WorldWideScience

Sample records for fission probability calculations

  1. Evolvement simulation of the probability of neutron-initiating persistent fission chain

    International Nuclear Information System (INIS)

    Wang Zhe; Hong Zhenying

    2014-01-01

    Background: Probability of neutron-initiating persistent fission chain, which has to be calculated in analysis of critical safety, start-up of reactor, burst waiting time on pulse reactor, bursting time on pulse reactor, etc., is an inherent parameter in a multiplying assembly. Purpose: We aim to derive time-dependent integro-differential equation for such probability in relative velocity space according to the probability conservation, and develop the deterministic code Dynamic Segment Number Probability (DSNP) based on the multi-group S N method. Methods: The reliable convergence of dynamic calculation was analyzed and numerical simulation of the evolvement process of dynamic probability for varying concentration was performed under different initial conditions. Results: On Highly Enriched Uranium (HEU) Bare Spheres, when the time is long enough, the results of dynamic calculation approach to those of static calculation. The most difference of such results between DSNP and Partisn code is less than 2%. On Baker model, over the range of about 1 μs after the first criticality, the most difference between the dynamic and static calculation is about 300%. As for a super critical system, the finite fission chains decrease and the persistent fission chains increase as the reactivity aggrandizes, the dynamic evolvement curve of initiation probability is close to the static curve within the difference of 5% when the K eff is more than 1.2. The cumulative probability curve also indicates that the difference of integral results between the dynamic calculation and the static calculation decreases from 35% to 5% as the K eff increases. This demonstrated that the ability of initiating a self-sustaining fission chain reaction approaches stabilization, while the former difference (35%) showed the important difference of the dynamic results near the first criticality with the static ones. The DSNP code agrees well with Partisn code. Conclusions: There are large numbers of

  2. Beta-delayed fission and neutron emission calculations for the actinide cosmochronometers

    International Nuclear Information System (INIS)

    Meyer, B.S.; Howard, W.M.; Mathews, G.J.; Takahashi, K.; Moeller, P.; Leander, G.A.

    1989-01-01

    The Gamow-Teller beta-strength distributions for 19 neutron-rich nuclei, including ten of interest for the production of the actinide cosmochronometers, are computed microscopically with a code that treats nuclear deformation explicitly. The strength distributions are then used to calculate the beta-delayed fission, neutron emission, and gamma deexcitation probabilities for these nuclei. Fission is treated both in the complete damping and WKB approximations for penetrabilities through the nuclear potential-energy surface. The resulting fission probabilities differ by factors of 2 to 3 or more from the results of previous calculations using microscopically computed beta-strength distributions around the region of greatest interest for production of the cosmochronometers. The indications are that a consistent treatment of nuclear deformation, fission barriers, and beta-strength functions is important in the calculation of delayed fission probabilities and the production of the actinide cosmochronometers. Since we show that the results are very sensitive to relatively small changes in model assumptions, large chronometric ages for the Galaxy based upon high beta-delayed fission probabilities derived from an inconsistent set of nuclear data calculations must be considered quite uncertain

  3. Calculated leaching of certain fission products from a cylinder of French glass

    International Nuclear Information System (INIS)

    Blomqvist, G.

    1977-07-01

    The probable total leaching of the most important fission products and actinides have been tabulated for a cylinder of French HLW glass with approximately 9 percent fission products. The calculations cover the period between 30 and 10000 years after removal from the reactor. The cylinder is of the type planned for the introduction of the HLW into Swedish crystalline rocks. All the components are supposed to have the same leach rate. The calculations also include the probable thickness of eroded glass layer/year. (author)

  4. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  5. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  6. Fission cross-section calculations and the multi-modal fission model

    International Nuclear Information System (INIS)

    Hambsch, F.J.

    2004-01-01

    New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  7. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  8. Calculated apparent yields of rare gas fission products

    International Nuclear Information System (INIS)

    Delucchi, A.A.

    1975-01-01

    The apparent fission yield of the rare gas fission products from four mass chains is calculated as a function of separation time for six different fissioning systems. A plot of the calculated fission yield along with a one standard deviation error band is given for each rare gas fission product and for each fissioning system. Those parameters in the calculation that were major contributors to the calculated standard deviation at each separation time were identified and the results presented on a separate plot. To extend the usefulness of these calculations as new and better values for the input parameters become available, a third plot was generated for each system which shows how sensitive the derived fission yield is to a change in any given parameter used in the calculation. (U.S.)

  9. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  10. Search for spontaneous fission of 226Ra and systematics of the spontaneous fission, α-decay and cluster decay probabilities

    International Nuclear Information System (INIS)

    Mikheev, V.L.; Tret'yakova, S.P.; Golovchenko, A.N.; Timofeeva, O.V.; Hussonnois, M.; Le Naour, C.

    1998-01-01

    The low limit of the 226 Ra spontaneous fission half-life corresponding to T 1/2 ≥ 4 · 10 18 years is measured. The 226 Ra spontaneous fission probability proved to be about 50 times less than the value expected from the known systematics, connecting the ratios of theα-decay and spontaneous fission probabilities with the fissility parameter Z 2 /A. It is shown that the probabilities of spontaneous fission, α-decay and cluster decay can be systematized in the same way according to the difference between the decay products Coulomb energy near the scission point and decay energy Q

  11. Fission yield calculation using toy model based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jubaidah; Kurniadi, Rizal

    2015-01-01

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R c ), mean of left curve (μ L ) and mean of right curve (μ R ), deviation of left curve (σ L ) and deviation of right curve (σ R ). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  12. Fission yield calculation using toy model based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  13. Pion-induced fission of 209Bi and 119Sn: measurements, calculations, analyses and comparison

    International Nuclear Information System (INIS)

    Rana, M.A.; Sher, G.; Manzoor, S.; Shehzad, M.I.

    2011-01-01

    Cross-sections for the π - -induced fission of 209 Bi and 119 Sn have been measured using the most sensitive CR-39 solid-state nuclear track detector. In experiments, target–detector stacks were exposed to negative pions of energy 500, 672, 1068, and 1665 MeV at the Brookhaven National Laboratory, USA. An important aspect of the present paper is the comparison of pion-induced fission fragment spectra of above mentioned nuclei with the spontaneous fission fragment spectra of 252 Cf. This comparison is made in terms of fission fragment track lengths in the CR-39 detectors. Measurement results are compared with calculations of Monte Carlo and statistical weight functions methods using the computer code CEM95. Agreement between measurements and calculations is fairly good for 209 Bi target nuclei whereas it is indigent for the case of 119 Sn. The possibilities of the trustworthy calculations, using the computer code CEM95, comparable with measurements of pion-induced fission in intermediate and heavy nuclei are explored by employing various systematics available in the code. Energy dependence of pion-induced fission in 119 Sn and 209 Bi is analyzed employing a newly defined parameter geometric-size-normalized fission cross-section (χ f g ). It is found that the collective nuclear excitations, which may lead to fission, become more probable for both 209 Bi and 119 Sn nuclei with increasing energy of negative pions from 500 to 1665 MeV. (author)

  14. Calculating failure probabilities for TRISO-coated fuel particles using an integral formulation

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Maki, John T.; Knudson, Darrell L.; Petti, David A.

    2010-01-01

    The fundamental design for a gas-cooled reactor relies on the safe behavior of the coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles, termed the TRISO coating, act as a pressure vessel that retains fission products. The quality of the fuel is reflected in the number of particle failures that occur during reactor operation, where failed particles become a source for fission products that can then diffuse through the fuel element. The failure probability for any batch of particles, which has traditionally been calculated using the Monte Carlo method, depends on statistical variations in design parameters and on variations in the strengths of coating layers among particles in the batch. An alternative approach to calculating failure probabilities is developed herein that uses direct numerical integration of a failure probability integral. Because this is a multiple integral where the statistically varying parameters become integration variables, a fast numerical integration approach is also developed. In sample cases analyzed involving multiple failure mechanisms, results from the integration methods agree closely with Monte Carlo results. Additionally, the fast integration approach, particularly, is shown to significantly improve efficiency of failure probability calculations. These integration methods have been implemented in the PARFUME fuel performance code along with the Monte Carlo method, where each serves to verify accuracy of the others.

  15. Statistical model calculations with a double-humped fission barrier GIVAB computer code

    International Nuclear Information System (INIS)

    Delagrange, H.; Gilat, J.

    1979-01-01

    Neutron and gamma emission probabilities and fission probabilities are computed, taking into account the special feature of the actinide fission barriers with two maxima. Spectra and cross sections are directly deduced from these probabilities. Populations of both wells are followed step by step. For each initial E and J, decay rates are computed and normalized in order to obtain the de-excitation probabilities imposed by the two-humped fission barrier

  16. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  17. On the calculation of multi-group fission spectrum vectors

    International Nuclear Information System (INIS)

    Mueller, E.Z.

    1984-05-01

    In this report, the problem of calculating fission spectrum vectors in a consistent manner is formulated. The practical implications of using fission spectrum vectors in multi-group transport calculations are also addressed. The significance of the weighting spectra used for the calculation of fission spectrum vectors is illustrated for the case of a simple neutronic assembly

  18. Measurement of Plutonium-240 Angular Momentum Dependent Fission Probabilities Using the Alpha-Alpha' Reaction

    Science.gov (United States)

    Koglin, Johnathon

    Accurate nuclear reaction data from a few keV to tens of MeV and across the table of nuclides is essential to a number of applications of nuclear physics, including national security, nuclear forensics, nuclear astrophysics, and nuclear energy. Precise determination of (n, f) and neutron capture cross sections for reactions in high- ux environments are particularly important for a proper understanding of nuclear reactor performance and stellar nucleosynthesis. In these extreme environments reactions on short-lived and otherwise difficult-to-produce isotopes play a significant role in system evolution and provide insights into the types of nuclear processes taking place; a detailed understanding of these processes is necessary to properly determine cross sections far from stability. Indirect methods are often attempted to measure cross sections on isotopes that are difficult to separate in a laboratory setting. Using the surrogate approach, the same compound nucleus from the reaction of interest is created through a "surrogate" reaction on a different isotope and the resulting decay is measured. This result is combined with appropriate reaction theory for compound nucleus population, from which the desired cross sections can be inferred. This method has shown promise, but the theoretical framework often lacks necessary experimental data to constrain models. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(alpha, alpha'f) reaction - a surrogate for the 239Pu(n, f) - and fission of 35.9(2)MeV at eleven scattering angles from 40° to 140° in 10° intervals and at nuclear excitation energies up to 16MeV. Within experimental uncertainty, the maximum fission probability was observed at the neutron separation energy for each alpha scattering angle. Fission probabilities were separated into five 500 keV bins from 5:5MeV to

  19. Calculated fission properties of the heaviest elements

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-09-01

    A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab

  20. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  1. Fission in Empire-II version 2.19 beta1, Lodi

    International Nuclear Information System (INIS)

    Sin, M.

    2003-01-01

    This is a description of the fission model implemented presently in EMPIRE-II. This package offers two ways to calculate the fission probability selected by parameters in the optional input. Fission barriers, fission transmission coefficients, fission cross sections and fission files are calculated

  2. Mass dependence of positive pion-induced fission

    International Nuclear Information System (INIS)

    Khan, H.A.; Khan, N.A.; Peterson, R.J.

    1991-01-01

    Fission cross sections for a range of targets have been measured by solid-state track detectors following 80 and 100 MeV π + bombardment. Fission probabilities have been inferred by comparison to computed reaction cross sections. Fission probabilities for heavy targets agree with those for other probes of comparable energy and with statistical calculations. Probabilities for lighter targets are much above those previously observed or computed. Ternary fission cross sections and multiplicities of light fragments have also been determined

  3. A semi-mechanistic approach to calculate the probability of fuel defects

    International Nuclear Information System (INIS)

    Tayal, M.; Millen, E.; Sejnoha, R.

    1992-10-01

    In this paper the authors describe the status of a semi-mechanistic approach to the calculation of the probability of fuel defects. This approach expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The calculations of defect probability continue to reflect the influences of the conventional parameters like power ramp, burnup and CANLUB. In addition, the new approach provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation, for example pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, and coolant temperature and pressure. The approach has been validated against a previous empirical correlation. AN illustrative example shows how the defect thresholds are influenced by changes in the internal design of the element and in the coolant pressure. (Author) (7 figs., tab., 12 refs.)

  4. Study on the calculation method of source term from fission products

    International Nuclear Information System (INIS)

    Zhou Jing; Gong Quan; Qiu Haifeng

    2014-01-01

    As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)

  5. Calculating the mass distribution of heavy nucleus fission product by neutrons

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Koldobskij, A.B.; Kolobashkin, V.M.; Semenova, E.V.

    1981-01-01

    The technique of calculating the fission product mass yields by neutrons which are necessary for performing nucleus physical calculations in designing nuclear reactor cores is considered. The technique is based on the approximation of fission product mass distribution over the whole mass range by five Gauss functions. New analytical expressions for determining energy weights of used gaussians are proposed. The results of comparison of experimental data with calculated values for fission product mass obtained for reference processes in the capacity of which the fission reactions are chosen: 233 U, 235 U fission by thermal neutrons, 232 Th, 233 U, 235 U, 238 U by fission spectrum neutrons and 14 MeV neutrons and for 232 Th fission reactions by 11 MeV neutrons and 238 U by 7.7 MeV neutrons. On the basis of the analysis of results obtained the conclusion is drawn on a good agreement of fission product mass yield calculation values obtained using recommended values of mass distribution parameters with experimental data [ru

  6. Prediction of fission mass-yield distributions based on cross section calculations

    International Nuclear Information System (INIS)

    Hambsch, F.-J.; G.Vladuca; Tudora, Anabella; Oberstedt, S.; Ruskov, I.

    2005-01-01

    For the first time, fission mass-yield distributions have been predicted based on an extended statistical model for fission cross section calculations. In this model, the concept of the multi-modality of the fission process has been incorporated. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode are taken into account. De-convoluted fission cross sections for S1, S2 and SL modes for 235,238 U(n, f) and 237 Np(n, f), based on experimental branching ratios, were calculated for the first time in the incident neutron energy range from 0.01 to 5.5 MeV providing good agreement with the experimental fission cross section data. The branching ratios obtained from the modal fission cross section calculations have been used to deduce the corresponding fission yield distributions, including mean values also for incident neutron energies hitherto not accessible to experiment

  7. Sensitivity and uncertainty analysis for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Rebah, J.; Lee, Y.K.; Nimal, J.C.; Nimal, B.; Luneville, L.; Duchemin, B.

    1994-01-01

    The calculated uncertainty in decay heat due to the uncertainty in basic nuclear data given in the CEA86 Library, is presented. Uncertainties in summation calculation arise from several sources: fission product yields, half-lives and average decay energies. The correlation between basic data is taken into account. The uncertainty analysis were obtained for thermal-neutron-induced fission of U235 and Pu239 in the case of burst fission and irradiation time. The calculated decay heat in this study is compared with experimental results and with new calculation using the JEF2 Library. (from authors) 6 figs., 19 refs

  8. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  9. Application of dynamic pseudo fission products and actinides for accurate burnup calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Kloosterman, J.L.

    1996-09-01

    The introduction of pseudo fission products for accurate fine-group spectrum calculations during burnup is discussed. The calculation of the density of the pseudo nuclides is done before each spectrum calculation from the actual densities and their cross sections of all nuclides to be lumped into a pseudo fission product. As there are also many actinides formed in the fuel during its life cycle, a pseudo actinide with fission cross section is also introduced. From a realistic burnup calculation it is demonstrated that only a few fission products and actinides need to be included explicitly in a spectrum calculation. All other fission products and actinides can be accurately represented in the pseudo nuclides. (author)

  10. Calculation of the distribution of the escaping from a fissionable sample neutrons number when introducing one fission neutron in that sample

    International Nuclear Information System (INIS)

    Dorlet, J.

    1991-01-01

    A describing algorithm furnishes the probabilities of having exactly N escaping neutrons in the descent of one fission neutron, using the punctual reactor model. Calculations can be performed even for N-values greater than 1000. Numerical results show that discrete neutrons counting is unfit to obtain the N mean value, even for very far subcritical devices. That mean value is still very used in the existing theoretical studies, because its obvious correlation with the device effective multiplication coefficient. For that reason modelling coincidence neutrons counting is not suitable using statistical moments approach, but only using probabilities it selves [fr

  11. Benchmarking PARTISN with Analog Monte Carlo: Moments of the Neutron Number and the Cumulative Fission Number Probability Distributions

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Patrick Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-27

    The purpose of this report is to provide the reader with an understanding of how a Monte Carlo neutron transport code was written, developed, and evolved to calculate the probability distribution functions (PDFs) and their moments for the neutron number at a final time as well as the cumulative fission number, along with introducing several basic Monte Carlo concepts.

  12. Map of calculated radioactivity of fission product, (4)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1978-07-01

    The overall radioactivities of fission products depending on irradiation time and cooling time were calculated for 18 different neutron fluxes, which are presented in contour maps and tables. Irradiation condition etc. are the followings: neutron flux (n sub(th)) 1 x 10 12 - 6.8 x 10 14 n/cm 2 /sec, uranium quantity 1 mole (6 x 10 23 atoms, ca. 271 g UO 2 ), U-235 enrichment 2.7%, irradiation time 60. - 6 x 10 7 sec (1 min - 1.9 y), cooling time 0. and 60. - 6 x 10 7 sec (1 min - 1.9 y). The enrichment value represents those for LWRs. To calculate the overall radioactivities, 595 fission product nuclides were introduced. Overall radioactivities calculations were made for 68,000 combinations of irradiation time, cooling time and neutron flux. The many complex decay chains of fission products were treated with CODAC-No.6 computer code. (author)

  13. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  14. Recent improvements in the calculation of prompt fission neutron spectra: Preliminary results

    International Nuclear Information System (INIS)

    Madland, D.G.; LaBauve, R.J.; Nix, J.R.

    1989-01-01

    We consider three topics in the refinement and improvement of our original calculations of prompt fission neutron spectra. These are an improved calculation of the prompt fission neutron spectrum N(E) from the spontaneous fission of 252 Cf, a complete calculation of the prompt fission neutron spectrum matrix N(E,E n ) from the neutron-induced fission of 235 U, at incident neutron energies ranging from 0 to 15 MeV, and an assessment of the scission neutron component of the prompt fission neutron spectrum. Preliminary results will be presented and compared with experimental measurements and an evaluation. A suggestion is made for new integral cross section measurements. (author). 45 refs, 12 figs, 1 tab

  15. Model for fission-product calculations

    International Nuclear Information System (INIS)

    Smith, A.B.

    1984-01-01

    Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined

  16. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Kexing [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  17. Finite fission chain length and symmetry around prompt-criticality

    International Nuclear Information System (INIS)

    Xie Qilin; Yin Yanpeng; Gao Hui; Huang Po; Fang Xiaoqiang

    2012-01-01

    Probability distribution of finite fission chain length was derived by assuming that all neutrons behave identically. Finite fission chain length was also calculated using a zero-dimension Monte-Carlo method based on point kinetics. Then symmetry of finite fission chain length probability distribution around prompt-criticality was deduced, which helps understanding the emission rate of delayed neutrons and initiation of fission chain in super-prompt-critical system. (authors)

  18. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  19. Fission properties of superheavy nuclei for r -process calculations

    Science.gov (United States)

    Giuliani, Samuel A.; Martínez-Pinedo, Gabriel; Robledo, Luis M.

    2018-03-01

    We computed a new set of static fission properties suited for r -process calculations. The potential energy surfaces and collective inertias of 3640 nuclei in the superheavy region are obtained from self-consistent mean-field calculations using the Barcelona-Catania-Paris-Madrid energy density functional. The fission path is computed as a function of the quadrupole moment by minimizing the potential energy and exploring octupole and hexadecapole deformations. The spontaneous fission lifetimes are evaluated employing different schemes for the collective inertias and vibrational energy corrections. This allows us to explore the sensitivity of the lifetimes to those quantities together with the collective ground-state energy along the superheavy landscape. We computed neutron-induced stellar reaction rates relevant for r -process nucleosynthesis using the Hauser-Feshbach statistical approach and study the impact of collective inertias. The competition between different reaction channels including neutron-induced rates, spontaneous fission, and α decay is discussed for typical r -process conditions.

  20. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  1. ELSA: A simplified code for fission product release calculations

    International Nuclear Information System (INIS)

    Manenc, H.; Notley, M.J.

    1996-01-01

    During a light water reactor severe accident, fission products are released from the overheated core as it progressively degrades. A new computer module named ELSA is being developed to calculate fission product release. The authors approach is to model the key phenomena, as opposed to more complete mechanistic approaches. Here they present the main features of the module. Different release mechanisms have been identified and are modeled in ELSA, depending on fission product volatility: diffusion seems to govern the release of the highly volatile species if fuel oxidation is properly accounted for, whereas mass transport governs that of lower volatility fission products and fuel volatilization that of the practically involatile species

  2. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  3. An investigation of fission models for high-energy radiation transport calculations

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.; Neef, R.D.

    1983-07-01

    An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)

  4. MCNP6 Fission Cross Section Calculations at Intermediate and High Energies

    OpenAIRE

    Mashnik, Stepan G.; Sierk, Arnold J.; Prael, Richard E.

    2013-01-01

    MCNP6 has been Validated and Verified (V&V) against intermediate- and high-energy fission cross-section experimental data. An error in the calculation of fission cross sections of 181Ta and a few nearby target nuclei by the CEM03.03 event generator in MCNP6 and a "bug: in the calculation of fission cross sections with the GENXS option of MCNP6 while using the LAQGSM03.03 event generator were detected during our V&V work. After fixing both problems, we find that MCNP6 using CEM03.03 and LAQGSM...

  5. Continuous-energy adjoint flux and perturbation calculation using the iterated fission probability method in Monte-Carlo code TRIPOLI-4 and underlying applications

    International Nuclear Information System (INIS)

    Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.

    2013-01-01

    The first goal of this paper is to present an exact method able to precisely evaluate very small reactivity effects with a Monte Carlo code (<10 pcm). it has been decided to implement the exact perturbation theory in TRIPOLI-4 and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4 is described. To illustrate the efficiency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the 'direct' estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the 'direct' method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high precision. It offers the possibility to split reactivity contributions on both isotopes and reactions. Other applications of this perturbation method are presented and tested like the calculation of exact kinetic parameters (βeff, Λeff) or sensitivity parameters

  6. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  7. HLW disposal by fission reactors; calculation of trans-mutation rate and recycle

    International Nuclear Information System (INIS)

    Mulyanto

    1997-01-01

    Transmutation of MA (Minor actinide) and LLFPS (long-lived fission products) into stable nuclide or short-lived isotopes by fission reactors seem to become an alternative technology for HLW disposal. in this study, transmutation rate and recycle calculation were developed in order to evaluate transmutation characteristics of MA and LLFPs in the fission reactors. inventory of MA and LLFPs in the transmutation reactors were determined by solving of criticality equation with 1-D cylindrical geometry of multigroup diffusion equations at the beginning of cycle (BOC). transmutation rate and burn-up was determined by solving of depletion equation. inventory of MA and LLFPs was calculated for 40 years recycle. From this study, it was concluded that characteristics of MA and LLFPs in the transmutation reactors can be evaluated by recycle calculation. by calculation of transmutation rate, performance of fission reactor for transmutation of MA or LLFPs can be discussed

  8. On the Calculation of the Fast Fission Factor

    Energy Technology Data Exchange (ETDEWEB)

    Almgren, B

    1960-06-15

    Definitions of the fast fission factor {epsilon} are discussed. Different methods of calculation of {epsilon} are compared. Group constants for one - , two- and three-group calculations have been evaluated using the best obtainable basic data. The effects of back-scattering, coupling and (n,2n) reactions are discussed.

  9. Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei

    International Nuclear Information System (INIS)

    Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz

    2016-01-01

    Fusion – fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.

  10. Study of fission dynamics with the three-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2011-11-15

    The dynamics of fission has been studied by solving one- and three-dimensional Langevin equations with dissipation generated through the chaos weighted wall and window friction formula. The average prescission neutron multiplicities, fission probabilities and the mean fission times have been calculated in a broad range of the excitation energy for compound nuclei {sup 210}Po and {sup 224}Th formed in the fusion-fission reactions {sup 4}He+{sup 206}Pb, {sup 16}O+{sup 208}Pb and results compared with the experimental data. The analysis of the results shows that the average prescission neutron multiplicities, fission probabilities and the mean fission times calculated by one- and three-dimensional Langevin equations are different from each other, and also the results obtained based on three-dimensional Langevin equations are in better agreement with the experimental data. (orig.)

  11. First simultaneous measurement of fission and gamma probabilities of 237U and 239Np via surrogate reactions

    Directory of Open Access Journals (Sweden)

    Marini P.

    2016-01-01

    Full Text Available Fission and gamma decay probabilities of 237U and 239Np have been measured, for the first time simultaneously in dedicated experiments, via the surrogate reactions 238U(3He, 4He and 238U(3He,d, respectively. While a good agreement between our data and neutron-induced data is found for fission probabilities, gamma decay probabilities are several times higher than the corresponding neutron-induced data for each studied nucleus. We study the role of the different spin distributions populated in the surrogate and neutron-induced reactions. The compound nucleus spin distribution populated in the surrogate reaction is extracted from the measured gamma-decay probabilities, and used as input parameter in the statistical model to predict fission probabilities to be compared to our data. A strong disagreement between our data and the prediction is obtained. Preliminary results from an additional dedicated experiment confirm the observed discrepancies, indicating the need of a better understanding of the formation and decay processes of the compound nucleus.

  12. Probability Density Estimation Using Neural Networks in Monte Carlo Calculations

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Cho, Jin Young; Song, Jae Seung; Kim, Chang Hyo

    2008-01-01

    The Monte Carlo neutronics analysis requires the capability for a tally distribution estimation like an axial power distribution or a flux gradient in a fuel rod, etc. This problem can be regarded as a probability density function estimation from an observation set. We apply the neural network based density estimation method to an observation and sampling weight set produced by the Monte Carlo calculations. The neural network method is compared with the histogram and the functional expansion tally method for estimating a non-smooth density, a fission source distribution, and an absorption rate's gradient in a burnable absorber rod. The application results shows that the neural network method can approximate a tally distribution quite well. (authors)

  13. Theoretical analysis on the probability of initiating persistent fission chain

    International Nuclear Information System (INIS)

    Liu Jianjun; Wang Zhe; Zhang Ben'ai

    2005-01-01

    For the finite multiplying system of fissile material in the presence of a weak neutron source, the authors analyses problems on the probability of initiating a persistent fission chain through reckoning the stochastic theory of neutron multiplication. In the theoretical treatment, the conventional point reactor conception model is developed to an improved form with position x and velocity v dependence. The estimated results including approximate value of the probability mentioned above and its distribution are given by means of diffusion approximation and compared with those with previous point reactor conception model. They are basically consistent, however the present model can provide details on the distribution. (authors)

  14. Monte Carlo simulation of γ and fission transfer-induced probabilities using extended -matrix theory: Application to the 237U∗ system

    Directory of Open Access Journals (Sweden)

    Bouland Olivier

    2017-01-01

    Full Text Available This paper deals with simultaneous neutron-induced average partial cross sections and surrogate-like probability simulations over several excitation and de-excitation channels of the compound nucleus. Present calculations, based on one-dimensional fission barrier extended -matrix theory using Monte Carlo samplings of both first and second well resonance parameters, avoid the surrogate-reaction method historically taken for surrogate data analyses that proved to be very poor in terms of extrapolated neutron-induced capture cross sections. Present theoretical approach is portrayed and subsequent results can be compared for the first time with experimental γ-decay probabilities; thanks to brand new simultaneous 238U(3He,4Heγ and 238U(3He,4He f surrogate measurements. Future integration of our strategy in standard neutron cross section data evaluation remains tied to the developments made in terms of direct reaction population probability calculations.

  15. FISPRO: a simplified computer program for general fission product formation and decay calculations

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.; Bailey, P.G.

    1979-08-01

    This report describes a computer program that solves a general form of the fission product formation and decay equations over given time steps for arbitrary decay chains composed of up to three nuclides. All fission product data and operational history data are input through user-defined input files. The program is very useful in the calculation of fission product activities of specific nuclides for various reactor operational histories and accident consequence calculations

  16. MADNIX a code to calculate prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1986-03-01

    A code has been written and tested on the CDC Cyber-170 to calculate the prompt fission neutron spectrum, N(E), as a function of both the fissioning nucleus and its excitation energy. In this note a brief description of the underlying physical principles involved and a detailed explanation of the required input data (together with a sample output for the fission of 235 U induced by 14 MeV neutrons) are presented. Weisskopf's standard nuclear evaporation theory provides the basis for the calculation. Two important refinements are that the distribution of fission-fragment residual nuclear temperature and the cooling of the fragments as neutrons are emitted approximately taken into account, and also the energy dependence of the cross section for the inverse process of compound nucleus formation is included. This approach is then used to calculate the average number of prompt neutrons emitted per fission, v-bar p . At high excitation energies, where fission is still possible after neutron emission, the consequences of the competition between first, second and third chance fission on N(E) and v-bar p are calculated. Excellent agreement with all the examples given in the original work of Madland and Nix is obtained. (author) [pt

  17. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  18. Processus of fission at medium energy

    International Nuclear Information System (INIS)

    Delagrange, H.

    1977-01-01

    Excitation functions for the reactions 233 U, 234 U, 235 U( 4 He,xn)Pu have been measured radiochimically between 20 and 45 MeV. Neutron emission probabilities have been deduced from these measurements, for 239 Pu, 238 Pu. These results have been analysed in the framework of a statistical model; the double humped fission barrier has been taken into account explicitly and the parameters of the barrier extracted. In the case of heavy ion reactions, fission probabilities have been calculated with the help of the Bohr-Wheeler formula and compared to experimental data from other authors. Deduced fission parameters (asub(f)/asub(n), Bsub(f)) are compared to different theoretical models [fr

  19. Studies on the reaction mechanism of the muon induced nuclear fission

    International Nuclear Information System (INIS)

    Mutius, R. von.

    1985-01-01

    The mass and energy distribution of the fission fragments after muon induced nuclear fission allows the determination of the mean excitation energy of the fissioning nucleus after muon capture. By the systematic comparison with a mass distribution of a corresponding reaction for the first time for this an accuracy of about 1 MeV could be reached. Theoretical calculations on the excitation probability in the muon capture allow in connection with the fission probability an estimating calculation of this energy. The experimental result represents by this a test criterium for the valuation of the theoretical calculation. The measured probabilities for the occurrence of radiationless transitions in the muonic γ cascade of 237 Np permit an indirect experimental determination of the barrier enhancement which causes the muon present during the fission process. The value found for this extends to 0.75+-0.1 MeV. A change of the mass distribution by the muon cannot be detected in the nuclides 235 U, 237 Np, and 242 Pu studied here. Only the mean total kinetic energy of the fission products is reduced in these three nuclides in the prompt μ - induced fission by 1 to 2 MeV. For this result the incomplete screening of the nuclear charge during the fission process is made responsible. A mass dependence of this reduction has not been stated. Because the muon has appearently no influence on the mass splitting it can be valied as nearly ideal particle in order to study the hitherto little studied dynamics of the fission process. (orig.) [de

  20. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  1. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  2. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  3. 47 CFR 1.1623 - Probability calculation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be...

  4. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    International Nuclear Information System (INIS)

    Lestone, J.P.

    2008-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~ 1.2 MeV and ~ 10 -22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission. (author)

  5. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  6. Optimal systematics of single-humped fission barriers for statistical calculations

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1993-01-01

    A systematic comparison of the existing phenomenological approaches and models for describing single-humped fast-computing fission barriers are given. The experimental data on excitation energy dependence of the fissility of compound nuclei are analyzed in the framework of the statistical approach by using different models for fission barriers, shell and pairing corrections and level-density parameter in order to identify their reliability and region of applicability for Monte Carlo calculations of evaporative cascades. The energy dependence of fission cross-sections for reactions induced by intermediate energy protons has been analyzed in the framework of the cascade-exiton model. 53 refs., 15 figs., 3 tabs

  7. Trajectory calculations for the ternary cold fission of 252Cf

    International Nuclear Information System (INIS)

    Misicu, S.

    1998-01-01

    We compute the final kinetic energies of the fragments emitted in the light charged particle accompanied by cold fission of 252 Cf taking into account the deformation and the finite-size effects of the fragments and integrating the equations of motion for a three-body system subjected only to Coulomb forces. The initial conditions for the trajectory calculations were derived in the framework of a deformed cluster model which includes also the effect due to the absorbative nuclear part. Although the distributions of initial kinetic energies are rather broad we show that in cold fission the initial conditions can be better determined than in the usual spontaneous fission

  8. Reliable method for fission source convergence of Monte Carlo criticality calculation with Wielandt's method

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Miyoshi, Yoshinori

    2004-01-01

    A new algorithm of Monte Carlo criticality calculations for implementing Wielandt's method, which is one of acceleration techniques for deterministic source iteration methods, is developed, and the algorithm can be successfully implemented into MCNP code. In this algorithm, part of fission neutrons emitted during random walk processes are tracked within the current cycle, and thus a fission source distribution used in the next cycle spread more widely. Applying this method intensifies a neutron interaction effect even in a loosely-coupled array where conventional Monte Carlo criticality methods have difficulties, and a converged fission source distribution can be obtained with fewer cycles. Computing time spent for one cycle, however, increases because of tracking fission neutrons within the current cycle, which eventually results in an increase of total computing time up to convergence. In addition, statistical fluctuations of a fission source distribution in a cycle are worsened by applying Wielandt's method to Monte Carlo criticality calculations. However, since a fission source convergence is attained with fewer source iterations, a reliable determination of convergence can easily be made even in a system with a slow convergence. This acceleration method is expected to contribute to prevention of incorrect Monte Carlo criticality calculations. (author)

  9. An assessment of fission product data for decay power calculation in fast reactors

    International Nuclear Information System (INIS)

    Sridharan, M.S.; Murthy, K.P.N.

