WorldWideScience

Sample records for fissile material general

  1. Assessment of the U.S. regulations for fissile exemptions and fissile material general licenses

    International Nuclear Information System (INIS)

    Parks, C.V.; Hopper, C.M.; Lichtenwalter, J.J.; Easton, E.P.; Brochman, P.G.

    1998-05-01

    The paragraphs for general licenses for fissile material and exemptions (often termed exceptions in the international community) for fissile material have long been a part of the US Code of Federal Regulations (CFR) 10 CFR Part 71, Packaging and Transportation of Radioactive Material. More recently, the Nuclear Regulatory Commission (NRC) issued a final rule on Part 71 via emergency rule-making procedures in order to address an identified deficiency related to one of the fissile exemptions. To address the specified deficiency in a general fashion, the emergency rule adopted the approach of the 1996 Edition of the IAEA: Regulations for the Safe Transport of Radioactive Material (IAEA 1996), which places restrictions on certain moderating materials and limits the quantity of fissile material in a consignment. The public comments received by the NRC indicated general agreement with the need for restrictions on certain moderators (beryllium, deuterium, and graphite). The comments indicated concern relative to both the degree of restriction imposed (not more than 0.1% of fissile material mass) and the need to limit the fissile material mass of the consignment, particularly in light of the subsequent NRC staff position that the true intent was to provide control for limiting the fissile mass of the conveyance. The purpose of the review is to identify potential deficiencies that might be adverse to maintaining adequate subcriticality under normal conditions of transport and hypothetical accident conditions. In addition, ORNL has been asked to identify changes that would address any identified safety issues, enable inherently safe packages to continue to be unencumbered in transport, and seek to minimize the impact on current safe practices

  2. Assessment and recommendations for fissile-material packaging exemptions and general licenses within 10 CFR Part 71

    International Nuclear Information System (INIS)

    Parks, C.V.; Hopper, C.M.; Lichtenwalter, J.L.

    1998-07-01

    This report provides a technical and regulatory assessment of the fissile material general licenses and fissile material exemptions within Title 10 of the Code of Federal Regulations Part 71. The assessment included literature studies and calculational analyses to evaluate the technical criteria; review of current industry practice and concerns; and a detailed evaluation of the regulatory text for clarity, consistency and relevance. Recommendations for potential consideration by the Nuclear Regulatory Commission staff are provided. The recommendations call for a simplification and consolidation of the general licenses and a change in the technical criteria for the first fissile material exemptions

  3. Repository for fissile materials

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1976-01-01

    A repository for holding and storing fissile or other hazardous materials either under or above the ground is provided by enclosing one or more inner containers, such as standard steel drums, in a larger, corrosion-resistant outer shell, with a layer of foamed polyurethane occupying the space therebetween. The polyurethane foam is free of voids at its interfaces with the inner container and outer shell, and adheres to and reinforces same to provide a stress skin structure. Protection is afforded by the chemical and physical characteristics of the polyurethane foam against destructive influences such as water vapor intrusion, package leakage and damaging effects of the environment, such as freezing, electrolysis, chemical and bacterial action. The outer shell is shaped to conform generally to the shape of the inner container and is made of a tube of bituminized fiber material with endcaps of exterior grade plywood treated with wood preservative. A quantity of fluorescein dye is positioned within the inner container for monitoring each package for leakage

  4. Fissile material proliferation risk

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The proliferation risk of a facility depends on the material attractiveness, level of safeguards, and physical protection applied to the material in conjunction with an assessment of the impact of the socioeconomic circumstances and threat environment. Proliferation risk is a complementary extension of proliferation resistance. The authors believe a better determination of nuclear proliferation can be achieved by establishing the proliferation risk for facilities that contain nuclear material. Developing a method that incorporates the socioeconomic circumstances and threat environment inherent to each country enables a global proliferation assessment. To effectively reduce the nuclear danger, a broadly based set of criteria is needed that provides the capability to relatively assess a wide range of nuclear related sites and facilities in different countries and still ensure a global decrease in proliferation risk for fissile material (plutonium and highly enriched uranium)

  5. Fissile materials detection

    International Nuclear Information System (INIS)

    Dumesnil, P.

    1977-03-01

    Description is given of three types of apparatus intended for controlling fossile materials in view of avoiding their diversion or preventing said products to be mixed to less dangerous radioactive wastes. The gantry-type apparatus is intended for the detection of small masses of fissile materials moving through a crossing place; the neutron gantry consists of helium 3 detectors of the type 150NH100, located inside polyethylene blocks; as for the gamma gantry, it consists of two large plastic scintillators integrated to the vertical legs of said gantry. The second apparatus is a high-efficiency detector intended for controlling Pu inside waste casks. It can detect 10mg of Pu inside a 100 liters drum for one minute counting. The third apparatus intended for persons and things monitoring is still on study. Such as the gantries it is based on sampled measurement of the background noise [fr

  6. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  7. Operational experience in the non-destructive assay of fissile material in General Electric's nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    Operational experience in the non-destructive assay of fissile material in a variety of forms and containers and incorporation of the assay devices into the accountability measurement system for General Electric's Wilmington Fuel Fabrication Facility measurement control programme is detailed. Description of the purpose and related operational requirements of each non-destructive assay system is also included. In addition, the accountability data acquisition and processing system is described in relation to its interaction with the various non-destructive assay devices and scales used for accountability purposes within the facility. (author)

  8. Measurement of inventories with mixed fissile materials

    International Nuclear Information System (INIS)

    Rinard, P.M.; Krick, M.S.; Kelley, T.; Schneider, C.M.

    1997-01-01

    An inventory with a large number of diverse items containing mixtures of uranium and plutonium has been measured with two nondestructive assay (NDA) instruments used in four modes. A segmented gamma scanner (SGS) was used to find the number of cans and the positions of the fissile materials by scanning each item in front of a transmissions source; at each position, uranium and plutonium isotopics were measured with the passive gamma rays emitted. A shuffler was then used in both the passive and active modes to measure the masses of the two elements. The measured masses for the inventory items were generally in agreement with the declared values, but anomalies were identified for a small fraction of the inventory

  9. Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs

  10. Criticality Control Fissile of Materials. Proceedings of the Symposium on Criticality Control of Fissile Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-05-15

    Criticality control comprises all the administrative and technical procedures which enable the storage and processing of fissile material to be carried out under conditions of nuclear safety. It is of particular importance in the safe design and operation of chemical and metallurgical plants processing fissile material, in the handling and storage of enriched fuel for reactors, and in transportation of fissile material. The growth of nuclear power, with its increasing use of fissile material and production of plutonium, is leading to an ever widening need for this discipline. This Symposium was held 4 Vulgar-Fraction-One-Half years after the only other international meeting on this topic, at which the first broad exchange of ideas and theories enabled a comparison to be drawn between the various ways in which the subject is handled in the different countries. That meeting showed that criticality safety was often achieved by procedures known to be ultra-safe, as there was a great lack of useful experimental data with which to check theoretical models. Since that time the quantities of material being processed have increased, and with the now urgent necessity of achieving economic, and hence commercially competitive, operation, the procedure of using arbitrary factors of safety is no longer adequate. Plant Managers now require good data on the basis of which they can choose a suitable factor of safety, and design a process to be safe under any foreseeable circumstances. The present Symposium showed the great increase in the amount of available experimental data and its importance in checking the now highly sophisticated computer calculations. There are many diagrams in these Proceedings with curves from which critical parameters for various configurations can be taken. The dearth of data for plutonium systems is causing some difficulty in plutonium processing plants, which are becoming commercially important. The excellent safety record of the atomic energy industry

  11. Electronuclear conversion of fertile to fissile material

    International Nuclear Information System (INIS)

    Van Atta, C.M.; Lee, J.D.; Heckrotte, W.

    1976-01-01

    The electronuclear conversion of fertile to fissile material by accelerator-produced neutrons is discussed. Experimental and theoretical results obtained in the MTA program (1949--1954) on the production of low-energy (less than 20-MeV) neutrons by high-energy proton, deuteron, and neutron bombardment of target materials are briefly reviewed. More recent calculations of the cascade process, by which the low-energy neutrons are produced, are discussed. A system is described by which 500- to 600-MeV deuterons incident on a lithium primary target can be converted to high-energy neutrons, which can be multiplied by spallation cascades and nuclear excitation to produce low-energy neutrons in a depleted-uranium or thorium secondary target. Fission events producing heat and additional neutrons are produced. The evaporation and fission neutrons would be captured, and fissile material would be produced. The production rates for 239 Pu and 233 U are estimated for 0.25-A and 0.375-A deuteron beams from an Alvarez linac. The capital and operating costs are estimated, and the resulting costs of fissile materials are calculated. The cost of generating power in reactors using the fissile material so produced as make-up fuel is also estimated. The energy multiplication (power generated in reactors so fueled/power consumed by the accelerator) ranges from about 10 to about 50 depending upon the make-up of the secondary target; depleted uranium, thorium, or a combination of the two. An experimental and theoretical program to facilitate optimization of the parameters of a production installation is described. 13 figures, 14 tables

  12. A line of defense approach to fissile material control

    International Nuclear Information System (INIS)

    Holloway, S.P.; Holloway, N.J.

    1995-01-01

    A crucial element of the safety policy of the UK Atomic Weapons Establishment (AWE) is that concerned with the safe control of fissile material in order to minimize the potential for unplanned criticality. The principles by which AWE controls fissile material advocate a simple Line of Defense (LOD) approach to assessing criticality-safety related aspects of fissile operations. An LOD assessment provides a measure of the depth of defense available to prevent general types of criticality accident and can be used to demonstrate compliance with the risk-based Basic Safety Limits (BSLs) and Objectives (BSOs) used by the UK Nuclear Installations Inspectorate (NII) to judge the safety of operations in accordance with its Safety Assessment Principles (SAPs) for Nuclear Plants. This paper discusses the LOD concept, the basis of LOD assessment and describes LODs specific to criticality control

  13. Warhead and fissile-material declarations

    International Nuclear Information System (INIS)

    von Hippel, F.

    1992-01-01

    Until recently, arms control agreements were limited by the fact that the only available verification capabilities were national technical means, which involved instruments in space or beyond national borders. As a result, the SALT II treaty constrained only the construction of large missile silos, ballistic-missile submarines and long-range bombers - and limited the flight testing of long-range ballistic missiles. Recently, however, on-site verification has been accepted, making it possible in the INF treaty to extend controls to small mobile missiles and their launchers. This paper therefore outlines a comprehensive system of verifiable limits on nuclear warheads. The authors discuss in some detail the verifiability of a halt in the production of fissile materials for nuclear warheads, the verifiability of declarations of the amounts of fissile material produced for warheads prior to the production cutoff, and the establishment of a verifiable accounting system for the numbers and types of nuclear warheads possessed by each side

  14. Recovery of fissile materials from nuclear wastes

    Science.gov (United States)

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  15. Revisited. Euratom's ownership of special fissile materials

    International Nuclear Information System (INIS)

    Pelzer, Norbert

    2015-01-01

    Among all Treaties on the Foundation of the European Community, seemingly, the Euratom Treaty ist the most unobtrusive one having even nearly been declared dead occasionally. For the opponents of nuclear energy the treaty is a thorn in their side because it aims for the peaceful exploitation of nuclear energy. Actually, the treaty likewise aims for the protection of dangers of nuclear energy and encloses a bundle of collective control instruments. The protective purpose provides the community with a strong position in numerous fields towards nuclear energy users including the right to intervene in the operations of nuclear facilities. The communitie's position is further strengthened by the communitie's ownership on special fissile materials. The EAEC Treaty determines: 'Special fissile materials are owned by the community'. The material content of Euratom's ownership is limited by Article 87 of the EAEC Treaty: Unlimited right of use and consumption is granted to the properly possessors unless obligations of the Euratom Treaty oppose. Inherently, the community does not have these rights. It was asked what would be left to the owner Euratom if the properly possessor is entitled to unlimited right of use and even right of consumption.

  16. Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials

    International Nuclear Information System (INIS)

    Gray, L.W.

    1996-01-01

    With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ''excess'' nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist

  17. Nonintrusive verification attributes for excess fissile materials

    International Nuclear Information System (INIS)

    Nicholas, N.J.; Eccleston, G.W.; Fearey, B.L.

    1997-10-01

    Under US initiatives, over two hundred metric tons of fissile materials have been declared to be excess to national defense needs. These excess materials are in both classified and unclassified forms. The US has expressed the intent to place these materials under international inspections as soon as practicable. To support these commitments, members of the US technical community are examining a variety of nonintrusive approaches (i.e., those that would not reveal classified or sensitive information) for verification of a range of potential declarations for these classified and unclassified materials. The most troublesome and potentially difficult issues involve approaches for international inspection of classified materials. The primary focus of the work to date has been on the measurement of signatures of relevant materials attributes (e.g., element, identification number, isotopic ratios, etc.), especially those related to classified materials and items. The authors are examining potential attributes and related measurement technologies in the context of possible verification approaches. The paper will discuss the current status of these activities, including their development, assessment, and benchmarking status

  18. Enhanced safety in the storage of fissile materials

    International Nuclear Information System (INIS)

    Williams, G.E.; Alvares, N.J.

    1979-01-01

    A ''plastic-like'' supporting material impregnated with a neutron-absorbing agent that is suitable for ''lining'' the inner surfaces of fissile-material storage containers was fabricated. The material consists, by weight, of 50% food-grade borax, 25% coal tar, and 25% epoxy resin. It costs much less than commercially available materials, can absorb enough neutrons to isolate units of fissile material, and possesses such structural qualities as flexibility and machinability. Properties and performance of the material are discussed

  19. Disposition of surplus fissile materials via immobilization

    International Nuclear Information System (INIS)

    Gray, L.W.; Kan, T.; Sutcliffe, W.G.; McKibben, J.M.; Danker, W.

    1995-01-01

    In the Cold War aftermath, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, the USDOE has undertaken a multifaceted study to select options for storage and disposition of surplus plutonium (Pu). One disposition alternative being considered is immobilization. Immobilization is a process in which surplus Pu would be embedded in a suitable material to produce an appropriate form for ultimate disposal. To arrive at an appropriate form, we first reviewed published information on HLW immobilization technologies to identify forms to be prescreened. Surviving forms were screened using multi-attribute utility analysis to determine promising technologies for Pu immobilization. We further evaluated the most promising immobilization families to identify and seek solutions for chemical, chemical engineering, environmental, safety, and health problems; these problems remain to be solved before we can make technical decisions about the viability of using the forms for long-term disposition of Pu. All data, analyses, and reports are being provided to the DOE Office of Fissile Materials Disposition to support the Record of Decision that is anticipated in Summer of 1996

  20. Transportation of fissile materials and the danger of criticity

    International Nuclear Information System (INIS)

    Haon, D.; Leclerc, J.; Maubert, L.

    1981-01-01

    The authors examine the risk of criticity that can arise during the transportation of fissile matter. They then outline the regulations and studies made in the field of criticity-safety and the computation methods used. They discuss the applications that are reflected in the concept and design of fissile material packagings [fr

  1. Fissile materials principles of criticality safety in handling and processing

    International Nuclear Information System (INIS)

    1976-01-01

    This Swedish Standard consists of the English version of the International Standard ISO 1709-1975-Nuclear energy. Fissile materials. Principles of criticality safety in handling and processing. (author)

  2. Proliferation resistance criteria for fissile material disposition

    International Nuclear Information System (INIS)

    Close, D.A.; Fearey, B.L.; Markin, J.T.; Rutherford, D.A.; Duggan, R.A.; Jaeger, C.D.; Mangan, D.L.; Moya, R.W.; Moore, L.R.; Strait, R.S.

    1995-04-01

    The 1994 National Academy of Sciences study open-quotes Management and Disposition of Excess Weapons Plutoniumclose quotes defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This report proposes criteria for assessing the proliferation resistance of these options. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials

  3. Enhanced safety in the storage of fissile materials

    International Nuclear Information System (INIS)

    Williams, G.E.; Alvares, N.J.

    1978-01-01

    An inexpensive boron-loaded liner of epoxy resin for fissile-material storage containers was developed that can be easily fabricated of readily available, low-cost materials. Computer calculations indicate reactivity will be reduced substantially if this neutron-absorbing liner is added to containers in a typical storage array. These calculations compare favorably with neutron-attenuation experiments with thermal and fission neutron spectra, and tests at the Fire Test Facility indicate the epoxy resin will survive extreme environmental and accident conditions. The fire-resistant and insulating properties of the epoxy-resin liner further augment its ability to protect fissile materials. Boron-loaded epoxy resin is adaptable to many tasks but is particularly useful for providing enhanced criticality safety in the packaging and storage of fissile materials

  4. 1980 Annual status report: fissile materials control and management

    International Nuclear Information System (INIS)

    1981-01-01

    The R and D activities of the JRC in the field of Fissile Material Control and Management are oriented to the development of safeguards systems in the European Community nuclear fuel cycle and to provide means for a more efficient nuclear material management within the nuclear industry

  5. Systems analysis and simulation of fissile materials disposition alternatives

    International Nuclear Information System (INIS)

    Farish, T.J.; Farmen, R.F.; Boerigter, S.T.; DeMuth, N.S.

    1996-01-01

    A detailed process flow model has been developed for use in the Fissile Materials Disposition program. The model calculates fissile material flows and inventories among the various processing and storage facilities over the life of the disposition program. Given existing inventories and schedules for processing, we can estimate the required size of processing and storage facilities, including equipment requirements, plant floorspace, approximate costs, and surge capacities. The model was designed to allow rapid prototyping, parallel and team development of facility and sub-facility models, consistent levels of detail and the use of a library of generic objects representing unit process operations

  6. Accelerating fissile material detection with a neutron source

    Science.gov (United States)

    Rowland, Mark S.; Snyderman, Neal J.

    2018-01-30

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.

  7. Safeguards and security issues for the disposition of fissile materials

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Moya, R.W.; Duggan, R.A.; Mangan, D.L.; Tolk, K.M.; Rutherford, D.; Fearey, B.; Moore, L.

    1995-01-01

    The Department of Energy's Office of Fissile Material Disposition (FMD) is analyzing long-term storage and disposition options for surplus weapons-usable fissile materials, preparing a programmatic environmental impact statement (PEIS), preparing for a record of decision (ROD) regarding this material and conducting other activities. The primary security objectives of this program are to reduce major security risks and strengthen arms reduction and nonproliferation (NP). To help achieve these objectives, a safeguards and security (S ampersand S) team consisting of participants from Sandia, Los Alamos, and Lawrence Livermore National Laboratories was established. The S ampersand S activity for this program is a cross-cutting task which addresses all of the FMD program options. It includes both domestic and international safeguards and includes areas such as physical protection, nuclear materials accountability and material containment and surveillance. This paper will discuss the activities of the Fissile Materials Disposition Program (FMDP) S ampersand S team as well as some specific S ampersand S issues associated with various FMDP options/facilities. Some of the items to be discussed include the threat, S ampersand S requirements, S ampersand S criteria for assessing risk, S ampersand S issues concerning fissile material processing/facilities, and international and domestic safeguards

  8. Covariance Spectroscopy for Fissile Material Detection

    International Nuclear Information System (INIS)

    Trainham, Rusty; Tinsley, Jim; Hurley, Paul; Keegan, Ray

    2009-01-01

    Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate on cascades and the covariance filtering problem

  9. IAEA safeguards for the Fissile Materials Disposition Project

    International Nuclear Information System (INIS)

    Close, D.A.

    1995-06-01

    This document is an overview of International Atomic Energy Agency (IAEA) safeguards and the basic requirements or elements of an IAEA safeguards regime. The primary objective of IAEA safeguards is the timely detection of the diversion of a significant quantity of material and the timely detection of undeclared activities. The two important components of IAEA safeguards to accomplish their primary objective are nuclear material accountancy and containment and surveillance. This overview provides guidance to the Fissile Materials Disposition Project for IAEA inspection requirements. IAEA requirements, DOE Orders, and Nuclear Regulatory Commission regulations will be used as the basis for designing a safeguards and security system for the facilities recommended by the Fissile Materials Disposition Project

  10. Storage and processing system for fissile materials

    International Nuclear Information System (INIS)

    Bubowskij, B.G.; Bogatyrew, W.K.; Wladykow, G.M.; Swiridenko, W.J.

    1976-01-01

    The invention concerns the construction of a radiation protection wall by which the reflection of neutrons in a container arranged in the vicinity of the wall is reduced. The radiation protection wall has a coating of neutron-retarding material on top of which there is a layer of neutron absorbing material, the former having a surface structured with regular projections and recesses spaced at 1/8 to 3 neutron ranges. The recesses may be filled with porous material or take up neutron radiation detectors. Other construction features are described. (UWI) [de

  11. Security of fissile materials in Russia

    International Nuclear Information System (INIS)

    Bukharin, O.

    1996-01-01

    The problem of security of huge stocks of weapons-usable highly enriched uranium and plutonium in Russia against theft or diversion remains a serious nonproliferation concern. During the Cold War, the security of Soviet nuclear materials was based on centralization and discipline, protection by the military, and intrusive political oversight of the people. The recent fundamental societal changes have rendered these arrangements inadequate, and the security of nuclear materials has decreased. Safeguarding nuclear materials in Russia is particularly difficult because of their very large inventories and the size and complexity of the nation's nuclear infrastructure. Russia needs a reliable and more objective technology-based system of nuclear safeguards designed to control nuclear materials. The Russian government and the international community are working towards this goal

  12. Fissile material disposition and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, J.S.; Rutherford, D.A. [Los Alamos National Lab., NM (United States). NIS Div.

    1996-05-01

    The proliferation risk of a facility is dependent on the material attractiveness, level of safeguards, and physical protection applied to the material in conjunction with an assessment of the impact of the socioeconomic circumstances and threat environment. Proliferation risk is a complementary extension of proliferation resistance. The authors believe a better determination of nuclear material proliferation can be achieved by establishing the proliferation risk for facilities that contain nuclear material. Developing a method that incorporates the socioeconomic circumstances and threat environment inherent to each country enables a global proliferation assessment. In order to effectively reduce the nuclear danger, a broadly based set of criteria is needed that provides the capability to relatively assess a wide range of disposition options/facilities in different countries and still ensure a global decrease in proliferation risk for plutonium.

  13. Fissile material disposition and proliferation risk

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The proliferation risk of a facility is dependent on the material attractiveness, level of safeguards, and physical protection applied to the material in conjunction with an assessment of the impact of the socioeconomic circumstances and threat environment. Proliferation risk is a complementary extension of proliferation resistance. The authors believe a better determination of nuclear material proliferation can be achieved by establishing the proliferation risk for facilities that contain nuclear material. Developing a method that incorporates the socioeconomic circumstances and threat environment inherent to each country enables a global proliferation assessment. In order to effectively reduce the nuclear danger, a broadly based set of criteria is needed that provides the capability to relatively assess a wide range of disposition options/facilities in different countries and still ensure a global decrease in proliferation risk for plutonium

  14. Fissile material ban: global and non-discriminatory?

    International Nuclear Information System (INIS)

    Datt, Savita

    1995-01-01

    With the indefinite and unconditional extension of the nuclear Non-Proliferation Treaty (NPT) now out of the way, the next issue on the non-proliferation agenda is that of the existing stocks and further production of plutonium and weapons grade uranium. More than the existing stocks and the surplus fissile materials made available through arms control and disarmament measures, it is the further production of such materials which is sought to be tackled urgently. Of prime concern are the nuclear programmes of threshold countries like India, Pakistan and Israel (countries out of the NPT fold) which need to be capped at all costs. The best method of achieving this, it is believed can be through a global ban on the production of fissile materials. 15 refs

  15. Modeling of fissile material diversion in solvent extraction cascades

    International Nuclear Information System (INIS)

    Schneider, A.; Carlson, R.W.

    1980-01-01

    Changes were calculated for measurable parameters of a solvent extraction section of a reprocessing plant resulting from postulated fissile material diversion actions. The computer program SEPHIS was modified to calculate the time-dependent concentrations of uranium and plutonium in each stage of a cascade. The calculation of the inventories of uranium and plutonium in each contactor was also included. The concentration and inventory histories were computed for a group of four sequential columns during start-up and for postulated diversion conditions within this group of columns. Monitoring of column exit streams or of integrated column inventories for fissile materials could provide qualitative indications of attempted diversions. However, the time delays and resulting changes are complex and do not correlate quantitatively with the magnitude of the initiating event

  16. Gamma ray absorption of cylindrical fissile material with dual shields

    International Nuclear Information System (INIS)

    Wu Chenyan; Cheng Yiying; Huang Yongyi; Lu Fuquan; Yang Fujia

    2005-01-01

    This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solved the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis. (authors)

  17. User manual of FUNF code for fissile material data calculation

    International Nuclear Information System (INIS)

    Zhang, Jingshang

    2006-03-01

    The FUNF code (2005 version) is used to calculate fast neutron reaction data of fissile materials with incident energies from about 1 keV up to 20 MeV. The first version of the FUNF code was completed in 1994. the code has been developed continually since that time and has often been used as an evaluation tool for setting up CENDL and for analyzing the measurements of fissile materials. During these years many improvements have been made. In this manual, the format of the input parameter files and the output files, as well as the functions of flag used in FUNF code, are introduced in detail, and the examples of the format of input parameters files are given. FUNF code consists of the spherical optical model, the Hauser-Feshbach model, and the unified Hauser-Feshbach and exciton model. (authors)

  18. Nuclear energy - Fissile materials - Principles of criticality safety in storing, handling and processing

    International Nuclear Information System (INIS)

    1995-01-01

    This International Standard specifies the basic principles and limitations which govern operations with fissile materials. It discusses general criticality safety criteria for equipment design and for the development of operating controls, while providing guidance for the assessment of procedures, equipment, and operations. It does not cover quality assurance requirements or details of equipment or operational procedures, nor does it cover the effects of radiation on man or materials, or sources of such radiation, either natural or as the result of nuclear chain reactions. Transport of fissile materials outside the boundaries of nuclear establishments is not within the scope of this International Standard and should be governed by appropriate national and international standards and regulations. These criteria apply to operations with fissile materials outside nuclear reactors but within the boundaries of nuclear establishments. They are concerned with the limitations which must be imposed on operations because of the unique properties of these materials which permit them to support nuclear chain reactions. These principles apply to quantities of fissile materials in which nuclear criticality can be established

  19. Screening of IAEA environmental samples for fissile material content

    International Nuclear Information System (INIS)

    Hembree, Doyle M. Jr.; Carter, Joel A.; Devault, Gerald L.; Whitaker, J. Michael; Glasgow, David

    2001-01-01

    Full text: Analysis of environmental samples for the International Atomic Energy Agency (IAEA) Strengthened Safeguards Systems program requires that stringent measures be taken to control contamination. To facilitate contamination control, it is extremely useful to have some estimate of the fissile content of a given sample prior to beginning sample preparation and analysis. This is particularly true for laboratories that employ clean rooms during sample preparation. A review of the analytical results for samples submitted between January 1, 1999 and September 1, 2000 revealed that the total uranium content values ranged from 0.2 to greater than 500,000 ng/sample. Poor estimates of the uranium or plutonium content in the samples have caused some of the laboratories in the IAEA Network of Analytical Laboratories (NWAL) to experience clean laboratory contamination, sample cross contamination, and non-ideal uranium spike additions. This has led to significant increases in analysis costs (e.g., recertification of clean rooms after removing contamination, and rerunning samples) and degradation in data quality. A number of methods have been proposed for screening environmental samples for fissile material content, including gamma spectrometry, x-ray fluorescence, kinetic phosphorimetry (KPA), and inductively coupled plasma-mass spectrometry (ICP-MS). Gamma spectrometry and x-ray fluorescence are suitable for screening samples with microgram or greater quantities of uranium. ICP-MS and KPA are used successfully in some DOE NWAL laboratories to screen environmental samples. A neutron activation analysis (NAA) method that offers numerous advantages over other screening techniques for environmental samples has recently been proposed. Fissile materials such as 239 Pu and 235 U can be made to undergo fission in the intense neutron field to which they are exposed during neutron activation analysis (NAA). Some of the fission products emit neutrons referred to as 'delayed

  20. Automated monitoring of fissile and fertile materials in incinerator residue

    International Nuclear Information System (INIS)

    Schoenig, F.C. Jr.; Glendinning, S.G.; Tunnell, G.W.; Zucker, M.S.

    1986-01-01

    This patent describes an apparatus for determining the fissile and fertile material content of incinerator residue contained in a manipulatable container. The apparatus comprises a main body member formed of neutron moderating material and formed with a well for receiving the container; a first plug formed of neutron reflecting material for closing the top of the well; and a second plug containing a first neutron source for alternatively closing the top of the well and for directing neutrons into the well. It also includes a second neutron source selectively positionable in the bottom of the well for directing neutrons into the well; manipulating means for placing the container in the well and removing the container therefrom and for selectively placing one of the first and second plugs in the top of the well. Neutron detectors are positioned within the neutron moderating material of the main body member around the sides of the well. At least one gamma ray detector is positioned adjacent the bottom of the well. A means receives and processes the signals from the neutron and gamma ray detectors when the container is in the well for determining the fissile and fertile material content of the incinerator residue in the container

  1. Contribution to fissile materials transportation in transit storage

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da

    2005-01-01

    The national and international standards for the transportation of fissile materials establish two indexes: Transport Index (Tl) and Criticality Safety Index (ISC). Besides, in non-exclusive transit, the largest of these indexes cannot overtake the value 50. Considering several groups to be transported, the sum of the transportation indexes cannot overtake 200 and the distance between them should be 6 meters This work aimed, as a primary target, to verify when an index is superior to another, in relation to the fissile materials studied, i.e., uranium oxides UO 2 , U 3 O 8 and uranium silicide U 3 Si 2 , taking into account the different enrichment grades. The result found is that the criticality safety index is always greater. As a second goal, it was tried to verify if there is any alteration in the case of these compounds aging process, i.e., alteration in transport index (Tl) due to gamma radiation of daughters radioisotopes in secular equilibrium. No alteration, was verified as the daughters contribution although considerable related to the transport index is very small concerning the criticality safety index. As a third target, it was tried to justify a distance equal to 6 meters, between each group of fissile material. The result showed that, in air media, the distance of 1 meter is sufficient, except for the UO 2 compound at 100% of enrichment, which reaches 2 meter while in the water means the distance of 40cm is enough for the compounds studied. This fact is of great importance when the cost of the necessary area in the transportation and storage is taken into consideration. (author)

  2. Fissile material disposition program final immobilization form assessment and recommendation

    International Nuclear Information System (INIS)

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H.

    1997-01-01

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy's Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations

  3. Fissile materials in solution concentration measured by active neutron interrogation

    International Nuclear Information System (INIS)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-01-01

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a 252 Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.)

  4. Warheads and Fissile Materials:Declarations and Counting

    International Nuclear Information System (INIS)

    Sutcliffe, W.G.

    1991-01-01

    This paper reviews some of the issues about verifying the dismantlement of nuclear warheads and controlling nuclear materials in the context of arms control objectives. It is asserted that information about the stockpiles of nuclear warheads and materials is necessary to analyze the impacts and verification requirements of arms control measures including warhead dismantlement and fissile material controls. It is proposed that the US and the Soviets engage in a series of declarations about their stockpiles of nuclear weapons and materials. It is also asserted that currently it is more important to verify that warheads are retired to safe, secure facilities than to verify their dismantlement. It is proposed that production of new or rebuilt warheads be limited to less than the number retired each year. Verifying the number of new and rebuilt warheads deployed and the number retired avoids many of the difficulties in verifying dismantlement and material controls

  5. Ensuring the 50 year life of a fissile material container

    International Nuclear Information System (INIS)

    Glass, R.E.; Towne, T.L.

    1997-12-01

    Sandia was presented with an opportunity in 1993 to design containers for the long term storage and transport of fissile material. This program was undertaken at the direction of the US Department of Energy and in cooperation with Lawrence Livermore National Laboratory and Los Alamos National Laboratory which were tasked with developing the internal fixturing for the contents. The hardware is being supplied by Allied Signal Federal Manufacturing and Technologies, and the packaging will occur at Mason and Hangar Corporation's Pantex Plant. The unique challenge was to design a container that could be sealed with the fissile material contents; and, anytime during the next 50 years, the container could be transported with only the need for the pre-shipment leak test. This required not only a rigorous design capable of meeting the long term storage and transportation requirements, but also resulted in development of a surveillance program to ensure that the container continues to perform as designed over the 50-year life. This paper addresses the design of the container, the testing that was undertaken to demonstrate compliance with US radioactive materials transport regulations, and the surveillance program that has been initiated to ensure the 50-year performance

  6. Disposition scenarios and safeguardability of fissile materials under START Treaty

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Under the Strategic Arms Reduction Treaty (START-I) signed in 1991 and the Lisbon Protocol of 1992, a large inventory of fissile materials will be removed from the weapons fuel cycles of the United States and the Former Soviet Union (FSU). The Lisbon Protocol calls for Ukraine, Kazakstan, and Byelarus to become nonnuclear members of the treaty and for Russia to assume the responsibility of the treaty as a nuclear weapons state. In addition, the START-II Treaty, which was signed in 1993 by the United States and Russia, further reduces deployed nuclear warheads and adds to the inventory of excess special nuclear materials (SNM). Because storage of in-tact warheads has the potential for a open-quotes breakout,close quotes it would be desirable to dismantle the warheads and properly dispose of the SNMs under appropriate safeguards to prevent their reentry into the weapons fuel cycle. The SNM recovered from dismantled warheads can be disposed of in several ways, and the final choices may be up to the country having the title to the SNM. Current plans are to store them indefinitely, leaving serious safeguards concerns. Recognizing that the underlying objective of these treaties is to prevent the fissile materials from reentering the weapons fuel cycle, it is necessary to establish a verifiable disposal scheme that includes safeguards requirements. This paper identifies some realistic scenarios for the disposal of SNM from the weapons fuel cycle and examines the safeguardability of those scenarios

  7. Materials technology for accelerator production of fissile isotopes

    International Nuclear Information System (INIS)

    Horak, J.A.

