Inclusive spectra of hadrons created by color tube fission; 1, Probability of tube fission
Gedalin, E V
1997-01-01
The probability of color tube fission that includes the tube surface small oscillation corrections is obtained with pre-exponential factor accuracy on the basis of previously constructed color tube model. Using these expressions the probability of the tube fission in $n$ point is obtained that is the basis for calculation of inclusive spectra of produced hadrons.
Microscopic Calculations of 240Pu Fission
Energy Technology Data Exchange (ETDEWEB)
Younes, W; Gogny, D
2007-09-11
Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.
Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.; Malvagi, F.
2014-06-01
Pile-oscillation experiments are performed in the MINERVE reactor at the CEA Cadarache to improve nuclear data accuracy. In order to precisely calculate small reactivity variations (experiments, a reference calculation need to be achieved. This calculation may be accomplished using the continuous-energy Monte Carlo code TRIPOLI-4® by using the eigenvalue difference method. This "direct" method has shown limitations in the evaluation of very small reactivity effects because it needs to reach a very small variance associated to the reactivity in both states. To answer this problem, it has been decided to implement the exact perturbation theory in TRIPOLI-4® and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4® is described. To illustrate the effciency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the "direct" estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the "direct" method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high precision. Other applications of
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process
Panov, I.; Lutostansky, Yu; Thielemann, F.-K.
2016-01-01
For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.
Fission barriers and probabilities of spontaneous fission for elements with Z$\\geq$100
Baran, A; Reinhard, P -G; Robledo, L M; Staszczak, A; Warda, M
2015-01-01
This is a short review of methods and results of calculations of fission barriers and fission half-lives of even-even superheavy nuclei. An approvable agreement of the following approaches is shown and discussed: The macroscopic-microscopic approach based on the stratagem of the shell correction to the liquid drop model and a vantage point of microscopic energy density functionals of Skyrme and Gogny type selfconsistently calculated within Hartree-Fock-Bogoliubov method. Mass parameters are calculated in the Hartree-Fock-Bogoliubov cranking approximation. A short part of the paper is devoted to the nuclear fission dynamics. We also discuss the predictive power of Skyrme functionals applied to key properties of the fission path of $^{266}$Hs. It applies the standard techniques of error estimates in the framework of a $\\chi^2$ analysis.
Fission Product Decay Heat Calculations for Neutron Fission of 232Th
Son, P. N.; Hai, N. X.
2016-06-01
Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.
Fission yield calculation using toy model based on Monte Carlo simulation
Energy Technology Data Exchange (ETDEWEB)
Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)
2015-09-30
Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135
47 CFR 1.1623 - Probability calculation.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623... Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be computed to no less than three significant digits. Probabilities will be truncated to the number of...
I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions
Energy Technology Data Exchange (ETDEWEB)
Jing, Kexing [Univ. of California, Berkeley, CA (United States)
1999-05-01
In Part I, fission excitation functions of osmium isotopes ^{185,186, 187, 189} Os produced in ^{3}He +^{182,183, 184, 186}W reactions, and of polonium isotopes ^{209,210, 211, 212}Po produced in ^{3}He/^{4}He + ^{206, 207, 208}Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10^{–21} sec and 25x 10^{–21} sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, ^{3}He + ^{nat}Ag in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.
Calculation of prompt fission neutron spectra for 235U(n,f)
Institute of Scientific and Technical Information of China (English)
CHEN Yong-Jing; JIA Min; TAO Xi; QIAN Jing; LIU Ting-Jin; SHU Neng-Chuan
2012-01-01
The prompt fission neutron spectra for the neutron-induced fission of 235U at En ＜ 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model,in which the nonconstant and constant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well.For the n(thermal)+235U reaction,the average nuclear temperature of the fission fragment,and the probability distribution of the nuclear temperature,are discussed and compared with the Los Alamos model.The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.
Energy Technology Data Exchange (ETDEWEB)
O' Rourke, Patrick Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-27
The purpose of this report is to provide the reader with an understanding of how a Monte Carlo neutron transport code was written, developed, and evolved to calculate the probability distribution functions (PDFs) and their moments for the neutron number at a final time as well as the cumulative fission number, along with introducing several basic Monte Carlo concepts.
Determination for β-delayed fission probability of 230Ac
Institute of Scientific and Technical Information of China (English)
袁双贵; 杨维凡; 徐岩冰; 肖永厚; 罗亦孝
2002-01-01
The 230Ra has been produced via 232Th-2p reaction induced by 60 MeV/u 18O ion irradia-tion of natural thorium. The radium was radiochemically separated from the mixture of thorium andreaction products. Thin Ra sources in which 230Ac was got through 230Ra β- → 230Ac were pre-pared for observing fission fragments from β-delayed fission of 230Ac. The sources were exposedto the mica fission track detectors and measured by the HPGe γ detector. The precursor 230Ac wasidentified by means of observed two fission events as well as γ spectra, and the β-delayed fissionprobability of 230Ac was obtained to be (1.19±0.85) × 10-8.
Fission life-time calculation using a complex absorbing potential
Scamps, Guillaume
2015-01-01
A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.
Fission life-time calculation using a complex absorbing potential
Directory of Open Access Journals (Sweden)
Scamps Guillaume
2016-01-01
Full Text Available A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.
STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252
VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z
1994-01-01
A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass as
STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252
VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z
1994-01-01
A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass
Validation of fluorescence transition probability calculations
Pia, M G; Sudhaka, Manju
2009-01-01
A systematic and quantitative validation of the K and L shell X-ray transition probability calculations according to different theoretical methods has been performed against experimental data. This study is relevant to the optimization of data libraries used by software systems, namely Monte Carlo codes, dealing with X-ray fluorescence. The results support the adoption of transition probabilities calculated according to the Hartree-Fock approach, which manifest better agreement with experimental measurements than calculations based on the Hartree-Slater method.
Calculating Cumulative Binomial-Distribution Probabilities
Scheuer, Ernest M.; Bowerman, Paul N.
1989-01-01
Cumulative-binomial computer program, CUMBIN, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), used independently of one another. Reliabilities and availabilities of k-out-of-n systems analyzed. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Used for calculations of reliability and availability. Program written in C.
Ducasse, Q.; Jurado, B.; Aïche, M.; Marini, P.; Mathieu, L.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Tornyi, T.; Wilson, J. N.; Barreau, G.; Boutoux, G.; Czajkowski, S.; Giacoppo, F.; Gunsing, F.; Hagen, T. W.; Lebois, M.; Lei, J.; Méot, V.; Morillon, B.; Moro, A. M.; Renstrøm, T.; Roig, O.; Rose, S. J.; Sérot, O.; Siem, S.; Tsekhanovich, I.; Tveten, G. M.; Wiedeking, M.
2016-08-01
We investigated the 238U(d ,p ) reaction as a surrogate for the n +238U reaction. For this purpose we measured for the first time the γ -decay and fission probabilities of *239U simultaneously and compared them to the corresponding neutron-induced data. We present the details of the procedure to infer the decay probabilities, as well as a thorough uncertainty analysis, including parameter correlations. Calculations based on the continuum-discretized coupled-channels method and the distorted-wave Born approximation (DWBA) were used to correct our data from detected protons originating from elastic and inelastic deuteron breakup. In the region where fission and γ emission compete, the corrected fission probability is in agreement with neutron-induced data, whereas the γ -decay probability is much higher than the neutron-induced data. We have performed calculations of the decay probabilities with the statistical model and of the average angular momentum populated in the 238U(d ,p ) reaction with the DWBA to interpret these results.
Uncertainties in fission-product decay-heat calculations
Energy Technology Data Exchange (ETDEWEB)
Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)
1997-03-01
The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)
Necessity of Exact Calculation for Transition Probability
Institute of Scientific and Technical Information of China (English)
LIU Fu-Sui; CHEN Wan-Fang
2003-01-01
This paper shows that exact calculation for transition probability can make some systems deviate fromFermi golden rule seriously. This paper also shows that the corresponding exact calculation of hopping rate inducedby phonons for deuteron in Pd-D system with the many-body electron screening, proposed by Ichimaru, can explainthe experimental fact observed in Pd-D system, and predicts that perfection and low-dimension of Pd lattice are veryimportant for the phonon-induced hopping rate enhancement in Pd-D system.
Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei
Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz
2016-12-01
Fusion - fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the "Fusion by Diffusion" (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Fusion-fission probabilities, cross sections and structure notes of super-heavy nuclei
Kowal, Michał; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz
2016-01-01
Fusion - fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using "Fusion by Diffusion" (FBD) model. Predictive power of this approach is shown for experimentally known Lv, Og isotopes and predictions given for Z=119,120. Ground state and saddle point properties as: masses, shell corrections, pairing energies and deformations necessary for cross section estimations are calculated systematically within the multidimensional microscopic - macroscopic method based on the deformed Woods-Saxon single particle potential. In the frame of FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Preformation probabilities for light ternary particles in the cold (neutronless) fission of 252Cf
Florescu, A.; Sandulescu, A.; Delion, D. S.; Hamilton, J. H.; Ramayya, A. V.; Greiner, W.
2000-05-01
The preformation amplitudes for α and 10Be clusters in the cold ternary fission of 252Cf are estimated within a microscopic model starting from single particle spherical Woods-Saxon wave functions and with a large space BCS-type configuration mixing. The resulting position of the maximum of cluster preformation probability is situated in the region between the two heavier fragments near the scission point, and approaches the fission axis as the distance between the fragments increases.
Fission products, activity calculation of spent-fuel
Energy Technology Data Exchange (ETDEWEB)
Souka, N.; El-Hakiem, M.N.
1981-01-01
This work is a scrutiny of the activity of burned up fuel elements of the ET-RR-1. A knowledge of this activity as well as its decay with time is quite helpful in shielding calculations related to construction purposes of hot facilities. The present treatment is based on a knowledge of: fuel composition, percentage burnup, and fission yields of produced isotopes. Cooling periods ranging from 1 hr to 10 years were considered.
The MCEF code for nuclear evaporation and fission calculations
Energy Technology Data Exchange (ETDEWEB)
Deppman, A.; Pina, S.R. de; Likhachev, V.P.; Mesa, J. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Tavares, O.A.P.; Duarte, S.B.; Oliveira, E.C. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Arruda-Neto, J.D.T. [Universidade Santo Amaro (UNISA), SP (Brazil); Rodriguez, O. [Instituto Superior de Ciencias y Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)
2001-11-01
We present an object oriented algorithm, written in the Java programming language, which performs a Monte Carlo calculation of the evaporation-fission process taking place inside an excited nucleus. We show that this nuclear physics problem is very suited for the object oriented programming by constructing two simple objects: one that handles all nuclear properties and another that takes care of the nuclear reaction. The MCEF code was used to calculate important results for nuclear reactions, and here we show examples of possible uses for this code. (author)
Calculation of fractional electron capture probabilities
Schoenfeld, E
1998-01-01
A 'Table of Radionuclides' is being prepared which will supersede the 'Table de Radionucleides' formerly issued by the LMRI/LPRI (France). In this effort it is desirable to have a uniform basis for calculating theoretical values of fractional electron capture probabilities. A table has been compiled which allows one to calculate conveniently and quickly the fractional probabilities P sub K , P sub L , P sub M , P sub N and P sub O , their ratios and the assigned uncertainties for allowed and non-unique first forbidden electron capture transitions of known transition energy for radionuclides with atomic numbers from Z=3 to 102. These results have been applied to a total of 28 transitions of 14 radionuclides ( sup 7 Be, sup 2 sup 2 Na, sup 5 sup 1 Cr, sup 5 sup 4 Mn, sup 5 sup 5 Fe, sup 6 sup 8 Ge , sup 6 sup 8 Ga, sup 7 sup 5 Se, sup 1 sup 0 sup 9 Cd, sup 1 sup 2 sup 5 I, sup 1 sup 3 sup 9 Ce, sup 1 sup 6 sup 9 Yb, sup 1 sup 9 sup 7 Hg, sup 2 sup 0 sup 2 Tl). The values are in reasonable agreement with measure...
Decay characteristics of fission products and summation calculation
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Tadashi [Faculty of Engineering, Musashi Institute of Technology, Tokyo (Japan)
1999-02-01
This paper reviews the decay characteristics of fission products on the viewpoint of summation calculation. The fission products (FPs) are accumulated in the operating power reactors. As they are neutron-rich at the time of scission, they undergo successive beta decays toward stable nuclides. To grasp the quantity of an arbitrary nuclide, fission yields, decay constants and blanching ratios of the nuclide in the same decay chain ( a mass chain of the fixed mass is sufficient) must be known. As a neutron capture increases the mass, and release of a delayed neutron decreases the mass, capture cross sections and delayed neutron emitting ratios are also required. If these values of all FP are known, the quantities such as time dependent decay heat and the delayed neutron fraction can be calculated by summation of the contribution of the nuclides. A computer code ORIGEN-2 is a typical example to compute these quantities. The more important than computer code is the data library for summation calculation which includes physical constants such as fission yields, decay constants, blanching ratio, beta and gamma energy emitted at a beta decay, delayed neutron emitting ratios, and neutron capture cross sections for more than 1000 FP nuclides. They are realized in JNDC FP Decay Data Library-Version 2 of Japan, JEF-2 by western European countries, and ENDF/B-VI of USA. The early versions (until early 80's) of these full-scale libraries showed worse agreement with experiment than the old libraries based on approximations and estimates. The application of the gross theory to beta-decay' to short-lived FPs could solve the problem. The above disagreement is explained by having dropped of high excitation levels of short lived daughter nuclides. This is called as Pandemonium Problem. The summation calculation for the gamma ray spectrum succeeded to predict the experimental value by correcting theoretical spectrum. However, there remains still an underestimate for cooling
Probability calculations under the IAC hypothesis
Wilson, Mark C; 10.1016/j.mathsocsci.2007.05.003
2012-01-01
We show how powerful algorithms recently developed for counting lattice points and computing volumes of convex polyhedra can be used to compute probabilities of a wide variety of events of interest in social choice theory. Several illustrative examples are given.
Ducasse, Q; Aïche, M; Marini, P; Mathieu, L; Görgen, A; Guttormsen, M; Larsen, A C; Tornyi, T; Wilson, J N; Barreau, G; Boutoux, G; Czajkowski, S; Giacoppo, F; Gunsing, F; Hagen, T W; Lebois, M; Lei, J; Méot, V; Morillon, B; Moro, A; Renstrøm, T; Roig, O; Rose, S J; Sérot, O; Siem, S; Tsekhanovich, I; Tveten, G M; Wiedeking, M
2015-01-01
We investigated the 238U(d,p) reaction as a surrogate for the n + 238U reaction. For this purpose we measured for the first time the gamma-decay and fission probabilities of 239U* simultaneously and compared them to the corresponding neutron-induced data. We present the details of the procedure to infer the decay probabilities, as well as a thorough uncertainty analysis, including parameter correlations. Calculations based on the continuum-discretized coupled-channels and distorted-wave Born approximations were used to correct our data from detected protons originating from elastic and inelastic deuteron breakup. The corrected fission probability is in agreement with neutron-induced data, whereas the gamma-decay probability is much higher than the neutron-induced data. The performed statistical-model calculations are not able to explain these results.
Directory of Open Access Journals (Sweden)
Kaplan Abdullah
2015-01-01
Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.
Kaji, D; Kudo, H; Fujita, M; Shinozuka, T; Fujioka, M
2002-01-01
The charge distributions of fission products in proton-induced fission of sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th were measured in a wide mass range. The most probable charges lay on the proton-rich side in the light fragment region and on the proton-deficient side in the heavy one compared with the unchanged charge distribution hypothesis. This result implies that the charge polarization occurs in the fission process. The charge polarization was examined with respect to the ground-state Q values. The estimations by the Q values fairly well reproduced the experimental most probable charges. These results suggest that the fission path to the most favorable charge division may go through the most energetically favorable path at scission point. (author)
Development of Calculation Code for Fission Product and Corrosion Product in PWR’s Primary Loop
Institute of Scientific and Technical Information of China (English)
XU; Zhi-long; WAN; Hai-xia; SHAO; Jing; WU; Xiao-chun; LI; Long; LIU; Xing-min; KE; Guo-tu
2015-01-01
With the basis of study on generation,release and migration of fission product,calculation model for each of the above processes was developed,and calculation method for source term of PWR fission products was established.Study on source term of corrosion product in primary loop was been done.Based on the study of corrosion,
Calculation of Prompt Fission Neutron Spectrum for 233U（n, f） Reaction by Semi-empirical Method
Institute of Scientific and Technical Information of China (English)
CHEN; Yong-jing; LIU; Ting-jin; SHU; Neng-chuan
2013-01-01
The prompt fission neutron spectra for neutron-induced fission of 233U for low energy neutron(below 6 MeV)are calculated using the nuclear evaporation theory with a semi-empirical method,in which the partition of the total excitation energy between the fission fragments for the nth+233U fission
Calculation of Fission Observables Through Event-by-Event Simulation
Energy Technology Data Exchange (ETDEWEB)
Randrup, J; Vogt, R
2009-06-04
The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to met this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables.
Calculation of Prompt Fission Neutron Spectra for ~(235)U (n,f)
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The prompt fission neutron spectra for neutron-induced fission of 235U at En<5 MeV are calculated using the nuclear evaporation theory with a semi-empirical model, in which the non-constant temperature and the constant temperature related to the Fermi gas model
Probability calculations for three-part mineral resource assessments
Ellefsen, Karl J.
2017-06-27
Three-part mineral resource assessment is a methodology for predicting, in a specified geographic region, both the number of undiscovered mineral deposits and the amount of mineral resources in those deposits. These predictions are based on probability calculations that are performed with computer software that is newly implemented. Compared to the previous implementation, the new implementation includes new features for the probability calculations themselves and for checks of those calculations. The development of the new implementation lead to a new understanding of the probability calculations, namely the assumptions inherent in the probability calculations. Several assumptions strongly affect the mineral resource predictions, so it is crucial that they are checked during an assessment. The evaluation of the new implementation leads to new findings about the probability calculations,namely findings regarding the precision of the computations,the computation time, and the sensitivity of the calculation results to the input.
Multi-modal calculations of prompt fission neutrons from 238U(n, f) at low induced energy
Institute of Scientific and Technical Information of China (English)
ZHENG Na; ZHONG Chun-Lai; FAN Tie-Shuan
2011-01-01
Properties of prompt fission neutrons from 238U(n,f) are calculated for incident neutron energies below 6 MeV using the multi-modal model,including the prompt fission neutron spectrum,the average prompt fission neutron multiplicity,and the prompt fission neutron multiplicity as a function of the fission fragment mass v(A) (usually named “sawtooth” data) The three most dominant fission modes are taken into account.The model parameters are determined on the basis of experimental fission fragment data.The predicted results are in good agreement with the experimental data.
Fission cross section calculations of actinides with EMPIRE code
Energy Technology Data Exchange (ETDEWEB)
Sin, M.; Oblozinsky, P.; Herman,M.; Capote,R.
2010-04-30
The cross sections of the neutron induced reactions on {sup 233,234,236}U, {sup 237}Np, {sup 238,242}Pu, {sup 241,243}Am, {sup 242,246}Cm carried out in the energy range 1 keV-20 MeV with EMPIRE code are presented, emphasizing the fission channel. Beside a consistent, accurate set of evaluations, the paper contains arguments supporting the choice of the reaction models and input parameters. A special attention is paid to the fission parameters and their uncertainties.
Calculation Model and Simulation of Warship Damage Probability
Institute of Scientific and Technical Information of China (English)
TENG Zhao-xin; ZHANG Xu; YANG Shi-xing; ZHU Xiao-ping
2008-01-01
The combat efficiency of mine obstacle is the focus of the present research. Based on the main effects that mine obstacle has on the target warship damage probability such as: features of mines with maneuverability, the success rate of mine-laying, the hit probability, mine reliability and action probability, a calculation model of target warship mine-encounter probability is put forward under the condition that the route selection of target warships accords with even distribution and the course of target warships accords with normal distribution. And a damage probability model of mines with maneuverability to target warships is set up, a simulation way proved the model to be a high practicality.
Fission product inventory calculation by a CASMO/ORIGEN coupling program
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)
A Monte Carlo Method for Calculating Initiation Probability
Energy Technology Data Exchange (ETDEWEB)
Greenman, G M; Procassini, R J; Clouse, C J
2007-03-05
A Monte Carlo method for calculating the probability of initiating a self-sustaining neutron chain reaction has been developed. In contrast to deterministic codes which solve a non-linear, adjoint form of the Boltzmann equation to calculate initiation probability, this new method solves the forward (standard) form of the equation using a modified source calculation technique. Results from this new method are compared with results obtained from several deterministic codes for a suite of historical test problems. The level of agreement between these code predictions is quite good, considering the use of different numerical techniques and nuclear data. A set of modifications to the historical test problems has also been developed which reduces the impact of neutron source ambiguities on the calculated probabilities.
Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra
Energy Technology Data Exchange (ETDEWEB)
Katakura, J. (Japan Atomic Energy Research Inst., Tokai-mura, Naka-gun, Ibaraki-ken (Japan)); England, T.R. (Los Alamos National Lab., NM (United States))
1991-11-01
Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.
Calculating the probability of detecting radio signals from alien civilizations
Horvat, Marko
2006-01-01
Although it might not be self-evident, it is in fact entirely possible to calculate the probability of detecting alien radio signals by understanding what types of extraterrestrial radio emissions can be expected and what properties these emissions can have. Using the Drake equation as the obvious starting point, and logically identifying and enumerating constraints of interstellar radio communications can yield the probability of detecting a genuine alien radio signal.
Investigation of the diffusion of atomic fission products in UC by density functional calculations
Energy Technology Data Exchange (ETDEWEB)
Bévillon, Émile, E-mail: emile.bevillon@yahoo.fr [IRSN, SEMIC, DPAM, LETR, Centre de Cadarache, 13115 Saint Paul Lez Durance (France); Ducher, Roland; Barrachin, Marc; Dubourg, Roland [IRSN, SEMIC, DPAM, LETR, Centre de Cadarache, 13115 Saint Paul Lez Durance (France)
2013-03-15
Activation energies of U and C atoms self-diffusion in UC, as well as activation energies of hetero-diffusion of fission products (FPs) are investigated by first-principles calculations. According to a previous study which showed a likely U site occupation was favoured for all the FPs, their diffusion is restricted to the uranium sublattice of UC in the present study. In this framework, long-range displacements are only possible through a concerted mechanism with a surrounding uranium vacancy. Using the apparent formation energies of the uranium vacancy defect calculated in our previous study and the classical approach used in UO{sub 2} by Andersson et al., the activation energies of the main fission products in the various stoichiometric domains have been calculated. The results are compared to those obtained with the five frequency model applied to two representative fission products, Xe and Zr. Interestingly, despite strong differences of formalism, both models provided similar activation energies.
Investigation of the diffusion of atomic fission products in UC by density functional calculations
Bévillon, Émile; Ducher, Roland; Barrachin, Marc; Dubourg, Roland
2013-03-01
Activation energies of U and C atoms self-diffusion in UC, as well as activation energies of hetero-diffusion of fission products (FPs) are investigated by first-principles calculations. According to a previous study which showed a likely U site occupation was favoured for all the FPs, their diffusion is restricted to the uranium sublattice of UC in the present study. In this framework, long-range displacements are only possible through a concerted mechanism with a surrounding uranium vacancy. Using the apparent formation energies of the uranium vacancy defect calculated in our previous study and the classical approach used in UO2 by Andersson et al., the activation energies of the main fission products in the various stoichiometric domains have been calculated. The results are compared to those obtained with the five frequency model applied to two representative fission products, Xe and Zr. Interestingly, despite strong differences of formalism, both models provided similar activation energies.
Institute of Scientific and Technical Information of China (English)
郑娜; 钟春来; 樊铁栓
2012-01-01
An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.
Bouland, Olivier; Jurado, Beatriz
2017-09-01
This paper deals with simultaneous neutron-induced average partial cross sections and surrogate-like probability simulations over several excitation and de-excitation channels of the compound nucleus. Present calculations, based on one-dimensional fission barrier extended ?-matrix theory using Monte Carlo samplings of both first and second well resonance parameters, avoid the surrogate-reaction method historically taken for surrogate data analyses that proved to be very poor in terms of extrapolated neutron-induced capture cross sections. Present theoretical approach is portrayed and subsequent results can be compared for the first time with experimental γ-decay probabilities; thanks to brand new simultaneous 238U(3He,4Heγ) and 238U(3He,4He f) surrogate measurements. Future integration of our strategy in standard neutron cross section data evaluation remains tied to the developments made in terms of direct reaction population probability calculations.
Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.
Energy Technology Data Exchange (ETDEWEB)
Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.
1999-02-17
Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.
Calculating the Probability of Returning a Loan with Binary Probability Models
Directory of Open Access Journals (Sweden)
Julian Vasilev
2014-12-01
Full Text Available The purpose of this article is to give a new approach in calculating the probability of returning a loan. A lot of factors affect the value of the probability. In this article by using statistical and econometric models some influencing factors are proved. The main approach is concerned with applying probit and logit models in loan management institutions. A new aspect of the credit risk analysis is given. Calculating the probability of returning a loan is a difficult task. We assume that specific data fields concerning the contract (month of signing, year of signing, given sum and data fields concerning the borrower of the loan (month of birth, year of birth (age, gender, region, where he/she lives may be independent variables in a binary logistics model with a dependent variable “the probability of returning a loan”. It is proved that the month of signing a contract, the year of signing a contract, the gender and the age of the loan owner do not affect the probability of returning a loan. It is proved that the probability of returning a loan depends on the sum of contract, the remoteness of the loan owner and the month of birth. The probability of returning a loan increases with the increase of the given sum, decreases with the proximity of the customer, increases for people born in the beginning of the year and decreases for people born at the end of the year.
Directory of Open Access Journals (Sweden)
Marini P.
2016-01-01
Full Text Available Fission and gamma decay probabilities of 237U and 239Np have been measured, for the first time simultaneously in dedicated experiments, via the surrogate reactions 238U(3He, 4He and 238U(3He,d, respectively. While a good agreement between our data and neutron-induced data is found for fission probabilities, gamma decay probabilities are several times higher than the corresponding neutron-induced data for each studied nucleus. We study the role of the different spin distributions populated in the surrogate and neutron-induced reactions. The compound nucleus spin distribution populated in the surrogate reaction is extracted from the measured gamma-decay probabilities, and used as input parameter in the statistical model to predict fission probabilities to be compared to our data. A strong disagreement between our data and the prediction is obtained. Preliminary results from an additional dedicated experiment confirm the observed discrepancies, indicating the need of a better understanding of the formation and decay processes of the compound nucleus.
Fostering Positive Attitude in Probability Learning Using Graphing Calculator
Tan, Choo-Kim; Harji, Madhubala Bava; Lau, Siong-Hoe
2011-01-01
Although a plethora of research evidence highlights positive and significant outcomes of the incorporation of the Graphing Calculator (GC) in mathematics education, its use in the teaching and learning process appears to be limited. The obvious need to revisit the teaching and learning of Probability has resulted in this study, i.e. to incorporate…
Fostering Positive Attitude in Probability Learning Using Graphing Calculator
Tan, Choo-Kim; Harji, Madhubala Bava; Lau, Siong-Hoe
2011-01-01
Although a plethora of research evidence highlights positive and significant outcomes of the incorporation of the Graphing Calculator (GC) in mathematics education, its use in the teaching and learning process appears to be limited. The obvious need to revisit the teaching and learning of Probability has resulted in this study, i.e. to incorporate…
TIME SCALES OF FUSION-FISSION REACTIONS CALCULATED FROM PRESCISSION NEUTRON MULTIPLICITIES
SIWEKWILCZYNSKA, K; WILCZYNSKI, J; SIEMSSEN, RH; WILSCHUT, HW
1995-01-01
The time scale of fusion-fission reactions was found to be in the range from tau(f) = 5 . 10(-20) to 5 . 10(-19) s. This result was obtained from the analysis of the prescission neutron multiplicities with a new method combining the time-dependent statistical cascade calculations with the nuclear
Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.
Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P
2016-04-01
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.
Plicht, J. van der; Harakeh, M.N.; van der Woude, Adriaan; David, P.; Debrus, J.; Janszen, H.; Schulze, J.
1981-01-01
The fission probabilities and angular distributions of the fission fragments for the (α, α'f) reaction on 232Th and 238U at a bombarding energy of 120 MeV have been measured from about 4 to 14 MeV excitation energy. Evidence for sub-barrier resonances has been found, the negative parity ones occurri
Semi-empirical Calculation for Yield of 240Pu Spontaneous Fission
Institute of Scientific and Technical Information of China (English)
SHU; Neng-chuan; LIU; Li-le; CHEN; Xiao-song; LIU; Ting-jin; SUN; Zheng-jun; CHEN; Yong-jing; QIAN; Jing
2012-01-01
<正>The spontaneous fission yield has important implication in the nuclear engineering. This work used semi-empirical model to calculate its chain yield, the result shows good agreement with the measured data. There are only 3 sets of measured data, and only too gave the chain yields and cumulative yields, covering 17 chains. It is not enough to satisfy the requirement of users. So it is needed to use theoretical model to calculate the chain yield without measured data.
Pomorski, Krzysztof; Ivanyuk, Fedir A
2016-01-01
The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.
Usang, M. D.; Ivanyuk, F. A.; Ishizuka, C.; Chiba, S.
2016-10-01
Nuclear fission is treated by using the Langevin dynamical description with macroscopic and microscopic transport coefficients (mass and friction tensors), and it is elucidated how the microscopic (shell and pairing) effects in the transport coefficients, especially their dependence on temperature, affects various fission observables. We found that the microscopic transport coefficients, calculated by linear response theory, change drastically as a function of temperature: in general, the friction increases with growing temperature while the mass tensor decreases. This temperature dependence brings a noticeable change in the mass distribution and kinetic energies of fission fragments from nuclei around 236U at an excitation energy of 20 MeV. The prescission kinetic energy decreases from 25 MeV at low temperature to about 2.5 MeV at high temperature. In contrast, the Coulomb kinetic energy increases as the temperature increases. Interpolating the microscopic transport coefficients among the various temperatures enabled our Langevin equation to use the microscopic transport coefficients at a deformation-dependent local temperature of the dynamical evolution. This allowed us to compare directly the fission observables of both macroscopic and microscopic calculations, and we found almost identical results under the conditions considered in this work.
Thermal Fission Rate Calculated Numerically by Particles Multi-passing over Saddle Point
Institute of Scientific and Technical Information of China (English)
LIU Ling; BAO Jing-Dong
2004-01-01
Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the process of the particle descent from the saddle to the scission. This leads to that the diffusion behind the saddle point has influence upon the stationary flow across the saddle point. A dynamical correction factor, as a ratio of the flows of multi- and firstoverpassing the saddle point, is evaluated analytically. The results show that the fission rate calculated by the particles multi-passing over the saddle point is lower than the one calculated by the particle firstly passing over the saddle point,and the former approaches the results at the scission point.