    1987-01-01

    A review of our present capability at IGC, Kalpakkam to predict fission product decay power in fast reactors is presented. This is accomplished by comparing our summation calculations with the calculations of others and the reported experimental measurements. Our calculations are based on Chandy code developed at our Centre. The fission product data base of Chandy is essentially drawn from the yield data compiled by Crouch (1977) and the data on halflives etc. compiled by Tobias (1973). In general, we find good agreement amongst the different calculations (within ±5%) and our calculations also compare well with experimental measurements of AKIAMA et al and MURPHY et al

  10. GROGi-F. Modified version of GROGi 2 nuclear evaporation computer code including fission decay channel

    International Nuclear Information System (INIS)

    Delagrange, H.

    1977-01-01

    This report is the user manual of the GR0GI-F code, modified version of the GR0GI-2 code. It calculates the cross sections for heavy ion induced fission. Fission probabilities are calculated via the Bohr-Wheeler formalism

  11. Fission barrier theory and its application to the calculation of actinide neutron cross-sections

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1980-01-01

    The lectures discuss the possibilities and realisations of applying nuclear fission theory to the calculation of unknown nuclear data required for applications, principally in the nuclear power field. A brief description of the fundamentals of fission theory, the nature of the potential energy surface in the deformation plane, and of the inertial tensor, is given, and the accuracy of the theoretical calculations is discussed. It is concluded that it is impracticable to obtain required quantities such as neutron cross-sections from such fundamental calculations at present. On the other hand the fundamental theory reveals a wealth of phenomenological aspects of the fission process which can be incorporated into nuclear reaction theory. It is then shown how reaction theory thus extended to take correct account of the structured (''double-humped'') fission barrier can be used to parametrise the barrier by analysis of experimental data, and subsequently to calculate new data. Descriptions of computer programmes and illustrations of the application of the methods to actual physical examples are included in this account. (author)

  12. Calculation of the fast multiplication factor by the fission matrix method

    International Nuclear Information System (INIS)

    Naumov, V.A.; Rozin, S.G.; Ehl'perin, T.I.

    1976-01-01

    A variation of the Monte Carlo method to calculate an effective breeding factor of a nuclear reactor is described. The evaluation procedure of reactivity perturbations by the Monte Carlo method in the first order perturbation theory is considered. The method consists in reducing an integral neutron transport equation to a set of linear algebraic equations. The coefficients of this set are elements of a fission matrix. The fission matrix being a Grin function of the neutron transport equation, is evaluated by the Monte Carlo method. In the program realizing the suggested algorithm, the game for initial neutron energy of a fission spectrum and then for the region of neutron birth, ΔVsub(f)sup(i)has been played in proportion to the product of Σsub(f)sup(i)ΔVsub(f)sup(i), where Σsub(f)sup(i) is a macroscopic cross section in the region numbered at the birth energy. Further iterations of a space distribution of neutrons in the system are performed by the generation method. In the adopted scheme of simulation of neutron histories the emission of secondary neutrons is controlled by weights; it occurs at every collision and not only in the end on the history. The breeding factor is calculated simultaneously with the space distribution of neutron worth in the system relative to the fission process and neutron flux. Efficiency of the described procedure has been tested on the calculation of the breeding factor for the Godiva assembly, simulating a fast reactor with a hard spectrum. A high accuracy of calculations at moderate number of zones in the core and reasonable statistics has been stated

  13. Dynamical calculations of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1984-01-01

    With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references

  14. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  15. Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pardeep; Kaur, Harjeet [Guru Nanak Dev University, Department of Physics, Amritsar (India)

    2016-11-15

    The fission-fragment mass distribution is analysed for the {sup 208}Pb({sup 18}O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schroedinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process. (orig.)

  16. Probability calculations for three-part mineral resource assessments

    Science.gov (United States)

    Ellefsen, Karl J.

    2017-06-27

    Three-part mineral resource assessment is a methodology for predicting, in a specified geographic region, both the number of undiscovered mineral deposits and the amount of mineral resources in those deposits. These predictions are based on probability calculations that are performed with computer software that is newly implemented. Compared to the previous implementation, the new implementation includes new features for the probability calculations themselves and for checks of those calculations. The development of the new implementation lead to a new understanding of the probability calculations, namely the assumptions inherent in the probability calculations. Several assumptions strongly affect the mineral resource predictions, so it is crucial that they are checked during an assessment. The evaluation of the new implementation leads to new findings about the probability calculations,namely findings regarding the precision of the computations,the computation time, and the sensitivity of the calculation results to the input.

  17. Calculation of fission gases internal pressure in nuclear fuel rods

    International Nuclear Information System (INIS)

    Vasconcelos Santana, M. de.

    1981-12-01

    Models concerning the principal phenomena, particularly thermal expansion, fuel swelling, densification, reestructuring, relocation, mechanical strain, fission gas production and release, direct or indirectly important to calculate the internal pressure in nuclear fuel rods were analysed and selected. Through these analyses a computer code was developed to calculate fuel pin internal pressure evolution. Three different models were utilized to calculate the internal pressure in order to select the best and the most conservative estimate. (Author) [pt

  18. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    International Nuclear Information System (INIS)

    Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.

    2014-01-01

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator

  19. Multi-dimensional fission-barrier calculations from Se to the SHE; from the proton to the neutron drip lines

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Bengtsson, Ragnar; Iwamoto, Akira

    2003-01-01

    We present fission-barrier-height calculations for nuclei throughout the periodic system based on a realistic theoretical model of the multi-dimensional potential-energy surface of a fissioning nucleus. This surface guides the nuclear shape evolution from the ground state, over inner and outer saddle points, to the final configurations of separated fission fragments. We have previously shown that our macroscopic-microscopic nuclear potential-energy model yields calculated 'outer' fission-barrier heights (E B ) for even-even nuclei throughout the periodic system that agree with experimental data to within about 1.0 MeV. We present final results of this work. Just recently we have enhanced our macroscopic-microscopic nuclear potential-energy model to also allow the consideration of axially asymmetric shapes. This shape degree of freedom has a substantial effect on the calculated height (E A ) of the inner peak of some actinide fission barriers. We present examples of fission-barrier calculations by use of this model with its redetermined constants. Finally we discuss what the model now tells us about fission barriers at the end of the r-process nucleosynthesis path. (author)

  20. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-01-01

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k eff of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data

  1. Fission characteristics of Ra formed in heavy-ion induced reactions

    Indian Academy of Sciences (India)

    A Kramers-modified statistical model is used to calculate the cross-section of the evap- oration residue, fission ... where ρCN and ρsad are the level density of the compound nucleus at the ground and saddle points ... where P(K) is the probability that the system is in a given K. P(K) = T ..... time to be emitted before fission.

  2. Systematics of neutron-induced fission yields

    International Nuclear Information System (INIS)

    Blachot, J.; Brissot, R.

    1983-10-01

    The main characteristics of the mass and charge distributions for thermal neutron induced fission of actinides are reviewed. We show that these distributions can be reasonably reproduced with only 24 data as input. We use a representation where the element yields together with the most probable mass Ap(Z) play the dominant role. The ability of this model to calculate mass yields for the fission of not yet measured actinides is also shown. The influence of the excitation energy of the fissile system on charge and mass distribution is also discussed

  3. The MCEF code for nuclear evaporation and fission calculations

    International Nuclear Information System (INIS)

    Deppman, A.; Pina, S.R. de; Likhachev, V.P.; Mesa, J.; Arruda-Neto, J.D.T.; Rodriguez, O.; Goncalves, M.

    2001-11-01

    We present an object oriented algorithm, written in the Java programming language, which performs a Monte Carlo calculation of the evaporation-fission process taking place inside an excited nucleus. We show that this nuclear physics problem is very suited for the object oriented programming by constructing two simple objects: one that handles all nuclear properties and another that takes care of the nuclear reaction. The MCEF code was used to calculate important results for nuclear reactions, and here we show examples of possible uses for this code. (author)

  4. Heterogeneous Calculation of {epsilon}

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf

    1961-02-15

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.

  5. Heterogeneous Calculation of ε

    International Nuclear Information System (INIS)

    Jonsson, Alf

    1961-02-01

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer

  6. Automatic fission source convergence criteria for Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Kim, Chang Hyo

    2005-01-01

    The Monte Carlo criticality calculations for the multiplication factor and the power distribution in a nuclear system require knowledge of stationary or fundamental-mode fission source distribution (FSD) in the system. Because it is a priori unknown, so-called inactive cycle Monte Carlo (MC) runs are performed to determine it. The inactive cycle MC runs should be continued until the FSD converges to the stationary FSD. Obviously, if one stops them prematurely, the MC calculation results may have biases because the followup active cycles may be run with the non-stationary FSD. Conversely, if one performs the inactive cycle MC runs more than necessary, one is apt to waste computing time because inactive cycle MC runs are used to elicit the fundamental-mode FSD only. In the absence of suitable criteria for terminating the inactive cycle MC runs, one cannot but rely on empiricism in deciding how many inactive cycles one should conduct for a given problem. Depending on the problem, this may introduce biases into Monte Carlo estimates of the parameters one tries to calculate. The purpose of this paper is to present new fission source convergence criteria designed for the automatic termination of inactive cycle MC runs

  7. Probability of ternary fission of 93Nb andnat Ag nuclei induced by 0.8-1.8 GeV photons

    International Nuclear Information System (INIS)

    Lima, D.A. de; Milomen, W.C.C.; Tavares, O.A.P.

    1989-01-01

    The yields of ternary fission of 93 Nb and nat Ag nuclei induced by bremsstrahlung photons of 0.8, 1.0, 1.4 and 1.8 GeV end-point energies have been measured by using the 2 Π-forward geometry with thick target metal foils in contact with makrofol polycarbonate sheets as fission-track detectors. Absolute mean cross sections per photon in the range 0.8-1.8 GeV have been obtained as 0.3 ± 0.3 μb and 0.5 ± μb, respectively, for 93 Nb and nat Ag nuclei. These correspond to a probability of ternary fission of approx. 10 -5 for both nuclei. Results are discussed and compared with previous ternary fission data obtained for nuclei of A [pt

  8. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  9. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  10. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  11. Calculating Cumulative Binomial-Distribution Probabilities

    Science.gov (United States)

    Scheuer, Ernest M.; Bowerman, Paul N.

    1989-01-01

    Cumulative-binomial computer program, CUMBIN, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), used independently of one another. Reliabilities and availabilities of k-out-of-n systems analyzed. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Used for calculations of reliability and availability. Program written in C.

  12. Modelling the widths of fission observables in GEF

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2013-03-01

    Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.

  13. Calculating the Probability of Returning a Loan with Binary Probability Models

    Directory of Open Access Journals (Sweden)

    Julian Vasilev

    2014-12-01

    Full Text Available The purpose of this article is to give a new approach in calculating the probability of returning a loan. A lot of factors affect the value of the probability. In this article by using statistical and econometric models some influencing factors are proved. The main approach is concerned with applying probit and logit models in loan management institutions. A new aspect of the credit risk analysis is given. Calculating the probability of returning a loan is a difficult task. We assume that specific data fields concerning the contract (month of signing, year of signing, given sum and data fields concerning the borrower of the loan (month of birth, year of birth (age, gender, region, where he/she lives may be independent variables in a binary logistics model with a dependent variable “the probability of returning a loan”. It is proved that the month of signing a contract, the year of signing a contract, the gender and the age of the loan owner do not affect the probability of returning a loan. It is proved that the probability of returning a loan depends on the sum of contract, the remoteness of the loan owner and the month of birth. The probability of returning a loan increases with the increase of the given sum, decreases with the proximity of the customer, increases for people born in the beginning of the year and decreases for people born at the end of the year.

  14. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  15. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  16. An application program for fission product decay heat calculations

    International Nuclear Information System (INIS)

    Pham, Ngoc Son; Katakura, Jun-ichi

    2007-10-01

    The precise knowledge of decay heat is one of the most important factors in safety design and operation of nuclear power facilities. Furthermore, decay heat data also play an important role in design of fuel discharges, fuel storage and transport flasks, and in spent fuel management and processing. In this study, a new application program, called DHP (Decay Heat Power program), has been developed for exact decay heat summation calculations, uncertainty analysis, and for determination of the individual contribution of each fission product. The analytical methods were applied in the program without any simplification or approximation, in which all of linear and non-linear decay chains, and 12 decay modes, including ground state and meta-stable states, are automatically identified, and processed by using a decay data library and a fission yield data file, both in ENDF/B-VI format. The window interface of the program is designed with optional properties which is very easy for users to run the code. (author)

  17. Cluster radioactivity and very asymmetric fission through quasi-molecular shapes

    International Nuclear Information System (INIS)

    Royer, G.

    1997-01-01

    The decay of radioactive nuclei which emit heavy clusters like C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the deformation energy has been calculated within a generalized liquid drop model taking into account the proximity effects between the cluster and the daughter nucleus. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data for the heaviest clusters. The Ne, Mg and Si emission looks like a very-asymmetric spontaneous fission. The 14 C radioactivity is not correctly described within the fission hypothesis. The 14 C and apparently also the 20 O are probably pre-born in the parent nucleus, the emission being similar to the α decay process. (author)

  18. Kinetic-energy distribution for symmetric fission of 236U

    International Nuclear Information System (INIS)

    Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.

    1980-01-01

    Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)

  19. Fission decay properties of nuclear giant multipole resonances

    International Nuclear Information System (INIS)

    Dias, H.; Arruda Neto, J.D.T.; Hussein, M.S.; Carlson, B.V.

    1986-05-01

    The statistical fission decay properties of the giant dipole, quadrupole and monopole resonances in 236 U are investigated with the aid of the Hauser-Feshbach model. It is found, contrary to several recent claims, that the GQR fission decay probability is as large as that of the GDR, at energies higher than the fission barrier. At energies close to the f.b., the GQR fission probability is found to be appreciably larger than that of the GDR. The GMR fission probability follows closely that of the GQR. (Author) [pt

  20. Development and application of the PBMR fission product release calculation model

    International Nuclear Information System (INIS)

    Merwe, J.J. van der; Clifford, I.

    2008-01-01

    At PBMR, long-lived fission product release from spherical fuel spheres is calculated using the German legacy software product GETTER. GETTER is a good tool when performing calculations for fuel spheres under controlled operating conditions, including irradiation tests and post-irradiation heat-up experiments. It has proved itself as a versatile reactor analysis tool, but is rather cumbersome when used for accident and sensitivity analysis. Developments in depressurized loss of forced cooling (DLOFC) accident analysis using GETTER led to the creation of FIssion Product RElease under accident (X) conditions (FIPREX), and later FIPREX-GETTER. FIPREX-GETTER is designed as a wrapper around GETTER so that calculations can be carried out for large numbers of fuel spheres with design and operating parameters that can be stochastically varied. This allows full Monte Carlo sensitivity analyses to be performed for representative cores containing many fuel spheres. The development process and application of FIPREX-GETTER in reactor analysis at PBMR is explained and the requirements for future developments of the code are discussed. Results are presented for a sample PBMR core design under normal operating conditions as well as a suite of design-base accident events, illustrating the functionality of FIPREX-GETTER. Monte Carlo sensitivity analysis principles are explained and presented for each calculation type. The plan and current status of verification and validation (V and V) is described. This is an important and necessary process for all software and calculation model development at PBMR

  1. Calculation of vapor pressure of fission product fluorides and oxyfluorides

    International Nuclear Information System (INIS)

    Roux, J.P.

    1976-03-01

    The equilibrium diagrams of the condensed phases - solid and liquid - and vapor phase are collected for the principal fluorides and oxyfluorides of fission product elements (atomic number from 30 to 66). These diagrams are used more particularly in fuel reprocessing by fluoride volatility process. Calculations and curves (vapor pressure in function of temperature) are processed using a computer program given in this report [fr

  2. The study of prompt and delayed muon induced fission III. The ratios of prompt to delayed fission yields

    NARCIS (Netherlands)

    Rösel, Ch.; Hänscheid, H.; Hartfiel, J.; Mutius, von R.; Achard van Enschut, d' J.F.M.; David, P; Janszen, H.; Johansson, T.; Konijn, J.; Krogulski, T.; Laat, de C.T.A.M.; Paganetti, H.; Petitjean, C.; Polikanov, S.M.; Reist, H.W.; Risse, F.; Schaller, L.A.; Schrieder, W.; Sinha, A.K.; Taal, A.; Theobald, J.P.; Tibell, G.; Trautmann, N.

    1993-01-01

    The ratios of prompt to delayed fission yields for the isotopes U-233, U-234, U-235, U-236, U-238, Np-237, Pu-242, and Pu-244 and the fission probabilities relative to each other have been investigated experimentally. Using the value of the total fission probability for Np-237 the absolute

  3. Inclusion of temperature dependence of fission barriers in statistical model calculations

    International Nuclear Information System (INIS)

    Newton, J.O.; Popescu, D.G.; Leigh, J.R.

    1990-08-01

    The temperature dependence of fission barriers has been interpolated from the results of recent theoretical calculations and included in the statistical model code PACE2. It is shown that the inclusion of temperature dependence causes significant changes to the values of the statistical model parameters deduced from fits to experimental data. 21 refs., 2 figs

  4. First and second chance fission calculations for actinides and related topics

    International Nuclear Information System (INIS)

    Maino, G.; Menapace, E.; Motta, M.; Ventura, A.

    1980-01-01

    First and second chance contributions to neutron induced fission cross sections in an energy range of interest for reactor applications (E/sub n/less than or equal to 13 MeV) were obtained by extensive and consistent calculations for 241 Am; moreover, a simplified semiempirical approach was applied to 235 U and 239 Pu

  5. Method to Calculate Accurate Top Event Probability in a Seismic PSA

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Sik [Sejong Univ., Seoul (Korea, Republic of)

    2014-05-15

    ACUBE(Advanced Cutset Upper Bound Estimator) calculates the top event probability and importance measures from cutsets by dividing cutsets into major and minor groups depending on the cutset probability, where the cutsets that have higher cutset probability are included in the major group and the others in minor cutsets, converting major cutsets into a Binary Decision Diagram (BDD). By applying the ACUBE algorithm to the seismic PSA cutsets, the accuracy of a top event probability and importance measures can be significantly improved. ACUBE works by dividing the cutsets into two groups (higher and lower cutset probability groups), calculating the top event probability and importance measures in each group, and combining the two results from the two groups. Here, ACUBE calculates the top event probability and importance measures of the higher cutset probability group exactly. On the other hand, ACUBE calculates these measures of the lower cutset probability group with an approximation such as MCUB. The ACUBE algorithm is useful for decreasing the conservatism that is caused by approximating the top event probability and importance measure calculations with given cutsets. By applying the ACUBE algorithm to the seismic PSA cutsets, the accuracy of a top event probability and importance measures can be significantly improved. This study shows that careful attention should be paid and an appropriate method be provided in order to avoid the significant overestimation of the top event probability calculation. Due to the strength of ACUBE that is explained in this study, the ACUBE became a vital tool for calculating more accurate CDF of the seismic PSA cutsets than the conventional probability calculation method.

  6. Energy dependence of the neutron multiplicity P/sub nu/ in fast neutron induced fission of /sup 235,238/U and 239Pu

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Certain applications require knowledge of the higher moments of the neutron multiplicity probability. It can be shown that the second factorial moment is proportional to the fission rate in the sample, and that the third factorial moment can be of use in disentangling spontaneous fission from induced fission. Using a source of unpublished work in which neutron multiplicities were derived for the fast neutron induced fission of U-235, U-238, and Pu-239, the multiplicity probability has been calculated as a function of neutron energy for the energy range 0 to 10 MeV

  7. Analysis of fission ratio distribution in spherical lithium metal assembly with a graphite reflector

    International Nuclear Information System (INIS)

    Seki, Yasushi; Maekawa, Hiroshi; Hiraoka, Toru; Hirota, Jitsuya; Moriyama, Masatoshi.

    1975-08-01

    For the investigation of neutronics in the fusion reactor blanket, a spherical lithium assembly with a graphite reflector was prepared by piling up lithium and graphite blocks. The ratio of U-238 to U-235 fission rates was measured by micro fission chambers, and the result of the measurement was compared with that of the preliminary calculation. It has been shown that there is a large discrepancy between experiment and calculation, which is too large to be explained only by the experimental error. In this paper, the calculational procedure is reviewed and probable causes of the calculational error are listed. Further calculation of the fission ratio is carried out employing refined methods and with varied calculational models. As the result, it is concluded that the cause of the discrepancy is most likely the uncertainties of the nuclear data of the constituent elements of the assembly. (auth.)

  8. Fission and r-process nucleosynthesis in neutron star mergers

    International Nuclear Information System (INIS)

    Giuliani, Samuel Andrea

    2018-01-01

    Fission plays a crucial role for the r-process nucleosynthesis in neutron star mergers. Due to the high neutron densities achieved in this astrophysical scenario the sequence of neutron captures and beta decays that constitutes the r process produces superheavy neutron rich nuclei that become unstable against fission. Fission determines thus the heaviest nuclei that can be produced by the r process and the fission yields shape the abundances of lighter nuclei. But despite the key role of fission the sensitivity of the r-process nucleosynthesis to uncertainties in fission predictions has not been explored. Nowadays there are only few set of fission rates suited for r-process calculations and most of them rely on a simplified treatment of the fission process. In this thesis we go beyond these approximations and compute the fission properties of r-process nuclei using the energy density functional approach. Fission is described as a tunneling process where the nucleus ''moves'' in a collective space characterized by coordinates describing the nuclear shape. Thus fission depends on the evolution of the energy with the deformation but also on the inertia due to the motion in the collective space. This is analogous to the quantum mechanical tunneling of a particle inside a potential well. In our study the relevant quantities for the description of the fission process are consistently computed for 3642 nuclei following the Hartree-Fock-Bogolyubov theory with constraining operators. We perform an extensive benchmark against the available experimental data and explore the variations of the fission properties along the superheavy landscape. We find that while collective inertias have a strong impact in the fission probabilities of light nuclei their role becomes less relevant in r -process nuclei. Within the statistical model we compute the neutron induced stellar reaction rates relevant for the r-process nucleosynthesis. These sets of stellar reaction

  9. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  10. Thermodynamic cycle calculations for a pumped gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.

    1991-01-01

    Finite and 'infinitesimal' thermodynamic cycle calculations have been performed for a 'solid piston' model of a pumped Gaseous Core Fission Reactor with dissociating reactor gas, consisting of Uranium, Carbon and Fluorine ('UCF'). In the finite cycle calculations the influence has been investigated of several parameters on the thermodynamics of the system, especially on the attainable direct (nuclear to electrical) energy conversion efficiency. In order to facilitate the investigation of the influence of dissociation, a model gas, 'Modelium', was developed, which approximates, in a simplified, analytical way, the dissociation behaviour of the 'real' reactor gas. Comparison of the finite cycle calculation results with those of a so-called infinitesimal Otto cycle calculation leads to the conclusion that the conversion efficiency of a finite cycle can be predicted, without actually performing the finite cycle calculation, with reasonable accuracy, from the so-called 'infinitesimal efficiency factor', which is determined only by the thermodynamic properties of the reactor gas used. (author)

  11. Fission anisotropy of Tl produced in fusion reactions in the ...

    Indian Academy of Sciences (India)

    - ... framework of the modified statistical model and the results were compared ... Later, it has been found that the fission times calculated using this model .... where P(K) = (T /hωeq) exp(−Veq/T) is the probability that the system is in a given K,.

  12. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  13. Implementation of a Thermodynamic Solver within a Computer Program for Calculating Fission-Product Release Fractions

    Science.gov (United States)

    Barber, Duncan Henry

    During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A

  14. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  15. Uncertainty of decay heat calculations originating from errors in the nuclear data and the yields of individual fission products

    International Nuclear Information System (INIS)

    Rudstam, G.

    1979-01-01

    The calculation of the abundance pattern of the fission products with due account taken of feeding from the fission of 235 U, 238 U, and 239 Pu, from the decay of parent nuclei, from neutron capture, and from delayed-neutron emission is described. By means of the abundances and the average beta and gamma energies the decay heat in nuclear fuel is evaluated along with its error derived from the uncertainties of fission yields and nuclear properties of the inddividual fission products. (author)

  16. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  17. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  18. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  19. Calculating the albedo characteristics by the method of transmission probabilities

    International Nuclear Information System (INIS)

    Lukhvich, A.A.; Rakhno, I.L.; Rubin, I.E.

    1983-01-01

    The possibility to use the method of transmission probabilities for calculating the albedo characteristics of homogeneous and heterogeneous zones is studied. The transmission probabilities method is a numerical method for solving the transport equation in the integrated form. All calculations have been conducted as a one-group approximation for the planes and rods with different optical thicknesses and capture-to-scattering ratios. Above calculations for plane and cylindrical geometries have shown the possibility to use the numerical method of transmission probabilities for calculating the albedo characteristics of homogeneous and heterogeneous zones with high accuracy. In this case the computer time consumptions are minimum even with the cylindrical geometry, if the interpolation calculation of characteristics is used for the neutrons of the first path

  20. Fission times of excited nuclei: An experimental overview

    International Nuclear Information System (INIS)

    Morjean, M.; Morjean, M.; Jacquet, D.

    2009-01-01

    An overview of selected recent experimental results on fission times is presented. Evidences for over-damped motion up to saddle point during the fission process of highly excited nuclei have been obtained independently through fission probability, pre-scission multiplicity and direct time measurements. In addition, strong clues have been found for a temperature dependency of friction. Experiments probing transient effects through fission probabilities are presented and the counterbalanced effects of friction and level density parameters are discussed. Promising perspectives for super-heavy stability studies, based on fission time measurements, are presented. (authors)

  1. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mass distribution of fission fragments within the Born-Oppenheimer approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, K.; Nerlo-Pomorska, B. [M.C.S. University, Department of Theoretical Physics, Lublin (Poland); Ivanyuk, F.A. [Institute for Nuclear Research, Kiev (Ukraine)

    2017-03-15

    The fission fragments mass-yield of {sup 236} U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. (orig.)

  3. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  4. Effect of fission yield libraries on the irradiated fuel composition in Monte Carlo depletion calculations

    International Nuclear Information System (INIS)

    Mitenkova, E.; Novikov, N.

    2014-01-01

    Improving the prediction of radiation parameters and reliability of fuel behaviour under different irradiation modes is particularly relevant for new fuel compositions, including recycled nuclear fuel. For fast reactors there is a strong dependence of nuclide accumulations on the nuclear data libraries. The effect of fission yield libraries on irradiated fuel is studied in MONTEBURNS-MCNP5-ORIGEN2 calculations of sodium fast reactors. Fission yield libraries are generated for sodium fast reactors with MOX fuel, using ENDF/B-VII.0, JEFF3.1, original library FY-Koldobsky, and GEFY 3.3 as sources. The transport libraries are generated from ENDF/B-VII.0 and JEFF-3.1. Analysis of irradiated MOX fuel using different fission yield libraries demonstrates the considerable spread in concentrations of fission products. The discrepancies in concentrations of inert gases being ∼25%, up to 5 times for stable and long-life nuclides, and up to 10 orders of magnitude for short-lived nuclides. (authors)

  5. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  6. Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons

    International Nuclear Information System (INIS)

    Nix, J.R.; Madland, D.G.; Sierk, A.J.

    1985-01-01

    With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown

  7. Statistical fluctuation phenomenon of early growth fission chain

    International Nuclear Information System (INIS)

    Zheng Chun; Song Lingli

    2008-01-01

    The early growth of neutron population within a supercritical system of fissile material is of a statistical nature and may depart significantly from the average time dependence neutron population. The probability of a source neutron sponsoring a persistent fission chain was considered for a supercritical system. Then the probability distribution in time of the neutron population reaching a preset level was deduced based on the probability P(n,t) of n neutron at time t. By combing the above two probabilities, the probability that at time t after the system reached critical there were no neutron in the system was derived. The P(t) of Godiva neutron excursion at supercritical, and the pre-burst probability of BARS were calculated by this model, and were found agree with the experiment result. (authors)

  8. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  9. Map of calculated radioactivity of fission product, 3

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I: Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr), Vol. II: Maps of radioactivity of each nuclide (Nb - Sb), Vol. III: Maps of radioactivity of each nuclide (Te - Tm). (auth.)

  10. Map of calculated radioactivity of fission product, (1)

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr) Vol. II Maps of radioactivity of each nuclide (Nb - Sb) Vol. III Maps of radioactivity of each nuclide (Te - Tm) (auth.)

  11. Map of calculated radioactivity of fission product, 2

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-02-01

    In this work, the radioactivities of fission products were calculated and summarized in contour maps and tables depending on irradiation and cooling times. The irradiation condition and other parameters used for the present calculation are shown in the followings. Neutron flux (N sub(th)): 3x10 13 n/sec/cm 2 Atom number of uranium: 1 mole (6x10 23 , ca. 271 gUO 2 ) Enrichment of U-235: 2.7% Range of irradiation time: 60-6x10 7 sec (ca. 1.9 y) Range of cooling time: 60-6x10 7 sec (ca. 1.9 y). Values of the neutron flux and the enrichment treated here are representative for common LWRs. The maps and tables of 560 nuclides are divided and compiled into the following three volumes. Vol. I: Maps of radioactivity of overall total, element total and each nuclide (Ni - Zr), Vol. II: Maps of radioactivity of each nuclide (Nb - Sb), Vol. III: Maps of radioactivity of each nuclide (Te - Tm). (auth.)

  12. A Covariance Generation Methodology for Fission Product Yields

    Directory of Open Access Journals (Sweden)

    Terranova N.

    2016-01-01

    Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  13. Fission fragment mass and angular distributions

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the ...

  14. Calculation of transition probabilities using the multiconfiguration Dirac-Fock method

    International Nuclear Information System (INIS)

    Kim, Yong Ki; Desclaux, Jean Paul; Indelicato, Paul

    1998-01-01

    The performance of the multiconfiguration Dirac-Fock (MCDF) method in calculating transition probabilities of atoms is reviewed. In general, the MCDF wave functions will lead to transition probabilities accurate to ∼ 10% or better for strong, electric-dipole allowed transitions for small atoms. However, it is more difficult to get reliable transition probabilities for weak transitions. Also, some MCDF wave functions for a specific J quantum number may not reduce to the appropriate L and S quantum numbers in the nonrelativistic limit. Transition probabilities calculated from such MCDF wave functions for nonrelativistically forbidden transitions are unreliable. Remedies for such cases are discussed

  15. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular ... alent to the assumption that fission is delayed, namely, that the fission probability is not .... parameters to be adjusted on the experimental data. ..... (b) Time distribution of all fission events for the 132Ce nucleus.

  16. Fission observables from 4D Langevin calculations with macroscopic transport coefficients

    Directory of Open Access Journals (Sweden)

    Usang Mark D.

    2018-01-01

    Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.

  17. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  18. Prompt fission neutron spectra of n + 235U above the (n, nf) fission threshold

    International Nuclear Information System (INIS)

    Shu Nengchuan; Chen Yongjing; Liu Tingjin; Jia Min

    2015-01-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235 U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n, xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n, xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n, nf) or (n, 2nf) reactions influences the PFNS shape, and the neutron spectra of the (n, xnf) fission-channel are soft compared with the neutron spectra of the (n, f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. (authors)

  19. Fission cross section and fission fragment angular distribution for oriented nucleus fission by intermediate energy neutrons (epsilon < or approximately 1 Mev)

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1985-01-01

    General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations

  20. Delayed neutron spectra and their uncertainties in fission product summation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)

    1997-03-01

    Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)

  1. Development of an integrated fission product release and transport code for spatially resolved full-core calculations of V/HTRs

    International Nuclear Information System (INIS)

    Xhonneux, Andre; Allelein, Hans-Josef

    2014-01-01

    The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR

  2. Probability of Criticality for MOX SNF

    International Nuclear Information System (INIS)

    P. Gottlieb

    1999-01-01

    The purpose of this calculation is to provide a conservative (upper bound) estimate of the probability of criticality for mixed oxide (MOX) spent nuclear fuel (SNF) of the Westinghouse pressurized water reactor (PWR) design that has been proposed for use. with the Plutonium Disposition Program (Ref. 1, p. 2). This calculation uses a Monte Carlo technique similar to that used for ordinary commercial SNF (Ref. 2, Sections 2 and 5.2). Several scenarios, covering a range of parameters, are evaluated for criticality. Parameters specifying the loss of fission products and iron oxide from the waste package are particularly important. This calculation is associated with disposal of MOX SNF

  3. Calculation of dose distribution for 252Cf fission neutron source in tissue equivalent phantoms using Monte Carlo method

    International Nuclear Information System (INIS)

    Ji Gang; Guo Yong; Luo Yisheng; Zhang Wenzhong

    2001-01-01

    Objective: To provide useful parameters for neutron radiotherapy, the author presents results of a Monte Carlo simulation study investigating the dosimetric characteristics of linear 252 Cf fission neutron sources. Methods: A 252 Cf fission source and tissue equivalent phantom were modeled. The dose of neutron and gamma radiations were calculated using Monte Carlo Code. Results: The dose of neutron and gamma at several positions for 252 Cf in the phantom made of equivalent materials to water, blood, muscle, skin, bone and lung were calculated. Conclusion: The results by Monte Carlo methods were compared with the data by measurement and references. According to the calculation, the method using water phantom to simulate local tissues such as muscle, blood and skin is reasonable for the calculation and measurements of dose distribution for 252 Cf

  4. Generalized Energy-Dependent Q Values for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2010-03-31

    We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.