    1978-02-01

    The materials used for the accelerator production of fissile isotopes must enable the facility to achieve maximum fuel production at a minimum cost. Neutron production in the target would be maximized by use of thorium cooled with Pb--56 percent Bi or with sodium. The thorium should be ion-plated with approximately 1 mil of nickel or stainless steel for retention of fission products. The target container will have to be replaced at frequent intervals because of the copious quantities of neutronically produced helium and hydrogen in the container. Replacement would coincide with shutdown of the facility for the removal of the fissile material produced. If sodium is used to cool both the target and fertile blanket, a simple basket-type target container could be used. This would greatly reduce radiation effects in the target container. Type 316 stainless steel or V--20 wt percent Ti should perform satisfactorily as a target container. The fertile blanket should be 233 Th or 238 U that is coated with approximately 1 mil of nickel or stainless steel and cooled with sodium. The blanket container could be an austenitic stainless steel such as type 304 or 316; some ferritic alloys may also provide a satisfactory blanket container. 31 references

  8. IAEA verification of weapon-origin fissile material in the Russian Federation and the United States

    International Nuclear Information System (INIS)

    2001-01-01

    The Secretary of Energy of the United States, Spencer Abraham, Minister of the Russian Federation on Atomic Energy, Alexander Rumyantsev, and Director General of the International Atomic Energy Agency (IAEA), Mohamed ElBaradei, met in Vienna on 18 September 2001 to review progress on the Trilateral Initiative. The Initiative was launched in 1996 to develop a new IAEA verification system for weapon-origin material designated by the United States and the Russian Federation as released from their defence programmes. The removal of weapon-origin fissile material from the defence programmes of the Russian Federation and the United States is in furtherance of the commitment to disarmament undertaken by the two States pursuant to Article VI of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). IAEA verification under this Initiative is intended to promote international confidence that fissile material made subject by either of the two States to Agency verification remains irreversibly removed from nuclear weapon programmes

  9. A 252Cf based nondestructive assay system for fissile material

    International Nuclear Information System (INIS)

    Menlove, H.O.; Crane, T.W.

    1978-01-01

    A modulated 252 Cf source assay system 'Shuffler' based on fast-or-thermal-neutron interrogation combined with delayed-neutron counting has been developed for the assay of fissile material. The 252 Cf neutron source is repetitively transferred from the interrogation position to a shielded position while the delayed neutrons are counted in a high efficiency 3 He neutron well-counter. For samples containing plutonium, this well-counter is also used in the passive coincidence mode to assay the effective 240 Pu content. The design of an optimized neutron tailoring assembly for fast-neutron interrogation using a Monte Carlo Neutron Computer Code is described. The Shuffler system has been applied to the assay of fuel pellets, inventory samples, irradiated fuel and plutonium mixed-oxide fuel. The system can assay samples with fissile contents from a few milligrams up to several kilograms using thermal-neutron interrogation for the low mass samples and fast-neutron interrogation for the high mass samples. Samples containing 235 U- 238 U, or 233 U-Th, or UO 2 -PuO 2 fuel mixtures have been assayed with the Shuffler system. (Auth.)

  10. Applications of the ANSI/ANS standard on the storage of fissile materials

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1985-01-01

    The American National Standard ''Guide for Nuclear Criticality Safety in the Storage of Fissile Materials,'' ANSI/N16.5-1975 is the subject of this paper. The 'Guide' was reaffirmed in 1982. The technical bases for the conditions and requirements are discussed. Suggestions for applications and several general problems addressed by the Guide are presented. The development of information needed for future extensions of the area of applicability is given

  11. Canyon transfer neutron absorber to fissile material ratio analysis. Revision 1

    International Nuclear Information System (INIS)

    Clemmons, J.S.

    1994-01-01

    Waste tank fissile material and non-fissile material estimates are used to evaluate criticality safety for the existing sludge inventory and batches of sludge sent to Extended Sludge Processing (ESP). This report documents the weight ratios of several non-fissile waste constituents to fissile waste constituents from canyon reprocessing waste streams. Weight ratios of Fe, Mn, Al, Mi, and U-238 to fissile material are calculated from monthly loss estimates from the F and H Canyon Low Heat Waste (LHW) and High Heat Waste (HHW) streams. The monthly weight ratios for Fe, Mn and U-238 are then compared to calculated minimum safe weight ratios. Documented minimum safe weight ratios for Al and Ni to fissile material are currently not available. Total mass data for the subject sludge constituents is provided along with scatter plots of the monthly weight ratios for each waste stream

  12. Mathematical model for choosing the nuclear safe matrix compositions for fissile material immobilization

    International Nuclear Information System (INIS)

    Gorshtein, A.I.; Matyunin, Yu.I.; Poluehktov, P.P.

    2000-01-01

    A mathematical model is proposed for preliminary choice of the nuclear safe matrix compositions for fissile material immobilization. The IBM PC computer software for nuclear safe matrix composition calculations is developed. The limiting concentration of fissile materials in the some used and perspective nuclear safe matrix compositions for radioactive waste immobilization is calculated [ru

  13. Verification of classified fissile material using unclassified attributes

    International Nuclear Information System (INIS)

    Nicholas, N.J.; Fearey, B.L.; Puckett, J.M.; Tape, J.W.

    1998-01-01

    This paper reports on the most recent efforts of US technical experts to explore verification by IAEA of unclassified attributes of classified excess fissile material. Two propositions are discussed: (1) that multiple unclassified attributes could be declared by the host nation and then verified (and reverified) by the IAEA in order to provide confidence in that declaration of a classified (or unclassified) inventory while protecting classified or sensitive information; and (2) that attributes could be measured, remeasured, or monitored to provide continuity of knowledge in a nonintrusive and unclassified manner. They believe attributes should relate to characteristics of excess weapons materials and should be verifiable and authenticatable with methods usable by IAEA inspectors. Further, attributes (along with the methods to measure them) must not reveal any classified information. The approach that the authors have taken is as follows: (1) assume certain attributes of classified excess material, (2) identify passive signatures, (3) determine range of applicable measurement physics, (4) develop a set of criteria to assess and select measurement technologies, (5) select existing instrumentation for proof-of-principle measurements and demonstration, and (6) develop and design information barriers to protect classified information. While the attribute verification concepts and measurements discussed in this paper appear promising, neither the attribute verification approach nor the measurement technologies have been fully developed, tested, and evaluated

  14. Portal monitoring for detecting fissile materials and chemical explosives

    International Nuclear Information System (INIS)

    Albright, D.

    1992-01-01

    The portal monitoring of pedestrians, packages, equipment, and vehicles entering or leaving areas of high physical security has been common for many years. Many nuclear facilities rely on portal monitoring to prevent the theft or diversion of plutonium and highly enriched uranium. At commercial airports, portals are used to prevent firearms and explosives from being smuggled onto airplanes. An August 1989 Federal Aviation Administration (FAA) regulation requires US airlines to screen luggage on international flights for chemical explosives. This paper reports that portal monitoring is now being introduced into arms-control agreements. Because some of the portal-monitoring equipment that would be useful in verifying arms-control agreements is already widely used as part of the physical security systems at nuclear facilities and commercial airports, the authors review these uses of portal monitoring, as well as its role in verifying the INF treaty. Then the authors survey the major types of portal-monitoring equipment that would be most useful in detecting nuclear warheads or fissile material

  15. Immobilization as a route to surplus fissile materials disposition

    International Nuclear Information System (INIS)

    Gray, L.W.; Kan, T.

    1995-01-01

    In the aftermath of the Cold War, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, DOE has undertaken a multifaceted study to select options for storage and disposition of plutonium (Pu) in keeping with the national policy that Pu must be subjected to the highest standards of safety, security, and accountability. One alternative being considered is immobilization. To arrive at a suitable immobilization form, the authors first reviewed published information on high-level waste (HLW) immobilization technologies in order to identify 72 possible Pu immobilization forms to be prescreened. Surviving forms were screened using multiattribute analysis to determine the most promising technologies. Promising immobilization families were further evaluated to identify chemical, engineering, environmental, safety, and health problems that remain to be solved prior to making technical decisions as to the viability of using the form for long-term disposition of plutonium. All data, analyses, and reports are being provided to the DOE Fissile Materials Disposition Project Office to support the Record of Decision that is anticipated in the fourth quarter of FY96

  16. The mass transfer mechanism of fissile material due to fission

    International Nuclear Information System (INIS)

    Shafrir, N.H.

    1975-01-01

    A thin 252 Cf source of a mean thickness of an approXimately mono-atomic layer was used as an experimental model for the study of the basic mechanism of the knock-on process taking place in fissile material. Because of the thinness of the source it can be assumed that mainly primary knock-ons are formed. The ejection rate of knock-ons created by direct collisions between fission fragments and source atoms was measured as follows: the ejected atoms were collected in high vacuum on a catcher foil and 252 Cf determined by alpha spectroscopy using a silicon surface barrier detector. The number of 252 Cf ejected from the source in unit time could thus be determined while considering the anisotropy of ejection, geometry and counting efficiency. Taking into account the chemical composition of the source, eta(theor.) = 252 Cf atoms/fission was obtained. This result can be considered in reasonable agreement with experiment confirming that under the experimental conditions described, practically no knock-on cascade is formed. (B.G.)

  17. R ampersand D plan for immobilization technologies: fissile materials disposition program. Revision 1.0

    International Nuclear Information System (INIS)

    Shaw, H.F.; Armantrout, G.A.

    1996-09-01

    In the aftermath of the Cold War, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long- term fissile material management options, the Department of Energy's Fissile Materials Disposition Program (FMDP) is conducting studies of options for the storage and disposition of surplus plutonium (Pu). One set of alternatives for disposition involve immobilization. The immobilization alternatives provide for fixing surplus fissile materials in a host matrix in order to create a solid disposal form that is nuclear criticality-safe, proliferation-resistant and environmentally acceptable for long-term storage or disposal

  18. Fuel costs of a light water reactor with fissile material recycling

    International Nuclear Information System (INIS)

    Clauss, J.

    1984-01-01

    In the light of the present prices of natural uranium and separative work and fabrication costs, savings can be achieved by reloading recycled fissile material. As in all recycling techniques, the product recovered cannot meet the whole new requirement. No excessive economic expectations should be associated with fissile material recycling in ligth water reactors. The main advantages of the procedure are the conservation of resources and the safety against proliferation. Besides, the original purpose of reprocessing should not be forgotten, i.e., in addition to the recycling of fissile material, to have a safe and easy method of secular disposal of high level waste (concentrated fission products). (orig.) [de

  19. Non-proliferation, safeguards, and security for the fissile materials disposition program immobilization alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, R.A.; Jaeger, C.D.; Tolk, K.M. [Sandia National Labs., Albuquerque, NM (United States); Moore, L.R. [Lawrence Livermore National Lab., CA (United States)

    1996-05-01

    The Department of Energy is analyzing long-term storage and disposition alternatives for surplus weapons-usable fissile materials. A number of different disposition alternatives are being considered. These include facilities for storage, conversion and stabilization of fissile materials, immobilization in glass or ceramic material, fabrication of fissile material into mixed oxide (MOX) fuel for reactors, use of reactor based technologies to convert material into spent fuel, and disposal of fissile material using geologic alternatives. This paper will focus on how the objectives of reducing security and proliferation risks are being considered, and the possible facility impacts. Some of the areas discussed in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threats, and (4) potential proliferation, safeguards, and security issues and impacts on the facilities. Issues applicable to all of the possible disposition alternatives will be discussed in this paper. However, particular attention is given to the plutonium immobilization alternatives.

  20. Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste

    Science.gov (United States)

    Batyaev, V. F.; Skliarov, S. V.

    2018-01-01

    The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW). The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration), meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g) confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.

  1. Update to the Fissile Materials Disposition program SST/SGT transportation estimation

    International Nuclear Information System (INIS)

    John Didlake

    1999-01-01

    This report is an update to ''Fissile Materials Disposition Program SST/SGT Transportation Estimation,'' SAND98-8244, June 1998. The Department of Energy Office of Fissile Materials Disposition requested this update as a basis for providing the public with an updated estimation of the number of transportation loads, load miles, and costs associated with the preferred alternative in the Surplus Plutonium Disposition Final Environmental Impact Statement (EIS)

  2. Exploiting Fission Chain Reaction Dynamics to Image Fissile Materials

    Science.gov (United States)

    Chapman, Peter Henry

    Radiation imaging is one potential method to verify nuclear weapons dismantlement. The neutron coded aperture imager (NCAI), jointly developed by Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL), is capable of imaging sources of fast (e.g., fission spectrum) neutrons using an array of organic scintillators. This work presents a method developed to discriminate between non-multiplying (i.e., non-fissile) neutron sources and multiplying (i.e., fissile) neutron sources using the NCAI. This method exploits the dynamics of fission chain-reactions; it applies time-correlated pulse-height (TCPH) analysis to identify neutrons in fission chain reactions. TCPH analyzes the neutron energy deposited in the organic scintillator vs. the apparent neutron time-of-flight. Energy deposition is estimated from light output, and time-of-flight is estimated from the time between the neutron interaction and the immediately preceding gamma interaction. Neutrons that deposit more energy than can be accounted for by their apparent time-of-flight are identified as fission chain-reaction neutrons, and the image is reconstructed using only these neutron detection events. This analysis was applied to measurements of weapons-grade plutonium (WGPu) metal and 252Cf performed at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) in July 2015. The results demonstrate it is possible to eliminate the non-fissile 252Cf source from the image while preserving the fissileWGPu source. TCPH analysis was also applied to additional scenes in which theWGPu and 252Cf sources were measured individually. The results of these separate measurements further demonstrate the ability to remove the non-fissile 252Cf source and retain the fissileWGPu source. Simulations performed using MCNPX-PoliMi indicate that in a one hour measurement, solid spheres ofWGPu are retained at a 1sigma level for neutron multiplications M -˜ 3.0 and above, while hollowWGPu spheres are

  3. Proliferation resistance criteria for fissile material disposition issues

    International Nuclear Information System (INIS)

    Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A.; Tolk, K.M.; Mangan, D.L.; Moore, L.

    1995-01-01

    The 1994 National Acdaemy of Sciences study ''Management and Disposition of Excess Weapons Plutonium'' defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ''Standards'' from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials

  4. Requirements for timber and cadmium used in shielding for fissile material transport packaging

    International Nuclear Information System (INIS)

    1982-02-01

    This Code of Practice has been prepared as a guide for designers who require packaging for fissile materials. It should be noted that this document covers design requirements only and it is not a manufacturing specification which can be quoted on a manufacturing contract without qualification. Compliance with the regulations regarding the safe transport of fissile materials may be achieved by the provision of an effective shield embodying:- (a) a moderating material -usually one rich in hydrogen, such as wood - in order to thermalise incoming neutrons, and (b) a material - such as cadmium - with a large absorption cross-section for thermal neutrons, located between the moderator and the fissile material, in order to capture the incoming neutrons. This Code describes the requirements in two sections, one for each of these materials. (author)

  5. Standard problem exercise to validate criticality codes for large arrays of packages of fissile materials

    International Nuclear Information System (INIS)

    Whitesides, G.E.; Stephens, M.E.

    1986-01-01

    A study has been conducted by an Office of Economic Cooperation and Development-Committee on the Safety of Nuclear Installations (OECD-CSNI) Working Group that examined computational methods used to compute k/sub eff/ for large greater than or equal to5 3 arrays of fissile material (in which each unit is a substantial fraction of a critical mass). Five fissile materials that might typically be transported were used in the study. The ''packages'' used for this exercise were simplified to allow studies unperturbed by the variety of structural materials which would exist in an actual package. The only material present other than the fissile material was a variation in the moderator (water) surrounding the fissile material. Consistent results were obtained from calculations using several computational methods. That is, when the bias demonstrated by each method for actual critical experiments was used to ''correct'' the results obtained for systems for which there were no experimental data, there was good agreement between the methods. Two major areas of concern were raised by this exercise. First, the lack of experimental data for arrays with size greater than 5 3 limits validation for large systems. Second, there is a distinct possibility that the comingling of two shipments of unlike units could result in a reduction of the safety margins. Additional experiments and calculations will be required to satisfactorily resolve the remaining questions regarding the safe transport of large arrays of fissile materials

  6. IAEA verification of weapon-origin fissile material in the Russian Federation and the United States

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: Russian Federation Minister of Atomic Energy Alexander Rumyantsev, United States Secretary of Energy Spencer Abraham and Director General of the International Atomic Energy Agency (IAEA) Mohamed ElBaradei met in Vienna on 16 September 2002 to review the status of the Trilateral Initiative and agree on its future direction. The parties concluded that the task entrusted to the Trilateral Initiative Working Group in 1996 has been fulfilled. The work completed has demonstrated practical approaches for IAEA verification of weapon-origin fissile material designated as released from defence programmes in classified forms or at certain sensitive facilities. The work included the examination of technical, legal and financial issues associated with such verification. The removal of weapon-origin fissile material from defence programmes of the Russian Federation and the United States is in furtherance of the commitment to disarmament steps undertaken by the two States pursuant to Article VI of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). IAEA verification of the materials declared excess to nuclear weapons programmes and made subject to this Initiative would build international confidence that this material will never again be used in nuclear weapons. Minister Rumyantsev, Secretary Abraham and Director General ElBaradei recognized the value of the groundbreaking work completed over the last six years. Building on the work completed, they directed the technical experts to begin without delay discussions on future possible cooperation within the trilateral format. Minister Rumyantsev, Secretary Abraham and Director General ElBaradei agreed that the Principals would meet again in September 2003 to review progress within the trilateral format. (IAEA)

  7. Fissile material detection and control facility with pulsed neutron sources and digital data processing

    International Nuclear Information System (INIS)

    Romodanov, V.L.; Chernikova, D.N.; Afanasiev, V.V.

    2010-01-01

    Full text: In connection with possible nuclear terrorism, there is long-felt need of devices for effective control of radioactive and fissile materials in the key points of crossing the state borders (airports, seaports, etc.), as well as various customs check-points. In International Science and Technology Center Projects No. 596 and No. 2978, a new physical method and digital technology have been developed for the detection of fissile and radioactive materials in models of customs facilities with a graphite moderator, pulsed neutron source and digital processing of responses from scintillation PSD detectors. Detectability of fissile materials, even those shielded with various radiation-absorbing screens, has been shown. The use of digital processing of scintillation signals in this facility is a necessary element, as neutrons and photons are discriminated in the time dependence of fissile materials responses at such loads on the electronic channels that standard types of spectrometers are inapplicable. Digital processing of neutron and photon responses practically resolves the problem of dead time and allows implementing devices, in which various energy groups of neutrons exist for some time after a pulse of source neutrons. Thus, it is possible to detect fissile materials deliberately concealed with shields having a large cross-section of absorption of photons and thermal neutrons. Two models of detection and the control of fissile materials were advanced: 1. the model based on graphite neutrons moderator and PSD scintillators with digital technology of neutrons and photons responses separation; 2. the model based on plastic scintillators and detecting of time coincidences of fission particles by digital technology. Facilities that count time coincidences of neutrons and photons occurring in the fission of fissile materials can use an Am Li source of neutrons, e.g. that is the case with the AWCC system. The disadvantages of the facility are related to the issues

  8. Underground autocatalytic-criticality potential and its implications to weapons fissile- material disposition

    International Nuclear Information System (INIS)

    Choi, J.-S.

    1998-01-01

    Several options for weapons fissile-material disposition, such as once-through mixed- oxide (MOX) fuel in reactors or immobilisation in waste glass, would result in end products requiring geologic disposal. The criticality potential of the fissile end products containing U-235 and Pu-239 and the associated consequences in a geologic setting are important considerations for the final disposal of these materials. The possibility of underground criticality, and especially autocatalytic criticality, is affected by (1) groundwater leaking into a failed waste container, (2) preferential leaching of neutron absorbers or of fissile material from a failed container, and (3) preferential deposition of fissile material in the surrounding rock. Bowman and Venneri have pointed out that fissile material mixed with varying compositions of water and silica can undergo a nuclear chain reaction. Some configurations can become autocatalytically supercritical resulting in considerable energy release, terminated finally by disassembly. Some reviews rejected the Bowman and Venneri warning as implausible because of low probabilities of scenarios that could lead to such configurations. Sanchez et al. reported possible supercritical conditions in systems of Pu-SiO 2 -H 2 O and Pu-tuff-H 2 O but concluded that the probability of forming such combinations is extremely low. Kastenberg et al. studied the potential for autocatalytic criticality of plutonium or highly enriched uranium in the proposed Yucca Mountain geologic repository. They concluded that plutonium or uranium could, theoretically, become supercritical, but that such criticality is unlikely given the hydrology, geology and geochemistry of the Yucca Mountain site. These studies are not definitive. The possibility of criticality exists. Detailed mechanisms have not been sufficiently studied for clear conclusions on the probabilities of occurrence. More technical analysis is needed to understand the potential for underground

  9. The role of congress in future disposal of fissile materials from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Donnelly, W.H.; Davis, Z.S.

    1991-01-01

    Assuming the Soviet Union remains intact as a major power and the superpowers do not retrogress to a new Cold War era, it is likely that the United States and the Soviet Union will eventually agree to deep cuts in their nuclear arsenals. Future arms control agreements may be coupled with companion agreements to stop production of fissile materials for nuclear weapons, to dismantle the warheads of the nuclear weapons, and to dispose of their fissile materials to prevent reuse in new warheads. Such agreements would be negotiated by the U.S. executive branch but probably would require ratification, funding, and enabling legislation from the U.S. Congress if they are to succeed. There follows a brief review of the ideas for disposal of fissile materials from dismantled nuclear warheads and the potential role and influence of the Congress in the negotiation, ratification, and implementation of U.S.-Soviet agreements for such disposal

  10. Verification arrangements for the proposed fissile material cut-off treaty

    International Nuclear Information System (INIS)

    Bragin, V.

    2001-01-01

    Since the mid-1950's, an agreement to terminate the production of fissile material for nuclear weapons has been on the agenda. On December 16, 1993, the UNGA adopted Resolution A/RES/48/75/L which recommends ''the negotiation in the most appropriate international forum of a non-discriminatory, multilateral and internationally and effectively verifiable treaty banning the production of fissile material for nuclear weapons and other nuclear explosive devices''. The proposed Fissile Material Cut-off Treaty (FMCT) is still one of the most important items on the multilateral disarmament and non-proliferation agenda. Successful achievement of the FMCT would be an important step towards the goal of eliminating nuclear weapons. (author)

  11. Criticality Safety in the Handling of Fissile Material. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    This Safety Guide provides guidance and recommendations on how to meet the relevant requirements for ensuring subcriticality when dealing with fissile material and for planning the response to criticality accidents. The guidance and recommendations are applicable to both regulatory bodies and operating organizations. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences of this if it were to occur. The Safety Guide makes recommendations on how to ensure subcriticality in systems involving fissile materials during normal operation, anticipated operational occurrences, and, in the case of accident conditions, within design basis accidents, from initial design through commissioning, operation, and decommissioning and disposal.

  12. Studies of neutron methods for process control and criticality surveillance of fissile material processing facilities

    International Nuclear Information System (INIS)

    Zoltowski, T.

    1988-01-01

    The development of radiochemical processes for fissile material processing and spent fuel handling need new control procedures enabling an improvement of plant throughput. This is strictly related to the implementation of continuous criticality control policy and developing reliable methods for monitoring the reactivity of radiochemical plant operations in presence of the process perturbations. Neutron methods seem to be applicable for fissile material control in some technological facilities. The measurement of epithermal neutron source multiplication with heuristic evaluation of measured data enables surveillance of anomalous reactivity enhancement leading to unsafe states. 80 refs., 47 figs., 33 tabs. (author)

  13. Long-term criticality safety concerns associated with surplus fissile material disposition

    International Nuclear Information System (INIS)

    Choi, J.S.

    1995-01-01

    A substantial inventory of surplus fissile material would result from ongoing and planned dismantlement of US and Russian nuclear weapons. This surplus fissile material could be dispositioned by irradiation in nuclear reactors, and the resulting spent MOx fuel would be similar in radiation characteristics to regular LWR spent UO2 fuel. The surplus fissile material could also be immobilized into high-level waste forms, such as borosilicate glass, synroc, or metal-alloy matrix. The MOx spent fuel, or the immobilized waste forms, could then be directly disposed of in a geologic repository. Long-term criticality safety concerns arise because the fissile contents (i.e., Pu-239 and its decay daughter U-235) in these waste forms are higher than in LWR spent UO2 fuel. MOx spent fuel could contain 3 to 4 wt% of reactor-grade plutonium, compared to only 0.9 wt% of plutonium in LWR spent UO2 fuel. At some future time (tens of thousand of years), when the waste forms had deteriorated due to intruding groundwater, the water could mix with the long-lived fissile materials to form into a critical system. If the critical system is self-sustaining, somewhat like the natural-occurring reactor in OKLO, fission products produced could readily be available for dissolution and release out to the accessible environment, adversely affecting public health and safety. This paper will address ongoing activities to evaluate long-term criticality safety concerns associated with disposition of fissile material in a geologic setting. Issues to be addressed include the identification of a worst-case water-intrusion scenario and waste-form geometries which present the most concern for long-term criticality safety; and suggests of technical solutions for such concerns

  14. Implementation of safeguards and security for fissile materials disposition reactor alternative facilities

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1995-01-01

    A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material

  15. The molten salt reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined and is found very suitable for the beneficial use of this fuel. MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus, MSRs are flexible while maintaining their economy. Furthermore, MSRs require only a minimum of special fuel preparation. They can tolerate denaturing and dilution of their fuel. The size of fuel shipments can be determined to optimize safety and security-all of which supports nonproliferation and resists diversion. In addition, MSRs have inherent safety features that make them acceptable and attractive. They can burn fissile material completely or can convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems in the deployment of nuclear power

  16. The back-end management of fissile material at SCK-CEN

    International Nuclear Information System (INIS)

    Noynaert, L.; Massaut, V.; Braeckeveldt, M.

    1999-01-01

    The back-end management of fissile materials at SCK-CEN mainly concerns the HEU spent fuel of the BR2 (MTR) and the LEU and MOX spent fuel of the BR3, the first PWR installed in Western Europe and in decommissioning since 1987. It also concerns the experimental fuels tested in the SCK-CEN facilities. Furthermore as a result of its R and D programs in reprocessing and characterisation of spent fuel, considerable amounts of fissile materials in all kinds of forms and characteristics are stored in the different laboratories. For these, six main types of fissile materials are identified: highly enriched uranium, experimental spent fuel from the fast breeder programmes, MOX fuel, low enriched fuel, natural uranium and lab fissile materials. For the BR2 and BR3 spent fuel, various options, i.e. reprocessing, dry storage in casks and dry storage in canisters were evaluated against criteria, e.g. available techniques, safety, waste production, overall costs and policies. As a result of these studies, it was decided to opt in the case of the HEU from the BR2 reactor for the reprocessing without recovery of uranium while for the LEU and MOX fuel from the BR3 reactor, the dry storage in containers was chosen. For the others, the studies are still in progress. (author)

  17. Transfer of fissile material through shielding coatings in emergency heating of HTGR coated particles

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Zhuravkov, S.G.; Koptev, M.A.; Kurepin, A.D.

    1990-01-01

    The measurement results of leakage dynamics of fissile material from the coated particles within a temperature range of 1200 + 2000 deg. C are given. The methods of carrying out the experiments are briefly described. The relation of the leakage rate of uranium-235 from CP (coated particles) with the pyrocarbonic coatings has been obtained. (author)

  18. Recommended nuclear criticality safety experiments in support of the safe transportation of fissile material

    International Nuclear Information System (INIS)

    Tollefson, D.A.; Elliott, E.P.; Dyer, H.R.; Thompson, S.A.

    1993-01-01

    Validation of computer codes and nuclear data (cross-section) libraries using benchmark quality critical (or certain subcritical) experiments is an essential part of a nuclear criticality safety evaluation. The validation results establish the credibility of the calculational tools for use in evaluating a particular application. Validation of the calculational tools is addressed in several American National Standards Institute/American Nuclear Society (ANSI/ANS) standards, with ANSI/ANS-8.1 being the most relevant. Documentation of the validation is a required part of all safety analyses involving significant quantities of fissile materials. In the case of transportation of fissile materials, the safety analysis report for packaging (SARP) must contain a thorough discussion of benchmark experiments, detailing how the experiments relate to the significant packaging and contents materials (fissile, moderating, neutron absorbing) within the package. The experiments recommended in this paper are needed to address certain areas related to transportation of unirradiated fissile materials in drum-type containers (packagings) for which current data are inadequate or are lacking

  19. Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2018-01-01

    Full Text Available The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW. The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration, meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.

  20. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Standards for arrays of fissile material packages. 71.59 Section 71.59 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE.... The value of the CSI may be zero provided that an unlimited number of packages are subcritical, such...

  1. Safeguard and security issues for the U.S. Fissile Materials Disposition Program

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Moya, R.W.; Duggan, R.A.

    1995-01-01

    The Department of Energy's Office of Materials Disposition (MD) is analyzing long-term storage and disposition options for fissile materials, preparing a Programmatic Environmental Impact Statement (PEIS), preparing for a Record of Decision (ROD) regarding this material, and conducting other related activities. A primary objective of this program is to support U.S. nonproliferation policy by reducing major security risks. Particular areas of concern are the acquisition of this material by unauthorized persons and preventing the reintroduction of the material for use in weapons. This paper presents some of the issues, definitions, and assumptions addressed by the Safeguards and Security Project Team in support of the Fissile Materials Disposition Program (FMDP). The discussion also includes some preliminary ideas regarding safeguards and security criteria that are applicable to the screening of disposition options

  2. Safeguards and security issues for the U.S. Fissile Materials Disposition Program

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Moya, R.W.; Duggan, R.A.

    1995-01-01

    The Department of Energy's Office of Materials Disposition (MD) is analyzing long-term storage and disposition options for fissile materials, preparing a Programmatic Environmental Impact Statement (PEIS), preparing for a Record of Decision (ROD) regarding this material, and conducting other related activities. A primary objective of this program is to support US nonproliferation policy by reducing major security risks. Particular areas of concern are the acquisition of this material by unauthorized persons and preventing the reintroduction of the material for use in weapons. This paper presents some of the issues, definitions, and assumptions addressed by the Safeguards and Security Project Team in support of the Fissile Materials Disposition Program (FMDP). The discussion also includes some preliminary ideas regarding safeguards and security criteria that are applicable to the screening of disposition options

  3. Fissile materials and international security in the post-Cold War world

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    It is essential that members of industry, government and international organizations be able to come together to discuss the latest developments in this vital field at events such as this. Given the number of years this organization has devoted to the issue, the INMM must find it interesting that the control of fissile materials has become such a high-profile issue in the policy and political communities. But, this evolution in policy is a natural outgrowth of the changing world situation. While just 10 years ago the US and Soviet Union were churning out the fissile materials needed for weapons, today these former rivals are working together, hand in hand, to corral the danger posed by these materials. And, while it is clear that the world no longer lives on the edge of nuclear war, the nuclear danger still exists, though in a less obvious and perhaps more insidious form. It is a great challenge in this post-Cold War world to contain this nuclear threat. It is prudent and necessary for the US to be in the forefront of efforts to address and tame this problem. The fundamental threat posed by the proliferation of nuclear weapons and materials is a direct challenge to US and world security. President Clinton has clearly recognized the changed nature of the nuclear danger. To meet this challenge, he has labored to put in place a comprehensive and integrated plan for addressing this threat. The US Department of Energy has a unique role in this effort because, as an institution with many decades of experience in fissile material matters, it is able to provide expertise and technical analyses that are essential in defining and implementing policy prescriptions. The president's comprehensive plan to prevent nuclear proliferation and reduce the danger posed by weapons-usable nuclear materials has four essential elements: secure existing nuclear material stockpiles; limit fissile material production and use, eliminate warheads, and strengthen the nonproliferation regime

  4. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Ferrada, J.J.

    1996-01-01

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials

  5. Processing fissile material mixtures containing zirconium and/or carbon

    Science.gov (United States)

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  6. India and the fissile material cut-off treaty: policy options

    International Nuclear Information System (INIS)

    Nayan, Rajiv

    2011-01-01

    The international community inside and outside the Conference of Disarmament is underscoring the need for concluding a fissile material cut-off treaty (FMCT). The Indian government, for a long period, has been sponsoring the idea. Notwithstanding the international stagnation, the issue has been instigating periodic debate in India on the Indian approach. The periodic revival of the issue requires that India revisit its policy on fissile material production as well as its approach towards a possible EVICT. This article examines the question: should India's approach to conclude an FMCT be within the UN institutional framework? The new international reality is pushing for a new context, new realignments and a fresh outlook for an FMCT. India should take its own time to support conclusion of an FMCT so that its national interests and security are not adversely affected. (author)

  7. Update on Monitoring Technologies for International Safeguards and Fissile Material Verification

    International Nuclear Information System (INIS)

    Croessmann, C. Dennis; Glidewell, Don D.; Mangan, Dennis L.; Smathers, Douglas C.

