution of sputtered atoms from an Al-Sn alloy. (Author)

  10. Studies of light charged particle emission from fission and ER reactions in the system 344 MeV {sup 28}Si+{sup 121}Sb{yields}{sup 149}Tb (E{sup *}=240 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Morton E-mail: kaplan@cmchem.chem.cmu.edu; Copi, Craig J.; DeYoung, Paul A.; Gilfoyle, G.J.; Karol, Paul J.; Moses, David J.; Parker, W.E.; Rehm, K. Ernst; Sarafa, John; Vardaci, Emanuele

    2001-04-09

    Light charged particles (LCP) have been measured for the reaction 344 MeV {sup 28}Si+{sup 121}Sb in singles and in coincidence with evaporation residues (ER), fusion-fission fragments (FF), and other LCP. A major feature of this experiment was the use of a gas-filled magnetic spectrometer in the forward direction to separate ER from the much more abundant yield of elastically scattered projectiles and projectile-like fragments. The dominant sources of evaporative {sup 1}H and {sup 4}He emission are the ER (approximately 75%), with the remainder being largely associated with fission reactions. For these latter reactions, most of the {sup 1}H and {sup 4}He can be well accounted for by evaporation from the composite system prior to fission and by evaporation from the postfission fragments. LCP emission cross sections were determined for each identified source, and a comparison has been made to previous studies. From this comparison, indications were found for significant entrance channel effects, with the more asymmetric channels exhibiting much larger LCP cross sections. Statistical model predictions for ER emissions are in good agreement with observed LCP energy spectra, angular distributions, and integrated inclusive and exclusive cross sections, with all calculations using the same unique set of model parameters. This result contrasts strongly with recent reports for light mass systems, where model calculations were unable to simultaneously reproduce all observables.

  11. Light fragment preformation in cold fission of {sup 282}Cn

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Gherghescu, R.A. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), P.O. Box MG-6, Bucharest-Magurele (Romania); Johann Wolfgang Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany)

    2016-11-15

    In a previous article, published in Phys. Rev. C 94, 014309 (2016), we have shown for the first time that the best dynamical trajectory during the deformation toward fission of the superheavy nucleus {sup 286}Fl is a linearly increasing radius of the light fragment, R{sub 2}. This macroscopic-microscopic result reminds us about the α or cluster preformation at the nuclear surface, assumed already in 1928, and proved microscopically many times. This time we give more detailed arguments for the nucleus {sup 282}Cn. Also similar figures are presented for heavy nuclei {sup 240}Pu and {sup 252} Cf. The deep minimum of the total deformation energy near the surface is shown for the first time as a strong argument for cluster preformation. (orig.)

  12. Compound Nucleus Reactions in LENR, Analogy to Uranium Fission

    Science.gov (United States)

    Hora, Heinrich; Miley, George; Philberth, Karl

    2008-03-01

    The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.

  13. Development of windowless liquid lithium targets for fragmentation and fission of 400-kW uranium beams

    CERN Document Server

    Nolen, J A; Hassanein, A; Novick, V J; Plotkin, P; Specht, J R

    2003-01-01

    The driver linac of the proposed rare isotope accelerator facility is designed to deliver 2x10 sup 1 sup 3 uranium ions per second at 400 MeV/u on target for radionuclide production via the fission and fragmentation mechanisms. The ion optics of the large acceptance, high-resolution fragment separators that follow the production target require primary beam spot widths of 1 mm. To cope with the resulting high power densities, windowless liquid lithium targets are being developed. The present designs build on existing experience with liquid lithium and liquid sodium systems that have been used for fusion and fission applications. However, no completely windowless systems have been developed or tested to date. For the beam power indicated above (400 kW), the flow requirements are up to about 20 m/s and 10 l/s linear and volume flow rates, respectively. The required target thickness is 1-1.5 g/cm sup 2 (2-3 cm lithium thickness). At this time a prototype windowless system with a lithium thickness of 1-2 cm is und...

  14. Continuous particle spectra and their angular distributions

    International Nuclear Information System (INIS)

    Sastry, Ch.V.; Jain, R.K.; Rama Rao, J.; Ernst, J.; Machner, H.