  5. Collective probabilities algorithm for surface hopping calculations

    International Nuclear Information System (INIS)

    Bastida, Adolfo; Cruz, Carlos; Zuniga, Jose; Requena, Alberto

    2003-01-01

    General equations that transition probabilities of the hopping algorithms in surface hopping calculations must obey to assure the equality between the average quantum and classical populations are derived. These equations are solved for two particular cases. In the first it is assumed that probabilities are the same for all trajectories and that the number of hops is kept to a minimum. These assumptions specify the collective probabilities (CP) algorithm, for which the transition probabilities depend on the average populations for all trajectories. In the second case, the probabilities for each trajectory are supposed to be completely independent of the results from the other trajectories. There is, then, a unique solution of the general equations assuring that the transition probabilities are equal to the quantum population of the target state, which is referred to as the independent probabilities (IP) algorithm. The fewest switches (FS) algorithm developed by Tully is accordingly understood as an approximate hopping algorithm which takes elements from the accurate CP and IP solutions. A numerical test of all these hopping algorithms is carried out for a one-dimensional two-state problem with two avoiding crossings which shows the accuracy and computational efficiency of the collective probabilities algorithm proposed, the limitations of the FS algorithm and the similarity between the results offered by the IP algorithm and those obtained with the Ehrenfest method

  6. Application of Higher Order Fission Matrix for Real Variance Estimation in McCARD Monte Carlo Eigenvalue Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    In a Monte Carlo (MC) eigenvalue calculation, it is well known that the apparent variance of a local tally such as pin power differs from the real variance considerably. The MC method in eigenvalue calculations uses a power iteration method. In the power iteration method, the fission matrix (FM) and fission source density (FSD) are used as the operator and the solution. The FM is useful to estimate a variance and covariance because the FM can be calculated by a few cycle calculations even at inactive cycle. Recently, S. Carney have implemented the higher order fission matrix (HOFM) capabilities into the MCNP6 MC code in order to apply to extend the perturbation theory to second order. In this study, the HOFM capability by the Hotelling deflation method was implemented into McCARD and used to predict the behavior of a real and apparent SD ratio. In the simple 1D slab problems, the Endo's theoretical model predicts well the real to apparent SD ratio. It was noted that the Endo's theoretical model with the McCARD higher mode FS solutions by the HOFM yields much better the real to apparent SD ratio than that with the analytic solutions. In the near future, the application for a high dominance ratio problem such as BEAVRS benchmark will be conducted.

  7. Dynamics of process at the final stage of nuclear fission

    International Nuclear Information System (INIS)

    Koljari, I.G.; Mavlitov, N.D.

    2005-01-01

    Numerous experimental data show, that the final stage of nuclear fission near to a scission point plays an essential role at formation of characteristics of fission products. At the description of a final stage of fission there is a number of problems: Definition of the form of the nuclear near the scission point and definition forms of a fission fragments; The account of dynamic processes in compound nuclear directly before of fission. The condition of the quasistatic al adiabatic process - dS/dt=0 - is applied in a point of transition from the uniform compound nuclei to several forms for definition of generalized coordinates and speeds. Calculation of dependence of post neutrons from nuclear mass of fission fragments for reactions is α+ 83 Bi 209 → 85 At 213 (E lab = 45 MeV); α+ 92 U 242 → 94 Pu 242 (E lab = 45 MeV); 8 O 18 + 79 Au 197 → 97 Fr 215 (E lab = 159 MeV). System of equations, which describes behaviour of system in a point of nuclear fission-transition from the uniform form to system of a two (and, probably more) fission fragments is given. The system of the equations allows in a fission point to define the generalized coordinates, and the generalized speeds for each of the generalized coordinates of collective deformation variables

  8. Estimation of delayed neutron emission probability by using the gross theory of nuclear β-decay

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1999-01-01

    The delayed neutron emission probabilities (P n -values) of fission products are necessary in the study of reactor physics; e.g. in the calculation of total delayed neutron yields and in the summation calculation of decay heat. In this report, the P n -values estimated by the gross theory for some fission products are compared with experiment, and it is found that, on the average, the semi-gross theory somewhat underestimates the experimental P n -values. A modification of the β-decay strength function is briefly discussed to get more reasonable P n -values. (author)

  9. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  10. Fission energy of uranium isotopes and transuranium elements

    International Nuclear Information System (INIS)

    Nemirovskij, P.Eh.; Manevich, L.G.

    1981-01-01

    A comparison is made between the prompt fission energy, Esub(pr), calculated from the mass and binding energy spectrum and the Esub(pr) value obtained from the experimental data on the kinetic energy of fragments, the energy of prompt neutrons and prompt γ-quanta. Basing on the data on β-decay chains of fission fragments, the energies of neutrinos, γ-quanta and β-electrons are obtained, which permits to calculate the actual energy released during fission. The calculations are performed for thermal neutron-induced fission, fast-neutron induced fission and for fission after bombardment with 14 MeV neutrons. The available experimental data on the fission fragment kinetic energy, prompt γ-quanta energy and fission neutron energy are presented. The comparison of the Esub(pr) values obtained experimentally for the thermal-neutron-induced fission with the calculated Esub(pr) value shows that for 233 U, 239 Pu, 241 Pu the agreement is rather favourable. For 235 U the agreement is within the error limits. As to the Esub(pr) values for the fast-neutron-induced fission, the agreement between the calculated and experimental data for all nuclides is quite good

  11. CACA-2: revised version of CACA-a heavy isotope and fission-product concentration calculational code for experimental irradiation capsules

    International Nuclear Information System (INIS)

    Allen, E.J.

    1976-02-01

    A computer program is described which calculates nuclide concentration histories, power or neutron flux histories, burnups, and fission-product birthrates for fueled experimental capsules subjected to neutron irradiations. Seventeen heavy nuclides in the chain from 232 Th to 242 Pu and a user-specified number of fission products are treated. A fourth-order Runge-Kutta calculational method solves the differential equations for nuclide concentrations as a function of time. For a particular problem, a user-specified number of fuel regions may be treated. A fuel region is described by volume, length, and specific irradiation history. A number of initial fuel compositions may be specified for each fuel region. The irradiation history for each fuel region can be divided into time intervals, and a constant power density or a time-dependent neutron flux is specified for each time interval. Also, an independent cross-section set may be selected for each time interval in each irradiation history. The fission-product birthrates for the first composition of each fuel region are summed to give the total fission-product birthrates for the problem

  12. Calculation for fission decay from heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Blaich, T.; Begemann-Blaich, M.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Namboodiri, M.N.; Sangster, T.C.; Fraenkel, Z.

    1992-01-01

    A detailed deexcitation calculation is presented for target residues resulting from intermediate-energy heavy ion reactions. The model involves an intranuclear cascade, subsequent fast nucleon emission, and final decay by statistical evaporation including fission. Results are compared to data from bombardments with Fe and Nb projectiles on targets of Ta, Au, and Th at 100 MeV/nucleon. The majority of observable features are reproduced with this simple approach, making obvious the need for involving new physical phenomena associated with multifragmentation or other collective dissipation mechanisms

  13. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  14. Fusion probability and survivability in estimates of heaviest nuclei production

    International Nuclear Information System (INIS)

    Sagaidak, Roman

    2012-01-01

    A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation

  15. Calculation of the Fission Product Release for the HTR-10 based on its Operation History

    International Nuclear Information System (INIS)

    Xhonneux, A.; Druska, C.; Struth, S.; Allelein, H.-J.

    2014-01-01

    Since the first criticality of the HTR-10 test reactor in 2000, a rather complex operation history was performed. As the HTR-10 is the only pebble bed reactor in operation today delivering experimental data for HTR simulation codes, an attempt was made to simulate the whole reactor operation up to the presence. Special emphasis was put on the fission product release behaviour as it is an important safety aspect of such a reactor. The operation history has to be simulated with respect to the neutronics, fluid mechanics and depletion to get a detailed knowledge about the time-dependent nuclide inventory. In this paper we report about such a simulation with VSOP 99/11 and our new fission product release code STACY. While STACY (Source Term Analysis Code System) so far was able to calculate the fission product release rates in case of an equilibrium core and during transients, it now can also be applied to running-in-phases. This coupling demonstrates a first step towards an HCP Prototype. Based on the published power histogram of the HTR-10 and additional information about the fuel loading and shuffling, a coupled neutronics, fluid dynamics and depletion calculation was performed. Special emphasis was put on the complex fuel-shuffling scheme within both VSOP and STACY. The simulations have shown that the HTR-10 up to now generated about 2580 MWd while reshuffling the core about 2.3 times. Within this paper, STACY results for the equilibrium core will be compared with FRESCO-II results being published by INET. Compared to these release rates, which are based on a few user defined life histories, in this new approach the fission product release rates of Ag-110m, Cs-137, Sr-90 and I-131 have been simulated for about 4000 tracer pebbles with STACY. For the calculation of the HTR-10 operation history time-dependent release rates are being presented as well. (author)

  16. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    International Nuclear Information System (INIS)

    Feghhi, S. A. H.; Afarideh, H.; Shahriari, M.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method to calculate neutron importance function in fissionable assemblies for all criticality conditions, using Monte Carlo Method. The neutron importance function has a well important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating adjoint flux through out solving the Adjoint weighted transport equation with deterministic methods. However, in complex geometries these calculations are very difficult. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on physical concept of neutron importance has been introduced for calculating neutron importance function in sub-critical, critical and supercritical conditions. For this means a computer program has been developed. The results of the method has been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries and their correctness has been approved for all three criticality conditions. Ultimately, the efficiency of the method for complex geometries has been shown by calculation of neutron importance in MNSR research reactor

  17. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  18. Fission-product yields for thermal-neutron fission of curium-243

    International Nuclear Information System (INIS)

    Breederland, D.G.

    1982-01-01

    Cumulative fission yields for 25 gamma rays emitted during the decay of 23 fission products produced by thermal-neutron fission of 243 Cm have been determined. Using Ge(Li) spectroscopy, 33 successive pulse-height spectra of gamma rays emitted from a 77-ng sample of 243 Cm over a period of approximately two and one-half months were analyzed. Reduction of these spectra resulted in the identification and matching of gamma-ray energies and half-lives to specific radionuclides. Using these results, 23 cumulative fission-product yields were calculated. Only those radionuclides having half-lives between 6 hours and 65 days were observed. Prior to this experiment, no fission-product yields had been recorded for 243 Cm

  19. Statistical model calculation of fission isomer excitation functions in (n,n') and (n,γ) reactions

    International Nuclear Information System (INIS)

    Chatterjee, A.; Athougies, A.L.; Mehta, M.K.

    1977-01-01

    A statistical model developed by Britt and others (1971, 1973) to analyze isomer excitation functions in spallation type reactions like (α,2n) has been adopted in fission isomer calculations for (n,n') and (n,γ) reactions. Calculations done for 235 U(n,n')sup(238m)U and 235 U(n,γ)sup(236m)U reactions have been compared with experimental measurements. A listing of the computer program ISOMER using FORTRAN IV to calculate the isomer to prompt ratios is given. (M.G.B.)

  20. SOURCES-3A: A code for calculating (α, n), spontaneous fission, and delayed neutron sources and spectra

    International Nuclear Information System (INIS)

    Perry, R.T.; Wilson, W.B.; Charlton, W.S.

    1998-04-01

    In many systems, it is imperative to have accurate knowledge of all significant sources of neutrons due to the decay of radionuclides. These sources can include neutrons resulting from the spontaneous fission of actinides, the interaction of actinide decay α-particles in (α,n) reactions with low- or medium-Z nuclides, and/or delayed neutrons from the fission products of actinides. Numerous systems exist in which these neutron sources could be important. These include, but are not limited to, clean and spent nuclear fuel (UO 2 , ThO 2 , MOX, etc.), enrichment plant operations (UF 6 , PuF 4 , etc.), waste tank studies, waste products in borosilicate glass or glass-ceramic mixtures, and weapons-grade plutonium in storage containers. SOURCES-3A is a computer code that determines neutron production rates and spectra from (α,n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media (i.e., a mixture of α-emitting source material and low-Z target material) and in interface problems (i.e., a slab of α-emitting source material in contact with a slab of low-Z target material). The code is also capable of calculating the neutron production rates due to (α,n) reactions induced by a monoenergetic beam of α-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The (α,n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay α-particle spectra, 24 sets of measured and/or evaluated (α,n) cross sections and product nuclide level branching fractions, and functional α-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an

  1. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei: systematic investigation of the triaxiality effect on the fission barrier

    Science.gov (United States)

    Chai, Qing-Zhen; Zhao, Wei-Juan; Liu, Min-Liang; Wang, Hua-Lei

    2018-05-01

    Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94–118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional (β 2, γ, β 4) deformation space. Taking the heavier 252Cf nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β 2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112–118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g., the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed. Supported by National Natural Science Foundation of China (11675148, 11505157), the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2017GGJS008), the Foundation and Advanced Technology Research Program of Henan Province (162300410222), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002) and the Physics Research and Development Program of Zhengzhou University (32410017)

  2. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  3. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Witold Nazarewicz

    2003-01-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process

  4. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  5. FPDCYS and FPSPEC: computer programs for calculating fission-product beta and gamma multigroup spectra from ENDF/B-IV data

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1977-05-01

    FPDCYS and FPSPEC are two FORTRAN computer programs used at the Los Alamos Scientific Laboratory (LASL), in conjunction with the CINDER-10 program, for calculating cumulative fission-product beta and/or gamma multigroup spectra in arbitrary energy structures, and for arbitrary neutron irradiation periods and cooling times. FPDCYS processes ENDF/B-IV fission-product decay energy data to generate multigroup beta and gamma spectra from individual ENDF/B-IV fission-product nuclides. FPSPEC further uses these spectra and the corresponding nuclide activities calculated by the CINDER-10 code to produce cumulative beta and gamma spectra in the same energy grids in which FPDCYS generates individual isotope decay spectra. The code system consisting of CINDER-10, FPDCYS, and FPSPEC has been used for comparisons with experimental spectra and continues to be used at LASL for generating spectra in special user-oriented group structures. 3 figures

  6. Thermal disadvantage factor calculation by the multiregion collision probability method

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2004-01-01

    A multi-region collision probability formulation that is capable of applying white boundary condition directly is presented and applied to thermal neutron transport problems. The disadvantage factors computed are compared with their counterparts calculated by S N methods with both direct and indirect application of white boundary condition. The results of the ABH and collision probability method with indirect application of white boundary condition are also considered and comparisons with benchmark Monte Carlo results are carried out. The studies show that the proposed formulation is capable of calculating thermal disadvantage factor with sufficient accuracy without resorting to the fictitious scattering outer shell approximation associated with the indirect application of the white boundary condition in collision probability solutions

  7. Calculation of neutron importance function in fissionable assemblies using Monte Carlo method

    International Nuclear Information System (INIS)

    Feghhi, S.A.H.; Shahriari, M.; Afarideh, H.

    2007-01-01

    The purpose of the present work is to develop an efficient solution method for the calculation of neutron importance function in fissionable assemblies for all criticality conditions, based on Monte Carlo calculations. The neutron importance function has an important role in perturbation theory and reactor dynamic calculations. Usually this function can be determined by calculating the adjoint flux while solving the adjoint weighted transport equation based on deterministic methods. However, in complex geometries these calculations are very complicated. In this article, considering the capabilities of MCNP code in solving problems with complex geometries and its closeness to physical concepts, a comprehensive method based on the physical concept of neutron importance has been introduced for calculating the neutron importance function in sub-critical, critical and super-critical conditions. For this propose a computer program has been developed. The results of the method have been benchmarked with ANISN code calculations in 1 and 2 group modes for simple geometries. The correctness of these results has been confirmed for all three criticality conditions. Finally, the efficiency of the method for complex geometries has been shown by the calculation of neutron importance in Miniature Neutron Source Reactor (MNSR) research reactor

  8. Contribution to the study of nuclear fission

    International Nuclear Information System (INIS)

    Serot, O.

    2009-09-01

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  9. Scission-point model of nuclear fission based on deformed-shell effects

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Steinberg, E.P.; Chasman, R.R.

    1976-01-01

    A static model of nuclear fission is proposed based on the assumption of statistical equilibrium among collective degrees of freedom at the scission point. The relative probabilities of formation of complementary fission fragment pairs are determined from the relative potential energies of a system of two nearly touching, coaxial spheroids with quadrupole deformations. The total potential energy of the system at the scission point is calculated as the sum of liquid-drop and shell- and pairing-correction terms for each spheroid, and Coulomb and nuclear potential terms describing the interaction between them. The fissioning system at the scission point is characterized by three parameters: the distance between the tips of the spheroids (d), the intrinsic excitation energy of the fragments (tau/sub int/), and a collective temperature (T/sub coll/). No attempt is made to adjust these parameters to give optimum fits to experimental data, but rather, a single choice of values for d, tau/sub int/, and T/sub coll/ is used in the calculations for all fissioning systems. The general trends of the distributions of mass, nuclear charge, and kinetic energy in the fission of a wide range of nuclides from Po to Fm are well reproduced in the calculations. The major influence of the deformed-shell corrections for neutrons is indicated and provides a convenient framework for the interpretation of observed trends in the data and for the prediction of new results. The scission-point configurations derived from the model provide an interpretation of the ''saw-tooth'' neutron emission curve as well as previously unexplained observations on the variation of TKE for isotopes of U, Pu, Cm, and Cf; structure in the width of total kinetic energy release as a function of fragment mass ratio; and a difference in threshold energies for symmetric and asymmetric mass splits in the fission of Ra and Ac isotopes

  10. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  11. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  12. Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk

    Directory of Open Access Journals (Sweden)

    J. Konki

    2017-01-01

    Full Text Available The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n240Es. Half-lives of 6(2s and 22−6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα=8.19(3MeV and 8.09(3MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6 and 0.04(2 were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.

  13. The statistical model calculation of prompt neutron spectra from spontaneous fission of {sup 244}Cm and {sup 246}Cm

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, B.F. [V.G. Khlopin Radium Inst., Saint Peterburg (Russian Federation)

    1997-03-01

    The calculations of integral spectra of prompt neutrons of spontaneous fission of {sup 244}Cm and {sup 246}Cm were carried out. The calculations were done by the Statistical Computer Code Complex SCOFIN applying the Hauser-Feschbach method as applied to the description of the de-excitation of excited fission fragments by means of neutron emission. The emission of dipole gamma-quanta from these fragments was considered as a competing process. The average excitation energy of a fragment was calculated by two-spheroidal model of tangent fragments. The density of levels in an excited fragment was calculated by the Fermi-gas model. The quite satisfactory agreement was reached between theoretical and experimental results obtained in frames of Project measurements. The calculated values of average multiplicities of neutron number were 2,746 for {sup 244}Cm and 2,927 for {sup 246}Cm that was in a good accordance with published experimental figures. (author)

  14. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  15. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  16. Cluster expression in fission and fusion in high-dimensional macroscopic-microscopic calculations

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Ichikawa, Takatoshi; Moller, Peter; Sierk, Arnold J.

    2004-01-01

    We discuss the relation between the fission-fusion potential-energy surfaces of very heavy nuclei and the formation process of these nuclei in cold-fusion reactions. In the potential-energy surfaces, we find a pronounced valley structure, with one valley corresponding to the cold-fusion reaction, the other to fission. As the touching point is approached in the cold-fusion entrance channel, an instability towards dynamical deformation of the projectile occurs, which enhances the fusion cross section. These two 'cluster effects' enhance the production of superheavy nuclei in cold-fusion reactions, in addition to the effect of the low compound-system excitation energy in these reactions. Heavy-ion fusion reactions have been used extensively to synthesize heavy elements beyond actinide nuclei. In order to proceed further in this direction, we need to understand the formation process more precisely, not just the decay process. The dynamics of the formation process are considerably more complex than the dynamics necessary to interpret the spontaneous-fission decay of heavy elements. However, before implementing a full dynamical description it is useful to understand the basic properties of the potential-energy landscape encountered in the initial stages of the collision. The collision process and entrance-channel landscape can conveniently be separated into two parts, namely the early-stage separated system before touching and the late-stage composite system after touching. The transition between these two stages is particularly important, but not very well understood until now. To understand better the transition between the two stages we analyze here in detail the potential energy landscape or 'collision surface' of the system both outside and inside the touching configuration of the target and projectile. In Sec. 2, we discuss calculated five-dimensional potential-energy landscapes inside touching and identify major features. In Sec. 3, we present calculated

  17. LENMODEL: A forward model for calculating length distributions and fission-track ages in apatite

    Science.gov (United States)

    Crowley, Kevin D.

    1993-05-01

    The program LENMODEL is a forward model for annealing of fission tracks in apatite. It provides estimates of the track-length distribution, fission-track age, and areal track density for any user-supplied thermal history. The program approximates the thermal history, in which temperature is represented as a continuous function of time, by a series of isothermal steps of various durations. Equations describing the production of tracks as a function of time and annealing of tracks as a function of time and temperature are solved for each step. The step calculations are summed to obtain estimates for the entire thermal history. Computational efficiency is maximized by performing the step calculations backwards in model time. The program incorporates an intuitive and easy-to-use graphical interface. Thermal history is input to the program using a mouse. Model options are specified by selecting context-sensitive commands from a bar menu. The program allows for considerable selection of equations and parameters used in the calculations. The program was written for PC-compatible computers running DOS TM 3.0 and above (and Windows TM 3.0 or above) with VGA or SVGA graphics and a Microsoft TM-compatible mouse. Single copies of a runtime version of the program are available from the author by written request as explained in the last section of this paper.

  18. Correlated prompt fission data in transport simulations

    Science.gov (United States)

    Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.

    2018-01-01

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in

  19. Correlated prompt fission data in transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Talou, P.; Jaffke, P.; Kawano, T.; Stetcu, I. [Los Alamos National Laboratory, Nuclear Physics Group, Theoretical Division, Los Alamos, NM (United States); Vogt, R. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Randrup, J. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Rising, M.E.; Andrews, M.T.; Sood, A. [Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group, Los Alamos, NM (United States); Pozzi, S.A.; Clarke, S.D.; Marcath, M.J. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States); Verbeke, J.; Nakae, L. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); Jandel, M. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States); University of Massachusetts, Department of Physics and Applied Physics, Lowell, MA (United States); Meierbachtol, K. [Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation, Los Alamos, NM (United States); Rusev, G.; Walker, C. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States)

    2018-01-15

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n-n, n-γ, and γ-γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX-PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation

  20. Calculation of Fission Observables Through Event-by-Event Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J; Vogt, R

    2009-06-04

    The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to met this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables.

  1. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    Science.gov (United States)

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  2. Systematics of Fission-Product Yields

    International Nuclear Information System (INIS)

    Wahl, A.C.

    2002-01-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z F = 90 thru 98, mass number A F = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions

  3. Systematics of Fission-Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  4. Delayed β ray spectrum of 235U fission fragments

    International Nuclear Information System (INIS)

    Pascholati, P.R.

    1973-01-01

    The time-dependent electron spectra of fission fragments from the thermal-neutron-induced fission of 235 U are calculated. The Gross theory of nuclear beta decay is used to obtain the decay constant and individual electron spectra. The mean energy per fission carried by the electrons and the number of electrons per fission are also calculated. Comparison of these calculated spectra to experimental ones shows good agreements. (Author) [pt

  5. The risk of major nuclear accident: calculation and perception of probabilities

    International Nuclear Information System (INIS)

    Leveque, Francois

    2013-01-01

    Whereas before the Fukushima accident, already eight major accidents occurred in nuclear power plants, a number which is higher than that expected by experts and rather close to that corresponding of people perception of risk, the author discusses how to understand these differences and reconcile observations, objective probability of accidents and subjective assessment of risks, why experts have been over-optimistic, whether public opinion is irrational regarding nuclear risk, and how to measure risk and its perception. Thus, he addresses and discusses the following issues: risk calculation (cost, calculated frequency of major accident, bias between the number of observed accidents and model predictions), perceived probabilities and aversion for disasters (perception biases of probability, perception biases unfavourable to nuclear), the Bayes contribution and its application (Bayes-Laplace law, statistics, choice of an a priori probability, prediction of the next event, probability of a core fusion tomorrow)

  6. Fission threshold determination of 209Bi and sup(204,206,207,208)Pb by electrofission

    International Nuclear Information System (INIS)

    Tuerck, D.

    1975-01-01

    At the Darmstadt electron linear accelerator the cross sections for the electrofission of 209 Bi were measured for electron energies between 24 and 70 MeV, for the separated lead isotopes sup(204,206,207,208)Pb between 38 and 50 MeV. For the determination of the fission thresholds the cross sections were examined by the virtuel photon method using calculations in first Born approximation for the point nucleus with Coulomb wave functions. The analytic functions fitting the fission probability were based on level densities after the Fermi-gas-model. (orig./WL) [de

  7. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  8. Calculation of energy transfer by fission fragments from plane uranium layer to thin wire

    International Nuclear Information System (INIS)

    Pikulev, A.A.

    2006-01-01

    Energy transfer from a flat fissile uranium slab to a fine wire via fission fragments is calculated. The rate of energy transfer versus the thicknesses of the slab and protecting aluminum film, as well as the wire-slab gap, is found. An expression for the absorption coefficient of the wire is derived, and the effect the thickness of the wire has on the energy transfer process is studied. The amount of the edge effect for a finite-size uranium slab is demonstrated with calculations for vacuum conditions and for argon under a pressure of 0.25 atm [ru

  9. Fission time-scale from the measurement of pre-scission light ...

    Indian Academy of Sciences (India)

    and hence can only probe a part of the fission time distribution. .... with the conclusion of recent fission time-scale measurements using the fission probability ... using the statistical model code JOANNE2 suitably modified to include the GDR ...

  10. Rupture of the neck in nuclear fission

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Managan, R.A.; Nix, J.R.; Sierk, A.J.

    1977-01-01

    We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation

  11. Dispersions and correlations of the distributions of products of 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vidyakin, G.S.; Vyrodov, V.N.; Gurevich, I.I.; Kirillov, B.F.; Kozlov, Y.V.; Martem'yanov, V.P.; Sukhotin, S.V.; Tarasenkov, V.G.; Khakimov, S.K.

    1982-01-01

    We report the results of two experiments on study of the dispersions and correlations of the distributions of products of the spontaneous fission of 252 Cf. In each experiment about 10 8 fissions were recorded with simultaneous measurement of the number of neutrons produced and in one case the fragment kinetic energy and in the other case the energy of the prompt #betta# rays. The quantities obtained were the probabilities of production of a given number of neutrons per fission, the dispersions of the distributions of the number of neutrons produced and of the fragment kinetic energy, and the dependence of the average #betta#-ray energy and the average fragment kinetic energy on the number of neutrons produced. A calculation is made of the spectrum of the total energy carried away by fragments and neutrons, and its dispersion is determined. An estimate of the total energy release in the 252 Cf fission process is made

  12. On the mechanism of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.; Richter, D.; Seeliger, D.

    1986-01-01

    This review represents the present knowledge of the mechanism of prompt fission neutron emission. Starting with a brief fission process characterization related with neutron emission, possible emission mechanisms are discussed. It is emphasized that the experimental study of special mechanisms, i.e. scission neutron emission processes, requires a sufficiently correct description of emission probabilities on the base of the main mechanism, i.e. the evaporation from fully accelerated fragments. Adequate statistical-model approaches have to account for the complexity of nuclear fission reflected by an intricate fragment distribution. The present picture of scission neutron emission is not clarified neither experimentally nor theoretically. Deduced data are contradictory and depend on the used analysis procedures often involving rough discriptions of evaporated-neutron distributions. The contribution of two secondary mechanisms of fission neutron emission, i.e. the neutron evaporation during fragment acceleration and neutron emission due to the decay of 5 He after ternary fission, is estimated. We summarize the recent progress of the theoretical description of fission neutron spectra in the framework of statistical models considering the standard spectrum of 252 Cf(sf) neutrons especially. The main experimental basis for the study of fission neutron emission is the accurate measurement of emission probabilities as a function of emission energy and angle (at least) as well as fragment parameters (mass number ratio and kinetic energy). The present status is evaluated. (author)

  13. Monte Carlo methods to calculate impact probabilities

    Science.gov (United States)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  14. Evaluation of containment failure modes and fission product releases during core meltdown accidents in a BWR with a Mark III containment

    International Nuclear Information System (INIS)

    Ludewig, H.; Yu, W.S.; Jaung, R.; Pratt, W.T.

    1985-01-01

    An assessment is described of potential failure modes and fission product releases for a large number of postulated core meltdown accidents in a BWR with a Mark III containment. For this containment design, the most important failure mode was found to be due to hydrogen related phenomena. A one-dimensional lumped parameter computer code has been developed and used to determine the probability of various hydrogen phenomena for a range of postulated core meltdown sequences. Potential containment loads have been estimated and compared against the containment capacity to determine the probability of containment failure. The fission product release assessment began by using the MARCH/CORRAL system of codes with key input parameters varied over a reasonable range. The parameters relate to primary system retention, re-emission, pool scrubbing, and fission product release in-vessel vs ex-vessel. The final step used more mechanistic calculations based on the system of codes recently developed under sponsorship of the Accident Source Term Program Office, NRC, and compares these predictions with the range of releases calculated in the sensitivity study

  15. Structure of the β-strength function in heavy nuclei and its influence on the β-delayed fission

    International Nuclear Information System (INIS)

    Wene, C.O.; Isosimow, I.N.; Naumow, Y.W.; Klapdor, H.V.

    1978-01-01

    The shape of the beta strength function Ssub(β) for neutron-rich nuclei is discussed. The structure of Ssub(β) is calculated microscopically for the GT-β-decay of 236 , 238 Pa and is shown to be decisive for the probability for β-delayed fission. (orig.) [de

  16. Nuclear fission with a Langevin equation

    International Nuclear Information System (INIS)

    Boilley, D.; Suraud, E.; Abe, Yasuhisa

    1992-01-01

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out and discussed. A strong friction coefficient, estimated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. The calculations are performed with a collective mass depending on the collective variable and with a constant mass. Fission rates calculated at different temperatures are shown and compared with previous available results. (author) 23 refs.; 7 figs

  17. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  18. Yields of fission products produced by thermal-neutron fission of 245Cm

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 105 gamma rays emitted in the decay of 95 fission products representing 54 mass chains created during thermal-neutron fission of 245 Cm. These results include 17 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays between 30 sec and 0.3 yr after very short irradiations of thermal neutrons on a 1 μg sample of 245 Cm. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 84 and 156. The absolute overall normalization uncertainty is 239 Pu and for 252 Cf(s.f.); the influences of the closed shells Z=50, N=82 are not as marked as for thermal-neutron fission of 239 Pu but much more apparent than for 252 Cf(s.f.). Information on the charge distribution along several isobaric mass chains was obtained by determining fractional yields for 12 fission products. The charge distribution width parameter, based upon data for the heavy masses, A=128 to 140, is independent of mass to within the uncertainties of the measurements. Gamma-ray assignments were made for decay of short-lived fission products for which absolute gamma-ray transition probabilities are either not known or in doubt. Absolute gamma-ray transition probabilities were determined as (51 +- 8)% for the 374-keV gamma ray from decay of 110 Rh, (35 +- 7)% for the 1096-keV gamma ray from decay of 133 Sb, and (21.2 +- 1.2)% for the 255-keV gamma ray from decay of 142 Ba

  19. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  20. A model for particle emission from a fissioning system

    International Nuclear Information System (INIS)

    Milek, B.; Reif, R.; Revai, J.

    1987-04-01

    The differential emission probability for a neutron emitted in a binary fission process due to non-adiabatic effects in the coupling of the single particle degrees of freedom to the accelerated relative motion of the fragments is investigated wihtin a model, which represents each nucleus by a non-deformed one-term separable potential. The derivation of measurable quantities from the asymptotic solution of the time-dependent Schroedinger equation for the single particle wave function is examined. Numerical calculations were performed for parameter values, which correspond to 252 Cf(sf). The calculated energy spectra and angular distributions of the emitted particles are presented in dependence on the mass asymmetry. (author)

  1. Fission product releases at severe LWR accident conditions: ORNL/CEA measurements versus calculations

    Energy Technology Data Exchange (ETDEWEB)

    Andre, B.; Ducros, G.; Leveque, J.P. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique; Osborne, M.F.; Lorenz, R.A. [Oak Ridge National Lab., TN (United States); Maro, D. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations

    1995-12-31

    Experimental programs in the United States and France have followed similar paths in supplying much of the data needed to analyze severe accidents. Both the HI/VI program, conducted at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (NRC), and the HEVA/VERCORS program, supported by IPSN-Commissariat a l`Energie Atomique (CEA) and carried out at the Centre d`Etudes Nucleaires de Grenoble, have studied fission product release from light water reactor (LWR) fuel samples during test sequences representative of severe accidents. Recognizing that more accurate data, i.e., a better defined source term, could reduce the safety margins included in the rather conservative source terms originating from WASH-1400, the primary objective of these programs has been to improve the data base concerning fission product release and behavior at high temperatures. To facilitate the comparison, a model based on fission product diffusion mechanisms that was developed at ORNL and adapted with CEA experimental data is proposed. This CEA model is compared with the ORNL experimental data in a blind test. The two experimental programs used similar techniques in out-of-pile studies. Highly irradiated fuel samples were heated in radiofrequency induction furnaces to very high temperatures (up to 2700 K at ORNL and 2750 K at CEA) in oxidizing (H{sub 2}O), reducing (H{sub 2}) or mixed (H{sub 2}O+H{sub 2}) environments. The experimental parameters, which were chosen from calculated accident scenarios, did not duplicate specific accidents, but rather emphasized careful control of test conditions to facilitate extrapolation of the results to a wide variety of accident situations. This paper presents a broad and consistent database from ORNL and CEA release results obtained independently since the early 1980`S. A comparison of CORSOR and CORSOR Booth calculations, currently used in safety analysis, and the experimental results is presented and

  2. Theoretical models of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1992-01-01

    A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts

  3. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1998-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and some examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N(E) and bar ν p upon the fissioning nucleus and its excitation energy are treated in detail for the Los Alamos model. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of the ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches. This paper is an extension of a similar paper presented at the International Centre for Theoretical Physics in 1996

  4. Theoretical descriptions of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1991-01-01

    Brief descriptions are given of the observables in neutron emission in fission together with early theoretical representations of two of these observables, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity ν-bar p . This is followed by summaries, together with examples, of modern approaches to the calculation of these two quantities. Here, emphasis is placed upon the predictability and accuracy of the new approaches. In particular, the dependencies of N(E) and ν-bar p upon the fissioning nucleus and its excitation energy are discussed. Then, recent work in multiple-chance fission and other recent work involving new measurements are presented and discussed. Following this, some properties of fission fragments are mentioned that must be better known and better understood in order to calculate N(E) and ν-bar p with higher accuracy than is currently possible. In conclusion, some measurements are recommended for the purpose of benchmarking simultaneous calculations of neutron emission and gamma emission in fission. (author). 32 refs, 26 figs

  5. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  6. Failure Probability Calculation Method Using Kriging Metamodel-based Importance Sampling Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunggyu [Korea Aerospace Research Institue, Daejeon (Korea, Republic of); Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-05-15

    The kernel density was determined based on sampling points obtained in a Markov chain simulation and was assumed to be an important sampling function. A Kriging metamodel was constructed in more detail in the vicinity of a limit state. The failure probability was calculated based on importance sampling, which was performed for the Kriging metamodel. A pre-existing method was modified to obtain more sampling points for a kernel density in the vicinity of a limit state. A stable numerical method was proposed to find a parameter of the kernel density. To assess the completeness of the Kriging metamodel, the possibility of changes in the calculated failure probability due to the uncertainty of the Kriging metamodel was calculated.