    1999-01-01

    Monitoring technologies are playing an increasingly important part in international safeguards and fissile material verification. The developments reduce the time an inspector must spend at a site while assuring continuity of knowledge. Monitoring technologies' continued development has produced new seal systems and integrated video surveillance advances under consideration for Trilateral Initiative use. This paper will present recent developments for monitoring systems at Embalse, Argentina, VNHEF, Sarov, Russian, and Savannah River Site, Aiken, South Carolina

  8. A review of the prospects for fusion breeding of fissile material

    International Nuclear Information System (INIS)

    Geiger, J.S.; Bartholomew, G.A.

    1981-10-01

    This report is the result of an eight month study by the AECL Fusion Status Study Group. The objectives of this study were to review the current status of fusion research, to evaluate the neutronic performance of various fusion-breeder systems, and to assess the economic and technological outlook for the fusion breeder as a source of fissile material to support CANDU reactors operating on the thorium fuel cycle

  9. Unified instrumentation for determining fissile and radioactive materials

    International Nuclear Information System (INIS)

    Voronov, V.L.; Gorokhov, V.A.; Drozdov, V.Yu.; Morozov, O.S.; Novikov, V.M.

    1999-01-01

    The instrumentation is aimed to equip various facilities: nuclear facilities (including radioactive plant and nuclear material storages), border check stations at the customs, transport junctions, administrative buildings and other facilities. The monitor under design are based on the gamma-spectrometric method of radiation monitoring which consists in recording and analyzing characteristics of X-ray and gamma-sources power spectra within the range of 40-3000 keV at the background level whose value is measured and taken into account during the signal analysis. The designed universal set of instrumentation based on common technical solutions and metrological support plus its small dimensions allows to install it actually in any check point without any significant changes in the room lay-out to facilitate its maintenance [ru

  10. Actualization of physical-chemical properties and criticality data of specific fissile materials

    International Nuclear Information System (INIS)

    Strauch, V.; Deutsch, K.H.

    1991-09-01

    The purpose of this project is to update the criticality curves contained in DIN 25 403, Parts 2-8. This report contains criticality data for aqueous uranium and plutonium systems of various concentrations for spherical, cylindrical and layer geometries. The critical dimensions were calculated with the single dimensional transport code XSDRNPM-S and the 27 group-library from Scale 3.1. A 30 cm thick water reflector was taken into account. The critical masses were obtained by multiplying the volume of a critical sphere with the fissile material concentration. The moderator/fissile material relationship for each of the investigated concentration ranges were described. Checks were made using experiments with comparable fissile material systems. Due to the complex geometry of some of the chosen experiments some calculation checks were carried out using the Monte-Carlo-Codes KENO IV-S and Va. The calculation results compared very well with the experiments. Comparison of the results with the currently valid DIN curves does not show any serious differences. The new values lie however slightly below the current values and therefore represent conservative values, so that the criticality curves of DIN 25 403, Parts 2-6 and 8 should be replaced. (orig./HP) [de

  11. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business, and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of the criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several competent authorities are involved, the approval and validation process of package design can often become a time-consuming, expensive and unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies. (author)

  12. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several Competent Authorities are involved, the approval and validation process of package design can often become time consuming, expensive and an unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies

  13. Verification of a Fissile Material Cut-off Treaty (FMCT): The Potential Role of the IAEA

    International Nuclear Information System (INIS)

    Chung, Jin Ho

    2016-01-01

    The objective of a future verification of a FMCT(Fissile Material Cut-off Treaty) is to deter and detect non-compliance with treaty obligations in a timely and non-discriminatory manner with regard to banning the production of fissile material for nuclear weapons or other nuclear devices. Since the International Atomic Energy Agency (IAEA) has already established the IAEA safeguards as a verification system mainly for Non -Nuclear Weapon States (NNWSs), it is expected that the IAEA's experience and expertise in this field will make a significant contribution to setting up a future treaty's verification regime. This paper is designed to explore the potential role of the IAEA in verifying the future treaty by analyzing verification abilities of the Agency in terms of treaty verification and expected challenges. Furthermore, the concept of multilateral verification that could be facilitated by the IAEA will be examined as a measure of providing a credible assurance of compliance with a future treaty. In this circumstance, it is necessary for the IAEA to be prepared for playing a leading role in FMCT verifications as a form of multilateral verification by taking advantage of its existing verification concepts, methods, and tools. Also, several challenges that the Agency faces today need to be overcome, including dealing with sensitive and proliferative information, attribution of fissile materials, lack of verification experience in military fuel cycle facilities, and different attitude and culture towards verification between NWSs and NNWSs

  14. Verification of a Fissile Material Cut-off Treaty (FMCT): The Potential Role of the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin Ho [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of a future verification of a FMCT(Fissile Material Cut-off Treaty) is to deter and detect non-compliance with treaty obligations in a timely and non-discriminatory manner with regard to banning the production of fissile material for nuclear weapons or other nuclear devices. Since the International Atomic Energy Agency (IAEA) has already established the IAEA safeguards as a verification system mainly for Non -Nuclear Weapon States (NNWSs), it is expected that the IAEA's experience and expertise in this field will make a significant contribution to setting up a future treaty's verification regime. This paper is designed to explore the potential role of the IAEA in verifying the future treaty by analyzing verification abilities of the Agency in terms of treaty verification and expected challenges. Furthermore, the concept of multilateral verification that could be facilitated by the IAEA will be examined as a measure of providing a credible assurance of compliance with a future treaty. In this circumstance, it is necessary for the IAEA to be prepared for playing a leading role in FMCT verifications as a form of multilateral verification by taking advantage of its existing verification concepts, methods, and tools. Also, several challenges that the Agency faces today need to be overcome, including dealing with sensitive and proliferative information, attribution of fissile materials, lack of verification experience in military fuel cycle facilities, and different attitude and culture towards verification between NWSs and NNWSs.

  15. Requirements for the transport of surplus fissile materials in the United States

    International Nuclear Information System (INIS)

    Wilson, R.K.

    1995-01-01

    This paper discusses the requirements and issues associated with the transportation of surplus fissile materials in the United States. The paper describes the materials that will be transported, the permissible modes of transport for these materials, and the safety and security requirements for each mode of transport. The paper also identifies transportation issues associated with these requirements, including the differences in requirements corresponding to who owns the material and whether the transport is on-site or off-site. Finally, the paper provides a discussion that suggests that by adopting the spent fuel standard and stored weapon standard proposed by the National Academy of Sciences, the requirements for transportation become straightforward

  16. Disposition of excess fissile materials in deep boreholes

    International Nuclear Information System (INIS)

    Halsey, W.G.; Danker, W.; Morley, R.

    1995-09-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. Plutonium utilization options have in common the generation of high-level radioactive waste which will be disposed of in a mined geologic disposal system to be developed for spent reactor fuel and defense high level waste. Other final disposition forms, such as plutonium metal, plutonium oxide and plutonium immobilized without high-level radiation sources may be better suited to placement in a custom facility. This paper discusses a leading candidate for such a facility; deep (several kilometer) borehole disposition. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. The safety argument centers around ancient groundwater indicating lack of migration, and thus no expected communication with the accessible environment until the plutonium has decayed

  17. Experimental verification of neutron emission method for measuring of fissile material content in spent fuel

    International Nuclear Information System (INIS)

    Abou-Zaid, A.A.; Pytel, K.

    1999-01-01

    A non-destructive method of measurement of fissile nuclides content remained in spent fuel from research reactor is presented. The method, called the neutron emission one, is based on counting of fission neutrons emitted from fissile isotopes: 235 U, 239 Pu, 241 Pu. Fissions are induced mainly by neutrons supplied by the external neutron source. Another effects contribute also to the measured neutron population, e. g. source neutrons from penetrating the fuel without being captured and scattered, neutrons (α,n) reactions and from spontaneous fissions of actinides. Complexity of phenomena occurring within the measurement facility required the detailed numerical simulation and experimental studies prior design of ultimate measurement stand. In the previous paper, the results of Monte Carlo simulation on optimisation of measuring stand for neutron emission method were presented. On the basis of those results, the experimental stand for Maria reactor fuel investigation has been designed and manufactured. The present paper, being the continuation of previous one, contains the description of experimental facility and the results of measurements for the fresh fuel (without burnup) and the fuel mock-up (without fissile materials). Although some discrepancies were found between Monte Carlo and experimental results, the main conclusions concerning the optimal geometry of measuring facility have been confirmed. (author)

  18. Fissile material and international security in the post-Cold War world

    International Nuclear Information System (INIS)

    Luongo, K.N.

    1995-01-01

    Given the number of years this organization has devoted to the issue, the INMM must find it quite interesting that the control of fissile materials has become such a high profile issue in the policy and political communities. But, this evolution in policy is a natural outgrowth of the changing world situation. While just ten years ago the United States and the Soviet Union were churning out the fissile materials needed for weapons, today these former rivals are working together, hand in hand, to corral the danger posed by these materials. And, while it is clear that the world no longer lives on the edge of nuclear war, the nuclear danger still exists, though in a less obvious and perhaps more insidious form. It is a great challenge in this post Cold War-world to contain this nuclear threat. It is prudent and necessary for the United States to be in the forefront of efforts to address and tame this problem. The fundamental threat posed by the proliferation of nuclear weapons and materials is a direct challenge to US and world security. President Clinton has clearly recognized the changed nature of the nuclear danger. To meet this challenge, he also labored to put in place a comprehensive and integrated plan for addressing this threat. The Department of Energy has a unique role in this effort because, as an institution with man decades of experience in fissile material matters, it is able to provide expertise and technical analyses which are essential in defining and implementing policy prescriptions. The President's comprehensive plan to prevent nuclear proliferation and reduce the danger posed by weapons-usable nuclear materials has four essential elements: (1) secure existing stockpiles; (2) limit production and use; (3) eliminate warheads; and (4) strengthen the nonproliferation regime

  19. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    International Nuclear Information System (INIS)

    J.P. Nicot

    2000-01-01

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This

  20. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  1. Prospects for a fissile material cut-off: Achieving a successful NPT review process

    International Nuclear Information System (INIS)

    Kalinowski, M.

    1999-01-01

    Finding new and creative ways to overcome the current deadlock in progress in nuclear arms control became the most important question in the past year. For a long time it had been expected that after the conclusion of the Comprehensive Test Ban Treaty, the next step would be to ban production of fissile materials for weapon purposes. Three strategies are proposed for reaching relevant cut-off agreements. First suggests possible fore for achievement of relevant agreements, second is the proposal to begin with international register of inventories and production capabilities for all relevant nuclear materials, and the third one is ti identify equivalent steps obligatory for all the parties involved

  2. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2017-01-01

    Full Text Available The analysis of various non-destructive methods to control fissile materials (FM in large-size containers filled with radioactive waste (RAW has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one.

  3. Improvements of neutron activation techniques for the determination of fissile material concentrations

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.

    1987-01-01

    Certain experimental improvements, as variable sample size and irradiation position, automation and flexibility in radiation detection, broaden the measurable concentration range, increase the possible rate and accuracy of analysis and enlarge the application range of home-made nuclear analyzer for fissile material analysis by delayed fission neutron counting and for short-lived multielement analysis by neutron activation gamma-ray spectrometry. Intercomparisons of results by various methods and laboratories show the need for regular checks of techniques to ensure reliable measurements. (author)

  4. The preliminary design of real-time neutron fissile material monitoring system

    International Nuclear Information System (INIS)

    Shi Jun; Ren Zhongguo; Zhang Ming; Zhao Zhiping; Chen Qi

    2013-01-01

    In this paper we present the preliminary design to carry out real-time neutron fissile material monitoring system, The system includes hardware and data acquisition software. For the hardware, it is employed with He3 proportional tubes as neutron detectors, polyethylene as moderator, and, to achieve the remote counting, RM4036 counting modules are connected to the remote computer through the 485 ports. The software with real-time data display and storage, alarm and other functions are developed using Visual Basic 6.0. (authors)

  5. IAEA technical meeting on fissile material strategies for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy; Koyama, Kazutoshi

    2005-01-01

    A Technical Meeting (TM) on 'Fissile Material Management Strategies for Sustainable Nuclear Energy' was organized by the International Atomic Energy Agency (IAEA) in Vienna from 12 to 15 September 2005. Prior to the TM, three Working Groups (WG) composed of experts from 10 countries prepared Key Issues papers on: 1) Uranium Demand and Supply through 2050; 2) Back-end Fuel Cycle Options; and 3) Sustainable Nuclear Energy beyond 2050: Cross-cutting Issues. Some 36 papers, including 3 key issue papers, were presented during the TM in 3 different sessions. The present paper summarizes the deliberations of the TM. (author)

  6. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Science.gov (United States)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  7. A method for managing the storage of fissile materials using criticality indices

    International Nuclear Information System (INIS)

    Philbin, J.S.; Harms, G.A.

    1995-01-01

    This paper describes a method for criticality control at fissile material storage facilities. The method involves the use criticiality indices for storage canisters. The logic, methodology, and results for selected canisters are presented. A concept for an interactive computer program using the method is also introduced. The computer program can be used in real time (using precalulated data) to select a Criticality Index (CI) for a container when it is delivered to or packaged at a site. Criticality safety is assured by controlling the sum of the CIs at each storage location below a defined Emit value when containers are moved

  8. Fissile materials in solution concentration measured by active neutron interrogation; Mesure de concentration en matiere fissile dans les liquides par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-12-31

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a {sup 252} Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.). 6 refs.

  9. Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon

    2005-01-01

    A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams

  10. Proceedings from the Fissile Material Cut-off seminar in Stockholm

    International Nuclear Information System (INIS)

    Arbman, G.

    1998-01-01

    The Swedish Defence Research Establishment hosted an international expert seminar on the subject of verifying a prohibition of the production of fissile material for nuclear weapons purpose (cut-off) in Stockholm, June 3-5 1998. The objective of the seminar was to provide an opportunity for informal discussions among scientific and technical experts on various technical matters relating to the verification of a future Fissile Material Cut-off Treaty (FMCT). A stated aim of the seminar was to keep issues of scope to a minimum. Invited speakers and commentators were given an opportunity to present their views as written contributions. The present seminar proceedings are essentially the result of these views. In addition, short summaries of the discussions following each session are included. Although an attempt was made to be as complete and accurate as possible in reproducing these discussions, the editors apologise if some important points or statements have been omitted. If so, the main reason is that the documentation of the discussions were based on written notes, not taped recordings. Eight longer contributions have been separately indexed

  11. Proceedings from the Fissile Material Cut-off seminar in Stockholm

    Energy Technology Data Exchange (ETDEWEB)

    Arbman, G. [ed.

    1998-07-01

    The Swedish Defence Research Establishment hosted an international expert seminar on the subject of verifying a prohibition of the production of fissile material for nuclear weapons purpose (cut-off) in Stockholm, June 3-5 1998. The objective of the seminar was to provide an opportunity for informal discussions among scientific and technical experts on various technical matters relating to the verification of a future Fissile Material Cut-off Treaty (FMCT). A stated aim of the seminar was to keep issues of scope to a minimum. Invited speakers and commentators were given an opportunity to present their views as written contributions. The present seminar proceedings are essentially the result of these views. In addition, short summaries of the discussions following each session are included. Although an attempt was made to be as complete and accurate as possible in reproducing these discussions, the editors apologise if some important points or statements have been omitted. If so, the main reason is that the documentation of the discussions were based on written notes, not taped recordings. Eight longer contributions have been separately indexed.

  12. Non-proliferation issues for the disposition of fissile materials using reactor alternatives

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1996-01-01

    The Department of Energy (DOE) is analyzing long-term storage on options for excess weapons-usable fissile materials. A number of the disposition alternatives are being considered which involve the use of reactors. The various reactor alternatives are all very similar and include front-end processes that could convert plutonium to a usable form for fuel fabrication, a MOX fuel fab facility, reactors to bum the MOX fuel and ultimate disposal of spent fuel in some geologic repository. They include existing, partially completed, advanced or evolutionary light water reactors and Canadian deuterium uranium (CANDU) reactors. In addition to the differences in the type of reactors, other variants on these alternatives are being evaluated to include the location and number of the reactors, the location of the mixed oxide (MOX) fabrication facility, the ownership of the facilities (private or government) and the colocation and/or separation of these facilities. All of these alternatives and their variants must be evaluated with respect to non-proliferation resistance. Both domestic and international safeguards support are being provided to DOE's Fissile Materials Disposition Program (FMDP) and includes such areas as physical protection, nuclear materials accountability and material containment and surveillance. This paper will focus on how the non-proliferation objective of reducing security risks and strengthening arms reduction will be accomplished and what some of the nonproliferation issues are for the reactor alternatives. Proliferation risk has been defined in terms of material form, physical environment, and the level of security and safeguards that is applied to the material. Metrics have been developed for each of these factors. The reactor alternatives will be evaluated with respect to these proliferation risk factors at each of the unit process locations in the alternative

  13. Non-proliferation issues for the disposition of fissile materials using reactor alternatives

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1996-01-01

    The Department of Energy (DOE) is analyzing long-term storage imposition options for excess weapons-usable fissile materials. A number of the disposition alternatives are being considered which involve the use of reactors. The various reactor alternatives are all very similar and include front-end processes that could convert plutonium to a usable form for fuel fabrication, a MOX fuel fab facility, reactors to burn the MOX fuel and ultimate disposal of spent fuel in some geologic repository. They include existing, partially completed, advanced or evolutionary light water reactors and Canadian deuterium uranium (CANDU) reactors. In addition to the differences in the type of reactors, other variants on these alternatives are being evaluated to include the location and number of the reactors, the location of the mixed oxide (MOX) fabrication facility, the ownership of the facilities (private or government) and the colocation and/or separation of these facilities. All of these alternatives and their variants must be evaluated with respect to non-proliferation resistance. Both domestic and international safeguards support are being provided to DOE's Fissile Materials Disposition Program (FMDP) and includes such areas as physical protection, nuclear materials accountability and material containment and surveillance. This paper will focus on how the non-proliferation objective of reducing security risks and strengthening arms reduction will be accomplished and what some of the non-proliferation issues are for the reactor alternatives. Proliferation risk has been defined in terms of material form, physical environment, and the level of security and safeguards that is applied to the material. Metrics have been developed for each of these factors. The reactor alternatives will be evaluated with respect to these proliferation risk factors at each of the unit process locations in the alternative

  14. Device for characterization of fissile materials comprising at least a neutron detector embedded inside a scintillator for gamma radiation detection

    International Nuclear Information System (INIS)

    Bernard, P.; Dherbey, J.R.; Bosser, R.; Berne, R.

    1989-01-01

    Fissile materials, for instance in radioactive wastes, are characterized by measurement of prompt and delayed neutrons and gamma radiation from induced fission by a neutron source. Gamma radiation is detected with a scintillation detector associated to a photomultiplier, the scintillation material is at the same time a moderator for thermalization of fast neutrons emitted by the neutron source and also of neutrons from spontaneous fission, (α, n) reactions and neutrons from induced fission in the fissile material. Preferentially the moderator is made of Altustipe (Plexiglas with anthracene as additive) [fr

  15. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-01-01

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L III edge and XANES from the cerium L II edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO 2 , with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  16. Calculation of multiplication factors regarding criticality aiming at the storage of fissile material

    International Nuclear Information System (INIS)

    Lima Barros, M. de.

    1982-04-01

    The multiplication factors of several systems with low enrichment, 3,5% and 3,2% in the isotope 235 U, aiming at the storage of fuel of ANGRA-I and ANGRA II, through the method of Monte Carlo, by the computacional code KENO-IV and the library of section of cross Hansen - Roach with 16 groups of energy. The method of Monte Carlo is specially suitable to the calculation of the factor of multiplication, because it is one of the most acurate models of solution and allows the description of complex tridimensional systems. Various tests of sensibility of this method have been done in order to present the most convenient way of working with KENO-IV code. The safety on criticality of stores of fissile material of the 'Fabrica de Elementos Combustiveis ', has been analyzed through the method of Monte Carlo. (Author) [pt

  17. Non-destructive assay of fissile materials by detection and multiplicity analysis of spontaneous neutrons

    International Nuclear Information System (INIS)

    Prosdocimi, A.

    1979-01-01

    A method for determining the absolute reaction rate of nuclear events giving rise to neutron emission, according to their neutron multiplicity, is proposed. A typical application is the measurement of the (α, n) and spontaneous fission rates in a fissile material sample, particularly of Pu oxide composition. An analysis of random and correlated neutron pulses is carried out on the basis of sequential order without requiring any time interval analysis, then the primary nuclear events are sorted versus their neutron multiplicity. Suitable theoretical relationships enable to derive the absolute (α, n) and SF reaction rates when the physical parameters of the neutron detector and the multiplicity spectrumm of pulses are known. A typical device is described and the results of experiments leading to Pu-239 and Pu-240 assay are given

  18. Safety analysis report: packages 238Pu oxide shipping cask (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Evans, J.E.; Gates, A.A.

    1975-06-01

    Plutonium-238 (as PuO 2 powder) is shipped in triple-container stainless steel shipping casks in compliance with ERDA Manual Chapter 0529 (ERDAM 0529), Safety Standards for the Packaging of Fissile and Other Radioactive Materials. (U.S.)

  19. Safety analysis report for packages: packaging of fissile and other radioactive materials. Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-01-01

    The 9965, 9966, 9967, and 9968 packages are designed for surface shipment of fissile and other radioactive materials where a high degree of containment (either single or double) is required. Provisions are made to add shielding material to the packaging as required. The package was physically tested to demonstrate that it meets the criteria specified in USDOE Order No. 5480.1, chapter III, dated 5/1/81, which invokes Title 10, Code of Federal Regulations, Part 71 (10 CFR 71), Packing and Transportation of Radioactive Material, and Title 49, Code of Federal Regulations, Part 100-179, Transportation. By restricting the maximum normal operating pressure of the packages to less than 7 kg/cm 2 (gauge) (99 to 54 psig), the packages will comply with Type B(U) regulations of the International Atomic Energy Agency (IAEA) in its Regulations for the Safe Transport of Radioactive Materials, Safety Series No. 6, 1973 Revised Edition, and may be used for export and import shipments. These packages have been assessed for transport of up to 14.5 kilograms of uranium, excluding uranium-233, or 4.4 kilograms of plutonium metal, oxides, or scrap having a maximum radioactive decay energy of 30 watts. Specific maximum package contents are given. This quantity and the configuration of uranium or plutonium metal cannot be made critical by any combination of hydrogeneous reflection and moderation regardless of the condition of the package. For a uranium-233 shipment, a separate criticality evaluation for the specific package is required

  20. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Forms

    International Nuclear Information System (INIS)

    H.W. Stockman; S. LeStrange

    2000-01-01

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  1. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  2. The swelling behavior of Ti-stabilized austenitic steels used as structural materials of fissile subassemblies in Phenix

    International Nuclear Information System (INIS)

    Seran, J.L.; Touron, H.; Maillard, A.; Dubuisson, P.; Hugot, J.P.; Blanchard, P.; Pelletier, M.

    1988-06-01

    In this paper we analyse the main results obained on pressurized tubes, fissile pins and hexagonal cans, allowing us to characterize the swelling and irradiation creep resistance of Ti-Mod. austenitic steels, used as reference materials for the fast breeder subassembly. After having compared the global behavior of 316Ti and 15-15Ti steels irradiated as fissile pins we examine in more detail the leading variables acting on swelling and irradiation creep resistance of CW 316Ti clads and wrappers. The irradiation creep associated to the principal mechanical stresses (sodium pressure for the wrapper, fission gas pressure for the clad) explain the plastic deformation observed on the wrappers not on the clads. Fissile pins swell more and the scatter of the results is larger than for wrappers or samples. It does not seem possible to invoque flux or primary stress differences to explain this fact. On the opposite the thermal gradient in the thickness of the components appears to be a significant parameter. In fissile pins it gives rise to a swelling gradient observed by electron microscopy that must be taken into account when comparing to the wrapper. As compared to CW 316Ti, CW 15-15Ti is an important improvement since its incubation dose for swelling is far beyond 100 dpa. Further more since it swelling temperature dependence does not seem to be as important as for 316Ti, it should be less sensitive to the effect of thermal gradients

  3. Quantification of Fissile Materials by Photon Activation Method in a Highly Shielded Enclosure

    International Nuclear Information System (INIS)

    Dighe, P.M.; Pithawa, C.K.; Goswami, A.; Dixit, K.P.; Mittal, K.C.; Sunil, C.; Sarkar, P.K.; Mukhopadhyay, P.K.; Patil, R.K.; Srivastava, G.P.; Ganesan, S.; Venugopal, V.

    2010-01-01

    For active and non-destructive quantitative identification of heavily shielded fissile materials, photo fission is one of the most often used techniques. High energy photon beams can be conveniently generated with the help of electron LINACs. 10MeV energy electron LINACs are extensively used for various industrial applications such as food irradiation, X-ray radiography, etc. The radiological safety consideration favours the use of electron beam of upto 10 MeV energy. The photonuclear data available on 10 MeV end point energy is very scarce. The present paper gives the results of our initial experiments carried out using natural uranium samples at 10 MeV LINAC facility. Water cooled tantalum target converter was used to produce intense Bremsstrahlung to induce photofission in the samples. Neutron detection system consists of six numbers of high sensitivity Helium-3 proportional counters and gamma detection system consists of two numbers of 76 mm diameter BGO scintillators. Delayed neutron and delayed gamma radiations were measured and analyzed. The mass to count rate relationship has been established for both delayed neutron and gamma radiations. Delayed gamma decay constants of natural uranium have been derived for the 10 MeV end point energy. (author)

  4. Current status and recommended future studies of underground supercriticality of fissile material

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-06-01

    More than a year has passed since we released our original report pointing out the possibility of natural or induced rearrangement of fissile material underground into a critical mass, the possibility of positive feedback in underground configurations, the confinement of the rock to produce significant yield, and the possibility of venting or explosion. The nuclear weapons and repository storage groups at both Los Alamos and Livermore have been critical of our work while others have defended our calculations on wet and dry criticality. The conditions we identified for positive and negative feedback are no longer contested. The role of confinement of the rock in enhancing the yield from the explosion is still unsettled, and that is addressed later in this paper. The likelihood of confinement, venting, or explosive dispersion also remains unsettled and that is addressed here as well. Some critics of our work have tried to show that the probability of reconfiguration by natural processes is very small. They argue further that emplacement can be done in such a way as to make the probability even smaller. Of course these additional efforts will raise the cost of waste emplacement and the question arises as to how much is enough. The answer to this question seems to not be an easy one

  5. Analysis of triso packing fraction and fissile material to DB-MHR using LWR reprocessed fuel

    International Nuclear Information System (INIS)

    Silva, Clarysson A.M. da; Pereira, Claubia; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Gual, Maritza R.

    2013-01-01

    Gas-cooled and graphite-moderated reactor is being considered the next generation of nuclear power plants because of its characteristic to operate with reprocessed fuel. The typical fuel element consists of a hexagonal block with coolant and fuel channels. The fuel pin is manufactured into compacted ceramic-coated particles (TRISO) which are used to achieve both a high burnup and a high degree of passive safety. This work uses the MCNPX 2.6.0 to simulate the active core of Deep Burn Modular Helium Reactor (DB-MHR) employing PWR (Pressurized Water Reactor) reprocessed fuel. However, before a complete study of DB-MHR fuel cycle and recharge, it is necessary to evaluate the neutronic parameters to some values of TRISO Packing Fractions (PF) and Fissile Material (FM). Each PF and FM combination would generate the best behaviour of neutronic parameters. Therefore, this study configures several PF and FM combinations considering the heterogeneity of TRISO layers and lattice. The results present the best combination of PF and FM values according with the more appropriated behaviour of the neutronic parameters during the burnup. In this way, the optimized combination can be used to future works of MHR fuel cycle and recharge. (author)

  6. Multicounter neutron detector for examination of content and spatial distribution of fissile materials in bulk samples

    International Nuclear Information System (INIS)

    Swiderska-Kowalczyk, M.; Starosta, W.; Zoltowski, T.

    1999-01-01

    A new neutron coincidence well-counter is presented. This experimental device can be applied for passive assay of fissile and, in particular, for plutonium bearing materials. It contains of a set of the 3 He tubes placed inside a polyethylene moderator. Outputs from the tubes, first processed by preamplifier/amplifier/discriminator circuits, are then analysed using a correlator connected with PC, and correlation techniques implemented in software. Such a neutron counter enables determination of the 240 Pu effective mass in samples of a small Pu content (i.e., where the multiplication effects can be neglected) having a fairly big volume (up to 0.17 m 3 ), if only the isotopic composition is known. For determination of neutron sources distribution inside a sample, a heuristic method based on hierarchical cluster analysis was applied. As input parameters, amplitudes and phases of two-dimensional Fourier transformation of the count profiles matrices for known point sources distributions and for the examined samples were taken. Such matrices of profiles counts are collected using the sample scanning with detection head. In the clustering processes, process, counts profiles of unknown samples are fitted into dendrograms employing the 'proximity' criterion of the examined sample profile to standard samples profiles. Distribution of neutron sources in the examined sample is then evaluated on the basis of a comparison with standard sources distributions. (author)

  7. Safety analysis report: packages. Argonne National Laboratory SLSF test train shipping container, P-1 shipment. Fissile material. Final report

    International Nuclear Information System (INIS)

    Meyer, C.A.

    1975-06-01

    The package is used to ship an instrumented test fuel bundle (test train) containing fissile material. The package assembly is Argonne National Laboratory (ANL) Model R1010-0032. The shipment is fissile class III. The packaging consists of an outer carbon steel container into which an inner container is placed; the inner container is separated from the outer container by urethane foam cushioning material. The test train is supported in the inner container by a series of transverse supports spaced along the length of the test train. Both the inner and outer containers are closed with bolted covers. The covers do not seal the containers in a leaktight manner. The gross weight of the shipment is about 8350 lb. The unirradiated fissile material content is less than 3 kg of UO 2 of up to 93.2 percent enrichment. This is a Type A quantity (transport group III and less than 3 curies) of radioactive material which does not require shielding, cooling or heating, or neutron absorption or moderation functions in its packaging. The maximum exterior dimensions of the container are 37 ft 11 in. long, 24 1 / 2 in. wide, and 19 3 / 4 in. high

  8. Storage capacity for fissile material as a function of facility shape (room length-to-width ratio)

    International Nuclear Information System (INIS)

    Altschuler, S.J.

    1975-01-01

    The results of a previous study for applying surface density methods to square room of varying size are shown to be conservative for rectangular rooms as well. The surface density required to produce criticality has been calculated as a function of the facility length-to-width ratio for a variety of room widths and unit sizes, shapes, and fissile material compositions. For a length to width ratio greater than or equal to 6, the critical surface density is essentially constant. This allows further economies since more fissile material can be stored at a given subcritical value of k/ sub eff/(0.90) in a rectangular vault of given usable area than in a square one. (U.S.)

  9. Safety analysis report, packages. Drath and Schrader Double Lidded Drum (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1985-07-01

    The preceding Safety Analysis Report - Packages qualifies the Drath and Schrader Double Lidded Drum (see appendix E) as a Department of Transportation DOT 7A Type A packaging and/or ''Type A'' foreign made packaging. The allowable contents shall be: in solid form; non-fissile or exempt fissile material (as defined by 49 CFR 173.453); less than 700 pounds (318 kg) in weight; equal to or less than the A 1 or A 2 quantities of radioactive material as appropriate (see 49 CFR 173.435 for tables of A 1 /A 2 values); and hydrogen gas generation in radioactive waste shall be limited to a maximum of 2-1/2% and total gas pressure limited to 5 psig. Package marking shall be as specified in 49 CFR 178.350-3 or as specified by the foreign country of origin

  10. In field application of differential Die-Away time technique for detecting gram quantities of fissile materials

    Science.gov (United States)

    Remetti, Romolo; Gandolfo, Giada; Lepore, Luigi; Cherubini, Nadia

    2017-10-01

    In the frame of Chemical, Biological, Radiological, and Nuclear defense European activities, the ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development, is proposing the Neutron Active Interrogation system (NAI), a device designed to find transuranic-based Radioactive Dispersal Devices hidden inside suspected packages. It is based on Differential Die-Away time Analysis, an active neutron technique targeted in revealing the presence of fissile material through detection of induced fission neutrons. Several Monte Carlo simulations, carried out by MCNPX code, and the development of ad-hoc design methods, have led to the realization of a first prototype based on a 14 MeV d-t neutron generator coupled with a tailored moderating structure, and an array of helium-3 neutron detectors. The complete system is characterized by easy transportability, light weight, and real-time response. First results have shown device's capability to detect gram quantities of fissile materials.

  11. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    Directory of Open Access Journals (Sweden)

    J. C. Zier

    2014-06-01

    Full Text Available Intense pulsed active detection (IPAD is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU object in the bremsstrahlung far field by varying the anode-cathode (AK diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  12. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    Science.gov (United States)

    Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.

    2014-06-01

    Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  13. Decree of 4 November 1982 on conditions for notification of possession of special fissile materials and source materials and for keeping accounts thereof

    International Nuclear Information System (INIS)

    1982-01-01

    This Decree lays down a detailed procedure for notification of the possession and accounting of special fissile materials and source materials. The Decree was made in pursuance of Decree No. 185 of 13 February 1964 of the President of the Republic concerning radiation protection and licensing procedures. (NEA) [fr

  14. Open literature review of threats including sabotage and theft of fissile material transport in Japan

    International Nuclear Information System (INIS)

    Cochran, John Russell; Furaus, James Phillip; Marincel, Michelle K.