Calculating the probability of injected carbon dioxide plumes encountering faults
Energy Technology Data Exchange (ETDEWEB)
Jordan, P.D.
2011-04-01
One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.
Kim, Do Heon; Gil, Choong-Sup; Chang, Jonghwa; Lee, Yong-Deok
2005-05-01
The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI (Korea Atomic Energy Research Institute)-BNL (Brookhaven National Laboratory) international collaboration have been compared with ENDF/B-VI.7. Also, the influence of the new evaluations on the isotopic composition calculations of the fission products has been estimated through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69-group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including the new evaluations in the resonance region covering the thermal region, and the expected ENDF/B-VII including those in the upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows a maximum difference of 5.02% compared to ENDF/B-VI.7. However, the isotopic compositions of all the fission products calculated with the expected ENDF/B-VII show no differences when compared to ENDF/B-VI.7 for the thermal reactor benchmark cases.
Plicht, J. van der; Harakeh, M.N.; van der Woude, Adriaan; David, P.; Debrus, J.; Janszen, H.; Schulze, J.
1980-01-01
The fission decay channel of 232Th and 238U has been investigated, using the (α, α’f) reaction at 120 MeV bombarding energy. The angular distributions of the fission fragments and the fission probabilities up to around 15 MeV excitation have been measured. No evidence for the fission decay of the gi
Plicht, J. van der; Harakeh, M.N.; van der Woude, Adriaan; David, P.; Debrus, J.; Janszen, H.; Schulze, J.
1980-01-01
The fission decay channel of 232Th and 238U has been investigated, using the (α, α’f) reaction at 120 MeV bombarding energy. The angular distributions of the fission fragments and the fission probabilities up to around 15 MeV excitation have been measured. No evidence for the fission decay of the
A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...
Energy Technology Data Exchange (ETDEWEB)
Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.
2017-05-15
Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.
CALCULATION OF PER PARCEL PROBABILITY FOR DUD BOMBS IN GERMANY
Directory of Open Access Journals (Sweden)
S. M. Tavakkoli Sabour
2014-10-01
Full Text Available Unexploded aerial Bombs, also known as duds or unfused bombs, of the bombardments in the past wars remain explosive for decades after the war under the earth’s surface threatening the civil activities especially if dredging works are involved. Interpretation of the aerial photos taken shortly after bombardments has been proven to be useful for finding the duds. Unfortunately, the reliability of this method is limited by some factors. The chance of finding a dud on an aerial photo depends strongly on the photography system, the size of the bomb and the landcover. On the other hand, exploded bombs are considerably better detectable on aerial photos and confidently represent the extent and density of a bombardment. Considering an empirical quota of unfused bombs, the expected number of duds can be calculated by the number of exploded bombs. This can help to have a better calculation of cost-risk ratio and to classify the areas for clearance. This article is about a method for calculation of a per parcel probability of dud bombs according to the distribution and density of exploded bombs. No similar work has been reported in this field by other authors.
Exact numerical calculation of fixation probability and time on graphs.
Hindersin, Laura; Möller, Marius; Traulsen, Arne; Bauer, Benedikt
2016-12-01
The Moran process on graphs is a popular model to study the dynamics of evolution in a spatially structured population. Exact analytical solutions for the fixation probability and time of a new mutant have been found for only a few classes of graphs so far. Simulations are time-expensive and many realizations are necessary, as the variance of the fixation times is high. We present an algorithm that numerically computes these quantities for arbitrary small graphs by an approach based on the transition matrix. The advantage over simulations is that the calculation has to be executed only once. Building the transition matrix is automated by our algorithm. This enables a fast and interactive study of different graph structures and their effect on fixation probability and time. We provide a fast implementation in C with this note (Hindersin et al., 2016). Our code is very flexible, as it can handle two different update mechanisms (Birth-death or death-Birth), as well as arbitrary directed or undirected graphs. Copyright Â© 2016 Elsevier Ireland Ltd. All rights reserved.
Barber, Duncan Henry
During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A
(d,p)-transfer induced fission of heavy radioactive beams
Veselsky, Martin
2012-01-01
(d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.
Directory of Open Access Journals (Sweden)
J. Konki
2017-01-01
Full Text Available The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n240Es. Half-lives of 6(2s and 22−6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα=8.19(3MeV and 8.09(3MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6 and 0.04(2 were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.
New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications
Möller, P.; Sierk, A. J.; Bengtsson, R.; Ichikawa, T.; Iwamoto, A.
2008-05-01
The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regions of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space (ɛ2, V3, V4, V6,) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV. We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from 70Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by use of an ``immersion'' technique.
Energy Technology Data Exchange (ETDEWEB)
Gabriel, T.A.; Bishop, B.L.; Wiffen, F.W.
1979-08-01
In order to plan radiation damage experiments in fission reactors keyed toward fusion reactor applications, it is necessary to have available for these facilities displacement per atom (dpa) and gas production rates for many potential materials. This report supplies such data for the elemental constituents of alloys of interest to the United States fusion reactor alloy development program. The calculations are presented for positions of interest in the HFIR, ORR, and EBR-II reactors. DPA and gas production rates in alloys of interest can be synthesized from these results.
Calculation for fission decay from heavy ion reactions at intermediate energies
Energy Technology Data Exchange (ETDEWEB)
Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); Fraenkel, Z. (Weizmann Institute of Science, 76100 Rehovot (Israel))
1992-02-01
A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Andre, B.; Ducros, G.; Leveque, J.P. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique; Osborne, M.F.; Lorenz, R.A. [Oak Ridge National Lab., TN (United States); Maro, D. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations
1995-12-31
Experimental programs in the United States and France have followed similar paths in supplying much of the data needed to analyze severe accidents. Both the HI/VI program, conducted at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (NRC), and the HEVA/VERCORS program, supported by IPSN-Commissariat a l`Energie Atomique (CEA) and carried out at the Centre d`Etudes Nucleaires de Grenoble, have studied fission product release from light water reactor (LWR) fuel samples during test sequences representative of severe accidents. Recognizing that more accurate data, i.e., a better defined source term, could reduce the safety margins included in the rather conservative source terms originating from WASH-1400, the primary objective of these programs has been to improve the data base concerning fission product release and behavior at high temperatures. To facilitate the comparison, a model based on fission product diffusion mechanisms that was developed at ORNL and adapted with CEA experimental data is proposed. This CEA model is compared with the ORNL experimental data in a blind test. The two experimental programs used similar techniques in out-of-pile studies. Highly irradiated fuel samples were heated in radiofrequency induction furnaces to very high temperatures (up to 2700 K at ORNL and 2750 K at CEA) in oxidizing (H{sub 2}O), reducing (H{sub 2}) or mixed (H{sub 2}O+H{sub 2}) environments. The experimental parameters, which were chosen from calculated accident scenarios, did not duplicate specific accidents, but rather emphasized careful control of test conditions to facilitate extrapolation of the results to a wide variety of accident situations. This paper presents a broad and consistent database from ORNL and CEA release results obtained independently since the early 1980`S. A comparison of CORSOR and CORSOR Booth calculations, currently used in safety analysis, and the experimental results is presented and
Calculation of Probability Maps Directly from Ordinary Kriging Weights
Directory of Open Access Journals (Sweden)
Jorge Kazuo Yamamoto
2010-03-01
Full Text Available Probability maps are useful to analyze ores or contaminants in soils and they are helpful to make a decision duringexploration work. These probability maps are usually derived from the indicator kriging approach. Ordinary krigingweights can be used to derive probability maps as well. For testing these two approaches a sample data base was randomlydrawn from an exhaustive data set. From the exhaustive data set actual cumulative distribution functions were determined.Thus, estimated and actual conditional cumulative distribution functions were compared. The vast majority of correlationcoeffi cients between estimated and actual probability maps is greater than 0.75. Not only does the ordinary kriging approachwork, but it also gives slightly better results than median indicator kriging. Moreover, probability maps from ordinary krigingweights are much easier than the traditional approach based on either indicator kriging or median indicator kriging.
Delayed neutron spectra and their uncertainties in fission product summation calculations
Energy Technology Data Exchange (ETDEWEB)
Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)
1997-03-01
Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)
Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor
Butler, C.; Albright, D.
2007-01-01
Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.
Directory of Open Access Journals (Sweden)
Porta A.
2016-01-01
Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.
2016-03-01
Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
Density functional theory calculations of defect and fission gas properties in U-Si fuels
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-03
Accident tolerant fuels (ATF) are being developed in response to the Fukushima Daiichi accident in Japan. One of the options being pursued is U-Si fuels, such as the U_{3}Si_{2} and U_{3}Si_{5} compounds, which benefit from high thermal conductivity (metallic) compared to the UO_{2} fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for U-Si fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap. The present study investigates point defect and fission gas properties in U_{3}Si_{2}, which is one of the main fuel candidates, using density functional theory (DFT) calculations. Based on a few assumption regarding entropy contributions, defect and fission diffusivities are predicted. Even though uranium silicides have been shown to amorphize easily at low temperature, we assume that U_{3}Si_{2} remains crystalline under the conditions expected in Light Water Reactors (LWRs). The temperature and dose where amorphization occurs has not yet been well established.
Energy Technology Data Exchange (ETDEWEB)
Jo, Yu Gwon; Cho, Nam Zin [KAIST, Daejeon (Korea, Republic of)
2014-10-15
The OLG iteration scheme uses overlapping regions for each local problem solved by continuous-energy MC calculation to reduce errors in inaccurate boundary conditions (BCs) that are caused by discretization in space, energy, and angle. However, the overlapping region increases computational burdens and the discretized BCs for continuous-energy MC calculation result in an inaccurate global p-CMFD solution. On the other hand, there also have been several studies on the direct domain decomposed MC calculation where each processor simulates particles within its own domain and exchanges the particles crossing the domain boundary between processors with certain frequency. The efficiency of this method depends on the message checking frequency and the buffer size. Furthermore, it should overcome the load-imbalance problem for better parallel efficiency. Recently, fission and surface source (FSS) iteration method based on banking both fission and surface sources for the next iteration (i.e., cycle) was proposed to give exact BCs for non overlapping local problems in domain decomposition and tested in one-dimensional continuous-energy reactor problems. In this paper, the FSS iteration method is combined with a source splitting scheme to reduce the load imbalance problem and achieve global variance reduction. The performances are tested on a two dimensional continuous-energy reactor problem with domain-based parallelism and compared with the FSS iteration without source splitting. Numerical results show the improvements of the FSS iteration with source splitting. This paper describes the FSS iteration scheme in the domain decomposition method and proposes the FSS iteration combined with the source splitting based on the number of sampled sources, reducing the load-imbalance problem in domain-based parallelism and achieving global variance reduction.
Flipping Out: Calculating Probability with a Coin Game
Degner, Kate
2015-01-01
In the author's experience with this activity, students struggle with the idea of representativeness in probability. Therefore, this student misconception is part of the classroom discussion about the activities in this lesson. Representativeness is related to the (incorrect) idea that outcomes that seem more random are more likely to happen. This…
Flipping Out: Calculating Probability with a Coin Game
Degner, Kate
2015-01-01
In the author's experience with this activity, students struggle with the idea of representativeness in probability. Therefore, this student misconception is part of the classroom discussion about the activities in this lesson. Representativeness is related to the (incorrect) idea that outcomes that seem more random are more likely to happen. This…
Calculation of 239Pu fission observables in an event-by-event simulation
Energy Technology Data Exchange (ETDEWEB)
Vogt, R; Randrup, J; Pruet, J; Younes, W
2010-03-31
The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.
Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane
Directory of Open Access Journals (Sweden)
Afshin Taghva Manesh
2017-02-01
Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.
Energy Technology Data Exchange (ETDEWEB)
Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)
1997-03-01
The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)
Energy Technology Data Exchange (ETDEWEB)
Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)
1997-03-01
The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)
Calculation of paternity probabilities from multilocus DNA profiles.
Brenner, C H; Rittner, C; Schneider, P M
1994-02-01
We describe a procedure for evaluation of paternity evidence from multi-locus DNA probe patterns. A computer program abstracts a "+/-" notation description from the multilocus profile and then calculates a paternity index based on observed phenotypic fragment frequencies. The biostatistical evaluation considers only bands found in the child and missing from the mother--a simplified approach that is at once robust and conservative. Mutations are of course taken into account. Particular features lending objectivity to the interpretation include computer reading and matching decisions, and specific recognition and statistical compensation for ambiguities ("faint orphans").
Method to Calculate Accurate Top Event Probability in a Seismic PSA
Energy Technology Data Exchange (ETDEWEB)
Jung, Woo Sik [Sejong Univ., Seoul (Korea, Republic of)
2014-05-15
ACUBE(Advanced Cutset Upper Bound Estimator) calculates the top event probability and importance measures from cutsets by dividing cutsets into major and minor groups depending on the cutset probability, where the cutsets that have higher cutset probability are included in the major group and the others in minor cutsets, converting major cutsets into a Binary Decision Diagram (BDD). By applying the ACUBE algorithm to the seismic PSA cutsets, the accuracy of a top event probability and importance measures can be significantly improved. ACUBE works by dividing the cutsets into two groups (higher and lower cutset probability groups), calculating the top event probability and importance measures in each group, and combining the two results from the two groups. Here, ACUBE calculates the top event probability and importance measures of the higher cutset probability group exactly. On the other hand, ACUBE calculates these measures of the lower cutset probability group with an approximation such as MCUB. The ACUBE algorithm is useful for decreasing the conservatism that is caused by approximating the top event probability and importance measure calculations with given cutsets. By applying the ACUBE algorithm to the seismic PSA cutsets, the accuracy of a top event probability and importance measures can be significantly improved. This study shows that careful attention should be paid and an appropriate method be provided in order to avoid the significant overestimation of the top event probability calculation. Due to the strength of ACUBE that is explained in this study, the ACUBE became a vital tool for calculating more accurate CDF of the seismic PSA cutsets than the conventional probability calculation method.
Energy Technology Data Exchange (ETDEWEB)
Cooper, D.K.; Cooper, J.A.; Ferson, S.
1999-01-21
Calculating safety and reliability probabilities with functions of uncertain variables can yield incorrect or misleading results if some precautions are not taken. One important consideration is the application of constrained mathematics for calculating probabilities for functions that contain repeated variables. This paper includes a description of the problem and develops a methodology for obtaining an accurate solution.
Negative Pion Induced Fission with Heavy Target Nuclei
Institute of Scientific and Technical Information of China (English)
G. Sher; Mukhtar A. Rana; S. Manzoor; M. I. Shahzad
2011-01-01
We investigate fission induced by negative pions in copper and bismuth targets using CR-39 dielectric track detectors. The target-detector assemblies in Air-geometric configuration were exposed at the AGS facility of Brookhaven National Laboratory, USA. The exposed detectors were chemically etched under appropriate etching conditions and scanned to collect data in the form of fission fragments tracks produced as a result of interaction of pions with the target nuclei. Using the track counts, the experimental fission cross sections for copper and bismuth have been measured at energies of 500, 672, 1068 and 1665 MeV and compared with the calculation using the Cascade-Exciton Model code (CEM95). The values of fission probability based on experimental fission cross-sections have been compared with the theoretically calculated values of fission probabilities obtained using the CEM95 code. Good agreement is observed between the measured and computed results.
Quantum dynamics calculation of reaction probability for H+Cl2→HCl+Cl
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + Cl2 based on the GHNS potential energy surface with total angular momentum J = 0. The effects of the translational, vibrational and rotational excitation of Cl2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.
Quantum dynamics calculation of reaction probability for H+Cl2→HC1+Cl
Institute of Scientific and Technical Information of China (English)
王胜龙; 赵新生
2001-01-01
We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + CI2 based on the GHNS potential energy surface with total angular momentum J= 0. The effects of the translational, vibrational and rotational excitation of CI2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.
An alternative approach to calculate the posterior probability of GNSS integer ambiguity resolution
Yu, Xianwen; Wang, Jinling; Gao, Wang
2017-03-01
When precise positioning is carried out via GNSS carrier phases, it is important to make use of the property that every ambiguity should be an integer. With the known float solution, any integer vector, which has the same degree of freedom as the ambiguity vector, is the ambiguity vector in probability. For both integer aperture estimation and integer equivariant estimation, it is of great significance to know the posterior probabilities. However, to calculate the posterior probability, we have to face the thorny problem that the equation involves an infinite number of integer vectors. In this paper, using the float solution of ambiguity and its variance matrix, a new approach to rapidly and accurately calculate the posterior probability is proposed. The proposed approach consists of four steps. First, the ambiguity vector is transformed via decorrelation. Second, the range of the adopted integer of every component is directly obtained via formulas, and a finite number of integer vectors are obtained via combination. Third, using the integer vectors, the principal value of posterior probability and the correction factor are worked out. Finally, the posterior probability of every integer vector and its error upper bound can be obtained. In the paper, the detailed process to calculate the posterior probability and the derivations of the formulas are presented. The theory and numerical examples indicate that the proposed approach has the advantages of small amount of computations, high calculation accuracy and strong adaptability.
An alternative approach to calculate the posterior probability of GNSS integer ambiguity resolution
Yu, Xianwen; Wang, Jinling; Gao, Wang
2016-10-01
When precise positioning is carried out via GNSS carrier phases, it is important to make use of the property that every ambiguity should be an integer. With the known float solution, any integer vector, which has the same degree of freedom as the ambiguity vector, is the ambiguity vector in probability. For both integer aperture estimation and integer equivariant estimation, it is of great significance to know the posterior probabilities. However, to calculate the posterior probability, we have to face the thorny problem that the equation involves an infinite number of integer vectors. In this paper, using the float solution of ambiguity and its variance matrix, a new approach to rapidly and accurately calculate the posterior probability is proposed. The proposed approach consists of four steps. First, the ambiguity vector is transformed via decorrelation. Second, the range of the adopted integer of every component is directly obtained via formulas, and a finite number of integer vectors are obtained via combination. Third, using the integer vectors, the principal value of posterior probability and the correction factor are worked out. Finally, the posterior probability of every integer vector and its error upper bound can be obtained. In the paper, the detailed process to calculate the posterior probability and the derivations of the formulas are presented. The theory and numerical examples indicate that the proposed approach has the advantages of small amount of computations, high calculation accuracy and strong adaptability.
Sloma, Michael F; Mathews, David H
2016-12-01
RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. © 2016 Sloma and Mathews; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
【说词】1. He can probably tell us the truth.2. Will it rain this afternoong ？ Probably【解语】作副词，意为“大概、或许”，表示可能性很大，通常指根据目前情况作出积极推测或判断；
Energy Technology Data Exchange (ETDEWEB)
Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)
2002-01-01
SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.
Mass and energy dependence of pion-induced fission
Peterson, R. J.; Debarros, S.; Desouza, I. O.; Gaspar, M. B.; Khan, Hameed Ahmed; Manzoor, Shahid
1995-06-01
Data for fission induced by pi meson beams from 80 to 500 MeV are presented for nuclei from Fe through Pu as measured by solid state track detectors. The general trends for binary fission with π + are reproduced fairly well by a calculation in the ‘high excitation’ limit with standard level density and fission barrier parameters, but π - data are underpredicted. A universal dependence of the binary fission probabilities with the fissility ( Z±1)2/A is found to be valid for both pion beam charges for all beam energies below the delta resonance. Probabilities for observing three fragments with π + are not reproduced by a ternary fission application of the model found to work for binary fission.
Hyun-Kyung Chung; Per Jönsson; Alexander Kramida
2013-01-01
Atomic structure and transition probabilities are fundamental physical data required in many fields of science and technology. Atomic physics codes are freely available to other community users to generate atomic data for their interest, but the quality of these data is rarely verified. This special issue addresses estimation of uncertainties in atomic structure and transition probability calculations, and discusses methods and strategies to assess and ensure the quality of theoretical atomic...
Torpedo's Search Trajectory Design Based on Acquisition and Hit Probability Calculation
Institute of Scientific and Technical Information of China (English)
LI Wen-zhe; ZHANG Yu-wen; FAN Hui; WANG Yong-hu
2008-01-01
Taking aim at light torpedo search trajectory characteristic of warship, by analyzing common used torpedo search trajectory, a better torpedo search trajectory is designed, a mathematic model is built up, and the simulation calculation taking MK46 torpedo for example is carried out. The calculation results testify that this method can increase acquisition probability and hit probability by about 10%-30% at some situations and becomes feasible for the torpedo trajectory design. The research is of great reference value for the acoustic homing torpedo trajectory design and the torpedo combat efficiency research.
Duality-based calculations for transition probabilities in stochastic chemical reactions
Ohkubo, Jun
2017-02-01
An idea for evaluating transition probabilities in chemical reaction systems is proposed, which is efficient for repeated calculations with various rate constants. The idea is based on duality relations; instead of direct time evolutions of the original reaction system, the dual process is dealt with. Usually, if one changes rate constants of the original reaction system, the direct time evolutions should be performed again, using the new rate constants. On the other hands, only one solution of an extended dual process can be reused to calculate the transition probabilities for various rate constant cases. The idea is demonstrated in a parameter estimation problem for the Lotka-Volterra system.
Thermal fission rates with temperature dependent fission barriers
Zhu, Yi
2016-01-01
\\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...
Dynamic treatment of ternary fission
Rubchenya, V. A.; Yavshits, S. G.
1988-06-01
The new dynamic model of light charged particle (LCP) formation in ternary fission is presented. The model is based on the assumption that light particles are formed as a result of two random neck ruptures during the time interval about one single-particle period. The connection of the final stage of ternary fission and of the saddle point descent stage was obtained in the framework of the density moments method. The analysis of LCP formation has shown that LCP mass and charge distributions are strongly governed by statistical nucleon exchange in the LCP-light fragment double system. New semiclassical expressions for the calculations of LCP yields and relative ternary fission probability are given. The results of calculations are in satisfactory agreement with the experimental data.
Calculation of Quantum Probability in O(2,2) String Cosmology with a Dilaton Potential
Institute of Scientific and Technical Information of China (English)
YAN Jun
2006-01-01
The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dimensional space-time. Moreover, the quantum probability of transition between two duality universe is calculated through a Wheeler-De Witt approach.
Significance of stress transfer in time-dependent earthquake probability calculations
Parsons, T.
2005-01-01
A sudden change in stress is seen to modify earthquake rates, but should it also revise earthquake probability? Data used to derive input parameters permits an array of forecasts; so how large a static stress change is require to cause a statistically significant earthquake probability change? To answer that question, effects of parameter and philosophical choices are examined through all phases of sample calculations, Drawing at random from distributions of recurrence-aperiodicity pairs identifies many that recreate long paleoseismic and historic earthquake catalogs. Probability density funtions built from the recurrence-aperiodicity pairs give the range of possible earthquake forecasts under a point process renewal model. Consequences of choices made in stress transfer calculations, such as different slip models, fault rake, dip, and friction are, tracked. For interactions among large faults, calculated peak stress changes may be localized, with most of the receiving fault area changed less than the mean. Thus, to avoid overstating probability change on segments, stress change values should be drawn from a distribution reflecting the spatial pattern rather than using the segment mean. Disparity resulting from interaction probability methodology is also examined. For a fault with a well-understood earthquake history, a minimum stress change to stressing rate ratio of 10:1 to 20:1 is required to significantly skew probabilities with >80-85% confidence. That ratio must be closer to 50:1 to exceed 90-95% confidence levels. Thus revision to earthquake probability is achievable when a perturbing event is very close to the fault in question or the tectonic stressing rate is low.
Significance of stress transfer in time-dependent earthquake probability calculation
Parsons, T.
2004-12-01
A sudden change in stress is seen to modify earthquake rates, but should it also revise earthquake probability? Data used to derive input parameters permit an array of forecasts; so how large a static stress change is required to cause a statistically significant earthquake probability change? To answer that question, effects of parameter and philosophical choices are examined through all phases of sample calculations. Drawing at random from distributions of recurrence-aperiodicity pairs identifies many that recreate long paleoseismic and historic earthquake catalogs. Probability-density functions built from the recurrence-aperiodicity pairs give the range of possible earthquake forecasts under a point-process renewal model. Consequences of choices made in stress-transfer calculations, such as different slip models, fault rake, dip and friction are tracked. For interactions among large faults, calculated peak stress changes may be localized, with most of the receiving fault area changed less than the mean. Thus to avoid overstating probability change on segments, stress-change values should be drawn from a distribution reflecting the spatial pattern rather than using the segment mean. Disparity resulting from interaction probability methodology is also examined. For a fault with a well-understood earthquake history, a minimum stress-change to stressing-rate ratio of 10:1 to 20:1 is required to significantly skew probabilities with >80-85% confidence. That ratio must be closer to 50:1 to exceed 90-95% confidence levels. Thus revision to earthquake probability is achievable when a perturbing event is very close to the fault in question, or the tectonic stressing rate is low.
Indian Academy of Sciences (India)
M Balasubramaniam; K R Vijayaraghavan; C Karthikraj
2015-09-01
We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.
Energy Technology Data Exchange (ETDEWEB)
Hudritsch, W.W.; Smith, P.D.
1977-11-01
The one-dimensional computer program PADLOC is designed to analyze steady-state and time-dependent plateout of fission products in an arbitrary network of pipes. The problem solved is one of mass transport of impurities in a fluid, including the effects of sources in the fluid and in the plateout surfaces, convection along the flow paths, decay, adsorption on surfaces (plateout), and desorption from surfaces. These phenomena are governed by a system of coupled, nonlinear partial differential equations. The solution is achieved by (a) linearizing the equations about an approximate solution, employing a Newton Raphson iteration technique, (b) employing a finite difference solution method with an implicit time integration, and (c) employing a substructuring technique to logically organize the systems of equations for an arbitrary flow network.
Energy Technology Data Exchange (ETDEWEB)
Hudritsch, W.W.; Smith, P.D.
1977-11-01
The one-dimensional computer program PADLOC is designed to analyze steady-state and time-dependent plateout of fission products in an arbitrary network of pipes. The problem solved is one of mass transport of impurities in a fluid, including the effects of sources in the fluid and in the plateout surfaces, convection along the flow paths, decay, adsorption on surfaces (plateout), and desorption from surfaces. These phenomena are governed by a system of coupled, nonlinear partial differential equations. The solution is achieved by (a) linearizing the equations about an approximate solution, employing a Newton Raphson iteration technique, (b) employing a finite difference solution method with an implicit time integration, and (c) employing a substructuring technique to logically organize the systems of equations for an arbitrary flow network.
Duarte, S B; Guzmán, F; Di Marco, A; García, F; Rodríguez, O; Gonçalves, M
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the effective liquid drop model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer (VMAS) and Werner-Wheeler's inertia coefficient (WW). The calculated half lives of ground-state to ground-state transitions for proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. These comparisons show that the ELDM is a very efficient model to describe these different decay processes in a same, unified, theoretical framework. A table listing the predicted half-life values, tau sub c , is presented for all possible cases of spontaneous nuclear breakup such that -7.30 -17.0, where tau is the total half life of the parent nucleus.
PNO-CEPA and MCSCF-SCEP calculations of transition probabilities in OH, HF + , and HCl +
Werner, Hans-Joachim; Rosmus, Pavel; Schätzl, Wolfgang; Meyer, Wilfried
1984-01-01
Electronic transition moment functions for the A 2Σ+-X2Π transitions in OH, HF+, and HCl+ have been calculated using RHF, PNO-CI, PNO-CEPA, MCSCF, and MCSCF-SCEP wave functions. The vibrational band transition probabilities are obtained, and the resulting radiative lifetimes are compared with measured values. For OH and HCl+ the deviations are smaller than 10%, but the theoretical lifetimes for HF+ are larger by about 300% than the experimental values. For the electronic ground states of HF+ and HCl+ vibrational transition probabilities have been calculated from MCSCF-SCEP dipole moment functions. Both ions are predicted to be excellent absorbers and emitters in the infrared spectral region.
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rushdi, Ahmad A. [Univ. of Texas, Austin, TX (United States); Abdelkader, Ahmad [Univ. of Maryland, College Park, MD (United States)
2015-09-01
This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.
Calculation of Radar Probability of Detection in K-Distributed Sea Clutter and Noise
2011-04-01
Expanded Swerling Target Models, IEEE Trans. AES 39 (2003) 1059-1069. 18. G. Arfken , Mathematical Methods for Physicists, Second Edition, Academic...form solution for the probability of detection in K-distributed clutter, so numerical methods are required. The K distribution is a compound model...the integration, with the nodes and weights calculated using matrix methods , so that a general purpose numerical integration routine is not required
Tudora, Anabella; Hambsch, Franz-Josef; Tobosaru, Viorel
2017-09-01
Prompt neutron multiplicity distributions ν(A) are required for prompt emission correction of double energy (2E) measurements of fission fragments to determine pre-neutron fragment properties. The lack of experimental ν(A) data especially at incident neutron energies (En) where the multi-chance fission occurs impose the use of ν(A) predicted by models. The Point-by-Point model of prompt emission is able to provide the individual ν(A) of the compound nuclei of the main and secondary nucleus chains undergoing fission at a given En. The total ν(A) is obtained by averaging these individual ν(A) over the probabilities of fission chances (expressed as total and partial fission cross-section ratios). An indirect validation of the total ν(A) results is proposed. At high En, above 70 MeV, the PbP results of individual ν(A) of the first few nuclei of the main and secondary nucleus chains exhibit an almost linear increase. This shape is explained by the damping of shell effects entering the super-fluid expression of the level density parameters. They tend to approach the asymptotic values for most of the fragments. This fact leads to a smooth and almost linear increase of fragment excitation energy with the mass number that is reflected in a smooth and almost linear behaviour of ν(A).
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can
Energy Technology Data Exchange (ETDEWEB)
Xhonneux, Andre, E-mail: a.xhonneux@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology RWTH-Aachen, 52064 Aachen (Germany); Allelein, Hans-Josef [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology RWTH-Aachen, 52064 Aachen (Germany)
2014-05-01
The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR
An Evaporation-Based Model of Thermal Neutron Induced Ternary Fission of Plutonium
Lestone, J. P.
Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.
An evaporation-based model of thermal neutron induced ternary fission of plutonium
Lestone, J P
2007-01-01
Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.
Dang, Phuong-Thanh; Herman, Michael F
2009-02-01
A semiclassical surface hopping model is presented for the calculation of nonadiabatic transition probabilities for the case in which the avoided crossing point is in the classically forbidden regions. The exact potentials and coupling are replaced with simple functional forms that are fitted to the values, evaluated at the turning point in the classical motion, of the Born-Oppenheimer potentials, the nonadiabatic coupling, and their first few derivatives. For the one-dimensional model considered, reasonably accurate results for transition probabilities are obtained down to around 10(-10). The possible extension of this model to many dimensional problems is discussed. The fact that the model requires only information at the turning point, a point that the trajectories encounter would be a significant advantage in many dimensional problems over Landau-Zener type models, which require information at the avoided crossing seam, which is in the forbidden region where the trajectories do not go.