    1996-01-01

    The angular distribution of continuous particle spectra in pre-equilibrium reactions is still an unsolved problem, particularly so at forward angles. In the present work, the angular distributions of alpha particles emitted in (α, α',x) reactions in the target elements gold and rhodium have been studied in detail. Alpha particle beams of energy 60 MeV from the Variable Energy Cyclotron of Calcutta were used in these experiments. The theoretical calculations were done using an extended exciton model of Kalbach incorporated into the Computer Code PRECO-D2. The formalism used in the exciton model was modified to include division of pre equilibrium cross section into multi-step direct (MSD) and multi-step compound (MSC) components. These MSD and MSC cross sections were used to calculate the angular distributions in terms of Legendre polynomials whose coefficients are given by simple phenomenological relations. Even with a reasonable set of parameters, the agreement between theory and experiment was far from satisfactory at forward angles. Similar conclusion was also drawn in the case of continuous particle spectra of deuterons in (d, d'x) reactions at 25 MeV in various targets. (author). 10 refs., 2 figs

  15. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  16. Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom

    2012-01-01

    The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for

  17. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    International Nuclear Information System (INIS)

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-01-01

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process

  18. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    Science.gov (United States)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  19. The Effect of Stiffness Parameter on Mass Distribution in Heavy-Ion Induced Fission

    Science.gov (United States)

    Soheyli, Saeed; Khalil Khalili, Morteza; Ashrafi, Ghazaaleh

    2018-06-01

    The stiffness parameter of the composite system has been studied for several heavy-ion induced fission reactions without the contribution of non-compound nucleus fission events. In this research, determination of the stiffness parameter is based on the comparison between the experimental data on the mass widths of fission fragments and those predicted by the statistical model treatments at the saddle and scission points. Analysis of the results shows that for the induced fission reactions of different targets by the same projectile, the stiffness parameter of the composite system decreases with increasing the fissility parameter, as well as with increasing the mass number of the compound nucleus. This parameter also exhibits a similar behavior for the reactions of a given target induced by different projectiles. As expected, nearly same stiffness values are obtained for different reactions leading to the same compound nucleus.

  20. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  1. Angular distributions of nucleons emitted in high energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    Angular distributions of ''fast'' protons, of kinetic energy from about 20 to about 400 MeV, emitted in pion-xenon nucleus collisions at 3.5 GeV/c momentum were studied in two groups of events - when particles are produced and when particle production does not occur. The distributions are practically the same in both the groups of events and in subgroups of events with various multiplicities of emitted protons. Comparison of angular distributions of protons emitted in pion-xenon nucleus collisions at 3.5 GeV/c momentum with corresponding angular distributions of protons emitted in proton-emulsion collisions at 300-400 GeV/c momentum is performed. Results obtained allow to conclude that average value of the nucleon emission angle and the nucleon angular distributions do not depend practically on the nuclear matter layer thickness the incident hadron collided with. Fast nucleons emitted from the target nucleus seem did not interact inside the parent nucleus. Fast nucleon angular distributions do not depend on the energy of incident hadron, they are the same for pion-nucleus and for proton-nucleus collisions as well

  2. Multichannel system for angular distribution measurements

    International Nuclear Information System (INIS)

    Burjan, V.; Kroha, V.; Putz, K.

    A description is given of the individual blocks of the spectrometric apparatus used for measuring the angular distribution of particle spectra and excitation functions of (d,p) reactions at an electrostatic accelerator and the U-120 M cyclotron, both operating at the Nuclear Physics Institute of the Czechoslovak Academy of Sciences at Rez. Main attention was devoted to attaining maximum energy resolution at a high measurement efficiency, this by installing 8 independent spectrometric chains allowing simultaneous measurement of angular distribution in 8 points of the beam. The semiconductor detectors were cooled to -40 degC to -60 degC, which significantly reduced the level of inherent detector noise. An energy resolution of 13 keV was attained using Tesla detectors at a particle energy of 11 MeV. A brief review of data processing and software is given. (B.S.)

  3. Comparison of experimental and calculated neutron emission spectra and angular distributions

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Akkermans, J.M.