    2005-01-01

    This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty

  15. Safety analysis report: packages. Pu oxide and Am oxide shipping cask (Packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1980-05-01

    The PuO 2 cask or SP 5320-2 and 3 cask is designed for surface shipment of americium or plutonium. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, and Chapter I, Interstate Commerce Commission. The package has been assessed for transport of up to 357 grams of plutonium (403 grams PuO 2 powder) and up to 176 grams of americium (200 grams AmO 2 powder), having a maximum decay heat of 203 watts. Criticality evaluation alone would allow the shipment as Fissile Class II but the radiation level of the cask, measured at the time of shipment, may exceed 50 mrem/h at the surface and require shipment as Fissile Class III. Sample calculations address only the more restrictive of the two materials, which in most cases is 238 PuO 2

  16. Contribution of civilian industry to the management of military fissile materials

    International Nuclear Information System (INIS)

    Montalembert de, J.A.

    2001-01-01

    The situation about using of highly enriched uranium (HEU) and weapon grade plutonium (WgPu) for nuclear fuel preparation in U.S.A. and Russian Federation is reviewed. A few remarks were concluded: (1) We stand at the onset of a process that will be lengthy and which is unlikely to stop with the elimination of the 700 t of HEU and 2 x 34.5 t of WgPu concerned so far. If the announced negotiation of the third START treaty concludes favorably, additional tonnages will have to be recycled, particularly on the Russian side whose estimated inventory is larger. (2) The time scales necessitated by the management of these materials should be no surprise. On the one hand, the aim is to reduce an arsenal built up during 45 years of a Cold War. And this return to civilian life of materials of military origin must be achieved in conditions of safety and bilateral or international safeguards (IAEA), which obviously did not constitute the primary concern of the powers who produced them. Besides, insofar as it enlists the services of civilian industry, this return must be carried out with due respect for the equilibrium of markets that are severely mauled today, in other words, in an orderly and progressive manner. (3) Finally, it is important to recognize that without the contribution of the nuclear power industry, the elimination of military fissile materials would raise problems at another scale and would inevitably lead to regrettable waste. It is to be hoped that this will jog the minds of those who urge a rapid end to nuclear energy, when all the evidence demonstrates that the best way to eliminate surplus weapon grade materials is to recycle them in a reactor, in other words, to destroy them or to denature them while generating electricity. (4) The civilian nuclear industry is happy to contribute concretely and significantly to the solution of a problem of surplus nuclear weaponry, while at the same time utilizing technologies successfully developed for power generation

  17. Increasing transparency of nuclear-warhead and fissile-material stocks as a step toward disarmament -- Proposals for the NPT PrepCom, Geneva

    International Nuclear Information System (INIS)

    2013-04-01

    These proposals made by the International Panel on Fissile Materials IPFM at a conference in Geneva, Switzerland, in April 2013 discuss how increasing transparency can help disarmament efforts. After a short introduction to IPFM and its mission, the action plan on nuclear disarmament is looked at and the various nations involved are listed. A set of baseline declarations proposed are discussed. These include warhead stocks, potential new declarations and fissile material stocks. Monitoring by the International Atomic Energy Authority IAEA is also reviewed. Preparations for future declarations concerning warhead and delivery systems locations, stockpile histories and fissile material production and disposal aspects are reported on. Finally, co-operative verification projects, warhead dismantlement and past fissile material production are examined

  18. Fissile and fertile nuclear material measurements using a new differential die-away self-interrogation technique

    International Nuclear Information System (INIS)

    Menlove, H.O.; Menlove, S.H.; Tobin, S.J.

    2009-01-01

    This paper presents a new technique for the measurement of fissile and fertile nuclear materials in spent fuel and plutonium-laden materials such as mixed oxide (MOX) fuel. The technique, called differential die-away self-interrogation, is similar to traditional differential die-away analysis, but it does not require a pulsed neutron generator or pulsed beam accelerator, and it can measure the fertile mass in addition to the fissile mass. The new method uses the spontaneous fission neutrons from 244 Cm in spent fuel and 240 Pu effective neutrons in MOX as the 'pulsed' neutron source, with an average of ∼2.7 neutrons per pulse. The time-correlated neutrons from the spontaneous fission and the subsequent induced fissions are analyzed as a function of time to determine the spontaneous fission rate, the induced fast-neutron fissions, and the induced thermal-neutron fissions. The fissile mass is determined from the induced thermal-neutron fissions that are produced by reflected thermal neutrons that originated from the spontaneous fission reaction. The sensitivity of the fissile mass measurement is enhanced by the use of two measurements, with and without a cadmium liner between the sample and a hydrogenous moderator that surrounds the sample. The fertile mass is determined from the multiplicity analysis of the neutrons detected soon after the initial triggering neutron is detected. The method obtains good sensitivity by the optimal design of two different neutron die-away regions: a short die-away for the neutron detector region and a longer die-away for the sample interrogation region.

  19. Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Elam, K.R.

    1995-01-01

    With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and 233 U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal

  20. Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives

    International Nuclear Information System (INIS)

    Brough, W.G.; Boerigter, S.T.

    1995-01-01

    This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later

  1. The Molten Salt Reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.; Dodds, H.L.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power. 19 refs

  2. Self Shielding in Nuclear Fissile Assay Using LSDS

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Song, Kee Chan

    2012-01-01

    The new technology for isotopic fissile material contents assay is under development at KAERI using lead slowing down spectrometer(LSDS). LSDS is very sensitive to distinguish fission signals from each fissile isotope in spent and recycled fuel. The accumulation of spent fuel is current big issue. The amount of spent fuels will reach the maximum storage capacity of the pools soon. Therefore, an interim storage must be searched and it should be optimized in design by applying accurate fissile content. When the storage has taken effect, all the nuclear materials must be also specified and verified for safety, economics and management. Generally, the spent fuel from PWR has unburned ∼1 % U235, produced ∼0.5 % plutonium from decay chain, ∼3 % fission products, ∼ 0.1 % minor actinides (MA) and uranium remainder. About 1.5 % fissile materials still exist in the spent fuel. Therefore, for reutilization of fissile materials in spent fuel at SFR, resource material is produced through pyro process. Fissile material contents in resource material must be analyzed before fabricating SFR fuel for reactor safety and economics. In assay of fissile content of spent fuel and recycled fuel, intense radiation background gives limitation on the direct analysis of fissile materials. However, LSDS is not influenced by such a radiation background in fissile assay. Based on the decided geometry setup, self shielding parameter was calculated at the fuel assay zone by introducing spent fuel or pyro produced nuclear material. When nuclear material is inserted into the assay area, the spent fuel assembly or pyro recycled fuel material perturbs the spatial distribution of the slowing down neutrons in lead and the prompt fast fission neutrons produced by fissile materials are also perturbed. The self shielding factor is interpreted as that how much of absorption is created inside the fuel area when it is in the lead. Self shielding effect provides a non-linear property in the isotopic

  3. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    International Nuclear Information System (INIS)

    1997-01-01

    This report has been prepared by the Department of Energy's Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration

  4. Electric breeding of fissile materials with low Q, non-mainline fusion drivers

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.; DiCapua, M.; Cooper, R.; Lopez, O.; Lindsey, H.

    1977-10-01

    The application of two novel fusion reactor concepts to the production of fissile fuel for existing and planned fission reactors has been shown to be technically feasible and potentially economically competitive. The performance required of fusion based breeders has been derived in terms of the fusion gain, blanket neutron and energy multiplication, and the performance and economic parameters of the fission reactors. Electron beam heated, linear solenoid confined plasmas were one concept which showed the most promise. A shock heated, wall confined reactor also appeared attractive for breeding

  5. Problems in future negotiations for a treaty on the cut-off of fissile material for nuclear weapons

    International Nuclear Information System (INIS)

    Schaper, A.

    1999-01-01

    A treaty to end the production of fissile material for nuclear weapons, the so-called cutoff, is one of the most important next steps on the disarmament agenda.' But meanwhile, the Conference on Disarmament (CD) is deadlocked, and confidence in negotiations taking place in the near future is replaced by bewilderment at the inaction. The underlying conflict of the Comprehensive Test Ban Treaty (CTBT) negotiations can be summarized as nuclear disarmament versus nuclear nonproliferation. The same conflict is now blocking progress with negotiations in the CD on the Fissile Material Cut-off Treaty (FMCT). Nevertheless, the cut-off would be the major policy driver to insert transparency and irreversibility into the disarmament process,' and we need to harness all our efforts to overcome the current difficulties. The CTBT can be regarded as a tool to cap the qualitative nuclear arms race, for example to hinder the future development of qualitatively new nuclear explosives, and an FMCT can be seen as its quantitative counterpart, capping the amount of material available for new nuclear weapons. The complex questions involve political, technical, legal, and economic aspects and constitute a challenge for diplomats and decision makers

  6. Partitioning of fissile and radio-toxic materials from spent nuclear fuel

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Skiba, O.V.; Kormilitsyn, M.V.

    2007-01-01

    these elements as fuel components, they could be involved in the recycling together with the main actinides, and they could be jointly extracted in the partitioning processes. It is also possible to design some special reactor systems for energy generation. For instance, Np, Am and Cm could be considered as fuel components for fast reactors. It would be possible to apply similar approaches even to the burning of uranium isotopes ( 232,234,236 U), which should be produced in a concentrated form during the re-enrichment. So the future development of innovative technologies should be directed from a complete reprocessing towards partitioning of fissile and radio-toxic materials from the spent nuclear fuel. The objectives of technology optimisation can be stated as follows: (1) reprocessing/partitioning with the view of non-proliferation, (2) partitioning with a minimal effect on the environment (3) partitioning using advanced economical methods. The criteria for the partitioning in future (after the year 2050) can be taken from the INPRO methodology. (authors)

  7. Applications of Monte Carlo technique in the detection of explosives, narcotics and fissile material using neutron sources

    International Nuclear Information System (INIS)

    Sinha, Amar; Kashyap, Yogesh; Roy, Tushar; Agrawal, Ashish; Sarkar, P.S.; Shukla, Mayank

    2009-01-01

    The problem of illicit trafficking of explosives, narcotics or fissile materials represents a real challenge to civil security. Neutron based detection systems are being actively explored worldwide as a confirmatory tool for applications in the detection of explosives either hidden inside a vehicle or a cargo container or buried inside soil. The development of a system and its experimental testing is a tedious process and to develop such a system each experimental condition needs to be theoretically simulated. Monte Carlo based methods are used to find an optimized design for such detection system. In order to design such systems, it is necessary to optimize source and detector system for each specific application. The present paper deals with such optimization studies using Monte Carlo technique for tagged neutron based system for explosives and narcotics detection hidden in a cargo and landmine detection using backscatter neutrons. We will also discuss some simulation studies on detection of fissile material and photo-neutron source design for applications on cargo scanning. (author)

  8. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    International Nuclear Information System (INIS)

    1995-01-01

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results

  9. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-29

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

  10. Royal Order of 30 March 1981 determining the duties and conditions of operation of the public body responsible for radioactive waste and fissile materials management

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this Royal Order is to set up a public body to be responsible for management of the storage of conditioned radioactive waste, waste disposal, its transport as well as that of plutonium-bearing or enriched fissile materials, and plutonium storage. It must become operational as soon as possible, in particular in the perspective of the Eurochemic Company's technical operations ceasing as from 31 December 1981. This body will be named the National Body for Radioactive Waste and Fissile Materials (ONDRAF). As respects plutonium-bearing or enriched fissile materials, ONDRAF will deal with the transport of materials which, in accordance with the IAEA recommendations [INFCIRC/225/Rev. 1], require physical protection measures (NEA) [fr

  11. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials

    International Nuclear Information System (INIS)

    Damian, F.

    2001-01-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  12. IAEA verification of weapon-origin fissile material in the Russian Federation and the United States

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs about the meeting of the Minister of the Russian Federation on Atomic Energy, the Administrator of the National Nuclear Security Administration of the United States, and the Director General of the IAEA, on 18 September 2000 in Vienna, to review progress on the Trilateral Initiative which was launched in 1996 to develop a new IAEA verification system for weapon-origin material designated as released from defense programs by the United States or the Russian Federation

  13. Fate Of Fissile Material Bound To Monosodium Titanate During Cooper Catalyzed Peroxide Oxidation Of Tank 48H Waste

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.

    2012-01-01

    At the Savannah River Site (SRS), Tank 48H currently holds approximately 240,000 gallons of slurry which contains potassium and cesium tetraphenylborate (TPB). A copper catalyzed peroxide oxidation (CCPO) reaction is currently being examined as a method for destroying the TPB present in Tank 48H. Part of the development of that process includes an examination of the fate of the Tank 48H fissile material which is adsorbed onto monosodium titanate (MST) particles. This report details results from experiments designed to examine the potential degradation of MST during CCPO processing and the subsequent fate of the adsorbed fissile material. Experiments were conducted to simulate the CCPO process on MST solids loaded with sorbates in a simplified Tank 48H simulant. Loaded MST solids were placed into the Tank 48H simplified simulant without TPB, and the experiments were then carried through acid addition (pH adjustment to 11), peroxide addition, holding at temperature (50 C) for one week, and finally NaOH addition to bring the free hydroxide concentration to a target concentration of 1 M. Testing was conducted without TPB to show the maximum possible impact on MST since the competing oxidation of TPB with peroxide was absent. In addition, the Cu catalyst was also omitted, which will maximize the interaction of H 2 O 2 with the MST; however, the results may be non-conservative assuming the Cu-peroxide active intermediate is more reactive than the peroxide radical itself. The study found that both U and Pu desorb from the MST when the peroxide addition begins, although to different extents. Virtually all of the U goes into solution at the beginning of the peroxide addition, whereas Pu reaches a maximum of ∼34% leached during the peroxide addition. Ti from the MST was also found to come into solution during the peroxide addition. Therefore, Ti is present with the fissile in solution. After the peroxide addition is complete, the Pu and Ti are found to precipitate from

  14. Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

  15. Proceedings of the workshop on a comparative analysis of approaches to the protection of fissile materials, Stanford University, July 28-30, 1997

    International Nuclear Information System (INIS)

    Goodby, J.E.; Lehman, R. III; Potter, W.C.

    1998-01-01

    Events in recent years have caused heightened concern about the security of weapons-usable nuclear material. The possibility of illicit trafficking in, or seizure of, such material, leading to nuclear terrorism, is a worry for all states and their citizens. And given the relatively small quantities required, material obtained in one part of the world could be made into a weapon in another and threaten lives in a third. It is truly a global problem. Since the beginning of the nuclear era, the physical protection of fissile material has been a responsibility of the individual states possessing the material. These states have different organizational approaches for providing physical protection; and while cognizant of recommended general standards, they tend to follow their own practices, shaped by custom, costs, and threat perception. Moreover, the existence of military as well as civil programs in some states adds another dimension to the physical protection issue. Because physical protection is a sovereign matter and not part of an international regime (except for transit of civil material across borders), there has been less attention in much of the world community to the issues of physical protection than to the other elements of nuclear safeguards and controls. (An important exception to this situation is the effort being made to assist the states of the former Soviet Union in the disposition of their weapons-usable nuclear materials.) The lack of a general dialog about a problem of growing concern motivated us to hold a three-day workshop at Stanford University to develop a better understanding of some of the important underlying questions and issues, and to undertake a comparative examination of states' approaches to physical protection. We were pleased to have knowledgeable participants from a number of the countries and regions where physical protection of fissile materials is, or will become, a day-to-day matter. The results of the workshop are reported in

  16. LSDS Development for Isotopic Fissile Content Assay

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2010-01-01

    Concerning the sustainable energy supply and green house effect, nuclear energy became the most feasible option to meet the energy demand in Korea. However, the production of the spent nuclear fuel is the inevitable situation. Since the first nuclear power plant started to produce the electricity in Korea, the accumulated amount of spent fuels exceeded 10k tomes recently. The accumulation of the spent fuels is the big issue in the society. Therefore, as an option which strengthens the nuclear proliferation resistance and reduces the amount of spent fuels, sodium fast reactor (SFR) program linked with pyro-processing is under development to re-use the PWR spent fuel and produce the energy. In the process, the produced metallic material involves uranium and TRU (transuranic; neptunium, plutonium, and americium). The uranium-TRU is used to fabricate SFR fuel. The burning the recycled fuel in the reactor is to solve the current spent fuel storage problem and to minimize the actinides accumulation having long half-life. Generally, the spent fuel from PWR has unburned ∼1 % U235, produced ∼0.5 % plutonium from decay chain, ∼3 % fission products, ∼ 0.1 % minor actinides (MA) and uranium remainder. About 1.5 % fissile materials still exist in the spent fuel. Therefore, spent fuel is not only waste but energy resource. The direct and isotopic fissile content assay is the crucial technology for the spent fuel reuse. Additionally, the fissile content analysis will contribute to the optimum storage design and safe spent fuel management. Several nondestructive technologies have been developed for the spent fuel assay; gamma ray measurement, passive and active neutron measurements. Spent fuel emits intense gamma rays and neutrons by (a, n) and spontaneous fission. This intense background has the limitation on the direct analysis of fissile materials. Recently, to analyze the individual fissile content, leadslowing down spectrometer (LSDS) has been being developed in Korea

  17. Trilateral Initiative: IAEA authentication and national certification of verification equipment for facilities with classified forms of fissile material

    International Nuclear Information System (INIS)

    Haas, Eckard; Sukhanov, Alexander; Murphy, John

    2001-01-01

    Full text: Within the framework of the Trilateral Initiative, technical challenges have arisen due to the potential of the International Atomic Energy Agency (IAEA) monitoring fissile material with classified characteristics, as well as the IAEA using facility or host country supplied monitoring equipment. In monitoring material with classified characteristics, it is recognized that the host country needs to assure that classified information is not made available to the IAEA inspectors. Thus, any monitoring equipment used to monitor material with classified characteristics has to contain information security capabilities, such as information barriers. But likewise in using host-country-supplied monitoring equipment, regarding the material being monitored the IAEA has to have confidence that the information provided by the equipment is genuine and can be used by the IAEA in fulfilling its obligation to derive conclusions based on independent verification measures. Thus the IAEA needs to go through the process of authenticating the monitoring equipment. In the same way the host country needs to go through the process to assure itself that the monitoring equipment integrated with an information barrier will not divulge any classified information about an inspected sensitive item. Both processes require on large extent identical measures, but partially also may conflict with each other. The fact that monitoring equipment needs to exhibit information security throughout its lifecycle while at the same time be capable of being authenticated necessitates the need for creative technical approaches to be pursued. (author)

  18. A treaty on the cutoff of fissile material for nuclear weapons - What to cover? How to verify?

    International Nuclear Information System (INIS)

    Schaper, A.

    1998-01-01

    Since 1946, a cutoff has been proposed. In 1993, the topic was placed on the agenda of the CD. The establishment of an Ad Hoc Committee in the CD with a mandate to negotiate a fissile material cutoff treaty struggled with difficulties for more than a year. The central dispute was whether the mandate should refer to existing un-safeguarded stockpiles. The underlying conflict of the CTBT negotiations can be summarized as nuclear disarmament versus nuclear nonproliferation The same conflict is now blocking progress with FMCT negotiations in the CD. At the center of technical proliferation concerns is direct use material that can be used for nuclear warheads without any further enrichment or reprocessing. Those materials are plutonium and highly enriched uranium (HEU). A broader category of materials is defined as all those containing any fissile isotopes, called special fissionable materials. In order ta verify that no direct use materials are abused for military purposes, also special fissionable materials must be controlled. An even broader category is simply called nuclear materials. Pu and HEU can be distinguished into the following categories of utilisation: 1. military direct use material in operational nuclear weapons and their logistics pipeline, 2. military direct use material held in reserve for military purposes, in assembled weapons or in other forms, 3. military direct use material withdrawn from dismantled weapons, 4. military direct use material considered excess and designated for transfer into civilian use, 5. military direct use material considered excess and declared for transfer into civilian use, 6. direct use material currently in reactors or their logistics pipelines and storages, and 7. irradiated Pu and HEU in spent fuel from reactors, or in vitrified form for final disposal. Large quantities of materials are neither inside weapons nor declared excess. So far, there are no legal obligations for NWS for limitations, declarations, or

  19. Material correlations and models for the irradiation behavior of fissile and fertile material in SNR-300, Mark-II and KNK II, third core

    International Nuclear Information System (INIS)

    Fenneker; Steinmetz; Toebbe

    1986-07-01

    The report contains the material correlations and models used in the fuel pin design code IAMBUS for the irradiation behavior of PuO 2 -UO 2 fissile materials and UO 2 fertile materials of the SNR-300 Mark-II reload and the KNK II third core. They are applicable for pellet densities of more than 90 % of the theoretical density. The presented models of the fuel behavior and the applied material correlations have been derived either from single experiments or from the comparison of theoretically predicted integral fuel behavior with the results of fuel pin irradiation experiments. The material correlations have been examined and extended in the frame of the collaborations INTERATOM/KWU and INTERATOM/KfK. French and British results were included, when available from the European fast reactor knowledge exchange [de

  20. Review of the bases for regulations governing the transport of fissile and other radioactive material

    International Nuclear Information System (INIS)

    Smith, D.R.; Thomas, J.T.

    1978-01-01

    The outstanding record of transport of radioactive materials prompted this brief review of the history of the regulations. IAEA as well as DOT regulations are discussed, as are all classes of shipments and materials (Class I, II, III)

  1. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials; Analyse des capacites des reacteurs a haute temperature sous l'aspect de l'utilisation des matieres fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Damian, F

    2001-07-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  2. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials; Analyse des capacites des reacteurs a haute temperature sous l'aspect de l'utilisation des matieres fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Damian, F

    2001-07-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  3. Device for the determination of concentrations of fissile and/or fertile materials by means of x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Von Baeckmann, A.; Neuber, J.

    1975-01-01

    In analyzing fissile and/or fertile materials in the thorium, uranium, neptunium, plutonium, americium and curium group, time and accuracy are significant factors. An automated system for rapidly analyzing these materials includes: sample preparation device in which aliquots of sample are weighed and mixed with known amounts of solution; x-ray fluorescence spectrometer; and, a central control system for controlling the operation and analyzing the data. (auth)

  4. Destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials for purposes of national safeguards in the German Democratic Republic

    International Nuclear Information System (INIS)

    Villun, K.; Gruner, V.; Siebert, Kh.U.; Hoffmann, D.

    1979-01-01

    The authors give a brief description of the destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials used in the nuclear materials accounting and control system of the German Democratic Republic. They cite examples of the use of gamma-spectrometry, X-ray fluorescence analysis, neutron activation, radiochemical techniques, mass-spectrometry and alpha-spectrometry. (author)

  5. To the question of definition of fissile material mass and neutron multiplication in deep sub-critical systems

    International Nuclear Information System (INIS)

    Dulin, V.V.

    2006-01-01

    A method of determination neutrons multiplication in deep sub-critical multiplying media has been developed. It is based on a modified of Rossi - alpha method. It will consist in use of integral on time (a method of the areas) from correlated parts of distribution and integral in area, independent of time a part of distribution (area of a constant background). It allows to spend the calculated analysis, using the integrated equation on time for a neutrons flux and to not use representation of point kinetic model. A calculation spatially-correlation factor the adjoint (relative the detector count rate) inhomogeneous equation is used. Its calculation takes into account fission both in multiplying media and in a spontaneous neutron source. Measurements with plutonium-steel and uranium-steel blocks, and blocks from uranium and plutonium dioxide of different enrichment are have been carried out. The measured values of neutrons multiplication in a range 1.03-1.82 will be well coordinated to results of calculations. The question on an opportunity of definition of weight of the measured blocks of fissile material is considered [ru

  6. The determination by irradiation with a pulsed neutron generator and delayed neutron counting of the amount of fissile material present in a sample; Determination de la quantite de matiere fissile presente dans un echantillon par irradiation au moyen d'une source pulsee de neutrons et comptage des neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Beliard, L; Janot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A preliminary study was conducted to determine the amount of fissile material present in a sample. The method used consisted in irradiating the sample by means of a pulsed neutron generator and delayed neutron counting. Results show the validity of this method provided some experimental precautions are taken. Checking on the residual proportion of fissile material in leached hulls seems possible. (authors) [French] Ce rapport rend compte d'une etude preliminaire effectuee en vue de determiner la quantite de matiere fissile presente dans un echantillon. La methode utilisee consiste a irradier l'echantillon considere au moyen d'une source puisee de neutrons et a compter les neutrons retardes produits. Les resultats obtenus permettent de conclure a la validite de la methode moyennant certaines precautions. Un controle de la teneur residuelle en matiere fissile des gaines apres traitement semble possible. (auteurs)

  7. Safety analysis report: packages cobalt-60 shipping cask (packaging of radioactive and fissile materials)

    International Nuclear Information System (INIS)

    Evans, J.E.; Langhaar, J.W.

    1973-07-01

    Safety Analysis Report DPSPU-73-124-1 replaces DPSPU-69-124-1 and Supplement 1 to permit shipment of 350,000 curies of 60 Co (maximum) in cobalt-60 shipping casks in compliance with 10 CFR Part 71, Packaging of Radioactive Materials for Transport

  8. Determining fissile content of nuclear fuel elements

    International Nuclear Information System (INIS)

    Arya, S.P.; Grossman, L.N.; Schoenig, F.C.

    1980-01-01

    This invention relates to the determination of the fissile fuel content of fuel for nuclear reactors. A nondestructive method is described for determining rapidly, accurately and simultaneously the fissile content, enrichment and location of fuel material which may also contain amounts of burnable poison, by detecting the γ-rays emitted from the fuel material due to natural radioactive decay. (U.K.)

  9. User's guide for shipping Type B quantities of radioactive and fissile material, including plutonium, in DOT-6M specification packaging configurations

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1994-09-01

    The need for developing a user's guide for shipping Type B quantities of radioactive and fissile material, including plutonium, in a US Department of Transportation Specification 6M (DOT-6M) packaging was identified by the US Department of Energy (DOE)-Headquarters, Transportation Management Division (EM-261) because the DOT-6M packaging is widely used by DOE site contractors and the DOE receives many questions about approved packaging configuration. Currently, EM-261 has the authority to approve new DOT-6M packaging configurations for use by the DOE Operations Offices. This user's guide identifies the DOE-approved DOT-6M packaging configurations and explains how to have new configurations approved by the DOE. The packaging configurations described in this guide are approved by the DOE, and satisfy the applicable DOT requirements and the identified DOE restrictions. These packaging configurations are acceptable for transport of Type B quantities of radioactive and fissile material, including plutonium

  10. Criticality safety analysis of the fissile material storage arrays in the east end of building 6592

    International Nuclear Information System (INIS)

    McKeon, D.C.; Philbin, J.S.

    1981-03-01

    A criticality safety analysis of nine concrete storage holes that have been formed in the floor of the Materials Balance Area (MBA) in Building 6592 is reported. Unit cell dimensions and unit mass limits are defined for the most likely plutonium and uranium fuel types that will be stored there. Two tables of mass limits are derived. The first table is to be used for short units that can be stacked with fixed separation in the same hole. The second table will permit units greater than one foot in length providing that the appropriate linear mass density limit (in kg/ft) is not exceeded

  11. International report to validate criticality safety calculations for fissile material transport

    International Nuclear Information System (INIS)

    Whitesides, G.E.

    1984-01-01

    During the past three years a Working Group established by the Organization for Economic Co-operation and Development's Nuclear Energy Agency (OECD-NEA) in Paris, France, has been studying the validity and applicability of a variety of criticality safety computer programs and their associated nuclear data for the computation of the neutron multiplication factor, k/sub eff/, for various transport packages used in the fuel cycle. The principal objective of this work has been to provide an internationally acceptable basis for the licensing authorities in a country to honor licensing approvals granted by other participating countries. Eleven countries participated in the initial study which consisted of examining criticality safety calculations for packages designed for spent light water reactor fuel transport. This paper presents a summary of this study which has been completed and reported in an OECD-NEA Report No. CSNI-71. The basic goal of this study was to outline a satisfactory validation procedure for this particular application. First, a set of actual critical experiments were chosen which contained the various material and geometric properties present in typical LWR transport containers. Secondly, calculations were made by each of the methods in order to determine how accurately each method reproduced the experimental values. This successful effort in developing a benchmark procedure for validating criticality calculations for spent LWR transport packages along with the successful intercomparison of a number of methods should provide increased confidence by licensing authorities in the use of these methods for this area of application. 4 references, 2 figures

  12. Method of storing fissile mateiral

    International Nuclear Information System (INIS)

    Onoshita, Toshio; Ishitobi, Masuhiro

    1989-01-01

    Upon storing nuclear fissile materials in a storing building, vessels packed with fissile materials are inserted into a containing chamber divided with partition walls comprising neutron absorbers and neutron moderators. Thus, released neutrons permeating the vessel are moderated by the neutron moderators and then absorbed by the neutron absorbers. Accordingly, the neutron absorbing effect by the neutron absorbers is improved, and irradiation of neutrons released from one of vessels to the other of vessels can be suppressed. Accordingly, it is possible to shorten the distance between the vessels in a contained state as much as possible, while securing the critical safety, to improve the containing density during storage. (T.M.)

  13. Thermal energy of nuclear origin produced in non-fissile materials (1962); Energie calorifique d'origine nucleaire degagee dans les materiaux non fissiles (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Millies, P; Berger, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    A first part is devoted to the description of the interaction phenomena between elementary particles and material that may be observed during the irradiation process in a nuclear reactor: nuclear reactions due to neutrons, production of gamma rays and absorption of those gamma rays through various processes. In a second part the phenomena producing calorific energy in irradiated material are quantitatively examined. In the third part results are summed up in a formulary. The fourth part presents tables and figures giving to the reader all the numerical values necessary for practical calculations. (authors) [French] Une premiere partie est consacree a l'examen des principaux phenomenes d'interaction des particules avec la matiere qui interviennent lors d'une irradiation dans un reacteur: reactions nucleaires dues aux neutrons, production des rayons gamma et absorption de ces derniers par les divers processus. Une deuxieme partie etudie quantitativement les phenomenes qui conduisent a l'apparition d'energie calorifique dans le materiau irradie. En troisieme partie, un formulaire resume les resultats etablis. Dans une quatrieme partie, des tableaux et des courbes fournissent a l'experimentateur toutes les valeurs numeriques necessaires aux calculs pratiques. (auteurs)

  14. Using the sampling method to propagate uncertainties of physical parameters in systems with fissile material

    International Nuclear Information System (INIS)

    Campolina, Daniel de Almeida Magalhães

    2015-01-01

    There is an uncertainty for all the components that comprise the model of a nuclear system. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a realistic calculation that has been replacing conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. By analyzing the propagated uncertainty to the effective neutron multiplication factor (k eff ), the effects of the sample size, computational uncertainty and efficiency of a random number generator to represent the distributions that characterize physical uncertainty in a light water reactor was investigated. A program entitled GB s ample was implemented to enable the application of the random sampling method, which requires an automated process and robust statistical tools. The program was based on the black box model and the MCNPX code was used in and parallel processing for the calculation of particle transport. The uncertainties considered were taken from a benchmark experiment in which the effects in k eff due to physical uncertainties is done through a conservative method. In this work a script called GB s ample was implemented to automate the sampling based method, use multiprocessing and assure the necessary robustness. It has been found the possibility of improving the efficiency of the random sampling method by selecting distributions obtained from a random number generator in order to obtain a better representation of uncertainty figures. After the convergence of the method is achieved, in order to reduce the variance of the uncertainty propagated without increase in computational time, it was found the best number o components to be sampled. It was also observed that if the sampling method is used to calculate the effect on k eff due to physical uncertainties reported by

  15. Fissile fingerprints

    International Nuclear Information System (INIS)

    Edwards, R.

    1995-01-01

    This article looks at recent research which may allow police and customs officers to detect smuggled weapons-grade plutonium and uranium. Contrary to popular opinion, nuclear materials do not have a nuclear ''fingerprint'' but enough information can be gleaned from sources to confirm what has been learnt from other data. Indeed, two leading nuclear laboratories can look at the same analytical results and draw different conclusions. The case of a lead cylinder seized from a German garage is examined to illustrate the confusion. (UK)

  16. 49 CFR 173.420 - Uranium hexafluoride (fissile, fissile excepted and non-fissile).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Uranium hexafluoride (fissile, fissile excepted....420 Uranium hexafluoride (fissile, fissile excepted and non-fissile). (a) In addition to any other... non-fissile uranium hexafluoride must be offered for transportation as follows: (1) Before initial...

  17. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel.