Directory of Open Access Journals (Sweden)
Minato Futoshi
2016-01-01
Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.
Energy Technology Data Exchange (ETDEWEB)
Wampler, William R.; Myers, Samuel M.; Modine, Normand A.
2017-09-01
The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.
Barengoltz, Jack
2016-07-01
Monte Carlo (MC) is a common method to estimate probability, effectively by a simulation. For planetary protection, it may be used to estimate the probability of impact P{}_{I} by a launch vehicle (upper stage) of a protected planet. The object of the analysis is to provide a value for P{}_{I} with a given level of confidence (LOC) that the true value does not exceed the maximum allowed value of P{}_{I}. In order to determine the number of MC histories required, one must also guess the maximum number of hits that will occur in the analysis. This extra parameter is needed because a LOC is desired. If more hits occur, the MC analysis would indicate that the true value may exceed the specification value with a higher probability than the LOC. (In the worst case, even the mean value of the estimated P{}_{I} might exceed the specification value.) After the analysis is conducted, the actual number of hits is, of course, the mean. The number of hits arises from a small probability per history and a large number of histories; these are the classic requirements for a Poisson distribution. For a known Poisson distribution (the mean is the only parameter), the probability for some interval in the number of hits is calculable. Before the analysis, this is not possible. Fortunately, there are methods that can bound the unknown mean for a Poisson distribution. F. Garwoodfootnote{ F. Garwood (1936), ``Fiduciary limits for the Poisson distribution.'' Biometrika 28, 437-442.} published an appropriate method that uses the Chi-squared function, actually its inversefootnote{ The integral chi-squared function would yield probability α as a function of the mean µ and an actual value n.} (despite the notation used): This formula for the upper and lower limits of the mean μ with the two-tailed probability 1-α depends on the LOC α and an estimated value of the number of "successes" n. In a MC analysis for planetary protection, only the upper limit is of interest, i.e., the single
Theoretical Calculations of Transition Probabilities and Oscillator Strengths for Sc(Ⅲ) and Y(Ⅲ)
Institute of Scientific and Technical Information of China (English)
Tian-yi Zhang; Neng-wu Zheng
2009-01-01
The Weakest Bound Electron Potential Model theory is used to calculate transition probability-values and oscillator strength-values for individual lines of Sc(Ⅲ) and Y(Ⅲ). In this method, by solving the SchrSdinger equation of the weakest bound electron, the expressions of energy eigenvalue and the radial function can be obtained. And a coupled equation is used to determine the parameters which are needed in the calculations. The ob-tained results of Sc(Ⅲ) from this work agree very well with the accepted values taken from the National Institute of Standards and Technoligy (NIST) data base, most deviations are within the accepted level. For Y(Ⅲ) there are no accepted values reported by the NIST data base. So we compared our results of Y(Ⅲ) with other theoretical results, good agreement is also obtained.
Calculating inspector probability of detection using performance demonstration program pass rates
Cumblidge, Stephen; D'Agostino, Amy
2016-02-01
The United States Nuclear Regulatory Commission (NRC) staff has been working since the 1970's to ensure that nondestructive testing performed on nuclear power plants in the United States will provide reasonable assurance of structural integrity of the nuclear power plant components. One tool used by the NRC has been the development and implementation of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section XI Appendix VIII[1] (Appendix VIII) blind testing requirements for ultrasonic procedures, equipment, and personnel. Some concerns have been raised, over the years, by the relatively low pass rates for the Appendix VIII qualification testing. The NRC staff has applied statistical tools and simulations to determine the expected probability of detection (POD) for ultrasonic examinations under ideal conditions based on the pass rates for the Appendix VIII qualification tests for the ultrasonic testing personnel. This work was primarily performed to answer three questions. First, given a test design and pass rate, what is the expected overall POD for inspectors? Second, can we calculate the probability of detection for flaws of different sizes using this information? Finally, if a previously qualified inspector fails a requalification test, does this call their earlier inspections into question? The calculations have shown that one can expect good performance from inspectors who have passed appendix VIII testing in a laboratory-like environment, and the requalification pass rates show that the inspectors have maintained their skills between tests. While these calculations showed that the PODs for the ultrasonic inspections are very good under laboratory conditions, the field inspections are conducted in a very different environment. The NRC staff has initiated a project to systematically analyze the human factors differences between qualification testing and field examinations. This work will be used to evaluate and prioritize
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B.; Tavares, O.A.P.; Guzman, F.; Dimarco, A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Instituto Superior de Ciencias e Tecnologia Nucleares, La Habana (Cuba); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)
2002-01-01
Half-life values of spontaneous nuclear decay processes are presented in the framework of the Effective Liquid Drop Model (ELDM) using the combination of varying mass asymmetry shape description for the mass transfer with Werner-Wheeler's inertia coefficient V{sub MAS}/WW. The calculated half-lives of ground-state to ground-state transitions for the proton emission, alpha decay, cluster radioactivity, and cold fission processes are compared with experimental data. Results have shown that the ELDM is a very efficient model to describe these different decay processes in a same, unified theoretical framework. A Table listing the predicted half-life values, {tau}{sub c} is presented for all possible cases of spontaneous nuclear break-up such that -7.30 <{approx_equal} log{sub 10} {tau}{sub c} [S] <{approx_equal} 27.50 and log {sub 10}({tau}/{tau}{sub c}) > -17.0, where {tau} is the total half-life of the parent nucleus. (author)
Directory of Open Access Journals (Sweden)
Thakur Meenu
2015-01-01
Full Text Available The reaction mechanism of 19F + 232Th and 28Si + 232Th systems populating the near-super-heavy compound nuclei 251Es and 260Rf respectively are investigated using neutron multiplicity as a probe. The prescission neutron multiplicities of these compound nuclei are calculated at different excitation energies using a statistical model code. These calculations are performed using the Bohr-Wheeler transition state fission width as well as the dissipative dynamical fission width based on the Kramers’ prescription. For 19F + 232Th system, the measured yield of pre-scission is compared with the statistical model calculations for the decay of a compound nucleus in the excitation energy range of 54-90 MeV. The comparison between the measured and the calculated values indicates that the Bohr-Wheeler fission width underestimates the pre-scission neutron yield and a large amount of dissipation strength is required to reproduce the experimental pre-scission neutron multiplicities. The excitation energy dependence of the fitted values of the dissipation coefficient is also discussed. In addition, exploratory statistical model calculations of pre-scission neutron multiplicity for the 28Si + 232Th system are presented in the above range of excitation energy.
SPARC-90: A code for calculating fission product capture in suppression pools
Energy Technology Data Exchange (ETDEWEB)
Owczarski, P.C.; Burk, K.W. (Pacific Northwest Lab., Richland, WA (United States))
1991-10-01
This report describes the technical bases and use of two updated versions of a computer code initially developed to serve as a tool for calculating aerosol particle retention in boiling water reactor (BWR) pressure suppression pools during severe accidents, SPARC-87 and SPARC-90. The most recent version is SPARC-90. The initial or prototype version (Owczarski, Postma, and Schreck 1985) was improved to include the following: rigorous treatment of local particle deposition velocities on the surface of oblate spherical bubbles, new correlations for hydrodynamic behavior of bubble swarms, models for aerosol particle growth, both mechanistic and empirical models for vent exit region scrubbing, specific models for hydrodynamics of bubble breakup at various vent types, and models for capture of vapor iodine species. A complete user's guide is provided for SPARC-90 (along with SPARC-87). A code description, code operating instructions, partial code listing, examples of the use of SPARC-90, and summaries of experimental data comparison studies also support the use of SPARC-90. 29 refs., 4 figs., 11 tabs.
Price, G J; Moore, C J
2007-04-07
In this paper we describe a technique that may be used to model the geometric uncertainties that accrue during the radiotherapy process. Using data from in-treatment cone beam CT scans, we simultaneously analyse non-uniform observer delineation variability and organ motion together with patient set-up errors via the creation of a point distribution model (PDM). We introduce a novel method of generating a coverage probability matrix, that may be used to determine treatment margins and calculate uncertainties in dose, from this statistical shape model. The technique does not assume rigid body motion and can extrapolate shape variability in a statistically meaningful manner. In order to construct the PDM, we generate corresponding surface points over a set of delineations. Correspondences are established at a set of points in parameter space on spherically parameterized and canonical aligned outlines. The method is demonstrated using rectal delineations from serially acquired in-treatment cone beam CT image volumes of a prostate patient (44 image volumes total), each delineated by a minimum of two observers (maximum six). Two PDMs are constructed, one with set-up errors included and one without. We test the normality assumptions of the PDMs and find the distributions to be Gaussian in nature. The rectal PDM variability is in general agreement with data in the literature. The two resultant coverage probability matrices show differences as expected.
Directory of Open Access Journals (Sweden)
Dariush Naderi
2017-05-01
Full Text Available Using three cluster model, the ternary fission of (_"98" ^"252" Cf is studied. We applied collinear and equatorial configurations to study the ternary fission of (_"98" ^"252" Cf when three fragments are Sn, Ni and Ca. The potential energy of collinear and equatorial configurations is calculated. We calculated the potential energy for odd and even values of A3. Also, we compared the potential energy for (_"50" ^(A_"1" Sn+(_"28" ^(A_"2" Ni+(_"20" ^(A_"3" Ca and (_"50" ^(A_"1" -"1" Sn+(_"28" ^(A_"2" +"1" Ni+(_"20" ^(A_"3" Ca to investigate the influence of neutron numbers of three fragments. Obtained results show that for (_"50" ^(A_"1" Sn+(_"28" ^(A_"2" Ni+(_"20" ^(A_"3" Ca reaction with even A3 in collinear and equatorial configurations, the potential energy and penetration probability have ,respectively, minimum and maximum values in A3=48 whereas for odd values of A3 the minimum value for the potential energy and the maximum value of penetration probability take place in A3=49. For (_"50" ^(A_"1" -"1" Sn+(_"28" ^(A_"2" +"1" Ni+(_"20" ^(A_"3" Ca reactions in collinear and equatorial cases, the minimum value of potential energy and maximum value of penetration probability take place in A3=49 and A3=50, respectively, for even and odd values of A3. Also, among all the possible reactions the lowest value of potential energy and highest value of penetration probability happen for (_"50" ^132Sn+(_"28" ^72Ni+(_"20" ^48Ca configuration.
Energy Technology Data Exchange (ETDEWEB)
Medvedev, Emile S., E-mail: esmedved@orc.ru [The Institute of Problems of Chemical Physics, Russian Academy of Sciences, Prospect Akademika Semenova 1, 142432 Chernogolovka (Russian Federation); Meshkov, Vladimir V.; Stolyarov, Andrey V. [Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1/3, 119991 Moscow (Russian Federation); Gordon, Iouli E. [Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, Massachusetts 02138 (United States)
2015-10-21
In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional “abnormal” intensities are found at n = 14 and 23. Criteria for the appearance of such “anomalies” are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.
Energy Technology Data Exchange (ETDEWEB)
Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-07-01
Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)
Modelling the widths of fission observables in GEF
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2013-03-01
Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.
New results to BDD truncation method for efficient top event probability calculation
Energy Technology Data Exchange (ETDEWEB)
Mo, Yuchang; Zhong, Farong; Zhao, Xiangfu [Zhejiang Normal University, Jinhua (China); Yang, Quansheng [Computer Science, Zhejiang Normal University, Nanjing (China); Cui, Gang [School of Computer Science and Technology, Harbin institute of technology, Harbin (China)
2012-10-15
A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since its memory consumption is very high. Recently, in order to solve a large reliability problem within limited computational resources, Jung presented an efficient method to maintain a small BDD size by a BDD truncation during a BDD calculation. In this paper, it is first identified that Jung's BDD truncation algorithm can be improved for a more practical use. Then, a more efficient truncation algorithm is proposed in this paper, which can generate truncated BDD with smaller size and approximate TEP with smaller truncation error. Empirical results showed this new algorithm uses slightly less running time and slightly more storage usage than Jung's algorithm. It was also found, that designing a truncation algorithm with ideal features for every possible fault tree is very difficult, if not impossible. The so-called ideal features of this paper would be that with the decrease of truncation limits, the size of truncated BDD converges to the size of exact BDD, but should never be larger than exact BDD.
Monte Carlo simulation based toy model for fission process
Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma
2016-09-01
Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.
Thermal fission rates with temperature dependent fission barriers
Zhu, Yi; Pei, J. C.
2016-08-01
Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.
Karpushkin, T. Yu.
2012-12-01
A technique to calculate the burnup of materials of cells and fuel assemblies using the matrices of first-flight neutron collision probabilities rebuilt at a given burnup step is presented. A method to rebuild and correct first collision probability matrices using average chords prior to the first neutron collision, which are calculated with the help of geometric modules of constructed stochastic neutron trajectories, is described. Results of calculation of the infinite multiplication factor for elementary cells with a modified material composition compared to the reference one as well as calculation of material burnup in the cells and fuel assemblies of a VVER-1000 are presented.
Institute of Scientific and Technical Information of China (English)
MA Dong-Ping; LIU Yan-Yun; CHEN Ju-Rong
2001-01-01
On the basis of the unified calculation of the thermal shifts of R1 line, R2 line and ground-state-splitting transition probabilities of direct and Raman processes have theoretically been calculated. The thermal broadenings of R,The theoretically predicted transition probabilities are in good agreement with the experimental ones.PACS numbers: 71.70.Ch, 78.20.Nv, 63.20.Mt, 63.20.Kr
Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M
The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.
Spontaneous fission properties of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Hessberger, F.P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz-Institut Mainz, Mainz (Germany)
2017-04-15
Spontaneous fission properties of transuranium isotopes are reviewed. Specific emphasis was laid on brief historical overviews of theoretical descriptions and experimental determination of basic properties as spontaneous fission half-lives, fission barriers, or total kinetic energy release in fission. Experimental spontaneous fission half-lives are compared with the results of recent theoretical predictions. Hindrance factors for spontaneous fission of odd-mass nuclei are discussed in context with the configuration (spin, parity) of the fissioning states and the change in energy of single particle levels at deformation. Kinetic energy release and mass distributions are discussed in the context of different fission modes, as symmetric and asymmetric or fission from elongated or compact shapes of the nascent fission fragments. An overview of recent fission barrier calculations of superheavy elements on the basis of macroscopic-microscopic models or self-consistent calculations is given, and the results are compared for selected examples. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jo, Yu Gwon; Oh, Yoo Min; Park, Hyang Kyu; Park, Kang Soon; Cho, Nam Zin [KAIST, Daejeon (Korea, Republic of)
2016-05-15
In this paper, two issues in the FSS iteration method, i.e., the waiting time for surface source data and the variance biases in local tallies are investigated for the domain decomposed, 3-D continuous-energy whole-core calculation. The fission sources are provided as usual, while the surface sources are provided by banking MC particles crossing local domain boundaries. The surface sources serve as boundary conditions for nonoverlapping local problems, so that each local problem can be solved independently. In this paper, two issues in the FSS iteration are investigated. One is quantifying the waiting time of processors to receive surface source data. By using nonblocking communication, 'time penalty' to wait for the arrival of the surface source data is reduced. The other important issue is underestimation of the sample variance of the tally because of additional inter-iteration correlations in surface sources. From the numerical results on a 3-D whole-core test problem, it is observed that the time penalty is negligible in the FSS iteration method and that the real variances of both pin powers and assembly powers are estimated by the HB method. For those purposes, three cases; Case 1 (1 local domain), Case 2 (4 local domains), Case 3 (16 local domains) are tested. For both Cases 2 and 3, the time penalties for waiting are negligible compared to the source-tracking times. However, for finer divisions of local domains, the loss of parallel efficiency caused by the different number of sources for local domains in symmetric locations becomes larger due to the stochastic errors in source distributions. For all test cases, the HB method very well estimates the real variances of local tallies. However, it is also noted that the real variances of local tallies estimated by the HB method show slightly smaller than the real variances obtained from 30 independent batch runs and the deviations become larger for finer divisions of local domains. The batch size used
Isoscaling of the Fission Fragments with Langevin Equation
Institute of Scientific and Technical Information of China (English)
WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing
2005-01-01
@@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.
Remarks on the fission barriers of super-heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)
2016-04-15
Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)
Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.
2015-04-01
The study of the ternary fission of nuclei has received new interest recently. It is of general interest for nuclear dynamics, although the process is very rare. In the present work, we discuss the possibilities of true ternary fission (fragment masses A >30 ) in 252Cf for different mass splits. These mass splits are strongly favored in a collinear geometry. Based on the three cluster model (TCM), it is shown that the true ternary fission into fragments with almost equal masses is one of the possible fission modes in 252Cf . For general decays it is shown that the formation of the lightest fragment at the center has the highest probability. Further the formation of tin isotopes and/or other closed shell fragments are favored. For the decay products the presence of closed shell nuclei among the three fragments enhances the decay probabilities.
Dynamics of the tri-nuclear system at spontaneous fission of $^{252}$Cf
Tashkhodjaev, R B; Alpomeshev, E Kh
2016-01-01
To describe of dynamics of ternary fission of $^{252}$Cf an equation of motion of the tri-nuclear system is calculated. The fission of the $^{70}$Ni+$^{50}$Ca+$^{132}$Sn channel was chosen as one of the more probable channels of true ternary fission of $^{252}$Cf. The collinearity of ternary fission has been checked by analyzing results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy of this position is the smallest) and the component of the middle fragment's initial velocity which is perpendicular to this line, is zero then ternary fission is collinear, otherwise the non collinear ternary fission takes place.
Energy Technology Data Exchange (ETDEWEB)
Blink, J.A.
1985-03-01
In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs.
Leo, R. de; Harakeh, M.N.; Micheletti, S.; Plicht, J. van der; van der Woude, Adriaan; David, P.; Janszen, H.
1982-01-01
A measurement of the α-spectrum in the region of the isoscalar giant resonances from 238U at Eα = 120 MeV in coincidence with out-of-plane fission fragments shows the validity of the hypothesis of axial symmetry with respect to the recoil axis. Similar to what was observed in previous in-plane
Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.
Energy Technology Data Exchange (ETDEWEB)
Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-26
A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.
Monte Carlo Based Toy Model for Fission Process
Kurniadi, R; Viridi, S
2014-01-01
Fission yield has been calculated notoriously by two calculations approach, macroscopic approach and microscopic approach. This work will proposes another calculation approach which the nucleus is treated as a toy model. The toy model of fission yield is a preliminary method that use random number as a backbone of the calculation. Because of nucleus as a toy model hence the fission process does not represent real fission process in nature completely. Fission event is modeled by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. The toy model is formed by Gaussian distribution of random number that randomizes distance like between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean ({\\mu}CN, {\\mu}L, {\\mu}R), and standard d...
Energy Technology Data Exchange (ETDEWEB)
Tom Elicson; Bentley Harwood; Jim Bouchard; Heather Lucek
2011-03-01
Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: • Development of time-dependent fire heat release rate profiles (required as input to CFAST), • Calculation of fire severity factors based on CFAST detailed fire modeling, and • Calculation of fire non-suppression probabilities.
ELIPGRID-PC: A PC program for calculating hot spot probabilities
Energy Technology Data Exchange (ETDEWEB)
Davidson, J.R.
1994-10-01
ELIPGRID-PC, a new personal computer program has been developed to provide easy access to Singer`s 1972 ELIPGRID algorithm for hot-spot detection probabilities. Three features of the program are the ability to determine: (1) the grid size required for specified conditions, (2) the smallest hot spot that can be sampled with a given probability, and (3) the approximate grid size resulting from specified conditions and sampling cost. ELIPGRID-PC also provides probability of hit versus cost data for graphing with spread-sheets or graphics software. The program has been successfully tested using Singer`s published ELIPGRID results. An apparent error in the original ELIPGRID code has been uncovered and an appropriate modification incorporated into the new program.
Nathenson, Manuel; Donnelly-Nolan, Julie M.; Champion, Duane E.; Lowenstern, Jacob B.
2007-01-01
Medicine Lake volcano has had 4 eruptive episodes in its postglacial history (since 13,000 years ago) comprising 16 eruptions. Time intervals between events within the episodes are relatively short, whereas time intervals between the episodes are much longer. An updated radiocarbon chronology for these eruptions is presented that uses paleomagnetic data to constrain the choice of calibrated ages. This chronology is used with exponential, Weibull, and mixed-exponential probability distributions to model the data for time intervals between eruptions. The mixed exponential distribution is the best match to the data and provides estimates for the conditional probability of a future eruption given the time since the last eruption. The probability of an eruption at Medicine Lake volcano in the next year from today is 0.00028.
Filippov, V. P.; Petrov, V. I.; Lauer, D. E.; Shikanova, Yu. A.
2006-01-01
In order to find the absolute concentrations and the probability of resonant absorption, the theoretical dependence of effective thickness from Mossbauer absorption line area has been obtained. Calculations of absolute concentrations of secondary phase precipitate in zirconium alloys with natural ir
Lee, Moon Ho; Dudin, Alexander; Shaban, Alexy; Pokhrel, Subash Shree; Ma, Wen Ping
Formulae required for accurate approximate calculation of transition probabilities of embedded Markov chain for single-server queues of the GI/M/1, GI/M/1/K, M/G/1, M/G/1/K type with heavy-tail lognormal distribution of inter-arrival or service time are given.
Denschlag, J. O.
This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.
Parsons, T.
2009-12-01
After a large earthquake, our concern immediately moves to the likelihood that another large shock could be triggered, threatening an already weakened building stock. A key question is whether it is best to map out Coulomb stress change calculations shortly after mainshocks to potentially highlight the most likely aftershock locations, or whether it is more prudent to wait until the best information is available. It has been shown repeatedly that spatial aftershock patterns can be matched with Coulomb stress change calculations a year or more after mainshocks. However, with the onset of rapid source slip model determinations, the method has produced encouraging results like the M=8.7 earthquake that was forecast using stress change calculations from 2004 great Sumatra earthquake by McCloskey et al. [2005]. Here, I look back at two additional prospective calculations published shortly after the 2005 M=7.6 Kashmir and 2008 M=8.0 Wenchuan earthquakes. With the benefit of 1.5-4 years of additional seismicity, it is possible to assess the performance of rapid Coulomb stress change calculations. In the second part of the talk, within the context of the ongoing Working Group on California Earthquake Probabilities (WGCEP) assessments, uncertainties associated with time-dependent probability calculations are convolved with uncertainties inherent to Coulomb stress change calculations to assess the strength of signal necessary for a physics-based calculation to merit consideration into a formal earthquake forecast. Conclusions are as follows: (1) subsequent aftershock occurrence shows that prospective static stress change calculations both for Kashmir and Wenchuan examples failed to adequately predict the spatial post-mainshock earthquake distributions. (2) For a San Andreas fault example with relatively well-understood recurrence, a static stress change on the order of 30 to 40 times the annual stressing rate would be required to cause a significant (90%) perturbation to the
Yu, Shawn; Case, Kenneth E.; Chernick, Julian
1986-03-01
To help in the implementation of Lund's probability of cloud-free line-of-sight (PCFLOS) calculations (method A and method B) for limited altitudes, a methodology for cumulative cloud cover calculation (required for both methods) is introduced and a methodology for cumulative cloud form determination (required for method B) is developed. To study the PCFLOS differences between the two methods, Lund's master matrices are investigated and the derived PCFLOS results of Hamburg, Germany, are compared and analyzed for variations in selected environmental parameters. Based upon numerical studies performed in this research effort, it is strongly recommended that Lund's method B should always be adopted for general purpose worldwide PCFLOS calculations.
Per Jönsson; Hyun-Kyung Chung
2013-01-01
There exist several codes in the atomic physics community to generate atomic structure and transition probabilities freely and readily distributed to researchers outside atomic physics community, in plasma, astrophysical or nuclear physics communities. Users take these atomic physics codes to generate the necessary atomic data or modify the codes for their own applications. However, there has been very little effort to validate and verify the data sets generated by non-expert users. [...
Gray, Joshua C; Amlung, Michael T; Palmer, Abraham A; MacKillop, James
2016-09-01
The 27-item Monetary Choice Questionnaire (MCQ; Kirby, Petry, & Bickel, 1999) and 30-item Probability Discounting Questionnaire (PDQ; Madden, Petry, & Johnson, 2009) are widely used, validated measures of preferences for immediate versus delayed rewards and guaranteed versus risky rewards, respectively. The MCQ measures delayed discounting by asking individuals to choose between rewards available immediately and larger rewards available after a delay. The PDQ measures probability discounting by asking individuals to choose between guaranteed rewards and a chance at winning larger rewards. Numerous studies have implicated these measures in addiction and other health behaviors. Unlike typical self-report measures, the MCQ and PDQ generate inferred hyperbolic temporal and probability discounting functions by comparing choice preferences to arrays of functions to which the individual items are preconfigured. This article provides R and SPSS syntax for processing the MCQ and PDQ. Specifically, for the MCQ, the syntax generates k values, consistency of the inferred k, and immediate choice ratios; for the PDQ, the syntax generates h indices, consistency of the inferred h, and risky choice ratios. The syntax is intended to increase the accessibility of these measures, expedite the data processing, and reduce risk for error.
Calculation of identity-by-descent probabilities of short chromosome segments.
Tuchscherer, A; Teuscher, F; Reinsch, N
2012-12-01
For some purposes, identity-by-descent (IBD) probabilities for entire chromosome segments are required. Making use of pedigree information, length of the segment and the assumption of no crossing-over, a generalization of a previously published graph theory oriented algorithm accounting for nonzero IBD of common ancestors is given, which can be viewed as method of path coefficients for entire chromosome segments. Furthermore, rules for setting up a gametic version of a segmental IBD matrix are presented. Results from the generalized graph theory oriented method, the gametic segmental IBD matrix and the segmental IBD matrix for individuals are identical.
Energy Technology Data Exchange (ETDEWEB)
Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Wagner, John C [ORNL; Bowen, Douglas G [ORNL
2015-09-01
The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k_{eff}) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k_{eff} calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.
Ho, Chih-Hsiang; Smith, Eugene I.; Feuerbach, Daniel L.; Naumann, Terry R.
1991-12-01
Investigations are currently underway to evaluate the impact of potentially adverse conditions (e.g. volcanism, faulting, seismicity) on the waste-isolation capability of the proposed nuclear waste repository at Yucca Mountain, Nevada, USA. This paper is the first in a series that will examine the probability of disruption of the Yucca Mountain site by volcanic eruption. In it, we discuss three estimating techniques for determining the recurrence rate of volcanic eruption (λ), an important parameter in the Poisson probability model. The first method is based on the number of events occurring over a certain observation period, the second is based on repose times, and the final is based on magma volume. All three require knowledge of the total number of eruptions in the Yucca Mountain area during the observation period ( E). Following this discussion we then propose an estimate of E which takes into account the possibility of polygenetic and polycyclic volcanism at all the volcanic centers near the Yucca Mountain site.
Carlisle, J B; Dexter, F; Pandit, J J; Shafer, S L; Yentis, S M
2015-07-01
In a previous paper, one of the authors (JBC) used a chi-squared method to analyse the means (SD) of baseline variables, such as height or weight, from randomised controlled trials by Fujii et al., concluding that the probabilities that the reported distributions arose by chance were infinitesimally small. Subsequent testing of that chi-squared method, using simulation, suggested that the method was incorrect. This paper corrects the chi-squared method and tests its performance and the performance of Monte Carlo simulations and ANOVA to analyse the probability of random sampling. The corrected chi-squared method and ANOVA method became inaccurate when applied to means that were reported imprecisely. Monte Carlo simulations confirmed that baseline data from 158 randomised controlled trials by Fujii et al. were different to those from 329 trials published by other authors and that the distribution of Fujii et al.'s data were different to the expected distribution, both p non-random (i.e. unreliable) data in randomised controlled trials submitted to journals. © 2015 The Association of Anaesthetists of Great Britain and Ireland.
Collinear cluster tripartition as sequential binary fission in the 235U(nth, f ) reaction
Tashkhodjaev, R. B.; Nasirov, A. K.; Scheid, W.
2011-11-01
The mechanism leading to the formation of the observed products of the collinear cluster tripartition (CCT) is carried out within the framework of the model based on the dinuclear system concept. The yield of fission products is calculated using the statistical model based on the driving potentials for the fissionable system. The minima of potential energy of the decaying system correspond to the charge numbers of the products which are produced with large probabilities in the sequential fission (partial case of CCT) of the compound nucleus. The realization of this mechanism supposes the asymmetric fission channel as the first stage of sequential mechanism. It is shown that only the use of the driving potential calculated by the binding energies with the shell correction allows us to explain the yield of the true ternary fission products. The theoretical model is applied to research CCT in the reaction 235U( n th, f). Calculations showed that the heavy products of two fission channels of 236U*, 82Ge* + 154Nd* and 86Se* + 150Ce*, can undergo sequential fission forming the CCT products 70Ni, 74, 76Zn, 80Ge and 84Se with relatively large probabilities which can be observed in coincidence with corresponding partner nucleus. The obtained results can explain some of the observed CCT products Ni and Ge in coincidence with the Ge and Se isotopes in the experiments of the FOBOS group in Joint Institute for Nuclear Research.
General Description of Fission Observables: GEF Model Code
Energy Technology Data Exchange (ETDEWEB)
Schmidt, K.-H. [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Amouroux, C. [CEA, DSM-Saclay (France); Schmitt, C., E-mail: schmitt@ganil.fr [GANIL, Bd. Henri Becquerel, B.P. 55027, F-14076 Caen Cedex 05 (France)
2016-01-15
consistent with the collective enhancement of the level density. The exchange of excitation energy and nucleons between the nascent fragments on the way from saddle to scission is estimated according to statistical mechanics. As a result, excitation energy and unpaired nucleons are predominantly transferred to the heavy fragment in the superfluid regime. This description reproduces some rather peculiar observed features of the prompt-neutron multiplicities and of the even-odd effect in fission-fragment Z distributions. For completeness, some conventional descriptions are used for calculating pre-equilibrium emission, fission probabilities and statistical emission of neutrons and gamma radiation from the excited fragments. Preference is given to simple models that can also be applied to exotic nuclei compared to more sophisticated models that need precise empirical input of nuclear properties, e.g. spectroscopic information. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that complies with the needs for applications in nuclear technology without specific adjustments to measured data of individual systems. The GEF executable runs out of the box with no need for entering any empirical data. This unique feature is of valuable importance, because the number of systems and energies of potential significance for fundamental and applied science will never be possible to be measured. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated.
Tashkhodjaev, R B; Scheid, W
2011-01-01
The mechanism leading to the formation of the observed products of the collinear cluster tripartition is carried out within the framework of the model based on the dinuclear system concept. The yield of fission products is calculated using the statistical model based on the driving potentials for the fissionable system. The minima of potential energy of the decaying system correspond to the charge numbers of the products which are produced with large probabilities in the sequential fission (partial case of the collinear cluster tripartition) of the compound nucleus. The realization of this mechanism supposes the asymmetric fission channel as the first stage of sequential mechanism. It is shown that only the use of the driving potential calculated by the binding energies with the shell correction allows us to explain the yield of the true ternary fission products. The theoretical model is applied to research collinear cluster tripartition in the reaction $^{235}$U(n$_{\\rm th}$,f). Calculations showed that in t...