  7. Influence of pairing correlations on the probability and dynamics of tunneling through the barrier in fission and fusion of complex nuclei

    International Nuclear Information System (INIS)

    Lazarev, Yu.A.

    1986-01-01

    An analytically solvable model is used to study the potential barrier penetrability in the case when the gap parameter Δ is treated as a dynamical variable governed by the least action principle. It is found that, as compared to the standard (BCS) approach, the dynamical treatment of pairing results in a considerably weakened dependence of the fission barrier penetrability on the intensity of pairing correlations in the initial state (Δ 0 ), on the barrier height, and on the energy of the initial state. On this basis, a more adequate explanation is proposed for typical order-of-magnitude values of the empirical hidrance factors for groun-state spontaneous fission of odd nuclei. It is also shown that a large enhancement of superfluidity in tunneling - the inherent effect of the dynamical treatment of pairing - strongly facilitates deeply subbarier fusion of complex nuclei. Finally, an analysis is given for the probability of spontaneous fission from K-isomeric quasiparticle (q-p) states in even-even heavy nuclei. The relative change of the partial spontaneous fission half-life in going from the ground-state to a high-spin q-p isomeric state, T* sf /T sf , is found to be strongly dependent on whether or not there takes place the dynamically induced enhancement of superfluidity in tunneling. Measurements of T* sf /T sf provide thus a unique possibility of verifying theoretical predictions about the strong, inverse-square Δ dependence of the effective inertia associated with large-scale subbarrier rearrangements of nuclei

  8. Calculation of 235U(n,n') cross sections for ENDF/B-VI

    International Nuclear Information System (INIS)

    Young, P.G.; Arthur, E.D.

    1988-01-01

    Cross sections for neutron-induced reactions on 235 U between 0.01 and 20 MeV have been calculated in a preliminary analysis for the ENDF/B-VI evaluation with particular emphasis on neutron inelastic scattering. A deformed optical model potential that fits total, elastic, inelastic, and low-energy average resonance data is used to calculate direct (n,n') cross sections and transmission coefficients for a Hauser-Feshbach statistical theory analysis using a multiple fission barrier representation. Direct cross sections for higher-lying vibrational states are provided from DWBA calculations, normalized using B(E/ital l/) values determined from (d,d') and Coulomb excitation data. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. Further modifications to fit 235 U(n,f) data were small, and the final fission parameters are generally consistent with published values. The results from this preliminary analysis are compared with the ENDF/B-V evaluation as well as with experimental data. 26 refs., 5 figs., 3 tabs

  9. On the fission probability for 235U, 239Pu and 241Pu

    International Nuclear Information System (INIS)

    Benzi, V.; Maino, G.; Menapace, E.

    1978-01-01

    An evaluation of the GAMMAsub(n)/GAMMAsub(f) ratio for the 236 U, 240 Pu and 242 Pu compound nuclei is carried out. First chance and second chance fission cross sections are estimated from the ''evaporation'' model; particularly, a largely increasing trend was found for the first chance fission cross section above the (n,n'f) process threshold. The GAMMAsub(n)/GAMMAsub(f) ratios for the analyzed nuclei show a bump-like structure, that seems to be in agreement with the theoretical predictions reported in literature

  10. Ejection of Uranium Atoms from UO{sub 2} by Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Goesta

    1964-02-15

    The numbers of uranium atoms ejected from the surface of sintered plates of UO{sub 2} by fission fragments have been measured over the fission density range 5x10{sup 15} to 7x10{sup 16} fissions/cm{sup 3}. The number of uranium atoms ejected per escaping fragment was about 9. The measurements were performed by irradiating the plates in vacuum and collecting a fraction of the uranium atoms ejected on catcher foils. The amount collected was determined by fission counting. Saturation of the amount collected, as reported by Rogers and Adam, was not observed. The numbers of uranium atoms ejected as knock-ons under the same experimental conditions have been calculated. The reasonably close agreement between the experimental and theoretical values indicates that, under the prevailing experimental conditions, mainly knock-ons are ejected. Other ejection mechanisms, e. g. evaporation of material in thermal spikes, are probably insignificant; this is in contrast to the usual interpretation of the ejection process. The mean range in UO{sub 2}, of fission products of mass number 140 was found to be 7.37 {+-} 0. 05 mg/cm{sup 2} by direct gamma spectrometric, determination of the fraction of {sup 140}La escaping from the surface of the plates.

  11. The fast fission effect in a cylindrical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I; Pershagen, B

    1959-06-15

    A new formula for the fast fission factor is derived, which takes proper account to fast capture. The fission neutron spectrum is divided into two groups with constant fission cross section in one group and zero fission cross section in the other. The average total, elastic, inelastic and capture cross sections in the two groups are calculated. Different assumptions regarding anisotropic and inelastic scattering are investigated. The effects of backscattering from the moderator and fast fission in neighbouring fuel elements are pointed out. Formulas for the fast fission ratio and for the fast conversion ratio are derived. The calculated fast fission ratios are compared with experimental values. Curves are given for the fast fission factor in uranium metal and uranium oxide.

  12. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...

  13. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  14. JNDC nuclear data library of fission products

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Ihara, Hitoshi; Akiyama, Masatsugu; Yoshida, Tadashi; Matumoto, Zyun-itiro; Nakasima, Ryuzo

    1983-10-01

    The JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library for 1172 fission products is described in this report. The gross theory of beta decay has been used extensively for estimating unknown decay data and also some of known decay data with poor accuracy. The calculated decay powers of fission products using the present library show excellent agreement with the latest measurements at ORNL (Oak Ridge National Laboratory), LANL (Los Alamos National Laboratory) and UTT (University of Tokyo, Tokai) for cooling times shorter than 10 3 s after irradiation. The calculated decay powers by the existing libraries showed systematic deviations at short cooling times; the calculated beta and gamma decay powers after burst fission were smaller than the experimental results for cooling times shorter than 10 s, and in the cooling time range 10 to 10 3 s the beta-decay power was larger than the measured values and the gamma decay power smaller than the measured results. The present JNDC FP nuclear data library resolved these discrepancies in the short cooling time ranges. The decay power of fission products has been calculated for ten fission types and the results have been fitted by an analytical function with 31 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  15. Fission studies of gold induced by (1665 MeV) π- using a CR-39 detector

    International Nuclear Information System (INIS)

    Muhammad Ikram Shahzad; Yasin, Zafar; Sher, Gul

    2012-01-01

    The fission cross section and fission probability of 197 Au, induced by (1665 MeV) π'-, have been studied using CR-39 track detectors. A 4π-geometry was used to count track statistics. A beam of negative pions of 1665 MeV was produced at AGS of Brookhaven National Laboratory, USA, and allowed to fall normally on the stack. Two detectors from the stack were scanned for fission fragment tracks after etching in 6N NaOH at 70 ℃. The statistics of fission fragment tracks in both detectors were obtained. It was found that there was a marked asymmetry of registered tracks with respect to the forward and backward hemispheres. This asymmetry could be partly accounted for on the basis of momentum transfer to the struck nucleus. On the basis of counting statistics fission cross section was measured, and fission probability was determined by dividing the fission cross section with the reaction cross section. The fission cross-section and fission probability were compared with the computed values using the cascade-exciton model code CEM95. (authors)

  16. Calculation of magnetization curves and probability distribution for monoclinic and uniaxial systems

    International Nuclear Information System (INIS)

    Sobh, Hala A.; Aly, Samy H.; Yehia, Sherif

    2013-01-01

    We present the application of a simple classical statistical mechanics-based model to selected monoclinic and hexagonal model systems. In this model, we treat the magnetization as a classical vector whose angular orientation is dictated by the laws of equilibrium classical statistical mechanics. We calculate for these anisotropic systems, the magnetization curves, energy landscapes and probability distribution for different sets of relevant parameters and magnetic fields of different strengths and directions. Our results demonstrate a correlation between the most probable orientation of the magnetization vector, the system's parameters, and the external magnetic field. -- Highlights: ► We calculate magnetization curves and probability angular distribution of the magnetization. ► The magnetization curves are consistent with probability results for the studied systems. ► Monoclinic and hexagonal systems behave differently due to their different anisotropies

  17. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1989-01-01

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity /bar /nu///sub p/. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and /bar /nu///sub p/ on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and /bar /nu///sub p/ with higher accuracy than is currently possible. 17 refs., 11 figs

  18. Mass distributions in nucleon-induced fission at intermediate energies

    CERN Document Server

    Duijvestijn, M C; Hambsch, F J

    2001-01-01

    Temperature-dependent fission barriers and fission-fragment mass distributions are calculated in the framework of the multimodal random neck-rupture model (MM-RNRM). It is shown how the distinction between the different fission modes disappears at higher excitation energies, due to the melting of shell effects. The fission-fragment mass yield calculations are coupled to the nuclear reaction code ALICE-91, which takes into account the competition between the other reaction channels and fission. With the combination of the temperature-dependent MM-RNRM and ALICE-91 nucleon-induced fission is investigated at energies between 10 and 200 MeV for nuclei varying from Au to Am. (72 refs).

  19. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of 232Th

    Science.gov (United States)

    Naik, H.; Goswami, A.; Kim, G. N.; Kim, K.; Suryanarayana, S. V.

    2013-10-01

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of 232Th have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for 232Th(p,f) and 238U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for 232Th(p,f), 232Th(n,f), and 232Th( γ,f) at various energies were compared with those for 238U(p,f), 238U(n,f), and 238U( γ,f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of 232Th was discussed with the similar data in 238U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/ Z ratio, and fissility parameter.

  20. Advanced burnup calculation code system in a subcritical state with continuous-energy Monte Carlo code for fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Ohta, Masayuki; Miyamaru, Hiroyuki; Murata, Isao

    2009-01-01

    The fusion-fission (FF) hybrid reactor is a promising energy source that is thought to act as a bridge between the existing fission reactor and the genuine fusion reactor in the future. The burnup calculation system that aims at precise burnup calculations of a subcritical system was developed for the detailed design of the FF hybrid reactor, and the system consists of MCNP, ORIGEN, and postprocess codes. In the present study, the calculation system was substantially modified to improve the calculation accuracy and at the same time the calculation speed as well. The reaction rate estimation can be carried out accurately with the present system that uses track-length (TL) data in the continuous-energy treatment. As for the speed-up of the reaction rate calculation, a new TL data bunching scheme was developed so that only necessary TL data are used as long as the accuracy of the point-wise nuclear data is conserved. With the present system, an example analysis result for our proposed FF hybrid reactor is described, showing that the computation time could really be saved with the same accuracy as before. (author)

  1. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  2. LOFC fission product release and circulating activity calculations for gas-cooled reactors

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.

    1977-01-01

    The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay

  3. Survival and compound nucleus probability of super heavy element Z = 117

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First grade College, Department of Physics, Kolar, Karnataka (India)

    2017-05-15

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of {sup 289-297}Ts, we have calculated the transmission probability (T{sub l}), compound nucleus formation probabilities (P{sub CN}) and survival probability (P{sub sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of {sup 289-297}Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei {sup 289-297}Ts are worked out and listed explicitly. We have also studied the variation of P{sub CN} and P{sub sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  4. Probabilities of symmetric and asymmetric fission in the proton bombardment of Th{sup 232}

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, B J [Atomic Energy Research Establishment, Chemistry Div., Harwell (United Kingdom); Brown, F; Butler, J P

    1957-08-01

    The ratio of symmetric to asymmetric fission in the proton bombardment of Th{sup 232} does not rise steadily with increasing proton energy; a periodic decrease in superposed upon the over-all increase. This is attributed to the changing pattern of various fission reactions, (p,f), (p,nf), etc. (author)

  5. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  6. Fusion probability and survivability in estimates of heaviest nuclei production

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman N.

    2012-02-01

    Full Text Available Production of the heavy and heaviest nuclei (from Po to the region of superheavy elements close to Z=114 and N=184 in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing model coupled with the statistical model (SM of de-excitation of a compound nucleus (CN. Excitation functions for fission and evaporation residues (ER measured in very asymmetric combinations can be described rather well. One can scale and fix macroscopic (liquid-drop fission barriers for nuclei involved in the calculation of survivability with SM. In less asymmetric combinations, effects of fusion suppression caused by quasi-fission (QF are starting to appear in the entrance channel of reactions. QF effects could be semi-empirically taken into account using fusion probabilities deduced as the ratio of measured ER cross sections to the ones obtained in the assumption of absence of the fusion suppression in corresponding reactions. SM parameters (fission barriers obtained at the analysis of a very asymmetric combination leading to the production of (nearly the same CN should be used for this evaluation.

  7. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  8. Time dependent and asymptotic neutron number probability distribution calculation using discrete Fourier transform

    International Nuclear Information System (INIS)

    Humbert, Ph.

    2005-01-01

    In this paper we consider the probability distribution of neutrons in a multiplying assembly. The problem is studied using a space independent one group neutron point reactor model without delayed neutrons. We recall the generating function methodology and analytical results obtained by G.I. Bell when the c 2 approximation is used and we present numerical solutions in the general case, without this approximation. The neutron source induced distribution is calculated using the single initial neutron distribution which satisfies a master (Kolmogorov backward) equation. This equation is solved using the generating function method. The generating function satisfies a differential equation and the probability distribution is derived by inversion of the generating function. Numerical results are obtained using the same methodology where the generating function is the Fourier transform of the probability distribution. Discrete Fourier transforms are used to calculate the discrete time dependent distributions and continuous Fourier transforms are used to calculate the asymptotic continuous probability distributions. Numerical applications are presented to illustrate the method. (author)

  9. Preliminary topical report on comparison reactor disassembly calculations

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1975-11-01

    Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2-POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherent in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident

  10. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  11. A new set of parameters for 5 Gaussian fission yields systematics

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    2003-01-01

    A new set of parameters for 5 Gaussian-type fission yields systematics has been proposed for applying to high energy neutron or proton fission and to various kinds of fissioning systems including minor actinides. The mass yields calculated using the systematics were compared with various kinds of measured data including the fission with incident energy higher than 100 MeV and the fission of minor actinide nuclides. The comparisons showed rather good agreement between the calculated values and measured ones for various kinds of fissioning systems. (author)

  12. Using a zero-variance scheme to accelerate the fission source convergence in a Monte Carlo calculation

    International Nuclear Information System (INIS)

    Christoforou, S.; Hoogenboom, J. E.

    2009-01-01

    We have used Boltzmann entropy in order to test whether a zero-variance based scheme can speed up the fission source convergence in a Monte Carlo calculation. It is shown that the choice of the initial source distribution significantly influences the evolution of the source, even leading to cases where the source does not converge at all throughout the calculation. The results from a loosely coupled system based on the NEA/OECD source convergence benchmarks indicate that, when using a biasing scheme such as the one we have developed, there can be significant improvement in the convergence, up to 3 times faster, which coupled with an figure of merit improvement of 1.5 leads to more efficient calculations. (authors)

  13. 4π-spectrometer technique for measurements of secondary neutron average number in nuclear fission by 252Cf neutrons

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Barashkov, Yu.A.; Golovanov, O.A.; Sidorov, L.V.

    1977-01-01

    A method for determining the average number of secondary neutrons anti ν produced in nuclear fission by the neutrons of the 252 Cf fission spectra by means of a 4π time-of-flight spectrometer is described. Layers of 252 Cf and an isotope studied are placed close to each other; if the isotope layer density is 1 mg/cm 2 probability of its fission is about 10 -5 per one spontaneous fission of californium. Fission fragments of 252 Cf and the isotope investigated have been detected by two surface-barrier counters with an efficiency close to 100%. The layers and the counters are situated in a measuring chamber placed in the center of the 4π time-of-flight spectrometer. The latter is utilized as a neutron counter because of its fast response. The method has been verified by carrying out measurements for 235 U and 239 Pu. A comparison of the experimental and calculated results shows that the method suggested can apply to determine the number of secondary neutrons in fission of isotopes that have not been investigated yet

  14. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  15. Fusion-fission dynamics and synthesis of the superheavy elements

    International Nuclear Information System (INIS)

    Abe, Yasuhisa

    2003-01-01

    Experiments of fusion-fission reactions clarify that the life time of nuclear fission is much longer than that expected from Bohr-Wheeler formula from the measurements of multiplicities of neutrons, gamma rays etc. emitted prior scission, and thereby appear to require a dynamical treatment of the process. Following the pioneering work by Kramers with the dissipation- fluctuation dynamics, the fissioning degree of freedom is described with the viewpoint of Brownian motion under incessant interactions with the heat bath particles, i.e., with nucleons in thermal equilibrium, in the present case. In the dynamical description the fission width is no more constant in time, but has a transient feature, as well as the reduction factor, the so-called Kramers factor. Both result in a longer life time, consistent with anomalous multiplicities measured. In the fusion process, Coulomb barriers play a crucial role in lighter heavy ion systems, but in very heavy systems it is known that there exists a hindrance in fusion. That is, the Coulomb barrier is not enough for determination of fusion probability, but an extra-energy above the barrier height is required for the system to fuse. This is understood by the properties of the Liquid Drop Model. After overcoming the Coulomb barrier, the ions touch with each other. But the united system, i.e., the pear-shaped configuration is located outside of the conditional saddle point or of the ridgeline. Therefore, in order to form the spherical compound nucleus, the system has to overcome one more barrier. Naturally, in such a situation, the kinetic energy carried in by the incident projectile has been more or less dissipated, i.e., the composite system is heated up. Thus, the shape evolution toward the spherical shape or toward the re-separation can be considered as a Brownian motion with the heat bath inside. The present author et al. have proposed the two-step model for fusion of massive heavy-ion systems where the fusion probability is

  16. 'PRIZE': A program for calculating collision probabilities in R-Z geometry

    International Nuclear Information System (INIS)

    Pitcher, H.H.W.

    1964-10-01

    PRIZE is an IBM7090 program which computes collision probabilities for systems with axial symmetry and outputs them on cards in suitable format for the PIP1 program. Its method of working, data requirements, output, running time and accuracy are described. The program has been used to compute non-escape (self-collision) probabilities of finite circular cylinders, and a table is given by which non-escape probabilities of slabs, finite and infinite circular cylinders, infinite square cylinders, cubes, spheres and hemispheres may quickly be calculated to 1/2% or better. (author)

  17. Fostering Positive Attitude in Probability Learning Using Graphing Calculator

    Science.gov (United States)

    Tan, Choo-Kim; Harji, Madhubala Bava; Lau, Siong-Hoe

    2011-01-01

    Although a plethora of research evidence highlights positive and significant outcomes of the incorporation of the Graphing Calculator (GC) in mathematics education, its use in the teaching and learning process appears to be limited. The obvious need to revisit the teaching and learning of Probability has resulted in this study, i.e. to incorporate…

  18. Role of ternary fission in synthesis of bypassed nuclei

    International Nuclear Information System (INIS)

    Kramarovskij, Ya.M.; Chechev, V.P.

    1983-01-01

    A possible influence of ternary fission with escape of neutron-enriched light charged particles on the synthesis of bypassed nuclides is considered. It is shown that this concept cannot give explanation of bypassed isotope concentrations, but it can make some contribution, if the probability of ternary fission for superheavy nuclei grows sharply with Z 2 /A parameter. The account of β-delayed fission contributes to the shift of ternary fission fragments into the region of neutron-deficient isotopes. Consistent consideration of the ternary fission role in the nucleosynthesis is possible only with an important accumulation of experimental and theoretical data on this process, particularly for the nuclei with Z > 100

  19. Calculation of the nuclear fission data based on the framework of the QMD + SDM

    International Nuclear Information System (INIS)

    Rong Jian; Iwamoto, O.; Fukahori, T.

    2002-01-01

    The quantum molecular dynamics (QMD), statistical decay model (SDM) and the statistical fission theory were used to analyze the mass distribution of the fission products, the prompt fission neutron spectrum (x(E)) and the prompt fission neutron multiplicities (ν-bar pf (E)) caused by the intermediate energy nucleon-induced fission. The semi-empirical formula of energy level density parameter used in the statistical process was also studied. Very few adjustable parameters were included in the present method. By some physical analysis, it can be thought that the present results are reasonable. The x(E) and ν-bar pf (E) can be obtained in the intermediate energy region by the present method

  20. Cognitive-psychology expertise and the calculation of the probability of a wrongful conviction.

    Science.gov (United States)

    Rouder, Jeffrey N; Wixted, John T; Christenfeld, Nicholas J S

    2018-05-08

    Cognitive psychologists are familiar with how their expertise in understanding human perception, memory, and decision-making is applicable to the justice system. They may be less familiar with how their expertise in statistical decision-making and their comfort working in noisy real-world environments is just as applicable. Here we show how this expertise in ideal-observer models may be leveraged to calculate the probability of guilt of Gary Leiterman, a man convicted of murder on the basis of DNA evidence. We show by common probability theory that Leiterman is likely a victim of a tragic contamination event rather than a murderer. Making any calculation of the probability of guilt necessarily relies on subjective assumptions. The conclusion about Leiterman's innocence is not overly sensitive to the assumptions-the probability of innocence remains high for a wide range of reasonable assumptions. We note that cognitive psychologists may be well suited to make these calculations because as working scientists they may be comfortable with the role a reasonable degree of subjectivity plays in analysis.

  1. Theoretical study of fission dynamics with muons

    International Nuclear Information System (INIS)

    Oberacker, V.E.; Umar, A.S.; Bottcher, C.; Strayer, M.R.; Maruhn, J.A.; Frankfurt Univ.

    1992-01-01

    Following muon capture by actinide atoms, some of the inner shell muonic transitions proceed by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. In particular, the muonic E2:(3d→1s) transition energy is close to the peak of the isoscalar giant quadrupole resonance in actinide nuclei which exhibits a large fission width. Prompt fission in the presence of a bound muon allows us to study the dynamics of large-amplitude collective motion. We solve the time-dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  2. Angular momenta of fission fragments in the {alpha}-accompanied fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Kliman, J.; Krupa, L.; Morhac, M. [Slovak Academy of Sciences, Department of Nuclear Physics, Bratislava (Slovakia); Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Hamilton, J.H.; Kormicki, J.; Ramayya, A.V.; Hwang, J.K.; Luo, Y.X.; Fong, D.; Gore, P. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Rodin, A.M.; Fomichev, A.S.; Popeko, G.S. [Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Daniel, A.V. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Macchiavelli, A.O.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R.; Cole, J.D.

    2005-06-01

    For the first time, average angular momenta of the ternary fission fragments {sup 100,102}Zr, {sup 106}Mo, {sup 144,146}Ba and {sup 138,140,142}Xe from the {alpha}-accompanied fission of {sup 252}Cf were obtained from relative intensities of prompt {gamma}-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of {sup 252}Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is {proportional_to}1.4{Dirac_h} lower than in binary fission. Consequently, results indicate that the mechanism of the ternary {alpha}-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of {sup 106}Mo and {sup 140}Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed. (orig.)

  3. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kim, G.N.; Kim, K. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Suryanarayana, S.V. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India)

    2013-10-15

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of {sup 232}Th have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for {sup 232}Th(p,f) and {sup 238}U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for {sup 232}Th(p,f), {sup 232}Th(n,f), and {sup 232}Th({gamma},f) at various energies were compared with those for {sup 238}U(p,f), {sup 238}U(n,f), and {sup 238}U({gamma},f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of {sup 232}Th was discussed with the similar data in {sup 238}U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/Z ratio, and fissility parameter. (orig.)

  4. Fundamentals of the double-humped fission barrier

    International Nuclear Information System (INIS)

    Brack, M.

    1980-01-01

    We review the development of the theory of the fission barrier over the past forty years. Special emphasis is put on the shell-correction method of Strutinsky and its foundation and numerical verification from microscopical Hartree-Fock calculations. The different practical realisations of the method and its applications to the calculation of deformation energy surfaces are reviewed. The influence of the different shape degrees of freedom of the nucleus on the form of the fission barrier is discussed. Finally, we summarize some more recent developments concerning both experimental and theoretical aspects of the double-humped fission barrier. (author)

  5. Muon induced fission and fission track dating of minerals

    International Nuclear Information System (INIS)

    Marques, A.

    1988-01-01

    The effects of muon induced fission on geological dating of samples by the fission track method are evaluated for the case of muscovite minerals. It is found a small but significant effect, greater for the longer ages. Since calculations are developped under the hypothesis of constant atmosphere and primary cosmic ray flux it is suggested that any discrepancy found in ages of very old material that cannot be accounted for by well known environmental influences, be taken as an indication of variation on either the atmospheric stopping power or the intensity of cosmic radiation along the ages. (author) [pt

  6. RSAC-6, Gamma doses, inhalation and ingestion doses, fission products inventory after fission products release

    International Nuclear Information System (INIS)

    Wenzel, Douglas R.; Schrader, Brad J.

    2007-01-01

    1 - Description of program or function: RSAC-6 is the latest version of the program RSAC (Radiological Safety Analysis Computer Program). It calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory; decay and in-grow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Internal dose from the inhalation and ingestion pathways is calculated. External dose from ground surface and plume gamma pathways is calculated. New and exciting updates to the program include the ability to evaluate a release to an enclosed room, resuspension of deposited activity and evaluation of a release up to 1 meter from the release point. Enhanced tools are included for dry deposition, building wake, occupancy factors, respirable fraction, AMAD adjustment, updated and enhanced radionuclide inventory and inclusion of the dose-conversion factors from FOR 11 and 12. 2 - Methods: RSAC6 calculates meteorological dispersion in the atmosphere using Gaussian plume diffusion for Pasquill-Gifford, Hilmeier-Gifford and Markee models. A unique capability is the ability to model Class F fumigation conditions, the meteorological condition that causes the highest ground level concentrations from an elevated release. Doses may be calculated for various pathways including inhalation, ingestion, ground surface, air immersion, water immersion pathways. Dose calculations may be made for either acute or chronic releases. Internal doses (inhalation and ingestion) are calculated using the ICRP-30 model with dose conversion factors from FOR 11. External factors are calculated using FOR 12. 3 - Unusual Features: RSAC6 calculates complete progeny in-growth and decay during all accident phases. The calculation of fission product inventories in particularly useful in the analysis of accidents where the

  7. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  8. Monte carlo sampling of fission multiplicity.

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J. S. (John S.)

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  9. Survival and compound nucleus probability of super heavy element Z = 117

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sridhar, K.N.

    2017-01-01

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of "2"8"9"-"2"9"7Ts, we have calculated the transmission probability (T_l), compound nucleus formation probabilities (P_C_N) and survival probability (P_s_u_r) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of "2"8"9"-"2"9"7Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei "2"8"9"-"2"9"7Ts are worked out and listed explicitly. We have also studied the variation of P_C_N and P_s_u_r with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  10. Basic physics of the fission process. Chapter 2

    International Nuclear Information System (INIS)

    Michaudon, A.

    1981-01-01

    A general description of the fission process is given with special emphasis on those aspects which are necessary for the understanding of the measurements and calculations of neutron-induced fission cross-sections. Having considered the various phases of the process, some typical properties of the low-energy fission of actinide nuclei are presented and the more specific features of neutron induced fission are examined. (U.K.)

  11. What happens to the fission process above the 2nd- and 3rd-chance fission thresholds

    International Nuclear Information System (INIS)

    Stewart, L.; Howerton, R.J.

    1976-01-01

    Although the multiple fission process is important at high neutron energies, most of the evaluations available today do not include these individual fission cross sections or their associated fission spectra. The representations used in the Los Alamos and Livermore libraries are described and calculations compared with 14-MeV integral experiments available on 235 U, 238 U, and 239 Pu. Further work is needed to clearly delineate the specific problems in order to propose unique solutions

  12. Ternary fission in an effective liquid drop model

    International Nuclear Information System (INIS)

    Duarte, Sergio B.; Tavares, Odilon A.P.; Dimarco, A.; Goncalves, Marcello; Guzman, Fernando; Trallero-Herrera, Carlos; Rodriguez, Oscar; Garcia, Fermin

    2001-01-01

    Full text follows: The nuclear partition in three fragments has been observed in recent experiments for fission process of 252 Cf and 24 '0 Pu. We apply the Effective Liquid Drop Model (ELDM), successfully used for discussing binary cold fission and cluster emissions for a three center geometric shape parametrization, describing the quasi-molecular deformation which can lead to ternary fragmentation. A preliminary calculation for rates of these processes are performed and the results are compared to the rate of the dominant binary fission process. A large range of parent nuclei (spherical and deformed) is covered in the calculation. The purpose is to point out others possible ternary fission process experimentally measurable. (author)

  13. Neutronic calculation and cross section sensitivity analysis of the Livermore mirror fusion/fission hybrid reactor blanket

    International Nuclear Information System (INIS)

    Ku, L.P.; Price, W.G. Jr.

    1977-08-01

    The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model

  14. Influence of the cosmic-ray induced fission tracks on the fission track of extraterrestric minerals via the 238U spontaneous fission

    International Nuclear Information System (INIS)

    Damm, G.; Thiel, K.

    1977-01-01

    The age determined by counting fission tracks of lunar and meteorite materials is obviously falsified by additional fission track parts not to be accounted for by the spontaneous fission of uranium 238. For this p and n induced fissions of U, Th and other hreavy elements through the cosmic radiation come into consideration. In order to determine the possible part of such interference factors, a simulation experiment at the proton synchrocycloton (CERN, Geneva) has been carried out and independently of this, the production rates for the p and n induced U, Th, Bi, Pb and Au in the surface-near regolith layers of the moon were calculated. It could be seen that the irradiation age as well as the spacial distribution of the heavy metals in the samples to be dated must be considered. (RB) [de

  15. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    V of beam energy. The distributions show a saturation of E* for high spins. The saturation is attributed to the fact that, as E* increases above the saddle, Γ(fission) rapidly dominates. The resulting truncation of the entry distribution at high E* allows a determination of the fission barrier height. The experimental entry distributions are also compared with entry distributions calculated with decay cascade codes which take into account the full nucleus formation process, including the capture process and the subsequent survival probability as a function of E* and I. We used the KEWPIE2 and NRV codes to simulate the entry distribution. (author)

  16. Methodology and application of the WIMS-D4M fission product data

    International Nuclear Information System (INIS)

    Mo, S.C.

    1995-01-01

    The WIMS-D4 code has been modified (WIMS-D4m) to generate burn-up dependent microscopic cross sections for use in full core depletion calculations. The calculation of neutron absorption by fission products can be obtained from a reduced fission-product-chain model that includes the 135 Xe and 149 Sm chains, and a lumped fission product to account for the absorption by fission products not explicitly treated. Burn-up calculations were performed for the ANS MEU core using WIMS and EPRI-CELL cross sections. The calculated eigenvalues and material loadings are in good agreements

  17. Consultants’ Meeting on Recommended Input Parameters for Fission Cross-Section Calculations. Summary Report

    International Nuclear Information System (INIS)

    Capote Noy, Roberto; Simakov, Stanislav; Goriely, Stephane; Hilaire, Stephane; Iwamoto, Osamu; Kawano, Toshihiko; Koning, Arjan

    2014-12-01

    A Consultants’ Meeting on “Recommended Input Parameters for Fission Cross-Section Calculations” was held at IAEA Headquarters, Vienna, Austria to define the scope, deliverables and appropriate work programme of a possible Coordinated Research Project (CRP) on the subject. Presentations are available online at https://www-nds.iaea.org/indexmeeting-crp/CM-RIPL-fission/. A new CRP was endorsed to recommend a comprehensive set of fission input parameters needed for the modelling of fission cross sections. Special attention will be given to the modelling of photon and nucleon induced reactions on actinides with emphasis on incident energies below 30 MeV. The goals and detailed deliverables of the planned CRP were proposed. A Hauser-Feshbach code intercomparison was recommended. (author)

  18. Reexamining the role of the (n ,γ f ) process in the low-energy fission of 235U and 239Pu

    Science.gov (United States)

    Lynn, J. E.; Talou, P.; Bouland, O.

    2018-06-01

    The (n ,γ f ) process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on 235U and 239Pu. Observed fluctuations of the average prompt fission neutron multiplicity and average total γ -ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the M 1 transitions to the prefission γ -ray spectrum of 239Pu is explained by the dominant fission probabilities of 0+ and 2+ transition states, which can only be accessed from compound nucleus states formed by the interaction of s -wave neutrons with the target nucleus in its ground state, and decaying through M 1 transitions. The impact of an additional low-lying M 1 scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. Finally, calculations are extended to the fast energy range where (n ,γ f ) corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.

  19. Neutronics of Laser Fission-Fusion Systems

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-∞). (Author) 14 refs

  20. Neutronics of Laser Fission-Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1976-07-01

    Neutronics of Fission-Fusion microsystems inertially confined by Lasers are analysed by transport calculation, both stationary (DTF, TIHOC) and time dependent (TDA, TIHEX), discussing the results obtained for the basic parameters of the fission process (multiplication factor, neutron generation time and Rossi-{infinity}). (Author) 14 refs.