  18. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2011-01-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel

  19. Staatsblad 343 - Order of 4 June 1987 amending the Order concerning transport of fissile materials, ores and radioactive materials

    International Nuclear Information System (INIS)

    1987-01-01

    This Decree amends the 1969 Decree to take account of developments in international transport regulations, already taken into account in the national regulations for all modes of transport of dangerous materials or goods. Further amendments concern physical protection requirements in compliance which the Convention on the Physical Protection of Nuclear Material which the Netherlands signed as a Member State of the European Communities. In essence, the modifications relate to licensing requirements in particular packaging and transport conditions for the different levels of activity of the materials carried, certificates of approval etc., and surveillance during transport. The Decree entered into force on 23 August 1987 [fr

  20. New Technology For Fissile Assay In Spent Fuel Using LSDS

    International Nuclear Information System (INIS)

    Lee, Yongdeok; Park, Changje; Park, Geunil; Lee, Jungwon; Song, Keechan

    2012-01-01

    The principle of LSDS is very simple. The interrogated neutron induces energy dependent characteristic fission from fissile materials in spent fuel. The fission threshold detector screens the prompt fast fission neutrons from background and fissionable materials. However, intense source neutron is necessary to overcome radiation background. The detected signals have a direct relationship to the content of each fissile material. The isotopic fissile assay using LSDS is applicable for optimum design of spent fuel storage and management, quality assurance of recycled nuclear material, maximization of burnup credit. Another important application is verity burnup code and provide correction factor for improving the fissile material content, fission product correction factor for improving the fissile material content, fission product content and theoretical burnup. Additionally, the isotopic fissile content assay will increase the transparence and credibility for spent fuel storage and its re-utilization, as internationally demanded

  1. Use of borosilicate-glass raschig rings as a neutron absorber in solutions of fissile material-ANSI/ANS-8.5-1996

    International Nuclear Information System (INIS)

    Rothe, R.E.; Ketzlach, N.; Finch, D.R.

    1996-01-01

    American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.5 is one of several standards prepared by the ANS Standards Committee to provide guidance to enhance criticality safety in the handling, storage, and processing of fissionable materials. American National Standard ANSI/ANS-8.5-1996 provides this guidance for one type of boron-loaded glass in one type of geometry (cylindrical rings) for use with fissile solutions. Recorded use of such fixed neutron absorbers for criticality control of fissile solutions dates back to 1958, but some less-well-documented applications were recorded as early as the mid-1940's. The first solid efforts to collect recommendations derived from experience and technology were begun in 1965. Over the next 6 yr additional experiments were performed, and supporting data for the proposed standard were gathered. The first standard on this safety matter was issued in 1971. It was reaffirmed in 1979 with only minor changes and a slight expansion of the coverage. The standard was last revised in 1986

  2. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    International Nuclear Information System (INIS)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-01

    Following President Clinton's Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations

  3. Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

  4. Fissile Content Assay of Spent Fuel Using LSDS System

    International Nuclear Information System (INIS)

    Jeon, Ju Young; Lee, Yong Deok; Park, Chang Je

    2016-01-01

    About 1.5 % fissile materials still exist in the spent fuel. Therefore, for reutilization of fissile materials in spent fuel at SFR, resource material is produced through the pyro process. Fissile material contents in the resource material must be analyzed before fabricating SFR fuel for reactor safety and economics. The new technology for an isotopic fissile material content assay is under development at KAERI using a lead slowing down spectrometer (LSDS). LSDS is very sensitive to distinguish fission signals from each fissile isotope in spent and recycled fuel. In an assay of fissile content of spent fuel and recycled fuel, an intense radiation background gives limits the direct analysis of fissile materials. However, LSDS is not influenced by such a radiation background in a fissile assay. Based on the decided LSDS geometry set up, a self shielding parameter was calculated at the fuel assay zone by introducing spent fuel or pyro produced nuclear material. When nuclear material is inserted into the assay area, the spent fuel assembly or pyro recycled fuel material perturbs the spatial distribution of slowing down neutrons in lead and the prompt fast fission neutrons produced by fissile materials are also perturbed. The self shielding factor is interpreted as how much of the absorption is created inside the fuel area when it is in the lead. The self shielding effect provides a non-linear property in the isotopic fissile assay. When the self shielding is severe, the assay system becomes more complex and needs a special parameter to treat this non linear effect. Additionally, an assay of isotopic fissile content will contribute to an accuracy improvement of the burn-up code and increase the transparency and credibility for spent fuel storage and usage, as internationally increasing demand. The fissile contents result came out almost exactly with relative error ∼ 2% in case of Pu239, Pu241 for two different plutonium contents. In this study, meaningful results were

  5. Self shielding in cylindrical fissile sources in the APNea system

    International Nuclear Information System (INIS)

    Hensley, D.

    1997-01-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results

  6. Epithermal interrogation of fissile waste

    International Nuclear Information System (INIS)

    Coop, K.L.; Hollas, C.L.

    1996-01-01

    Self-shielding of interrogating thermal neutrons in lumps of fissile material can be a major source of error in transuranic waste assay using the widely employed differential dieaway technique. We are developing a new instrument, the combined thermal/epithermal neutron (CTEN) interrogation instrument to detect the occurrence of self- shielding and mitigate its effects. Neutrons are moderated in the graphite walls of the CTEN instrument to provide an interrogating flux of epithermal and thermal neutrons. The induced prompt fission neutrons are detected in proportional counters. We report the results of measurements made with the CTEN instrument, using minimal and highly self-shielding plutonium and uranium sources in 55 gallon drums containing a variety of mock waste matrices. Fissile isotopes and waste forms for which the method is most applicable, and limitations associated with the hydrogen content of the waste package/matrix are described

  7. International conference on military conversion and science. Utilization/disposal of the excess fissile weapon materials: scientific, technological and socio-economic aspects

    International Nuclear Information System (INIS)

    Kouzminov, V.; Martellini, M.

    1996-01-01

    The Proceedings of the Conference includes the papers presented by the eminent specialists in the field of utilisation and/or disposal of excess fissile materials, each with a separate abstract, as well as the Conference opening and introduction speeches. According to the concerned subjects presentations were divided into following five sessions: perspectives of nuclear research and development; Technical problems and possibilities of civilian utilization of Highly enriched uranium (HEU) and plutonium including alternate strategies (application of MOX fuel) and operational and safety problems; Comparison of different options for weapon-grade Pu utilization connected to present programme for recycling of civilian Pu; Socio-economic aspects including cost of Pu conversion and fabrication of MOX fuel; Effects of different strategies of waste disposal including environmental and safety related issues

  8. Variants of Regenerated Fissile Materials Usage in Thermal Reactors as the First Stage of Fuel Cycle Closing

    Science.gov (United States)

    Andrianova, E. A.; Tsibul'skiy, V. F.

    2017-12-01

    At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.

  9. New glass material oxidation and dissolution system facility: Direct conversion of surplus fissile materials, spent nuclear fuel, and other material to high-level-waste glass. Storage and disposition of weapons-usable fissile materials programmatic environmental impact statement data report: Predecisional draft

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Elam, K.R.; Reich, W.J.

    1995-01-01

    With the end of the Cold War, countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. It has been recommended that these surplus fissile materials (SFMs) be processed so that they are no more accessible than plutonium in spent nuclear fuel (SNF). This SNF standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. This report provides for the PEIS the necessary input data on a new method for the disposition of SFMs: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptunium, americium, and 233 U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal. The primary form of this SNF is Hanford-N SNF with preirradiation uranium enrichments between 0.95 and 1.08%. The final product is a plutonium, low-enriched-uranium, HLW, borosilicate glass for disposition in a geological repository. The proposed conversion process is the Glass Material Oxidation and Dissolution System (GMODS), which is a new process. The initial analysis of the GMODS process indicates that a MODS facility for this application would be similar in size and environmental impact to the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Because of this, the detailed information available on DWPF was used as the basis for much of the GMODS input into the SFMs PEIS

  10. 16 October 1991-Royal Order amending the Royal Order of 30 March 1981 determining the duties and fixing the operating conditions of the Public Body for the Management of Radioactive Waste and Fissile Materials

    International Nuclear Information System (INIS)

    1991-01-01

    The 1991 Royal Order amends and supplements the provisions of the 1981 0rder dealing with the duties and resources of ONDRAF, the National Body for the Management of Radioactive Waste and Fissile Materials. Its duties include, inter alia, treatment and conditioning of waste on behalf of producers without the necessary facilities, training of specialists for such work for the producers with such facilities, transport, storage and disposal of radioactive waste, transport, and storage of certain enriched fissile materials and plutonium-bearing materials. As regards decommissioned nuclear installations, ONDRAF must establish management programmes for the resulting waste and must also decommission a nuclear installation at the operator's request or if he defaults. (NEA)

  11. Safety Analysis Report: Packages, Pu oxide and Am oxide shipping cask: Packaging of fissile and other radioactive materials: Final report

    International Nuclear Information System (INIS)

    Chalfant, G.G.

    1984-12-01

    The PuO 2 cask or 5320-3 cask is designed for shipment of americium or plutonium by surface transportation modes. The cask design was physically tested to demonstrate that it met the criteria specified in US ERDA Manual Chapter 0529, dated 12/21/76, which invokes Title 10 Code of Federal Regulations, Part 71 (10 CFR 71) ''Packaging of Radioactive Materials for Transport,'' and Title 49 CFR Parts 171.179 ''Hazardous Materials Regulations.'' (US DOE Order 4580.1A, Chapter III, superseded manual chapter 0529 effective May 1981, but it retained the same 10 CFR 71 and 49 CFR 171-179 references

  12. Max-von-Laue-lecture: Unmaking the bomb: A fissile material approach to nuclear disarmament and nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Von Hippel, Frank N. [Princeton University, Princeton, NJ (United States)

    2015-07-01

    The number of operational nuclear weapons in the world has dropped from about 65,000 at the end of the Cold war to about 10,000 and can be driven much lower. But we have a huge amount of highly enriched uranium and separated plutonium from these dismantled Cold War nuclear weapons and from failed civilian plutonium breeder reactor commercialization programs. To make nuclear disarmament irreversible and prevent nuclear terrorism, all this material must be secured and disposed of. We also must abandon the idea of using a nuclear-weapon-usable material as a fuel * that is plutonium in power reactors and highly enriched uranium in naval-propulsion and research reactors. Fortunately, using plutonium as a fuel is uneconomic and research and naval reactors can be designed to use low-enriched uranium. Finally, we must move away from ambiguous national enrichment programs like Iran*s to multinational enrichment programs such as Urenco.

  13. Some aspects of in-pile swelling of fissile materials, 1. part: non-alloyed α uranium

    International Nuclear Information System (INIS)

    Mikailoff, H.

    1964-01-01

    An examination has been carried out of non-alloyed uranium samples, having various structural states, cold-worked and recrystallized, as-cast and β-treated, and irradiated at temperatures of between 450 and 600 C and with burn-ups from 1300 to 5500 MW days/metric ton. These samples swelled because of precipitation of the fission gases the porosity thus produced has a morphology depending mainly on the type of deformation to which the metal has been subjected and which is due to in-pile growth. The most homogeneous distribution of pores, and thus that leading to the minimum swelling, is only observed in the material having a marked [010] texture in which the growth and perhaps the thermal cycling introduce little or no strain. For other materials the deformation /swelling association causes a more rapid destruction of the samples either by cracking when the deformation is due to twinning, or by pronounced swelling localized in the bands when deformation is due to slipping. Finally the fission-gas precipitation considerably facilitates, above 500 C, the germination and growth of the intergranular cracks which can then develop at low stresses. (author) [fr

  14. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  15. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    International Nuclear Information System (INIS)

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory

  16. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Science.gov (United States)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  17. Development of lead slowing down spectrometer for isotopic fissile assay

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Ahn, Sang Joon; Kim, Ho Dong

    2014-01-01

    A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ∼E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

  18. 49 CFR 172.441 - FISSILE label.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false FISSILE label. 172.441 Section 172.441... SECURITY PLANS Labeling § 172.441 FISSILE label. (a) Except for size and color, the FISSILE label must be... FISSILE label must be white. [69 FR 3669, Jan. 26, 2004] ...

  19. Reactor physics ideas to design novel reactors with faster fissile growth

    International Nuclear Information System (INIS)

    Jagannathan, V.; Pal, U.; Karthikeyan, R.; Raj, D.; Srivastava, A.; Khan, S. A.

    2007-01-01

    There are several types of fission reactors operating in the world adopting generally the open fuel cycle which considers the naturally available fissile nuclide, viz., 2 35U. The accumulated discharged fuel is considered as waste in some countries. However the discharged fuel contains the precious man-made fissile plutonium which would provide the sole means of harnessing the nuclear energy from either depleted uranium or the natural thorium in future. It must be emphasized that the present day power reactors use just about 0.5% of the mined uranium and it would be imprudent to discard the rest of the mass as waste. It is therefore necessary to explore ways and means of exploiting the fertile mass which has the potential of providing the energy without the green house effects for millennia to come. This has to be done by innovating means of large scale fertile to fissile conversion and then using the man-made fissile material for sustenance as well as growth of fission nuclear power. This paper attempts to give a broad picture of the available options and the challenges in realizing the theoretical possibilities

  20. Some aspects of in-pile swelling of fissile materials, 1. part: non-alloyed {alpha} uranium; Quelques aspects du gonflement en pile des materiaux fissiles. 1. partie: uranium {alpha} non allie

    Energy Technology Data Exchange (ETDEWEB)

    Mikailoff, H [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    An examination has been carried out of non-alloyed uranium samples, having various structural states, cold-worked and recrystallized, as-cast and {beta}-treated, and irradiated at temperatures of between 450 and 600 C and with burn-ups from 1300 to 5500 MW days/metric ton. These samples swelled because of precipitation of the fission gases the porosity thus produced has a morphology depending mainly on the type of deformation to which the metal has been subjected and which is due to in-pile growth. The most homogeneous distribution of pores, and thus that leading to the minimum swelling, is only observed in the material having a marked [010] texture in which the growth and perhaps the thermal cycling introduce little or no strain. For other materials the deformation /swelling association causes a more rapid destruction of the samples either by cracking when the deformation is due to twinning, or by pronounced swelling localized in the bands when deformation is due to slipping. Finally the fission-gas precipitation considerably facilitates, above 500 C, the germination and growth of the intergranular cracks which can then develop at low stresses. (author) [French] On a examine des echantillons d'uranium non allie, de divers etats structuraux, marteles et recristallises, bruts de coulee et traites {beta}, irradies a des temperatures comprises entre 450 et 600 C, et a des taux de combustion allant de 1300 a 5500 MWj/t. Ces echantillons ont gonfle par suite de la precipitation de gaz de fission: la porosite ainsi fournie a une morphologie qui depend principalement des modes de deformation subie par le metal et due a la croissance en pile. La repartition la plus homogene des pores, donc celle qui donnera le gonflement minimum, est observee seulement dans le materiau a forte texture [010] dans lequel la croissance et eventuellement le cyclage thermique introduisent peu ou pas de contraintes. Dans les autres materiaux l'association deformation/gonflement rend plus rapide

  1. Design of LSDS for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yongdeok; Park, Changje; Kim, Hodong; Song, Kee Chan

    2013-01-01

    A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded

  2. DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

    Directory of Open Access Journals (Sweden)

    YONGDEOK LEE

    2013-12-01

    Full Text Available A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI, the system involves a Sodium Fast Reactor (SFR linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS. The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

  3. Methodology for interpretation of fissile mass flow measurements

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mattingly, J.K.; Mullens, J.A.

    1997-01-01

    This paper describes a non-intrusive measurement technique to monitor the mass flow rate of fissile material in gaseous or liquid streams. This fissile mass flow monitoring system determines the fissile mass flow rate by relying on two independent measurements: (1) a time delay along a given length of pipe, which is inversely proportional to the fissile material flow velocity, and (2) an amplitude measurement, which is proportional to the fissile concentration (e.g., grams of 235 U per length of pipe). The development of this flow monitor was first funded by DOE/NE in September 95, and initial experimental demonstration by ORNL was described in the 37th INMM meeting held in July 1996. This methodology was chosen by DOE/NE for implementation in November 1996; it has been implemented in hardware/software and is ready for installation. This paper describes the methodology used to interpret the data measured by the fissile mass flow monitoring system and the models used to simulate the transport of fission fragments from the source location to the detectors

  4. Fissile fuel assembly for a sub-moderated nuclear reactor

    International Nuclear Information System (INIS)

    Millot, J.P.; Dejeux, Pol.; Alibran, Patrice.

    1983-01-01

    Each of the core assemblies is composed of a prismatic case made of a neutron absorbing material, inside which very long rods containing the fissile material are arranged parallel to the height of the case and according to a regular network in the straight sections of the case. At least one piece in a fertile material exposed to the neutrons emitted by the fissile material of the assembly is arranged on each one of the side faces of the case. The invention applies in particular to sub-moderated reactors, cooled and moderated by pressurized water [fr

  5. Accounting Systems for Heavy Water and Fissionable Materials; Comptabilite de l'Eau Lourde et des Matieres Fissiles; Sistema ucheta tyazheloj vody i delyashchikhsya materialov; Sistemas de Contabilidad para el Agua Pesada y los Materiales Fisionables

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, G. W.; Reid, H. B.; Jenkinson, W. G. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1966-02-15

    Detailed accounting and reporting procedures used by Atomic Energy of Canada Limited (AECL) for maintaining adequate records and control of heavy water supplies and stocks of fissionable materials are described, along with the duties and responsibilities of those administering the system. An appraisal is made of these procedures with respect to their adaptability for use in rapidly expanding research and power programmes. In particular the use of electronic data processing equipment is evaluated. A senior management committee is responsible for ensuring that there is a proper system for recording, reporting and controlling fissionable materials. The Production Planning and Control Branch (Pp and C B) of the Operations Division at the Chalk River Nuclear Laboratories (CRNL) is responsible to the committee for keeping the over-all records and for the general administration of the system. The duties involved are detailed in the report. The system for fissionable materials is segregated into several accountability units 15 of which are allocated to AECL departments and the others to Canadian industries and research organizations. A control ledger is kept by PP and CB for each of the units; however, the units are responsible for preparing detailed accounts of all material under their jurisdiction. The basic recording procedures covering the movement Of materials between units, the changing of forms within units, the handling of gains and losses, and disposals, are outlined in the report. The transfer of this data to IBM cards, the ultimate processing through an IBM 1401 computer and the preparation of reports for management approval are described. The heavy-water accounting system based on the same principles as used for the fissionable materials is explained. In this case the control ledger lists the pounds of D{sub 2}O allocated to each of the 15 accountability units. Again the basic recording methods and the use of a computer system are outlined. (author) [French

  6. Status of LSDS Development for Isotopic Fissile Assay in Used Fuel

    International Nuclear Information System (INIS)

    Lee, Y.D.; Ahn, S.; Kim, H.-D.; Song, K.C.; Park, C.J.

    2015-01-01

    Because of the large amount accumulation of spent fuel, a research to solve the spent fuel problem is actively performed in Korea. One option is to develop the SFR linked with the pyro process to reuse the existing fissile materials in spent fuel. Therefore, an accurate isotopic fissile content assay becomes a key factor in the reuse of fissile material for safety and safeguards purpose. There are several commercial non-destructive technologies for nuclear material assay. However, technology for direct isotopic fissile content assay in spent fuel is not developed yet. Internationally, a verification of special nuclear material in spent fuel, mainly U-235, Pu239, Pu241, is very important for the safeguards objective. These fissile materials can be misused for nuclear weapon purpose, not for peaceful use. As a future nuclear system is developed,, improved safeguards technology must be developed for an approval of fissile materials. A direct measurement of fissile materials is very important to provide a continuous of knowledge on nuclear materials. LSDS (Lead Slowing Down Spectrometer) has an advantage to assay an isotopic fissile content directly, without any help of burnup code and history. LSDS system is under development in KAERI (Korea Atomic Energy Research Institute) for spent fuel and recycled fuel. A linear assay model was setup for U235, Pu239 and Pu241. The dominant individual fission characteristic is appeared between 0.1 eV and 1 keV range. An electron linear accelerator for compact and low cost is under development to produce high source neutron effectively and efficiently. The LSDS is also applicable for optimum design of spent fuel storage and management. The advanced fissile assay technology will contribute to increase the transparency and credibility internationally on a reuse of fissile materials in future nuclear energy system development. (author)

  7. Potential for fissile breeding with the fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.

    1976-01-01

    The general features of the mirror reactor design are discussed. Details of the blanket-coil geometry are shown. The inside face of the blanket segments are divided into individual pressure vessels. These submodules contain fissile breeding material located directly behind the first wall, a fusile breeding material behind the fertile breeder, and then coolant inlet and outlet plena. Two blankets are examined and compared in this study. One contains natural uranium plus 7 wt. percent Mo, the second contains thorium metal. The performance of these blankets is discussed

  8. Isotopic fissile assay of spent fuel in a lead slowing-down spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Jeon, Ju Young [Dept. of Fuel Cycle Technology, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Chang Je [Dept. of Nuclear Engineering, Sejong University, Seoul (Korea, Republic of)

    2017-04-15

    A lead slowing-down spectrometer (LSDS) system is under development to analyze isotopic fissile content that is applicable to spent fuel and recycled material. The source neutron mechanism for efficient and effective generation was also determined. The source neutron interacts with a lead medium and produces continuous neutron energy, and this energy generates dominant fission at each fissile, below the unresolved resonance region. From the relationship between the induced fissile fission and the fast fission neutron detection, a mathematical assay model for an isotopic fissile material was set up. The assay model can be expanded for all fissile materials. The correction factor for self-shielding was defined in the fuel assay area. The corrected fission signature provides well-defined fission properties with an increase in the fissile content. The assay procedure was also established. The assay energy range is very important to take into account the prominent fission structure of each fissile material. Fission detection occurred according to the change of the Pu239 weight percent (wt%), but the content of U235 and Pu241 was fixed at 1 wt%. The assay result was obtained with 2∼3% uncertainty for Pu239, depending on the amount of Pu239 in the fuel. The results show that LSDS is a very powerful technique to assay the isotopic fissile content in spent fuel and recycled materials for the reuse of fissile materials. Additionally, a LSDS is applicable during the optimum design of spent fuel storage facilities and their management. The isotopic fissile content assay will increase the transparency and credibility of spent fuel storage.

  9. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  10. Administrative Co-ordination of Fissile Material Management and Accounting in the U.K.A.E.A; Coordination Administrative de la Gestion et de la Comptabilite des Matieres Fissiles dans les Etabussements de l'Autorite de l'Energie Atomique du Royaume-Uni; Administrativnaya koordinatsiya kontrolya i ucheta delyashchikhsya materialov v upravlenii po atomnoj ehnergii soedinennogo korolevstva; Coordinacion Administrativa de la Gestion y la Contabilidad de Materiales Fisionables en la Comision de Energia Atomica del Reino Unido

    Energy Technology Data Exchange (ETDEWEB)

    Hood, St. C.C. [United Kingdom Atomic Energy Authority, London (United Kingdom)

    1966-02-15

    The Authority are engaged as suppliers in fissile material production, distribution, recycle and reprocessing. As consumers, the Authority require fissile material for power reactors, a variety of prototypes, MTRs, zero-energy facilities and fuel development projects; and for other experimental and research purposes in laboratory quantities. Executive responsibility for these activities lies with the four Groups through which the Authority discharge these functions. It has been found useful to keep these activities under review in specialized inter-Group Committees, with a common secretariat. These Committees: (a) study all projects all proposals or work involving significant quantities of fissile material (plutonium and enriched uranium, other than natural U or U depleted in {sup 235}U) in the light of expected supplies over a number of years from all sources, including new production, scrap recovery and imports; and all uses including burn-up, losses and exports; (b) recommend the optimum allocation of specific amounts for approved purposes in relation to other calls upon available supplies, and having regard to the economic issues involved; (c) record and progress all approved allocations, and examine the nature, amount and purpose of all existing stockholdings in relation to current policies and objectives; (d) record and study all losses of fissile material during fabrication or other processing and the measures taken to reduce them; (e) assist in developing procedures and incentives to ensure that material is used economically and returned promptly. Each Group has considerable autonomy in its day-to-day use of fissile material. The administrative machinery described above provides a means by which the Authority's scientists, engineers, accountants and administrators concerned with fissile material problems can operate collectively in a common frame of reference with a minimum of paperwork. The paper is illustrated with a simplified flowsheet of the main flows

  11. Fissile solution dynamics: Student research

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  12. Safety analysis report: packages. GPHS shipping package supplement 2 to the PISA shipping package (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Chalfant, G. G.

    1981-06-01

    Safety Analysis Report DPST-78-124-1 is amended to permit shipment of 6 General Purpose Heat Source (GPHS) capsules (max.). Each capsule contains an average of 2330 curies of 238 Pu, and each pair of capsules is contained in a welded stainless steel primary containment vessel, all of which are doubly contained in a flanged secondary containment vessel. This is in addition to the forms discussed in DPST-78-124-1 and Supplement 1

  13. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  14. What should ''damaged'' mean in air transport of fissile packages

    International Nuclear Information System (INIS)

    Luna, R.E.; Falci, F.P.; Blackman, D.

    1995-01-01

    It is likely that the ongoing process to produce the 1996 version of the IAEA Regulation for the Safe Transport of Radioactive Materials, IAEA Safety Series 6(SS 6) will result in a more stringent package qualification standard for air transport of large quantities of radioactive materials (RAM) than is included in the 1990 version. During the process to define the scope of the new requirements there was extensive discussion of their impact on, and application to, fissile material package qualification criteria. Since fissile materials are shipped in a variety of packagings ranging from exempt to Type B, each packaging of each type must be evaluated for its ability to maintain subcriticality both alone and in arrays and in both damaged and undamaged condition. In the 1990 version of SS 6 ''damaged'' means the condition of a package after it had undergone the ''tests for demonstrating the ability to withstand accident conditions in transport,'' i.e., Type B qualification tests. These tests conditions are typical of severe accidents in surface modes, but are less severe than air mode qualification test environments to be applied to Type C packages. As a result, questions arose about the need for a corresponding change in the 1996 SS 6 to define ''damaged'' to include the Type C test regime for criticality evaluations of fissile packages in air transport

  15. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  16. Sensing Fissile Materials at Long Range

    Science.gov (United States)

    2016-04-01

    and then with it, accounting for its energy  consumption by  eddy   current  heating and subsequent thermal conduction into the  coil (quench back). The...slightly modify the field in mature‐design  machines , if needed.     The  current  in the cyclotron coils can be high, to provide protection through...internal energy dump for protection, either by using  eddy   current  quench  or by imbedded heaters, allows for low  current  operation.  Low  current  is

  17. Operational Characteristics of an Accelerator Driven Fissile Solution System

    International Nuclear Information System (INIS)

    Kimpland, Robert Herbert

    2016-01-01

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a ''generic'' Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

  18. Hardware implementation of the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    McEvers, J.; Sumner, J.; Jones, R.; Ferrell, R.; Martin, C.; Uckan, T.; March-Leuba, J.

    1998-01-01

    This paper provides an overall description of the implementation of the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor, which is part of a Blend Down Monitoring System (BDMS) developed by the US Department of Energy (DOE). The Fissile Mass Flow Monitor is designed to measure the mass flow of fissile material through a gaseous or liquid process stream. It consists of a source-modulator assembly, a detector assembly, and a cabinet that houses all control, data acquisition, and supporting electronics equipment. The development of this flow monitor was first funded by DOE/NE in September 95, and an initial demonstration by ORNL was described in previous INMM meetings. This methodology was chosen by DOE/NE for implementation in November 1996, and the hardware/software development is complete. Successful BDMS installation and operation of the complete BDMS has been demonstrated in the Paducah Gaseous Diffusion Plant (PGDP), which is operated by Lockheed Martin Utility Services, Inc. for the US Enrichment Corporation and regulated by the Nuclear Regulatory Commission. Equipment for two BDMS units has been shipped to the Russian Federation

  19. Source modulation-correlation measurement for fissile mass flow in gas or liquid fissile streams

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.A.; Valentine, T.E.; Abston, R.A.; Mattingly, J.K.; Mullens, J.A.

    1996-01-01

    The method of monitoring fissile mass flow on all three legs of a blending point, where the input is high-enriched uranium (HEU) and low-enriched uranium (LEU) and the product is PEU, can yield the fissile stream velocity and, with calibration, the [sup235]U content. The product of velocity and content integrated over the pipe gives the fissile mass flow in each leg. Also, the ratio of fissile contents in each pipe: HEU/LEU, HEU/PEU, and PEU/LEU, are obtained. By modulating the source on the input HEU pipe differently from that on the output pipe, the HEU gas can be tracked through the blend point. This method can be useful for monitoring flow velocity, fissile content, and fissile mass flow in HEU blenddown of UF[sub 6] if the pressures are high enough to contain some of the induced fission products. This method can also be used to monitor transfer of fissile liquids and other gases and liquids that emit radiation delayed from particle capture. These preliminary experiments with the Oak Ridge apparatus show that the method will work and the modeling is adequate

  20. Models and materials for generalized Kitaev magnetism

    Science.gov (United States)

    Winter, Stephen M.; Tsirlin, Alexander A.; Daghofer, Maria; van den Brink, Jeroen; Singh, Yogesh; Gegenwart, Philipp; Valentí, Roser

    2017-12-01

    The exactly solvable Kitaev model on the honeycomb lattice has recently received enormous attention linked to the hope of achieving novel spin-liquid states with fractionalized Majorana-like excitations. In this review, we analyze the mechanism proposed by Jackeli and Khaliullin to identify Kitaev materials based on spin-orbital dependent bond interactions and provide a comprehensive overview of its implications in real materials. We set the focus on experimental results and current theoretical understanding of planar honeycomb systems (Na2IrO3, α-Li2IrO3, and α-RuCl3), three-dimensional Kitaev materials (β- and γ-Li2IrO3), and other potential candidates, completing the review with the list of open questions awaiting new insights.

  1. Neutronic studies of fissile and fusile breeding blankets

    International Nuclear Information System (INIS)

    Taczanowski, S.

    1984-08-01

    In light of the need of convincing motivation substantiating expensive and inherently applied research (nuclear energy), first a simple comparative study of fissile breeding economics of fusion fission hybrids, spallators and also fast breeder reactors has been carried out. As a result, the necessity of maximization of fissile production (in the first two ones, in fast breeders rather the reprocessing costs should be reduced) has been shown, thus indicating the design strategy (high support ratio) for these systems. In spite of the uncertainty of present projections onto further future and discrepancies in available data even quite conservative assumptions indicate that hybrids and perhaps even earlier - spallators can become economic at realistic uranium price increase and successfully compete against fast breeders. Then on the basis of the concept of the neutron flux shaping aimed at the correlation of the selected cross-sections with the neutron flux, the indications for the maximization of respective reaction rates has been formulated. In turn, these considerations serve as the starting point for the guidelines of breeding blanket nuclear design, which are as follows: 1) The source neutrons must face the multiplying layer (of proper thickness) of possibly low concentration of nuclides attenuating the neutron multiplication (i.e. structure materials, nongaseous coolants). 2) For the most effective trapping of neutrons within the breeding zone (leakage and void streaming reduction) it must contain an efficient moderator (not valid for fissile breeding blankets). 3) All regions of significant slow flux should contain 6 Li in order to reduce parasite neutron captures in there. (orig./HP)

  2. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to <12% or <5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    International Nuclear Information System (INIS)

    Shaber, E.L.

    1995-08-01

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy's (DOE's) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations

  3. Storage and disposition of weapons usable fissile materials (FMD) PEIS: Blending of U-233 to {lt}12% or {lt}5% enrichment at the Idaho National Engineering Laboratory. Data report, Draft: Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Shaber, E.L.

    1995-08-01

    Uranium-233 (U-233), a uranium isotope, is a fissionable material capable of fueling nuclear reactors or being utilized in the manufacturing of nuclear weapons. As such, it is controlled as a special nuclear material. The Idaho National Engineering Laboratory (INEL) and Oak Ridge National Laboratory (ORNL) currently store the Department of Energy`s (DOE`s) supply of unirradiated U-233 fuel materials. Irradiated U-233 is covered by the national spent nuclear fuel (SNF) program and is not in the scope of this report. The U-233 stored at ORNL is relatively pure uranium oxide in the form of powder or monolithic solids. This material is currently stored in stainless steel canisters of variable lengths measuring about 3 inches in diameter. The ORNL material enrichment varies with some material containing considerable amounts of U-235. The INEL material is fuel from the Light Water Breeder Reactor (LWBR) Program and consists of enriched uranium and thorium oxides in zircaloy cladding. The DOE inventory of U-233 contains trace quantities of U-232, and daughter products from the decay of U-232 and U-233, resulting in increased radioactivity over time. These increased levels of radioactivity generally result in the need for special handling considerations.

  4. Spectrum analysis in lead spectrometer for isotopic fissile assay in used fuel

    International Nuclear Information System (INIS)

    Lee, Y.D.; Park, C.J.; Kim, H.D.; Song, K.C.

    2014-01-01

    The LSDS system is under development for analyzing isotopic fissile content applicable in a hot cell for the pyro process. The fuel assay area and nuclear material composition were selected for simulation. The source mechanism for efficient neutron generation was also determined. A neutron is produced at the Ta target by hitting it from accelerated electron. The parameters for an electron accelerator are being researched for cost effectiveness, easy maintenance, and compact size. The basic principle of LSDS is that isotopic fissile has its own fission structure below the unresolved resonance region. The source neutron interacts with a lead medium and produces continuous neutron energy, which generates dominant fission at each fissile. Therefore, a spectrum analysis is very important at a lead medium and fuel area for system working. The energy spectrum with respect to slowing down energy and the energy resolution were investigated in lead. A spectrum analysis was done by the existence of surrounding detectors. In particular, high resonance energy was considered. The spectrum was well organized at each slowing down energy and the energy resolution was acceptable to distinguish isotopic fissile fissions. Additionally, LSDS is applicable for the optimum design of spent fuel storage and management.The isotopic fissile content assay will increase the transparency and credibility for spent fuel storage and its re-utilization, as demanded internationally. (author)

  5. High order statistical signatures from source-driven measurements of subcritical fissile systems

    International Nuclear Information System (INIS)

    Mattingly, J.K.