    1980-06-01

    Experimental and calculated neutron emission spectra and angular distributions have been intercompared for 14.6-MeV neutron-induced reactions. The experimental data, measured by Hermsdorf et al., cover 34 elements in a large mass range. To calculate the differential neutron scattering cross sections a unified model of preequilibrium neutron emission was used, in which the generalized master equation of Mantzouranis et al. was solved with a fast exact matrix method, recently introduced by Akkermans. For the scattering kernel a three-term Legendre polynomial representation was adopted, which was either derived from the differential free nucleon-nucleon scattering cross section or fitted to obtain optimal agreement with the set of experimental data of Hermsdorf et al. The results of the last-mentioned calculation are quite acceptable in view of the fact that only two global parameters have been to describe the angular distributions of all experimental data. The report contains tables and graphs of the calculated Legendre coefficients and graphs of energy-averaged angular distributions for all 34 elements. It is further shown that improvements in the energy and angular distributions could be obtained by means of adjustment of the level-density parameters of the individual residual nuclei. Finally a short discussion is devoted to the problems of fitting angular distributions at backward angles by varying the model parameters or the specification of the initial condition. It is indicated that the so-called preequilibrium phase of the nuclear reaction actually consists of two different stages, the first one generating the forward-peaked angular distributions and the second one showing angular distributions symmetric about 90 0

  4. Isotopic production cross-sections and recoil velocities of spallation-fission fragments in the reaction 238U(1A GeV)+e

    CERN Document Server

    Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602

    2007-01-01

    Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.

  5. A study of the differential cross section in subbarrier photofission of 238U

    International Nuclear Information System (INIS)

    Lindgren, L.J.; Sandell, A.

    1977-03-01

    A measurement of the angular distribution and yield of fission fragments from photofission of 238 U has been performed between 5.2 MeV and 6.4 MeV. As γ-source the bremsstrahlung from a microtron has been used. For the detection of the fission fragments solid state track detectors were used. The yield data were evaluated to approximate cross sections. The data were analyzed within the framework of the double hump barrier model. (Auth.)

  6. New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Knoebel, R.; Litvinov, Yu.A.; Weick, H.; Bosch, F.; Boutin, D.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S.A.; Matos, M.; Mazzocco, M.; Muenzenberg, G.; Nociforo, C.; Nolden, F.; Stadlmann, J.; Steck, M.; Winkler, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Diwisch, M. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Geissel, H.; Plass, W.R.; Scheidenberger, C.; Chen, L. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Patyk, Z. [National Centre for Nuclear Research - NCBJ Swierk, Warszawa (Poland); Sun, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Hausmann, M. [Michigan State University, East Lansing, MI (United States); Nakajima, S.; Suzuki, T.; Yamaguchi, T. [Saitama University, Department of Physics, Saitama (Japan); Ohtsubo, T. [Niigata University, Department of Physics, Niigata (Japan); Ozawa, A. [University of Tsukuba, Institute of Physics, Ibaraki (Japan); Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom)

    2016-05-15

    Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u {sup 238}U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 10{sup 9}/spill. The projectiles were focused on a 1g/cm{sup 2} beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B ρ-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models. (orig.)

  7. Burnout and gate rupture of power MOS transistors with fission fragments of 252Cf

    International Nuclear Information System (INIS)

    Tang Benqi; Wang Yanping; Geng Bin; Chen Xiaohua; He Chaohui; Yang Hailiang

    2000-01-01

    A study to determine the single event burnout (SEB) and single event gate rupture (SEGR) sensitivities of power MOSFET devices is carried out by exposure to fission fragments from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism are presented. The test results include the observed dependence upon applied drain or gate to source bias and effect of external capacitors and limited resistors

  8. The importance of the giant resonances in hadron and muon induced fission

    International Nuclear Information System (INIS)

    Hartfiel, J.

    1985-01-01

    In the first part of the thesis the fission probability of 238 U by means of the reaction 238 U(α,α'f) is studied at an incident energy of 480 MeV and a scattering angle of 3.4 0 . In the measured spectrum of the inelastically scattered α particles a strong resonance is found in the excitation energy range from 8 to 13 MeV. The center of mass of the resonance lies at 11 MeV. Its width extends to 4.5 MeV. In the second part of the thesis the muon induced fission of 235 U, 238 U, 237 Np, 242 Pu, and 244 Pu is studied. Thereby both fission fragments are detected in coincidence by two surface barrier detectors. By this it is possible for the first time to measure the mass and kinetic energy distribution of the fission fragments. (orig./HSI) [de

  9. Measurement of the energy spectrum of {sup 252}Cf fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)

  10. Direct Photon Center-of-Mass Angular Distributions in $p\\bar{p}$ Collisions at $\\sqrt{s}$ =1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Leslie F. [Brandeis Univ., Waltham, MA (United States)

    1992-01-01

    The center-of-mass angular distribution of direct photon events, resulting from proton-antiproton collisions at a center-of-mass energy of 1.8 TeV, as measured by the Collider Detector at Fermi lab ( CDF) during the 1988-1089 experimental run, is presented. The direct photon events are identified primarily through the direct photon's characteristic isolation from other particles. The main source of background is from rare fragmentation of QCD partons into single isolated neutral mesons, which decay into two or more photons. The background is removed statistically by exploitation of tile expected difference in the resulting shower profiles. The resulting angular distribution for direct photons, in the transverse momentum range from 22 to 45 Ge V is found to agree favorably with the predictions of Quantum Cbromodynamics (QCD) for an interaction with a fermion (spin 1/2) propagator.