Fission decay properties of ultra neutron-rich uranium isotopes
Indian Academy of Sciences (India)
L Satpathy; S K Patra; R K Choudhury
2008-01-01
The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.
Mass distribution of fission fragments within the Born-Oppenheimer approximation
Energy Technology Data Exchange (ETDEWEB)
Pomorski, K.; Nerlo-Pomorska, B. [M.C.S. University, Department of Theoretical Physics, Lublin (Poland); Ivanyuk, F.A. [Institute for Nuclear Research, Kiev (Ukraine)
2017-03-15
The fission fragments mass-yield of {sup 236} U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. (orig.)
Klasen, M
2009-01-01
We perform next-to-leading order calculations of the single-diffractive and non-diffractive cross sections for dijet production in proton-antiproton collisions at the Tevatron. By comparing their ratio to the data published by the CDF collaboration for two different center-of-mass energies, we deduce the rapidity-gap survival probability as a function of the momentum fraction of the parton in the antiproton. Assuming Regge factorization, this probability can be interpreted as a suppression factor for the diffractive structure function measured in deep-inelastic scattering at HERA. In contrast to the observations for photoproduction, the suppression factor in proton-antiproton collisions depends on the momentum fraction of the parton in the Pomeron even at next-to-leading order.
Klasen, Michael; Kramer, Gustav
2009-10-01
We perform next-to-leading order calculations of the single-diffractive and nondiffractive cross sections for dijet production in proton-antiproton collisions at the Tevatron. By comparing their ratio to the data published by the CDF collaboration for two different center-of-mass energies, we deduce the rapidity-gap survival probability as a function of the momentum fraction of the parton in the antiproton. Assuming Regge factorization, this probability can be interpreted as a suppression factor for the diffractive structure function measured in deep-inelastic scattering at HERA. In contrast to the observations for photoproduction, the suppression factor in proton-antiproton collisions depends on the momentum fraction of the parton in the Pomeron even at next-to-leading order.
Energy Technology Data Exchange (ETDEWEB)
Klasen, M. [Univ. Joseph Fourier, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Kramer, G. [Univ. Hamburg, II. Inst. fuer Theoretische Physik (Germany)
2009-08-15
We perform next-to-leading order calculations of the single-diffractive and non-diffractive cross sections for dijet production in proton-antiproton collisions at the Tevatron. By comparing their ratio to the data published by the CDF collaboration for two different center-of-mass energies, we deduce the rapidity-gap survival probability as a function of the momentum fraction of the parton in the antiproton. Assuming Regge factorization, this probability can be interpreted as a suppression factor for the diffractive structure function measured in deep-inelastic scattering at HERA. In contrast to the observations for photoproduction, the suppression factor in protonantiproton collisions depends on the momentum fraction of the parton in the Pomeron even at next-to-leading order. (orig.)
Brown, D
2003-01-01
The analysis follows an earlier paper - Brown (2003) - which analysed a moving disturbance using a directed cyclic graph defined as Interrelated Fluctuating Entities (IFEs) of /STATE/, /SPACE/, /alphaTIME/, /betaTIME/. This paper provides a statistical analysis of the alternative positions in space and state of an IFE for a defined total time magnitude. The probability for a freely moving entity interacting in a particular spatial position is calculated and a formulation is derived for the minimum locus of uncertainty in position and momentum. The model has proven amenable to computer modelling (the assistance of University College London Computer Science department is gratefully acknowledged). A computer model is available on request.
Study of Pre-equilibrium Fission Based on Diffusion Model
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In terms of numerical method of Smoluchowski equation the behavior of fission process in diffusion model has been described and analyzed, including the reliance upon time, as well as the deformation parameters at several nuclear temperatures in this paper. The fission rates and the residual probabilities inside the saddle point are calculated for fissile nucleus n+238 U reaction and un-fissile nucleus p+208 Pb reaction. The results indicate that there really exists a transient fission process, which means that the pre-equilibrium fission should be taken into account for the fissile nucleus at the high temperature. Oppositely, the pre-equilibrium fission could be neglected for the un-fissile nucleus. In the certain case the overshooting phenomenon of the fission rates will occur, which is mainly determined by the diffusive current at the saddle point. The higher the temperature is, the more obvious the overshooting phenomenon is. However, the emissions of the light particles accompanying the diffusion process may weaken or vanish the overshooting phenomenon.
Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission
Goddard, P M; Rios, A
2015-01-01
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...
Huang, Qiang; Herrmann, Andreas
2012-03-01
Protein folding, stability, and function are usually influenced by pH. And free energy plays a fundamental role in analysis of such pH-dependent properties. Electrostatics-based theoretical framework using dielectric solvent continuum model and solving Poisson-Boltzmann equation numerically has been shown to be very successful in understanding the pH-dependent properties. However, in this approach the exact computation of pH-dependent free energy becomes impractical for proteins possessing more than several tens of ionizable sites (e.g. > 30), because exact evaluation of the partition function requires a summation over a vast number of possible protonation microstates. Here we present a method which computes the free energy using the average energy and the protonation probabilities of ionizable sites obtained by the well-established Monte Carlo sampling procedure. The key feature is to calculate the entropy by using the protonation probabilities. We used this method to examine a well-studied protein (lysozyme) and produced results which agree very well with the exact calculations. Applications to the optimum pH of maximal stability of proteins and protein-DNA interactions have also resulted in good agreement with experimental data. These examples recommend our method for application to the elucidation of the pH-dependent properties of proteins.
Energy Technology Data Exchange (ETDEWEB)
Lee, C.E.; Apperson, C.E. Jr.; Foley, J.E.
1976-10-01
The report describes an analytic containment building model that is used for calculating the leakage into the environment of each isotope of an arbitrary radioactive decay chain. The model accounts for the source, the buildup, the decay, the cleanup, and the leakage of isotopes that are gas-borne inside the containment building.
Fission dynamics of the compound nucleus 213Fr formed in heavy-ion-induced reactions
Indian Academy of Sciences (India)
Hadi Eslamizadeh
2013-04-01
A stochastic approach based on one-dimensional Langevin equations was used to calculate the average pre-fission multiplicities of neutrons, light charged particles and the fission probabilities for the compound nucleus 213Fr and the results are compared with the experimental data. In these calculations, a modified wall and window dissipation with a reduction coefficient, $k_{s}$ , has been used in the Langevin equations. It was shown that the results of the calculations are in good agreement with the experimental data by using values of $k_{s}$ in the range $0.3 ≤ k_{s} ≤ 0.5.$
Binary and Ternary Fission Within the Statistical Model
Adamian, Gurgen G.; Andreev, Alexander V.; Antonenko, Nikolai V.; Scheid, Werner
The binary and ternary nuclear fission are treated within the statistical model. At the scission point we calculate the potentials as functions of the deformations of the fragments in the dinuclear model. The potentials give the mass and charge distributions of the fission fragments. The ternary fission is assumed to occur during the binary fission.
Directory of Open Access Journals (Sweden)
Julian VASILEV
2014-01-01
Full Text Available The purpose of this paper is to describe the process of designing, creating, implementing and deploying a real web service. A basic theory approach is used to analyze the implementation of web services. An existing profit model is used. Its business logic is integrated within a web ser-vice. Another desktop application is created to demonstrate the use of the recently created web service. This study shows a methodology for fast development and deployment of web services. The methodology has wide practical implications – in credit institutions and banks when giving a loan. This study is the first of its kind to show the design, implementation and deployment of a web service for calculating the probability of returning a loan. The methodology may be used for the encapsulation of other business logic into web services.
Research on Nuclear Reaction Network Equation for Fission Product Nuclides
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra
Fission fragment angular distributions in pre-actinide nuclei
Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu
2016-10-01
Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between
Mandrekas, John
2004-08-01
GTNEUT is a two-dimensional code for the calculation of the transport of neutral particles in fusion plasmas. It is based on the Transmission and Escape Probabilities (TEP) method and can be considered a computationally efficient alternative to traditional Monte Carlo methods. The code has been benchmarked extensively against Monte Carlo and has been used to model the distribution of neutrals in fusion experiments. Program summaryTitle of program: GTNEUT Catalogue identifier: ADTX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTX Computer for which the program is designed and others on which it has been tested: The program was developed on a SUN Ultra 10 workstation and has been tested on other Unix workstations and PCs. Operating systems or monitors under which the program has been tested: Solaris 8, 9, HP-UX 11i, Linux Red Hat v8.0, Windows NT/2000/XP. Programming language used: Fortran 77 Memory required to execute with typical data: 6 219 388 bytes No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.: 300 709 No. of lines in distributed program, including test data, etc.: 17 365 Distribution format: compressed tar gzip file Keywords: Neutral transport in plasmas, Escape probability methods Nature of physical problem: This code calculates the transport of neutral particles in thermonuclear plasmas in two-dimensional geometric configurations. Method of solution: The code is based on the Transmission and Escape Probability (TEP) methodology [1], which is part of the family of integral transport methods for neutral particles and neutrons. The resulting linear system of equations is solved by standard direct linear system solvers (sparse and non-sparse versions are included). Restrictions on the complexity of the problem: The current version of the code can
Eslamizadeh, H.
2017-02-01
Evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity for the excited compound nuclei {}168{{Y}}{{b}}, {}172{{Y}}{{b}}, {}178{{W}} and {}227{{P}}{{a}} produced in fusion reactions have been calculated in the framework of the modified statistical model and multidimensional dynamical model. In the dynamical calculations, the dynamics of fission of excited nuclei has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis, K, were considered in the four-dimensional dynamical model. A non-constant dissipation coefficient of K, {γ }k, was applied in the four-dimensional dynamical calculations. A comparison of the results of the three- and four-dimensional dynamical models with the experimental data showed that the results of the four-dimensional dynamical model for the evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity are in better agreement with the experimental data. It was also shown that the modified statistical model can reproduce the above-mentioned experimental data by choosing appropriate values of the temperature coefficient of the effective potential, λ , and the scaling factor of the fission-barrier height, {r}s.
Chang, G. S.; Lillo, M. A.
2009-08-01
-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.
Systematic study of survival probability of excited superheavy nuclei
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The stability of excited superheavy nuclei (SHN) with 100 Z 134 against neutron emission and fission is investigated by using a statistical model. In particular, a systematic study of the survival probability against fission in the 1n-channel of these SHN is made. The present calculations consistently take the neutron separation energies and shell correction energies from the calculated results of the finite range droplet model which predicts an island of stability of SHN around Z = 115 and N = 179. It turns out that this island of stability persists for excited SHN in the sense that the calculated survival probabilities in the 1n-channel of excited SHN at the optimal excitation energy are maximized around Z = 115 and N = 179. This indicates that the survival probability in the 1n-channel is mainly determined by the nuclear shell effects.
Fission modelling with FIFRELIN
Energy Technology Data Exchange (ETDEWEB)
Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)
2015-12-15
The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for
Fission modelling with FIFRELIN
Litaize, Olivier; Serot, Olivier; Berge, Léonie
2015-12-01
The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the
Sub-library of Updated Fission Barrier Parameters(CENPL-FBP2)
Institute of Scientific and Technical Information of China (English)
2001-01-01
The fission barrier parameters are important to determine the fission character of a nucleus. The fission barrier parameters and fission level densities are key ingredients in calculations of not only fission cross section but also various cross sections, and spectra for the fissile nuclides, even heavy nuclides at higher incident energies. It is necessaries that the accuracy of fission barrier parameters requires even higher, and nuclides with fission barrier parameters can cover even wider nuclear range.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2003-07-01
The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.
Bloch, F.; Staub, H.
1943-08-18
Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951
Intrinsic energy partition in fission
Directory of Open Access Journals (Sweden)
Mirea M.
2013-03-01
Full Text Available The intrinsic energy partition between two complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus.
Ternary fission of a heavy nuclear system within a three-center shell model
Karpov, A. V.
2016-12-01
Background: Since more than 40 years of theoretical and experimental studies of true ternary fission, one is still quite far from its understanding. The true ternary fission channel, being strongly suppressed by the macroscopic properties of the potential energy, may, however, be present with a significant probability due to shell effects. Purpose: Development of a model for the multidimensional potential energy suitable for analysis of the nucleus-nucleus collisions with the possibility of ternary exit channel. Study of the potential possibility of fission of actinides into three heavy fragments. Method: The asymmetric three-center shell model of deformed nucleus is developed in this paper. The model can be applied for analysis of ternary as well as binary fission processes. Results: The potential energy surfaces for few ternary combinations in the fission channel are calculated for the 252Cf nucleus. Their properties are discussed. Conclusions: The potential energy structures are compared with the experimental observations. It was found that the potential energy has pronounced valleys favorable for ternary fission with formation of doubly magic tin as one of the fragments and two other lighter fragments. The positions of the found fission valleys are in a good agreement with the experimental data.
Ellefsen, Karl J.
2017-06-27
MapMark4 is a software package that implements the probability calculations in three-part mineral resource assessments. Functions within the software package are written in the R statistical programming language. These functions, their documentation, and a copy of this user’s guide are bundled together in R’s unit of shareable code, which is called a “package.” This user’s guide includes step-by-step instructions showing how the functions are used to carry out the probability calculations. The calculations are demonstrated using test data, which are included in the package.
Energy Technology Data Exchange (ETDEWEB)
Vilkas, M J; Ishikawa, Y; Trabert, E
2007-03-27
Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
R A Gherghescu; D N Poenaru
2015-09-01
The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.
Cluster radioactivity and very asymmetric fission through quasi-molecular shapes
Energy Technology Data Exchange (ETDEWEB)
Royer, G. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Gupta, R.K. [Panjab Univ., Chandigarh (India). Dept. of Physics; Denisov, V.Yu. [Akademyiya Nauk Ukrayini, Kiev (Ukraine)
1997-12-31
The decay of radioactive nuclei which emit heavy clusters like C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the deformation energy has been calculated within a generalized liquid drop model taking into account the proximity effects between the cluster and the daughter nucleus. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data for the heaviest clusters. The Ne, Mg and Si emission looks like a very-asymmetric spontaneous fission. The {sup 14}C radioactivity is not correctly described within the fission hypothesis. The {sup 14}C and apparently also the {sup 20}O are probably pre-born in the parent nucleus, the emission being similar to the {alpha} decay process. (author). 27 refs.
Exotic decay transition from cluster mode to fission mode
Santhosh, K P
2002-01-01
Exotic decay of some heavy nuclei with Z >= 100 formed in heavy ion 'cold fusion' reaction were studied taking interacting barrier consisting of Coulomb and proximity potential. Calculated half-life time shows that some modes of decay are well within the present upper limit for measurements (T sub 1 sub / sub 2 < 10 sup 3 sup 0 s). Cluster formation probabilities are calculated for different clusters within fission model. It is found that transition from cluster mode to fission mode take place at mass of the cluster, A sub 2 = 20 in exotic decay which is comparable with the value A sub 2 = 16 of Shanmugam et al based on cubic plus Yukawa plus exponential model (CYEM). (author)
Fission fragment mass and angular distributions: Probes to study non-equilibrium fission
Indian Academy of Sciences (India)
R G Thomas
2015-08-01
Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.
Energy Technology Data Exchange (ETDEWEB)
Tierney, M.S.
1991-11-01
The Waste Isolation Pilot Plant (WIPP), in southeastern New Mexico, is a research and development facility to demonstrate safe disposal of defense-generated transuranic waste. The US Department of Energy will designate WIPP as a disposal facility if it meets the US Environmental Protection Agency's standard for disposal of such waste; the standard includes a requirement that estimates of cumulative releases of radioactivity to the accessible environment be incorporated in an overall probability distribution. The WIPP Project has chosen an approach to calculation of an overall probability distribution that employs the concept of scenarios for release and transport of radioactivity to the accessible environment. This report reviews the use of Monte Carlo methods in the calculation of an overall probability distribution and presents a logical and mathematical foundation for use of the scenario concept in such calculations. The report also draws preliminary conclusions regarding the shape of the probability distribution for the WIPP system; preliminary conclusions are based on the possible occurrence of three events and the presence of one feature: namely, the events attempted boreholes over rooms and drifts,'' mining alters ground-water regime,'' water-withdrawal wells provide alternate pathways,'' and the feature brine pocket below room or drift.'' Calculation of the WIPP systems's overall probability distributions for only five of sixteen possible scenario classes that can be obtained by combining the four postulated events or features.
DEFF Research Database (Denmark)
Christiansen, Steen Ledet
; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...
Eslamizadeh, H.
2016-10-01
Abstract. A stochastic approach based on four-dimensional Langevin equations was applied to calculate the anisotropy of fission fragment angular distributions, average prescission neutron multiplicity, and the fission probability in a wide range of fissile parameters for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf produced in fusion reactions. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations, nuclear dissipation was generated through the chaos-weighted wall and window friction formula. Furthermore, in the dynamical calculations the dissipation coefficient of K ,γk was considered as a free parameter, and its magnitude inferred by fitting measured data on the anisotropy of fission fragment angular distributions for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf. Comparison of the calculated results for the anisotropy of fission fragment angular distributions with the experimental data showed that the results of the calculations are in good agreement with the experimental data by using values of the dissipation coefficient of K equal to (0.185-0.205), (0.175-0.192), (0.077-0.090), and (0.075-0.085) (MeVzs ) -1 /2 for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf, respectively. It was also shown that the influence of the dissipation coefficient of K on the results of the calculations of the prescission neutron multiplicity and fission probability is small.
Effect of nuclear viscosity on fission process
Energy Technology Data Exchange (ETDEWEB)
Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa
1989-02-01
According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.
Odd-even Effect of Survival Probability for Superheavy Compound Nuclei
Institute of Scientific and Technical Information of China (English)
LiWenfei; XuHushan; MaYue; ZhangHongfei; ZuoWei; LiJunqing; WangNan; ZhaoEnguang; W.Scheid
2003-01-01
The survival probability of a compound nucleus measures the competition among the neutron evaporation, light charged particle emissions and fission in the process of its de-excitation. It is considered as one of the crucial factors for producing superheavy elements, which is usually described by the existing statistical models[1]. In spite of the well developed statistical theory itself, however, due to the unclearness of the structure of superheavy nuclei, some characteristic quantities for evaluating the fission and particle emission widths are correspondingly ambiguous. This report gives the study on the odd-even effects of the survival probability based on a statistical model. The calculation details can be found.
Application of the dinuclear system model to fission process
Directory of Open Access Journals (Sweden)
Andreev A. V.
2016-01-01
Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.
Karnaukhov, V A; Budzanowski, A; Avdeyev, S P; Botvina, A S; Cherepanov, E A; Karcz, W; Kirakosyan, V V; Rukoyatkin, P A; Skwirczynska, I; Norbeck, E
2008-01-01
Critical temperature Tc for the nuclear liquid-gas phase transition is stimated both from the multifragmentation and fission data. In the first case,the critical temperature is obtained by analysis of the IMF yields in p(8.1 GeV)+Au collisions within the statistical model of multifragmentation (SMM). In the second case, the experimental fission probability for excited 188Os is compared with the calculated one with Tc as a free parameter. It is concluded for both cases that the critical temperature is higher than 16 MeV.
Collective spectra along the fission barrier
Directory of Open Access Journals (Sweden)
Pigni M. T.
2012-12-01
Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.
Energy Technology Data Exchange (ETDEWEB)
Munoz-Cobos, J.G.
1981-08-01
The Fortran IV code PAPIN has been developed to calculate cross section probability tables, Bondarenko self-shielding factors and average self-indication ratios for non-fissile isotopes, below the inelastic threshold, on the basis of the ENDF/B prescriptions for the unresolved resonance region. Monte-Carlo methods are utilized to generate ladders of resonance parameters in the unresolved resonance region, from average resonance parameters and their appropriate distribution functions. The neutron cross-sections are calculated by the single level Breit-Wigner (SLBW) formalism, with s, p and d-wave contributions. The cross section probability tables are constructed by sampling the Doppler-broadened cross sections. The various self-shielded factors are computed numerically as Lebesgue integrals over the cross section probability tables. The program PAPIN has been validated through extensive comparisons with several deterministic codes.
α-accompanied cold ternary fission of Pu-244238 isotopes in equatorial and collinear configuration
Santhosh, K. P.; Krishnan, Sreejith; Priyanka, B.
2015-04-01
The cold ternary fission of 238Pu, 240Pu, 242Pu, and 244Pu isotopes, with 4He as light charged particle, in equatorial and collinear configuration has been studied within the unified ternary fission model. The fragment combination 100Zr+4He+134Te possessing the near doubly magic nuclei 134Te(N =82 ,Z =52 ) gives the highest yield in the α-accompanied ternary fission of 238Pu. For the α-accompanied ternary fission of 240Pu, 242Pu, and 244Pu isotopes, the highest yield was found for the fragment combination with doubly magic nuclei 132Sn(N =82 ,Z =50 ) as the heavier fragment. The deformation and orientation of fragments have also been taken into account for the α-accompanied ternary fission of Pu-244238 isotopes, and it has been found that, in addition to the closed-shell effect, ground-state deformation also plays an important role in determining the isotopic yield in the ternary fission process. The emission probability and kinetic energy of long-range α particles have been calculated and are found to be in good agreement with the experimental data.
Fission dynamics within time-dependent Hartree-Fock: boost-induced fission
Goddard, P M; Rios, A
2015-01-01
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...
Energy Partition in n+233U Fission Reaction
Institute of Scientific and Technical Information of China (English)
CHEN; Yong-jing; LIU; Ting-jin; SHU; Neng-chuan
2012-01-01
<正>The partition of the total excitation energy between the fission fragments for the n+233U fission reactions are analyzed with a semi-empirical model, and it is a key point for calculating the prompt fission neutron spectrum, and it is still a long-standing problem for nuclear fission, and attracts more and more attention. With the available experimental data, such as the average total number of emitted neutrons, the
Cold fission as heavy ion emission
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.
1987-11-01
The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.
Energy Technology Data Exchange (ETDEWEB)
Jo, YuGwon; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2015-05-15
In this paper, the FSS iteration method is applied to the fast reactor where the neutron mean-free-path is around 10 times longer than that in the thermal reactor. The FSS iteration method with domain-based parallelism is tested on a two-dimensional continuous-energy fast reactor test problem. The multiplication factor and the pinwise fission-rate distributions of the FSS iteration method show good agreements with those of the conventional power method. A local domain is chosen as a cluster of 19 assemblies, taking into account the longer neutron mean-free-path. In the future, another type of local domain can be defined to take into account reflector assemblies and shield assemblies with appropriate boundary conditions. In the test problem, the multiplication factor and the pinwise fission-rate distributions of the FSS iteration method show good agreements with those of the conventional power method. Although the domain decomposition is easily achieved by the FSS iteration method, load-imbalance of local problems causes idle times in the processors. Applying the source splitting scheme and assigning different numbers of processors to local problems will reduce this problem.
Energy Technology Data Exchange (ETDEWEB)
Mendenhall, Marcus H., E-mail: marcus.h.mendenhall@vanderbilt.edu [Vanderbilt University, Department of Electrical Engineering, P.O. Box 351824B, Nashville, TN 37235 (United States); Weller, Robert A., E-mail: robert.a.weller@vanderbilt.edu [Vanderbilt University, Department of Electrical Engineering, P.O. Box 351824B, Nashville, TN 37235 (United States)
2012-03-01
In Monte Carlo particle transport codes, it is often important to adjust reaction cross-sections to reduce the variance of calculations of relatively rare events, in a technique known as non-analog Monte Carlo. We present the theory and sample code for a Geant4 process which allows the cross-section of a G4VDiscreteProcess to be scaled, while adjusting track weights so as to mitigate the effects of altered primary beam depletion induced by the cross-section change. This makes it possible to increase the cross-section of nuclear reactions by factors exceeding 10{sup 4} (in appropriate cases), without distorting the results of energy deposition calculations or coincidence rates. The procedure is also valid for bias factors less than unity, which is useful in problems that involve the computation of particle penetration deep into a target (e.g. atmospheric showers or shielding studies).
Directory of Open Access Journals (Sweden)
Gene M Heyman
2016-03-01
Full Text Available We tested whether principles that describe the allocation of overt behavior, as in choice experiments, also describe the allocation of cognition, as in attention experiments. Our procedure is a cognitive version of the two-armed bandit choice procedure. The two-armed bandit procedure has been of interest to psychologists and economists because it tends to support patterns of responding that are suboptimal. Each of two alternatives provides rewards according to fixed probabilities. The optimal solution is to choose the alternative with the higher probability of reward on each trial. However, subjects often allocate responses so that the probability of a response approximates its probability of reward. Although it is this result which has attracted most interest, probability matching is not always observed. As a function of monetary incentives, practice, and individual differences, subjects tend to deviate from probability matching toward exclusive preference, as predicted by maximizing. In our version of the two-armed bandit procedure, the monitor briefly displayed two, small adjacent stimuli that predicted correct responses according to fixed probabilities, as in a two-armed bandit procedure. We show that in this setting, a simple linear equation describes the relationship between attention and correct responses, and that the equation’s solution is the allocation of attention between the two stimuli. The calculations showed that attention allocation varied as a function of the degree to which the stimuli predicted correct responses. Linear regression revealed a strong correlation (r ¬= 0.99 between the predictiveness of a stimulus and the probability of attending to it. Nevertheless there were deviations from probability matching, and although small, they were systematic and statistically significant. As in choice studies, attention allocation deviated toward maximizing as a function of practice, feedback, and incentives. Our approach also
Thorium-uranium fission radiography
Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.
1976-01-01
Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.
SPIDER Progress Towards High Resolution Correlated Fission Product Data
Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team
2014-09-01
The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.
Combined statistical and dynamical model of ternary nuclear fission
Lestone, J. P.
2004-08-01
The statistical theory of particle evaporation from hot compound nuclei can be used to calculate the probability that particles are evaporated from the nuclear surface with not enough energy to surmount the Coulomb barrier. These quasievaporated particles exist between the nuclear surface and the Coulomb barrier for a short period of time before returning to the nuclear fluid. Occasionally, a quasievaporated charged particle emitted into the region surrounding the pre-scission neck material, fails to be reabsorbed by either of the main fragments as they accelerate away from each other after scission. This new particle emission mechanism can be used to explain many of the properties of ternary nuclear fission.
Ternary fission of 260No in collinear configuration
Ismail, M.; Seif, W. M.; Hashem, A. S.; Botros, M. M.; Abdul-Magead, I. A. M.
2016-09-01
We investigate the collinear ternary fission of the 260No isotope. The calculations are performed in the framework of the three cluster model for all possible accompanied light particles of even mass numbers A = 4 - 52. The folding nuclear and Coulomb interaction potentials are used, based on the M3Y-Reid nucleon-nucleon force for the nuclear part. The deformation of the involved fragments and their relative orientations with respect to each other inside the fissioning nuclei are considered. Among all possible fragmentation channels, the suggested most probable channels are indicated as the ones showing a peak in the Q-value and a local minimum in the fragmentation potential, with respect to the mass and charge asymmetries. The indicated favored fragmentation channels from the approximate spherical calculations and those obtained after considering the deformations of the produced fragments are discussed in detail. In addition to the preferred heavy fragments of closed shells, favored prolate ones of high deformations appear when the nuclear deformations are taken into account. Among indicated fifty six favored channels, a collinear ternary fission of the 260No isotope is indicated to be most favored through the fragmentation channels of 15058Ce+410Be+40100Zr,60152Nd+412Be+3896Sr,58150Ce+614C+3896Sr,58148Ce+616C+3896Sr,54140Xe+822O+4098Zr,42106Mo+1848Ar+42106Mo and 41104Nb+2052Ca+41104Nb.
Bieber, Frederick R; Buckleton, John S; Budowle, Bruce; Butler, John M; Coble, Michael D
2016-08-31
The evaluation and interpretation of forensic DNA mixture evidence faces greater interpretational challenges due to increasingly complex mixture evidence. Such challenges include: casework involving low quantity or degraded evidence leading to allele and locus dropout; allele sharing of contributors leading to allele stacking; and differentiation of PCR stutter artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength of the evidence when inclusion of a specific known individual(s) is determined, and the approaches used must be supportable. There are concerns that methods utilized for interpretation of complex forensic DNA mixtures may not be implemented properly in some casework. Similar questions are being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpretation for current and previous casework. Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures are described. Given the most common method for statistical evaluation of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use is the focus of this article. Formulae and other supporting materials are provided. Guidance and details of a DNA mixture interpretation protocol is provided for application of the CPI/CPE method in the analysis of more complex forensic DNA mixtures. This description, in turn, should help reduce the variability of interpretation with application of this methodology and thereby improve the quality of DNA mixture interpretation throughout the forensic community.
Poenaru, D N; Greiner, W
2005-01-01
Complex fission phenomena can be studied in a unified way. Very general reflection asymmetrical equilibrium (saddle-point) nuclear shapes, may be obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in cold fission phenomena can be explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined. Predictions of two alpha accompanied fission are experimentally confirmed.
Theoretical Description of the Fission Process
Energy Technology Data Exchange (ETDEWEB)
Witold Nazarewicz
2009-10-25
Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic
Korb, Andrew R.; Grossman, Stanley I.
2015-05-01
A model was developed to understand the effects of spatial resolution and Signal to Noise ratio on the detection and tracking performance of wide-field, diffraction-limited electro-optic and infrared motion imagery systems. False positive detection probability and false positive rate per frame were calculated as a function of target-to-background contrast and object size. Results showed that moving objects are fundamentally more difficult to detect than stationary objects because SNR for fixed objects increases and false positive probability detection rates diminish rapidly with successive frames whereas for moving objects the false detection rate remains constant or increases with successive frames. The model specifies that the desired performance of a detection system, measured by the false positive detection rate, can be achieved by image system designs with different combinations of SNR and spatial resolution, usually requiring several pixels resolving the object; this capability to tradeoff resolution and SNR enables system design trades and cost optimization. For operational use, detection thresholds required to achieve a particular false detection rate can be calculated. Interestingly, for moderate size images the model converges to the Johnson Criteria. Johnson found that an imaging system with an SNR >3.5 has a probability of detection >50% when the resolution on the object is 4 pixels or more. Under these conditions our model finds the false positive rate is less than one per hundred image frames, and the ratio of the probability of object detection to false positive detection is much greater than one. The model was programmed into Matlab to generate simulated images frames for visualization.
Energy Technology Data Exchange (ETDEWEB)
Valdes, Gilmer, E-mail: gilmer.valdes@uphs.upenn.edu [Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA (United States); Robinson, Clifford [Department of Radiation Oncology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO (United States); Lee, Percy [Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA (United States); Morel, Delphine [Department of Biomedical Engineering, AIX Marseille 2 University, Marseille (France); Department of Medical Physics, Joseph Fourier University, Grenoble (France); Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M. [Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA (United States)
2015-04-01
Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.