  1. A method of calculating fission gas diffusion from UO{sub 2} fuel and its application to the X-2-f loop test

    Energy Technology Data Exchange (ETDEWEB)

    Booth, A H

    1957-09-15

    A method for calculating the fraction of the rare gas fission products that diffuses out of a UO{sub 2} fuel element under conditions In a reactor is outlined, The method is based on the values of the diffusion constant found in laboratory experiments, as described In CRDC-718, and assumes that these remain unaltered during the period that the fuel is in the reactor, The method has been applied to two types of oxide in the X-2-f loop test of 1956 and the results compared with the amounts of fission gas found by analysis of the gases collected in sheath puncture experiments, as described in CRDC-719. The calculated values depend heavily on the estimated temperatures In the fuel. They are in close agreement with the experimental values provided that, in calculating the temperature, certain assumptions are made regarding the thermal expansion of the oxide cylinder. (author)

  2. Systematic evaluation of prompt neutron spectra in fission

    International Nuclear Information System (INIS)

    Osawa, Takaaki

    1995-01-01

    To create the nuclear data fail JEND-32, the prompt fission neutron spectra X(E) of 233 U, 235 U, 238 U and 239 Pu were reevaluated and some improvement were added to the calculation models. We tried to extend the calculation method of fission spectra of nuclides with poor measurement data in consideration of increasing the importance of nuclear data of minor actinoids. We improved and extended the following five points. (1) On JENDL-3.1, the fission spectra of principal fissible materials had been calculated by the Modland-Nix model which the neutron emissions of fragments were calculated under the approximation of the constant inverse process cross section. In the paper, the spectra were calculated by the use of the inverse process cross section depend on the energy obtained by the calculation of the optical model. The result showed the increase of low energy components and the softening effect of spectra (2) On JENDL-3.1, the all fission processes were assumed to undergo (n,f) reaction. In the paper, they were calculated by the multi-chance fission such as (n, n'f), (n, 2nf) and (n, 3nf) etc. Softening of the spectra (En > 6 MeV) was obtained by this method. (3) The level density parameter (LDP) has been assumed as a = A/C in either case of light fragment (LF) and heavy fragment (HF) in the original Madland-Nix model. But we used LDP based on the Ignatyuk model under consideration of the shell effects of nuclear fragments, hence the neutron spectra of heavy fragments were hardening. (4) Nuclear temperature of both fragments had been assumed to be the same at original model, but now R T = Tm/TmH was derived to calculate them. The ratio of middle/both side components of spectra was changed. (5) Unknown neutron fission spectra of minor actinide were able to the assumed on the basis of Moriyama-Ohnishi model. (S.Y.)

  3. Monte Carlo based toy model for fission process

    International Nuclear Information System (INIS)

    Kurniadi, R.; Waris, A.; Viridi, S.

    2014-01-01

    There are many models and calculation techniques to obtain visible image of fission yield process. In particular, fission yield can be calculated by using two calculations approach, namely macroscopic approach and microscopic approach. This work proposes another calculation approach in which the nucleus is treated as a toy model. Hence, the fission process does not represent real fission process in nature completely. The toy model is formed by Gaussian distribution of random number that randomizes distance like the distance between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean (μ CN , μ L , μ R ), and standard deviation (σ CN , σ L , σ R ). By overlaying of three distributions, the number of particles (N L , N R ) that are trapped by central points can be obtained. This process is iterated until (N L , N R ) become constant numbers. Smashing process is repeated by changing σ L and σ R , randomly

  4. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  5. Migration of fission products in UO2. Final report

    International Nuclear Information System (INIS)

    Prussin, S.G.; Olander, D.R.

    1995-01-01

    Results of an experimental and calculational effort to examine the fundamental mechanisms of fission product migration in and release from polycrystalline uranium dioxide are reported. The experiments were designed to provide diffusion parameters for the representative fission products tellurium, iodine, xenon, molybdenum and ruthenium under both reducing and oxidizing conditions. The calculational effort applied a new model of fission product release from reactor fuel that incorporates grain growth as well as grain boundary and lattice diffusion

  6. SILENE and TDT: A code for collision probability calculations in XY geometries

    International Nuclear Information System (INIS)

    Sanchez, R.; Stankovski, Z.

    1993-01-01

    Collision probability methods are routinely used for cell and assembly multigroup transport calculations in core design tasks. Collision probability methods use a specialized tracking routine to compute neutron trajectories within a given geometric object. These trajectories are then used to generate the appropriate collision matrices in as many groups as required. Traditional tracking routines are based on open-quotes globalclose quotes geometric descriptions (such as regular meshes) and are not able to cope with the geometric detail required in actual core calculations. Therefore, users have to modify their geometry in order to match the geometric model accepted by the tracking routine, introducing thus a modeling error whose evaluation requires the use of a open-quotes referenceclose quotes method. Recently, an effort has been made to develop more flexible tracking routines either by directly adopting tracking Monte Carlo techniques or by coding of complicated geometries. Among these, the SILENE and TDT package is being developed at the Commissariat a l' Energie Atomique to provide routine as well as reference calculations in arbitrarily shaped XY geometries. This package combines a direct graphical acquisition system (SILENE) together with a node-based collision probability code for XY geometries (TDT)

  7. Determination of palaeotemperatures of apatite with the fission-track method

    International Nuclear Information System (INIS)

    Bertagnolli, E.; Maerk, E.; Bertel, E.; Pahl, M.; Maerk, T.D.

    1981-01-01

    As a consequence of thermal fading of fission tracks in minerals, the fission-track dating method can be used to obtain a sensitive geothermometer for unfolding thermal events in the history of rocks, especially if it is possible to determine the temperature associated with a measured fission-track age, i.e., yielding a temperature age. Based on the concept of a minimum fission-track length the differential annealing equation has been solved for apatite, taking into account the fact that the annealing coefficient depends also on the degree of fission-track reduction. This allows us to calculate an improved age-temperature relationship for apatite, which gives for a measured corrected fission-track age the corresponding temperature, assuming either linear or exponential time-dependence of the temperature. The present results for apatite are compared with previous calculations in apatite and sphene. As expected, a fission-track age of apatite dates a younger (lower temperature) point in the thermal-cooling history than a fission-track age of sphene. (author)

  8. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  9. Differential and integral characteristics of prompt fission neutrons in the statistical theory

    International Nuclear Information System (INIS)

    Gerasimenko, B.F.; Rubchenya, V.A.

    1989-01-01

    Hauser-Feshbach statistical theory is the most consistent approach to the calculation of both spectra and prompt fission neutrons characteristics. On the basis of this approach a statistical model for calculation of differential prompt fission neutrons characteristics of low energy fission has been proposed and improved in order to take into account the anisotropy effects arising at prompt fission neutrons emission from fragments. 37 refs, 6 figs

  10. Fission yield correlation generation and impact on nuclear problems - 15570

    International Nuclear Information System (INIS)

    Fiorito, L.; Stankovskiy, A.; Van den Eynde, G.

    2015-01-01

    In our work we defined a scheme to update fission yields and their covariance matrices. We implemented a Generalised Linear Least Square (GLLS) updating procedure to produce inter-isotope fission yield correlations. At each update, a constraining equation was selected and the related set of observables calculated using the prior knowledge of the fission yield data and uncertainties. Then, available extra information on each observable was introduced into the system - e.g. a data set of direct measurements or uncertainties. Our GLLS-based updating tool calculates best-estimate posterior fission yields and covariance matrices which merge both the extra and prior data. The major result of the update is the generation of fission yield correlations. We created complete updated covariance matrices for 6 nuclides (Th 232 , U 233 , U 235 , U 238 , Pu 239 and Pu 241 ) and a total of 14 fissioning systems using the JEFF-3.1.1 files. The fission yield covariance matrices were tested against the criticality and nuclide inventory calculations of the REBUS single pin benchmark after one irradiation cycle. It appears that fission yield correlations reduce the uncertainties to a very great extent, which in many cases are 4 times smaller than those obtained with uncorrelated data

  11. AUS, Neutron Transport and Gamma Transport System for Fission Reactors and Fusion Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    1 - Description of program or function: AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous release, AUS87, are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the POW3D multi-dimensional diffusion module, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM mainframe computers to UNIX workstations. 2 - Method of solution: AUS98 is a modular system in which the modules are complete programs linked by a path given in the input stream. A simple path is simply a sequence of modules, but the path is actually pre-processed and compiled using the Fortran 77 compiler. This provides for complex module linking if required. Some of the modules included in AUS98 are: MIRANDA Cross-section generation in a multi-region resonance subgroup calculation and preliminary group condensation. ANAUSN One-dimensional discrete ordinates calculation. ICPP Isotropic collision probability calculation in one dimension and for rod clusters. POW3D Multi-dimensional neutron diffusion calculation including feedback-free kinetics. AUSIDD One-dimensional diffusion calculation. EDITAR Reaction-rate editing and group collapsing following a transport calculation. CHAR Lattice and global burnup calculation. MICBURN Control of global burnup

  12. Fission time-scale in experiments and in multiple initiation model

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2011-12-15

    Rate of fission for highly-excited nuclei is affected by the viscose character of the systemmotion in deformation coordinates as was reported for very heavy nuclei with Z{sub C} > 90. The long time-scale of fission can be described in a model of 'fission by diffusion' that includes an assumption of the overdamped diabatic motion. The fission-to-spallation ratio at intermediate proton energy could be influenced by the viscosity, as well. Within a novel approach of the present work, the cross examination of the fission probability, time-scales, and pre-fission neutron multiplicities is resulted in the consistent interpretation of a whole set of the observables. Earlier, different aspects could be reproduced in partial simulations without careful coordination.

  13. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  14. New fission-neutron-spectrum representation for ENDF

    International Nuclear Information System (INIS)

    Madland, D.G.

    1982-04-01

    A new representation of the prompt fission neutron spectrum is proposed for use in the Evaluated Nuclear Data File (ENDF). The proposal is made because a new theory exists by which the spectrum can be accurately predicted as a function of the fissioning nucleus and its excitation energy. Thus, prompt fission neutron spectra can be calculated for cases where no measurements exist or where measurements are not possible. The mathematical formalism necessary for application of the new theory within ENDF is presented and discussed for neutron-induced fission and spontaneous fission. In the case of neutron-induced fission, expressions are given for the first-chance, second-chance, third-chance, and fourth-chance fission components of the spectrum together with that for the total spectrum. An ENDF format is proposed for the new fission spectrum representation, and an example of the use of the format is given

  15. Critical and subcritical mass calculations of fissionable nuclides based on JENDL-3.2+

    International Nuclear Information System (INIS)

    Okuno, H.

    2002-01-01

    We calculated critical and subcritical masses of 10 fissionable actinides ( 233 U, 235 U, 238 Pu, 239 Pu, 241 Pu, 242m Am, 243 Cm, 244 Cm, 249 Cf and 251 Cf) in metal and in metal-water mixtures (except 238 Pu and 244 Cm). The calculation was made with a combination of a continuous energy Monte Carlo neutron transport code, MCNP-4B2, and the latest released version of the Japanese Evaluated Nuclear Data Library, JENDL-3.2. Other evaluated nuclear data files, ENDF/B-VI, JEF-2.2, and JENDL-3.3 in its preliminary version were also applied to find differences in results originated from different nuclear data files. For the so-called big three fissiles ( 233 U, 235 U and 239 Pu), analyzing the criticality experiments cited in ICSBEP Handbook validated the code-library combination, and calculation errors were consequently evaluated. Estimated critical and lower limit critical masses of the big three in a sphere with/without a water or SS-304 reflector were supplied, and they were compared with the subcritical mass limits of ANS-8.1. (author)

  16. Calculated model of radioactive fission and corrosion product accumulation and distribution in a fast reactor sodium coolant circuit

    International Nuclear Information System (INIS)

    Kizin, V.D.; Konyashov, V.V.

    1987-01-01

    A simple calculation procedure of radioactive products accumulation and distribution in a primary circuit has been developed on the basis of experimental investigations at the BOR-60 reactor. Common knowledge on the impurity products transfer at the liquid-solid and liquid-gas phase boundary is taken. Use is made of the typical in reactor physics relationships for the description of the products transition to the equipment surfaces, of fission products release, metal corrosion and others. Satisfactory agreement of the calculation data with the experimental ones has been obtained. (orig.)

  17. Fission modelling with FIFRELIN

    International Nuclear Information System (INIS)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie

    2015-01-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  18. Calculation of the exit probability of a particle from a cylinder of matter

    International Nuclear Information System (INIS)

    Ertaud, A.; Mercier, C.

    1949-02-01

    In the elementary calculation of the ε coefficient and of the slowing down length inside a nuclear pile made of a network of cylindrical rods, it is necessary to know the exit probability of a neutron initially located inside a cylinder filled up with a given substance. This probability is the ratio between the number of output neutrons and the number of neutrons produced inside the surface of the cylinder. This report makes the resolution of this probabilistic equation (integral calculation) both for the cylindrical case and for the spherical case. (J.S.)

  19. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  20. New fission valley for 258Fm and nuclei beyond

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-01-01

    Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to 132 Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs

  1. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  2. A stochastic approach to fission

    International Nuclear Information System (INIS)

    Boilley, D.; Suraud, E.; Abe, Yasuhisa

    1992-01-01

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out. A strong friction coefficient, calculated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. Fission was described as a diffusion over a barrier of a collective variable, and a Langevin Equation (LE) was used to study the phenomenon. A study of the stationary flow over the saddle point with a Fokker-Planck Equation (FPE), equivalent to the LE was used to give formula for the stationary fission rate (or reaction rate for the chemistry applications). More recently, a complete study of the fission process was performed numerically with both FPE and LE. A long transient time, that could allow more pre-scission neutrons to evaporate, was pointed out. The derivation of this new LE is recalled, followed by the description of the memory dependence and by the effect of a large friction coefficient on the fission rate. (author) 6 refs., 3 figs

  3. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    Full text: Fission induced by nucleons transfer has been investigated in the reaction 28 Si + 232 Th at 340 MeV. Looking at the projectile-like-fragments (PLF), the fission yield increases as the transfer increases, but a decreases is observed for transfers with DZ . Light charged particles in coincidence with PLF and Fission have been detected with large solid angle and show an increasing multiplicity as the Z of PLF is reduced and a constant value when fission is requested. The present results indicate inhibition of transfer induced fission reaction for higher Z transfer and increasing probability for decay through charged particle evaporation. Fission is the dominant decay process in heavy reactions involving fissile systems but the dynamical evolution of the composite system is largely governed by the formation and decay mechanisms. Important insight into the formation and the survival probability of the heavy composite nuclei formed in heavy ion collisions can be gained by simultaneously investigate the fission process and light particle emission over a continuous range of excitation energy, angular momentum and fissility. This can be achieved by studying fission induced by transfer of nucleons between the interacting projectile and the target nucleus. In the present work, we have carried out measurements on multinucleon transfer induced fission reactions in 28 Si + 232 Th system at Elab = 340 MeV. The experiment has been performed at the Laboratori Nazionale di Legnaro (LNL) using the 8pLP detector in its final configuration with 257 DE-E telescopes. The backward detectors were used to measure both light charged particles and fission fragments. The projectile-like fragments were detected using separate DE-E telescopes around the grazing angle. Two neutron detectors were placed at a distance of 115.5 cm from the target to measure neutrons emitted in coincidence with fission fragments. Here we present the results of the data analysis of transfer induced fission

  4. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  5. Parallel theoretical study of the two components of the prompt fission neutrons: Dynamically released at scission and evaporated from fully accelerated fragments

    Directory of Open Access Journals (Sweden)

    Carjan Nicolae

    2017-01-01

    Full Text Available Prompt fission neutrons (PFN angular and energy distributions for the reaction 235U(nth,f are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1 PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10−21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2 PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.

  6. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  7. The role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A R [FRSD, UKAEA, RNPDE, Risley, Warrington (United Kingdom); Teague, H J [SRD, UKAEA, Culcheth, Warrington (United Kingdom)

    1977-07-01

    The review of the role of fission products in whole-core accidents falls into two parts. Firstly, there is a discussion of the hypothetical accidents usually considered in the UK and how they are dealt with. Secondly, there is a discussion of individual topics where fission products are known to be important or might be so. There is a brief discussion of the UK work on the establishment of an equation of state for unirradiated fuel and how this might be extended to incorporate fission product effects. The main issue is the contribution of fission products to the effective vapour pressure and the experimental programme on the pulsed reactor VIPER investigates this. Fission products may influence the probability of occurrence and the severity of MFCIs. Finally, the fission product effects in the pre-disassembly, disassembly and recriticality stages of an accident are discussed. (author)

  8. Macroscopic calculational model of fission gas release from water reactor fuels

    International Nuclear Information System (INIS)

    Uchida, Masaki

    1993-01-01

    Existing models for estimating fission gas release rate usually have fuel temperature as independent variable. Use of fuel temperature, however, often brings an excess ambiguity in the estimation because it is not a rigorously definable quantity as a function of heat generation rate and burnup. To derive a mathematical model that gives gas release rate explicitly as a function of design and operational parameters, the Booth-type diffusional model was modified by changing the character of the diffusion constant from physically meaningful quantity into a mere mathematical parameter, and also changing its temperature dependency into power dependency. The derived formula was found, by proper choice of arbitrary constants, to satisfactorily predict the release rates under a variety of irradiation histories up to a burnup of 60,000 MWd/t. For simple power histories, the equation can be solved analytically by defining several transcendental functions, which enables simple calculation of release rate using graphs. (author)

  9. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  10. A transmission probability method for calculation of neutron flux distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Wasastjerna, F.; Lux, I.

    1980-03-01

    A transmission probability method implemented in the program TPHEX is described. This program was developed for the calculation of neutron flux distributions in hexagonal light water reactor fuel assemblies. The accuracy appears to be superior to diffusion theory, and the computation time is shorter than that of the collision probability method. (author)

  11. Nondestructive analysis of the RA fuel burnup, Calculation of the gamma activity ratio of fission products in the fuel - program QU0C1

    International Nuclear Information System (INIS)

    Bulovic, V.F.

    1973-01-01

    The γ radiation of RA reactor fuel element was measured under precisely defined measuring conditions. The spectrum was analysed by spectrometer with semiconductor Ge(Li) detector. The gamma counting rate in the fuel spectrum is defined as a function of fission product activity, gamma energy and yield, fuel thickness and additional absorbers, dimensions of the gamma collimator. Activity ratio of two fission products is defined as a function of counting rate peaks and part of the mentioned quantities. Four options for calculating the activities for fission products are discussed. Three of them are covered by the QU0C1 code written in FORTRAN for the CDC 3600 computer. The code is included in this report [sr

  12. Signatures of Coulomb fission: a theoretical study

    International Nuclear Information System (INIS)

    Oberacker, V.; Kruse, H.; Pinkston, W.T.; Greiner, W.

    1979-01-01

    Evidence for Coulomb fission (CF) is noted first. Then the Hamiltonian is set down and explained, and an expression for the CF probability of CF is obtained. Results are summarized. Figures show the CF probability of 238 U as a function of projectile charge number and the excitation functions for CF of 238 U by 184 W and 136 Xe. 3 figures

  13. FEMB, 2-D Homogeneous Neutron Diffusion in X-Y Geometry with Keff Calculation, Dyadic Fission Matrix

    International Nuclear Information System (INIS)

    Misfeldt, I.B.

    1987-01-01

    1 - Nature of physical problem solved: The two-dimensional neutron diffusion equation (xy geometry) is solved in the homogeneous form (K eff calculation). The boundary conditions specify each group current as a linear homogeneous function of the group fluxes (gamma matrix concept). For each material, the fission matrix is assumed to be dyadic. 2 - Method of solution: Finite element formulation with Lagrange type elements. Solution technique: SOR with extrapolation. 3 - Restrictions on the complexity of the problem: Maximum order of the Lagrange elements is 6

  14. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  15. Prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Madland, D.G.; Nix, J.R.

    1983-01-01

    We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of 235 U and the spontaneous fission of 252 Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references

  16. Fission product yield evaluation for the USA evaluated nuclear data files

    International Nuclear Information System (INIS)

    Rider, B.F.; England, T.R.

    1994-01-01

    An evaluated set of fission product yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  17. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    International Nuclear Information System (INIS)

    Elicson, Tom; Harwood, Bentley; Lucek, Heather; Bouchard, Jim

    2011-01-01

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: Development of time-dependent fire heat release rate profiles (required as input to CFAST), Calculation of fire severity factors based on CFAST detailed fire modeling, and Calculation of fire non-suppression probabilities.

  18. Identification and systematical studies of the electron-capture delayed fission (ECDF) in the lead region

    CERN Multimedia

    Pauwels, D B; Lane, J

    2008-01-01

    In our recent experiment (March 2007) at the velocity filter SHIP(GSI) we observed the electron-capture delayed fission of the odd-odd isotope $^{194}$At. This is the first unambiguous identification of this phenomenon in the very neutron-deficient nuclei in the vicinity of the proton shell closure at Z=82. In addition, the total kinetic energy (TKE) for the daughter nuclide $^{194}$Po was measured, despite the fact that this isotope does not decay via spontaneous fission. Semi-empirical analysis of the electron-capture Q$_{EC}$ values and fission barriers B$_{f}$ shows that a relatively broad island of ECDF must exist in this region of the Nuclide Chart, with some of the nuclei having unusually high ECDF probabilities. Therefore, this Proposal is intended to initiate the systematic identification and study of $\\beta$-delayed fission at ISOLDE in the very neutron-deficient lead region. Our aim is to provide unique low-energy fission data (e.g. probabilities, TKE release, fission barriers and their isospin dep...

  19. New calculation for the neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV

    International Nuclear Information System (INIS)

    Mesa, J.; Deppman, A.; Likhachev, V.P.; Arruda-Neto, J.D.T.; Manso, M.V.; Garcia, C.E.; Rodriguez, O.; Guzman, F.; Garcia, F.

    2003-01-01

    The 233 Pa(n,f) cross section, a key ingredient for fast reactors and accelerators driven systems, was measured recently with relatively good accuracy [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. The results are at strong variance with accepted evaluations and an existing indirect experiment. This circumstance led us to perform a quite detailed and complete evaluation of the 233 Pa(n,f) cross section between 1.0 and 3.0 MeV, where use of our newly developed routines for the parametrization of the nuclear surface and the calculation of deformation parameters and level densities (including low-energy discrete levels) were made. The results show good quantitative and excellent qualitative agreement with the experimental direct data obtained by Tovesson et al. [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. Additionally, our methodology opens new possibilities for the analysis of subthreshold fission and above threshold second-chance fission for both 233 Pa and its decay product 233 U, as well as other strategically important fissionable nuclides

  20. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  1. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte

    2014-06-01

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  2. Characteristics of fission product release from a molten pool

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2001-01-01

    The volatile fission products are released from the debris pool, while the less volatile fission products tend to remain as condensed phases because of their low vapor pressure. The release of noble gases and the volatile fission products is dominated by bubble dynamics. The release of the less volatile fission products from the pool can be analyzed based on mass transport through a liquid with the convection flow. The physico-numerical models were orchestrated from existing submodels in various disciplines of engineering to estimate the released fraction of fission products from a molten pool. It was assumed that the pool has partially filled hemispherical geometry. For the high pool pressure, the diameter of the bubbles at detachment was calculated utilizing the Cole and Shulman correlation with the effect of system pressure. Sensitivity analyses were performed and results of the numerical calculations were compared with analysis results for the TMI-2 accident. (author)

  3. Fusion-Fission like studies from medium heavy to light compound systems

    International Nuclear Information System (INIS)

    Heusch, B.

    1991-01-01

    It has been shown that for systems as light as A CN = 47 up to systems just above the Businaro Gallone point in the mass region of 100 to 110 the probability for a system to deexcite by the fission channel, is not negligible. As predicted, the asymmetrical separation becomes dominant when the A CN mass is decreasing but the symmetrical mode remains measurable. The ambiguities in the measured outgoing fragment distributions arise from the competition with IMF emissions as well as dynamical fission processes which depend strongly on the studied system. Fully relaxed DIC has also be used to interpret the results. I tried to show that precise checks on the behavior of two neighbouring systems as well as search for entrance channel effect and/or energy dependence bring evidence enough that the deexcitation of the compound nucleus can account for the symmetric and asymmetric fission channels as well as IMF emissions. This is strongly supported by different recent calculations all done in this frame. These all conclusions indicate also that the RLDM fails in the data interpretation. The strength of the fission channel depends strongly on the possibilities a system has to deexcite. For very light systems especially the number of open channels available determines directly the flux repartition between direct or compound processes and therefore very large differences in the general behaviour of two neighbouring systems can be observed. 15 figs

  4. Research advances in probability of causation calculation of radiogenic neoplasms

    International Nuclear Information System (INIS)

    Ning Jing; Yuan Yong; Xie Xiangdong; Yang Guoshan

    2009-01-01

    Probability of causation (PC) was used to facilitate the adjudication of compensation claims for cancers diagnosed following exposure to ionizing radiation. In this article, the excess cancer risk assessment models used for PC calculation are reviewed. Cancer risk transfer models between different populations, dependence of cancer risk on dose and dose rate, modification by epidemiological risk factors and application of PC are also discussed in brief. (authors)

  5. 'PRIZE': A program for calculating collision probabilities in R-Z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, H.H.W. [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-10-15

    PRIZE is an IBM7090 program which computes collision probabilities for systems with axial symmetry and outputs them on cards in suitable format for the PIP1 program. Its method of working, data requirements, output, running time and accuracy are described. The program has been used to compute non-escape (self-collision) probabilities of finite circular cylinders, and a table is given by which non-escape probabilities of slabs, finite and infinite circular cylinders, infinite square cylinders, cubes, spheres and hemispheres may quickly be calculated to 1/2% or better. (author)

  6. Gamma-ray multiplicity distribution in ternary fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Kliman, J [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Krupa, L [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Morhac, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Hamilton, J H [Department of Physics, Vanderbilt University, Nashville, TN (United States); Kormicki, J [Department of Physics, Vanderbilt University, Nashville, TN (United States); Ramayya, A V [Department of Physics, Vanderbilt University, Nashville, TN (United States); Hwang, J K [Department of Physics, Vanderbilt University, Nashville, TN (United States); Luo, Y X [Department of Physics, Vanderbilt University, Nashville, TN (United States); Fong, D [Department of Physics, Vanderbilt University, Nashville, TN (United States); Gore, P [Department of Physics, Vanderbilt University, Nashville, TN (United States); Akopian, G M Ter; Oganessian, Yu Ts; Rodin, A M; Fomichev, A S; Popeko, G S; Daniel, A V [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); Rasmussen, J O; Macchiavelli, A O [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Stoyer, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro (Brazil); Cole, J D [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States)

    2002-12-01

    From multiparameter data obtained at Lawrence Berkeley National Laboratory, the integral characteristics of the prompt {gamma}-ray emission were extracted for tripartition of {sup 252}Cf with He, Be and C being the third light charged particle. We used multifold {gamma}-ray coincidence spectra for the determination of {gamma}-ray multiplicities assuming a Gaussian distribution for {gamma}-ray multiplicity. The multiplicity distribution characteristics, i.e. mean multiplicity and its dispersion were obtained by minimizing with respect to the calculated values of probabilities of multifold {gamma}-ray coincidences using a combinatoric method. Comparison with the known experimental data from binary fission was made. Further, we investigated dependencies of the mean {gamma}-ray multiplicity on the kinetic energy of the light charged particle. The mean {gamma}-ray multiplicity for He ternary fission is found to increase rapidly with increasing kinetic energy of He in the region less than 11 MeV and then decrease slowly with increasing kinetic energy of He. The anomalous behaviour of {gamma}-ray emission is discussed. The mean {gamma}-ray multiplicity was determined for the first time for Be and C ternary fission. For Be, the {gamma}-ray multiplicity as a function of kinetic energy was obtained as well.

  7. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    Science.gov (United States)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using

  8. Goodness of isospin in neutron rich systems from the fission fragment distribution

    Science.gov (United States)

    Garg, Swati; Jain, Ashok Kumar

    2017-09-01

    We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.

  9. Fluctuations in Fission Characteristics in the Resonance Range

    International Nuclear Information System (INIS)

    Fort, E.; Courcelle, A.

    2006-01-01

    In the resonance range, experimental data exhibit meaningful fluctuations of the number of prompt neutrons ν p (E) and γ-rays emitted in fission. Fluctuations of delayed-neutrons multiplicity ν d (E) are also expected. Although these fluctuations may have a non-negligible impact on reactor integral parameters (such as k eff , β eff ), they are usually not described in the current nuclear-data libraries Endf, JENDL or Jeff (except for 239 Pu evaluation in Jeff.1). Experiments by Hambsch et al. on 235 U have justified the fluctuations of total kinetic energy of fission fragments [i.e TKE(E)] by the fluctuations in the mass distributions. An interesting channel-mode formalism, described by Furman, provides a methodology to assess the fluctuations of fission characteristics in the resonance range. This approach is based on ideas relating fission channels or transition states as proposed by Bohr and fission modes as parameterized for instance by Brosa et al. This formalism requires the knowledge of physical parameters rarely measured up to now, such as PP JK (E), the energy dependant probability to form a transition state with a spin J and its projection along the deformation axis K, w m JK , the probability to feed the fission mode m from a (J,K) transition state. Nevertheless, in the case of 3 - and 4 - resonances of 235 U, various experiments permit these data to be extracted. The present study proposes a tentative evaluation of ν p of 235 U based on these ideas. The evaluation of νp for 239 Pu, performed in the 80's for the JEF library, was also revisited. At that time, the model was based on the existence of pre-fission gamma (the so called n-γf effect) as well as a spin effect (prescription of different ν p values for each spin state 0 + and 1 + ). This paper emphasizes the need for further measurements to provide more accurate information on the parameters used in this formalism, and improve the present work. (authors)

  10. CINDER, Depletion and Decay Chain Calculation for Fission Products in Thermal Reactors

    International Nuclear Information System (INIS)

    England, T.R.; Gorrell, T.C.; Hightower, J.H.

    2001-01-01

    1 - Description of problem or function: CINDER is a four-group, one- point depletion and fission product program based on the evaluation of a general analytical solution of nuclides coupled in any linear sequence of radioactive decays and neutron absorptions in a specified neutron flux spectrum. The desired depletion and fission product chains and all physical data are specified by the problem originator. The program computes individual nuclide number densities, activities, nine energy-group disintegration rates, and macroscopic and barns/fission poisons at each time-step as well as selected summaries of these data. 2 - Method of solution: Time-dependent variations in nuclide cross sections and neutron fluxes are approximated by a user-specified sequential set of values which are considered constant during the duration of the user-specified associated time-increments. When a nuclide concentration is independent of the concentration of any of its progeny, it is possible to resolve the couplings so as to obtain nuclides fed by a single parent. These chains are referred to as linear. 3 - Restrictions on the complexity of the problem: The program is limited to 500 total nuclides formed in up to 240 chains of 20 or fewer nuclides each. Up to 10 nuclides may act as fission product sources, contributing to power, and as many as 99 time-steps of arbitrary length are permitted. All stable nuclides must have a cross section if zero power time-increments are anticipated

  11. The impact of intermediate structure on the average fission cross sections

    International Nuclear Information System (INIS)

    Bouland, O.; Lynn, J.E.; Talou, P.

    2014-01-01

    This paper discusses two common approximations used to calculate average fission cross sections over the compound energy range: the disregard of the W II factor and the Porter-Thomas hypothesis made on the double barrier fission width distribution. By reference to a Monte Carlo-type calculation of formal R-matrix fission widths, this work estimates an overall error ranging from 12% to 20% on the fission cross section in the case of the 239 Pu fissile isotope in the energy domain from 1 to 100 keV with very significant impact on the competing capture cross section. This work is part of a recent and very comprehensive formal R-matrix study over the Pu isotope series and is able to give some hints for significant accuracy improvements in the treatment of the fission channel. (authors)

  12. Correlation of errors in the Monte Carlo fission source and the fission matrix fundamental-mode eigenvector

    International Nuclear Information System (INIS)

    Dufek, Jan; Holst, Gustaf

    2016-01-01

    Highlights: • Errors in the fission matrix eigenvector and fission source are correlated. • The error correlations depend on coarseness of the spatial mesh. • The error correlations are negligible when the mesh is very fine. - Abstract: Previous studies raised a question about the level of a possible correlation of errors in the cumulative Monte Carlo fission source and the fundamental-mode eigenvector of the fission matrix. A number of new methods tally the fission matrix during the actual Monte Carlo criticality calculation, and use its fundamental-mode eigenvector for various tasks. The methods assume the fission matrix eigenvector is a better representation of the fission source distribution than the actual Monte Carlo fission source, although the fission matrix and its eigenvectors do contain statistical and other errors. A recent study showed that the eigenvector could be used for an unbiased estimation of errors in the cumulative fission source if the errors in the eigenvector and the cumulative fission source were not correlated. Here we present new numerical study results that answer the question about the level of the possible error correlation. The results may be of importance to all methods that use the fission matrix. New numerical tests show that the error correlation is present at a level which strongly depends on properties of the spatial mesh used for tallying the fission matrix. The error correlation is relatively strong when the mesh is coarse, while the correlation weakens as the mesh gets finer. We suggest that the coarseness of the mesh is measured in terms of the value of the largest element in the tallied fission matrix as that way accounts for the mesh as well as system properties. In our test simulations, we observe only negligible error correlations when the value of the largest element in the fission matrix is about 0.1. Relatively strong error correlations appear when the value of the largest element in the fission matrix raises

  13. Potential for large-scale uses for fission-product Xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-03-01

    Of all fission products in spent, low-enrichment-uranium power-reactor fuels, xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the US, radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state-of-the-art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission-product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much-more-voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays, and luminescence - as well as for medicinal diagnostics and therapeutics - fission-product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly hgiher atomic weight, because of the much higher concentrations of the 134 Xe and 136 Xe isotopes. Therefore, fission-product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  14. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  15. Contribution to the study of prompt gamma-rays from fission

    International Nuclear Information System (INIS)

    Regnier, D.

    2013-01-01

    This PhD thesis has essentially been motivated by the nuclear heating problematic in reactors. The main goal of this work was the production of methods capable of simulating the prompt gamma emission from fission. First of all, several algorithms for the treatment of the nucleus deexcitation were implemented. They have been successfully tested through various calculations (isomeric branching ratio, total radiative width, etc). These methods were then incorporated in the frame of the fission code FIFRELIN. The tool which results from this work, enables the determination of numerous fission observables in the frame of a single consistent model. A sensitivity study of the results to several numerical and nuclear models has been realized. At last, calculation have been lead for the 252 Cf spontaneous fission and the thermal neutron induced fission of 235 U and 239 Pu. The prompt gamma spectra obtained for those three fissioning systems have been determined. The results are in good agreement with available experimental data, including recent measurements published in 2012 and 2013. (author) [fr

  16. Fission properties of actinide nuclei from proton-induced fission at 26.5 and 62.9 MeV incident proton energies

    International Nuclear Information System (INIS)

    Demetriou, P.; Keutgen, Th.; Prieels, R.; El Masri, Y.

    2010-01-01

    Fission properties of proton-induced fission on 232 Th, 237 Np, 238 U, 239 Pu, and 241 Am targets, measured at the Louvain-la-Neuve cyclotron facility at proton energies of 26.5 and 62.9 MeV, are compared with the predictions of the state-of-the-art nuclear reaction code talys. The code couples the multimodal random neck-rupture model with the pre-equilibrium exciton and statistical models to predict fission fragment mass yields, pre- and post-scission neutron multiplicities, and total fission cross sections in a consistent approach. The sensitivity of the calculations to the input parameters of the code and possible improvements are discussed in detail.