  11. Direct Photon Center-of-Mass Angular Distributions in $p\\bar{p}$ Collisions at $\\sqrt{s}$ =1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Leslie F. [Brandeis Univ., Waltham, MA (United States)

    1992-04-01

    The center-of-mass angular distribution of direct photon events, resulting from protonantiproton collisions at a center-of-mass energy of 1.8 TeV, as measured by the Collider Detector at Fermilab ( CDF) during the 1988-1089 experimental run, is presented . The direct photon events are identified primarily through the direct photon's characteristic isolation from other particles. The main source of background is from rare fragmentation of QCD partons into single isolated neutral mesons, which decay into two or more photons. The background is removed statistically by exploitation of tile expected difference in the resulting shower profiles. The resulting angular distribution for direct photons, in the transverse momemtum range from 22 to 45 Ge V is found to agree favorably with the predictions of Quantum Cbromodynamics (QCD) for an interaction with a fermion (spin 1/2) propagator

  12. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kim, G.N.; Kim, K. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Suryanarayana, S.V. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India)

    2013-10-15

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of {sup 232}Th have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for {sup 232}Th(p,f) and {sup 238}U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for {sup 232}Th(p,f), {sup 232}Th(n,f), and {sup 232}Th({gamma},f) at various energies were compared with those for {sup 238}U(p,f), {sup 238}U(n,f), and {sup 238}U({gamma},f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of {sup 232}Th was discussed with the similar data in {sup 238}U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/Z ratio, and fissility parameter. (orig.)

  13. Angular distributions of particles sputtered from polycrystalline platinum by low-energy ions

    International Nuclear Information System (INIS)

    Chernysh, V.S.; Eckstein, W.; Haidarov, A.A.; Kulikauskas, V.S.; Mashkova, E.S.; Molchanov, V.A.

    2000-01-01

    The results of an experimental study and a computer simulation with the TRIM.SP code of the angular distributions of atoms sputtered from polycrystalline platinum under 3-9 keV Ne + bombardment at normal ion incidence are presented. It was found that angular distributions of sputtered atoms are overcosine and that their shape is practically independent of an ion energy. Comparison with the previously obtained data for He + and Ar + ions have shown that the shape of the angular distribution does not depend on the bombarding ion species. Good agreement between experimental results and computer simulation data was found. Computer simulations of the partial angular distributions of Pt atoms ejected due to various sputtering mechanisms for Ne ion bombardment were performed and the comparison with corresponding data for He and Ar bombarding was made. The role of different mechanisms in the formation of angular distributions of sputtered atoms has been analyzed

  14. Time-dependent angular distribution of sputtered particles from amorphous targets

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1990-01-01

    Using the time-evolution computer simulation code DYACAT, the time-dependent behavior of sputtering phenomena has been investigated. The DYACAT program is based on the binary collision approximation, and the cascade development in solids is followed time-evolutionally. The total sputtering yield, the angular distribution and the energy distribution of sputtered atoms are calculated as a function of time for 1 keV Ar→Cu, where the angle of incidence is the inverse surface normal. It is found that the angular distribution of the prompt collisional phase of the sputtering process shows an under-cosine and that the corresponding energy spectrum has a peak near 10 eV. The slow collisional phase of 1 keV Ar→Cu will start after 3x10 -14 s, and its angular distribution shows an over-cosine distribution. (orig.)