Angular momenta of fission fragments in the α-accompanied fission of 252Cf
Jandel, M.; Kliman, J.; Krupa, L.; Morháč, M.; Hamilton, J. H.; Kormicki, J.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Fong, D.; Gore, P.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.; Rodin, A. M.; Fomichev, A. S.; Popeko, G. S.; Daniel, A. V.; Rasmussen, J. O.; Macchiavelli, A. O.; Stoyer, M. A.; Donangelo, R.; Cole, J. D.
2005-06-01
For the first time, average angular momenta of the ternary fission fragments 100, 102Zr, 106Mo, 144, 146Ba and 138, 140, 142Xe from the α-accompanied fission of 252Cf were obtained from relative intensities of prompt γ-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of 252Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is ˜1.4 ℏ lower than in binary fission. Consequently, results indicate that the mechanism of the ternary α-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of 106Mo and 140Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed.
Modeling Fission Product Sorption in Graphite Structures
Energy Technology Data Exchange (ETDEWEB)
Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission
Fission induced by nucleons at intermediate energies
Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto
2014-01-01
Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.
Maltsev, I A; Tupitsyn, I I; Shabaev, V M; Kozhedub, Y S; Plunien, G; Stoehlker, Th
2013-01-01
A new approach for solving the time-dependent two-center Dirac equation is presented. The method is based on using the finite basis set of cubic Hermite splines on a two-dimensional lattice. The Dirac equation is treated in rotating reference frame. The collision of U92+ (as a projectile) and U91+ (as a target) is considered at energy E_lab=6 MeV/u. The charge transfer probabilities are calculated for different values of the impact parameter. The obtained results are compared with the previous calculations [I. I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)], where a method based on atomic-like Dirac-Sturm orbitals was employed. This work can provide a new tool for investigation of quantum electrodynamics effects in heavy-ion collisions near the supercritical regime.
Farahani, Pooria; Lundberg, Marcus; Karlsson, Hans O.
2013-11-01
The SN2 substitution reactions at phosphorus play a key role in organic and biological processes. Quantum molecular dynamics simulations have been performed to study the prototype reaction Cl-+PH2Cl→ClPH2+Cl-, using one and two-dimensional models. A potential energy surface, showing an energy well for a transition complex, was generated using ab initio electronic structure calculations. The one-dimensional model is essentially reflection free, whereas the more realistic two-dimensional model displays involved resonance structures in the reaction probability. The reaction rate is almost two orders of magnitude smaller for the two-dimensional compared to the one-dimensional model. Energetic errors in the potential energy surface is estimated to affect the rate by only a factor of two. This shows that for these types of reactions it is more important to increase the dimensionality of the modeling than to increase the accuracy of the electronic structure calculation.
The Calculation Method of Mathematical Expectation of Probability%概率论中数学期望的计算方法
Institute of Scientific and Technical Information of China (English)
李晓燕; 黄丽莉
2014-01-01
This article ,by probability theory ,the historical development and narration of mathemati-cal expectation of probability theory ,attempts to show us the necessity of mathematical expectation and simple probability as well as the wide application of them .After that ,the article discusses some realistic calculation methods of mathematical expectation ,expecting to make the model of mathematics widely used in practical teaching .%通过对概率论和概率论中数学期望的历史发展的叙述以及定义的阐述，简要说明了研究概率和数学期望的必要性和在生活中的广泛应用，探讨了关于数学期望的多种具有现实意义的计算方法，旨在数学期望的模型能在实际教学以及应用中让人更加得心应手。
MCNP6 Fission Multiplicity with FMULT Card
Energy Technology Data Exchange (ETDEWEB)
Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory
2012-06-18
With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.
Efficient calculation of detection probabilities
Energy Technology Data Exchange (ETDEWEB)
Thoreson, Gregory G., E-mail: gthoreson@mail.utexas.ed [University of Texas - Austin, Pickle Research Campus, R-9000, Austin, TX 78712 (United States); Schneider, Erich A. [University of Texas - Austin, Pickle Research Campus, R-9000, Austin, TX 78712 (United States)
2010-04-11
Radiation transport simulations have found wide use as a detector and system design tool for smuggled nuclear material interdiction applications. A major obstacle to the utility of Monte Carlo radiation transport to this class of problems is the computational burden associated with simulating a spanning set of threat scenarios. One common method for circumventing this obstacle models a subset of detailed scenarios which are considered representative of the system. Another simplifies the threat scenarios, enabling many cases to be simulated at the cost of a loss of fidelity. This paper demonstrates a new approach to the problem of modeling a very large scenario set. The scenario is disaggregated into components in which radiation transport may be simulated independently. Green's functions for each submodel are generated, parameterized with respect to major scenario variables, and convolved to create a depiction of the radiation transport within the entire scenario. With this approach, the computation time required to model many different scenarios is greatly reduced. The theoretical basis of this algorithm is presented along with validation results that show it to be comparable in fidelity to more computationally intensive methods, in particular brute-force simulation.
Fifty years of nuclear fission: Nuclear data and measurements series
Energy Technology Data Exchange (ETDEWEB)
Lynn, J.E.
1989-06-01
This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.
Fusion probability in heavy nuclei
Banerjee, Tathagata; Nath, S.; Pal, Santanu
2015-03-01
Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, PCN> , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. PCN> for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: PCN> has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine PCN> . Approximate boundaries have been obtained from where PCN> starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of PCN> from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections
Nuclear fission problem and Langevin equation
Directory of Open Access Journals (Sweden)
M Sakhaee
2011-12-01
Full Text Available A combined dynamical and statistical model for fission was employed in our calculation. There is no doubt that a Langevin description plus a Monte Carlo treatment of the evaporation processes provide the most adequate dynamical description. In this paper, we would consider a strongly shaped dependent friction force and we use the numerical method rather than the analytical one. The objective of this article is to calculate the time dependent fission widths of the 224Th nucleus. The fission widths were calculated with both chaos-weighted wall friction (CWWF and wall friction (WF dissipations. The calculations are repeated for 100000 trajectories. The result was compared to the others' work. We use nuclear elongation coordinate with time and it is necessary to repeat the small steps many times to improve the accuracy.
Generalized Energy-Dependent Q Values for Fission
Energy Technology Data Exchange (ETDEWEB)
Vogt, R
2010-03-31
We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.
Ternary fission fragmentation of 252Cf for all possible third fragments
Manimaran, K.; Balasubramaniam, M.
2010-09-01
The ternary fragmentation of 252Cf for all possible third fragments has been investigated using the recently proposed three-cluster model within a spherical approximation and satisfying the condition A 1 ≥ A 2 ≥ A 3 . The most probable ternary configurations in the fission of 252Cf accompanied with all possible third fragment mass numbers from A 3 = 1 to 84 are predicted and their independent and overall relative yields are calculated. The calculations of the properly charge minimized potential energy surface (PES) and yield reveal that even-mass third fragments are more favored than odd ones. In the most probable configuration having the minimum in the potential energy and the maximum in yield, among the three fragments, at least one (or two) of the fragment(s) associates itself with the neutron (or proton) closed shell and in some cases even with the doubly closed shell. The calculated relative yields imply that next to 14C (the heaviest third fragment observed in the spontaneous ternary fission of 252Cf , 34, 36, 38Si , 46, 48Ar , and 48, 50Ca are presenting themselves as the most favoured cases to be observed as the third particle in the spontaneous ternary fission of 252Cf.
Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.
2005-01-01
Complex fission phenomena are studied in a unified way. Very general reflection asymmetrical equilibrium (saddle point) nuclear shapes are obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in binary cold fission of Th and U isotopes is explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined.
In-beam investigation of ternary fission
Kotte, R.; Fromm, W. D.; Hentschel, E.; Ortlepp, H. G.; Schilling, K. D.; Seidel, W.; Stary, F.; Zwicker, G.
1988-06-01
Nuclear fission accompanied by long-range alpha particles has been investigated. Fission was induced by irradiating a natural uranium target with 13.5 MeV deuterons. The alpha energy and angular distributions are similar to those observed in spontaneous or thermal neutron induced fission. The correlation angle between alpha particles and light fission fragments has a most probable value ofbar \\vartheta _{l f - α } = 82.1^circ ± 0.9^circ and a dispersion (FWHM) of Δϑ=18.4°±1.2°. The mean value and dispersion of the energy distribution arebar E_α = 14.8 ± 1.0 MeV and ΔE=9.1±1.2 MeV (FWHM), respectively. The peak-to-valley ratio of the ternary fission fragment mass distribution is found to increase with increasing alpha energy. For near-symmetric mass division, a strong broadening of the angular distribution is observed. The results are discussed in the frame of a multichannel-fission model.
Spontaneous fission of the heaviest elements
Energy Technology Data Exchange (ETDEWEB)
Hoffman, D.C.
1989-04-01
Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.
Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.
2015-03-01
After a successful attempt to define and determine recently the compound nucleus (CN) fusion/ formation probability PCN within the dynamical cluster-decay model (DCM), we introduce and estimate here for the first time the survival probability Psurv of CN against fission, again within the DCM. Calculated as the dynamical fragmentation process, Psurv is defined as the ratio of the evaporation residue (ER) cross section σER and the sum of σER and fusion-fission (ff) cross section σff, the CN formation cross section σCN, where each contributing fragmentation cross section is determined in terms of its formation and barrier penetration probabilities P0 and P . In DCM, the deformations up to hexadecapole and "compact" orientations for both in-plane (coplanar) and out-of-plane (noncoplanar) configurations are allowed. Some 16 "hot" fusion reactions, forming a CN of mass number ACN˜100 to superheavy nuclei, are analyzed for various different nuclear interaction potentials, and the variation of Psurv on CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 is investigated. Interesting results are that three groups, namely, weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, are identified with Psurv, respectively, ˜1 ,˜10-6 , and ˜10-10 . For the weakly fissioning group (100 PCN belongs to the strongly fissioning superheavy group, Psurv belongs to weakly fissioning nuclei; for Pt* isotopes, the inverse of all the compound systems studied, both PCN and Psurv decrease with the increase of E*; for 213 ,215 ,217Fr* nuclei, though fissility χ is nearly the same, Psurv for 213 ,217Fr* is of the same order as for weakly fissioning nuclei, but that for 215Fr* is of the order of radioactive nuclei. Apparently, further calculations are called for.
Pahlavani, M. R.; Mirfathi, S. M.
2017-07-01
Neutron multiplicity prior to scission and evaluation of mass distribution of fission fragments with the fission time scale for neutron induced fission of plutonium isotopes are investigated using a dynamical Langevin approach. Also, mass yield of fragments and prompt neutron multiplicity in different time scales of the fission process are compared with experimental data. Reasonable agreement is achieved between calculated and available experimental data.
Revision of the JENDL FP Fission Yield Data
Directory of Open Access Journals (Sweden)
Katakura Jun-ichi
2016-01-01
Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.
Shimada, Mitsuhiro; Watanabe, Shin; Tagami, Shingo; Matsumoto, Takuma; Shimizu, Yoshifumi R.; Yahiro, Masanobu
2016-06-01
We perform simultaneous analysis of (1) matter radii, (2) B (E 2 ;0+→2+) transition probabilities, and (3) excitation energies, E (2+) and E (4+) , for Mg-4024 by using the beyond-mean-field (BMF) framework with angular-momentum-projected configuration mixing with respect to the axially symmetric β2 deformation with infinitesimal cranking. The BMF calculations successfully reproduce all of the data for rm,B (E 2 ) , and E (2+) and E (4+) , indicating that it is quite useful for data analysis; particularly for low-lying states. We also discuss the absolute value of the deformation parameter β2 deduced from measured values of B (E 2 ) and rm. This framework makes it possible to investigate the effects of β2 deformation, the change in β2 due to restoration of rotational symmetry, β2 configuration mixing, and the inclusion of time-odd components by infinitesimal cranking. Under the assumption of axial deformation and parity conservation, we clarify which effect is important for each of the three measurements and propose the kinds of BMF calculations that are practical for each of the three kinds of observables.
Recent studies in heavy ion induced fission reactions
Choudhury, R. K.
2001-08-01
Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to
Fission Measurements with Dance
Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.
2008-08-01
Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.
A new approach to prompt fission neutron TOF data treatment
Zeynalov, Sh.; Zeynalova, O. V.; Hambsch, F.-J.; Oberstedt, S.
The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. A new mathematical approach, applicable to single events, was developed for prompt fission neutron (PFN) time-offlight distribution unfolding. The main goal was to understand the reasons of the long existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of the fission fragments (FF). Since the 252Cf (sf) reaction is one of the main references for nuclear data the understanding of the PFN emission mechanism is very important both for nuclear fission theory and nuclear data. The experimental data were taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to the well known work of C. Budtz-Jorgensen and H.-H. Knitter. About 2.5 × 105 coincidences between fission fragment (FF) and neutron detector response to prompt fission neutron detection have been registered (∼ 1.6 × 107 of total recorded fission events). Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12-bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The main goal of this work was a detailed description of the prompt fission neutron treatment.
Energy Technology Data Exchange (ETDEWEB)
Blaise Collin
2014-09-01
This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but it can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive
Alpha decay from fission isomeric states
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Ivascu, M. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))
1981-07-01
Alpha-decay half-lives from shape isomeric states of some even-even isotopes of U, Pu and Cm nuclei are calculated by using fission theory in the parametrisation of a spheroid intersected with a sphere. The potential barrier was calculated in the framework of the liquid-drop model of Myers and Swiatecki (Art. Fys.; 36: 343 (1967)) extended for systems with different charge densities; a phenomenological shell correction was introduced. The WKB computed lifetimes are many orders of magnitude longer than that of the spontaneous fission process, in agreement with experimental results.
Angular Anisotropy of the Fission Fragments in the Dinuclear System Mo del
Institute of Scientific and Technical Information of China (English)
T. M. Shneidman; A. V. Andreev; C. Massimi; M. T. Pigni; G. Vannini; A. Ventura; S. G. Zhou
2015-01-01
A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system (DNS) model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the angular distribution of fission fragments for the neutron–induced fission of 239Pu.
Dissipative effects in fission investigated in complete kinematics measurements
Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Ramos, D.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.
2017-09-01
The study of dissipative effects in fission has been carried out with fusion-fission reactions by using a limited number of observables, such as the fission probabilities, the mass distribution of the fission fragments, or the neutron multiplicities. However, the large angular momenta gained by the compound nucleus in this kind of reaction could affect the conclusions drawn from such experiments. In this work, we propose to investigate the fission dynamics by the use of spallation reactions on 208Pb because the fissioning systems are produced with low angular momentum, small deformations, and high excitation energies, enhancing the dissipative effects. The complete kinematics measurements of the fission fragments and light-charged particles were performed by the use of the SOFIA setup combined with the inverse kinematics technique, allowing us for the first time a full indentification in atomic and mass number of the two fission fragments. These measurements permit us to define new fission observables for the investigation of the temperature and deformation dependencies of the dissipation parameter.
Metal cluster fission: jellium model and Molecular dynamics simulations
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;
2004-01-01
Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...
EMISSION OF PHOTONS IN SPONTANEOUS FISSION OF CF-252
VANDERPLOEG, H; BACELAR, JCS; BUDA, A; LAURENS, CR; VANDERWOUDE, A; GAARDHOJE, JJ; ZELAZNY, Z; VANTHOF, G; KALANTARNAYESTANAKI, N
1995-01-01
High energy photon emission accompanying the spontaneous fission of Cf-252 is measured for different mass splits. The photon yields up to an energy of 20 MeV are obtained at several angles relative to the fission direction. Statistical model calculations are used to interpret the data. The photon yi
Malik, Sham S.
2017-04-01
The fission fragment mass distribution followed by neutron emission is studied for the 208Pb (18O , f) reaction using the asymmetric two centre shell model. The measured mass distribution spectrum reveals new kind of systematics on shell structure and leads to an improved understanding of structure effects in nuclear fission. A detailed investigation of shell effects both in potential and cranking mass parameter has been carried out for explaining the observed fine structure dips (i.e., less probable distributions) corresponding to shell closure (Z = 50 and/or N = 82) of fission fragments and their complementary partners. The available energy states for the decay process are obtained by solving the Schrödinger equation and found that first-five eigenstates are sufficient in reproducing the observed mass distribution spectrum. An outcome of the asymmetric two centre shell model also completely favours the observed claim that ;the total number of emitted neutrons between correlated pairs of fission fragments should not exceed 6;. A complete observed spectrum is obtained by adding the mass distribution yields of all 6-neutron emission channels. This suggests a possible importance of extending these calculations to get new insight into an understanding of the dynamical behaviour of fragment formation in the fission process.
Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system
Zhou, Z.; Yang, Y.; Xu, H.
2011-10-01
This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.
Shimada, Mitsuhiro; Tagami, Shingo; Matsumoto, Takuma; Shimizu, Yoshifumi R; Yahiro, Masanobu
2016-01-01
We perform simultaneous analysis of (1) matter radii, (2) $B(E2; 0^+ \\rightarrow 2^+ )$ transition probabilities, and (3) excitation energies, $E(2^+)$ and $E(4^+)$, for $^{24-40}$Mg by using the beyond mean-field (BMF) framework with angular-momentum-projected configuration mixing with respect to the axially symmetric $\\beta_2$ deformation with infinitesimal cranking. The BMF calculations successfully reproduce all of the data for $r_{\\rm m}$, $B(E2)$, and $E(2^+)$ and $E(4^+)$, indicating that it is quite useful for data analysis, particularly for low-lying states. We also discuss the absolute value of the deformation parameter $\\beta_2$ deduced from measured values of $B(E2)$ and $r_{\\rm m}$. This framework makes it possible to investigate the effects of $\\beta_2$ deformation, the change in $\\beta_2$ due to restoration of rotational symmetry, $\\beta_2$ configuration mixing, and the inclusion of time-odd components by infinitesimal cranking. Under the assumption of axial deformation and parity conservation,...
Cluster radioactivity and very asymmetric fission through compact and creviced shapes
Royer, G.; Gupta, Raj K.; Denisov, V. Yu.
1998-03-01
The decay of radioactive nuclei which emit heavy clusters such as C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the macroscopic deformation energy has been calculated within a generalized liquid-drop model taking into account the proximity effects between the cluster and the daughter nucleus. The microscopic corrections have been introduced empirically to reproduce the experimental Q values. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data. The C, O, Ne, Mg and Si emission looks like a spontaneous fission through very asymmetric compact and creviced shapes formed at the early stage of the tunneling process.
Buffa, F M; Nahum, A E
2000-10-01
The aim of this work is to investigate the influence of the statistical fluctuations of Monte Carlo (MC) dose distributions on the dose volume histograms (DVHs) and radiobiological models, in particular the Poisson model for tumour control probability (tcp). The MC matrix is characterized by a mean dose in each scoring voxel, d, and a statistical error on the mean dose, sigma(d); whilst the quantities d and sigma(d) depend on many statistical and physical parameters, here we consider only their dependence on the phantom voxel size and the number of histories from the radiation source. Dose distributions from high-energy photon beams have been analysed. It has been found that the DVH broadens when increasing the statistical noise of the dose distribution, and the tcp calculation systematically underestimates the real tumour control value, defined here as the value of tumour control when the statistical error of the dose distribution tends to zero. When increasing the number of energy deposition events, either by increasing the voxel dimensions or increasing the number of histories from the source, the DVH broadening decreases and tcp converges to the 'correct' value. It is shown that the underestimation of the tcp due to the noise in the dose distribution depends on the degree of heterogeneity of the radiobiological parameters over the population; in particular this error decreases with increasing the biological heterogeneity, whereas it becomes significant in the hypothesis of a radiosensitivity assay for single patients, or for subgroups of patients. It has been found, for example, that when the voxel dimension is changed from a cube with sides of 0.5 cm to a cube with sides of 0.25 cm (with a fixed number of histories of 10(8) from the source), the systematic error in the tcp calculation is about 75% in the homogeneous hypothesis, and it decreases to a minimum value of about 15% in a case of high radiobiological heterogeneity. The possibility of using the error
Unification of binary and LCP fission processes
Asghar, M.; Bouzid, B.; Medkour, G.; Djebara, M.
1996-11-01
This paper discusses the ambiguities of the parameters of the models used to calculate the yields of binary and light-charged-particle-accompanied (LCP) ternary fission processes. A model based on the adiabatic perturbation theory is set up. It removes these ambiguities and helps to treat the two processes in a unified way.
Angular-momentum-bearing modes in fission
Energy Technology Data Exchange (ETDEWEB)
Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.
1989-03-01
The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs.
Brownian shape motion: Fission fragment mass distributions
Directory of Open Access Journals (Sweden)
Sierk Arnold J.
2012-02-01
Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.
1D Burnup Calculation of Fusion-Fission Hybrid Energy Reactor%聚变-裂变混合能源堆一维计算模型燃耗分析
Institute of Scientific and Technical Information of China (English)
李茂生; 师学明; 伊炜伟
2012-01-01
Fusion-fission hybrid energy reactor is driven by Tokamak fusion source for energy production. Its subcritical zone uses the natural uranium as fuel and water as coolant. The neutron multiplication constant keff, energy multiplication factor M and tritium breeding ratio TBR of the ID hybrid energy reactor model were calculated by transport burnup code MCORGS. The neutron spectrum and nuclear density changing as a function of time show the characteristics of the hybrid energy reactors, which differs from the hybrid reactor for breed nuclear fuel and for spent fuel transmutation. The definition and results may be a reference to the other conceptual analysis.%聚变-裂变混合能源堆包括聚变中子源和以天然铀为燃料、水为冷却剂的次临界包层,主要目标是生产电力.利用输运燃耗耦合程序系统MCORGS计算了混合能源堆一维模型的燃耗,给出了中子有效增殖因数keff、能量放大倍数M、氚增殖比TBR等物理量随时间的变化.通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点.本文给出的结果可作为混合堆中子输运、燃耗分析程序校验的参考数据,为混合堆概念研究提供了基础数据.
Fission of actinides through quasimolecular shapes
Royer, Guy; Zhang, Hongfei; Eudes, Philippe; Moustabchir, Rachid; Moreau, Damien; Jaffré, Muriel; Morabit, Youssef; Particelli, Benjamin
2013-12-01
The potential energy of heavy nuclei has been calculated in the quasimolecular shape path from a generalized liquid drop model including the proximity energy, the charge and mass asymmetries and the microscopic corrections. The potential barriers are multiple-humped. The second maximum is the saddle-point. It corresponds to the transition from compact one-body shapes with a deep neck to two touching ellipsoids. The scission point lies at the end of an energy plateau well below the saddle-point and where the effects of the nuclear attractive forces between two separated fragments vanish. The energy on this plateau is the sum of the kinetic and excitation energies of the fragments. The shell and pairing corrections play an essential role to select the most probable fission path. The potential barrier heights agree with the experimental data and the theoretical half-lives follow the trend of the experimental values. A third peak and a shallow third minimum appear in asymmetric decay paths when one fragment is close to a double magic quasi-spherical nucleus, while the smaller one changes from oblate to prolate shapes.
Late Time Emission of Prompt Fission Gamma Rays
Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B
2016-01-01
The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...
Modelling with uncertainties: The role of the fission barrier
Directory of Open Access Journals (Sweden)
Lü Hongliang
2013-12-01
Full Text Available Fission is the dominant decay channel of super-heavy elements formed in heavy ions collisions. The probability of synthesizing heavy or super-heavy nuclei in fusion-evaporation reactions is then very sensitive to the height of their fission barriers. This contribution will firstly address the influence of theoretical uncertainty on excitation functions. Our second aim is to investigate the inverse problem, i.e., what information about the fission barriers can be extracted from excitation functions? For this purpose, Bayesian methods have been used with a simplified toy model.
Deformation effects in the alpha accompanied cold ternary fission of even-even 244-260Cf isotopes
Santhosh, K. P.; Krishnan, Sreejith
2016-04-01
Within the unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even 244-260Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of the 244Cf isotope, the highest yield is obtained for the fragment combination 108Ru + 4He + 132Te, which contains the near doubly magic nucleus 132Te ( N = 80, Z = 52). In the case of 246Cf and 248Cf isotopes, the highest yield is obtained for the fragment combinations with the near doubly magic nucleus 134Te ( N = 82, Z = 52) as the heaviest fragment. The highest yield obtained for 250Cf, 252Cf, 254Cf, 256Cf, 258Cf and 260Cf isotopes is for the fragment combination with the doubly magic nucleus 132Sn ( N = 82), Z = 50 as the heaviest fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to the closed shell effect, ground-state deformation also plays an important role in the calculation of the relative yield of favorable fragment combinations. The computed isotopic yields for the alpha accompanied ternary fission of the 252Cf isotope are found to be in agreement with the experimental data. The emission probability and kinetic energy of the long-range alpha particle is calculated for the various isotopes of Cf and are found to be in good agreement with the experimental data.
Evaluation of Nuclear Fission Barrier Parameters for 17 Nuclei
Institute of Scientific and Technical Information of China (English)
2001-01-01
As well know that modern nuclear installations and applications have reached a high degree of sophistication. The effective safe and economical design of these technologies require detailed and reliable design calculations. The accuracy of these calculations is largely determined by the accuracy of the basic nuclear and atomic input parameters. In order to meet the needs on high energy fission cross section, fission spectra in waste disposal, transmutation, radioactive beams physics and so on, 17 nuclei fission barrier parameters were collected from the literature based on different experiments and
Dissipative dynamics in quasi-fission
Oberacker, V E; Simenel, C
2014-01-01
Quasi-fission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach we study quasi-fission in the systems $^{40,48}$Ca+$^{238}$U. Results show that for $^{48}$Ca projectiles the quasi-fission is substantially reduced in comparison to the $^{40}$Ca case. This partly explains the success of superheavy element formation with $^{48}$Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The system is found in quasi-thermal equilibrium only for reactions with $^{40}$Ca. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.
Prompt fission neutron emission: Problems and challenges
Directory of Open Access Journals (Sweden)
Hambsch F.-J.
2013-12-01
Full Text Available This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code as well as prompt neutron and γ-ray emission to catch up with the improved experiments.
Determination of fission gas yields from isotope ratios
DEFF Research Database (Denmark)
Mogensen, Mogens Bjerg
1983-01-01
This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....
Determination of fission gas yields from isotope ratios
DEFF Research Database (Denmark)
Mogensen, Mogens Bjerg
1983-01-01
This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....
Theoretical description of prompt fission neutron multiplicity and spectra
Manailescu, Cristian
2014-01-01
The present work concerns two successful models used today: Point by Point (PbP) and the Monte Carlo approaches. The description of the PbP model and of the extended Los Alamos model for higher energies that takes into account the secondary chains and ways is given in Chapter II. In this chapter are given also examples of PbP and most probable fragmentation approach calculations for various quantities which characterize prompt emission: multi-parametric matrices, quantities as a function of fragment mass, quantities as a function of the TKE and total average quantities, for different spontaneous and neutron induced fissioning systems. Special care was given to the TXE partition between the fully accelerated fission fragments, two partition methods used in the PbP model being discussed in details. In Chapter III is given the description of the Monte Carlo treatment included in the FIFRELIN code. Only those aspects that differ from the PbP treatment are emphasized. A special attention is given to the latest dev...
Uncertainties analysis of fission fraction for reactor antineutrino experiments using DRAGON
Ma, X B; Chen, Y X; Zhong, W L; An, F P
2014-01-01
Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulation to predict reactor rates. First, DRAGON was developed to calculate the fission rates of the four most important isotopes in fissions,235U,238U,239Pu and141Pu, and it was validated for PWRs using the Takahama benchmark. The fission fraction calculation function was validated through comparing our calculation results with MIT's results. we calculate the fission fraction of the Daya Bay reactor core, and compare its with those calculated by the commercial reactor simulation program SCIENCE, which is used by the Daya Bay nuclear power plant, and the results was consist with each other. The uncertainty of the antineutrino flux by the fission fraction was studied, and the uncertainty of the antineutrino flux by the fission fraction simulation is 0.6% per core for Daya Bay antineutrino experiment.
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.
2017-03-01
The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.
De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.
1980-10-01
Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.
Specific fission J-window and angular momentum dependence of the fission barrier
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi
1997-04-01
A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.
Effects of N/Z on survival probability of heavy nuclei
Institute of Scientific and Technical Information of China (English)
YE Wei; YANG Hong-Wei
2008-01-01
The excitation functions of the evaporation residue formation probability of three heavy nuclei 194Pb, 200Pb and 206Pb are calculated by using a Langevin equation coupled with a statistical decay model.The results show that the neutron-to-proton ratio (N/Z) of a compound nucleus has an effect on survival probability and this effect becomes larger with increasing N/Z. This is because the fission barrier and the pre-saddle particle emission depend on the N/Z ratio of the system.
Osborne, Andrew G
2016-01-01
Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...
Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona
2016-09-01
In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.
Applications of Event-by-Event Fission Modeling with FREYA
Directory of Open Access Journals (Sweden)
Vogt R.
2012-02-01
Full Text Available The recently developed code FREYA (Fission Reaction Event Yield Algorithm generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on 239Pu(nth,f, 240Pu(sf and 252Cf(sf, we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.
Energy Technology Data Exchange (ETDEWEB)
Welsch, Ralph, E-mail: rwelsch@uni-bielefeld.de; Manthe, Uwe, E-mail: uwe.manthe@uni-bielefeld.de [Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld (Germany)
2015-02-14
Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found between the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C{sub 3v} symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f{sub 2}-symmetric) stretching, or e-symmetric bending excited states of methane.
Welsch, Ralph; Manthe, Uwe
2015-02-14
Initial state-selected reaction probabilities of the H + CH4 → H2 + CH3 reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found between the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C3v symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f2-symmetric) stretching, or e-symmetric bending excited states of methane.
Welsch, Ralph; Manthe, Uwe
2015-02-01
Initial state-selected reaction probabilities of the H + CH4 → H2 + CH3 reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found between the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C3v symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f2-symmetric) stretching, or e-symmetric bending excited states of methane.
Dynamical Simulation of Probabilities
Zak, Michail
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices(such as random number generators). Self-orgainizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed. Special attention was focused upon coupled stochastic processes, defined in terms of conditional probabilities, for which joint probability does not exist. Simulations of quantum probabilities are also discussed.
Fission Product Library and Resource
Energy Technology Data Exchange (ETDEWEB)
Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-29
Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.
Cluster formation probability in the trans-tin and trans-lead nuclei
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P. [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India)], E-mail: drkpsanthosh@gmail.com; Biju, R.K.; Sahadevan, Sabina [P.G. Department of Physics and Research Centre, Payyanur College, Payyanur 670 327 (India)
2010-07-01
Within our fission model, the Coulomb and proximity potential model (CPPM) cluster formation probabilities are calculated for different clusters ranging from carbon to silicon for the parents in the trans-tin and trans-lead regions. It is found that in trans-tin region the {sup 12}C, {sup 16}O, {sup 20}Ne and {sup 24}Mg clusters have maximum cluster formation probability and lowest half lives as compared to other clusters. In trans-lead region the {sup 14}C, {sup 18,20}O, {sup 23}F, {sup 24,26}Ne, {sup 28,30}Mg and {sup 34}Si clusters have the maximum cluster formation probability and minimum half life, which show that alpha like clusters are most probable for emission from trans-tin region while non-alpha clusters are probable from trans-lead region. These results stress the role of neutron proton symmetry and asymmetry of daughter nuclei in these two cases.