    1998-01-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements

  6. Development and production of Zenith fissile elements

    Energy Technology Data Exchange (ETDEWEB)

    George, D; Wheatley, C C.H.; Lloyd, H

    1959-06-15

    The development of a new glass-bonded alumina-uranium oxide composition forming the fissile component of the Zenith fuel elements is described, together with the production of the initial charge containing 15 Kg. of U{sub 235]; the composition is capable of retaining fission product gases at high temperatures. The description includes criticality considerations, details of manufacture, and production statistics of the 11,000 discs produced.

  7. Local tissue distribution of fissile nuclides

    International Nuclear Information System (INIS)

    Smith, J.M.

    1981-01-01

    Conventional tissue-section autoradiography of alpha-emitting actinide elements may require prohibitively long exposure times. Neutron-induced or fission-track autoradiography can be used for fissile nuclides such as 233 U, 235 U, and 239 Pu to circumvent this difficulty. The detection limit for these nuclides is about 4 x 10 -13 (weight fraction). This paper describes a specific technique for determining their microdistribution with histologically stained tissue sections

  8. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    International Nuclear Information System (INIS)

    Ozdemir, Levent; Acar, Banu Bulut; Zabunoglu, Okan H.

    2011-01-01

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239 Pu and 241 Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  9. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  10. General and special engineering materials science. Vol. 1

    International Nuclear Information System (INIS)

    Ondracek, G.; Voehringer, O.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes: Volume I treats general engineering materials science in 4 capital chapters on the structure of materials, the properties of materials, materials technology and materials testing and investigation supplemented by a selected detailed chapter about elasticity plasticity and rupture mechanics. Volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including reactor clad and structural materials, nuclear fuels and fuel elements and nuclear waste as a materials viewpoint. Volume III - also concerning special engineering materials science - considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accidents and nuclear materials in core melt accidents. (orig.) [de

  11. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  12. Counterstreaming-ion-tokamak fissile breeder

    International Nuclear Information System (INIS)

    Jassby, D.L.; Lee, J.D.

    1976-08-01

    Tokamak plasmas fueled and heated by energetic neutral-atom beams are characterized by total ion energy greatly exceeding the electron energy. For smaller devices the largest fusion reactivity of energetic-ion plasmas is obtained when oppositely injected D 0 and T 0 beams sustain counterstreaming velocity distributions of deuterons and tritons. This scoping study investigates the net fissile and power productions of a tokamak fusion-fission reactor with a counterstreaming-ion fusion driver and a fertile blanket optimized for fissile breeding. The fusion driver has parameters R/sub o/ = 4.7 m, a = 1.0 m, B/sub t/ = 5.6 T, W/sub b/ = 100 keV (D 0 ), n tau/sub E/ = 1.4 x 10 13 cm -3 s, Q = 1.5, 14-MeV neutron production = 175 MW. The blanket contains a fast-fission zone of natural U plus Mo (7 percent), followed by a Li-bearing zone for T breeding. The reactor produces a net power of 480 MWe and supplies sufficient Pu to support a system of LWR's producing 3800 MWe, with an estimated electrical energy cost for the entire system of 27 mills/kWh

  13. 49 CFR 173.477 - Approval of packagings containing greater than 0.1 kg of non-fissile or fissile-excepted uranium...

    Science.gov (United States)

    2010-10-01

    ... kg of non-fissile or fissile-excepted uranium hexafluoride. 173.477 Section 173.477 Transportation... non-fissile or fissile-excepted uranium hexafluoride. (a) Each offeror of a package containing more than 0.1 kg of uranium hexafluoride must maintain on file for at least one year after the latest...

  14. Detector and front-end electronics of a fissile mass flow monitoring system

    International Nuclear Information System (INIS)

    Paulus, M.J.; Uckan, T.; Lenarduzzi, R.; Mullens, J.A.; Castleberry, K.N.; McMillan, D.E.; Mihalczo, J.T.

    1997-01-01

    A detector and front-end electronics unit with secure data transmission has been designed and implemented for a fissile mass flow monitoring system for fissile mass flow of gases and liquids in a pipe. The unit consists of 4 bismuth germanate (BGO) scintillation detectors, pulse-shaping and counting electronics, local temperature sensors, and on-board local area network nodes which locally acquire data and report to the master computer via a secure network link. The signal gain of the pulse-shaping circuitry and energy windows of the pulse-counting circuitry are periodicially self calibrated and self adjusted in situ using a characteristic line in the fissile material pulse height spectrum as a reference point to compensate for drift such as in the detector gain due to PM tube aging. The temperature- dependent signal amplitude variations due to the intrinsic temperature coefficients of the PM tube gain and BGO scintillation efficiency have been characterized and real-time gain corrections introduced. The detector and electronics design, measured intrinsic performance of the detectors and electronics, and the performance of the detector and electronics within the fissile mass flow monitoring system are described

  15. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    Science.gov (United States)

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  16. Powder metallurgical high performance materials. Proceedings. Volume 3: general topics

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgy High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (boteke)

  17. General and special engineering materials science. Vol. 3

    International Nuclear Information System (INIS)

    Ondracek, G.; Hofmann, P.

    1983-04-01

    The report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume III concerns special engineering materials science and considers nuclear materials with respect to off-normal (''accident'') reactor operation conditions including nuclear materials in loss-of-coolant accident and nuclear materials in core melt accidents. (orig./IHOE) [de

  18. General and special engineering materials science. Vol. 2

    International Nuclear Information System (INIS)

    Anderko, K.; Kummerer, K.R.; Ondracek, G.

    1983-04-01

    The present report about general and special engineering materials science is the result of lectures given by the authors in two terms in 1982 at Instituto Balseiro, San Carlos de Bariloche, the graduated college of the Universidad de Cuyo and Comision Nacional de Energia Atomica, Republica Argentina. These lectures were organised in the frame of the project ''nuclear engineering'' (ARG/78/020) of the United Nations Development Program (UNDP) by the International Atomic Energy Agency (IAEA). Some chapters of the report are written in English, others in Spanish. The report is subdivided into three volumes. The present volume II concerns special engineering materials science with respect to nuclear materials under normal reactor operation conditions including 1. reactor clad and structural materials, 2. nuclear fuels and fuel elements, 3. nuclear waste as a materials viewpoint. (orig./IHOE) [de

  19. Fissile fuel dynamics of breeder/converter reactors

    International Nuclear Information System (INIS)

    Harms, A.A.

    1978-01-01

    The long-term fissile fuel dynamics for a hierarchy of fission reactors covering the range from pure-burners to super-breeders is examined. It is found that the breeding gains of the core and blanket can be used to identify several distinct fissile fuel histories and elucidate the importance of fuel cycle characteristics such as the time dependence of the fissile fuel doubling time. On this basis, a self-sufficient fission reactor is introduced and its determining characteristics are identified. (author)

  20. The differential dieaway technique applied to the measurement of the fissile content of drums of cement encapsulated waste

    International Nuclear Information System (INIS)

    Swinhoe, M.T.

    1986-01-01

    This report describes calculations of the differential dieaway technique as applied to cement encapsulated waste. The main difference from previous applications of the technique are that only one detector position is used (diametrically opposite the neutron source) and the chamber walls are made of concrete. The results show that by rotating the drum the response to fissile material across the central plane of the drum can be made relatively uniform. The absolute size of the response is about 0.4. counts per minute per gram fissile for a neutron source of 10 8 neutrons per second. Problems of neutron and gamma background and water content are considered. (author)

  1. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  2. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, Taner [ORNL; March-Leuba, Jose A [ORNL; Powell, Danny H [ORNL; Nelson, Dennis [Sandia National Laboratories (SNL); Radev, Radoslav [Lawrence Livermore National Laboratory (LLNL)

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  3. Development for fissile assay in recycled fuel using lead slowing down spectrometer

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Je Park, C.; Kim, Ho-Dong; Song, Kee Chan

    2013-01-01

    A future nuclear energy system is under development to turn spent fuels produced by PWRs into fuels for a SFR (Sodium Fast Reactor) through the pyrochemical process. The knowledge of the isotopic fissile content of the new fuel is very important for fuel safety. A lead slowing down spectrometer (LSDS) is under development to analyze the fissile material content (Pu 239 , Pu 241 and U 235 ) of the fuel. The LSDS requires a neutron source, the neutrons will be slowed down through their passage in a lead medium and will finally enter the fuel and will induce fission reactions that will be analysed and the isotopic content of the fuel will be then determined. The issue is that the spent fuel emits intense gamma rays and neutrons by spontaneous fission. The threshold fission detector screens the prompt fast fission neutrons and as a result the LSDS is not influenced by the high level radiation background. The energy resolution of LSDS is good in the range 0.1 eV to 1 keV. It is also the range in which the fission reaction is the most discriminating for the considered fissile isotopes. An electron accelerator has been chosen to produce neutrons with an adequate target through (e - ,γ)(γ,n) reactions

  4. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    International Nuclear Information System (INIS)

    Uckan, Taner; March-Leuba, Jose A.; Powell, Danny H.; Nelson, Dennis; Radev, Radoslav

    2007-01-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the 235 U fissile mass flow of UF 6 gas streams by using 252 Cf neutron sources for fission activation of the UF 6 gas and by measuring the fission products in the flow. The 252 Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life (∼ 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  5. Derivation of plutonium-239 materials disposition categories

    International Nuclear Information System (INIS)

    Brough, W.G.

    1995-01-01

    At this time, the Office of Fissile Materials Disposition within the DOE, is assessing alternatives for the disposition of excess fissile materials. To facilitate the assessment, the Plutonium-Bearing Materials Feed Report for the DOE Fissile Materials Disposition Program Alternatives report was written. The development of the material categories and the derivation of the inventory quantities associated with those categories is documented in this report

  6. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  7. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-01

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  8. Development of a fissile particle for HTGR fuel recycle

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.; Lindemer, T.B.; Beatty, R.L.; Tiegs, T.N.

    1976-12-01

    Recycle fissile fuel particles for high-temperature gas-cooled reactors (HTGRs) have been under development since the mid-1960s. Irradiation performance on early UO 2 and Th 0 . 8 U 0 . 2 O 2 kernels is described in this report, and the performance limitations associated with the dense oxide kernels are presented. The development of the new reference fuel kernel, the weak-acid-resin-derived (WAR) UO 2 --UC 2 , is discussed in detail, including an extensive section on the irradiation performance of this fuel in HFIR removable beryllium capsules HRB-7 through -10. The conclusion is reached that the irradiation performance of the WAR fissile fuel kernel is better than that of any coated particle fuel yet tested. Further, the present fissile kernel is adequate for steam cycle HTGRs as well as for many advanced applications such as gas turbine and process heat HTGRs

  9. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: mueller@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Ahmed, M.W. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2014-08-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of {sup 232}Th, {sup 233,235,238}U, {sup 237}Np, and {sup 239,240}Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed.

  10. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    International Nuclear Information System (INIS)

    Mueller, J.M.; Ahmed, M.W.; Weller, H.R.

    2014-01-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of 232 Th, 233,235,238 U, 237 Np, and 239,240 Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed

  11. Fissile interrogation using gamma rays from oxygen

    Science.gov (United States)

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  12. Using a fully automatic mass spectrometer for fissile material control

    International Nuclear Information System (INIS)

    Wilhelmi, M.

    1978-08-01

    The demand for higher accuracy and a shorter delay in the analysis together with better objectifiability and data security needed in safeguards, lead to the automation of a mass spectrometer. Starting with a continuous feeding of samples via a high vacuum lock and including the subsequent heating, focussing and scanning of the samples as well as the final evaluation of the source data (taking alpha spectrometry and the weights required for the isotope dilution technique into account), the mass spectrometric procedure was completely automated. For this purpose, a serial CH-5 instrument of varian mat was modified to be operated by a varian 620/I computer. A newly developed three chamber high vacuum lock was attached to this system and the final evaluation is made with an IBM 370. The system has been used in operation for the isotope analysis of U, Pu and Nd for one year. Major breakdowns of the hardware did not occur, however, the computer programmes had to be steadily improved according to the changing characteristics of the samples. Compared to manual operation, the automat is superior in its throughput and speed of analysing series of similar samples. The automatic procedure objectifies the analysis and the complete evaluation ensures a better data security. (Orig./HP). (author)

  13. Fissile materials from nuclear arms reductions: A question of disposition

    International Nuclear Information System (INIS)

    Sutcliffe, W.G.

    1991-01-01

    This Session, 35T-2, of the Annual Meeting of the American Association for the Advancement of Science (AAAS) was held on February 18, 1991. The papers presented during this session covered a variety of issues and technologies concerning the disposition of the highly enriched uranium and plutonium salvaged from retired nuclear warheads. However, circumstances, including the amount of time available for the session, imposed limitations on the number and breadth of these papers. A comprehensive study of this topic should include a broader range of papers. This session included a paper on molten salt reactors designed to use highly enriched uranium or plutonium as fuel. Other options for the disposal of plutonium, such as transmutation using accelerators and underground vitrification using nuclear explosions, were not discussed during this session, but need to be considered. Individual papers are indexed separately

  14. Conversion ratio and consumption of fissile material in PWR reactors

    International Nuclear Information System (INIS)

    Tiba, C.

    1977-01-01

    It has been shown that the uranium resources will be insufficient for future projected demand. The many solutions to this problem are considered and, in particular, the effect of enrichment on the conversion ratio and hence total uranium comsumption is studied. The developed computacional method employs the one-group neutron diffusion theory. The model is verified by calculating typical burn-up, conversion ratio, U-235 comsumption and plutonium production values in PWR's, and comparing results with those in the published literature. The associated costs of U and U-Pu fuel cycles are also studied for various enrichment values [pt

  15. 49 CFR 173.417 - Authorized fissile materials packages.

    Science.gov (United States)

    2010-10-01

    ... for export and import shipments. (2) A residual “heel” of enriched solid uranium hexafluoride may be... made in accordance with Table 2, as follows: Table 2—Allowable Content of Uranium Hexafluoride (UF6... Liters Cubic feet Maximum Uranium 235-enrichment (weight)percent Maximum “Heel” weight per cylinder UF6...

  16. Creep of fissile ceramic materials under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1975-01-01

    Theoretical estimation of the irradiation-induced creep rate of U0 2 by a modification of the Nabarro-Herring model for diffusional creep resulted in a creep rate range between about 6 x 10 -6 to 8 x 10 -5 h -1 for a fission rate of 1 x 10 14 f/cm 3 s and a stress of 2 kgf/mm 2 . Accordingly, the creep rate is enhanced by irradiation at temperatures below 1000 0 to 1200 0 C. It is essentially due to the 'thermal rods' along the fission fragment tracks. Therefore, irradiation-induced creep rates should depend only slightly on temperature and must be markedly lower for carbide and nitride fuel. In-reactor creep experiments on UO 2 were performed at fuel temperatures between 250 0 to 850 0 C. At burnups between 0.3 to 3% the steady-state compressive creep rates are proportional to stress (0 to 4 kgf/mm 2 ) and to fission rate (1 x 10 13 to 2 x 10 14 f/cm 3 s), and are in the range estimated before. The increase in the creep rate with increasing temperature is low and corresponds to an apparent activation energy of only 5200 cal/mol. At burnups above 3 to 4% the stress exponent of the irradiation-induced creep rate increased from n = 1 to n = 1.5. Creep measurements on UO 2 to 15 wt-%Pu0 2 (mechanically mixed, sintered density 86% TD) showed the same temperature dependence as UO 2 below 700 0 C. However, the creep rates were higher by a factor of about 20 compared to fully dense UO 2 . This difference may be explained by assuming a high 'effective' porosity. In-pile creep tests on some UN samples resulted in creep rates that were lower by an order of magnitude than for UO 2 under comparable conditions. (author)

  17. Annual report 2001. General direction of energy and raw materials

    International Nuclear Information System (INIS)

    2001-01-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  18. Lightning protection technology for small general aviation composite material aircraft

    Science.gov (United States)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  19. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  20. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  1. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Cates, M.R.; Franks, L.A.; Kunz, W.E.

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for 239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed delayed neutrons

  2. Characterization of a facility for the measurement of fission fragment transport effects: experimental determination of the fission rates for fissile and fissionable isotopes

    International Nuclear Information System (INIS)

    Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.

    2002-01-01

    The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)

  3. Material for 258 atom bombs disappeared?

    International Nuclear Information System (INIS)

    Gruemm, H.

    1988-01-01

    In a report published in the news magazine, 'Der Spiegel', it was said that IAEA safeguards obviously had failed, for large amounts of fissile material had disappeared, which could be turned into 258 atomic bombs. The article in this issue of atw by the former Deputy Director General with the IAEA Safeguards Division sketches the background to the assertions made by 'Der Spiegel' and presents an overview of the inspection and verification methods employed by IAEA. (orig./HP) [de

  4. Feasibility of fissile mass assay of spent nuclear fuel using 252Cf-source-driven frequency-analysis

    International Nuclear Information System (INIS)

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1996-01-01

    The feasibility was evaluated using MCNP-DSP, an analog Monte Carlo transport cod to simulate source-driven measurements. Models of an isolated Westinghouse 17x17 PWR fuel assembly in a 1500-ppM borated water storage pool were used. In the models, the fuel burnup profile was represented using seven axial burnup zones, each with isotopics estimated by the PDQ code. Four different fuel assemblies with average burnups from fresh to 32 GWd/MTU were modeled and analyzed. Analysis of the fuel assemblies was simulated by inducing fission in the fuel using a 252 Cf source adjacent to the assembly and correlating source fissions with the response of a bank of 3 He detectors adjacent to the assembly opposite the source. This analysis was performed at 7 different axial positions on each of the 4 assemblies, and the source-detector cross-spectrum signature was calculated for each of these 28 simulated measurements. The magnitude of the cross-spectrum signature follows a smooth upward trend with increasing fissile material ( 235 U and 239 Pu) content, and the signature is independent of the concentration of spontaneously fissioning isotopes (e.g., 244 Cm) and (α,n) sources. Furthermore, the cross-spectrum signature is highly sensitive to changes in fissile material content. This feasibility study indicated that the signature would increase ∼100% in response to an increase of only 0.1 g/cm 3 of fissile material

  5. Calibration measurements using the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Uckan, T.; Sumner, J.; Mattingly, J.; Mihalczo, J.

    1998-01-01

    This paper presents a demonstration of fissile-mass-flow measurements using the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor in the Paducah Gaseous Diffusion Plant (PGDP). This Flow Monitor is part of a Blend Down Monitoring System (BDMS) that will be installed in at least two Russian Federation (R.F.) blending facilities. The key objectives of the demonstration of the ORNL Flow Monitor are two: (a) demonstrate that the ORNL Flow Monitor equipment is capable of reliably monitoring the mass flow rate of 235 UF 6 gas, and (b) provide a demonstration of ORNL Flow Monitor system in operation with UF 6 flow for a visiting R.F. delegation. These two objectives have been met by the PGDP demonstration, as presented in this paper

  6. The burnable poisons utilization for fissile enriched CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D; Nainer, O [Team 3 Solutions, Don Mills, ON (Canada)

    1996-12-31

    Utilization of burnable poison for the fissile enriched fueled CANDU 6 Mk1 core is investigated. The main incentives for this analysis are the reduction of void reactivity effects, the maximization of the fissile content of fresh fuel bundles, and the achievement of better power shape control, in order to preserve the power envelope of the standard 37 rod fuel bundle. The latter allows also the preservation of construction parameters of the standard core (for example: number and location of reactivity devices). It also permits the use of regular shift fueling schemes. The paper makes analyses of MOX weapons-grade plutonium and 1.2% SEU fueled CANDU 6 Mk 1 cores. (author). 6 refs., 4 tabs., 10 figs.

  7. Reduction of the uncertainty due to fissile clusters in radioactive waste characterization with the Differential Die-away Technique

    Science.gov (United States)

    Antoni, R.; Passard, C.; Perot, B.; Guillaumin, F.; Mazy, C.; Batifol, M.; Grassi, G.

    2018-07-01

    AREVA NC is preparing to process, characterize and compact old used fuel metallic waste stored at La Hague reprocessing plant in view of their future storage ("Haute Activité Oxyde" HAO project). For a large part of these historical wastes, the packaging is planned in CSD-C canisters ("Colis Standard de Déchets Compacté s") in the ACC hulls and nozzles compaction facility ("Atelier de Compactage des Coques et embouts"). . This paper presents a new method to take into account the possible presence of fissile material clusters, which may have a significant impact in the active neutron interrogation (Differential Die-away Technique) measurement of the CSD-C canisters, in the industrial neutron measurement station "P2-2". A matrix effect correction has already been investigated to predict the prompt fission neutron calibration coefficient (which provides the fissile mass) from an internal "drum flux monitor" signal provided during the active measurement by a boron-coated proportional counter located in the measurement cavity, and from a "drum transmission signal" recorded in passive mode by the detection blocks, in presence of an AmBe point source in the measurement cell. Up to now, the relationship between the calibration coefficient and these signals was obtained from a factorial design that did not consider the potential for occurrence of fissile material clusters. The interrogative neutron self-shielding in these clusters was treated separately and resulted in a penalty coefficient larger than 20% to prevent an underestimation of the fissile mass within the drum. In this work, we have shown that the incorporation of a new parameter in the factorial design, representing the fissile mass fraction in these clusters, provides an alternative to the penalty coefficient. This new approach finally does not degrade the uncertainty of the original prediction, which was calculated without taking into consideration the possible presence of clusters. Consequently, the

  8. Alternative repository criticality-control strategies for fissile uranium wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1998-01-01

    Methods to prevent long term, disposal site nuclear criticality from fissile uranium isotopes in wastes were investigated. Long term refers to the time period after waste package (WP) failure and the subsequent loss of geometry and chemistry control within the WP. The preferred method of control was found to be the addition of sufficient depleted uranium to each WP so that the uranium enrichment is reduced to 235 U and 233 U in 238 U

  9. Development of AGNES, a kinetics code for fissile solutions, 1

    International Nuclear Information System (INIS)

    Nakajima, Ken; Ohnishi, Nobuaki

    1986-01-01

    A kinetics code for fissile solutions, AGNES (Accidentally Generated Nuclear Excursion Simulation code), has been developed. This code calculates the radiolytic gas void effect as a reactivity feedback. Physical and calculative models of the radiolytic gas void are summarized and the usage of AGNES is described. In addition, some benchmark calculations were performed and results of calculations show good agreement with those of experiments. (author)

  10. Generalized synthesis of periodic surfactant/inorganic composite materials

    NARCIS (Netherlands)

    Huo, Q.; Margolese, D.I.; Ciesla, U.; Feng, P.; Gier, T.E.; Sieger, P.; Leon, R.; Petroff, P.M.; Schüth, F.; Stucky, G.D.

    1994-01-01

    THE recent synthesis of silica-based mesoporous materials by the cooperative assembly of periodic inorganic and surfactant-based structures has attracted great interest because it extends the range of molecular-sieve materials into the very-large-pore regime. If the synthetic approach can be

  11. The simultaneous neutron and photon interrogation method for fissile and non-fissile element separation in radioactive waste drums

    International Nuclear Information System (INIS)

    Jallu, F.; Lyoussi, A.; Passard, C.; Payan, E.; Recroix, H.; Nurdin, G.; Buisson, A.; Allano, J.

    2000-01-01

    Measuring α-emitters such as ( 234,235,236,238 U, 238,239,240,242,244 Pu, 237 Np, 241,243 Am, ...), in solid radioactive waste allows us to quantify the α-activity in a drum and then to classify it. The simultaneous photon and neutron interrogation experiment (SIMPHONIE) method dealt with in this paper, combines both active neutron interrogation and induced photofission interrogation techniques simultaneously. Its purpose is to quantify fissile ( 235 U, 239,241 Pu, ...) and non-fissile ( 236,238 U, 238,240 Pu, ...) elements separately in only one measurement. This paper presents the principle of the method, the experimental setup, and the first experimental results obtained using the DGA/ETCA Linac and MiniLinatron pulsed linear electron accelerators located at Arcueil, France. First studies were carried out with U and Pu bare samples

  12. Criticality safety margins for mixtures of fissionable materials

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mincey, J.F.

    1992-01-01

    In the determination of criticality safety margins, approximations for combinations of fissile and fissionable isotopes are sometimes used that go by names such as the rule of fractions or equivalency relations. Use of the rule of fractions to ensure criticality safety margins was discussed in an earlier paper. The purpose of this paper is to correct errors and to clarify some of the implications. Deviations of safety margins from those calculated by the rule of fractions are still noted; however, the deviations are less severe. Caution in applying such rules is still urged. In general, these approximations are based on American National Standard ANSI/ANS-8.15, Sec. 5.2. This section allows that ratios of material masses to their limits may be summed for fissile nuclides in aqueous solutions. It also allows the addition of nonfissile nuclides if an aqueous moderator is present and addresses the effects of infinite water or equivalent reflector. Water-reflected binary combinations of aqueous solutions of fissile materials, as well as binary combinations of fissile and fissionable metals, were considered. Some combinations were shown to significantly decrease the margin of subcriticality compared to the single-unit margins. In this study, it is confirmed that some combinations of metal units in an optimum geometry may significantly decrease the margin of subcriticality. For some combinations of aqueous solutions of fissile materials, the margin of subcriticality may also be reduced by very small amounts. The conclusion of Ref. 1 that analysts should be careful in applying equivalency relations for combining materials remains valid and sound advice. The ANSI/ANS standard, which allows the use of ratios of masses to their limits, applies to aqueous, fully water-reflected, single-unit solutions. Extensions to other situations should be considered with extreme care

  13. The SVM Method for Fissile Mass Estimation through Passive Neutron Interrogation: Advances and Developments

    International Nuclear Information System (INIS)

    Dubi, C.; Shvili, Israel I.

    2014-01-01

    Fissile mass estimation through passive neutron interrogation is now one of the main techniques for NDT of fissile mass estimation, due to the relative transparency of neutron radiation to structural materials- making it extremely effective in poorly characterized or dirty samples . Passive neutron interrogation relies on the fact that the number of neutrons emitted (per time unit) due to spontaneous fissions from the sample is proportional to the mass of the detected sample. However, since the measurement is effected by additional neutron sources- mainly (D±n) reactions and induced fission chain in the tested sample, a naive estimation, assuming a linear correspondence between the mass of the detected sample and the average number of detections, is bound to give an over estimation of the mass. Since most passive interrogation facilities are based on 3He detectors, the origin of the neutron cannot be determined by analyzing the energy spectrum (as all neutrons arrive at the detector in more or less the same energy), and a mathematical 'filter' is used to evaluate the noise to source ratio in the detection signal. The basic idea behind the mathematical filter is to utilize the fact that the different neutron sources have different statistical attributes- in particular, both the source event rate and the distribution of the number of neutrons released in each event differs between the different sources. There for, by studying the higher moments of the neutron population, new information about the source to noise ration may be obtained

  14. Evaluation of criticality criteria for fissile class II packages in transportation

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1976-01-01

    The nuclear criticality safety of packages in transportation is explored systematically by a surface density representation of reflected array criticality of air-spaced units. Typical perturbations to arrays are shown to be related analytically to the corresponding reactivity changes they produce. The reactivity change associated with the removal of three reflecting surfaces from a totally water reflected array is shown to depend upon the fissile material loading of the packages. For U(93.2) metal, the expected reactivity loss can range from 2 to 21%. Replacement of a three-sided reflector of water on a critical array by one of concrete results in a reactivity increase ranging from 0 to 6%. Mass limits established by criticality data for reflected arrays of air-spaced units can provide a minimum, uniform margin of safety, expressible in terms of reactivity, to more reliably specify subcriticality in transport. Mass limits less than those defined by air-spaced units in water-reflected arrays are unnecessary for Fissile Class II packages. (author)

  15. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  16. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  17. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  18. General corrosion of metallic materials in boric acid environments

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-05-01

    Certain low-alloy steel components in PWR primary circuit were corroded by leaking water containing boric acid. A number of studies have been performed by manufacturers in the USA and by EDF in France to determine the rate of general corrosion for low-alloy steels in media containing varying concentrations of boric acid. The first part of this paper summarizes the studies performed and indicates how far work has advanced to date in establishing the resistance of stainless steels to general corrosion in concentrated boric acid solutions. The second part of the paper discusses the mechanism of corrosion and proposes a model. Carbon steels and low-alloy steels - carbon steels and low-alloy steels in deaerated diluted boric acid solutions (pH > 4) corrode very slowly ( -1 . (author). 31 refs., 12 figs., 13 tabs

  19. Fissile fuel doubling time characteristics for reactor lifetime fuel logistics

    International Nuclear Information System (INIS)

    Heindler, M.; Harms, A.A.

    1978-01-01

    The establishment of nuclear fuel requirements and their efficient utilization requires a detailed knowledge of some aspects of fuel dynamics and processing during the reactor lifetime. It is shown here that the use of the fuel stockpile inventory concept can serve effectively for this fuel management purpose. The temporal variation of the fissile fuel doubling time as well as nonequilibrium core conditions are among the characteristics which thus become more evident. These characteristics - rather than a single figure-of-merit - clearly provide an improved description of the expansion capacity and/or fuel requirements of a nuclear reactor energy system

  20. General principles of researching the lexicon of traditional material culture

    Directory of Open Access Journals (Sweden)

    Nedeljkov Ljiljana

    2009-01-01

    Full Text Available The paper discusses a linguistic research of terminological systems connected with basic fields of human life and work which, in modern conditions, are either transformed into contemporary modern forms or gradually disappear due to changes in the way of life and work. The lexicon of material culture of native inhabitants of Vojvodina is examined, resulting in monographs on the terminologies of fishing, cartwrighting, shepherding and houses and furniture, all of which have in common the fact that the starting point was the research of the lexicon in question by semantic fields. The paper shows the lexicological and lexicographical procedures used while researching these terminological systems.

  1. A comparative study between transport and criticality safety indexes for fissile uranium nuclearly pure

    Energy Technology Data Exchange (ETDEWEB)

    Moraes da Silva, T. de; Sordi, G.M.A.A. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN (Brazil)]. e-mail: tmsilva@ipen.br

    2006-07-01

    The international and national standards determine that during the transport of radioactive materials the package to be sent should be identified by labels of risks specifying content, activity and the transport index. The result of the monitoring of the package to 1 meter identifies the transport index, TI, which represents the dose rate to 1 meter of this. The transport index is, by definition, a number that represents a gamma radiation that crosses the superficial layer the radioactive material of the package to 1 meter of distance. For the fissile radioactive material that is the one in which a neutron causes the division of the atom, the international standards specify criticality safety index CSI, which is related with the safe mass of the fissile element. In this work it was determined the respective safe mass for each considered enrichment for the compounds of uranium oxides UO{sub 2}, U{sub 3}O{sub 8} and U{sub 3}Si{sub 2}. In the study of CSI it was observed that the value 50 of the expression 50/N being N the number of packages be transported in subcriticality conditions it represents a fifth part of the safe mass of the element uranium or 9% of the smallest mass critical for a transport not under exclusive use. As conclusion of the accomplished study was observed that the transport index starting from 7% of enrichment doesn't present contribution and that criticality safety index is always greater than the transport index. Therefore what the standards demand to specify, the largest value between both indexes, was clearly identified in this study as being the criticality safety index. (Author)

  2. Generalized Effective Medium Theory for Particulate Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Muhammad Usama Siddiqui

    2016-08-01

    Full Text Available The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites.

  3. Calculation of the minimum critical mass of fissile nuclides

    International Nuclear Information System (INIS)

    Wright, R.Q.; Hopper, Calvin Mitchell

    2008-01-01

    The OB-1 method for the calculation of the minimum critical mass of fissile actinides in metal/water systems was described in a previous paper. A fit to the calculated minimum critical mass data using the extended criticality parameter is the basis of the revised method. The solution density (grams/liter) for the minimum critical mass is also obtained by a fit to calculated values. Input to the calculation consists of the Maxwellian averaged fission and absorption cross sections and the thermal values of nubar. The revised method gives more accurate values than the original method does for both the minimum critical mass and the solution densities. The OB-1 method has been extended to calculate the uncertainties in the minimum critical mass for 12 different fissile nuclides. The uncertainties for the fission and capture cross sections and the estimated nubar uncertainties are used to determine the uncertainties in the minimum critical mass, either in percent or grams. Results have been obtained for U-233, U-235, Pu-236, Pu-239, Pu-241, Am-242m, Cm-243, Cm-245, Cf-249, Cf-251, Cf-253, and Es-254. Eight of these 12 nuclides are included in the ANS-8.15 standard.

  4. 1987 target values for uncertainty components in fissile isotope and element assay

    International Nuclear Information System (INIS)

    De Bievre, P.; Baumann, S.; Gorgenyi, T.; Kuhn, E.; Deron, S.; Dalton, J.; Perrin, R.E.; Pietri, C.; De Regge, P.

    1987-01-01

    The Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA), which at present includes the representation of 37 nuclear analytical laboratories, has long been concerned with defining realistic performance characteristics of destructive analysis techniques. One of the terms of reference of the working groups is: ''to evaluate and recommend criteria for destructive analysis of nuclear materials for use by plant operators and safeguarding authorities''. Some of the most important and most badly needed criteria are those to be used for judging results of quantitative determinations of fissile isotope and element amounts. The working group has recognized and discussed this problem at several meetings and decided that it was appropriate to fix reasonable levels of performance as ''goals'' for nuclear analytical laboratories

  5. Computational Magnetohydrodynamics of General Materials in Generalized Coordinates and Applications to Laser-Target Interactions

    Science.gov (United States)

    MacGillivray, Jeff T.; Peterkin, Robert E., Jr.