  17. FIFRELIN - TRIPOLI-4® coupling for Monte Carlo simulations with a fission model. Application to shielding calculations

    Science.gov (United States)

    Petit, Odile; Jouanne, Cédric; Litaize, Olivier; Serot, Olivier; Chebboubi, Abdelhazize; Pénéliau, Yannick

    2017-09-01

    TRIPOLI-4® Monte Carlo transport code and FIFRELIN fission model have been coupled by means of external files so that neutron transport can take into account fission distributions (multiplicities and spectra) that are not averaged, as is the case when using evaluated nuclear data libraries. Spectral effects on responses in shielding configurations with fission sampling are then expected. In the present paper, the principle of this coupling is detailed and a comparison between TRIPOLI-4® fission distributions at the emission of fission neutrons is presented when using JEFF-3.1.1 evaluated data or FIFRELIN data generated either through a n/g-uncoupled mode or through a n/g-coupled mode. Finally, an application to a modified version of the ASPIS benchmark is performed and the impact of using FIFRELIN data on neutron transport is analyzed. Differences noticed on average reaction rates on the surfaces closest to the fission source are mainly due to the average prompt fission spectrum. Moreover, when working with the same average spectrum, a complementary analysis based on non-average reaction rates still shows significant differences that point out the real impact of using a fission model in neutron transport simulations.

  18. Actinide neutron-induced fission up to 20 MeV

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2001-01-01

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  19. Actinide neutron-induced fission up to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)

    2001-12-15

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  20. Determination of fission gas yields from isotope ratios

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1983-01-01

    This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....

  1. Calculation of cranial nerve complication probability for acoustic neuroma radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Foote, Kelly D.; Friedman, William A.; Bova, Francis J.

    2000-01-01

    Purpose: Estimations of complications from stereotactic radiosurgery usually rely simply on dose-volume or dose-diameter isoeffect curves. Due to the sparse clinical data available, these curves have typically not considered the target location in the brain, target histology, or treatment plan conformality as parameters in the calculation. In this study, a predictive model was generated to estimate the probability of cranial neuropathies as a result of acoustic schwannoma radiosurgery. Methods and Materials: The dose-volume histogram reduction scheme was used to calculate the normal tissue complication probability (NTCP) from brainstem dose-volume histograms. The model's fitting parameters were optimized to provide the best fit to the observed complication data for acoustic neuroma patients treated with stereotactic radiosurgery at the University of Florida. The calculation was then applied to the remainder of the patients in the database. Results: The best fit to our clinical data was obtained using n = 0.04, m = 0.15, and no. alphano. /no. betano. = 2.1 Gy -1 . Although the fitting parameter m is relatively consistent with ranges found in the literature, both the volume parameter, n, and no. alphano. /no. betano. are much smaller than the values quoted in the literature. The fit to our clinical data indicates that brainstem, or possibly a specific portion of the brainstem, is more radiosensitive than the parameters in the literature indicate, and that there is very little volume effect; in other words, irradiation of a small fraction of the brainstem yields NTCPs that are nearly as high as those calculated for entire volume irradiation. These new fitting parameters are specific to acoustic neuroma radiosurgery, and the small volume effect that we observe may be an artifact of the fixed relationship of acoustic tumors to specific regions of the brainstem. Applying the model to our patient database, we calculate an average NTCP of 7.2% for patients who had no

  2. Compilation and evaluation of fission yield nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1991-09-01

    The task of this meeting was to review the progress made since the previous meeting on fission yield evaluation and to define the tasks for an IAEA Co-ordinated Research Programme in detail. Improvements have been noted in measured data, model calculations and the situation of fission yield evaluation. Tabs

  3. Some studies on the fission of uranium with the help of a self-controlled wilson chamber; Quelques etudes sur la fission de l'uranium a l'aide d'une chambre de wilson autocommandee

    Energy Technology Data Exchange (ETDEWEB)

    Laboulaye, H de; Tzara, C; Olkowsky, J [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The authors applied the method of Wilson's chamber self intern control to the survey of the uranium fission with neutrons of the core. This method allowed them: 1) - to establish a distribution of the courses of the fission fragments in argon on a big number of events. 2) - to search for the probability of production of tri-partitions to third fragment of short course. The authors succeed to the conclusion that in relation to ordinary fission, this, probability is lower to (1 {+-} 3)/1000, what permits to doubt the existence of the phenomenon. (author) [French] Les auteurs ont applique la methode de la chambre de Wilson a autocommande interne a l'etude de la fission de l'uranium par neutrons de pile. Cette methode leur a permis: 1) - d'etablir une distribution des parcours des fragments de fission dans l'argon portant sur un grand nombre d'evenements. 2) - de rechercher la probabilite de production de tripartitions a troisieme fragment de court parcours. Les auteurs aboutissent a la conclusion que par rapport a la fission ordinaire, cette probabilite est inferieure a (1 {+-} 3)/1000, ce qui permet de douter de l'existence du phenomene. (auteur)

  4. Fission dynamics of 240Cf* formed in 34,36S induced reactions

    Directory of Open Access Journals (Sweden)

    Jain Deepika

    2015-01-01

    Full Text Available We have studied the entrance channel effects in the decay of Compound nucleus 240Cf* formed in 34S+206Pb and 36S+204Pb reactions by using energy density dependent nuclear proximity potential in the framework of dynamical cluster-decay model (DCM. At different excitation energies, the fragmentation potential and preformation probability of decaying fragments are almost identical for both the entrance channels, which seem to suggest that decay is independent of its formation and entrance channel excitation energy. It is also observed that, with inclusion of deformation effects upto quadrupole within the optimum orientation approach, the fragmentation path governing potential energy surfaces gets modified significantly. Beside this, the fission mass distribution of Cf* isotopes is also investigated. The calculated fission cross-sections using SIII force for both the channels find nice agreement with the available experimental data for deformed choice of fragments, except at higher energies. In addition to this, the comparative analysis with Blocki based nuclear attraction is also worked out. It is observed that Blocki proximity potential accounts well for the CN decay at all energies whereas the use of EDF based nuclear potential suggests the presence of some non-compound nucleus process (such as quasi-fission (qf at higher energies.

  5. Neutron emission during acceleration of 252Cf fission fragments

    International Nuclear Information System (INIS)

    Batenkov, O.I.; Blinov, M.V.; Blinov, A.B.; Smirnov, S.N.

    1991-01-01

    We investigate neutron emission during acceleration of fission fragments in the process of spontaneous fission of 252 Cf. Experimental angular and energy distributions of neutrons are compared with the results of calculations of neutron evaporation during fragment acceleration. (author). 8 refs, 3 figs

  6. Recent progress in the study of fission reaction

    International Nuclear Information System (INIS)

    Blons, J.; Paya, D.; Signarbieux, C.

    1977-01-01

    The different steps of the fission phenomenon are briefly recalled before a more detailed study of the static aspect of the fission barrier crossing. The experiments performed at Saclay during the last few years seem to confirm the calculations according to which a triple humped fission barrier is expected for the thorium isotopes. The last part deals with some dynamical aspects of the process. Recent results are presented which tend to prove that the nuclear viscosity decreases when the excitation energy increases [fr

  7. True ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von

    2014-01-01

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true

  8. Correlation of recent fission product release data

    International Nuclear Information System (INIS)

    Kress, T.S.; Lorenz, R.A.; Nakamura, T.; Osborne, M.F.

    1989-01-01

    For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS but which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab

  9. Fission blanket benchmark experiment on spherical assembly of uranium and PE with PE reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tonghua; Lu, Xinxin; Wang, Mei; Han, Zijie, E-mail: neutron_integral@aliyun.com; Jiang, Li; Wen, Zhongwei; Liu, Rong

    2016-04-15

    Highlights: • The fission rate distribution on two depleted uranium assemblies was measured with plate fission chambers. • We do calculations using MCNP code and ENDF/B-V.0 library. • The overestimation of calculations to the measured fission rates was found. • The observed discrepancy are discussed. - Abstract: New concept of fusion-fission hybrid for energy generation has been proposed. To validate the nuclear performance of fission blanket of hybrid, as part of series of validation experiment, two types of fission blanket assemblies were setup in this work and measurements were made of the reaction rate distribution for uranium fission in the spherical assembly of depleted uranium and polyethylene by Plate Fission Chamber (PFC). There are two PFCs in experiment, one is depleted uranium chamber and the other is enriched uranium chamber. The Monte-Carlo transport code MCNP5 and continuous energy cross sections library ENDF/BV.0 were used for the analysis of fission rate distribution in the two types of assemblies. The calculated results were compared with the experimental ones. The overestimation of fission rate for depleted uranium and enriched uranium were found in the inner boundary of the two assemblies. However, the C/E ratio tends to decrease for the distance from the core slightly and the results for enriched uranium are better than that for depleted uranium.

  10. [Biometric bases: basic concepts of probability calculation].

    Science.gov (United States)

    Dinya, E

    1998-04-26

    The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.

  11. Expected value of finite fission chain lengths of pulse reactors

    International Nuclear Information System (INIS)

    Liu Jianjun; Zhou Zhigao; Zhang Ben'ai

    2007-01-01

    The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability function θ(n, t 0 , t) of a source neutron at time t 0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z; t 0 , t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-II, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis. (authors)

  12. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    International Nuclear Information System (INIS)

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.

    1998-01-01

    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  13. Multiregion, multigroup collision probability method with white boundary condition for light water reactor thermalization calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2005-01-01

    A multiregion, multigroup collision probability method with white boundary condition is developed for thermalization calculations of light water moderated reactors. Hydrogen scatterings are treated by Nelkin's kernel while scatterings from other nuclei are assumed to obey the free-gas scattering kernel. The isotropic return (white) boundary condition is applied directly by using the appropriate collision probabilities. Comparisons with alternate numerical methods show the validity of the present formulation. Comparisons with some experimental results indicate that the present formulation is capable of calculating disadvantage factors which are closer to the experimental results than alternative methods

  14. Evolution of uranium fission-fragment charge yields with neutron number. Strong effect of multi-chance fission on yield asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Schmitt, Christelle [CEA/DSM-CNRS/IN2P3, Grand Accelerateur National d' Ions Lourds, Caen (France)

    2017-01-15

    We use the Brownian shape-motion model, with its recent extensions, which allow modeling of odd-even staggering, to calculate the evolution of fission-fragment charge distributions with neutron number for the compound-system sequence {sup 234}U, {sup 236}U, {sup 238}U, and {sup 240}U. We compare to experimental data where available, for neutron- and electromagnetic-induced fission over a compound-nucleus excitation energy range from about 6 to 20 MeV. A notable result of the study is that the evolution of the location of the peak charge yield from Z = 54 in {sup 234}U towards Z = 52 in heavier isotopes, seen in the experimental data, is present also in the calculated yields. We further show that to describe yields at higher compound-nucleus excitation energies, then, already at 20 MeV, it is necessary to take multi-chance fission into account. (orig.)

  15. Daniel Gogny's vision for a microscopic theory of fission

    Science.gov (United States)

    Younes, W.

    2017-05-01

    Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated.

  16. Nuclear data requirements for fission reactor neutronics calculations

    International Nuclear Information System (INIS)

    Finck, P.

    1998-01-01

    The paper discusses current European nuclear data measurement and evaluation requirements for fission reactor technology applications and problems involved in meeting the requirements. Reference is made to the NEA High Priority Nuclear Data Request List and to the production of the new JEFF-3 library of evaluated nuclear data. There are requirements for both differential (or basic) nuclear data measurements and for different types of integral measurement critical facility measurements and isotopic sample irradiation measurements. Cross-section adjustment procedures are being used to take into account the simpler types of integral measurement, and to define accuracy needs for evaluated nuclear data

  17. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation

    International Nuclear Information System (INIS)

    Begnozzi, L.; Gentile, F.P.; Di Nallo, A.M.; Chiatti, L.; Zicari, C.; Consorti, R.; Benassi, M.

    1994-01-01

    Since volumetric dose distributions are available with 3-dimensional radiotherapy treatment planning they can be used in statistical evaluation of response to radiation. This report presents a method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. The mathematical expression for the calculation of normal tissue complication probability has been derived combining the Lyman model with the histogram reduction method of Kutcher et al. and using the normalized total dose (NTD) instead of the total dose. The fitting of published tolerance data, in case of homogeneous or partial brain irradiation, has been considered. For the same total or partial volume homogeneous irradiation of the brain, curves of normal tissue complication probability have been calculated with fraction size of 1.5 Gy and of 3 Gy instead of 2 Gy, to show the influence of fraction size. The influence of dose distribution inhomogeneity and α/β value has also been simulated: Considering α/β=1.6 Gy or α/β=4.1 Gy for kidney clinical nephritis, the calculated curves of normal tissue complication probability are shown. Combining NTD calculations and histogram reduction techniques, normal tissue complication probability can be estimated taking into account the most relevant contributing factors, including the volume effect. (orig.) [de

  18. Calculation of probabilities of rotational transitions of two-atom molecules in the collision with heavy particles

    International Nuclear Information System (INIS)

    Vargin, A.N.; Ganina, N.A.; Konyukhov, V.K.; Selyakov, V.I.

    1975-01-01

    The problem of calculation of collisional probabilities of rotational transitions (CPRT) in molecule-molecule and molecule-atom interactions in a three-dimensional space has been solved in this paper. A quasiclassical approach was used. The calculation of collisional probabilities of rotational transitions trajectory was carried out in the following way. The particle motion trajectory was calculated by a classical method and the time dependence of the perturbation operator was obtained, its averaging over wave functions of initial and finite states produced CPRT. The classical calculation of the molecule motion trajectory was justified by triviality of the de Broglie wavelength, compared with characteristic atomic distances, and by triviality of a transfered rotational quantum compared with the energy of translational motion of particles. The results of calculation depend on the chosen interaction potential of collisional particles. It follows from the Messy criterion that the region of nonadiabaticity of interaction may be compared with internuclear distances of a molecule. Therefore, for the description of the interaction a short-range potential is required. Analytical expressions were obtained appropriate for practical calculations for one- and two-quantum rotational transitions of diatomic molecules. The CPRT was averaged over the Maxwell distribution over velocities and analytical dependences on a gas temperature were obtained. The results of the numerical calculation of probabilities for the HCl-HCl, HCl-He, CO-CO interactions are presented to illustrate the method

  19. Chemical concentration of a new natural spontaneously fissionable nuclide from solutions with low salt background

    International Nuclear Information System (INIS)

    Korotkin, Yu.S.; Ter-Akop'yan, G.M.; Popeko, A.G.; Drobina, T.P.; Zhuravleva, E.L.

    1982-01-01

    The results of experiments on further concentration of a new natural spontaneously fissionable nuclide, the concentrates of which form the Cheleken geothermal brines have been obtained, are presented. The conclusions are drown about the chemical nature of a new spontaneously fissionable nuclide. It is a chalcophile element which copreipitates with sulphides of copper, lead, arsenic and mercury from weakly acid solutions. The behaviour of the new nuclide in sulphide systems in many respects is similar to the behaviour of polonium, astatine and probably of bismuth. The most probable stable valence of the new nuclide varies from +1 up to +3. The data available on the chemical behaviour of the new nuclide as well as the analysis over contamination by spontaneously fissionable isotopes permit to state that the new natural spontaneously fissionable nuclide does not relate to the known isotopes

  20. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  1. The potential for large scale uses for fission product xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-01-01

    Of all fission products in spent, low enrichment, uranium, power reactor fuels xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the U.S. radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state of the art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much more voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays and luminescence as well as for medicinal diagnostics and therapeutics fission product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly higher atomic weight, because of the much higher concentrations of the 134 X and 136 Xe isotopes. Therefore, fission product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  2. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Derkx, X.

    2010-10-01

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238 U beam and a 12 C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  3. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  4. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  5. Contributions to the theory of fission neutron emission

    International Nuclear Information System (INIS)

    Seeliger, D.; Maerten, H.; Ruben, A.

    1990-03-01

    This report gives a compilation of recent work performed at Technical University, Dresden by D. Seeliger, H. Maerten and A. Ruben on the topic of fission neutron emission. In the first paper calculated fission neutron spectra are presented using the temperature distribution model FINESSE for fissioning actinide nuclei. In the second paper, starting from a general energy balance, Terrell's approach is generalized to describe average fragment energies as a function of incident energy; trends of fragment energy data in the Th-Pu region are well reproduced. In the third contribution, prompt fission neutron spectra and fragment characteristics for spontaneous fission of even Pu-isotopes are presented and discussed in comparison with experimental data using a phenomenological scission point model including temperature dependent shell effects. In the fourth paper, neutron multiplicities and energy spectra as well as average fragment energies for incident energies from threshold to 20 MeV (including multiple-chance fission) for U-238 are compared with traditional data representations. (author). Refs, figs and tabs

  6. Analysis of fission product release from HTGR core during transient temperature excursion

    International Nuclear Information System (INIS)

    Saito, Takao; Yamatoya, Naotoshi; Onuma, Mamoru

    1978-01-01

    The computer program ''FRANC'' was developed to calculate the release activity of fission products from a high-temperature gas cooled reactor (HTGR) core during transient temperature excursions such as a hypothetical loss of forced circulation combined with design basis depressurization. The program utilizes a segmented cylindrical core spatial model with the associated values of the prior fuel irradiation history and temperature conditions. The fission product transport and decay chain behavior is expressed by a set of differential equations. This set of equations describes the entire core inventory of fission products by means of calculated parameters based on the detailed spatial core conditions. The program determines the time-dependent amounts of fission product nuclides escaping from the core into the coolant. Coded in Continuous System Simulation Language (CSSL) with double precision, FRANC showed appropriate results for both short- and long-lived fission product nuclides. The sample calculation conducted by applying the program to a large HTGR indicated that it would take about one hour for noble gases and volatile nuclides to be released to the coolant, and several hours for metalic nuclides. (auth.)

  7. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  8. Calculations of fission rate distribution in the core of WWER-1000 mock-up on the LR-0 reactor using alternative methods and comparison with results of measurements

    International Nuclear Information System (INIS)

    Zaritskiy, S.; Kovalishin, A.; Tsvetkov, T.; Rypar, V.; Svadlenkova, M.

    2011-01-01

    General review of experimental and calculation researches on WWER-440 and WWER-1000 mock-ups on the reactor LR-0 was introduced on the twentieth Symposium AER. The experimental core fission rate distribution was obtained by means of gamma-scanning of the fuel pins - 140La single peak (1596 keV) measurements and wide energy range (approximately 600-900 keV) measurements. Altogether from 260 to 500 fuel pins were scanned in different experiments. The measurements were arranged in the middle of the fuel (the active part of pin). Pin-to-pin calculations of the WWER-1000 mock-up core fission rate distribution were performed with several codes: Monte Carlo codes MCU-REA/2 and MCNPX with different nuclear data libraries, diffusion code RADAR (63 energy groups library) and code SVL based on Surface Harmonics Method (69 energy groups). Calculated data are compared with experimental ones. The obtained results allow developing the benchmark for core calculations methodologies, evaluating and validating source reliability for the out-of-core (inside and outside pressure vessel) neutron transport calculations. (Authors)

  9. Uncertainties on decay heat power due to fission product data uncertainties; Incertitudes sur la puissance residuelle dues aux incertitudes sur les donnees de produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, J

    1998-08-01

    Following a reactor shutdown, after the fission process has completely faded out, a significant quantity of energy known as 'decay heat' continues to be generated in the core. The knowledge with a good precision of the decay heat released in a fuel after reactor shutdown is necessary for: residual heat removal for normal operation or emergency shutdown condition, the design of cooling systems and spent fuel handling. By the summation calculations method, the decay heat is equal to the sum of the energies released by individual fission products. Under taking into account all nuclides that contribute significantly to the total decay heat, the results from summation method are comparable with the measured ones. Without the complete covariance information of nuclear data, the published uncertainty analyses of fission products decay heat summation calculation give underestimated errors through the variance/covariance analysis in consideration of correlation between the basic nuclear data, we calculate in this work the uncertainties on the decay heat associated with the summation calculations. Contribution to the total error of decay heat comes from uncertainties in three terms: fission yields, half-lives and average beta and gamma decay energy. (author)

  10. Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on 235U and 239Pu using the double time-of-flight technique

    International Nuclear Information System (INIS)

    Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.; Chatillon, A.; Granier, T.; Belier, G.; Taieb, J.; Kawano, T.; Talou, P.

    2011-01-01

    Prompt fission neutron spectra from 235 U and 239 Pu were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg 235 U and 90 mg 239 Pu detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced γ-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra.

  11. Measurement of 237Np fission rate ratio relative to 235U fission rate in cores with various thermal neutron spectrum at the Kyoto University Critical Assembly

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Iwasaki, Tomohiko; Fujiwara, Daisuke; Kitada, Takanori; Kuroda, Mitsuo; Kohashi, Akio; Kato, Takeshi; Ikeuchi, Yoshitaka

    2000-01-01

    Integral measurements of 237 Np fission rate ratio relative to 235 U fission rate have been performed at Kyoto University Citrical Assembly. The fission rates have been measured using the back-to back type double fission chamber at five thermal cores with different H/ 235 U ratio so that the neutron spectra of the cores were systematically varied. The measured fission rate ratio per atom was 0.00439 to 0.0298, with a typical uncertainty of 2 to 3%. The measured data were compared with the calculated results using SRAC/TWOTRAN and MVP based on JENDL-3.2, which gave the averaged C/E values of 0.93 and 0.95, respectively. Obtained results of C/E using 237 Np cross sections from JENDL-3/2, ENDF/B-VI.5 and JEF2.2 show that the latter two gave smaller results than JENDL-3.2 by about 4%, which clearly reflects the discrepancy in the evaluated cross section among the libraries. This difference arises from both fast fission and resonance region. Although further improvement is recommended, 237 Np fission cross section in JENDL-3.2 is considered to be superior to those in the other libraries and can be adopted for use in design calculations for minor actinide transmutation system using thermal reactors with prediction precision of 237 Np fission rate with in 10%. (author)

  12. Cold fission description with constant and varying mass asymmetries

    International Nuclear Information System (INIS)

    Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P.; Goncalves, M.; Garcia, F.; Guzman, F.

    1998-01-01

    Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of 234 U cold fission are satisfactorily reproduced. (author)

  13. HERESY, 2-D Few-Group Static Eigenvalues Calculation for Thermal Reactor

    International Nuclear Information System (INIS)

    Finch, D.R.

    1965-01-01

    1 - Description of problem or function: HERESY3 solves the two- dimensional, few-group, static reactor eigenvalue problem using the heterogeneous (source-sink or Feinburg-Galanin) formalism. The solution yields the reactor k-effective and absorption reaction rates for each rod normalized to the most absorptive rod in the thermal level. Epithermal fissions are allowed at each resonance level, and lattice-averaged values of thermal utilization, resonance escape probability, thermal and resonance eta values, and the fast fission factor are calculated. Kernels in the calculation are based on age-diffusion theory. Both finite reactor lattices and infinitely repeating reactor super-cells may be calculated. Rod parameters may be calculated by several internal options, and a direct interface is provided to a HAMMER system (NESC Abstract 277) lattice library tape to obtain cell parameters. Criticality searches are provided on thermal utilization, thermal eta, and axial leakage buckling. 2 - Method of solution: Direct power iteration on matrix form of the heterogeneous critical equation is used. 3 - Restrictions on the complexity of the problem: Maxima of - 50 flux/geometry symmetry positions; 20 physically different assemblies; 9 resonance levels; 5000 rod coordinate positions

  14. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...

  15. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  16. Recoil release of fission products from nuclear fuel

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2 . The calculations presented here are one way of allowing for this, other methods are suggested. (orig.)

  17. Fusion-fission hybrids: environmental aspects and their role in hybrid rationale

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1981-01-01

    The rationale for developing hybrids depends on real or perceived liabilities of relying on pure fission to do the same job. Quite possibly the main constraint on expanded use of fission will be neither lack of fuel nor high costs, but perceived environmental liabilities - radioactive wastes, reactor safety, and links to nuclear weaponry. The environmental characteristics of hybrid systems and pure-fisson systems are compared here in detail. The findings are that significant environmental advantages for hybrids cannot now be demonstrated and may not exist. Therefore, if environmental drawbacks constrain the application of pure fission, hybrids probably also will be thus constrained

  18. On calculating the probability of a set of orthologous sequences

    Directory of Open Access Journals (Sweden)

    Junfeng Liu

    2009-02-01

    Full Text Available Junfeng Liu1,2, Liang Chen3, Hongyu Zhao4, Dirk F Moore1,2, Yong Lin1,2, Weichung Joe Shih1,21Biometrics Division, The Cancer, Institute of New Jersey, New Brunswick, NJ, USA; 2Department of Biostatistics, School of Public Health, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA; 3Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; 4Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USAAbstract: Probabilistic DNA sequence models have been intensively applied to genome research. Within the evolutionary biology framework, this article investigates the feasibility for rigorously estimating the probability of a set of orthologous DNA sequences which evolve from a common progenitor. We propose Monte Carlo integration algorithms to sample the unknown ancestral and/or root sequences a posteriori conditional on a reference sequence and apply pairwise Needleman–Wunsch alignment between the sampled and nonreference species sequences to estimate the probability. We test our algorithms on both simulated and real sequences and compare calculated probabilities from Monte Carlo integration to those induced by single multiple alignment.Keywords: evolution, Jukes–Cantor model, Monte Carlo integration, Needleman–Wunsch alignment, orthologous

  19. A uniform semi-classical approach to the Coulomb fission problem

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1978-01-01

    A semi-classical theory based on the path integral formalism is applied to the description of Coulomb fission. Complex classical trajectories are used to compute the classically forbidden transitions from the target's ground state to fission. In a simple model the energy spectrum and angular distributions of the fragments are calculated for the Coulomb fission in the Xe + U collision. Theoretical predictions are made which may be checked experimentally. (author)

  20. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current US innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery

  1. Monte Carlo code Serpent calculation of the parameters of the stationary nuclear fission wave

    Directory of Open Access Journals (Sweden)

    V. M. Khotyayintsev

    2017-12-01

    Full Text Available n this work, propagation of the stationary nuclear fission wave was simulated for series of fixed power values using Monte Carlo code Serpent. The wave moved in the axial direction in 5 m long cylindrical core of fast reactor with pure 238U raw fuel. Stationary wave mode arises some period later after the wave ignition and lasts sufficiently long to determine kef with high enough accuracy. The velocity characteristic of the reactor was determined as the dependence of the wave velocity on the neutron multiplication factor. As we have recently shown within a one-group diffusion description, the velocity characteristic is two-valued due to the effect of concentration mechanisms, while thermal feedback affects it only quantitatively. The shape and parameters of the velocity characteristic critically affect feasibility of the reactor design since stationary wave solutions of the lower branch are unstable and do not correspond to any real waves in self-regulated reactor, like CANDLE. In this work calculations were performed without taking into account thermal feedback. They confirm that theoretical dependence correctly describes the shape of the velocity characteristic calculated using the results of the Serpent modeling.

  2. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    International Nuclear Information System (INIS)

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; Snyderman, N. J.; Verbeke, J. M.

    2015-01-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutrons in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.

  3. The Radiological and Thermal Characteristics of Fission Waste from a Deep-Burn Fusion-Fission Hybrid (LIFE) and Implications for Repository Performance

    International Nuclear Information System (INIS)

    Shaw, H.F.; Blink, J.; Farmer, J.; Latkowski, J.; Kramer, K.

    2009-01-01

    We are studying the use of a Laser Inertial-confinement Fusion Engine (LIFE) to drive a hybrid fusion-fission system that can generate electrical power and/or burn nuclear waste. The system uses the neutrons from laser driven ICF to produce tritium and to drive nuclear reactions in a subcritical fission blanket. The fusion neutron source obviates the need for a self-sustaining chain reaction in the fission blanket. Either fissile or fertile could be used as fission fuel, thus eliminating the need for isotopic enrichment. The 'driven' system potentially allows very high levels of burnup to be reached, extracting a large fraction of the available energy in the fission fuel without the need for reprocessing. In this note, we discuss the radionuclide inventory of a depleted uranium (DU) fuel burned to greater than 95% FIMA (Fissions per Initial heavy Metal Atom), the implications for thermal management of the resulting waste, and the implications of this waste for meeting the dose standards for releases from a geological repository for high-level waste. The fission waste discussed here would be that produced by a LIFE hybrid with a 500-MW fusion source. The fusion neutrons are multiplied and moderated by a sequence of concentric shells of materials before encountering the fission fuel, and fission in this region is largely due to thermal neutrons. The fission blanket consists of 40 metric tons (MT) of DU, assumed to be in the form of TRISO-like UOC fuel particles embedded in 2-cm-diameter graphite pebbles. (It is recognized that TRISO-based fuel may not reach the high burnup of the fertile fuel considered here, and other fuel options are being investigated. We postulate the existence of a fuel that can reach >95% FIMA so that the waste disposal implications of high burnup can be assessed.) The engine and plant design considered here would receive one load of fission fuel and produce ∼2 GWt of power (fusion + fission) over its 50- to 70-year lifetime. Neutron and

  4. RSAC, Gamma Doses, Inhalation and Ingestion Doses, Fission Products Inventory after Fission Products Release

    International Nuclear Information System (INIS)

    Richardson, L.C.

    1967-01-01

    1 - Description of problem or function: RSAC generates a fission product inventory from a given set of reactor operating conditions and then computes the external gamma dose, the deposition gamma dose, and the inhalation-ingestion dose to critical body organs as a result of exposure to these fission products. Program output includes reactor operating history, fission product inventory, dosages, and ingestion parameters. 2 - Method of solution: The fission product inventory generated by the reactor operating conditions and the inventory remaining at various times after release are computed using the equations of W. Rubinson in Journal of Chemical Physics, Vol. 17, pages 542-547, June 1949. The external gamma dose and the deposition gamma dose are calculated by determining disintegration rates as a function of space and time, then integrating using Hermite's numerical techniques for the spatial dependence. The inhalation-ingestion dose is determined by the type and quantity of activity inhaled and the biological rate of decay following inhalation. These quantities are integrated with respect to time to obtain the dosage. The ingestion dose is related to the inhalation dose by an input constant

  5. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  6. Reaction Rate Benchmark Experiments with Miniature Fission Chambers at the Slovenian TRIGA Mark II Reactor

    Science.gov (United States)

    Štancar, Žiga; Kaiba, Tanja; Snoj, Luka; Barbot, Loïc; Destouches, Christophe; Fourmentel, Damien; Villard, Jean-François AD(; )

    2018-01-01

    A series of fission rate profile measurements with miniature fission chambers, developed by the Commisariat á l'énergie atomique et auxénergies alternatives, were performed at the Jožef Stefan Institute's TRIGA research reactor. Two types of fission chambers with different fissionable coating (235U and 238U) were used to perform axial fission rate profile measurements at various radial positions and several control rod configurations. The experimental campaign was supported by an extensive set of computations, based on a validated Monte Carlo computational model of the TRIGA reactor. The computing effort included neutron transport calculations to support the planning and design of the experiments as well as calculations to aid the evaluation of experimental and computational uncertainties and major biases. The evaluation of uncertainties was performed by employing various types of sensitivity analyses such as experimental parameter perturbation and core reaction rate gradient calculations. It has been found that the experimental uncertainty of the measurements is sufficiently low, i.e. the total relative fission rate uncertainty being approximately 5 %, in order for the experiments to serve as benchmark experiments for validation of fission rate profiles. The effect of the neutron flux redistribution due to the control rod movement was studied by performing measurements and calculations of fission rates and fission chamber responses in different axial and radial positions at different control rod configurations. It was confirmed that the control rod movement affects the position of the maximum in the axial fission rate distribution, as well as the height of the local maxima. The optimal detector position, in which the redistributions would have minimum effect on its signal, was determined.

  7. Calculations of radiation levels during reactor operations for safeguard inspections

    International Nuclear Information System (INIS)

    Sobhy, M.

    1996-01-01

    When an internal core spent fuel storage is used in the shield tank to accommodate a large number of spent fuel baskets, physical calculations are performed to determine the number of these spent fuel elements which can be accommodated and still maintain the gamma activity outside under the permissible limit. The corresponding reactor power level is determined. The radioactivity calculations are performed for this internal storage at different axial levels to avoid the criticality of the reactor core. Transport theory is used in calculations based on collision probability for multi group cell calculations. Diffusion theory is used in three dimensions in the core calculations. The nuclear fuel history is traced and radioactive decay is calculated, since reactor fission products are very sensitive to power level. The radioactivity is calculated with a developed formula based on fuel basket loading integrity. (author)

  8. Heat and Fission Product Transport in a Molten U-Zr-O Pool With Crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2002-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry and the change of pool geometry during the numerical calculation was neglected. Results of the numerical calculation revealed that the peak temperature of the molten pool significantly decreased and most of the volatile fission products were released from the molten pool during the accident. (authors)

  9. Nuclear fission: What have we learned in 50 years?

    International Nuclear Information System (INIS)

    Vandenbosch, R.

    1989-01-01

    Nuclear fission has captured the imagination of chemists and physicists for half a century now. There are several reasons for this. One of course is that it represents the most drastic rearrangement of nuclear matter known, challenged only recently by collisions induced by very heavy ions. Another is that both statistical and dynamical features come into play. Perhaps one of the most compelling reasons is its never-ending capacity to surprise us: asymmetric mass distributions, the sawtooth dependence of neutron yields in fragment mass, spontaneously fissioning isomers and intermediate structure resonances. Finally, and perhaps most importantly, fission is a rich laboratory within which one can explore the delicate interplay between the macroscopic aspects of bulk nuclear matter and the quantal effects of a finite number of Fermions. It will of course be impossible for me to cover all aspects of fission. I have chosen a limited number of topics to cover, with particular topics being chosen either because the have been associated with persistent puzzles in fission or because they have, or hopefully will, tell us something special about how nuclei behave. After a brief historical note, I organize these topics sequentially according to the various stages of the fission process, starting first with the probability for fission to occur and ending with scission phenomena. 56 refs., 11 figs

  10. TRAFIC, a computer program for calculating the release of metallic fission products from an HTGR core

    International Nuclear Information System (INIS)

    Smith, P.D.