  15. Studies on fission tracks and distributions of uranium and rare earths in granite materials

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Sakanoue, Masanobu

    1987-01-01

    Many materials contain fossil records of the slow spontaneous fission of uranium they contain as an impurity. Fission fragments, heavy charged particles released in each fission event, produce microscopic trails of radiation damage that may persist over geological times and may be developed to a size observable under an optical microscope by a suitable etching treatment. Such tracks are also produced by fissions induced by thermal neutron irradiation of the uranium. When the material is heated sufficiently, it anneals and the the microscopic trails become shorter and narrower. The track density decreases, because the chemical etchant will not reach some of the shortened tracks. Measurements of track densities before and after annealing can be used, along with laboratory studies of annealing rates, to determine the annealing temperature. Also, the track density of induced fissions is related to the concentration of uranium and the fluence of neutrons to which it was exposed. If the track density due to induced fissions can be distinguished from that due to fossil tracks, estimates of either the concentration or the fluence can be made if the other is known. Two such materials (one a fragment of a granite paving stone, the other a piece of stained glass from a cathedral window) that had been exposed to the atomic bomb at Nagasaki were used in the present work. The fossil record in zircons in the granite was used to estimate the temperature to which it had been exposed in the bombing. Induced fissions were used to estimate the concentration of uranium in the zircons. Nonuniform heating and cooling and nearly uniform exposure to the neutrons make the granite sample unsuitable for determining the neutron fluence from the bomb. Induced fissions in the stained glass were used to estimate the concentration of uranium and the thermal neutron fluence from the A-bomb. Annealing of tracks in glass was also studied

  16. Photoelectron and ICD electron angular distributions from fixed-in-space neon dimers

    International Nuclear Information System (INIS)

    Jahnke, T; Czasch, A; Schoeffler, M; Schoessler, S; Kaesz, M; Titze, J; Kreidi, K; Grisenti, R E; Staudte, A; Jagutzki, O; Schmidt, L Ph H; Semenov, S K; Cherepkov, N A; Schmidt-Boecking, H; Doerner, R

    2007-01-01

    We report on molecular frame angular distributions of 2s photoelectrons and electrons emitted by interatomic Coulombic decay from neon dimers. We found that the measured angular distribution of the photoelectron strongly depends on the environment of the cluster. The experimental results are in excellent agreement with frozen core Hartree-Fock calculations. The ICD electrons show slight variations in their angular distribution for different kinetic energies

  17. Open problems in sub-barrier fusion

    International Nuclear Information System (INIS)

    Vandenbosch, R.

    1992-01-01

    Two aspects of sub-barrier fusion are discussed. A challenge to the use of fission fragment angular distributions to probe the spin distribution in fusion is addressed. Evidence from excitation functions for the importance of neutron transfer and the neck degree of freedom is examined

  18. Validation of Geant4 fragmentation for Heavy Ion Therapy

    Science.gov (United States)

    Bolst, David; Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Folger, Gunter; Incerti, Sebastien; Ivanchenko, Vladimir; Koi, Tatsumi; Mancusi, Davide; Pandola, Luciano; Romano, Francesco; Rosenfeld, Anatoly B.; Guatelli, Susanna

    2017-10-01

    12C ion therapy has had growing interest in recent years for its excellent dose conformity. However at therapeutic energies, which can be as high as 400 MeV/u, carbon ions produce secondary fragments. For an incident 400 MeV/u 12C ion beam, ∼ 70 % of the beam will undergo fragmentation before the Bragg Peak. The dosimetric and radiobiological impact of these fragments must be accurately characterised, as it can result in increasing the risk of secondary cancer for the patient as well as altering the relative biological effectiveness. This work investigates the accuracy of three different nuclear fragmentation models available in the Monte Carlo Toolkit Geant4, the Binary Intranuclear Cascade (BIC), the Quantum Molecular Dynamics (QMD) and the Liege Intranuclear Cascade (INCL++). The models were benchmarked against experimental data for a pristine 400 MeV/u 12C beam incident upon a water phantom, including fragment yield, angular and energy distribution. For fragment yields the three alternative models agreed between ∼ 5 and ∼ 35 % with experimental measurements, the QMD using the "Frag" option gave the best agreement for lighter fragments but had reduced agreement for larger fragments. For angular distributions INCL++ was seen to provide the best agreement among the models for all elements with the exception of Hydrogen, while BIC and QMD was seen to produce broader distributions compared to experiment. BIC and QMD performed similar to one another for kinetic energy distributions while INCL++ suffered from producing lower energy distributions compared to the other models and experiment.

  19. Binary and ternary fission yields induced by 12C and 20Ne ions on 238U targets

    International Nuclear Information System (INIS)

    Otto, R.J.