    2003-10-01

    We have developed a multiblock arbitrary coordinate Hydromagnetics (MACH) code for computing the time-evolution of materials of arbitrary phase (solid, liquid, gas, and plasma) in response to forces that arise from material and magnetic pressures. MACH is a single-fluid, time-dependent, arbitrary Lagrangian-Eulerian (ALE) magnetohydrodynamic (MHD) simulation environment. The 2 1/2 -dimensional MACH2 and the parallel 3-D MACH3 are widely used in the MHD community to perform accurate simulation of the time evolution of electrically conducting materials in a wide variety of laboratory situations. In this presentation, we discuss simulations of the interaction of an intense laser beam with a solid target in an ambient gas. Of particular interest to us is a laser-supported detonation wave (blast wave) that originates near the surface of the target when the laser intensity is sufficiently large to vaporize target material within the focal spot of the beam. Because the MACH3 simulations are fully three-dimensional, we are able to simulate non-normal laser incidence. A magnetic field is also produced from plasma energy near the edge of the focal spot.

  6. Bulk material management mode of general contractors in nuclear power project

    International Nuclear Information System (INIS)

    Zhang Jinyong; Zhao Xiaobo

    2011-01-01

    The paper introduces the characteristics of bulk material management mode in construction project, and the advantages and disadvantages of bulk material management mode of general contractors in nuclear power project. In combination with the bulk material management mode of China Nuclear Power Engineering Co., Ltd, some improvement measures have been put forward as well. (authors)

  7. Remotely operated facility for in situ solidification of fissile uranium

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Collins, E.D.; Patton, B.D.

    1986-01-01

    A heavily shielded, remotely operated facility, located within the Radiochemical processing Plant at Oak Ridge National Laboratory (ORNL), has been designed and is being operated to convert approx.1000 kg of fissile uranium (containing approx.75% 235 U, approx.10% 233 U, and approx.140 ppM 232 U) from a nitrate solution (130 g of uranium per L) to a solid oxide form. This project, the Consolidated Edison Uranium Solidification Program (CEUSP), is being carried out in order to prepare a stable uranium form for longterm storage. This paper describes the solidification process selected, the equipment and facilities required, the experimental work performed to ensure successful operation, some problems that were solved, and the initial operations

  8. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility

    DEFF Research Database (Denmark)

    Zdarta, Jakub; Meyer, Anne S.; Jesionowski, Teofil

    2018-01-01

    on the properties of the produced catalytic system. A large variety of inorganic and organic as well as hybrid and composite materials may be used as stable and efficient supports for biocatalysts. This review provides a general overview of the characteristics and properties of the materials applied for enzyme...... immobilization. For the purposes of this literature study, support materials are divided into two main groups, called Classic and New materials. The review will be useful in selection of appropriate support materials with tailored properties for the production of highly effective biocatalytic systems for use...

  9. Requirements for materials of dispersion fuel elements

    International Nuclear Information System (INIS)

    Samojlov, A.G.; Kashtanov, A.I.; Volkov, V.S.

    1982-01-01

    Requirements for materials of dispersion fuel elements are considered. The necessity of structural and fissile materials compatibility at maximum permissible operation temperatures and temperatures arising in a fuel element during manufacture is pointed out. The fuel element structural material must be ductile, possess high mechanical strength minimum neutron absorption cross section, sufficient heat conductivity, good corrosion resistance in a coolant and radiation resistance. The fissile material must have high fissile isotope concentration, radiation resistance, high thermal conductivity, certain porosity high melting temperature must not change the composition under irradiation

  10. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF... transport. (a) A general license is issued to any person to possess formula quantities of strategic special...

  11. UF6 fissile mass flow simulation at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.; Valentine, T.E.; Mattingly, J.K.; Uckan, T.; McEvers, J.A.

    1997-01-01

    Basis for measuring fissile mass flow in slurries, liquid, and gaseous streams is activation of a fissile stream by neutrons and then detection of delayed radiation from resulting fission products. This paper describes recent simulation measurements with the first prototype of the system for fissile mass flow measurements with HEU UF 6 gas for use in blenddown facilities. Theory was only 15% higher than actual measured; thus calibration factor would be 0.85. This simulation of HEU gas flow confirms well the understanding of the physical phenomena associated with this measurement system

  12. Accelerator based production of fissile nuclides, threshold uranium price and perspectives

    International Nuclear Information System (INIS)

    Djordjevic, D.; Knapp, V.

    1988-01-01

    Accelerator breeder system characteristics are considered in this work. One such system which produces fissile nuclides can supply several thermal reactors with fissile fuel, so this system becomes analogous to an uranium enrichment facility with difference that fissile nuclides are produced by conversion of U-238 rather than by separation from natural uranium. This concept, with other long-term perspective for fission technology on the basis of development only one simpler technology. The influence of basic system characteristics on threshold uranium price is examined. Conditions for economically acceptable production are established. (author)

  13. General views about specimen irradiations in reactors; Considerations generales sur'les irradiations d'echantillons dans les reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-07-01

    Specimen irradiation of fissile or non-fissile materials, carried out under circumstances becoming more and more severe and in reactor of increasing flux bas led to an evolution of irradiation rigs. A survey of the problems arising from irradiating under these various circumstances leads to conclude that it is possible to devise one capsule type suitable to every particular case, and that in a wide temperature range. Consequently, once the various irradiation-parameters known, a general method of calculation can be followed so as to determine the various sizes of the parts constituting the capsule. These theoretical calculations might sometimes be corrected through benefits gained from previous irradiations. Similarly, practical experimentation might allow to foresee more handy assembling of the capsule, specimen loading-and unloading being easier at the same time. (author) [French] L'irradiation d'echantillons, fissiles ou non fissiles, dans des conditions imposees de plus en plus strictes et dans des reacteurs a flux de plus en plus eleve, a eu pour consequence une evolution dans la conception des dispositifs d'irradiation. Lorsqu'on examine les problemes souleves par ces differentes irradiations, on en conclut qu'il est possible de concevoir un type de capsule capable de donner satisfaction dans chaque cas particulier, et ce, dans une tres large gamme de temperature. Par consequent, les differents parametres de l'irradiation etant connus, une methode generale de calcul peut etre suivie pour determiner les differentes cotes des pieces constitutives de la capsule. Ces calculs theoriques devront quelquefois etre corriges grace aux enseignements tires d'irradiations precedentes. De meme, l'experience acquise permettra d'envisager un montage plus aise de la capsule, tout en facilitant l'enfournement et le defournement des echantillons.

  14. A general solution to the material performance index for bending strength design

    International Nuclear Information System (INIS)

    Burgess, S.C.; Pasini, D.; Smith, D.J.; Alemzadeh, K.

    2006-01-01

    This paper presents a general solution to the material performance index for the bending strength design of beams. In general, the performance index for strength design is ρ f q /ρ where σ f is the material strength, ρ is the material density and q is a function of the direction of scaling. Previous studies have only solved q for three particular cases: proportional scaling of width and height (q=2/3), constrained height (q=1) and constrained width (q=1/2). This paper presents a general solution to the exponent q for any arbitrary direction of scaling. The index is used to produce performance maps that rank relative material performance for particular design cases. The performance index and the performance maps are applied to a design case study

  15. Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials

    Directory of Open Access Journals (Sweden)

    Jamile Salim Fuina

    2010-12-01

    Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.

  16. General Equilibrium Analysis of Economic Instruments in Materials-Product Chains with Materials Balance, Recycling and Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kandelaars, P.A.A.H.; Van den Bergh, J.C.J.M. [Department of Spatial Economics, Faculty of Economics and Econometrics, Vrije Universiteit, Amsterdam (Netherlands)

    1997-12-31

    Optimal environmental taxation and subsidies in a materials-product (M-P) chain are examined. This incorporates the main economic activities extraction, production, consumption, recycling and waste treatment. A static general equilibrium model of this M-P chain is constructed, with environmental impacts represented as negative externalities generated by natural resource extraction and final dumping of waste. The model includes various environmental taxes and subsidies on products and materials to pay for these externalities. The originality of this analytical exercise is twofold: in all stages of the M-P chain materials balance conditions are satisfied; furthermore, recycling is explicitly included as a separate activity with inputs, outputs and objectives. Thus, the paper combines physical-environmental and welfare economic perspectives on materials flows. The results show that the externalities generated by extraction and harmful waste can only be optimized by imposing a direct tax on the new materials. In a second-best world the externalities may be sub-optimized by taxing the generation of harmful waste or by subsidizing the use of recycled materials. Changes in some variables causes a shift between the optimal taxes on new materials at the beginning and harmful waste at the end of the M-P chain. This linkage is interesting because it shows that the whole M-P chain needs to be considered instead of parts of this chain. 16 refs.

  17. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    Science.gov (United States)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  18. Calculated nuclide production yields in relativistic collisions of fissile nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.; Schmidt, K.H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Grewe, A.; Jong, M. de [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Zhdanov, S. [AN Kazakhskoj SSR, Alma-Ata (USSR). Inst. Yadernoj Fiziki

    1997-11-01

    A model calculation is presented which predicts the complex nuclide distribution resulting from peripheral relativistic heavy-ion collisions involving fissile nuclei. The model is based on a modern version of the abrasion-ablation model which describes the formation of excited prefragments due to the nuclear collisions and their consecutive decay. The competition between the evaporation of different light particles and fission is computed with an evaporation code which takes dissipative effects and the emission of intermediate-mass fragments into account. The nuclide distribution resulting from fission processes is treated by a semiempirical description which includes the excitation-energy dependent influence of nuclear shell effects and pairing correlations. The calculations of collisions between {sup 238}U and different reaction partners reveal that a huge number of isotopes of all elements up to uranium is produced. The complex nuclide distribution shows the characteristics of fragmentation, mass-asymmetric low-energy fission and mass-symmetric high-energy fission. The yields of the different components for different reaction partners are studied. Consequences for technical applications are discussed. (orig.)

  19. Physics design of fissile mass-flow monitoring system

    International Nuclear Information System (INIS)

    Mattingly, J.K.; March-Leuba, J.; Valentine, T.E.; Mihalczo, J.T.; Uckan, T.

    1997-01-01

    The system measures the flow rate and uranium-235 content in liquid or gas streams; it does not penetrate the process piping. A moderated fission neutron source is used to periodicially introduce a burst of thermal neutrons into the fluid stream to induce fission; delayed gamma emissions from the resulting fission fragments are detected by high-efficiency scintillators downstream of the neutron source. The fluid flow rate is measure from the time between initiation of the thermal neutron burst and detection of the fission product gamma emissions, and the U-235 content is inferred from the intensity of the gamma burst detected. Design of the fissile mass flow monitor requires satisfaction of several competing constraints. Efficient operation of the monitor requires that source-induced fission rate and detection efficiency be maximized while the source-induced background rate is simultaneoulsy minimized. Near optical nuclear design of the system was achieved using numerous Monte Carlo calculations and measurements. This paper addresses calculational aspects of the physics design for the system applied to UF 6 gas

  20. Economic evaluation of fissile fuel production using resistive magnet tokamaks

    International Nuclear Information System (INIS)

    Doyle, J.C. Jr.

    1985-06-01

    The application of resistive magnet tokamaks to fissile fuel production has been studied. Resistive magnets offer potential advantages over superconducting magnets in terms of robustness, less technology development required and possibility of demountable joints. Optimization studies within conservatively specified constraints for a compact machine result in a major radius of 3.81 m and 618 MW fusion power and a blanket space envelope of 0.35 m inboard and 0.75 m outboard. This machine is called the Resistive magnet Tokamak Fusion Breeder (RTFB). A computer code was developed to estimate the cost of the resistive magnet tokamak breeder. This code scales from STARFIRE values where appropriate and calculates costs of other systems directly. The estimated cost of the RTFB is $3.01 B in 1984 dollars. The cost of electricity on the same basis as STARFIRE is 42.4 mills/kWhre vs 44.9 mills/kWhre for STARFIRE (this does not include the fuel value or fuel cycle costs for the RTFB). The breakeven cost of U 3 O 8 is $150/lb when compared to a PWR on the once through uranium fuel cycle with no inflation and escalation. On the same basis, the breakeven cost for superconducting tokamak and tandem mirror fusion breeders is $160/lb and $175/lb. Thus, the RTFB appears to be competitive in breakeven U 3 O 8 cost with superconducting magnet fusion breeders and offers the potential advantages of resistive magnet technology

  1. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-01-01

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  2. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Day, Christy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  3. Fast-neutron capture in fissile and fertile nuclides

    International Nuclear Information System (INIS)

    Peelle, R.W.

    1982-01-01

    Extensive graphical and numerical presentations, available to the working group, assisted us in exploring the rich data base established through the labors of many skilled persons. Consistent with the meeting setting, the working group discussion concentrated on data for fast-breeder reactor (FBR) applications. All but 1 to 3% of the magnitude of cross section sensitivities of FBR parameters come from the energy region below approx. = 1.5 MeV, so the statistical model is the relevant theoretical concept. The Meeting emphasizes energies above approx. = 10 keV where resonance fluctuations are not a dominant factor. However, we should remember that approximately half the FBR sensitivity to 238 U capture data, as relfected in integral parameters, lies below 25 keV where resonance fluctuations are strong and resonance self-protection is a most important consideration in reactor physics. There are similar low-energy aspects to 239 Pu capture in that approx. = 30% of the FBR-parameter data sensitivity lies below approx. = 4 keV. Even with the discussion largely cofined to the approx. = 10 to 1500 keV region, the working group could only scratch the surface of the available body of information. The reader is referred to the papers presented at the Meeting and to the references contained therein in order to obtain a more detailed understanding of current issues related to fissile and fertile fast-neutron capture

  4. On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials

    Science.gov (United States)

    Bartels, A.; Bartel, T.; Canadija, M.; Mosler, J.

    2015-09-01

    This paper deals with the thermomechanical coupling in dissipative materials. The focus lies on finite strain plasticity theory and the temperature increase resulting from plastic deformation. For this type of problem, two fundamentally different modeling approaches can be found in the literature: (a) models based on thermodynamical considerations and (b) models based on the so-called Taylor-Quinney factor. While a naive straightforward implementation of thermodynamically consistent approaches usually leads to an over-prediction of the temperature increase due to plastic deformation, models relying on the Taylor-Quinney factor often violate fundamental physical principles such as the first and the second law of thermodynamics. In this paper, a thermodynamically consistent framework is elaborated which indeed allows the realistic prediction of the temperature evolution. In contrast to previously proposed frameworks, it is based on a fully three-dimensional, finite strain setting and it naturally covers coupled isotropic and kinematic hardening - also based on non-associative evolution equations. Considering a variationally consistent description based on incremental energy minimization, it is shown that the aforementioned problem (thermodynamical consistency and a realistic temperature prediction) is essentially equivalent to correctly defining the decomposition of the total energy into stored and dissipative parts. Interestingly, this decomposition shows strong analogies to the Taylor-Quinney factor. In this respect, the Taylor-Quinney factor can be well motivated from a physical point of view. Furthermore, certain intervals for this factor can be derived in order to guarantee that fundamental physically principles are fulfilled a priori. Representative examples demonstrate the predictive capabilities of the final constitutive modeling framework.

  5. Cross section measurements of fissile nuclei for slow neutrons; Mesures de sections efficaces de noyaux fissiles pour les neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, J M; Hubert, P; Joly, R; Vendryes, G; Jacrot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    It presents the experimental measurements of cross section of fissile nuclei for slow neutrons to improve the understanding of some heavy nuclei of great importance in the study of nuclear reactors. The different experiments are divided in three categories. In the first part, it studied the variation with energy of the cross sections of natural uranium, {sup 233}U, {sup 235}U and {sup 239}Pu. Two measurement techniques are used: the time-of-flight spectrometer and the crystal spectrometer. In a second part, the fission cross sections of {sup 233}U and {sup 239}Pu for thermal neutrons are compared using a neutron flux from EL-2 going through a double fission chamber. The matter quantity contained in each source is measured by counting the {alpha} activity with a solid angle counter. Finally, the average cross section of {sup 236}U for a spectra of neutrons from the reactor is measured by studying the {beta} activity of {sup 237}U formed by the reaction {sup 236}U (n, {gamma}) {sup 237}U in a sample of {sup 236}U irradiated in the Saclay reactor (EL-2). (M.P.)

  6. Annual report 2005 General Direction of the Energy and raw materials

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 annual report of the DGEMP (General Direction of the Energy and the raw Materials), takes stock on the energy bill and accounting of the France. The first part presents the electric power, natural gas and raw materials market in France. The second part is devoted to the diversification of the energy resources with a special attention to the renewable energies and the nuclear energy. The third part discusses the energy and raw materials prices and the last part presents the international cooperation in the energy domain. (A.L.B.)

  7. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation; Controle des dechets radioactifs et couplage de mesures neutron/gamma: exploitation de la capture radiative pour corriger les effets de matrice penalisant la mesure de la masse fissile par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Loche, F

    2006-10-15

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ({sup 235}U, {sup 239}Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,{gamma}) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the {gamma} ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  8. Disposal criticality analysis methodology for fissile waste forms

    International Nuclear Information System (INIS)

    Davis, J.W.; Gottlieb, P.

    1998-03-01

    A general methodology has been developed to evaluate the criticality potential of the wide range of waste forms planned for geologic disposal. The range of waste forms include commercial spent fuel, high level waste, DOE spent fuel (including highly enriched), MOX using weapons grade plutonium, and immobilized plutonium. The disposal of these waste forms will be in a container with sufficiently thick corrosion resistant barriers to prevent water penetration for up to 10,000 years. The criticality control for DOE spent fuel is primarily provided by neutron absorber material incorporated into the basket holding the individual assemblies. For the immobilized plutonium, the neutron absorber material is incorporated into the waste form itself. The disposal criticality analysis methodology includes the analysis of geochemical and physical processes that can breach the waste package and affect the waste forms within. The basic purpose of the methodology is to guide the criticality control features of the waste package design, and to demonstrate that the final design meets the criticality control licensing requirements. The methodology can also be extended to the analysis of criticality consequences (primarily increased radionuclide inventory), which will support the total performance assessment for the respository

  9. Steel fibre concrete, a safer material for reactor construction. A general theory for rupture prediction

    International Nuclear Information System (INIS)

    Rammant, J.P.; Van Laethem, L.; Backx, E.

    1977-01-01

    The effect of steel fibre reinforcement on the mechanical behavior of concrete reactor structures is studied. It is shown that this material leads to a higher safety factor for highly stressed concrete structures like prestressed concrete pressure vessels. The reinforcement of concrete with short steel fibres results clearly in a fundamental change of the material properties. The study comprises basic experiments, the elaboration of an expression of the material laws, the development of a general computer program and the comparison of computational results with more elaborate experiments. Basic experimental work is conducted to determine the material characteristics of the fibre reinforced concrete. It is shown how the fibre reinforcement mechanism is translated into mathematical formulae by expressing the principal characteristics as matrix relationships. These relationships describe the elasto-plastic behavior and the cracked behavior. Probabilistic principles are used to express to fibre efficiency, such that a general stress-strain relationship is incorporated in a subsequent computer program. A general finite element program is developed which includes the new matrix relationships, the pull-out of fibres and the general stress-strain equations. A nonlinear calculation method gives the propagation of the distributed cracks with increasing load untill failure of the structure. Similarly, thermal cycling conditions are accounted for. For example the crack propagation in a fibre reinforced beam was measured by the photostress coating technique: the comparison with the computed crack propagation reveals an excellent agreement. Other comparative studies on simple structural parts are also reported

  10. Theoretical, physical and experimental study of fissile aqueous media; Etudes theorique, physique et experimentale des milieux fissiles aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Caizergues, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-04-01

    This thesis consists of a set of theoretical and experimental studies. a) Theoretical calculation methods used for cross-sections and the critical parameters; b) Comparison of the theoretical and experimental results: it is shown that the agreement between these results cannot be improved above a certain limit because of the accuracy with which are known the composition and the dimensions of the media and the microscopic cross-sections; c) Determination of the ratios {eta}{sup 9}-bar / {eta}{sup 5}-bar, {eta}{sup 3}-bar / {eta}{sup 5}-bar for fissile aqueous media ({eta}-bar: number of neutrons emitted per neutron absorbed, averaged over the reactor neutron spectrum). Evaluation of the accuracy to which these ratios are known; d) Effect of {sup 240}Pu: the measurements are carried out on Pu with a {sup 240}Pu content of 1.5 per cent, 3.11 per cent and 9.95 per cent; Calculation of the resonance integral I240 using the experimental results gives values in reasonable agreement with the results obtained by other more conventional methods. e) Measurement of the spectrum indices for aqueous media containing Pu, U5 and U3. With these latter it is possible to obtain mean fission cross-section ratios {sigma}f239-bar / {sigma}f235-bar for these different spectra. A calculation-experiment comparison is carried out using various theoretical methods. (author) [French] Cette these groupe un ensemble d'etudes theoriques et experimentales. a) Methodes theoriques de calcul utilisees pour les sections efficaces et les parametres critiques; b) Comparaisons des resultats theoriques et experimentaux: on montre que l'accord entre ces resultats ne peut etre ameliore au-dela de certaines limites vu la precision avec laquelle sont connues la composition et les dimensions des milieux et les sections efficaces macroscopiques; c) Determination des rapports {eta}{sup 9}-bar / {eta}{sup 5}-bar, {eta}{sup 3}-bar / {eta}{sup 5}-bar pour les milieux fissiles aqueux ({eta}: nombre de

  11. Theoretical, physical and experimental study of fissile aqueous media; Etudes theorique, physique et experimentale des milieux fissiles aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Caizergues, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-04-01

    This thesis consists of a set of theoretical and experimental studies. a) Theoretical calculation methods used for cross-sections and the critical parameters; b) Comparison of the theoretical and experimental results: it is shown that the agreement between these results cannot be improved above a certain limit because of the accuracy with which are known the composition and the dimensions of the media and the microscopic cross-sections; c) Determination of the ratios {eta}{sup 9}-bar / {eta}{sup 5}-bar, {eta}{sup 3}-bar / {eta}{sup 5}-bar for fissile aqueous media ({eta}-bar: number of neutrons emitted per neutron absorbed, averaged over the reactor neutron spectrum). Evaluation of the accuracy to which these ratios are known; d) Effect of {sup 240}Pu: the measurements are carried out on Pu with a {sup 240}Pu content of 1.5 per cent, 3.11 per cent and 9.95 per cent; Calculation of the resonance integral I240 using the experimental results gives values in reasonable agreement with the results obtained by other more conventional methods. e) Measurement of the spectrum indices for aqueous media containing Pu, U5 and U3. With these latter it is possible to obtain mean fission cross-section ratios {sigma}f239-bar / {sigma}f235-bar for these different spectra. A calculation-experiment comparison is carried out using various theoretical methods. (author) [French] Cette these groupe un ensemble d'etudes theoriques et experimentales. a) Methodes theoriques de calcul utilisees pour les sections efficaces et les parametres critiques; b) Comparaisons des resultats theoriques et experimentaux: on montre que l'accord entre ces resultats ne peut etre ameliore au-dela de certaines limites vu la precision avec laquelle sont connues la composition et les dimensions des milieux et les sections efficaces macroscopiques; c) Determination des rapports {eta}{sup 9}-bar / {eta}{sup 5}-bar, {eta}{sup 3}-bar / {eta}{sup 5}-bar pour les milieux fissiles aqueux ({eta}: nombre de neutrons emis

  12. MONK - a general purpose Monte Carlo neutronics program

    International Nuclear Information System (INIS)

    Sherriffs, V.S.W.

    1978-01-01

    MONK is a Monte Carlo neutronics code written principally for criticality calculations relevant to the transport, storage, and processing of fissile material. The code exploits the ability of the Monte Carlo method to represent complex shapes with very great accuracy. The nuclear data used is derived from the UK Nuclear Data File processed to the required format by a subsidiary program POND. A general description is given of the MONK code together with the subsidiary program SCAN which produces diagrams of the system specified. Details of the data input required by MONK and SCAN are also given. (author)

  13. Improved resonance formulas for cross sections of fissile elements

    International Nuclear Information System (INIS)

    Segev, M.

    1978-01-01

    The Adler--Adler cross-section formalism with energy-dependent parameters is a practical approximation to the R-matrix formalism, on the basis of the smallness of the s-wave neutron width in fissile elements. Attempts were made to represent experimental cross sections by the Adler--Adler formulas through an initial representation by the Reich--Moore approximation of R-matrix and a subsequent conversion of the Reich--Moore formulas to the Adler--Adler formulas. Adler and Adler foresaw difficulties in associating their formulas with approximate R-matrix theories such as those of Reich and Moore. Indeed, it is shown that, due to the nonunitarity of the Adler--Adler formalism on the one hand and the unitarity, by definition, of the Reich--Moore formalism on the other hand, the conversion from the latter to the former is ambiguous. Examples are shown to demonstrate that this ambiguity results in numerical inaccuracies, sometimes very large ones, for neutron widths that are not extremely small. Improved Adler--Adler-type formulas have been derived from the R-matrix formalism. In these formulas, the multipliers of the Breit--Wigner resonance lines exhibit more explicit energy dependence than their original counterparts, mainly in the form of additional terms in the formula for the total cross section. The conversion from Reich--Moore cross sections to the improved resonance formulas is shown to be much less ambiguous and to produce very accurate cross sections. In particular, the inaccuracies encountered with the Reich--Moore to Adler--Adler conversion are eliminated. A computer code, PEDRA, was written to perform the conversion from a given set of Reich--Moore parameters to the parameters required in the improved formulas. The numerical algorithm of this code is based on an adaptation with modifications of the numerical approach of de Saussure--Perez in the POLLA code, which converts Reich--Moore parameters to Adler--Adler parameters. 7 figures, 1 table

  14. General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel

    Science.gov (United States)

    Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.

    2012-11-01

    Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.

  15. Ultimate load analysis of prestressed concrete reactor pressure vessels considering a general material law

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.

    1975-01-01

    A method of analysis is presented, by which progressive fracture processes in axisymmetric prestressed concrete pressure vessels during increasing internal pressure can be evaulated by means of a continuum calculation considering a general material law. Formulations used in the analysis concerning material behaviour are derived on one hand from appropriate results of testing small concrete specimens, and are on the other hand gained by parametric studies in order to solve questions still existing by recalulating fracture tests on concrete bodies with more complex states of stress. Due attention is focussed on investigating the behaviour of construction members subjected to high shear forces (end slabs.). (Auth.)

  16. Experience of work with radioactive materials and nuclear fuel at the reactor WWR-K

    International Nuclear Information System (INIS)

    Maltseva, R.M.; Petukhov, V.K.

    1998-01-01

    In the report there are considered questions concerning the handling with fresh and spent fuel, experimental devices, containing high enriched uranium, being fissile materials of the bulk form, radioisotopes, obtained in the reactor, and radioactive waste, formed during the operation of the reactor, and organization of storage, account and control of radioactive and fissile materials is described. (author)

  17. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  18. A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material

    KAUST Repository

    Al-Jabr, Ahmad Ali; Alsunaidi, Mohammad A.; Ng, Tien Khee; Ooi, Boon S.

    2013-01-01

    In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.

  19. A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material

    KAUST Repository

    Al-Jabr, Ahmad Ali

    2013-03-01

    In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.

  20. Effect of fissile isotope burnup on criticality safety for stored disintegrated fuel rods

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Selby, G.P.

    1978-09-01

    If the fuel rods were to disintegrate and water added, a criticality could occur in a 13-in. PWR canister with fresh fuel enriched to 3.5 wt % 235 U. The question is, ''If credit could be taken for burnup, could this indicate a subcritical condition.'' In attempting to answer this question, a series of calculations were performed. A set of isotopic concentrations were generated for 5,000, 10,000, 15,000, and 20,000 MWD/MTU burnup levels. Four reflector materials, water, concrete and two types of soil, were considered. Results indicate that allowing credit for fissile isotope burnup does not completely remove the concern for criticality safety in the event of rod disintegration. Reactivities which are ''subcritical'' (k/sub eff/ = 0.95) would not occur for three of the four reflector materials at even the 20,000 MWD/MTU burnup level in the 13-in. canister. The water reflected canister would achieve the k/sub eff/ = 0.95 level near 18,000 MWD/MTU. A smaller canister could be postulated. If a quarter inch gap is allowed, a Westinghouse 17 x 17 PWR assembly requires a 12 1 / 4 inch diameter canister. For such a canister with water reflection the ''subcritical'' (k/sub eff/ = 0.95) level would be reached near 15,000 MWD/MTU. The soil reflected canisters would reach this level between 18,000 and 19,000 MWD/MTU. Considering the difficulties in taking credit for burnup, such modest gains in apparent safety are not encouraging. This situation might be improved, however, if credit were also taken for neutron absorption by fission product poisons produced during burnup. It is strongly recommended that other approaches to a solution of the criticality safety problem be considered

  1. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Science.gov (United States)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  2. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  3. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Determan, John C.

    2015-01-01

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  4. An approximate method to estimate the minimum critical mass of fissile nuclides

    International Nuclear Information System (INIS)

    Wright, R.Q.; Jordan, W.C.

    1999-01-01

    When evaluating systems in criticality safety, it is important to approximate the answer before any analysis is performed. There is currently interest in establishing the minimum critical parameters for fissile actinides. The purpose is to describe the OB-1 method for estimating the minimum critical mass for thermal systems based on one-group calculations and 235 U spheres fully reflected by water. The observation is made that for water-moderated, well-thermalized systems, the transport and leakage from the system are dominated by water. Under these conditions two fissile mixtures will have nearly the same critical volume provided the infinite media multiplication factor (k ∞ ) for the two systems is the same. This observation allows for very simple estimates of critical concentration and mass as a function of the hydrogen-to-fissile (H/X) moderation ratio by comparison to the known 235 U system

  5. Various methods of numerical estimation of generalized stress intensity factors of bi-material notches

    Directory of Open Access Journals (Sweden)

    Klusák J.

    2009-12-01

    Full Text Available The study of bi-material notches becomes a topical problem as they can model efficiently geometrical or material discontinuities. When assessing crack initiation conditions in the bi-material notches, the generalized stress intensity factors H have to be calculated. Contrary to the determination of the K-factor for a crack in an isotropic homogeneous medium, for the ascertainment of the H-factor there is no procedure incorporated in the calculation systems. The calculation of these fracture parameters requires experience. Direct methods of estimation of H-factors need choosing usually length parameter entering into calculation. On the other hand the method combining the application of the reciprocal theorem (Ψ-integral and FEM does not require entering any length parameter and is capable to extract the near-tip information directly from the far-field deformation.

  6. Material properties requirements for LMFBR structural design: General considerations and data needs

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C E [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Purdy, C M [U.S. Energy Research and Development Administration (United States)

    1977-07-01

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 2 1/4 Cr-1 Mo steel. (author)

  7. A fully general and adaptive inverse analysis method for cementitious materials

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Damkilde, Lars; Lövgren, Ingemar

    2016-01-01

    The paper presents an adaptive method for inverse determination of the tensile σ - w relationship, direct tensile strength and Young’s modulus of cementitious materials. The method facilitates an inverse analysis with a multi-linear σ - w function. Usually, simple bi- or tri-linear functions...... are applied when modeling the fracture mechanisms in cementitious materials, but the vast development of pseudo-strain hardening, fiber reinforced cementitious materials require inverse methods, capable of treating multi-linear σ - w functions. The proposed method is fully general in the sense that it relies...... of notched specimens and simulated data from a nonlinear hinge model. The paper shows that the results obtained by means of the proposed method is independent on the initial shape of the σ - w function and the initial guess of the tensile strength. The method provides very accurate fits, and the increased...

  8. Material properties requirements for LMFBR structural design: general considerations and data needs

    International Nuclear Information System (INIS)

    Pugh, C.E.; Purdy, C.M.

    1977-01-01

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 2 1 / 4 Cr-1 Mo steel

  9. Development and linearization of generalized material balance equation for coal bed methane reservoirs

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez R, A; Bejarano, A

    1998-01-01

    A generalized material balance equation was presented at the Escuela de Petroleos de la Universidad Industrial de Santander for coal seam gas reservoirs based on Walsh's method, who worked in an analogous approach for oil and gas conventional reservoirs (Walsh, 1995). Our equation was based on twelve similar assumptions itemized by Walsh for his generalized expression for conventional reservoirs it was started from the same volume balance consideration and was finally reorganized like Walsh (1994) did. Because it is not expressed in terms of traditional (P/Z) plots, as proposed by King (1990), it allows to perform a lot of quantitative and qualitative analyses. It was also demonstrated that the existent equations are only particular cases of the generalized expression evaluated under certain restrictions. This equation is applicable to coal seam gas reservoirs in saturated, equilibrium and under saturated conditions, and to any type of coal beds without restriction on especial values of the constant diffusion

  10. Fissility of actinide nuclei induced by 60-130 MeV photons

    International Nuclear Information System (INIS)

    Morcelle, Viviane; Tavares, Odilon A.P.