Cluster formation probability in the trans-tin and trans-lead nuclei
Santhosh, K P; Sahadevan, Sabina; 10.1016/j.nuclphysa.2010.03.004
2010-01-01
Within our fission model, the Coulomb and proximity potential model (CPPM) cluster formation probabilities are calculated for different clusters ranging from carbon to silicon for the parents in the trans-tin and trans- lead regions. It is found that in trans-tin region the 12^C, 16^O, 20^Ne and 24^Mg clusters have maximum cluster formation probability and lowest half lives as compared to other clusters. In trans-lead region the 14^C, 18, 20^O, 23^F, 24,26^Ne, 28,30^Mg and 34^Si clusters have the maximum cluster formation probability and minimum half life, which show that alpha like clusters are most probable for emission from trans-tin region while non-alpha clusters are probable from trans-lead region. These results stress the role of neutron proton symmetry and asymmetry of daughter nuclei in these two cases.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas
2016-01-01
We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.
Discoveries of isotopes by fission
Indian Academy of Sciences (India)
M Thoennessen
2015-09-01
Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.
Fission dynamics of hot nuclei
Indian Academy of Sciences (India)
Santanu Pal; Jhilam Sadhukhan
2014-04-01
Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.
Student Experiments in Spontaneous Fission.
Becchetti, F. D.; Ying, J. S.
1981-01-01
Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…
Santhosh, K P
2016-01-01
Probable projectile-target combinations for the synthesis of superheavy element $^{302}$120 have been studied taking Coulomb and proximity potential as the interaction barrier. The probabilities of compound nucleus formation, PCN for the projectile-target combinations found in the cold reaction valley of $^{302}$120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion and evaporation residue cross sections for the reactions of all the probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of SHE $^{302}$120 in heavy ion fusion reactions. The calculated fusion and evaporation cross section for the more asymmetric (hotter) projectile-target combination is found to be higher than the less asymmetric (colder) combination. It can be seen from the nature of quasi-fission barrier height, mass asymmetry, probability of compound nucleus formation, survival probability and excitation energy, the system...
Dynamics of morphological changes for mitochondrial fission and fusion
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Mitochondria experience continuous fusion and fission in a living cell, but their dynamics remains poorly quantified. Here a theoretical model was developed, upon a simplified population balance equation (PBE), to predict the morphological changes induced by mitochondrial fission and fusion. Assuming that both fission and fusion events are statistically independent, the survival probability of mitochondria staying in the fission or fusion state was formulated as an exponentially-decayed function with time, which depended on the time-dependent distribution of the mitochondrial volume and the fission and fusion rates. Parametric analysis was done for two typical volume distributions. One was Gamma distribution and the other was Gaussian distribution, derived from the measurements of volume distribution for individual mitochondria in a living cell and purified mitochondria in vitro. The predictions indicated that the survival probability strongly depended on morphological changes of individual mitochondria and was inversely correlated to the fission and fusion rates. This work provided a new insight into quantifying the mitochondrial dynamics via monitoring the evolution of the mitochondrial volume.
Fission Matrix Capability for MCNP Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-05
In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a
Long Range Alpha the Ternary Cold Fission of $^{252}$Cf
Misicu, S; Cãrstoiu, F; Rizea, M; Greiner, W; Misicu, Serban
1998-01-01
We compute the final kinetic energies of the fragments emitted in the light charged particle accompanied cold fission of $^{252}$Cf taking into account the ground state quadrupole deformation and the finite-size effects of the fragments and integrating the equations of motion for a three-body system subjected only to Coulomb forces. The initial conditions for the trajectory calculations were derived in the frame of a deformed cluster model which includes also the effect due to the absorbative nuclear part. Although the distributions of initial kinetic energies is rather broad we show that in cold fission the initial conditions can be better determined than in the usual spontaneous fission.
Sensitivity analysis of the fission gas behavior model in BISON.
Energy Technology Data Exchange (ETDEWEB)
Swiler, Laura Painton; Pastore, Giovanni; Perez, Danielle; Williamson, Richard
2013-05-01
This report summarizes the result of a NEAMS project focused on sensitivity analysis of a new model for the fission gas behavior (release and swelling) in the BISON fuel performance code of Idaho National Laboratory. Using the new model in BISON, the sensitivity of the calculated fission gas release and swelling to the involved parameters and the associated uncertainties is investigated. The study results in a quantitative assessment of the role of intrinsic uncertainties in the analysis of fission gas behavior in nuclear fuel.
Chemical state of fission products in irradiated uranium carbide fuel
Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko
1987-12-01
The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.
Fission yield covariances for JEFF: A Bayesian Monte Carlo method
Directory of Open Access Journals (Sweden)
Leray Olivier
2017-01-01
Full Text Available The JEFF library does not contain fission yield covariances, but simply best estimates and uncertainties. This situation is not unique as all libraries are facing this deficiency, firstly due to the lack of a defined format. An alternative approach is to provide a set of random fission yields, themselves reflecting covariance information. In this work, these random files are obtained combining the information from the JEFF library (fission yields and uncertainties and the theoretical knowledge from the GEF code. Examples of this method are presented for the main actinides together with their impacts on simple burn-up and decay heat calculations.
Dynamical features of nuclear fission
Indian Academy of Sciences (India)
Santanu Pal
2015-08-01
It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.
Fission modes of mercury isotopes
Warda, M; Nazarewicz, W
2012-01-01
Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asymmetric fission in $^{180}$Hg [1] have stimulated renewed interest in the mechanism of fission in heavy nuclei. Here we study fission modes and fusion valleys in $^{180}$Hg and $^{198}$Hg using the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. We show that the observed transition from asymmetric fission in $^{180}$Hg towards more symmetric distribution of fission fragments in $^{198}$Hg can be explained in terms of competing fission modes of different geometries that are governed by shell effects in pre-scission configurations. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.
Thermodynamics of fission products in UO2+-x
Energy Technology Data Exchange (ETDEWEB)
Nerikar, Pankaj V [Los Alamos National Laboratory
2009-01-01
The stabilities of selected fission products - Xe, Cs, and Sr - are investigated as a function of non-stoichiometry x in UO{sub 2{+-}x}. In particular, density functional theory (OFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO{sub 2}, the DFT calculations are performed using spin polarization and with the Hubbard U tenn. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. CS{sub 2}O is observed as a second stable phase and SrO is found to be soluble in the UO{sub 2} matrix for all stoichiometries. These observations mirror experimentally observed phenomena.
Search for ternary fission of chromium-48
Dummer, Andrew K.
1999-07-01
Both alpha cluster model calculations and macroscopic energy calculations that allow for a double-neck shape of the compound nucleus suggest the possibility of a novel three 16O, chain-like configuration in 48 Cr. Such a configuration might lead to an enhanced cross section for three-16O breakup. To explore this possibility, the three-body exit channels for the 36Ar + 12C reaction at a beam energy of 210 MeV have been studied. The cross section for 16O + 16O + 16O breakup has been deduced and has been found to be in excess of what would be expected to result from a sequential binary fission process. However, the observation of a similarly enhanced 12C + 16O + 20Ne breakup cross section suggests that the observed 16O + 16O + 16O yields might still be associated with a statistical fission process. The results are discussed in the context of the fission of light nuclear systems and a simple cluster model calculation. This latter, ``Harvey model'' calculation suggests a possible inhibition of the formation of a three- 16O chain configuration from the 36Ar + 12C entrance channel. A further measurement using the 20Ne + 28Si-entrance channel is suggested.
Gudder, Stanley P
2014-01-01
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism.Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles.The first two chapters survey the ne
DEFF Research Database (Denmark)
Asmussen, Søren; Albrecher, Hansjörg
The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities......, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially...
Fission dynamics of 240Cf* formed in 34,36S induced reactions
Directory of Open Access Journals (Sweden)
Jain Deepika
2015-01-01
Full Text Available We have studied the entrance channel effects in the decay of Compound nucleus 240Cf* formed in 34S+206Pb and 36S+204Pb reactions by using energy density dependent nuclear proximity potential in the framework of dynamical cluster-decay model (DCM. At different excitation energies, the fragmentation potential and preformation probability of decaying fragments are almost identical for both the entrance channels, which seem to suggest that decay is independent of its formation and entrance channel excitation energy. It is also observed that, with inclusion of deformation effects upto quadrupole within the optimum orientation approach, the fragmentation path governing potential energy surfaces gets modified significantly. Beside this, the fission mass distribution of Cf* isotopes is also investigated. The calculated fission cross-sections using SIII force for both the channels find nice agreement with the available experimental data for deformed choice of fragments, except at higher energies. In addition to this, the comparative analysis with Blocki based nuclear attraction is also worked out. It is observed that Blocki proximity potential accounts well for the CN decay at all energies whereas the use of EDF based nuclear potential suggests the presence of some non-compound nucleus process (such as quasi-fission (qf at higher energies.
Bremsstrahlung emission of photons accompanying ternary fission of 252Cf
Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.; Saccá, C.
2011-02-01
We present the first results on the bremsstrahlung emission of photons accompanying ternary spontaneous fission of the 252Cf nucleus. We also compare our calculations on the basis of quantum model with preliminary experimental data and find a good agreement between theory and experiment for photon energies up to 500 keV, when the α-particle emission is in presence of the field of two fission fragments of the daughter nucleus.
Earth Data Analysis Center, University of New Mexico — USFS, State Forestry, BLM, and DOI fire occurrence point locations from 1987 to 2008 were combined and converted into a fire occurrence probability or density grid...
Shiryaev, Albert N
2016-01-01
This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises. The book is accessible to advanced undergraduates and can be used as a text for independent study. To accommodate the greatly expanded material in the third edition of Probability, the book is now divided into two volumes. This first volume contains updated references and substantial revisions of the first three chapters of the second edition. In particular, new material has been added on generating functions, the inclusion-exclusion principle, theorems on monotonic classes (relying on a detailed treatment of “π-λ” systems), and the fundamental theorems of mathematical statistics.
Reisfeld, R.; Katz, G.; Jacoboni, C.; De Pape, R.; Drexhage, M. G.; Brown, R. N.; Jørgensen, C. K.
1983-07-01
Fluorozirconate glasses containing 2 mole% ErF 3 were prepared by melting the binary fluorides with ammonium bifluoride under an atmosphere of carbon tetrachloride and argon at 850°C. Absorption spectra of these glasses were obtained and the Judd-Ofelt parameters were calculated. Emission spectra and lifetimes of erbium in fluorozirconate glass, in lead-gallium-zinc fluoride glass, and in yttrium-zirconium oxide crystal were measured and compared with the theoretical calculations. Laser emission lines in these materials are deduced from these measurements. It is suggested that materials doped with erbium may serve as light sources for fiber optic waveguides made from the undoped materials.
Calculating kinetics parameters and reactivity changes with continuous-energy Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Kiedrowski, Brian C [Los Alamos National Laboratory; Brown, Forrest B [Los Alamos National Laboratory; Wilson, Paul [UNIV. WISCONSIN
2009-01-01
The iterated fission probability interpretation of the adjoint flux forms the basis for a method to perform adjoint weighting of tally scores in continuous-energy Monte Carlo k-eigenvalue calculations. Applying this approach, adjoint-weighted tallies are developed for two applications: calculating point reactor kinetics parameters and estimating changes in reactivity from perturbations. Calculations are performed in the widely-used production code, MCNP, and the results of both applications are compared with discrete ordinates calculations, experimental measurements, and other Monte Carlo calculations.
Measurement of MA fission cross sections at YAYOI
Energy Technology Data Exchange (ETDEWEB)
Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1998-03-01
Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)
Institute of Scientific and Technical Information of China (English)
张信一; 赵柱民; 江新标; 郭和伟; 陈立新; 周永茂
2012-01-01
To calculate the fission product poisoning and bumup of the reactor accurately, the paper sets up the coupled calculation methods based on MCNP code and ORIGEN2 code and program data translation, cross section revision and date interface codes. Making use of elaborate reactor model to calculate the fission product poisoning and bumup for in-hospital neutron irradiator mark 1 reactor.%为了准确地计算反应堆的裂变产物中毒和燃耗问题,开发了一套蒙特卡罗方法程序系统.利用通用的燃耗计算方法,基于MCNP和ORIGEN2,编写了相关的数据转换、截面修正、数据接口程序,实现了MCNP和ORIGEN2程序的耦合.采用堆芯精细结构划分,对医院中子照射器Ⅰ型堆裂变产物中毒和燃耗进行了计算分析.
Lexicographic Probability, Conditional Probability, and Nonstandard Probability
2009-11-11
the following conditions: CP1. µ(U |U) = 1 if U ∈ F ′. CP2 . µ(V1 ∪ V2 |U) = µ(V1 |U) + µ(V2 |U) if V1 ∩ V2 = ∅, U ∈ F ′, and V1, V2 ∈ F . CP3. µ(V |U...µ(V |X)× µ(X |U) if V ⊆ X ⊆ U , U,X ∈ F ′, V ∈ F . Note that it follows from CP1 and CP2 that µ(· |U) is a probability measure on (W,F) (and, in... CP2 hold. This is easily seen to determine µ. Moreover, µ vaciously satisfies CP3, since there do not exist distinct sets U and X in F ′ such that U
Symmetric and asymmetric ternary fission of hot nuclei
Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H. K. W.; Siemssen, R. H.; Wilschut, H. W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.
1993-07-01
Emission of α particles accompanying fusion-fission processes in the 40Ar +232Th reaction at E(40Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code cascade . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7×10-20 s) and the motion during the descent to scission almost completely damped.
Kash, P. W.; Waschewsky, G. C. G.; Butler, L. J.; Francl, M. M.
1993-09-01
increasing the distance between the C-Br and C=O chromophores decreases the electronic configuration interaction matrix elements which mix and split the 1n(O)π*(C=O) and np(Br)σ*(C-Br) configurations at the barrier to C-Br bond fission in bromopropionyl chloride. The smaller splitting between the adiabats at the barrier to C-Br fission increases the probability of nonadiabatic recrossing of the barrier, nearly completely suppressing C-Br bond fission in bromopropionyl chloride. Preliminary ab initio calculations of the adiabatic barrier heights and the electronic configuration interaction matrix elements which split the adiabats at the barrier to C-Br and C-Cl fission in both bromopropionyl chloride and bromoacetyl chloride support the interpretation of the experimental results. We end by identifying a class of reactions, those allowed by overall electronic symmetry but Woodward-Hoffmann forbidden, in which nonadiabatic recrossing of the reaction barrier should markedly reduce the rate constant, both for ground state and excited state surfaces.
Microscopic theory of nuclear fission: a review
Schunck, N.; Robledo, L. M.
2016-11-01
spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.
Wang, Shouyu; Xue, Liang; Yan, Keding
2017-07-01
Light scattering from randomly rough surfaces is of great significance in various fields such as remote sensing and target identification. As numerical methods can obtain scattering distributions without complex setups and complicated operations, they become important tools in light scattering study. However, most of them suffer from huge computing load and low operating efficiency, limiting their applications in dynamic measurements and high-speed detections. Here, to overcome these disadvantages, microfacet slope probability density function based method is presented, providing scattering information without computing ensemble average from numerous scattered fields, thus it can obtain light scattering distributions with extremely fast speed. Additionally, it can reach high-computing accuracy quantitatively certificated by mature light scattering computing algorithms. It is believed the provided approach is useful in light scattering study and offers potentiality for real-time detections.
Energy Technology Data Exchange (ETDEWEB)
Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)
2011-07-01
In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)
Improving Ranking Using Quantum Probability
Melucci, Massimo
2011-01-01
The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of false alarm and the same parameter estimation data. As quantum probability provided more effective detectors than classical probability within other domains that data management, we conjecture that, the system that can implement subspace-based detectors shall be more effective than a system which implements a set-based detectors, the effectiveness being calculated as expected recall estimated over the probability of detection and expected fallout estimated over the probability of false alarm.
DEFF Research Database (Denmark)
Rojas-Nandayapa, Leonardo
Tail probabilities of sums of heavy-tailed random variables are of a major importance in various branches of Applied Probability, such as Risk Theory, Queueing Theory, Financial Management, and are subject to intense research nowadays. To understand their relevance one just needs to think...... of insurance companies facing losses due to natural disasters, banks seeking protection against huge losses, failures in expensive and sophisticated systems or loss of valuable information in electronic systems. The main difficulty when dealing with this kind of problems is the unavailability of a closed...
S Varadhan, S R
2001-01-01
This volume presents topics in probability theory covered during a first-year graduate course given at the Courant Institute of Mathematical Sciences. The necessary background material in measure theory is developed, including the standard topics, such as extension theorem, construction of measures, integration, product spaces, Radon-Nikodym theorem, and conditional expectation. In the first part of the book, characteristic functions are introduced, followed by the study of weak convergence of probability distributions. Then both the weak and strong limit theorems for sums of independent rando
Fission approach to cluster radioactivity
Indian Academy of Sciences (India)
D N Poenaru; R A Gherghescu
2015-09-01
Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.
Hidden systematics of fission channels
Directory of Open Access Journals (Sweden)
Schmidt Karl-Heinz
2013-12-01
Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy
Fission yield measurements at IGISOL
Directory of Open Access Journals (Sweden)
Lantz M.
2016-01-01
Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.
Simultaneous Evaluation of Fission Cross Sections for Cm Isotopes
Directory of Open Access Journals (Sweden)
Lee Y.-O.
2010-03-01
Full Text Available Fission Cross Sections for a complete set of Cm-isotopes, 240-250Cm, have been calculated in the incident energy range from above resonance region to 20 MeV. This work aims at providing the fission cross sections with consistent set of model parameters for Cm isotopes, as a part of a complete evaluation including covariance files for several minor actinides which play a great role in the Advanced Fuel Cycle (AFC design and applications as well as the design of new generation of nuclear reactors (GEN-IV. This was accomplished by means of computational analyses carried out with the nuclear model code EMPIRE-2.19 which is the modular system of nuclear reaction codes. A Fission model of this work took into account transmission derived in the WKB approximation within an optical model through a double-humped fission barrier.
Simultaneous Evaluation of Fission Cross Sections for Cm Isotopes
Kim, H. I.; Gil, C.-S.; Lee, Y.-O.
2010-03-01
Fission Cross Sections for a complete set of Cm-isotopes, 240-250Cm, have been calculated in the incident energy range from above resonance region to 20 MeV. This work aims at providing the fission cross sections with consistent set of model parameters for Cm isotopes, as a part of a complete evaluation including covariance files for several minor actinides which play a great role in the Advanced Fuel Cycle (AFC) design and applications as well as the design of new generation of nuclear reactors (GEN-IV). This was accomplished by means of computational analyses carried out with the nuclear model code EMPIRE-2.19 which is the modular system of nuclear reaction codes. A Fission model of this work took into account transmission derived in the WKB approximation within an optical model through a double-humped fission barrier.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Nazarewicz, W; Sheikh, J A; Baran, A
2014-01-01
Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM$^*$ and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action princip...
Mass dependence of pion-induced fission cross sections on the level density parameter
Institute of Scientific and Technical Information of China (English)
Zafar Yasin; Warda Iram; M.Ikram Shahzad
2012-01-01
Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile.In this research work,a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission.The analysis has been performed for both the positive and negative pions as the projectile at 80,100 and 150 MeV energies.The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature.We observed a smooth dependence at 150 MeV,and a sharper dependence at 80 and 100 MeV pion energy,in the fissility region above 29.44.
Daniel Gogny's vision for a microscopic theory of fission
Energy Technology Data Exchange (ETDEWEB)
Younes, W. [Lawrence Livermore National Laboratory, Livermore, CA (United States)
2017-05-15
Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated. (orig.)
Monte Carlo transition probabilities
Lucy, L. B.
2001-01-01
Transition probabilities governing the interaction of energy packets and matter are derived that allow Monte Carlo NLTE transfer codes to be constructed without simplifying the treatment of line formation. These probabilities are such that the Monte Carlo calculation asymptotically recovers the local emissivity of a gas in statistical equilibrium. Numerical experiments with one-point statistical equilibrium problems for Fe II and Hydrogen confirm this asymptotic behaviour. In addition, the re...
Assessing the role of the (n, γ f process in the low-energy fission of actinides
Directory of Open Access Journals (Sweden)
Talou Patrick
2016-01-01
Full Text Available We review the role of the (n, γ f process in the low-energy neutron-induced fission reaction of 239Pu. Recent measurements of the average total γ-ray energy released in this reaction were performed with the Detector for Advanced Neutron Capture Experiments (DANCE at Los Alamos. Significant fluctuations of this quantity in the resonance region below 100 eV can be interpreted by invoking the presence of the indirect (n, γ f process. Modern calculations of the probability for such an event to occur are presented.
The SPIDER fission fragment spectrometer for fission product yield measurements
Energy Technology Data Exchange (ETDEWEB)
Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2015-07-11
The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.
Measurement of Fission Product Yields from Fast-Neutron Fission
Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.
2014-09-01
One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.
Yanez, R.; de Souza, R. T.; Bredeweg, T. A.; Davin, B.; Kwiatkowski, K.; Viola, V. E., Jr.; Cârjan, N.
1998-04-01
We have coupled the Los Alamos finite range dynamical model of fission with a Coulomb trajectory model in order to understand recently observed trends in experimental measurements of neck emission during fission. In the reaction of 22 A MeV ^12C and ^232Th a significant yield of relatively heavy neck fragments (Z=9-13), which originate from peripheral collisions, was observed. Within the macroscopic model we study the effect of dissipation, angular momentum and an initial velocity along the fission direction on the formation of a third middle fragment. As compared to binary fission, ternary fission is associated with a more elongated scission configuration. Following scission, a classical Coulomb trajectory model is used to calculate the final kinetic energies of the fragments given the breakup geometry, and the radial and rotational velocities of the fission fragments as predicted by the macroscopic model. The calculated final kinetic energies are compared to the measured kinetic energies of the experimentally observed neck fragments.
Compound nucleus formation probability PCN defined within the dynamical cluster-decay model
Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.
2015-01-01
With in the dynamical cluster-decay model (DCM), the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total) fusion cross section σfusion is sum of the compound nucleus (CN) and noncompound nucleus (nCN) decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER) and fusion-fission (ff), including the intermediate mass fragments (IMFs), each calculated for all contributing decay fragments (A1, A2) in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf) process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.
Compound nucleus formation probability PCN defined within the dynamical cluster-decay model
Directory of Open Access Journals (Sweden)
Chopra Sahila
2015-01-01
Full Text Available With in the dynamical cluster-decay model (DCM, the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total fusion cross section σfusion is sum of the compound nucleus (CN and noncompound nucleus (nCN decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER and fusion-fission (ff, including the intermediate mass fragments (IMFs, each calculated for all contributing decay fragments (A1, A2 in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.
Nuclear Fission Investigation with Twin Ionization Chamber
Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.
2011-11-01
The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.
Allowance for the tunnel effect in the entrance channel of fusion-fission reactions
Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.
2016-05-01
A two-stage model is developed in order to describe fusion-fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.
Directory of Open Access Journals (Sweden)
Ripani M.
2015-01-01
Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics
Directory of Open Access Journals (Sweden)
Taieb J.
2010-03-01
Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.
Tupitsyn, I I; Shabaev, V M; Bondarev, A I; Deyneka, G B; Maltsev, I A; Hagmann, S; Plunien, G; Stoehlker, Th
2011-01-01
The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The method employs the active electron approximation, in which only the active electron participates in the charge transfer and excitation processes while the passive electrons provide the screening DFT potential. The time-dependent Dirac wave function of the active electron is represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms). The screening DFT potential is calculated using the overlapping densities of each ions (atoms), derived from the atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken as the sum of the exact reference ion (atom) Dirac-Fock...
Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference
Hamilton, J. H.; Phillips, W. R.; Carter, H. K.
Long Range Alpha Emission Probabilities in the Thermal and Resonance for 239Pu * Spectroscopy of Selected Fission Fragments * Gamma-Ray Spectra of Individual Fission Products * Gamma Spectroscopy of the Transfermium Nucleus Nobelium-254 * Summary of the Yield Values from Fast Fission of 233U Measured of Studsvik * Decay Studies of Neutron-Rich Isotopes Produced in Proton-Induced Fission of Actinides * Understanding of the Fission Process From the Deformation Properties of Fissioning Nuclei * Heavy Clusterization in 252Cf: An Application of the U(3) Selection Rule * Synthesis of Superheavy Elements with Three-Dimensional Fluctuation-Dissipation Dynamical Model * Asymmetric Fission Along Nuclear Lattice Planes * Experimental Study of Correlations Between Fission Neutron Multiplicity, Mass and Kinetic Energy of Fission Fragments From Spontaneous Fission of 252Cf, 244Cm and 248Cm * Super- and Hyper-Deformed Isomeric States and Long-Lived Superheavy Elements * Systematic Investigation of the Neutron Induced Fission Reaction 235, 238U and 237Np below 6 MeV * Studying Iso-chains with RNBs * Cold Fission Studies with Large Detector Arrays * Single-Particle States in Transcurium Nuclei * Shell Effects and Fission of Superheavy Nuclei at Low Excitation Energies * Experiments on the Synthesis of Superheavy Nuclei in 48Ca-Induced Reactions * GSI Experiments on the Synthesis of Superheavy Elements - Results and Plans for the Future * Spectroscopy of Refractory Fission Products at IGISOL * Ternary Fission Induced by Polarized Neutrons * Neutron Decay of Ternary Particles in Spontaneous Fission of 252Cf * New Fission Modes * Alpha Clustering and Ternary Fission * Interplay of Fusion and Fission Dynamics * Applications of the Hartree Bogoliubov Model to Nuclei with Large Isospin Values * Structure of Neutron-Rich Pd Isotopes * Systematic Studies of Fission Saddle-Point Shapes and Their Relation to the Maxima of the Fission-Fragment Mass and Kinetic-Energy Distributions * Limits of
Membrane biology: fission behind BARs.
Haucke, Volker
2012-06-05
Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.
Fission throughout the periodic table
Energy Technology Data Exchange (ETDEWEB)
Moretto, L.G.; Wozniak, G.J.
1989-04-01
The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs.
Tudora, A.; Hambsch, F.-J.; Giubega, G.
2016-09-01
The present paper proposes a modeling of the local even-odd effect based on the number of configurations in a nucleus undergoing fission at two stages along its fission path. One is the fissioning nucleus stage just after passing through the outer saddle point when the fragments are considered as pre-formed and the intrinsic energy is not yet shared. The other stage is at the end of the fission path when the scission is imminent. Then the intrinsic energy is already partitioned and the fragments are completely formed. The probability that a pre-formed fragmentation arrives at the end of the fission path (i.e. at scission) when the fragmentation is completely formed is expressed by the ratio of the number of configurations of the formed fragmentation to the one of pre-formed fragmentation. The local even-odd effect is defined as half of the difference between these normalized ratios corresponding to even-Z and odd-Z fragmentations. Both numbers of configurations in the fissioning nucleus, in which the fragments are pre-formed and completely formed, are calculated using level densities described by the constant temperature function (justified by the small values of the intrinsic energy before scission). The obtained local even-odd effect results describe well the experimental data, including the increase at asymmetry values corresponding to fragmentations in which one of the fragments is magic or double magic (i.e. fragmentations in which ZH = 50 and/or NH = 82 and very asymmetric fragmentations in which ZL = 28).
Fission Product Release and Survivability of UN-Kernel LWR TRISO Fuel
Energy Technology Data Exchange (ETDEWEB)
Besmann, Theodore M [ORNL; Ferber, Mattison K [ORNL; Lin, Hua-Tay [ORNL
2014-01-01
A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from range calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 m diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated with a TRISO particle as a function of fluence. Creep and swelling of the inner and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by measuring the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers as a function of fluence. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.
Ternary fission and cluster radioactivities
Poenaru, D N; Greiner, W; Gherghescu, R A; Hamilton, J H; Ramayya, A V
2002-01-01
Ternary fission yield for different kinds of light particle accompanied fission processes is compared to the Q-values for the corresponding cold phenomena, showing a striking correlation. The experimental evidence for the existence of a quasimolecular state in sup 1 sup 0 Be accompanied fission of sup 2 sup 5 sup 2 Cf may be explained using a three-center phenomenological model which generates a third minimum in the deformation energy at a separation distance very close to the touching point. This model is a natural extension of the unified approach to three groups of binary decay modes (cold fission, cluster radioactivities and alpha decay), illustrated by sup 2 sup 3 sup 4 U decay modes, and the alpha valley on the potential energy surfaces of sup 1 sup 0 sup 6 Te. New measurements of cluster decay modes, confirming earlier predictions within analytical superasymmetric fission model, are included in a comprehensive half-life systematics. (authors)
Decay modes in spontaneous fission
Gönnenwein, F
1999-01-01
Spontaneous fission (SF) is considered to be the choice reaction for studying the influence of shell and pairing effects in fission in general, and in particular their impact on the mass and energy distributions of fission fragments. For the time being some 35 SF reactions have been analysed in detail for elements ranging from Pu up to Rf. Going from the lighter to the heavier actinides both, the distributions of fragment mass (or charge) and of total kinetic energy undergo dramatic changes. It is observed in experiment, however, that these distributions may be well described as a superposition of a few fission modes, each with its own characteristic mass an energy pattern. The experimental modes are traced in theory to fine structures in the potential energy surface of a fissioning nucleus, provided shell and pairing corrections to the basic liquid drop model are accounted for.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sadhukhan, Jhilam; Schunck, Nicolas
2016-01-01
In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.
Role of energy cost in the yield of cold ternary fission of 252Cf
Indian Academy of Sciences (India)
P V Kunhikrishnan; K P Santhosh
2013-01-01
The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.
FREYA-a new Monte Carlo code for improved modeling of fission chains
Energy Technology Data Exchange (ETDEWEB)
Hagmann, C A; Randrup, J; Vogt, R L
2012-06-12
A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.
Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides
Directory of Open Access Journals (Sweden)
Ramos D.
2016-01-01
Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.
Fission modes in charged-particle induced fission
Energy Technology Data Exchange (ETDEWEB)
Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))
1990-12-01
The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).
Energy-Dependent Fission Q Values Generalized for All Actinides
Energy Technology Data Exchange (ETDEWEB)
Vogt, R
2008-09-25
We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.
Evaluation and compilation of fission product yields 1993
Energy Technology Data Exchange (ETDEWEB)
England, T.R.; Rider, B.F.
1995-12-31
This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.
Dispersion of the Neutron Emission in U{sup 235} Fission
Feynman, R. P.; de Hoffmann, F.; Serber, R.