    1974-01-01

    Evidence for ternary fission of 250 Cf* and 258 No* compound nuclei has been found. Relative cross section data for nuclides with masses between 24 Na and 161 Tb have been determined for 12 C bombardments of natural uranium at laboratory energies of 122 MeV, 113 MeV and 105 MeV. Relative cross section data for 8 nuclides between 24 Na and 66 Ni were sought for 20 Ne bombardments of natural uranium at 150 MeV laboratory energies. The binary fission fragment mass distribution for 238 U( 12 C,f) was determined by analysis of fission fragment recoil collection foils using radiochemical techniques and high resolution gamma ray spectroscopy. The results indicated the existence of a ternary fission branch similar to mass distributions obtained for He induced fission of Th, U, and Pu nuclei at intermediate energies. Comparison of the data with He induced ternary fission data obtained previously in this laboratory indicated an increase in the ternary fission probability with increasing Z 2 /A of the compound nucleus and with excitation energy. A shift of the binary-ternary fission product intersection point to lower mass numbers with increasing Z 2 /A and excitation energy of the compound nucleus was also observed. (Diss. Abstr. Int., B)

  20. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  1. Cold valleys in fusion and fission

    International Nuclear Information System (INIS)

    Misicu, S.

    2003-01-01

    The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)

  2. Origin of complex fragments from 32S + natAg reaction at 37.5 A.MeV

    International Nuclear Information System (INIS)

    Benchekroun, D.; Cheynis, B.; Demeyer, A.; Gerlic, E.; Guinet, D.; Lautesse, P.; Lebreton, L.; Magda, M.T.; Stern, M.; Chabane, A.; Desesquelles, P.; Giorni, A.; Heuer, D.; Lleres, A.; Viano, J.B.

    1996-08-01

    Fragment emission from collisions of 32 S with nat Ag at 37.5 A.MeV has been studied with the 4π multidetector AMPHORA. Production of intermediate mass and heavy fragments as well as of light charged particles has been measured. The total charged particle multiplicity and polar angular distributions have been used to select various classes of collisions. Analysis of angular and energy distributions of fragments and light particles in central collisions indicates the formation of a hot source (excitation energy of ∼ 4.4 A.MeV) with an additional contribution from a preequilibrium process at more forward angles. Azimuthal angle correlations of He - Li, Li - Li, B - B, and C - C pairs have been used as a tool to study the origin of complex fragments. Data at backward angles are well described by considering a thermalized emitter with an angular momentum around 70 h and a fragment emission time of the order of 200 fm/c. A microscopic approach of BNV type confirms these emission times and angular momenta indicating the persistence of an incomplete fusion process responsible for the emission of complex fragments at backward angles

  3. Nuclear fission fragment excitation of electronic transition laser media

    International Nuclear Information System (INIS)

    Lorents, D.C.; McCusker, M.V.; Rhodes, C.K.

    1976-01-01

    The properties of high energy electronic transition lasers excited by fission fragments are expanded. Specific characteristics of the media including density, excitation rates, wavelength, kinetics, fissile material, scale size, and medium uniformity are assessed. The use of epithermal neutrons, homogeneously mixed fissile material, and special high cross section nuclear isotopes to optimize coupling of the energy to the medium are shown to be important considerations maximizing the scale size, energy deposition, and medium uniformity. A performance limit point of approximately 1000 J/l in approximately 100 μs pulses is established for a large class of systems operating in the near ultraviolet and visible spectral regions. It is demonstrated that e-beam excitation can be used to simulate nuclear pumping conditions to facilitate the search for candidate media. Experimental data for the kinetics of a XeF* laser operating in Ar/Xe/F 2 /UF 6 mixtures are given. These reactor-pumped systems are suitable for scaling to volumes on the order of (meters) 3

  4. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  5. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    Science.gov (United States)

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  6. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  7. Fission energy of uranium isotopes and transuranium elements

    International Nuclear Information System (INIS)

    Nemirovskij, P.Eh.; Manevich, L.G.

    1981-01-01

    A comparison is made between the prompt fission energy, Esub(pr), calculated from the mass and binding energy spectrum and the Esub(pr) value obtained from the experimental data on the kinetic energy of fragments, the energy of prompt neutrons and prompt γ-quanta. Basing on the data on β-decay chains of fission fragments, the energies of neutrinos, γ-quanta and β-electrons are obtained, which permits to calculate the actual energy released during fission. The calculations are performed for thermal neutron-induced fission, fast-neutron induced fission and for fission after bombardment with 14 MeV neutrons. The available experimental data on the fission fragment kinetic energy, prompt γ-quanta energy and fission neutron energy are presented. The comparison of the Esub(pr) values obtained experimentally for the thermal-neutron-induced fission with the calculated Esub(pr) value shows that for 233 U, 239 Pu, 241 Pu the agreement is rather favourable. For 235 U the agreement is within the error limits. As to the Esub(pr) values for the fast-neutron-induced fission, the agreement between the calculated and experimental data for all nuclides is quite good

  8. Observation of fission residues in the 16O + 181Ta system at Elab ≈ 6 MeV/A

    Directory of Open Access Journals (Sweden)

    Singh B. P.