    1978-02-01

    A special purpose computer program, TRAFIC, is presented for calculating the release of metallic fission products from an HTGR core. The program is based upon Fick's law of diffusion for radioactive species. One-dimensional transient diffusion calculations are performed for the coated fuel particles and for the structural graphite web. A quasi steady-state calculation is performed for the fuel rod matrix material. The model accounts for nonlinear adsorption behavior in the fuel rod gap and on the coolant hole boundary. The TRAFIC program is designed to operate in a core survey mode; that is, it performs many repetitive calculations for a large number of spatial locations in the core. This is necessary in order to obtain an accurate volume integrated release. For this reason the program has been designed with calculational efficiency as one of its main objectives. A highly efficient numerical method is used in the solution. The method makes use of the Duhamel superposition principle to eliminate interior spatial solutions from consideration. Linear response functions relating the concentrations and mass fluxes on the boundaries of a homogeneous region are derived. Multiple regions are numerically coupled through interface conditions. Algebraic elimination is used to reduce the equations as far as possible. The problem reduces to two nonlinear equations in two unknowns, which are solved using a Newton Raphson technique

  11. Dynamic treatment of fission and fusion in two dimensions

    International Nuclear Information System (INIS)

    Nazareth, R.A.M.S.

    1977-01-01

    The barrier penetrability in two dimensions for nuclear fusion and fission phenomena is studied. The equations of fission static trajectories (minimum potential) in Hofmann formalism are derived and the influence of inertia parameters on the penetrability is verified. For fusion case, a realistic potential for exactly penetrability calculation is proposed. The transverse momentum to the fusion and the unidimensional calculation in classical approximation by choose the trajectory which turn into maximum the penetrability are considered. The exact penetrability is compared with calculation in the classical approximation which takes in account the possibility of appearing discontinuity in the barrier along of fusion pathway. (M.C.K.) [pt

  12. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  13. Simulating fission product transients via the history-based local-parameter methodology

    International Nuclear Information System (INIS)

    Jenkins, D.A.; Rouben, B.; Salvatore, M.

    1993-01-01

    This paper describes the fission-product-calculation capacity of the history-based local-parameter methodology for evaluating lattice properties for use in core-tracking calculations in CANDU reactors. In addition to taking into account the individual past history of each bundles flux/power level, fuel temperature, and coolant density and temperature that the bundle has seen during its stay in the core, the latest refinement of the history-based method provides the capability of fission-product-drivers. It allows the bundle-specific concentrations of the three basic groups of saturating fission products to be calculated in steady state or following a power transient, including long shutdowns. The new capability is illustrated by simulating the startup period following a typical long-shutdown, starting from a snapshot in the Point Lepreau operating history. 9 refs., 7 tabs

  14. Calculation of parameter failure probability of thermodynamic system by response surface and importance sampling method

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Chen Lisheng; Zhang Yangwei

    2012-01-01

    In this paper, the combined method of response surface and importance sampling was applied for calculation of parameter failure probability of the thermodynamic system. The mathematics model was present for the parameter failure of physics process in the thermodynamic system, by which the combination arithmetic model of response surface and importance sampling was established, then the performance degradation model of the components and the simulation process of parameter failure in the physics process of thermodynamic system were also present. The parameter failure probability of the purification water system in nuclear reactor was obtained by the combination method. The results show that the combination method is an effective method for the calculation of the parameter failure probability of the thermodynamic system with high dimensionality and non-linear characteristics, because of the satisfactory precision with less computing time than the direct sampling method and the drawbacks of response surface method. (authors)

  15. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)

    2015-01-15

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  16. The use of collision probabilities in calculations for light water reactors

    International Nuclear Information System (INIS)

    Janse van Rensburg, J.

    1984-01-01

    A procedure is developed to prepare representative two-group neutron data for fuel elements of pressurized water reactors. This procedure is based on the method of collision probabilities and this theory is completely derived and implemented. The computer code, CLUPCO, which is developed for this purpose, is briefly discussed. The accuracy of the method is compared with other established calculational methods by means of experimental results. 30 figs., 29 tabs., 71 refs

  17. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  18. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  19. Dispersion of the Neutron Emission in U{sup 235} Fission

    Science.gov (United States)

    Feynman, R. P.; de Hoffmann, F.; Serber, R.

    1955-01-01

    Equations are developed which allow the calculation of the average number of neutrons per U{sup235} fission from experimental measurements. Experimental methods are described, the results of which give a value of (7.8 + 0.6){sup ½} neutrons per U{sup 235} thermal fission.

  20. Influence of nuclear dissipation on fission dynamics of the excited ...

    Indian Academy of Sciences (India)

    A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear ...

  1. Fission gas retention in irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Gruber, E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5 wt. % Fs) are presented. (The symbol 'Fs' designates fissium, a 'pseudo-element' which, in reality, is an alloy whose composition is representative of fission products that remain in reprocessed fuel). The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations with the measurements shows quantitative agreement in both the magnitude and the axial variation of the retained gas content. (orig.)

  2. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    Energy Technology Data Exchange (ETDEWEB)

    Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.

    2016-12-15

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)

  3. An Evaluation of a Fission Product Inventory for CANDU Fuels

    International Nuclear Information System (INIS)

    Jung, Jong Yeob; Park, Joo Hwan

    2007-01-01

    Fission products are released by two processes when a single channel accident occurs. One is a 'prompt release' and the other is a 'delayed release'. Prompt release assumes that the gap inventory of the fuel elements is released by a fuel element failure at the time of an accident. Delayed release assumes that the inventories within the grain or at the grain boundary are released after a accident due to a diffusion through grains, an oxidation of the fuel and an interaction between the fuel and the Zircaloy sheath. Therefore, the calculation of a fission product inventory and its distribution in a fuel during a normal operating is the starting point for the assessment of a fission product release for single channel accidents. In this report, the fission product inventories and their distributions within s fuel under a normal operating condition are evaluated for three types of CANDU fuels such as the 37 element fuel, CANFLEX-NU and CANFLEX-RU fuel bundles in the 'limiting channel'. To accomplish the above mentioned purposes, the basic power histories for each type of CANDU fuel were produced and the fission product inventories were calculated by using the ELESTRES code

  4. Considerations in modeling fission gas release during normal operation

    International Nuclear Information System (INIS)

    Rumble, E.T.; Lim, E.Y.; Stuart, R.G.

    1977-01-01

    The EPRI LWR fuel rod modeling code evaluation program analyzed seven fuel rods with experimental fission gas release data. In these cases, rod-averged burnups are less than 20,000 MWD/MTM, while the fission gas release fractions range roughly from 2 to 27%. Code results demonstrate the complexities in calculating fission gas release in certain operating regimes. Beyond this work, the behavior of a pre-pressurized PWR rod is simulated to average burnups of 40,000 MWD/MTM using GAPCON-THERMAL-2. Analysis of the sensitivity of fission gas release to power histories and release correlations indicate the strong impact that LMFBR type release correlations induce at high burnup. 15 refs

  5. Asymmetry of mass and charge division in spontaneous fission

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Ganguly, A.K.

    The order-disorder model (ODM) has been used to explain asymmetry of mass and charge division and related phenomena in fission. According to this model the fission process involves two steps consisting of charge polarisation into two impending fragments with beta stable neutron numbers and subsequent distribution of the balance neutrons between the two. The statistics developed on the principle of equal a priori probability of all charge polarisation is used. The shell effects comes into play only in deciding stable neutron number for the charges. The total isotopic yield distribution for a number of fission reactions are presented. These show asymmetry in the actinide region which reduces with increasing mass/charge of the fissioning nuclide and bunching of the higher z peaks. The mass yields obtained therefrom for a number of fission reactions are compared with experimental results. Though there is general agreement with experimental data, the peaks of the distributions are slightly shifted away from the symmetric point and the distributions are somewhat narrower. Charge distribution parameters obtained from these results are also presented. The model predicts preference of asymmetric division for super heavy nuclides. (author)

  6. Fifty years of nuclear fission: Nuclear data and measurements series

    International Nuclear Information System (INIS)

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs

  7. Volatilization and reaction of fission products in flowing steam

    International Nuclear Information System (INIS)

    Johnson, I.; Steidl, D.V.; Johnson, C.E.

    1985-01-01

    The principal risk to the public from nuclear power plants derives from the highly radioactive atoms (fission products) generated as energy is produced in the nuclear fuel. The revolatilization of fission products from reactor system surfaces due to self-heating by radioactive decay has become a complicating factor in the source-term redefinition effort. It has had a major impact on calculations of fission product distributions in accident safety analyses. The focus of this research effort was to investigate the volatilization and transport of fission products and control rod materials in a flowing gaseous steam-hydrogen mixture. Fission product and control rod materials in various combinations were studied including CsI, CsOH, TeO 2 , SrO, Ag, In, Cd and Mn. The vaporization behavior of the deposits were characterized with respect to vaporization rates, chemical species and downstream transport behavior

  8. Specialists' meeting on role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability.

  9. Specialists' meeting on role of fission products in whole core accidents

    International Nuclear Information System (INIS)

    1977-01-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability

  10. Improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1986-01-01

    An improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell has been developed. Expanding the neutron flux and source into a series of even powers of the radius, one' gets a convenient method for integration of the one-energy group integral transport equation. It is shown that it is possible to perform an analytical integration in the x-y plane in one variable and to use the effective Gaussian integration over another one. Choosing a convenient distribution of space points in fuel and moderator the transport matrix calculation and cell reaction rate integration were condensed. On the basis of the proposed method, the computer program DISKRET for the ZUSE-Z 23 K computer has been written. The suitability of the proposed method for the calculation of the thermal-neutron-flux distribution in a reactor cell can be seen from the test results obtained. Compared with the other collision probability methods, the proposed treatment excels with a mathematical simplicity and a faster convergence. (author)

  11. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current U.S. innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery. (orig.)

  12. Fission-fragment mass distribution and estimation of the cluster emission probability in the γ + 232Th and 181Ta reactions

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Adam, J.; Belov, A.G.; Chaloun, P.; Norseev, Yu.V.; Stegajlov, V.I.

    1997-01-01

    Fission-fragment mass distribution has been measured by the cumulative yields of radionuclides detected in the 232 Th(γ,f)-reaction at the Bremsstrahlung endpoint energies of 12 and 24 MeV. The yield upper limits have been estimated for the light nuclei 24 Na, 28 Mg, 38 S etc. at the Th and Ta targets exposure to the 24 MeV Bremsstrahlung. The results are discussed in terms of the multimodal fission phenomena and cluster emission >from a deformed fissioning system or from a compound nucleus

  13. Jet identification based on probability calculations using Bayes' theorem

    International Nuclear Information System (INIS)

    Jacobsson, C.; Joensson, L.; Lindgren, G.; Nyberg-Werther, M.

    1994-11-01

    The problem of identifying jets at LEP and HERA has been studied. Identification using jet energies and fragmentation properties was treated separately in order to investigate the degree of quark-gluon separation that can be achieved by either of these approaches. In the case of the fragmentation-based identification, a neural network was used, and a test of the dependence on the jet production process and the fragmentation model was done. Instead of working with the separation variables directly, these have been used to calculate probabilities of having a specific type of jet, according to Bayes' theorem. This offers a direct interpretation of the performance of the jet identification and provides a simple means of combining the results of the energy- and fragmentation-based identifications. (orig.)

  14. Symmetric and asymmetric ternary fission of hot nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.; Siemssen, R.H.; Wilschut, H.W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.

    1993-01-01

    Emission of α particles accompanying fusion-fission processes in the 40 Ar + 232 Th reaction at E( 40 Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7x10 -20 s) and the motion during the descent to scission almost completely damped

  15. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum

    International Nuclear Information System (INIS)

    Bonneau, L.

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J 2 in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J 2 operator. (A.C.)

  16. Role of energy cost in the yield of cold ternary fission of Cf

    Indian Academy of Sciences (India)

    Abstract. The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by including Wong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield ...

  17. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1982-01-01

    Calculations of anisotropy of angular distribution of oriented 235 U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  18. First-Principle Characterization for Singlet Fission Couplings.

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  19. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  20. Fission fragment angular distribution in the reaction 28Si+176Yb

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Sharma, S.K.; Reddy, A.V.R.; Pujari, P.K.; Dutta, D.; Goswami, A.; Ramachandran, K.

    2009-01-01

    Fission fragment angular distribution has been measured in the reaction 28 Si+ 176 Yb at beam energies of 145 and 155 MeV to investigate the contribution from non-compound nucleus fission. Experiments were carried out at BARC-TIFR Pelletron-LINAC accelerator facility, Mumbai. Experimental angular anisotropies in this reaction were observed to be higher than those calculated using statistical theory, indicating contribution from non-compound nucleus fission in this reaction. (author)

  1. Daniel Gogny's vision for a microscopic theory of fission

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-05-15

    Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated. (orig.)

  2. Shielding calculation of a hot cell for the processing of fission products

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S. de; Silva, J.J.G. da.

    1986-12-01

    A dose rate estimation is made for an operator of a lead wall, fission products processing hot cell, in a distance of 50 cm from the emission source, at Brazilian Institute of Nuclear Engineering (IEN). (L.C.J.A.)

  3. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  4. Calculation of the Reaction Cross Section for Several Actinides

    International Nuclear Information System (INIS)

    Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan

    2005-01-01

    New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  5. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  6. The discovery of uranium fission

    International Nuclear Information System (INIS)

    Brix, P.

    1990-01-01

    Uranium was discovered 200 years ago. Its radioactive character was first demonstrated in 1896 and two years later radium was extracted from uranium minerals. In 1911 studies with alpha rays from radioactive decay led to the unexpected discovery of the atomic nucleus. Exposure of beryllium to alpha rays yielded neutrons, first detected in 1932. Starting in 1934, neutron irradiation of uranium produced radioactive substances erroneously attributed to transuranium elements but with confusing properties. Painstaking experiments by chemists left no doubt on 17 December 1938 that barium was produced by these irradiations: the neutrons had split some uranium nuclei. The physics of the fission process was understood two weeks later; after a few months, neutron multiplication was found to be probable. This review deals with the eminent scientists involved, their successes, errors and disappointments, and the unexpected insights which occurred on the paths and detours of scientific research. It is, therefore, instructive also to discuss how fission was not discovered. The momentous discovery must be considered inevitable; the great tragedy was that Germany started World War II just at the time when the possibility of nuclear chain reactions and bombs became known. The consequences and anxieties that remain after 50 years of nuclear fission demand that mankind act with reason and conscience to maintain peace. (author)

  7. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  8. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  9. Integral transport multiregion geometrical shadowing factor for the approximate collision probability matrix calculation of infinite closely packed lattices

    International Nuclear Information System (INIS)

    Jowzani-Moghaddam, A.

    1981-01-01

    An integral transport method of calculating the geometrical shadowing factor in multiregion annular cells for infinite closely packed lattices in cylindrical geometry is developed. This analytical method has been programmed in the TPGS code. This method is based upon a consideration of the properties of the integral transport method for a nonuniform body, which together with Bonalumi's approximations allows the determination of the approximate multiregion collision probability matrix for infinite closely packed lattices with sufficient accuracy. The multiregion geometrical shadowing factors have been calculated for variations in fuel pin annular segment rings in a geometry of annular cells. These shadowing factors can then be used in the calculation of neutron transport from one annulus to another in an infinite lattice. The result of this new geometrical shadowing and collision probability matrix are compared with the Dancoff-Ginsburg correction and the probability matrix using constant shadowing on Yankee fuel elements in an infinite lattice. In these cases the Dancoff-Ginsburg correction factor and collision probability matrix using constant shadowing are in difference by at most 6.2% and 6%, respectively

  10. Determination of a geometry-dependent parameter and development of a calculation model for describing the fission products transport from spherical fuel elements of graphite moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Weissfloch, R.

    The fuel elements of High-Temperature Reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are present. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can serve as an interim state on the way to a complete theory. (U.S.)

  11. Determination of a geometry-dependent parameter and development of a calculation model for describing the fission products transport from spherical fuel elements of graphite moderated gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weissfloch, R

    1973-07-15

    The fuel elements of high-temperature reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons, the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are presented. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons, a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can be held as an interim state on the way to a complete theory.

  12. Evaporation channel as a tool to study fission dynamics

    Science.gov (United States)

    Di Nitto, A.; Vardaci, E.; La Rana, G.; Nadtochy, P. N.; Prete, G.

    2018-03-01

    The dynamics of the fission process is expected to affect the evaporation residue cross section because of the fission hindrance due to the nuclear viscosity. Systems of intermediate fissility constitute a suitable environment for testing such hypothesis since they are characterized by evaporation residue cross sections comparable or larger than the fission ones. Observables related to emitted charged particles, due to their relatively high emission probability, can be used to put stringent constraints on models describing the excited nucleus decay and to recognize the effects of fission dynamics. In this work model simulations are compared with the experimental data collected via the 32S +100 Mo reaction at Elab = 200 MeV. Consequently we pointed out, exploring an extended set of evaporation channel observables, the limits of the statistical model and the large improvement obtained with a dynamical model. Moreover we stress the importance of using an apparatus covering a large fraction of 4π to extract observables. Finally, we discuss the opportunity to measure more sensitive observables by a new detection device in operation at LNL.

  13. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  14. Use of ELOCA.Mk5 to calculate transient fission product release from CANDU fuel elements

    International Nuclear Information System (INIS)

    Walker, J.R.; de Vaal, J.W.; Arimescu, V.I.; McGrady, T.G.; Wong, C.

    1992-04-01

    A change in fuel element power output, or a change in heat transfer conditions, will result in an immediate change in the temperature distribution in a fuel element. The temperature distribution change will be accompanied by concomitant changes in fuel stress distribution that lead, in turn, to a release of fission products to the fuel-to-sheath gap. It is important to know the inventory of fission products in the fuel-to-sheath gap, because this inventory is a major component of the source term for many postulated reactor accidents. ELOCA.Mk5 is a FORTRAN-77 computer code that has been developed to estimate transient releases to the fuel-to-sheath gap in CANDU reactors. ELOCA.Mk5 is an integration of the FREEDOM fission product release model into the ELOCA fuel element thermo-mechanical code. The integration of FREEDOM into ELOCA allows ELOCA.Mk5 to model the feedback mechanisms between the fission product release and the thermo-mechanical response of the fuel element. This paper describes the physical model, gives details of the ELOCA.Mkt code, and describes the validation of the model. We demonstrate that the model gives good agreement with experimental results for both steady state and transient conditions

  15. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1992-01-01

    Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to 132 Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of 264 Fm

  16. What can be learnt from the channel analysis of the 232Th neutron fission cross section

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Jary, J.; Trochon, J.; Boldeman, J.W.; Musgrove, A.R. de L.

    1979-10-01

    Channel analyses of the neutron fission cross section of 232 Th have been made in two laboratories. The calculated fission cross sections and fission fragment anisotropies are compared with the experimental data. Despite some differences in the methods used, the conclusions on the physical aspects of the fission process are very similar

  17. Nuclear isomerism in fission fragments produced by the spontaneous fission of {sup 252}Cf; Isomerisme nucleaire dans les fragments de fission produits dans la fission spontanee du {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C

    1997-09-01

    This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)

  18. Analysis of fuel centre temperatures and fission gas release data from the IFPE Database

    International Nuclear Information System (INIS)

    Schubert, A.; Lassmann, K.; Van Uffelen, P.; Van de Laar, J.; Elenkov, D.; Asenov, S.; Boneva, S.; Djourelov, N.; Georgieva, M.

    2003-01-01

    The present work has continued the analysis of fuel centre temperatures and fission gas release, calculated with standard options of the TRANSURANUS code. The calculations are compared to experimental data from the International Fuel Performance Experiments (IFPE) database. It is reported an analysis regarding UO 2 fuel for Western-type reactors: Fuel centre temperatures measured in the experiments Contact 1 and Contact 2 (in-pile tests of 2 rods performed at the Siloe reactor in Grenoble, France, closely simulating commercial PWR conditions); Fission gas release data derived from post-irradiation examinations of 9 fuel rods belonging to the High-Burnup Effects Programme, task 3 (HBEP3). The results allow for a comparison of predictions by TRANSURANUS for the mentioned Western-type fuels with those done previously for Russian-type WWER fuel. The comparison has been extended to include fuel centre temperatures as well as fission gas release. The present version of TRANSURANUS includes a model that calculates the production of Helium. The amount of produced Helium is compared to the measured and to the calculated release of the fission gases Xenon and Krypton

  19. Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes

    International Nuclear Information System (INIS)

    Hebert, Alain; Coste, Mireille

    2002-01-01

    As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented

  20. Study of the Fission Decay of Heavy Hypernuclei

    CERN Multimedia

    2002-01-01

    The purpose of the original experiment PS177 was to produce heavy hypernuclei using the annihilation at rest of antiprotons in heavy targets, and to measure their lifetime. \\\\ \\\\ Lambda hyperons can be produced, within a nucleus, in a 2-step process: p@*~@A~K&bar.K~+~X; &bar.KN~@A~@L@p; or in a direct 3-body interaction: @*NN~@A~K|+@L. In the first case, the kinematical conditions favour recoilless lambda with, consequently, a higher probability of attachment to the nucleus. In a heavy nucleus the lambda-hyperon decays weakly according to: @LN~@A~NN, and the &prop.170~MeV energy released induces fission.\\\\ \\\\ The identification of the hypernuclei and their lifetime measurements were performed through the detection of delayed fission using the recoil-distance-method (suitable for lifetimes in the expected region @=10|-|1|0s). The fission fragments were detected by parallel-plate avalanche counters. \\\\ \\\\ The new proposal aims at i) increasing the accuracy of the measured lifetimes, ii) having a str...

  1. Nuclear Dissipation from Fission Time

    International Nuclear Information System (INIS)

    Gontchar, I.; Morjean, M.; Basnary, S.

    2000-01-01

    Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)

  2. Inventories of radioactive fission products in the core of thermal nuclear reactor

    International Nuclear Information System (INIS)

    Marinkovic, N.

    1977-01-01

    As a part of the analysis concerning radiological consequences of a major LWR accident, inventories of the most significant radioactive nuclides and stable fission gases in the core of a PWR type reactor have been calculated. Calculations were performed by the DELFIN code using nuclide data and neutron flux data earlier obtained by the METHUSELAH code. Comparison with simplified calculation method show that it is quite rough for certain nuclides but the accuracy may be sufficient for safety analysis purposes recalling the inaccuracies in the later parts of fission product transport process (author)

  3. The role of fission product in whole core accidents - research in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, L W [Argonne National Laboratory, Division of Reactor Analysis and Safety, Argonne, IL (United States); Jackson, J F [Los Alamos Scientific Laboratory, Q Division - Energy, Los Alamos, NM (United States)

    1977-07-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the programme that there exists a theoretical possibility of a core compaction leading to significant energy release. Early analysis of this problem employed a number of conservative assumptions in attempting to bound the energy release. As reactors have grown in size, the suitability of such bounding calculations has diminished, and research into hypothetical accident analysis has emphasized a more mechanistic approach. In the USA, much effort has been directed towards modeling and computer code development aimed at following the course of an accident from its initiation to its ultimate conclusion with a stable, permanently subcritical, coolable core geometry, along with considerations of post-accident heat removal and radiological consequence assessment. Throughout this effort, the potential role of fission products has been recognized and account taken of the effects of fission products in determining accident progression. It is important to recognize that reactor safety is a very diverse topic, requiring consideration of a number of factors. While the major questions of public risk appear to be related to the hypothetical core disruptive accident (HCDA), it is necessary that the probability of having such an accident be extremely low In order that acceptable public risk be demonstrated. Such a demonstration requires sound engineering design and Implementation, with high standards of reliability, inspectability, maintainability, and operation, along with the requisite quality control and assurance. Tile current approach, typified by that taken by the

  4. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  5. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors

  6. Effectiveness in detecting fission fragments with ionization chambers

    International Nuclear Information System (INIS)

    Manrique Garcia, J.; Monne, G.

    1991-01-01

    Detection of fission fragments is important in nuclear measurements. When a high detection accuracy is required it is necessary to take in account the detection losses due to the absorption of fragments in the fissionable material. The losses corrections might change the final results in 2-3%. The traditional expression used in the calculation of the detection efficiency does not consider neither the density variation of the fissionable substance with its width, because it depends on the target material. That's why actually in many labs it is being searched new methods that allow to find the efficiency for each target. In this work a new method for determination of absorption efficiency is presented. The obtained results are analyzed

  7. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  8. Dynamics of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1979-01-01

    Large-amplitude collective motion in fission and heavy-ion reactions is studied by solving classical equations of motion for the time evolution of the nuclear shape. In the nuclear potential energy of deformation, the generalized surface energy was calculated by means of a double volume integral of a Yukawa-plus-exponential function, which was obtained by requiring that two semi-infinite slabs of constant-density nuclear matter have minimum energy at zero separation. The collective kinetic energy is calculated for nuclear flow that is a superposition of incompressible, nearly irrotational collective-shape motion and rigid-body rotation. Nuclear dissipation is included by means of the Rayleigh dissipation function, which depends upon the physical mechanism that converts collective energy into internal energy. For both ordinary two-body viscosity and a combined wall and window one-body dissipation, fission-fragment kinetic energies are calculated for the fission of nuclei throughout the periodic table and compare with experimental results. Finally, the one-body dynamics of nucleons inside a cylinder colliding with a moving piston is explicitly studied by solving exactly the collisionless Boltzmann equation for the distribution function. By examining the relative phases of the pressure at the piston and the piston's velocity, a dissipative force and an elastic restoring force can be separately identified. 9 references

  9. Calculating Absolute Transition Probabilities for Deformed Nuclei in the Rare-Earth Region

    Science.gov (United States)

    Stratman, Anne; Casarella, Clark; Aprahamian, Ani

    2017-09-01

    Absolute transition probabilities are the cornerstone of understanding nuclear structure physics in comparison to nuclear models. We have developed a code to calculate absolute transition probabilities from measured lifetimes, using a Python script and a Mathematica notebook. Both of these methods take pertinent quantities such as the lifetime of a given state, the energy and intensity of the emitted gamma ray, and the multipolarities of the transitions to calculate the appropriate B(E1), B(E2), B(M1) or in general, any B(σλ) values. The program allows for the inclusion of mixing ratios of different multipolarities and the electron conversion of gamma-rays to correct for their intensities, and yields results in absolute units or results normalized to Weisskopf units. The code has been tested against available data in a wide range of nuclei from the rare earth region (28 in total), including 146-154Sm, 154-160Gd, 158-164Dy, 162-170Er, 168-176Yb, and 174-182Hf. It will be available from the Notre Dame Nuclear Science Laboratory webpage for use by the community. This work was supported by the University of Notre Dame College of Science, and by the National Science Foundation, under Contract PHY-1419765.

  10. Calculation of burnup and power dependence on fission gas released from PWR type reactor fuel element

    International Nuclear Information System (INIS)

    Edy-Sulistyono

    1996-01-01

    Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment

  11. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    International Nuclear Information System (INIS)

    Berkelbach, Timothy C.; Reichman, David R.; Hybertsen, Mark S.

    2014-01-01

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems

  12. Fission product release from fuel of water-cooled reactors

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.; Klisinska, M.

    1997-01-01

    The report contains a review of theoretical models and experimental works of gaseous and volatile fission products from uranium dioxide fuel. The experimental results of activity release at low burnup and the model of fission gas behaviour at initial stage of fuel operational cycle are presented. Empirical models as well as measured results of transient fission products release rate in the temperature up to UO 2 melting point, with consideration of their chemical reactions with fuel and cladding, are collected. The theoretical and experimental data were used for calculations of gaseous and volatile fission products release, especially iodine and caesium, to the gas volume of WWER-1000 and WWER-440 type fuel rods at low and high burnup and their further release from defected rods at the assumed loss-of-coolant accident. (author)

  13. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  14. Design of In-vessel neutron monitor using micro fission chambers for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Kasai, Satoshi

    2001-10-01

    A neutron monitor using micro fission chambers to be installed inside the vacuum vessel has been designed for compact ITER (ITER-FEAT). We investigated the responses of the micro fission chambers to find the suitable position of micro fission chambers by a neutron Monte Carlo calculation using MCNP version 4b code. It was found that the averaged output of the micro fission chambers behind blankets at upper outboard and lower outboard is insensitive to the changes in the plasma position and the neutron source profile. A set of 235 U micro fission chamber and ''blank'' detector which is a fissile material free detector to identify noise issues such as from γ-rays are installed behind blankets. Employing both pulse counting mode and Campbelling mode in the electronics, the ITER requirement of 10 7 dynamic range with 1 ms temporal resolution can be accomplished. The in-situ calibration has been simulated by MCNP calculation, where a point source of 14 MeV neutrons is moving on the plasma axis. It was found that the direct calibration is possible by using a neutron generator with an intensity of 10 11 n/s. The micro fission chamber system can meet the required 10% accuracy for a fusion power monitor. (author)

  15. Application of probability generating function to the essentials of nondestructive nuclear materials assay system using neutron correlation

    International Nuclear Information System (INIS)

    Hosoma, Takashi

    2017-01-01

    In the previous research (JAEA-Research 2015-009), essentials of neutron multiplicity counting mathematics were reconsidered where experiences obtained at the Plutonium Conversion Development Facility were taken into, and formulae of multiplicity distribution were algebraically derived up to septuplet using a probability generating function to make a strategic move in the future. Its principle was reported by K. Böhnel in 1985, but such a high-order expansion was the first case due to its increasing complexity. In this research, characteristics of the high-order correlation were investigated. It was found that higher-order correlation increases rapidly in response to the increase of leakage multiplication, crosses and leaves lower-order correlations behind, when leakage multiplication is > 1.3 that depends on detector efficiency and counter setting. In addition, fission rates and doubles count rates by fast neutron and by thermal neutron in their coexisting system were algebraically derived using a probability generating function again. Its principle was reported by I. Pázsit and L. Pál in 2012, but such a physical interpretation, i.e. associating their stochastic variables with fission rate, doubles count rate and leakage multiplication, is the first case. From Rossi-alpha combined distribution and measured ratio of each area obtained by Differential Die-Away Self-Interrogation (DDSI) and conventional assay data, it is possible to estimate: the number of induced fissions per unit time by fast neutron and by thermal neutron; the number of induced fissions (< 1) by one source neutron; and individual doubles count rates. During the research, a hypothesis introduced in their report was proved to be true. Provisional calculations were done for UO_2 of 1∼10 kgU containing ∼ 0.009 wt% "2"4"4Cm. (author)

  16. Application of a Bayesian/generalised least-squares method to generate correlations between independent neutron fission yield data

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and evaluations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. (authors)

  17. Fission barriers of two odd-neutron heavy nuclei

    International Nuclear Information System (INIS)

    Koh, Meng-Hock; Bonneau, L.; Nhan Hao, T. V.; Duc, Dao Duy; Quentin, P.

    2015-01-01

    The fission barriers of two odd-neutron heavy odd nuclei,namely the 235 U and 239 Pu isotopes have been calculated within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. A full account of the genuine time-reversal symmetry breaking due to the presence of an unpaired nucleon has been incorporated at the mean field level. The SIII and SkM* parametrizations of the Skyrme interaction have been retained as well as for a part a newer parametrization, SLy5*. The seniority force parameters have been fitted to reproduce experimental odd-even mass differences in the actinide region. To assess the relevance of our calculated fission barrier distribution (as a function of the quantum numbers), we have studied the quality of our results with respect to the spectroscopy of band heads (for configurations deemed to be a pure single particle character) in the ground and fission isomeric states. Fission barriers of the considered odd nuclei have been compared with what is obtained for their even-even neighbouring isotopes (namely 234 U and 236 U, 238 Pu and 240 Pu respectively) to determine the so-called specialization energies. Various corrections and associated uncertainties have been discussed in order to compare our results with available data

  18. Theoretical analysis of knock-out release of fission products from nuclear fuels

    International Nuclear Information System (INIS)

    Yamagishi, S.

    1975-01-01

    The knock-out release of fission products is studied theoretically. The general equations of knock-out release are derived, assuming that a fission fragment passing through the surface of nuclear fuels knocks out a local region of the surface with an effective thickness and an effective cross-sectional area. Using these equations, the knock-out release of fission gases is calculated for various cases. The conditions under which the knock-out coefficients (the average number of uranium atoms knocked out by one fission fragment) is obtainable are clarified by experiments on the knock-out release of fission gases. A method of determining the effective thickness and the effective cross-sectional area of a knock-out region is proposed. (Auth.)

  19. Time-dependent earthquake probability calculations for southern Kanto after the 2011 M9.0 Tohoku earthquake

    Science.gov (United States)

    Nanjo, K. Z.; Sakai, S.; Kato, A.; Tsuruoka, H.; Hirata, N.

    2013-05-01

    Seismicity in southern Kanto activated with the 2011 March 11 Tohoku earthquake of magnitude M9.0, but does this cause a significant difference in the probability of more earthquakes at the present or in the To? future answer this question, we examine the effect of a change in the seismicity rate on the probability of earthquakes. Our data set is from the Japan Meteorological Agency earthquake catalogue, downloaded on 2012 May 30. Our approach is based on time-dependent earthquake probabilistic calculations, often used for aftershock hazard assessment, and are based on two statistical laws: the Gutenberg-Richter (GR) frequency-magnitude law and the Omori-Utsu (OU) aftershock-decay law. We first confirm that the seismicity following a quake of M4 or larger is well modelled by the GR law with b ˜ 1. Then, there is good agreement with the OU law with p ˜ 0.5, which indicates that the slow decay was notably significant. Based on these results, we then calculate the most probable estimates of future M6-7-class events for various periods, all with a starting date of 2012 May 30. The estimates are higher than pre-quake levels if we consider a period of 3-yr duration or shorter. However, for statistics-based forecasting such as this, errors that arise from parameter estimation must be considered. Taking into account the contribution of these errors to the probability calculations, we conclude that any increase in the probability of earthquakes is insignificant. Although we try to avoid overstating the change in probability, our observations combined with results from previous studies support the likelihood that afterslip (fault creep) in southern Kanto will slowly relax a stress step caused by the Tohoku earthquake. This afterslip in turn reminds us of the potential for stress redistribution to the surrounding regions. We note the importance of varying hazards not only in time but also in space to improve the probabilistic seismic hazard assessment for southern Kanto.