1955-01-01
Equations are developed which allow the calculation of the average number of neutrons per U{sup235} fission from experimental measurements. Experimental methods are described, the results of which give a value of (7.8 + 0.6){sup ½} neutrons per U{sup 235} thermal fission.
New fission fragment distributions and r-process origin of the rare-earth elements
Goriely, S; Lemaitre, J -F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H -Thomas
2013-01-01
Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 140.
Advanced model for the prediction of the neutron-rich fission product yields
Directory of Open Access Journals (Sweden)
Rubchenya V. A.
2013-12-01
Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.
Study of Survival Probability of Super Heavy Nuclei
Institute of Scientific and Technical Information of China (English)
WANGNan; ZHAOEn-Guang; LIWen-Fei; LIJian-Feng; XUHu-Shan; ZUOWei; LIJun-Qing
2003-01-01
The survival probability of super heavy nuclei produced in cold fusion reactions is studied by using the standard Fermi gas level density formula and analyzed with fission and neutron evaporation characteristics predicted in different theoretical models. The level density formula used in this letter suppresses the ratio of neutron emission width to fission width, Гn/Гf. The dependence of Гn/Гf on the saddle point level density parameter and excitation energy is also investigated.
Energy Technology Data Exchange (ETDEWEB)
Pigni, Marco T [ORNL; Francis, Matthew W [ORNL; Gauld, Ian C [ORNL
2015-01-01
A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for ^{235,238}U and ^{239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.
Collision Probability Analysis
DEFF Research Database (Denmark)
Hansen, Peter Friis; Pedersen, Preben Terndrup
1998-01-01
probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...
Spontaneous fission of superheavy nucleus $^{286}$Fl
Poenaru, Dorin N
2016-01-01
The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P.; Krishnan, Sreejith [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)
2016-04-15
Within the unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even {sup 244-260}Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of the {sup 244}Cf isotope, the highest yield is obtained for the fragment combination {sup 108}Ru + {sup 4}He + {sup 132}Te, which contains the near doubly magic nucleus {sup 132}Te (N = 80, Z = 52). In the case of {sup 246}Cf and {sup 248}Cf isotopes, the highest yield is obtained for the fragment combinations with the near doubly magic nucleus {sup 134}Te (N = 82, Z = 52) as the heaviest fragment. The highest yield obtained for {sup 250}Cf, {sup 252}Cf, {sup 254}Cf, {sup 256}Cf, {sup 258}Cf and {sup 260}Cf isotopes is for the fragment combination with the doubly magic nucleus {sup 132}Sn (N = 82), Z = 50 as the heaviest fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to the closed shell effect, ground-state deformation also plays an important role in the calculation of the relative yield of favorable fragment combinations. The computed isotopic yields for the alpha accompanied ternary fission of the {sup 252}Cf isotope are found to be in agreement with the experimental data. The emission probability and kinetic energy of the long-range alpha particle is calculated for the various isotopes of Cf and are found to be in good agreement with the experimental data. (orig.)
Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A
2012-11-16
In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.
Fallot, M; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Taín, J L; Yermia, F; Zakari-Issoufou, A -A
2012-01-01
In this paper, we study the impact of the inclusion of the recently measured beta decay properties of the $^{102;104;105;106;107}$Tc, $^{105}$Mo, and $^{101}$Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes $^{235, 238}$U, and $^{239,241}$Pu. These actinides are the main contributors to the fission processes in Pressurized Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo and Nb isotopes have been found to play a major role in the $\\gamma$ component of the decay heat of $^{239}$Pu, solving a large part of the $\\gamma$ discrepancy in the 4 to 3000\\,s range. They have been measured using the Total Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations are performed using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of $^{235}$U, $^{239,241}$Pu ...
Fission of super-heavy nuclei explored with Skyrme forces
Schindzielorz, N; Klüpfel, P; Reinhard, P -G; Hager, G
2010-01-01
We present a large scale survey of life-times for spontaneous fission in the regime of super-heavy elements (SHE), i.e. nuclei with Z=104-122. This is done on the basis of the Skyrme-Hartree-Fock model. The axially symmetric fission path is computed using a quadrupole constraint. Self-consistent cranking is used for the collective masses and associated quantum corrections. The actual tunneling probability is estimated by the WKB approximation. Three typical Skyrme forces are used to explore the sensitivity of the results. Benchmarks in the regime Z=104-108 show an acceptable agreement. The general systematics reflects nicely the islands of shell stabilization and the crossover from $\\alpha$-decay to fission for the decay chains from the region of Z/N=118/176.
Photoluminescence dynamics in singlet fission chromophore liquid melts
Piland, Geoffrey B.; Bardeen, Christopher J.
2017-02-01
The effect of high temperature melting on the photophysics of three prototypical singlet fission molecules is investigated. Time-resolved photoluminescence is used to look at the melt phase of the molecules tetracene, diphenylhexatriene and rubrene. Chemical decomposition of tetracene precluded any detailed measurements on this molecule. In the diphenylhexatriene melt, a rapid singlet state nonradiative relaxation process outcompetes singlet fission. In the rubrene melt, singlet fission occurs at a rate similar to that of the crystal, but the decay of the delayed fluorescence is much more rapid. The rapid decay of the delayed fluorescence suggests that either the triplet lifetime is shortened, or the fusion probability decreases, or that both factors are operative at higher temperatures.
β -delayed fission and α decay of 196At
Truesdale, V. L.; Andreyev, A. N.; Ghys, L.; Huyse, M.; Van Duppen, P.; Sels, S.; Andel, B.; Antalic, S.; Barzakh, A.; Capponi, L.; Cocolios, T. E.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Heßberger, F. P.; Kalaninová, Z.; Köster, U.; Lane, J. F. W.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Mitsuoka, S.; Nagame, Y.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rothe, S.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.
2016-09-01
A nuclear-decay spectroscopy study of the neutron-deficient isotope 196At is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure α decay of 196At allowed the low-energy excited states in the daughter nucleus 192Bi to be investigated. A β -delayed fission study of 196At was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope 196Po (populated by β decay of 196At) was deduced based on the measured fission-fragment energies. A β DF probability Pβ DF(196At) =9 (1 ) ×10-5 was determined.
A precursor of β-delayed fission:230Ac
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The 230Ra has been produced via multinucleon transfer and dissipativefragmentation of heavy target in the 60 MeV/u 18O ion reaction with natural thorium.The radium was radiochemically separated from irradiated thorium targets. 230Acwas obtained by 230Ra β-→ 230Ac. Thin Ra sources were prepared for observing fissionfragments from β-delayed fission of 230Ac. The sources were exposed to the micafission track detectors and measured by a HPGe γ detector. The two fission eventswere obtained and could been assigned to theβ-delayed fission of 230Ac. The β-delayedfission probability of 230Ac was determined to be (1.19+0.85) × 10-8.
Cold fission description with constant and varying mass asymmetries
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); Garcia, F.; Guzman, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1998-01-01
Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of {sup 234} U cold fission are satisfactorily reproduced. (author) 39 refs., 6 figs., 2 tabs.; e-mail: telo at ird.gov.br
Fragment Excitation and Moments of Kinetic Energy Distributions in Nuclear Fission
Faust, Herbert R.
2004-02-01
The Random Excitation Model (REX-M) in nuclear fission is formulated with the level density formula from the Fermi-gas model. It is assumed that excitation of fission fragments is totally determined by a temperature calculated from the reaction Q-value. From this assumption fragment excitation, moments of kinetic energy distributions, and neutron evaporation are calculated. It is shown that the measured distributions and the neutron evaporation characteristics are in good agreement with the model calculations. Finally we extend the REX-model to describe aspects of ternary fission.
The spectroscopy of fission fragments
Energy Technology Data Exchange (ETDEWEB)
Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.
Prompt γ-ray production in neutron-induced fission of 239Pu
Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.
2013-04-01
Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.
Modeling of Fission Gas Release in UO2
Energy Technology Data Exchange (ETDEWEB)
MH Krohn
2006-01-23
A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].
Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.
2016-06-01
In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.
Directory of Open Access Journals (Sweden)
Hambsch F.-J.
2016-01-01
Full Text Available In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL of the OECD/Nuclear Energy Agency (NEA. In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC. Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.
Parity violation in ternary fission
Gönnenwein, F.; Belozerov, A. V.; Beda, A. G.; Burov, S. I.; Danilyan, G. V.; Martem'yanov, A. N.; Pavlov, V. S.; Shchenev, V. A.; Bondarenko, L. N.; Mostovoĭ, Yu. A.; Geltenbort, P.; Last, J.; Schreckenbach, K.
1994-01-01
The parity-violating correlation between incoming neutron spin and fragment momentum has been measured simultaneously for binary and ternary fission of 233U(n, f) and 239Pu(n, f). The experiment has been performed with a polarized cold neutron beam of the Institut Laue-Langevin in Grenoble/France. The ratios of the parity-violating asymmetry coefficients, α ternf and α binnf, for ternary and binary fission, respectively, are found to be {α ternf}/{α binnf = 1.05 ± 0.10 } and 1.12 ± 0.08 for the 233U and 239Pu target nucleus, respectively. Both experiments are compatible with {α ternf}/{α binnf = 1 }. The implications of this result for models of ternary fission are discussed. The conclusion drawn is that ternary particles are emitted at the very last stage of fission.
Advanced Space Fission Propulsion Systems
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust
Nagaya, Yasunobu
2014-06-01
The methods to calculate the kinetics parameters of βeff and Λ with the differential operator sampling have been reviewed. The comparison of the results obtained with the differential operator sampling and iterated fission probability approaches has been performed. It is shown that the differential operator sampling approach gives the same results as the iterated fission probability approach within the statistical uncertainty. In addition, the prediction accuracy of the evaluated nuclear data library JENDL-4.0 for the measured βeff/Λ and βeff values is also examined. It is shown that JENDL-4.0 gives a good prediction except for the uranium-233 systems. The present results imply the need for revisiting the uranium-233 nuclear data evaluation and performing the detailed sensitivity analysis.
Fission hindrance and nuclear viscosity
Indian Academy of Sciences (India)
Indranil Mazumdar
2015-08-01
We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.
Principles of the mitochondrial fusion and fission cycle in neurons.
Cagalinec, Michal; Safiulina, Dzhamilja; Liiv, Mailis; Liiv, Joanna; Choubey, Vinay; Wareski, Przemyslaw; Veksler, Vladimir; Kaasik, Allen
2013-05-15
Mitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.
Prompt Fission Neutron Spectra of Actinides
Energy Technology Data Exchange (ETDEWEB)
Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.
2016-01-01
The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data
Fission fragment energy correlation measurements for Cf-252(SF)
Energy Technology Data Exchange (ETDEWEB)
Barreau, G.; Sicre, A.; Caitucoli, F.; Doan, T.P.; Leroux, B.; Martinez, G.; Asghar, M.; Benfoughal, T.
1986-01-01
The mean total kinetic energy, its variance and to a lesser extent the mass yield show strong and correlated fluctuations. These structures are discussed in terms of the static macro-microscopic potential energy calculations. The cold fission mass yield distribution exhibits a fine structure which results from an odd-even effect on nuclear charge.
Neutron induced current pulses in fission chambers. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Taboas, A L; Buck, W L
1978-01-01
The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained.
Study for fusion-fission and quasifission in reactions using {sup 238}U target nucleus
Energy Technology Data Exchange (ETDEWEB)
Nishio, Katsuhisa, E-mail: nishio.katsuhisa@jaea.go.jp [Advanced Science Reserch Center, Japan Atomic Energy Agency, Tokai, Ibraki 319-1195 (Japan)
2011-02-01
Fragment mass distributions for fission after full momentum transfer (FMT) were measured for the {sup 30}Si,{sup 31}P,{sup 34,36}S,{sup 40}Ar + {sup 238}U reactions at bombarding energies around the Coulomb barrier. The experiment was carried out at the JAEA tandem accelerator facility. We observed strong variation of the mass distribution on beam energy and projectile nucleus. In the reaction of {sup 36}S +{sup 238}U we observed a transition from symmetry to asymmetry mass distributions when the beam energies were decreased from the above-barrier to sub-barrier values. The mass asymmetry was A{sub L} /A{sub H} = 74/200, which corresponds to the fission valley leading to the nuclei close to the doubly closed-shell nuclei {sup 78}Ni /{sup 208}Pb. The fission channel is populated by quasifission, which is the disintegration without forming the compound nucleus. The incident-energy dependence is strongly correlated with the prolate deformation of {sup 238}U and the orientation at the initial impact. The results indicate that the reaction starting at the polar collisions on {sup 238}U has larger quasifission probability. The mass distributions are nicely reproduced by a model calculation using Langevin equation. The {sup 40}Ar + {sup 238}U reaction also has the similar mass asymmetry (A{sub L}/A{sub H} {approx} 78/200) in quasifission. In the reactions of {sup 31}P + {sup 238}U and {sup 30}Si + {sup 238}U, mass asymmetries are A{sub L}/A{sub H} 81/188 and 90/178, respectively. The results suggest that the system produced by the reaction using lighter projectile approaches closer to the shape of the compound nucleus even when quasifission occurs. In the reactions of {sup 30}Si +{sup 238}U and {sup 34}S+ {sup 238}U, we also measured the evaporation residue (ER) cross sections to obtain information on the fusion probability. From the ER cross sections for the {sup 34}S+{sup 238}U reaction it was suggested that the symmetric fission is also dominated by quasifission.
Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing
Sutton, Christopher
2017-03-13
We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.
Collision Probability Analysis
DEFF Research Database (Denmark)
Hansen, Peter Friis; Pedersen, Preben Terndrup
1998-01-01
It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...... characteristics are: ship speed, ship manoeuvrability, the layout of the navigational bridge, the radar system, the number and the training of navigators, the presence of a look out etc. The main parameters affecting the navigational environment are ship traffic density, probability distributions of wind speeds...... probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...
A new prompt heavy-ion-induced fission mode
Indian Academy of Sciences (India)
W Udo Schröder
2015-08-01
Fission instabilities induced by mechanical and thermal stresses on intermediate nuclear systems in heavy-ion reactions are poorly understood but should reveal independent evidence for the nuclear equation of state (EoS), notably the tensile strength of finite nuclei. Experimental evidence is presented in support of a new mode of prompt fission of the composite nucleus formed in central 78Kr+40Ca collisions at only a few MeV per nucleon above the interaction barrier. The new process recalls the ‘L-window for fusion’ phenomenon, which was predicted by the early reaction theory and reappears in modern DFT model calculations.
Systematics of fission cross sections at the intermediate energy region
Energy Technology Data Exchange (ETDEWEB)
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
Measurement and Analysis of Fission Rates in a Spherical Mockup of Uranium and Polyethylene
Tong-Hua, Zhu; Xin-Xin, Lu; Rong, Liu; Zi-Jie, Han; Li, Jiang; Mei, Wang
2013-01-01
Measurements of the reaction rate distribution were carried out using two kinds of Plate Micro Fission Chamber(PMFC). The first is a depleted uranium chamber and the second an enriched uranium chamber. The material in the depleted uranium chamber is strictly the same as the material in the uranium assembly. With the equation solution to conduct the isotope contribution correction, the fission rate of 238U and 235U were obtained from the fission rate of depleted uranium and enriched uranium. And then, the fission count of 238U and 235U in an individual uranium shell was obtained. In this work, MCNP5 and continuous energy cross sections ENDF/BV.0 were used for the analysis of fission rate distribution and fission count. The calculated results were compared with the experimental ones. The calculation of fission rate of DU and EU were found to agree with the measured ones within 10% except at the positions in polyethylene region and the two positions near the outer surface. Beacause the fission chamber was not co...
Fission-track analysis of meteorites: Dating of the Marjalahti pallasite
Energy Technology Data Exchange (ETDEWEB)
Bondar, Yu.V. [Institute of Environmental Geochemistry, 34a Palladin ave., Kiev 03142 (Ukraine)]. E-mail: juliavad@yahoo.com; Perelygin, V.P. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)
2005-11-15
The results of the Marjalahti pallasite fission-track age determination are presented. Thorough examination of fossil tracks in the phosphate (whitlockite) crystals coupled with U-content determination in whitlockites can make it possible to estimate the contributions of all possible track sources to the total track density and to calculate a model fission-track age. It is found that whitlockite crystals of the Marjalahti pallasite contain fossil tracks due to galactic cosmic rays (VH, VVH nuclei); fission of U and Th induced by cosmic rays; spontaneous fission of {sup 238}U; and spontaneous fission of extinct, short-lived {sup 244}Pu present in significant quantities in the early solar system. A great track density attributed to the extinct {sup 244}Pu testifies to the high fission-track age. The model fission-track ages of (4.31+/-0.02)x10{sup 9}yr for the Marjalahti pallasite are calculated. Petrographic studies allow us to interpret the fission-track age as the time of the last shock/thermal event in the cosmic history of the pallasite.
Neutron and fission yields from high-energy deuterons in infinite /sup 238/U targets
Energy Technology Data Exchange (ETDEWEB)
Canfield, E.
1965-06-28
Early work on the interaction of high energy deuterons with large /sup 238/U targets is reexamined and current theoretical study is discussed. Results of fission and neutron yield calculations are compared with experiment. (SDF)
Fission characteristics of 216Ra formed in heavy-ion induced reactions
Indian Academy of Sciences (India)
Hadi Eslamizadeh
2013-11-01
A Kramers-modified statistical model is used to calculate the cross-section of the evaporation residue, fission cross-section, average pre-fission multiplicities of protons and -particles for 216Ra formed in 19F + 197Au reactions and results are compared with the experimental data. To calculate these quantities, the effects of temperature and spin K about the symmetry axis have been considered in the calculations of the potential energy surfaces and the fission widths. It is shown that the results of the calculations using values of the temperature coefficient of the effective potential = 0.008 ± 0.003 MeV−2 and scaling factor of the fission-barrier height $r_{s} = 1.004 ± 0.002$ are in good agreement with the experimental data.
Inclusive spectra of hadrons created by color tube fission; 2, Inclusive spectra of primary hadrons
Gedalin, E V
1997-01-01
The primary inclusive spectra and correlation functions of particles created by color tube fission are considered. Using the previously obtained expression for probability of the tube breaking in n points we have calculated the one and two particle inclusive spectra of tube pieces as well as pseudoscalar and vector mesons in plateau area. It is shown that the plateau height of the one particle inclusive spectrum is determined by the flavor quark composition and spin of hadron. Small oscillations of the tube surface give only small correction to the main term. The correlation functions of fixed particles have the form of a product of the universal function that depends only on the particle rapidity difference and thescale factor dependent on the spin and flavor quark composition of hadron.
1983-07-26
DeGroot , Morris H. Probability and Statistic. Addison-Wesley Publishing Company, Reading, Massachusetts, 1975. [Gillogly 78] Gillogly, J.J. Performance...distribution [ DeGroot 751 has just begun. The beta distribution has several features that might make it a more reasonable choice. As with the normal-based...1982. [Cooley 65] Cooley, J.M. and Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 1965. [ DeGroot 75
Comparison of Fission Product Yields and Their Impact
Energy Technology Data Exchange (ETDEWEB)
S. Harrison
2006-02-01
This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.
Fusion and fission of atomic clusters: recent advances
DEFF Research Database (Denmark)
Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.
2005-01-01
We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....
Fusion and fission of atomic clusters: recent advances
DEFF Research Database (Denmark)
Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.
2005-01-01
developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level......We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....
Understanding of the dissipation mechanism in ternary fission for the system 197Au+197Au
Tian, Jun-Long; Li, Xian; Wu, Xi-Zhen; Li, Zhu-Xia; Yan, Shi-Wei
2009-03-01
The mass number distributions of three fragments from the ternary fission of the system 197Au+197Au are reproduced rather well by using the improved quantum molecular dynamics (ImQMD) model without any adjusting parameter. It is found that the probability of ternary fission evidently depends on the incident energy and the impact parameter, and the two-body dissipation is the main mechanism responsible for the formation of the third fragment with comparable mass.
A new approach to barrier-top fission dynamics
Bertsch, G. F.; Mehlhaff, J. M.
2016-06-01
We proposed a calculational framework for describing induced fission that avoids the Bohr-Wheeler assumption of well-defined fission channels. The building blocks of our approach are configurations that form a discrete, orthogonal basis and can be characterized by both energy and shape. The dynamics is to be determined by interaction matrix elements between the states rather than by a Hill-Wheeler construction of a collective coordinate. Within our approach, several simple limits can be seen: diffusion; quantized conductance; and ordinary decay through channels. The specific proposal for the discrete basis is to use the Kπ quantum numbers of the axially symmetric Hartree-Fock approximation to generate the configurations. Fission paths would be determined by hopping from configuration to configuration via the residual interaction. We show as an example the configurations needed to describe a fictitious fission decay 32S → 16 O + 16 O. We also examine the geometry of the path for fission of 236U, measuring distances by the number of jumps needed to go to a new Kπ partition.
Collective aspects of singlet fission in molecular crystals
Energy Technology Data Exchange (ETDEWEB)
Teichen, Paul E.; Eaves, Joel D., E-mail: joel.eaves@colorado.edu [Department of Chemistry and Biochemistry, The University of Colorado at Boulder, Boulder, Colorado 80309 (United States)
2015-07-28
We present a model to describe collective features of singlet fission in molecular crystals and analyze it using many-body theory. The model we develop allows excitonic states to delocalize over several chromophores which is consistent with the character of the excited states in many molecular crystals, such as the acenes, where singlet fission occurs. As singlet states become more delocalized and triplet states more localized, the rate of singlet fission increases. We also determine the conditions under which the two triplets resulting from fission are correlated. Using the Bethe Ansatz and an entanglement measure for indistinguishable bipartite systems, we calculate the triplet-triplet entanglement as a function of the biexciton interaction strength. The biexciton interaction can produce bound biexciton states and provides a source of entanglement between the two triplets even when the triplets are spatially well separated. Significant entanglement between the triplet pair occurs well below the threshold for bound pair formation. Our results paint a dynamical picture that helps to explain why fission has been observed to be more efficient in molecular crystals than in their covalent dimer analogues and have consequences for photovoltaic efficiency models that assume that the two triplets can be extracted independently.
Isotopic yield in cold binary fission of even-even $^{244-258}$Cf isotopes
Santhosh, K P; Krishnan, Sreejith
2016-01-01
The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that highest yield for 244,246,248Cf isotopes are for the fragments with isotope of Pb (Z=82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z=80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z=50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favoured for Cf isotopes with mass number A 252. In the case of Cf isotope with A=252, there is an equal probability for asymmetric and symmetric splitti...
Excitation Functions of Fusion and Fission for 32S+170Er at Energies Near and Below Coulomb Barrier
Institute of Scientific and Technical Information of China (English)
BAO; Peng-fei; LIN; Cheng-jian; YANG; Feng; JIA; Hui-ming; XU; Xin-xing; YANG; Lei; SUN; Li-jie; MA; Nan-ru; ZHANG; Huan-qiao; LIU; Zu-hua
2013-01-01
Excitation functions of fusion evaporation residue(ER)and fission for 32S+170Er system at near barrier energy region were measured,respectively.With the comparison to the calculations of coupledchannels effects,it is accessible to investigate the impacts on the fusion and fission processes of target deformation and the dependence on the entrance-channel.The experiment was performed at Beijing HI-13 Tandem Accelerator.Fission and fusion evaporation
Assessment of fissionable material behaviour in fission chambers
Energy Technology Data Exchange (ETDEWEB)
Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)
2010-06-21
A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.
Experimental approach to fission process of actinides
Energy Technology Data Exchange (ETDEWEB)
Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science
1997-07-01
From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)
Nuclear fission and neutron-induced fission cross-sections
James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E
2013-01-01
Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis
Landau-Zener Probability Reviewed
Valencia, C
2008-01-01
We examine the survival probability for neutrino propagation through matter with variable density. We present a new method to calculate the level-crossing probability that differs from Landau's method by constant factor, which is relevant in the interpretation of neutrino flux from supernova explosion.
Report on simulation of fission gas and fission product diffusion in UO_{2}
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division
2016-07-22
In UO_{2} nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO_{2} under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe_{U3O} cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe_{U3O} cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe_{U3O} cluster recombines quickly with irradiation induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher
Report on simulation of fission gas and fission product diffusion in UO_{2}
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division
2016-07-22
In UO_{2} nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO_{2} under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe_{U3O} cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe_{U3O} cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-moving Xe_{U3O} cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher
Survival and compound nucleus probability of super heavy element Z = 117
Energy Technology Data Exchange (ETDEWEB)
Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First grade College, Department of Physics, Kolar, Karnataka (India)
2017-05-15
As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of {sup 289-297}Ts, we have calculated the transmission probability (T{sub l}), compound nucleus formation probabilities (P{sub CN}) and survival probability (P{sub sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of {sup 289-297}Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei {sup 289-297}Ts are worked out and listed explicitly. We have also studied the variation of P{sub CN} and P{sub sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)
High-Resolution Correlated Fission Product Measurements of 235U (nth , f) with SPIDER
Shields, Dan; Spider Team
2015-10-01
The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) has obtained high-resolution, moderate-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). These data will be some of the first of their kind available to nuclear data evaluations. An overview of the SPIDER detector, analytical method, and preliminary results for 235U (nth , f) will be presented. LA-UR-15-20130 This work benefited from the use of the LANSCE accelerator facility and was performed under the auspices of the US Department of Energy by Los Alamos Security, LLC under Contract DE-AC52-06NA25396.
Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.
2013-12-01
Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.
Directory of Open Access Journals (Sweden)
Lemaître J.-F.
2013-12-01
Full Text Available Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.
Comparative study of metal cluster fission in Hartree-Fock and LDA
Lyalin, A; Greiner, W; Lyalin, Andrey; Solov'yov, Andrey; Greiner, Walter
2001-01-01
Fission of doubly charged metal clusters is studied using the open-shell two-center deformed jellium Hartree-Fock model and Local Density Approximation. Results of calculations of the electronic structure and fission barriers for the symmetric and asymmetric channels associated with the following processes Na_{10}^{2+} --> Na_{7}^{+} + Na_{3}^{+}, Na_{18}^{2+} --> Na_{15}^{+} + Na_{3}^{+} and Na_{18}^{2+} --> 2 Na_{9}^{+} are presented. The role of the exact exchange and many-body correlation effects in metal clusters fission is analysed. It is demonstrated that the influence of many-electron correlation effects on the height of the fission barrier is more profound if the barrier arises nearby or beyond the scission point. The importance of cluster deformation effects in the fission process is elucidated with the use of the overlapping-spheroids shape parametrization allowing one an independent variation of deformations in the parent and daughter clusters.
Photon and proton induced fission on heavy nuclei at intermediate energies
Directory of Open Access Journals (Sweden)
Andrade-II E.
2014-04-01
Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.
Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling
Energy Technology Data Exchange (ETDEWEB)
Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)
2015-01-15
The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.
Systematics on fission fragment mass distribution of neutron induced 235U fission
Institute of Scientific and Technical Information of China (English)
LIU Ting-Jin; SUN Zheng-Jun; SHU Neng-Chuan
2008-01-01
Based on the neutron induced fission fragment mass distribution data up to neutron energy 20 MeV measured with the double kinetic energy method (KEM) and the radio active method (RAM), the systematics of fission fragment mass distribution was investigated by using 5 Gaussian model and the systematics parameters were obtained by fitting the experimental data. With the systematics, the yields of any mass A and at any energy in the region from 0 to 20 MeV of neutron energy can be calculated. The calculated results could well reproduce the experimental data measured with KEM, but show some systematical deviation from the data measured by RAM, which reflects some systematical deviations between the two kinds of measured data.The error of systematics yield was calculated in an exact error transformation way, including from the error of the experimental yield data to the error of the discrete parameters, then to the systematics parameters,and at last to the yield calculated with systematics.
Ternary fission of superheavy elements
Balasubramaniam, M.; Vijayaraghavan, K. R.; Manimaran, K.
2016-01-01
Ternary fission of superheavy nuclei is studied within the three-cluster model potential energy surfaces (PESs). Due to shell effects, the stability of superheavy nuclei has been predicted to be associated with Z =114 , 120, and 126 for protons and N =184 for neutrons. Taking some representative nuclei we have extended the ternary fission studies to superheavy nuclei. We adopted two minimization procedures to minimize the potential and considered different arrangements of the fragments. The PES from one-dimensional minimization reveals a strong cluster region favoring various ternary breakups for an arrangement in which the lightest fragment is kept at the center. The PES obtained from two-dimensional minimization reveals strong preference of ternary fragmentation in the true ternary fission region. Though the dominant decay mode of superheavy nuclei is α decay, the α -accompanied ternary breakup is found to be a nonfavorable one. Further, the prominent ternary combinations are found to be associated with the neutron magic number.
Simulated fissioning of uranium and testing of the fission-track dating method
McGee, V.E.; Johnson, N.M.; Naeser, C.W.
1985-01-01
A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of
Search for Singlet Fission Chromophores
Energy Technology Data Exchange (ETDEWEB)
Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.
2012-01-01
Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.
Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi
2017-09-01
Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns
Chemical state of fission products in irradiated UO 2
Imoto, S.
1986-08-01
The chemical state of fission products in irradiated UO 2 fuel has been estimated for FBR as well as LWR on the basis of equilibrium calculation with the SOLGASMIX-PV code. The system considered for the calculation is composed of a gas phase, a CaF 2 type oxide phase, three grey phases, a noble metal alloy, a mixed telluride phase and several other phases each consisting of single compound. The distribution of elements into these phases and the amount of chemical species in each phase at different temperatures are obtained as a function of oxygen potential for LWR and FBR. Changes of the chemical potential of the fuel-fission products system during burnup are also evaluated with particular attention to the difference between LWR and FBR. Some informations obtained by the calculation are compared with the results of post irradiation examination of UO 2 fuels.
Regnier, D; Schunck, N; Verriere, M
2016-01-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...
Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)
2002-01-01
Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)
Measurement uncertainty and probability
Willink, Robin
2013-01-01
A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.
Probability Aggregates in Probability Answer Set Programming
Saad, Emad
2013-01-01
Probability answer set programming is a declarative programming that has been shown effective for representing and reasoning about a variety of probability reasoning tasks. However, the lack of probability aggregates, e.g. {\\em expected values}, in the language of disjunctive hybrid probability logic programs (DHPP) disallows the natural and concise representation of many interesting problems. In this paper, we extend DHPP to allow arbitrary probability aggregates. We introduce two types of p...
Directory of Open Access Journals (Sweden)
Salahuddin Asif
2013-01-01
Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.
Radiochemistry and the Study of Fission
Energy Technology Data Exchange (ETDEWEB)
Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-14
These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since it’s discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.
Development of Fission Chamber Assembly
Institute of Scientific and Technical Information of China (English)
YANGJinwei; ZHANGWei; SONGXianying; LIXu
2003-01-01
The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.