    2011-10-01

    Full Text Available Present paper reports on the production cross-section of 24 fission like events (30 ≤ Z ≤ 60 formed via complete fusion-fission and/or incomplete fusion-fission processes in 16O+181Ta system at energies ≈ 6 MeV/A. Experiments have been performed using the recoil-catcher technique followed by off-line γ-spectroscopy. The measured cross-section of fission-like events is satisfactorily described by a statistical model code. Further, an attempt has been made to study the mass and isotopic yield distributions of fission fragments. The variance of the presently measured isotopic yield distributions has been found to be in agreement with the literature values for some other fissioning systems.

  9. Distribution of the angular momentum in the Galaxy and M31

    International Nuclear Information System (INIS)

    Einasto, J.; Traat, P.

    1977-01-01

    The angular momentum distribution of the Galaxy and of the Andromeda galaxy M31 has been calculated separately for the disk and halo population. The disk was approximated with a ring. The distribution of the angular momentum in the disk and the halo is different

  10. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E*. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence B f (I), which gives information on the shell energy E(shell)(I). Theoretical calculations predict different fission barrier heights from B f (I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of B f provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γ(fission)/Γ(total), using transfer reactions. However, for heavy elements such as 254 No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γ γ /Γ(fission) and its spin dependence, deduced from the entry distribution (I, E*).Measurements of the gamma-ray multiplicity and total energy for 254 No have been performed with beam energies of 219 and 223 MeV in the reaction 208 Pb( 48 Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254 No gamma rays were detected using the Gammasphere array as a calorimeter - as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254 No gamma rays from those from fission fragments, which are ≥ 10 6 more intense. From this measurement, the entry distribution - i.e. the initial distribution of I and E* - is constructed. Each point (I,E*) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier. The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 Me

  11. Mass distributions in monoenergetic-neutron-induced fission of 232Th

    International Nuclear Information System (INIS)

    Glendenin, L.E.; Gindler, J.E.; Ahmad, I.; Henderson, D.J.; Meadows, J.W.

    1980-01-01

    Fission product yields for 38 masses were determined for the fission of 232 Th with essentially monoenergetic neutrons of 2.0, 3.0, 4.0, 5.9, 6.4, 6.9, 7.6, and 8.0 MeV. Fission product activities were measured by Ge(Li) γ-ray spectrometry of irradiated 232 Th foils and by chemical separation of the fission product elements followed by β counting. The mass yield data for 232 Th(n,f ) show a sensitive increase of fission yields in the near-symmetric mass region (valley) with increasing incident neutron energy E/sub n/ and a pronounced dip in yield at the onset of second-chance fission just above the neutron binding energy (at approx. 6 MeV) where the excitation energy is lowered by competition with neutron evaporation prior to fission. The effect of second-chance fission is also seen in the yields of asymmetric peak products. A distinct third peak is observed at symmetry in the valley of the mass distribution, and enhanced yields are observed in the asymmetric peaks at masses associated with even Z (proton pairing effect). The fission yeilds of 232 Th(n,f ) are compared with those of 238 U(n,f ) and 232 Th

  12. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  13. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    Science.gov (United States)

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  14. Experimental study of the thermal fission of uranium 235 in the region of symmetrical masses; Contribution a l'etude experimentale de la fission thermique de l'uranium 235 dans la region des masses symetriques

    Energy Technology Data Exchange (ETDEWEB)