  20. Updated comparison of economics of fusion reactors with advanced fission reactors

    International Nuclear Information System (INIS)

    Delene, J.G.

    1990-01-01

    The projected cost of electricity (COE) for fusion is compared with that from current and advanced nuclear fission and coal-fired plants. Fusion cost models were adjusted for consistency with advanced fission plants and the calculational methodology and cost factors follow guidelines recommended for cost comparisons of advanced fission reactors. The results show COEs of about 59--74 mills/kWh for the fusion designs considered. In comparison, COEs for future fission reactors are estimated to be in the 43--54 mills/kWh range with coal-fired plant COEs of about 53--69 mills/kWh ($2--3/GJ coal). The principal cost driver for the fusion plants relative to fission plants is the fusion island cost. Although the estimated COEs for fusion are greater than those for fission or coal, the costs are not so high as to preclude fusion's competitiveness as a safe and environmentally sound alternative

  1. Calculation of ruin probabilities for a dense class of heavy tailed distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis; Samorodnitsky, Gennady

    2015-01-01

    In this paper, we propose a class of infinite-dimensional phase-type distributions with finitely many parameters as models for heavy tailed distributions. The class of finite-dimensional phase-type distributions is dense in the class of distributions on the positive reals and may hence approximate...... any such distribution. We prove that formulas from renewal theory, and with a particular attention to ruin probabilities, which are true for common phase-type distributions also hold true for the infinite-dimensional case. We provide algorithms for calculating functionals of interest...... such as the renewal density and the ruin probability. It might be of interest to approximate a given heavy tailed distribution of some other type by a distribution from the class of infinite-dimensional phase-type distributions and to this end we provide a calibration procedure which works for the approximation...

  2. Fusability and fissionability in 86Kr induced reactions near and below the fusion barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.; Hessberger, F.P.; Hildenbrand, K.D.; Hofmann, S.; Muenzenberg, G.; Schmidt, K.H.; Schneider, W.F.W.; Suemmerer, K.; Wirth, G.; Kratz, J.V.; Schlitt, K.; Sahm, C.C.

    1985-04-01

    Evaporation-residue excitation functions for the reactions 86 Kr + sup(70,76)Ge, sup(92,100)Mo, sup(99,102,104)Ru have been measured using activation methods and the velocity filter SHIP. The data span the region from well below the fusion barrier up to and beyond the energy where limitation by fission competition takes place. The data are shown to be compatible with the concept of complete fusion followed by the statistical decay of the equilibrated compound nucleus. Information on both the fusion probability at and below the fusion threshold and the fissionability of the compound nuclei formed is extracted. The model dependence of the extracted fission barriers is discussed in detail. In analogy to studies involving lighter projectiles, strong correlations between the low-energy nuclear-structure properties of the nuclei and the subbarrier fusion probability are found. A relative shift of the fusion barrier to higher energies, that increases with the number of valence neutrons in the target nuclei, is observed. (orig.)

  3. Calculation of the tunneling time using the extended probability of the quantum histories approach

    International Nuclear Information System (INIS)

    Rewrujirek, Jiravatt; Hutem, Artit; Boonchui, Sutee

    2014-01-01

    The dwell time of quantum tunneling has been derived by Steinberg (1995) [7] as a function of the relation between transmission and reflection times τ t and τ r , weighted by the transmissivity and the reflectivity. In this paper, we reexamine the dwell time using the extended probability approach. The dwell time is calculated as the weighted average of three mutually exclusive events. We consider also the scattering process due to a resonance potential in the long-time limit. The results show that the dwell time can be expressed as the weighted sum of transmission, reflection and internal probabilities.

  4. Induced fission of nuclei: dynamical chaos and lifetime of compound nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Krivoshej, I V

    1987-01-01

    A semi-phenomenological theory is proposed to describe the induced fission of heavy nuclei at low and intermediate excitation energies. The theory is based on the concept of the dynamical chaos, arising because of a negative curvature of the n-dimensional potential energy surface (PES). The nuclear fission is treated as a diffusion of the representing point across a vicinity of the saddle point in PES. The diffusion coefficient is calculated for various metrics in PES as an explicit function of the two-dimensional curvatures at the saddle point of PES. The present theory suggests an estimate for the fission time, tau/sub f/approx.10/sup -14/ s. Coefficients of nuclear friction and viscosity are also calculated in general, and the resulting numerical estimates are in agreement with the experimental data.

  5. Calculation of the Incremental Conditional Core Damage Probability on the Extension of Allowed Outage Time

    International Nuclear Information System (INIS)

    Kang, Dae Il; Han, Sang Hoon

    2006-01-01

    RG 1.177 requires that the conditional risk (incremental conditional core damage probability and incremental conditional large early release probability: ICCDP and ICLERP), given that a specific component is out of service (OOS), be quantified for a permanent change of the allowed outage time (AOT) of a safety system. An AOT is the length of time that a particular component or system is permitted to be OOS while the plant is operating. The ICCDP is defined as: ICCDP = [(conditional CDF with the subject equipment OOS)- (baseline CDF with nominal expected equipment unavailabilities)] [duration of the single AOT under consideration]. Any event enabling the component OOS can initiate the time clock for the limiting condition of operation for a nuclear power plant. Thus, the largest ICCDP among the ICCDPs estimated from any occurrence of the basic events for the component fault tree should be selected for determining whether the AOT can be extended or not. If the component is under a preventive maintenance, the conditional risk can be straightforwardly calculated without changing the CCF probability. The main concern is the estimations of the CCF probability because there are the possibilities of the failures of other similar components due to the same root causes. The quantifications of the risk, given that a subject equipment is in a failed state, are performed by setting the identified event of subject equipment to TRUE. The CCF probabilities are also changed according to the identified failure cause. In the previous studies, however, the ICCDP was quantified with the consideration of the possibility of a simultaneous occurrence of two CCF events. Based on the above, we derived the formulas of the CCF probabilities for the cases where a specific component is in a failed state and we presented sample calculation results of the ICCDP for the low pressure safety injection system (LPSIS) of Ulchin Unit 3

  6. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    Science.gov (United States)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  7. Obsidian dating by fission track method

    International Nuclear Information System (INIS)

    Araya, A.M.O.

    1990-12-01

    The fission track method was employed to obtain the age of twelve obsidian sample from Ecuador. By using the plateau-age correction method, we obtained the true age of each sample and were able to identify four groups of ages in the studied area. Thereafter we studied the fading of fission tracks in two obsidian samples with different origins: Yanaurcu, Ecuador and Monte Arci, Italy. We constructed Arrhenius plots and calculated activation energies for both samples. The results from thermal annealing experiments were compared with theoretical curves obtained by integrating an equation proposed by Shukolyukov et al (1965). (author). 43 refs, 20 figs, 10 tabs

  8. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  9. On angular distribution of nucleus fission fragments by fast neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification

  10. Transport of fission products in matrix and graphite

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1983-06-01

    In the past years new experimental methods were applied to or developed for the investigation of fission product transport in graphitic materials and to characterization of the materials. Models for fission product transport and computer codes for the calculation of core release rates were improved. Many data became available from analysis of concentration profiles in HTR-fuel elements. New work on the effect on diffusion of graphite corrosion, fast neutron flux and fluence, heat treatment, chemical interactions and helium pressure was reported on recently or was in progress in several laboratories. It seemed to be the right time to discuss the status of transport of metallic fission products in general, and in particular the relationship between structural and transport properties. Following a suggestion a Colloquium was organized at the HMI Berlin. Interdisciplinary discussions were stimulated by only inviting a limited number of participants who work in different fields of graphite and fission product transport research. (orig./RW)

  11. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry, E-mail: zzhong@anl.gov, E-mail: alby@anl.gov, E-mail: gohar@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, IL (United States)

    2011-07-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β{sub eff} has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β{sub eff} was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β{sub eff}, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have

  12. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    International Nuclear Information System (INIS)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β_e_f_f has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β_e_f_f was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β_e_f_f, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have been

  13. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  14. Fusion and fission of atomic clusters: recent advances

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....

  15. SSNTD study of the probable influence of alpha activity on the mass distribution of sup 2 sup 5 sup 2 Cf fission fragments

    CERN Document Server

    Paul, D; Sastri, R C; Ghose, D

    1999-01-01

    The SSNTD has come a long way in its application for the study of nuclear phenomena. Spontaneous fission of transuranic elements is one such phenomena wherein use of SSNTD offers easy registration of the signature of the fission fragments. The object of the present study is to explore whether any one of the track parameters such as the diameter can be used to estimate the atomic mass ratios of the spontaneous fission fragments. The spontaneous fission data from sup 2 sup 5 sup 2 Cf recorded almost at the end of one and four half-life periods for alpha decay are analysed, taking a plot of the number of tracks versus the track diameter. From these plots it is seen that initially, when significant alpha activity of sup 2 sup 5 sup 2 Cf persists, the fission fragments appear to cluster into two predominant groups as indicated by two peaks. The ratio of the diameters at these peak positions appear to be related to the ratio of average mass numbers of the light and heavy groups of fission fragments. However, absenc...

  16. Influence of fusion dynamics on fission observables: A multidimensional analysis

    Science.gov (United States)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  17. Calculation of individual and population doses on Danish territory resulting from hypothetical core-melt accidents at the Barsebaeck reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Individual and population doses within Danish territory are calculated from hypothetical, severe core-melt accidents at the Swedish nuclear plant at Barsebaeck. The fission product inventory of the Barsebaeck reactor is calculated. The release fractions for the accidents are taken from WASH-1400. Based on parametric studies, doses are calculated for very unfavourable, but not incredible weather conditions. The probability of such conditions in combination with wind direction towards Danish territory is estimated. Doses to bone marrow, lungs, GI-tract and thyroid are calculated based on dose models developed at Risoe. These doses are found to be consistent with doses calculated with the models used in WASH-1400. (author)

  18. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  19. Fission delay and GDR γ-ray from very heavy system

    International Nuclear Information System (INIS)

    Shen, W.Q.; Wang, J.S.; Ye, W.; Cai, Y.H.; Ma, Y.G.; Feng, J.; Fang, D.Q.; Cai, X.Z.

    1999-01-01

    The study of the fission delay in reaction of 84 Kr+ 27 Al at 10.6 Mev/u and the systematics of fission delay are described. Authors also discussed the possibility to study the GDR γ rays emitted from the super-heavy compound system on the basis of the strong increasing of the GDR γ rays duo to the fission delay. The calculation results of the GDR γ rays from the super-heavy compound system via microscopic semi-classical Vlasov equation and the experimental data analysis for searching the super-heavy compound system via GDR γ were given

  20. Characterization of the fusion-fission process in light nuclear systems

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1992-01-01

    Fusion cross sections measurements of highly damped processes and elastic scattering were performed for the 16, 17, 18 O + 10, 11 B and 19 F + 9 Be, in the incident energy interval 22 ≤ E LAB ≤ 64 MeV. Evidences are presented that highly damped binary processes observed in these systems are originated from a fusion-fission process rather than a dinuclear ''orbiting'' mechanism. The relative importance of the fusion-fission process in these very light systems is demonstrated both by the experimental results, which indicate a statistically balanced compound nucleus fission process occurrence, and theoretical calculations. (L.C.J.A.)

  1. A model for the release of low-volatility fission products in oxidizing conditions

    International Nuclear Information System (INIS)

    Cox, D.S.; Hunt, C.E.L.; Liu, Z.; Keller, N.A.; Barrand, R.D.; O'Connor, R.F.

    1991-07-01

    A thermodynamic and kinetic model has been developed for calculating low-volatility fission-product releases from UO 2 at high temperatures in oxidizing conditions. Volatilization of the UO 2 matrix is assumed to be the rate controlling process. Oxidation kinetics of the UO 2 are modelled by either interfacial rate control, gas phase oxidant transport control, or solid-state diffusion of oxygen. The vapour pressure of UO 3 in equilibrium with the oxidizing fuel is calculated from thermodynamic data, and volatilization rates are determined using a model for forced convective mass transport. Low-volatility fission-product releases are calculated from the volume of vapourized fuel. Model calculations are conservative compared to experimental data for Zr, La, Ce and Nb fission-product releases from irradiated UO 2 exposed to air at 1973-2350 K. The implications of this conservatism are discussed in terms of possible rate control by processes other than convective mass transport of UO 3 . Coefficients for effective surface area (based on experimental data) and for heterogeneous rate controlling reaction kinetics are introduced to facilitate agreement between calculations and the experimental data.

  2. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  3. Utilization of transmission probabilities in the calculation of unit-cell by the interface-current method

    International Nuclear Information System (INIS)

    Queiroz Bogado Leite, S. de.

    1989-10-01

    A widely used but otherwise physically incorrect assumption in unit-cell calculations by the method of interface currents in cylindrical or spherical geometries, is that of that of isotropic fluxes at the surfaces of the cell annular regions, when computing transmission probabilities. In this work, new interface-current relations are developed without making use of this assumption and the effects on calculated integral parameters are shown for an idealized unit-cell example. (author) [pt

  4. Using the probability method for multigroup calculations of reactor cells in a thermal energy range

    International Nuclear Information System (INIS)

    Rubin, I.E.; Pustoshilova, V.S.

    1984-01-01

    The possibility of using the transmission probability method with performance inerpolation for determining spatial-energy neutron flux distribution in cells of thermal heterogeneous reactors is considered. The results of multigroup calculations of several uranium-water plane and cylindrical cells with different fuel enrichment in a thermal energy range are given. A high accuracy of results is obtained with low computer time consumption. The use of the transmission probability method is particularly reasonable in algorithms of the programmes compiled computer with significant reserve of internal memory

  5. [CALCULATION OF THE PROBABILITY OF METALS INPUT INTO AN ORGANISM WITH DRINKING POTABLE WATERS].

    Science.gov (United States)

    Tunakova, Yu A; Fayzullin, R I; Valiev, V S

    2015-01-01

    The work was performed in framework of the State program for the improvement of the competitiveness of Kazan (Volga) Federal University among the world's leading research and education centers and subsidies unveiled to Kazan Federal University to perform public tasks in the field of scientific research. In the current methodological recommendations "Guide for assessing the risk to public health under the influence of chemicals that pollute the environment," P 2.1.10.1920-04 there is regulated the determination of quantitative and/or qualitative characteristics of the harmful effects to human health from exposure to environmental factors. We proposed to complement the methodological approaches presented in P 2.1.10.1920-04, with the estimation of the probability of pollutants input in the body with drinking water which is the greater, the higher the order of the excess of the actual concentrations of the substances in comparison with background concentrations. In the paper there is proposed a method of calculation of the probability of exceeding the actual concentrations of metal cations above the background in samples of drinking water consumed by the population, which were selected at the end points of consumption in houses and apartments, to accommodate the passage of secondary pollution ofwater pipelines and distributing paths. Research was performed on the example of Kazan, divided into zones. The calculation of probabilities was made with the use of Bayes' theorem.

  6. The importance of the giant resonances in hadron and muon induced fission

    International Nuclear Information System (INIS)

    Hartfiel, J.

    1985-01-01

    In the first part of the thesis the fission probability of 238 U by means of the reaction 238 U(α,α'f) is studied at an incident energy of 480 MeV and a scattering angle of 3.4 0 . In the measured spectrum of the inelastically scattered α particles a strong resonance is found in the excitation energy range from 8 to 13 MeV. The center of mass of the resonance lies at 11 MeV. Its width extends to 4.5 MeV. In the second part of the thesis the muon induced fission of 235 U, 238 U, 237 Np, 242 Pu, and 244 Pu is studied. Thereby both fission fragments are detected in coincidence by two surface barrier detectors. By this it is possible for the first time to measure the mass and kinetic energy distribution of the fission fragments. (orig./HSI) [de

  7. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Accatino, M.R.; Alford, O.J.; Bernstein, A.; Descalle, M.; Gosnell, T.B.; Hall, J.M.; Loshak, A.; Manatt, D.R.; McDowell, M.R.; Moore, T.L.; Petersen, D.C.; Pohl, B.A.; Pruet, J.A.; Prussin, S.G.

    2004-01-01

    Full text: A concept for detecting the presence of special nuclear material ( 235 U or 239 Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  8. SACHET, Dynamic Fission Products Inventory in PWR Multiple Compartment System

    International Nuclear Information System (INIS)

    Kodaira, Hideki

    1990-01-01

    1 - Description of program or function: SACHET evaluates the dynamic fission product inventories in the multiple compartment system of pressurized water reactor (PWR) plants. 2 - Method of solution: SACHET utilizes a matrix of fission product core inventory which is previously calculated by the ORIGEN code. 3 - Restrictions on the complexity of the problem: Liquid wastes such as chemical waste and detergent waste are not included

  9. Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes

    Science.gov (United States)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2018-03-01

    The charge (mass) distributions of fission fragments resulting from low- and high-energy fission of the even-even nuclei 254 -260 ,264Fm , 258 -264No , and 262 -266Rf are studied with the statistical scission-point model. The calculated results are compared with the available experimental data. In contrast to the experimental data, the calculated mass distribution for 258Fm (s.f.) is strikingly similar to the experimental one for 257Fm (s.f.). The transformation of the shape of charge distribution with increasing isospin and excitation energy occurs gradually and in a similar fashion like that of the mass distribution, but slower. For 254Fm(i.f.), 257Fm(nt h,f), and 260Fm (s.f.), the unexpected difference (symmetric or asymmetric) between the shapes of charge and mass distributions is predicted for the first time. At some critical excitation energy, the saturation of the symmetric component of charge (mass) yields is demonstrated.

  10. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  11. Measurements of fission product yield in the neutron-induced fission of {sup 238}U with average energies of 9.35 MeV and 12.52 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, Sadhana; Krishnani, Pritam Das; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok [Bhabha Atomic Research Centre, Mumbai (India); Shivashankar, Byrapura Siddaramaiah [Manipal University, Manipal (India); Mulik, Vikas Kaluram [University of Pune, Pune (India)

    2014-07-15

    The yields of various fission products in the neutron-induced fission of {sup 238}U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the {sup 7}Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  12. Characteristics of prompt fission gamma-ray emission - Experimental results and predictions

    International Nuclear Information System (INIS)

    Oberstedt, Andreas; Billnert, Robert; Oberstedt, Stephan

    2014-01-01

    Systematics from 2001, describing prompt fission gamma-ray spectra (PFGS) characteristics as function of mass and atomic number of the fissioning system, has been revisited and parameters have been revised based on recent experimental results. Although originally expressed for spontaneous and thermal neutron-induced fission, validity for fast neutrons was assumed and applied to predict PFGS characteristics for the reaction n + 238 U up to incident neutron energies of E n = 20 MeV. The results from this work are in good agreement with corresponding results from both model calculations and experiments. (authors)

  13. Study of fission cross sections induced by nucleons and pions using the cascade-exciton model CEM95

    International Nuclear Information System (INIS)

    Yasin, Z.; Shahzad, M. I.

    2007-01-01

    Nucleon and pion-induced fission cross sections at intermediate and at higher energies are important in current nuclear applications, such as accelerator driven-systems (ADS), in medicine, for effects on electronics etc. In the present work, microscopic fission cross sections induced by nucleons and pions are calculated using the cascade-exciton model code CEM95 for different projectile-target combinations; at various energies and the computed cross sections are compared with the experimental data found in literature. A new approach is used to compute the fission cross sections in which a change of the ratio of the level density parameter in fission to neutron emission channels was taken into account with the change in the incident energy of the projectile. We are unable to describe well the fission cross sections without using this new approach. Proton induced fission cross sections are calculated for targets 1 97Au, 2 08Pb, 2 09Bi, 2 38U and 2 39Pu in the energy range from 20 MeV to 2000 MeV. Neutron induced fission cross sections are computed for 2 38U and 2 39Pu in the energy range from 20 MeV to 200 MeV. Negative pion induced cross sections for fission are calculated for targets 1 97Au and 2 08Pb from 50 MeV to 2500 MeV energy range. The calculated cross sections are essential to build a data library file for accelerator driven systems just like was built for conventional nuclear reactors. The computed values exhibited reasonable agreement with the experimental values found in the literature across a wide range of beam energies

  14. Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, Anil K [Los Alamos National Laboratory

    2012-07-02

    chains (a fission chain is defined as the initial source neutron and all its subsequent progeny) in which some chains are short lived while others propagate for unusually long times. Under these conditions, fission chains do not overlap strongly and this precludes the cancellation of neutron number fluctuations necessary for the mean to become established as the dominant measure of the neutron population. The fate of individual chains then plays a defining role in the evolution of the neutron population in strongly stochastic systems, and of particular interest and importance in supercritical systems is the extinction probability, defined as the probability that the neutron chain (initiating neutron and its progeny) will be extinguished at a particular time, or its complement, the time-dependent survival probability. The time-asymptotic limit of the latter, the probability of divergence, gives the probability that the neutron population will grow without bound, and is more commonly known as the probability of initiation or just POI. The ability to numerically compute these probabilities, with high accuracy and without overly restricting the underlying physics (e.g., fission neutron multiplicity, reactivity variation) is clearly essential in developing an understanding of the behavior of strongly stochastic systems.

  15. Influence of angular momentum on fission fragment mass distribution: Interpretation within Langevin dynamics

    International Nuclear Information System (INIS)

    Ryabov, E.G.; Karpov, A.V.; Adeev, G.D.

    2006-01-01

    Dependence of fission fragments mass distribution on the angular momentum within Langevin dynamics is studied. The calculations are performed in the framework of the rotating temperature-dependent finite-range liquid drop model. The calculations are done for the five nuclei, representing heavy fissioning nuclei, medium fissioning nuclei and light fissioning one with the angular momentum varied in the wide range from l=0 to l=70-bar . The dependence coefficients dσ M 2 /dl 2 for the investigated nuclei are extracted. The comparison of the extracted values with the experimental data reveals a good agreement for all the cases (the heavy, medium, and light fissioning nuclei). It is found out that the obtained dependence of σ M 2 on l can be explained with the help of temperature at scission as a function of l. The latter dependence is determined by dependence of the mean prescission neutron multiplicity on l. The analysis of this dependence is done as a competition between fission process and neutron evaporation. 'Remembering of the former large fluctuations of mass asymmetry coordinate during descent from the saddle to scission' is considered. It is shown that the 'remembering effect' takes place, but does not play a crucial role for the investigated dependence of σ M 2 on l

  16. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  17. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  18. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  19. Charge degree of freedom as a sensitive probe for fission mechanism

    International Nuclear Information System (INIS)

    Yokoyama, A.; Baba, H.; Takahashi, N.; Duh, M.C.; Saito, T.

    1997-01-01

    The role of the charge degree of freedom in the heavy-ion-induced fission was investigated by carrying out a systematic analysis of radiochemically observed charge distribution in the fission of 238 U with 12 C ions of the incident energy between 85 and 140 MeV, particularly in connection with the energy given to the compound system. The charge distribution was found to follow essentially identical systematics as those which govern the light-ion fission except for the extremely weak energy dependence of the most probable charge Z p . That is, values of the derivative of Z p with respect to the energy were found to be quite small, or nearly zero, in the heavy-ion fission as compared to those of the light-ion fission. According to an analysis combining the derivatives of Z p and fission neutron data, it was deduced that the excess energy given to the fused system was spent completely in the form of pre-scission neutrons and hence the number of post-scission neutrons remained constant as in the case of light-ion fission. The observed charge distribution was reproduced under the conditions that the relaxation of the charge degree of freedom be very fast and that the separation between the two potential fragments at the moment when the charge degree of freedom has been frozen is determined by using Viola's systematics on the fragment kinetic energy. (author)

  20. Calculation of the exit probability of a particle from a cylinder of matter; Calcul de la probabilite de sortie d'une particule d'un cylindre de matiere

    Energy Technology Data Exchange (ETDEWEB)

    Ertaud, A; Mercier, C

    1949-02-01

    In the elementary calculation of the {epsilon} coefficient and of the slowing down length inside a nuclear pile made of a network of cylindrical rods, it is necessary to know the exit probability of a neutron initially located inside a cylinder filled up with a given substance. This probability is the ratio between the number of output neutrons and the number of neutrons produced inside the surface of the cylinder. This report makes the resolution of this probabilistic equation (integral calculation) both for the cylindrical case and for the spherical case. (J.S.)

  1. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  2. Fission product yield data for the transmutation of minor actinide nuclear waste

    International Nuclear Information System (INIS)

    2008-04-01

    A report issued by an international study group for the transmutation of nuclear waste using accelerator driven systems has highlighted the need for specific sets of nuclear data. These authoritative requirements include fission product yields at an intermediate incident neutron energy of up to 150 MeV. Before the start of the present CRP on fission product yield data for the transmutation of nuclear waste, only four types of evaluated fission yield data sets existed, namely for spontaneous fission, and for fission induced by thermal, fast (or fission) spectrum, and by 'high energy' (14-15 MeV) neutrons. A new type of evaluation for energy dependent neutron induced fission yields was required for this project. In view of the scarcity of experimental data, such an evaluation has to be based on systematics and theoretical model calculations. Unlike fission cross-sections, where nuclear models are being used successfully for the calculation of unmeasured cross-section ranges, such models or theories existed only for low energy fission yields. Hence the CRP participants entered a completely new field of research for which the progress and outcome were unpredictable. Clearly the ultimate goal of such an effort, namely an evaluation of energy dependent fission yields, could not be realized within the perceived lifetime of a CRP. The main emphasis of the CRP was on the development of adequate systematics and models for the calculation of energy dependent fission yields up to 150 MeV incident neutron energy. Several problems had to be solved, such as the correct choice of model parameters and multiplicity distributions of emitted neutrons, and the effect of multi-chance fission. Models and systematics have been tested for lower energy yields, but they failed to reproduce recent experimental data, particularly at higher energies, and the parameters had to be modified. Other models have been developed from the analysis of experimental data in order to derive systematic

  3. Reactivity effects of fission product decay in PWRs

    International Nuclear Information System (INIS)

    Aragones, J.M.; Ahnert, C.

    1988-01-01

    The purpose of the work reported in this paper is to analyze the effects of fission product chains with radioactive decay on the reactivity in pressurized water reactor (PWR) cores, calculating their accumulation and absorption rates along fuel burnup at continuous operation and after shutdown periods extending from 1 day to a few months. The authors PWR version of the WIMS-D4 code is first used to obtain the individual number densities, absorption rates, and averaged cross sections for every nuclide of the fission product chains with significant decay rates, as a function of fuel burnup at continuous irradiation. Next, by an auxiliary ad hoc code, these data, have been processed together with the required one for fissile nuclides and boron, also taken from WIMS at each burnup step, to calculate the average or effective values relevant for the analysis and the decay and change in overall absorption after several shutdown times. (1) The reactivity effect of fission product decay changes significantly with the shutdown time. The maximum absorption increase by decay is reached in ∼ 10 days' shutdown. (2) The dependence with fuel type, enrichment, and burnup is slight, but the change with previous power density is nearly linear, which might be significant after coast-down in previous cycles. (3) For long shutdown periods, the overall reactivity effect of decay in the three fission product chains considered is much less than if only the samarium peak due to 149 Nd is considered

  4. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  5. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238 U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  6. Preparation of lumped fission product (FP) cross sections for a multigroup library

    International Nuclear Information System (INIS)

    Ono, S.; Corcuera, R.P.

    1984-01-01

    A method for the calculation of lumped Fission Product (FP) cross sections has been developed. The group constants fo each nuclide are generated by NJOY code, based on ENDF/B-V data. In this first version, cross section of 28 nuclides are lumped for typical characteristics of Binary Breeder Reactor (BBR). One energy group calculations are made for a 1000 MWe fast reactor to verify the influence of burnup, number of FP and fuel composition on the lumped fission product cross sections. (Author) [pt

  7. Langevin description of fission fragment charge distribution from excited nuclei

    CERN Document Server

    Karpov, A V

    2002-01-01

    A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied

  8. Fission product release measured during fuel damage tests at the Power Burst Facility

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Vinjamuri, K.; Cronenberg, A.W.

    1985-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid quench and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations are offered for the probable reasons for the observed differences and recommendations for further studies are given

  9. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  10. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  11. New Beta-delayed Neutron Measurements in the Light-mass Fission Group

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, J. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); García, A.R. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Algora, A. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Äystö, J. [University of Jyväskylä, FI-40014 Jyväskyä (Finland); Caballero-Folch, R.; Calviño, F. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); Cano-Ott, D. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Cortés, G. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); Domingo-Pardo, C. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Eronen, T. [University of Jyväskylä, FI-40014 Jyväskyä (Finland); Gelletly, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Gómez-Hornillos, M.B. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); and others

    2014-06-15

    A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

  12. Dynamical effects and time scale in fission processes in nuclear collisions in the Fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.

    1999-10-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn...) obtained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distribution of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mi-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, we observed two components: the first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, we present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component we extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component we propose a scenario to explain such process and we discuss the physical parameters which can be extracted. (authors)

  13. Dynamical effects and time scale in fission processes in nuclear collisions in the fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.; Bellaize, N.; Bougault, R.; Brou, R.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Le Neindre, N.; Lopez, O.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Brun, C. le; Genoux-Lubain, A.

    1999-01-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn... o btained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distributions of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, authors observed two components: The first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, authors present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component authors extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component authors propose a scenario to explain such process and authors discuss the physical parameters which can be extracted

  14. THE CALCULATION OF FAST-NEUTRON ATTENUATION PROBABILITIES THROUGH A NINE- INCH POLYETHYLENE SLAB AND COMPARISON WITH EXPERIMENTAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, L. G.

    1963-06-15

    Calculations of neutron penetration probabilities were performed to evaluate the Monte Carlo Multilayer Slab Penetration Procedure. A 9-in. polyethylene alab was chosen for the calculations and results were compared with experimental data. The calculated and measured dose rates agree within 20% for all exit polar angles. The calculations indicate that incident neutrons with energies less than 2.5 Mev do not contribute significantly to the transmitted dose rate. (auth)

  15. Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission

    Science.gov (United States)

    Gatera, Angélique; Göök, Alf; Hambsch, Franz-Josef; Moens, André; Oberstedt, Andreas; Oberstedt, Stephan; Sibbens, Goedele; Vanleeuw, David; Vidali, Marzio

    2018-03-01

    Recent years have seen an increased interest in prompt fission γ-ray (PFG) measurements motivated by a high priority request of the OECD/NEA for high precision data, mainly for the nuclear fuel isotopes 235U and 239Pu. Our group has conducted a PFG measurement campaign using state-of-the-art lanthanum halide detectors for all the main actinides to a precision better than 3%. The experiments were performed in a coincidence setup between a fission trigger and γ-ray detectors. The time-of-flight technique was used to discriminate photons, traveling at the speed of light, and prompt fission neutrons. For a full rejection of all neutrons below 20 MeV, the PFG time window should not be wider than a few nanoseconds. This window includes most PFG, provided that no isomeric states were populated during the de-excitation process. When isomeric states are populated, PFGs can still be emitted up to 1 yus after the instant of fission or later. To study these γ-rays, the detector response to neutrons had to be determined and a correction had to be applied to the γ-ray spectra. The latest results for PFG characteristics from the reaction 239Pu(nth,f) will be presented, together with an analysis of PFGs emitted up to 200 ns after fission in the spontaneous fission of 252Cf as well as for thermal-neutron induced fission on 235U and 239Pu. The results are compared with calculations in the framework of the Hauser-Feshbach Monte Carlo code CGMF and FIFRELIN.

  16. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  17. The evaluation for reference fission yield of 238U fission

    International Nuclear Information System (INIS)

    Liang Qichang; Liu Tingjin

    1998-01-01

    In the fission yield data evaluation and measurement, the reference yield is very important, good or poor recommended or measurement values depend upon the reference data to a great extent. According to the CRP's requirement, the evaluation of reference fission yields have been and will be carried out in CNDC, as a part of the whole work (contract No.9504/R 0 /Regular Budget Fund), the evaluation for 29 reference fission yields of 15 product nuclides from 238 U fission have been completed

  18. Source term calculations - Ringhals 2 PWR

    International Nuclear Information System (INIS)

    Johansson, L.L.

    1998-02-01

    This project was performed within the fifth and final phase of sub-project RAK-2.1 of the Nordic Co-operative Reactor Safety Program, NKS.RAK-2.1 has also included studies of reflooding of degraded core, recriticality and late phase melt progression. Earlier source term calculations for Swedish nuclear power plants are based on the integral code MAAP. A need was recognised to compare these calculations with calculations done with mechanistic codes. In the present work SCDAP/RELAP5 and CONTAIN were used. Only limited results could be obtained within the frame of RAK-2.1, since many problems were encountered using the SCDAP/RELAP5 code. The main obstacle was the extremely long execution times of the MOD3.1 version, but also some dubious fission product calculations. However, some interesting results were obtained for the studied sequence, a total loss of AC power. The report describes the modelling approach for SCDAP/RELAP5 and CONTAIN, and discusses results for the transient including the event of a surge line creep rupture. The study will probably be completed later, providing that an improved SCDAP/RELAP5 code version becomes available. (au) becomes available. (au)

  19. The quantitative determination of uranium in human hair by fission track measurements

    International Nuclear Information System (INIS)

    Wilson, D.J.; Bentley, K.W.

    1985-01-01

    Human hairs containing a uranium burden were placed in contact with a mica sheet as the recording matrix and irradiated in a thermal neutron flux. The fission fragment tracks penetrating the mica were etched and counted. Calculations have been made to show the losses due to the fission fragment range being less than the diameter of the hair and for the variation of track density with distance from the line of contact between the hair and the mica. Experimental data from 50 μm diameter hair and those derived by calculation were compared. (author)

  20. Precalculation of the fission gas behaviour in the MOL 7C/6 experiment with the LAKU model

    International Nuclear Information System (INIS)

    Vaeth, L.

    1988-03-01

    The fission gas behaviour in the planned experiment MOL 7C/6 is simulated with the Karlsruhe model LAKU, employing temperatures calculated with the pin behaviour model TRANSURANUS. Two different modes of experimental flow blockage simulation are investigated and compared to an estimated fission gas behaviour during a realistic blockage build-up. The results indicate, that the start-up procedure leading to greatly reduced fission gas content is the more realistic one. Details of the calculations and their results are presented in the report