Pauwels, D B; Lane, J
2008-01-01
In our recent experiment (March 2007) at the velocity filter SHIP(GSI) we observed the electron-capture delayed fission of the odd-odd isotope $^{194}$At. This is the first unambiguous identification of this phenomenon in the very neutron-deficient nuclei in the vicinity of the proton shell closure at Z=82. In addition, the total kinetic energy (TKE) for the daughter nuclide $^{194}$Po was measured, despite the fact that this isotope does not decay via spontaneous fission. Semi-empirical analysis of the electron-capture Q$_{EC}$ values and fission barriers B$_{f}$ shows that a relatively broad island of ECDF must exist in this region of the Nuclide Chart, with some of the nuclei having unusually high ECDF probabilities. Therefore, this Proposal is intended to initiate the systematic identification and study of $\\beta$-delayed fission at ISOLDE in the very neutron-deficient lead region. Our aim is to provide unique low-energy fission data (e.g. probabilities, TKE release, fission barriers and their isospin dep...
Fission Thrust sail as booster for high {\\Delta}v fusion based propulsion
Ceyssens, Frederik; Driesen, Maarten
2014-01-01
The fission thrust sail as booster for nuclear fusion-based rocket propulsion for future starships is studied. Some required aspects of these systems such as neutron moderation and sail regeneration are discussed. First order calculations are used together with Monte Carlo simulations to assess system performance. When the fusion rocket has relatively low efficiency (~30%) in converting fusion fuel to a directed exhaust, adding a fission sail is shown to be beneficial for obtainable delta-v. Also, this type of fission-fusion hybrid interstellar propulsion has the potential to improve acceleration. Other advantages are discussed as well.
Background and Derivation of ANS-5.4 Standard Fission Product Release Model
Energy Technology Data Exchange (ETDEWEB)
Beyer, Carl E.; Turnbull, Andrew J.
2010-01-29
This background report describes the technical basis for the newly proposed American Nuclear Society (ANS) 5.4 standard, Methods for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuels. The proposed ANS 5.4 standard provides a methodology for determining the radioactive fission product releases from the fuel for use in assessing radiological consequences of postulated accidents that do not involve abrupt power transients. When coupled with isotopic yields, this method establishes the 'gap activity,' which is the inventory of volatile fission products that are released from the fuel rod if the cladding are breached.
Chemical thermodynamics of complex systems: fission product behavior in LWR fuel elements
Energy Technology Data Exchange (ETDEWEB)
Kohli, R.
1981-03-01
A detailed thermodynamic assessment has been made of the chemical reactions of fission products in LWR fuel rods. Using recent thermodynamic data and the in-reactor oxygen potential and temperature range of LWRs, equilibrium thermodynamic calculations were performed for the most plausible reactions of the fission products. The emphasis in this model is on the chemistry of cesium and rubidium and their reactions with the fuel, other fission products, and the zircaloy cladding. The model predictions are discussed for their implications in fuel-cladding interactions.
From symmetric cold fission fragment mass distributions to extremely asymmetric alpha decay
Poenaru, D. N.; Ivascu, M.; Maruhn*, J. A.; Greiner*, W.
1987-12-01
The analytical superasymmetric fission model, successful in the study of extremely asymmetric decay modes like α-decay and heavy ion radioactivities, is applied to cold fission phenomena. The three groups of processes are described in a unifield manner, showing that cold fission could be considered heavy cluster emission. For 234U all groups have been detected. The highest symmetry of the gragment mass distributions should be observed for the neutron rich nucleus 264Fm, leading to doubly magic products 132Sn. The most probable light fragments from cold fission of 234,236U, 239Np and 240Pu are 100Zr, 104,106,108Mo respectively, in good agreement with experimental data.
From symmetric cold fission fragment mass distributions to extremely asymmetric alpha decay
Energy Technology Data Exchange (ETDEWEB)
Poenaru, D.N.; Ivascu, M.; Maruhn, J.A.; Greiner, W.
1987-12-10
The analytical superasymmetric fission model, successful in the study of extremely asymmetric decay modes like ..cap alpha..-decay and heavy ion radioactivities, is applied to cold fission phenomena. The three groups of processes are described in a unifield manner, showing that cold fission could be considered heavy cluster emission. For /sup 234/U all groups have been detected. The highest symmetry of the gragment mass distributions should be observed for the neutron rich nucleus /sup 264/Fm, leading to doubly magic products /sup 132/Sn. The most probable light fragments from cold fission of /sup 234,236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104,106,108/Mo respectively, in good agreement with experimental data.
Two neutron correlations in photo-fission
Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.
2016-09-01
A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.
The Probability Distribution for a Biased Spinner
Foster, Colin
2012-01-01
This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)
The Probability Distribution for a Biased Spinner
Foster, Colin
2012-01-01
This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)
Measurement of the Survival Probabilities for Hot Fusion Reactions
Yanez, R; Yao, L; Barrett, J s; Zhu, S; Back, B B; Khoo, T L; Alcorta, M; Albers, M
2014-01-01
We have studied the fission-neutron emission competition in highly excited $^{274}$Hs (Z=108) (where the fission barrier is due to shell effects) formed by a hot fusion reaction. Matching cross bombardments ($^{26}$Mg + $^{248}$Cm and $^{25}$Mg + $^{248}$Cm) were used to identify the properties of first chance fission of $^{274}$Hs. A Harding-Farley analysis of the fission neutrons emitted in the $^{25,26}$Mg + $^{248}$Cm was performed to identify the pre- and post-scission components of the neutron multiplicities in each system. ($\\Gamma$$_{n}$/$\\Gamma$$_{t}$) for the first chance fission of $^{274}$Hs (E$^{\\ast}$ = 63 MeV) is 0.89 $\\pm$ 0.13, i.e., $\\sim$ 90 $%$ of the highly excited nuclei survive.The high value of that survival probability is due to dissipative effects during de-excitation. A proper description of the survival probabilities of excited superheavy nuclei formed in hot fusion reactions requires consideration of both dynamic and static (shell-related) effects.
Fission dynamics at low excitation energy
Aritomo, Y
2013-01-01
The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.
Fission yield studies at the IGISOL facility
Energy Technology Data Exchange (ETDEWEB)
Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)
2012-04-15
Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)
The fundamental role of fission during r-process nucleosynthesis in neutron star mergers
Energy Technology Data Exchange (ETDEWEB)
Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)
2015-02-01
The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Despite important efforts, the astrophysical site of the r-process remains unidentified. Here we study r-process nucleosynthesis in a material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. r-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Due to the important role played by fission in such a scenario, the impact of fission is carefully analyzed. We consider different state-of-the-art global models for the determination of the fission paths, nuclear level densities at the fission saddle points and fission fragment distributions. Based on such models, the sensitivity of the calculated r-process abundance distribution is studied. The fission path is found to strongly affect the region of heavy nuclei responsible for the fission recycling, while the fission fragment distribution of nuclei along the A ≅ 278 isobars defines the abundance pattern of nuclei produced in the 110
Indian Academy of Sciences (India)
ESLAMIZADEH HADI
2016-07-01
A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear dissipation strength of $(12–14) \\times 10^{21} s^{−1}$ was extracted for Cf nucleus by fitting the results of calculations with the experimentaldata. Furthermore, it was found that the results of calculations for the anisotropy of the fission fragments angular distribution and pre-scission neutron multiplicities are very sensitive to the magnitude of post-saddle nucleardissipation.
Precise determination of the 235U reactor antineutrino cross section per fission
Giunti, C.
2017-01-01
We investigate which among the reactor antineutrino fluxes from the decays of the fission products of 235U, 238U, 239Pu, and 241Pu may be responsible for the reactor antineutrino anomaly if the anomaly is due to a miscalculation of the antineutrino fluxes. We find that it is very likely that at least the calculation of the 235U flux must be revised. From the fit of the data we obtain the precise determination σ235 = (6.33 ± 0.08) ×10-43cm2 /fission of the 235U cross section per fission, which is more precise than the calculated value and differs from it by 2.2σ. The cross sections per fission of the other fluxes have large uncertainties and in practice their values are undetermined by the fit.
Multidimensionally-constrained relativistic Hartree-Bogoliubov study of nuclear spontaneous fission
Zhao, Jie; Niksic, Tamara; Vretenar, Dario
2015-01-01
Recent microscopic studies, based on the theoretical framework of nuclear energy density functionals, have analyzed dynamic (least action) and static (minimum energy) fission paths, and it has been shown that in addition to the important role played by nonaxial and/or octupole collective degrees of freedom, fission paths crucially depend on the approximations adopted in calculating the collective inertia. The dynamics of spontaneous fission of $^{264}$Fm and $^{250}$Fm is explored. The fission paths, action integrals and the corresponding half-lives predicted by the functionals PC-PK1 and DD-PC1 are compared and, in the case of $^{264}$Fm, discussed in relation with recent results obtained using the HFB model based on the Skyrme functional SkM$^*$ and a density dependent mixed pairing interaction. Deformation energy surfaces, collective potentials, and perturbative and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic Hartree-Bogoliubov (M...
Propensity, Probability, and Quantum Theory
Ballentine, Leslie E.
2016-08-01
Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.
Scaling Qualitative Probability
Burgin, Mark
2017-01-01
There are different approaches to qualitative probability, which includes subjective probability. We developed a representation of qualitative probability based on relational systems, which allows modeling uncertainty by probability structures and is more coherent than existing approaches. This setting makes it possible proving that any comparative probability is induced by some probability structure (Theorem 2.1), that classical probability is a probability structure (Theorem 2.2) and that i...
Research on stellarator-mirror fission-fusion hybrid
Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.
2014-09-01
The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.
Tsekhanovich, I; Davi, M; Bueyuekmumcu, Z; Woestheinrich, M; Gönnenwein, F; Oberstedt, S; Faust, H R
1999-01-01
Yields of light fission products (A = 68, 70-84, 87, 88, 94, 96, 98, 102 and 106-108), their kinetic energies and nuclear charge distributions (A 71-84, 87 and 88) in the thermal neutron induced fission of the odd-Z nucleus sup 2 sup 4 sup 2 sup m Am(Z = 95) were measured using the mass-separator Lohengrin at the Institute Laue-Langevin in Grenoble (France). The mass yield curve shows a fine structure at A = 70, probably due to shell and/or odd-even effects affecting also the nuclear charge distribution. The analysis of isotopic chain yields gives evidence for a very low excitation energy of the lightest fission fragments observed. A preferential formation of fragments with even Z is found for this odd-Z compound nucleus. Calculated values for the local odd-even effect are comparable with those for the neighbouring even-Z fissile nuclides and increase from 13% to 30% with increasing asymmetry of the mass split (A sub L = 84 to 68 and Z sub L = 35 to 28). The neutron odd-even effect shows a similar but less pr...
Directory of Open Access Journals (Sweden)
Minato Futoshi
2017-01-01
Full Text Available Neutron-nucleus cross sections calculated by macroscopic potentials are compared with a microscopic one to study the performance for long-lived fission products. The macroscopic potentials show a good agreement with the microscopic one at higher energies, where neutron experimental data are scarce. Besides it, analyses of differential elastic cross sections at low energies also suggest that the macroscopic potentials are still effective and applicable enough for the long-lived fission products.
Semi-empirical Study on Yield Mass Distribution for n+238U Fission
Institute of Scientific and Technical Information of China (English)
XU; Yong-mei; LIU; Li-le; SHU; Neng-chuan; CHEN; Yong-jing; LIU; Ting-jin; SUN; Zheng-jun
2015-01-01
A semi-empirical model method is developed for calculating the yield mass distributions and energy dependence for neutron-induced 238 fission.The system potential energy is consisting ofthe macro-energy and 2shell corrections,corresponding to the SL,SI and SII fission channels.The yield could be expressed with a five-Gaussianlike formula with 13 parameters,which were
Study of the fission process of deformed Na clusters in liquid-drop stabilized jellium model
Directory of Open Access Journals (Sweden)
M Payami
2008-07-01
Full Text Available In this work, using the liquid drop model in the context of the stabilized jellium model, we have studied the fission of charged Na clusters. In this study we have assumed a deformed non-spherical shape for the cluster. The ground state energies, critical sizes, fission barrier height, and the evaporation energies have been calculated. The results show a better agreement to the experimental results compared to our earlier work.
Analysis of the effect of UO{sub 2} high burnup microstructure on fission gas release
Energy Technology Data Exchange (ETDEWEB)
Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala Science Park (Sweden)
2002-10-01
This report deals with high-burnup phenomena with relevance to fission gas release from UO{sub 2} nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas.
Stochastic approaches to dynamics of heavy ion collisions, the case of thermal fission
Energy Technology Data Exchange (ETDEWEB)
Boilley, D.; Abe, Y. [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Suraud, E. [Universite Paul Sabatier, 31 - Toulouse (France). Lab. de Physique Quantique; Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States)
1994-03-30
In order to study the influence of fluctuations on various phenomena linked to heavy ion collisions, a Langevin equation has been derived from a microscopic model. Parameters entering this equation are completely determined from microscopic quantities characterizing nuclear matter. This equation has been applied to various phenomena at intermediate energies. This paper focuses on large amplitude motions and especially thermal fission. Fission rate is calculated and compared to experimental results.
The emission probabilities of long range alpha particles from even-even 244-252Cm isotopes
Santhosh, K P; Priyanka, B
2014-01-01
The alpha accompanied cold ternary fission of even-even 244Cm, 246Cm, 248Cm, 250Cm and 252Cm isotopes have been studied by taking the interacting barrier as the sum of Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold reaction valley plot and by calculating the relative yield for the charge minimized fragments. In the alpha accompanied ternary fission of 244Cm isotope, the highest yield is found for the fragment combination 110Ru+4He+130Sn, which possess near doubly magic nuclei 130Sn. For the ternary fission of 246Cm, 248Cm, 250Cm and 252Cm isotopes with 4He as light charged particle, the highest yield is obtained for the fragment combination with doubly magic nuclei 132Sn as the heavier fragment. The emission probabilities and kinetic energies of long range alpha particle have been computed for the 242,244,246,248Cm isotopes and are found to be in good agreement with the experimental data. The relative yields for th...
Cluster fission from the standpoint of nuclear fission
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics
1996-03-01
Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)
A fission fragment detector for correlated fission output studies
Energy Technology Data Exchange (ETDEWEB)
Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)
2014-09-01
A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.
Prompt Neutron Emission in 252CF Spontaneous Fission
Hambsch, F.-J.; Oberstedt, S.; Zeynalov, Sh.
2011-10-01
The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics. The goal was to compare the results from digital data acquisition and digital signal processing analysis with results of the pioneering work of Budtz-Jørgensen and Knitter. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The results are in very good agreement with literature. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.
Energy Technology Data Exchange (ETDEWEB)
Bonneau, L
2003-11-01
A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)
Langevin description of fission fragment charge distribution from excited nuclei
Karpov, A V
2002-01-01
A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied
DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy
Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.
2009-10-01
Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.
The dependence of cumulative 238U(n,f) fission yield on incident-neutron energy
Institute of Scientific and Technical Information of China (English)
ZHENG Na; ZHONG Chunlai; MA Liyong; CHEN Zhongjing; LI Xiangqing; LIU Tingjin; CHEN Jinxiang; FAN Tieshuan
2009-01-01
This work is aim at studying the dependence of fission yields on incident neutron energy,so as to produce evaluated yield sets of the energy dependence.Experimental data at different neutron energies for gas fission products 85m,87,88Kr and 138Xe resulting from the 238U(n,f) reaction are processed using codes AVERAGE for weighed average and ZOTT for simultaneous evaluation.Energy dependence of the cumulative fission product yields on the incident neutron is presented.The evaluated curve of product yield is compared with the results calculated by the TALYS-0.64 code.The present evaluation is consistent with other main libraries in error permission.The fit curve of 87,88Kr can be recommended to predict the unmeasured fission yields.Comparisons of the evaluated energy dependence curves with theoretical calculated results show that the predictions using purely theoretical model for the fission process are not sufficiently accurate and reliable for the calculations of the cumulative fission yields for the 238U(n,f).
Fission properties for r-process nuclei
Erler, J; Loens, H P; Martínez-Pinedo, G; Reinhard, P -G
2011-01-01
We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. The computation of fission lifetimes takes care of the crucial ingredients of the large-amplitude collective dynamics along the fission path, as self-consistent collective mass and proper quantum corrections. We discuss the different topologies of fission landscapes which occur in the realm of SHE (symmetric versus asymmetric fission, regions of triaxial fission, bi-modal fission, and the impact of asymmetric ground states). The explored region is extended deep into the regime of very neutron-rich isotopes as they are expec...
The Fission of thorium with Alpha Particles
Energy Technology Data Exchange (ETDEWEB)
Newton, Amos S.
1948-10-15
Soon after the discovery of fission, Meitner, Bretscher and Cook found differences in the decay of various chemical fractions separated from uranium irradiated with slow neutrons and thorium irradiated with fast neutrons respectively and suggested that a difference existed in the distribution of fission products in the two cases. In 1940, Turner suggested that the distribution in various modes of fission should be investigated. The fact that elements such as tin, cadmium, palladium, and silver were found in fast neutron and deuteron fission of uranium and thorium before they were found in slow neutron fission of uranium suggested that the middle region of the distribution was raised as the energy of the incident particle was increased. Since the compound nucleus formed in the fission of thorium with alpha particles is U{sup 236}, the same compound nucleus formed in the fission of U{sup 235} with neutrons, it is of interest to study the fission of thorium with alphas and compare the resulting distribution of fission products with that found with uranium with slow and thorium with fast neutrons. Any difference between the various results where the same compound nucleus is formed must be due to differences in energy content and possible differences in distribution of the nucleons in the compound nucleus at the time of fission.
Dating thermal events at Cerro Prieto using fission track annealing
Energy Technology Data Exchange (ETDEWEB)
Sanford, S.J.; Elders, W..
1981-01-01
Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.
Dating thermal events at Cerro Prieto using fission track annealing
Energy Technology Data Exchange (ETDEWEB)
Sanford, S.J.; Elders, W..
1981-01-01
Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain)
2016-01-15
Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144 ≤ N ≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the ''fragments'' defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α-decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N = 164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process. (orig.)
Fission: statistical nucleon pair breaking
Energy Technology Data Exchange (ETDEWEB)
Montoya, M. (Instituto Peruano de Energia Nuclear, Lima (Peru))
1984-06-01
In order to explain the odd-even effect observed in low energy fission fragment distributions it has been recently required a double mechanism of nucleon pair breaking: before scission (early pair breaking) and at scission (late pair breaking), respectively. In the present work we show that, using the same formulae but considering only the early pair breaking mechanism, one can reproduce fairly well all the available experimental data on the odd-even effects.
The VERDI fission fragment spectrometer
Frégeau, M. O.; Bryś, T.; Gamboni, Th.; Geerts, W.; Oberstedt, S.; Oberstedt, A.; Borcea, R.
2013-12-01
The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.
The VERDI fission fragment spectrometer
Directory of Open Access Journals (Sweden)
Frégeau M.O.
2013-12-01
Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.
Technical Application of Nuclear Fission
Denschlag, J. O.
The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.
Briggs, William M.
2012-01-01
The probability leakage of model M with respect to evidence E is defined. Probability leakage is a kind of model error. It occurs when M implies that events $y$, which are impossible given E, have positive probability. Leakage does not imply model falsification. Models with probability leakage cannot be calibrated empirically. Regression models, which are ubiquitous in statistical practice, often evince probability leakage.
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
Radiochemical studies on nuclear fission at Trombay
Indian Academy of Sciences (India)
Asok Goswami
2015-08-01
Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.
Institute of Scientific and Technical Information of China (English)
Zafar Yasin; Warda Iram; Muhammad Asghar; M. Ikram Shahzad
2011-01-01
Fission cross sections strongly depend on the ratio of the level density parameter in fission to neutron emission,af/an.In this work,a cascade-exciton model implemented in the code CEM95 has been used to observe this effect for proton induced fission cross sections of tungsten,lead and bismuth.The method was employed using different level density parameter ratios for each fission cross section calculation.The calculated fission cross sections are compared with the available experimental data in the literature.It has been observed that a change of the ratio of the level density parameter,af/an,is necessary with the incident energy of the proton,to best estimate the fission cross sections in CEM95.
Measurements of Fission Cross Sections of Actinides
Wiescher, M; Cox, J; Dahlfors, M
2002-01-01
A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.
Fission-product retention in HTGR fuels
Energy Technology Data Exchange (ETDEWEB)
Homan, F.J.; Kania, M.J.; Tiegs, T.N.
1982-01-01
Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.
Rapid Separation of Fission Product 141La
Institute of Scientific and Technical Information of China (English)
XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen
2013-01-01
141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then
Koo, Reginald; Jones, Martin L.
2011-01-01
Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.
Goldberg, Samuel
1960-01-01
Excellent basic text covers set theory, probability theory for finite sample spaces, binomial theorem, probability distributions, means, standard deviations, probability function of binomial distribution, more. Includes 360 problems with answers for half.
Koo, Reginald; Jones, Martin L.
2011-01-01
Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.
Energy Technology Data Exchange (ETDEWEB)
Lane, S.M.
1979-08-01
An experimental investigation of the level structure of /sup 133/Te was performed by spectroscopy of gamma-rays following the beta-decay of 2.7 min /sup 133/Sb. Multiscaled gamma-ray singles spectra and 2.5 x 10/sup 7/ gamma-gamma coincidence events were used in the assignment of 105 of the approximately 400 observed gamma-rays to /sup 133/Sb decay and in the construction of the /sup 133/Te level scheme with 29 excited levels. One hundred twenty-two gamma-rays were identified as originating in the decay of other isotopes of Sb or their daughter products. The remaining gamma-rays were associated with the decay of impurity atoms or have as yet not been identified. A new computer program based on the Lanczos tridiagonalization algorithm using an uncoupled m-scheme basis and vector manipulations was written. It was used to calculate energy levels, parities, spins, model wavefunctions, neutron and proton separation energies, and some electromagnetic transition probabilities for the following nuclei in the /sup 132/Sn region: /sup 128/Sn, /sup 129/Sn, /sup 130/Sn, /sup 131/Sn, /sup 130/Sb, /sup 131/Sb, /sup 132/Sb, /sup 133/Sb, /sup 132/Te, /sup 133/Te, /sup 134/Te, /sup 134/I, /sup 135/I, /sup 135/Xe, and /sup 136/Xe. The results are compared with experiment and the agreement is generally good. For non-magic nuclei: the lg/sub 7/2/, 2d/sub 5/2/, 2d/sub 3/2/, 1h/sub 11/2/, and 3s/sub 1/2/ orbitals are available to valence protons and the 2d/sub 5/2/, 2d/sub 3/2/, 1h/sub 11/2/, and 3s/sub 1/2/ orbitals are available to valence neutron holes. The present CDC7600 computer code can accommodate 59 single particle states and vectors comprised of 30,000 Slater determinants. The effective interaction used was that of Petrovich, McManus, and Madsen, a modification of the Kallio-Kolltveit realistic force. Single particle energies, effective charges and effective g-factors were determined from experimental data for nuclei in the /sup 132/Sn region. 116 references.
Some aspects of fission and quasifission processes
Indian Academy of Sciences (India)
B B Back
2015-08-01
The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.
A hemi-fission intermediate links two mechanistically distinct stages of membrane fission.
Mattila, Juha-Pekka; Shnyrova, Anna V; Sundborger, Anna C; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E; Schmid, Sandra L; Frolov, Vadim A
2015-08-06
Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate, characterized by a 'stalk' in which only the outer membrane monolayers of the two compartments have merged to form a localized non-bilayer connection. Formation of the hemi-fission intermediate requires energy input from proteins catalysing membrane remodelling; however, the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analysed how the GTPase cycle of human dynamin 1, the prototypical membrane fission catalyst, is directly coupled to membrane remodelling. We used intramolecular chemical crosslinking to stabilize dynamin in its GDP·AlF4(-)-bound transition state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fuelled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent, drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction, the force bimodality might constitute a general paradigm for leakage-free membrane remodelling.
Plicht, J. van der
1980-01-01
A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission
Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei
Directory of Open Access Journals (Sweden)
Ishizuka Chikako
2016-01-01
Full Text Available Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield or independent fission yield (post-neutron yield are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.
Design of In-vessel neutron monitor using micro fission chambers for ITER
Energy Technology Data Exchange (ETDEWEB)
Nishitani, Takeo; Kasai, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ebisawa, Katsuyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Walker, Chris [ITER Joint Central Team, Garching (Germany)
2001-10-01
A neutron monitor using micro fission chambers to be installed inside the vacuum vessel has been designed for compact ITER (ITER-FEAT). We investigated the responses of the micro fission chambers to find the suitable position of micro fission chambers by a neutron Monte Carlo calculation using MCNP version 4b code. It was found that the averaged output of the micro fission chambers behind blankets at upper outboard and lower outboard is insensitive to the changes in the plasma position and the neutron source profile. A set of {sup 235}U micro fission chamber and ''blank'' detector which is a fissile material free detector to identify noise issues such as from {gamma}-rays are installed behind blankets. Employing both pulse counting mode and Campbelling mode in the electronics, the ITER requirement of 10{sup 7} dynamic range with 1 ms temporal resolution can be accomplished. The in-situ calibration has been simulated by MCNP calculation, where a point source of 14 MeV neutrons is moving on the plasma axis. It was found that the direct calibration is possible by using a neutron generator with an intensity of 10{sup 11} n/s. The micro fission chamber system can meet the required 10% accuracy for a fusion power monitor. (author)
Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei
Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro
2016-06-01
Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.
Towards a multiscale approach for assessing fission product behaviour in UN
Energy Technology Data Exchange (ETDEWEB)
Klipfel, M.; Di Marcello, V.; Schubert, A.; Laar, J. van de; Van Uffelen, P., E-mail: Paul.van-Uffelen@ec.europa.eu
2013-11-15
Ab initio modelling of fission products (i.e. Nb, Y, Gd, Nd, Zr, Sm, Eu, Ce, Ba, Mo, Sr, Rh, Pd, and Ru) in uranium nitride is carried out by assessing the incorporation, along with their contributions to local swelling of the fuel matrix. Fission products (FP's) in UN have shown to be preferably accommodated at U vacancies in bound [1 0 0]-Schottky defects, nevertheless, similar incorporation energies were found at a single U vacancy. From the investigated incorporation and migration mechanism, we found that FP's in UN predominately migrate along U–U vacancies, since the incorporation energies for all FP are lowest at single U vacancy or at the U vacancy in a Schottky defect. The energy required to induce a migration of a volatile FP from an N vacancy to U vacancy is about 4–5.5 eV. The local volume changes caused by the fission-product substitution have been assessed by means of DFT and combined with the fission-product concentrations obtained by means of neutron calculations (SCALE) to predict fission product swelling in UN. The linear swelling of nitride fuel resulting from these calculations, and the assumption that fission products do not interact and form secondary phases, leads to a reasonable estimation for the swelling rate as a function of burn-up (or time) when compared with empirical correlations in the open literature.
Cluster pre-existence probability
Energy Technology Data Exchange (ETDEWEB)
Rajeswari, N.S.; Vijayaraghavan, K.R.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)
2011-10-15
Pre-existence probability of the fragments for the complete binary spectrum of different systems such as {sup 56}Ni, {sup 116}Ba, {sup 226}Ra and {sup 256}Fm are calculated, from the overlapping part of the interaction potential using the WKB approximation. The role of reduced mass as well as the classical hydrodynamical mass in the WKB method is analysed. Within WKB, even for negative Q -value systems, the pre-existence probability is calculated. The calculations reveal rich structural information. The calculated results are compared with the values of preformed cluster model of Gupta and collaborators. The mass asymmetry motion is shown here for the first time as a part of relative separation motion. (orig.)
Emptiness Formation Probability
Crawford, Nicholas; Ng, Stephen; Starr, Shannon
2016-08-01
We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-1/2 Heisenberg XXZ quantum spin system. For a d-dimensional system we find a rate of decay of the order {exp(-c L^{d+1})} where L is the sidelength of the box in which we ask for the emptiness formation event to occur. In the {d=1} case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case {d ≥ 2} are new. The main tools we use are reflection positivity and a rigorous path integral expansion, which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.
Failure probability under parameter uncertainty.
Gerrard, R; Tsanakas, A
2011-05-01
In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.
Energy Technology Data Exchange (ETDEWEB)
Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Schmitt, Christelle [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds, Caen (France)
2017-01-15
We use the Brownian shape-motion model, with its recent extensions, which allow modeling of odd-even staggering, to calculate the evolution of fission-fragment charge distributions with neutron number for the compound-system sequence {sup 234}U, {sup 236}U, {sup 238}U, and {sup 240}U. We compare to experimental data where available, for neutron- and electromagnetic-induced fission over a compound-nucleus excitation energy range from about 6 to 20 MeV. A notable result of the study is that the evolution of the location of the peak charge yield from Z = 54 in {sup 234}U towards Z = 52 in heavier isotopes, seen in the experimental data, is present also in the calculated yields. We further show that to describe yields at higher compound-nucleus excitation energies, then, already at 20 MeV, it is necessary to take multi-chance fission into account. (orig.)
Resonant tunneling through the triple-humped fission barrier of U-236
Csatlos, M; Krasznahorkay, A; Thirolf, PG; Habs, D; Eisermann, Y; Faestermann, T; Graw, G; Gulyas, J; Harakeh, MN; Hertenberger, R; Hunyadi, M; Maier, HJ; Mate, Z; Schaile, O; Wirth, HF
2005-01-01
The fission probability of U-236 as a function of the excitation energy has been measured with high energy resolution using the U-235(d, pf) reaction in order to study hyperdeformed (HD) rotational bands. Rotational band structures with a moment of inertia of theta = 217 +/- 38 h(2)/MeV have been ob
Quantum probability measures and tomographic probability densities
Amosov, GG; Man'ko, [No Value
2004-01-01
Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the
Agreeing Probability Measures for Comparative Probability Structures
P.P. Wakker (Peter)
1981-01-01
textabstractIt is proved that fine and tight comparative probability structures (where the set of events is assumed to be an algebra, not necessarily a σ-algebra) have agreeing probability measures. Although this was often claimed in the literature, all proofs the author encountered are not valid
Study of the Fission Decay of Heavy Hypernuclei
2002-01-01
The purpose of the original experiment PS177 was to produce heavy hypernuclei using the annihilation at rest of antiprotons in heavy targets, and to measure their lifetime. \\\\ \\\\ Lambda hyperons can be produced, within a nucleus, in a 2-step process: p@*~@A~K&bar.K~+~X; &bar.KN~@A~@L@p; or in a direct 3-body interaction: @*NN~@A~K|+@L. In the first case, the kinematical conditions favour recoilless lambda with, consequently, a higher probability of attachment to the nucleus. In a heavy nucleus the lambda-hyperon decays weakly according to: @LN~@A~NN, and the &prop.170~MeV energy released induces fission.\\\\ \\\\ The identification of the hypernuclei and their lifetime measurements were performed through the detection of delayed fission using the recoil-distance-method (suitable for lifetimes in the expected region @=10|-|1|0s). The fission fragments were detected by parallel-plate avalanche counters. \\\\ \\\\ The new proposal aims at i) increasing the accuracy of the measured lifetimes, ii) having a str...