    Ribrag, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-15

    Energy correlation experiments with fission fragments are strongly perturbed, in the symmetric region, by the detection of spurious events caused by the apparatus. We show that the measurement of an additional parameter, namely the difference in time-of-flight between the fragments, enables us to eliminate these difficulties. In this work we show also an original method of calibration of the time-of-flight set-up. For thermal fission of {sup 235}U, values of mass yields in the symmetric region are found to agree quantitatively with radiochemical values. Moreover, the average total kinetic energy distribution as a function of the pre-neutron emission masses of the fragments has been calculated. This curve presents in the symmetric region a large dip, the value of which takes on the value 21.2 {+-} 0.8 MeV. This value is smaller than previously published results. (author) [French] Les mesures correlees des energies cinetiques des fragments de fission sont fortement perturbees, dans la region symetrique, par la detection d'evenements aberrants d'origine instrumentale. Nous montrons que la mesure d'un parametre supplementaire, a savoir, la difference des temps de vol des deux fragments, nous permet d'eliminer ces difficultes. Dans ce travail, nous indiquons egalement une methode originale de calibration du dispositif de mesure des temps de vol. Dans le cas de la fission thermique de {sup 235}U, nous avons trouve, dans la region symetrique, une courbe de rendement des masses, en accord quantitatif avec les donnees radiochimiques. De plus, nous avons calcule la distribution de l'energie cinetique totale moyenne en fonction de la masse des fragments, avant emission neutronique. Cette courbe presente, dans la region symetrique, un creux important, dont la valeur atteint 21,2 {+-} 0,8 MeV. Cette valeur est inferieure aux resultats precedemment publies. (auteur)

  15. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  16. On the angular distributions of the heavy products of (HI, xn) reactions

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    1989-01-01

    The effects of neutron evaporation and scattering in the target on the angular distribution of the heavy products of (HI, xn) reactions is considered. Based on the analysis of the experimental angular distributions and their calculated parameters a simple phenomenological approach to the description of these distributions is proposed. The calculated distributions are compared with the experimental ones cited in the literature. The possibilities of using the proposed approach to calculate the integrated angular distributions of heavy products and to determine the efficiency of collecting (HI, xn) reaction products under the conditions of the kinematic separation of recoil nuclei are outlined. 28 refs.; 9 figs

  17. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  18. Display of rotational levels near the fission threshold in 232Th(n,f) reaction

    International Nuclear Information System (INIS)

    Blons, J.; Mazur, C.; Paya, D.

    1975-01-01

    The 232 Th(n,f) cross section has been measured relative to that of 235 U up to 5MeV, with a neutron energy resolution of 3keV at 1.6MeV. The angular anisotropy of fission fragments has also been measured in the same energy range with an energy resolution of 6keV at 1,6MeV. The broad vibrational levels located above 1MeV are resolved into sharp structures which are interpreted as rotational states. The rotational constants h 2 /2J of highly deformed 233 Th are found to be 2.45 and 2.65keV at 1.5 and 1.6MeV respectively. These results are interpreted by the possibility of a third minimum in the fission barrier [fr

  19. Anisotropy in the ternary cold fission

    CERN Document Server

    Delion, D S; Greiner, W

    2003-01-01

    We describe the spontaneous ternary cold fission of sup 2 sup 5 sup 2 Cf, accompanied by sup 4 He, sup 1 sup 0 Be and sup 1 sup 4 C within a stationary scattering formalism. We show that the light cluster should be born in the neck region. It decays from the first resonant eigenstate in the Coulomb plus harmonic oscillator potential, centred in this region and eccentric with respect to the symmetry axis. This description gives a simple answer to the question why the averaged values in the energy spectra of emitted clusters are close to each other, in spite of different Coulomb barriers. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. Experimental angular distributions can be explained by the spherical shapes of emitted clusters, except for a deformed sup 1 sup 0 Be. We also predicted some dependences of half-lives for such tri-nuclear systems upon potential parameters.

  20. The spark counting of etched fission-fragment tracks in polycarbonate for a personal neutron dosimetry system

    International Nuclear Information System (INIS)

    Harrison, K.G.; Hancock, I.B.; Holt, P.D.; Wylie, J.W.

    1977-10-01

    A new type of personal neutron dosimeter, in which neutron-induced fissions in a thin 237 Np foil are detected by a polycarbonate track-detector, is under development at Harwell for use in a nuclear-fuel reprocessing plant. As part of the development programme, an experimental dosimeter, etching facility and spark counter have been used to study the spark-counting method for counting fission-fragment tracks in polycarbonate. Emphasis has been placed on developing operating procedures for the counter consistent with good overall reproducibility. Existing methods for the optimizing and testing of spark counters is briefly reviewed and a practical operational testing procedure is devised. The optimized system is found to be relatively foolproof in operation and gives good results in unskilled use as well as under carefully-controlled laboratory conditions. (author)