    2004-06-01

    Nuclear fissilities obtained from recent photofission reaction cross section measurements carried out at Saskatchewan Accelerator Laboratory (Saskatoon, Canada) in the energy range 60-130 MeV for 232 Th, 233 U, 235 U, 238 U, and 237 Np nuclei have been analysed in a systematic way. To this aim, a semiempirical approach has been developed based on the quasi-deuteron nuclear photoabsorption model followed by the process of competition between neutron evaporation and fission for the excited nucleus. The study reproduces satisfactorily well the increasing trend of nuclear fissility with parameter Z 2 =A. (author)

  11. Generalized empirical equation for the extrapolated range of electrons in elemental and compound materials

    International Nuclear Information System (INIS)

    Lima, W. de; Poli CR, D. de

    1999-01-01

    The extrapolated range R ex of electrons is useful for various purposes in research and in the application of electrons, for example, in polymer modification, electron energy determination and estimation of effects associated with deep penetration of electrons. A number of works have used empirical equations to express the extrapolated range for some elements. In this work a generalized empirical equation, very simple and accurate, in the energy region 0.3 keV - 50 MeV is proposed. The extrapolated range for elements, in organic or inorganic molecules and compound materials, can be well expressed as a function of the atomic number Z or two empirical parameters Zm for molecules and Zc for compound materials instead of Z. (author)

  12. Based on a True Story: Using Movies as Source Material for General Chemistry Reports

    Science.gov (United States)

    Griep, Mark A.; Mikasen, Marjorie L.

    2005-10-01

    Research for chemical reports and case study analysis of chemical topics are two commonly used learning activities to engage and enrich student understanding of the content in introductory chemistry courses. Even though movies are excellent vehicles for exploring the human dimension of events, they have been used only sparingly as source material in introductory science courses. One reason for this sparing use has been the lack of a list of suitable movies. To fill this void, a list of one dozen highly rated movies is presented. The focus of these movies is either a scientist's chemical research or the societal impact of some chemical compound. The method by which two of these movies were used as source material for a written report in a general chemistry course is described. The student response to the exercise was enthusiastic.

  13. An integrated production-inventory model for food products adopting a general raw material procurement policy

    Science.gov (United States)

    Fauza, G.; Prasetyo, H.; Amanto, B. S.

    2018-05-01

    Studies on an integrated production-inventory model for deteriorating items have been done extensively. Most of the studies define deterioration as physical depletion of some inventories over time. This definition may not represent the deterioration characteristics of food products. The quality of food production decreases over time while the quantity remains the same. Further, in the existing models, the raw material is replenished several times (or at least once) within one production cycle. In food industries, however, a food company, for several reasons (e.g., the seasonal raw materials, discounted price, etc.) sometimes will get more benefit if it orders raw materials in a large quantity. Considering this fact, this research, therefore, is aimed at developing a more representative inventory model by (i) considering the quality losses in food and (ii) adopting a general raw material procurement policy. A mathematical model is established to represent the proposed policy in which the total profit of the system is the objective function. To evaluate the performance of the model, a numerical test was conducted. The numerical test indicates that the developed model has better performance, i.e., the total profit is 2.3% higher compared to the existing model.

  14. General Approaches and Requirements on Safety and Security of Radioactive Materials Transport in Russian Federation

    International Nuclear Information System (INIS)

    Ershov, V.N.; Buchel'nikov, A.E.; Komarov, S.V.

    2016-01-01

    Development and implementation of safety and security requirements for transport of radioactive materials in the Russian Federation are addressed. At the outset it is worth noting that the transport safety requirements implemented are in full accordance with the IAEA's ''Regulations for the Safe Transport of Radioactive Material (2009 Edition)''. However, with respect to security requirements for radioactive material transport in some cases the Russian Federation requirements for nuclear material are more stringent compared to IAEA recommendations. The fundamental principles of safety and security of RM managements, recommended by IAEA documents (publications No. SF-1 and GOV/41/2001) are compared. Its correlation and differences concerning transport matters, the current level and the possibility of harmonization are analysed. In addition a reflection of the general approaches and concrete transport requirements is being evaluated. Problems of compliance assessment, including administrative and state control problems for safety and security provided at internal and international shipments are considered and compared. (author)

  15. The generalized Cauchy relation: a probe for local structure in materials with isotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bactavatchalou, R [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Alnot, P [Universite Henri Poincare, Nancy I (France); Bailer, J [Universite du Luxembourg (Luxembourg); Kolle, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Mueller, U [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Philipp, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Rouxel, D [Universite Henri Poincare, Nancy I (France); Sanctuary, R [Universite du Luxembourg (Luxembourg); Tschoepe, A [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Vergnat, Ch [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Wetzel, B [Institut fuer Verbundwerkstoffe TU Kaiserslautern 67663 Kaiserslautern (Germany); Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg)

    2006-05-15

    The elastic properties of the isotropic state of condensed matter are given by the elastic constants ell and c44. In the liquid state the static shear stiffness c44 vanishes whereas at sufficient high probe frequencies a dynamic shear stiffness may appear. In that latter case the question about the existence of a Cauchy relation appears. It will be shown that a pure Cauchy relation can appear only under special conditions which are rarely fulfilled. For all investigated materials, including ceramics, liquids and glasses, a linear relation between ell and c44 called generalized Cauchy relation is observed, which, surprisingly, follows a linear transformation.

  16. Separation of silicon carbide-coated fertile and fissile particles by gas classification

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1976-07-01

    The separation of 235 U and 233 U in the reprocessing of HTGR fuels is a key feature of the feed-breed fuel cycle concept. This is attained in the Fort St. Vrain (FSV) reactor by coating the fissile (Th- 235 U) particles and the fertile (Th- 233 U) particles separately with silicon carbide (SiC) layers to contain the fission products and to protect the kernels from burning in the head-end reprocessing steps. Pneumatic (gas) classification based on size and density differences is the reference process for separating the SiC-coated particles into fissile and fertile streams for subsequent handling. Terminal velocities have been calculated for the +- 2 sigma ranges of particle sizes and densities for ''Fissile B''--''Fertile A'' particles used in the FSV reactor. Because of overlapping particle fractions, a continuous pneumatic separator appears infeasible; however, a batch separation process can be envisioned. Changing the gas from air to CO 2 and/or the temperature to 300 0 C results in less than 10 percent change in calculated terminal velocities. Recently reported work in gas classification is discussed in light of the theoretical calculations. The pneumatic separation of fissile and fertile particles needs more study, specifically with regard to (1) measuring the recoveries and separation efficiencies of actual fissile and fertile fractions in the tests of the pneumatic classifiers; and (2) improving the contactor design or flowsheet to avoid apparent flow separation or flooding problems at the feed point when using the feed rates required for the pilot plant

  17. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    Science.gov (United States)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  18. Study of relationships between microstructures and service properties, of U(Mo) fissile alloys particles

    International Nuclear Information System (INIS)

    Champion, G.

    2013-01-01

    This thesis enters in the Material and Testing Reactors (MTRs) framework where the necessity to use a Low- Enriched Uranium (LEU) fuel has led to the development of a dense fissile material based on U(Mo) alloys. The designed fuel is a composite material, made of dispersed U(Mo) particles embedded in an Al based matrix. Post- Irradiation Examinations of these LEU fuel plates showed that the irradiation behaviour of the fuel is not fit for purpose yet. This is mainly due to the growth of an interaction layer between the fuel and the matrix and to the bad gas retention efficiency of the fuel particles. This thesis had for purpose the development of several solutions in order to modify and/or decrease or even inhibit the fuel/matrix interaction and to increase the gas retention capacities of the fuel. In order to achieve so, two solutions have been tested during this thesis, (i) optimization of the U(Mo) alloy intrinsic microstructural properties and (ii) modification of the fuel meat/matrix interface, through the deposition of a layer acting as a 'diffusion barrier'. Concerning the first axis of study, a characterization campaign of the reference powders has been performed, as a first step, in order to identify the key parameters for the development of products showing an 'optimized' microstructure. Two novel products have then been developed: one based on a combined process associating 'atomization + grinding' and another, which consists in a magnesiothermy process. These products were subjected to characterization: X-Ray and neutron diffraction, electron backscattered diffraction and transmission electron microscopy have been performed in particular. We managed to show that these powders can be an advantage concerning the issue with the gas retention capacities of the fuel. Concerning the growth of the interaction layer, a third product has been developed: an U(Mo) atomized powder, coated with an alumina layer. We managed to show that a thickness between 100 and

  19. Material dynamics in polluted soils with different structures - comparative investigations of general soil and aggregates

    International Nuclear Information System (INIS)

    Taubner, H.

    1992-01-01

    In structured soils, a small-scale heterogeneity of physical and chemical properties will develop which results in a reduced availability of the reaction sites of the soil matrix. In view of the lack of knowledge on the conditions within the individual aggregates were carried out for characterizing the aggregates and comparing them with the soil in, general soil samples were taken from natural structure of a podzolic soil and a podazolic brown earth from two sites in the Fichtelgebirge mountains as well as a parabraun earth from East Holstein. The horizons differed with regard to their texture and structure; silty material tends to have a subpolyhedral structure and calyey material a polyhedral structure. The general soil samples and aggregate samples from the three B horizons were subjected, with comparable experimental conditions, to percolation experiments inducing a multiple acid load. The soil solution from the secondary pore system and aggregate pore system is more heterogeneus for the higher-structured subpolyhedral texture of the perdzolic soil than for the less strongly aggregated subpolyhedral structured of the podzolic brown earth. (orig.) [de

  20. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  1. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    International Nuclear Information System (INIS)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao

    2015-01-01

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications

  2. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 14 September 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 14 September 1998. The following aspects from the Agency's activity are presented: nuclear safety, technical co-operation programme, safeguards and verification, fissile material treaty, nuclear material released from the military sector, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, and Agency's safeguards in the Middle East region

  3. A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials

    International Nuclear Information System (INIS)

    Zhou Haomiao; Zhou Youhe; Zheng Xiaojing; Ye Qiang; Wei Jing

    2009-01-01

    In this paper, a new general nonlinear magnetostrictive constitutive model is proposed for soft ferromagnetic materials, and it can predict magnetostrictive strain and magnetization curves under various pre-stresses. From the viewpoint of magnetic domain, it is based on the important physical fact that a nonlinear part of the elastic strain produced by magnetic domain wall motion under a pre-stress is responsible for the change of the maximum magnetostrictive strain in accordance with the pre-stress. Then the reduction of magnetostrictive strain from the maximum is caused by the domain rotation. Meanwhile, the magnetization under various pre-stresses in this model is introduced by magnetostrictive effect under the same pre-stress. A simplified 3-D model is put forward by means of linearizing the nonlinear function, i.e. the nonlinear part of the elastic strain produced by domain wall motion, and by using the quartic of magnetization to describe domain rotation. Besides, for the convenience of engineering applications, two-dimensional (plate or film) and one-dimensional (rod) models are also given for isotropic materials and their application ranges are discussed too. In comparison with the experimental data of Kuruzar and Jiles, it is found that this model can predict magnetostrictive strain and magnetization curves under various pre-stresses. The numerical simulation further illustrates that the new model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves. Additionally, this model can be degenerated to the existing magnetostrictive constitutive model for giant magnetostrictive materials (GMM), i.e. a special soft ferromagnetic material

  4. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation

    International Nuclear Information System (INIS)

    Loche, F.

    2006-10-01

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ( 235 U, 239 Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,γ) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the γ ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  5. Accelerator based production of fissile nuclides, threshold uranium price and perspectives; Akceleratorska proizvodnja fisibilnih nuklida, granicna cijena urana i perspektive

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, D [INIS-Inzenjering, Sarajevo (Yugoslavia); Knapp, V [Elektrotehnicki fakultet, zagreb (Yugoslavia)

    1988-07-01

    Accelerator breeder system characteristics are considered in this work. One such system which produces fissile nuclides can supply several thermal reactors with fissile fuel, so this system becomes analogous to an uranium enrichment facility with difference that fissile nuclides are produced by conversion of U-238 rather than by separation from natural uranium. This concept, with other long-term perspective for fission technology on the basis of development only one simpler technology. The influence of basic system characteristics on threshold uranium price is examined. Conditions for economically acceptable production are established. (author)

  6. Deposition of additives onto surface of carbon materials by blending method--general conception

    International Nuclear Information System (INIS)

    Przepiorski, Jacek

    2005-01-01

    Carbon fibers loaded with potassium carbonate and with metallic copper were prepared by applying a blending method. Raw isotropic coal pitch was blended with KOH or CuBr 2 and obtained mixtures were subjected to spinning. In this way KOH and copper salt-blended fiber with uniform distribution of potassium and copper were spun. The raw fibers were exposed to stabilization with a mixture of CO 2 and air or air only through heating to 330 deg. C and next to treatment with carbon dioxide or hydrogen at higher temperatures. Electron probe micro-analysis (EPMA) analyses showed presence of potassium carbonate or metallic copper predominantly in peripheral regions of the obtained fibers. Basing on the mechanisms of potassium and copper diffusion over the carbon volume, generalized method for the deposition of additives onto surface of carbon materials is proposed

  7. Instructional materials for SARA/OSHA training. Volume 1, General site working training

    Energy Technology Data Exchange (ETDEWEB)

    Copenhaver, E.D.; White, D.A.; Wells, S.M. [Oak Ridge National Lab., TN (United States)

    1988-04-01

    This proposed 24 hour ORNL SARA/OSHA training curriculum emphasizes health and safety concerns in hazardous waste operations as well as methods of worker protection. Consistent with guidelines for hazardous waste site activities developed jointly by National Institute for Occupational Safety and Health, Occupational Safety and Health Administration, US Coast Guard, and the Envirorunental Protection Agency, the program material will address Basic Training for General Site Workers to include: ORNL Site Safety Documentation, Safe Work Practices, Nature of Anticipated Hazards, Handling Emergencies and Self-Rescue, Employee Rights and Responsibilities, Demonstration of Use, Care, and Limitations of Personal Protective, Clothing and Equipment, and Demonstration of Monitoring Equipment and Sampling Techniques. The basic training courses includes major fundamentals of industrial hygiene presented to the workers in a format that encourages them to assume responsibility for their own safety and health protection. Basic course development has focused on the special needs of ORNL facilities. Because ORNL generates chemical wastes, radioactive wastes, and mixed wastes, we have added significant modules on radiation protection in general, as well as modules on radiation toxicology and on radiation protective clothing and equipment.

  8. Development and application of a general plasmid reference material for GMO screening.

    Science.gov (United States)

    Wu, Yuhua; Li, Jun; Wang, Yulei; Li, Xiaofei; Li, Yunjing; Zhu, Li; Li, Jun; Wu, Gang

    The use of analytical controls is essential when performing GMO detection through screening tests. Additionally, the presence of taxon-specific sequences is analyzed mostly for quality control during GMO detection. In this study, 11 commonly used genetic elements involving three promoters (P-35S, P-FMV35S and P-NOS), four marker genes (Bar, NPTII, HPT and Pmi), and four terminators (T-NOS, T-35S, T-g7 and T-e9), together with the reference gene fragments from six major crops of maize, soybean, rapeseed, rice, cotton and wheat, were co-integrated into the same single plasmid to construct a general reference plasmid pBI121-Screening. The suitability test of pBI121-Screening plasmid as reference material indicated that the non-target sequence on the pBI121-Screening plasmid did not affect the PCR amplification efficiencies of screening methods and taxon-specific methods. The sensitivity of screening and taxon-specific assays ranged from 5 to 10 copies of pBI121-Screening plasmid, meeting the sensitivity requirement of GMO detection. The construction of pBI121-Screening solves the lack of a general positive control for screening tests, thereby reducing the workload and cost of preparing a plurality of the positive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Annual report 2005 General Direction of the Energy and raw materials; Rapport annuel 2005 Direction Generale de L'Energie et des Matieres Premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This 2005 annual report of the DGEMP (General Direction of the Energy and the raw Materials), takes stock on the energy bill and accounting of the France. The first part presents the electric power, natural gas and raw materials market in France. The second part is devoted to the diversification of the energy resources with a special attention to the renewable energies and the nuclear energy. The third part discusses the energy and raw materials prices and the last part presents the international cooperation in the energy domain. (A.L.B.)

  10. A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis

    Science.gov (United States)

    Hoffarth, Canio

    Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure

  11. Safeguarding nuclear weapon: Usable materials in Russia

    International Nuclear Information System (INIS)

    Cochran, T.

    1998-01-01

    Both the United States and Russia are retaining as strategic reserves more plutonium and HEU for potential reuse as weapons, than is legitimately needed. Both have engaged in discussions and have programs in various stages of development to dispose of excess plutonium and HEU. These fissile material disposition programs will take decades to complete. In the interim there will be, as there is now, hundreds of tons of separated weapon-usable fissile material stored in tens of thousands of transportable canisters, each containing from a few to several tons of kgs of weapon-usable fissile material. This material must be secured against theft and unauthorized use. To have high confidence that the material is secure, one must establish criteria against which the adequacy of the protective systems can be judged. For example, one finds such criteria in US Nuclear Regulatory Commission (USNRC) regulations for the protection of special nuclear materials

  12. Representation of the neutron cross sections of several fertile and fissile nuclei in the resonance regions

    International Nuclear Information System (INIS)

    de Saussure, G.; Perez, R.B.

    1981-01-01

    Several aspects of the measurement, analysis and evaluation of the cross sections of the fertile and fissile nuclides in the resonance regions are discussed. In the resolved range, for the fertile nuclides it is thought that the principal requirement for improved evaluations is for a practical methodology to deal with systematic errors and their correlations. For the fissile nuclides 235 U and 239 Pu, the ENDF/B-V evaluations are not consistent with ENDF/B procedures recommendations and fall short of the goals of resonance analysis. New evaluations of these two isotopes should be performed. In the unresolved resonance region it is shown that the ENDF/B representation is ambiguous and is not theoretically justified. A better representation may be desirable, and a validation of the representation with experimental self-shielding and transmission measurements is certainly required. 105 references

  13. Addendum 2 to CSER 79-002: Extension of the 150 gram fissile limit used in room 187 of PFP

    International Nuclear Information System (INIS)

    Friar, D.E.

    1994-01-01

    The PFP operating organization requests that the limit set permitting 150 grams fissile be extended to the Hoods 4 and 5 of Room 187. The request for the limit change is explained in the attached request for analysis

  14. 36 CFR 1275.52 - Restriction of materials of general historical significance unrelated to abuses of governmental...

    Science.gov (United States)

    2010-07-01

    ... general historical significance unrelated to abuses of governmental power. 1275.52 Section 1275.52 Parks... abuses of governmental power. (a) The Archivist will restrict access to materials determined during the processing period to be of general historical significance, but not related to abuses of governmental power...

  15. A general model for the transfer of radioactive materials in terrestrial food chains

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Linsley, G.S.; Jones, J.A.

    1979-09-01

    A general methodology for modelling the transfer of radionuclides in the food chains to man is described. The models are dynamic in nature so that the long-term time dependence of processes in environmental materials can be represented, for example, the build-up of activity concentrations in soils during continuous deposition from atmosphere. Modules for radionuclide migration are described in well-mixed (cultivated) soil and undisturbed soil (pasture). The methods by which the transfer coefficients used in plant and animal modules are derived are also given. The foodstuffs considered are those derived from green vegetables, grain, and root vegetables together with meat and liver products from the cow and sheep and cow dairy products. The dynamic model permits the time dependence of food chain transfer processes to be represented for different land contamination scenarios; in particular, the model can be adapted to represent behaviour following a single deposit. Using the sensitivity of results to the variation of transfer parameters the model can be used to determine the parts of the food chain where improved data would be most effective in increasing the reliability of radiological assessments; a worked example is given. (author)

  16. Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

    1999-01-01

    The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMSs for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected

  17. Fissile material holdup monitoring in the PREPP [Process Experimental Pilot Plant] process

    International Nuclear Information System (INIS)

    Becker, G.K.; Pawelko, R.J.

    1989-01-01

    The Process Experimental Pilot Plant (PREPP) is an incineration system designed to thermally process mixed transuranic (TRU) waste and TRU contaminated low-level waste. The TRU isotopic composition is that of weapons grade plutonium (Pu) which necessitates that criticality prevention measures by incorporated into the plant design and operation. Criticality safety in the PREPP process is assured through the utilization of mass and moderation control in conjunction with favorable vessel geometries. The subject of this paper concerns the Pu mass holdup instrumentation system which is an integral part of the inprocess mass control strategy. Plant vessels and components requiring real-time mass holdup measurements were selected based on their evaluated potential for achieving physically credible Pu mass loadings and associated parameters which could lead to a criticality event. If the parameters requisite to a criticality occurrence could not physically be achieved under credible plant conditions, the particular location only required periodic portable holdup monitoring. Based on these analyses five real-time holdup monitoring locations were identified for criticality assurance purposes. An additional real-time instrument is part of the system but serves primarily in the capacity of providing operational support data. 1 fig

  18. Measurements on an inventory of mixed fissile materials in shipping containers

    International Nuclear Information System (INIS)

    Rinard, P.M.; Krick, M.S.; Kelley, T.A.

    1997-09-01

    An inventory contained a large number of previously unmeasured items, many with both uranium and plutonium. We have assembled a suite of instruments and measured the items in a variety of ways. This report first considers the measurements and deduced results in detail before summarizing the important differences with the declarations of the inventory's database. The appendices referred to in this report are part of a classified version only and are not attached to this unclassified version. The classified report is by the same authors as this report, has the same title (which is unclassified), and is classified as open-quotes SRD.close quotes

  19. Interaction of Radiation with Graphene Based Nanomaterials for Sensing Fissile Materials

    Science.gov (United States)

    2016-03-01

    kelvin ( K ) Radiation curie (Ci) [activity of radionuclides] 3.7 × 10 10 per second (s –1 ) [becquerel (Bq)] roentgen (R) [air exposure] 2.579...quantum dots/ nanoparticles . Photosensitive hybrid devices made of CVD graphene decorated with cadmium selenide quantum dots (CdSe QDs) have been...valuable for understanding Raman spectra and electron-phonon physics in doped and disordered graphene. This study provides us valuable information about

  20. High-pressure {sup 4}He drift tubes for fissile material detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Bacon, J.D.; Brockwell, M.I.; Chang, D.Y.; Chung, K.; Dai, W.G.; Greene, S.J.; Hogan, G.E.; Lisowski, P.W.; Makela, M.F.; Mariam, F.G.; McGaughey, P.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mendenhall, M. [California Institute of Technology, Pasadena, CA 91125 (United States); Milner, E.C.; Miyadera, H.; Murray, M.M.; Perry, J.O.; Roybal, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); and others

    2013-03-01

    A detector efficiency model based on energy extraction from neutrons is described and used to compare {sup 4}He detectors with liquid scintillators (EJ301/NE-213). Detector efficiency can be divided into three regimes: single neutron scattering, multiple neutron scattering, and a transition regime in-between. For an average fission neutron of 2 MeV, the amount of {sup 4}He needed would be about 1/4 of the amount of the mass of EJ301/NE-213 in the single-scattering regime. For about 50% neutron energy extraction (1 MeV out of 2 MeV), the two types of detectors ({sup 4}He in the transition regime, EJ301 still in the single-scattering regime) have comparable mass, but {sup 4}He detectors can be much larger depending on the number density. A six-tube 11-bar-pressure {sup 4}He detector prototype is built and tested. Individual electrical pulses from the detector are recorded using a 12-bit digitizer. Differences in pulse rise time and amplitudes, due to different energy loss of neutrons and gamma rays, are used for neutron/gamma separation. Several energy spectra are also obtained and analyzed.

  1. Criticality safety of pipe systems which contain solutions of fissile materials

    International Nuclear Information System (INIS)

    Santos, R. dos.

    1982-03-01

    Criticality calculations for geometric configurations here studied make use of the neutron transport equation in its multigroup formulation, which is solved by the Monte Carlos statistical-probabilistic method. The computational code KENO IV, which use the Monte Carlo method, was utilized in all criticality calculations. All calculations were restricted to plutonium nitrate solutions, 100w% concentration of Pu-239, in water. Calculations were performed to obtain critical dimensions (radius) of a bare infinite cylinder and the effect produced by the addition of a 0.32 cm stainless steel cladding analyzed. Then, The most simple pipe intersection system is examined: the addition, of another cylinder to the one studied in the preceding case, constituting the type 'T' intersection. Further addition of a second cylinder, to the T-Type system is investigated; this is the cross-intersection type. Next, the effect produced by the introduction of a second central column to type 'T' system is analyzed. The effect of the introduction of several arms in the same quadrant is also studied. Infinite cylinders and cross-intersection type systems are analyzed in their nominal and maximum reflection conditions. (E.G.) [pt

  2. Immobilization as a route to surplus fissile materials disposition. Revision 1

    International Nuclear Information System (INIS)

    Gray, L.W.; Kan, T.; McKibben, J.M.

    1996-01-01

    The safe management of surplus weapons plutonium is a very important and urgent task with profound environmental, national and international security implications. In the aftermath of the Cold War, Presidential Police Directive 13 and various analysis by renown scientific, technical and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths forward for the long term disposition of surplus weapons usable plutonium. The central, overarching goal is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons, as the much larger and growing stock of plutonium contained in civilian spent reactor fuel. One disposition alternative considered for surplus Pu is immobilization, in which plutonium would be emplaced in glass, ceramic or glass-bonded zeolite. This option, along with some of the progress over the last year is discussed

  3. Addendum 3 to CSAR 80-027, Use of calorimeter 109B for fissile material measurement

    International Nuclear Information System (INIS)

    Chiao, T.

    1994-01-01

    This modification to the Plutonium Finishing Plant (PFP) calorimeter system involves removing current calorimeter No. 3 from the water bath and replacing it with a calorimeter that can accommodate larger diameter items (an oversize can). The inside diameters of both the sample and the reference cells will be increased to 5.835 inches at the top opening and to 5.22 inches at the bottom, the 8 inch high measurement zone. This Addendum 3 to Criticality Safety Analysis Report 80-027 examines criticality safety during the use of the modified calorimeter (Calorimeter 109B) with enlarged cell tube diameters to assure that an adequate margin of subcriticality is maintained for all normal and contingency conditions

  4. Deep borehole disposition of surplus fissile materials-The site selection process

    International Nuclear Information System (INIS)

    Heiken, G.; WoldeGabriel, G.; Morley, R.; Plannerer, H.

    1996-01-01

    One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth's surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future

  5. Fissile material management, an international approach of the future of plutonium

    International Nuclear Information System (INIS)

    Michel, A.; Schryvers, V.; Vanderborck, Y.

    2000-01-01

    Plutonium management is a crucial issue in any discussion on the future of nuclear energy: plutonium is indeed a normal by-product of nuclear electricity generation. As a result of long-term reprocessing strategies and recent decisions on the dismantling of nuclear weapons, separated plutonium stockpiles are increasing. Observing this situation, the Belgian Nuclear Society decided that the turn of the century was the right time to invite all the parties involved in decision making on this question to confront their decisions or the absence of it. As an international program committee was created, interested companies and institutions delegated high level experts to it and a comprehensive program was put together. This program covers: - Prospects for nuclear energy; - Public perception of plutonium; - The civil plutonium cycle; - The management of surplus military plutonium; - Non-proliferation and safeguards; - The reasons to improve the plutonium fuels performance. The conference is not scientific but strategic. It does not cover too many technical aspects but looks at the managerial questions. It is devoted to the reasons why things are done much more than how things are done. It allows to confront opinions with a mind open to all and a desire to make strategies transparent, even to the least informed public. The present paper has been written before the conference takes place in early October 2000 and describes the orientations prepared by the Programme committee. The oral presentation to Atalante 2000 will report in full over the Pu 2000 conference. (authors)

  6. Basic Research on Remote Sensing of Fissile Materials utilizing Gamma-rays and Neutrons

    Science.gov (United States)

    2017-02-01

    years, and an atomic mass number less than 60 was initially created for the proposal. From that list the student eliminated all reactions with an...decided that a lithium film grown on a nickel substrate and covered with a nickel film would be a good approach. They have learnt how to prepare thin...Nuclear Instruments and Methods in Physics Research A. 505 (2003) 1-4. 0 1 2 3 4 Shown in Figure 3 are key data taken with the lithium glass detectors

  7. Development of detection techniques for a single-particle of fissile material(II)

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report.

  8. Proposed measurements of production of fissile materials from protons and deuterons

    International Nuclear Information System (INIS)

    Cork, B.

    1977-01-01

    There is a real need to improve the measurements of the multiplicities of neutrons produced in reactions suggested for electronuclear breeding, in order to choose the best target and projectile. Experiments to make these measurements are proposed. 2 figures

  9. Open Skies and monitoring a fissile materials cut-off treaty

    International Nuclear Information System (INIS)

    Allentuck, J.; Lemley, J.R.

    1995-01-01

    The Treaty on Open Skies (Open Skies) is intended among other things to provide, in the words of its preamble, means ''to facilitate the monitoring of compliance with existing or future arms control agreements.'' Open Skies permits overflights of the territory of member states by aircraft equipped with an array of sensors of various types. Their types and capabilities are treaty-limited. To find useful application in monitoring a cut-off treaty Open Skies would need to be amended. The number of signatories would need to be expanded so as to provide greater geographical coverage, and restrictions on sensor-array capabilities would need to be relaxed. To facilitate the detection of impending violations of a cut-off convention by Open Skies overflights, the data base provided by parties to the former should include among other things an enumeration of existing and former fuel cycle and research facilities including those converted to other uses, their precise geographic location, and a site plan

  10. TID Environmental Performance Testing In Support of the Mayak Fissile Material Storage Facility

    International Nuclear Information System (INIS)

    Tanner, Jennifer E.; Undem, Halvor A.; Roberts, Bruce A.; Griggs, James R.; Pratt, Sharon L.; Smith, Matthew H.

    2001-01-01

    The purpose of the test and evaluation of tamper indicating devices (TIDs) described in this report is to assure that the recommended TID technologies are acceptable for use at the Mayak FMSF. TID acceptance is based on TID performance with respect to mutually agreed functional, operational, and security requirements for the FMSF, taking into account both the United States and the Russian Federation views. Although some Russian views have been documented, very little information at the level required for formal test planning had been received prior to the start of the testing campaign. Consequently, this report currently represents US recommendations for an arms control and/or safeguards and security application. Acceptance of these test results and recommendations by those Russian Federation entities responsible for the Mayak FMSF will be required before implementing any TID regime at Mayak FMSF

  11. Development of detection techniques for a single-particle of fissile material(II)

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.; Kwack, E. H.

    2001-06-01

    The Analytical methods and detection limit of signatures, and the particle discrimination techniques of unknown particles by microscope were investigated in this technical report. In connection with pre-treatment of swipe samples, sampling and treatment of particles, etching method, fission track observation and the preparation of sample for the neutron activation analysis were also described in this thchnical report

  12. MaTech - the BMFT ''new materials'' materials research program - 1994 annual report about new materials for innovative information technology, energy technology, traffic engineering, medical engineering and production engineering applications, and about general materials research and new fields

    International Nuclear Information System (INIS)

    Lillack, D.; Gilbert, I.; Runte, S.

    1995-01-01

    This annual report gives a survey of projects supported within the framework of the Matfo and Ma-Tech programs. These projects focus on research into materials for innovative: 1. information technology, 2. energy technology, 3. traffic engineering, 4. medical engineering, and 5. production engineering applications and on 6. general materials research and new fields. The descriptions of individual projects indicate project goals and work schedules, names of important sub-contractors, and total costs and the funds contributed by BMFT. Information added in an annex includes inter alia a list of publications, lectures, contracts, or patents resulting from project activities in the year 1994. (MM) [de

  13. Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Peeler, D.

    2010-12-15

    The Department of Energy - Savannah River (DOE-SR) previously provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of the guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft{reg_sign} Excel{reg_sign} spreadsheet for the evaluation of fissile loading in Sludge Batch 5 glass based on the Fe concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that SRNL provide the necessary information to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 6 (SB6). One of the primary inputs into the fissile loading spreadsheet includes a bounding density for SB6-based glasses. Based on the measured density data of select SB6 variability study glasses, SRNL recommends that SRR utilize the 99/99 Upper Tolerance Limit (UTL) density value at 38% WL (2.823 g/cm{sup 3}) as a bounding density for SB6 glasses to assess the fissile concentration in this glass system. That is, the 2.823 g/cm{sup 3} is recommended as a key (and fixed) input into the fissile concentration spreadsheet for SB6 processing. It should be noted that no changes are needed to the underlying structure of the Excel based spreadsheet to support fissile assessments for SB6. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB6 Waste Acceptance Product Specification (WAPS) sample. The purpose of this technical report is to present the density measurements that were determined for the SB6 variability study glasses and to conduct a statistical evaluation of these measurements to provide a bounding density value that may be used as input to the Excel{reg_sign} spreadsheet to be employed by SRR to maintain the

  14. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2015-01-01

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO 4 (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O 4 materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra. - Graphical abstract: Scheelites AMO 4 (A=Ca, Sr, Ba; M=Mo, W) were prepared in various non-aqueous liquids with high specific surface areas and narrow size distributions. The optical gap of scheelites changes in the series Ca

  15. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  16. Approach to a generalized real-time nuclear materials control system

    International Nuclear Information System (INIS)

    Jarsch, V.; Onnen, S.; Polster, F.J.; Woit, J.

    1978-01-01

    Untrained users and a large amount of--at first glance incompatible--processes and materials are the environment of computer-aided nuclear materials control systems. To find an efficient model of the real processes and materials descriptions and to allow the operating personnel to communicate with the system in his everyday symbolism are goals in the development of the concept presented in this paper. According to this concept a real-time minicomputer-based materials control system is being implemented in the Nuclear Research Center of Karlsruhe. The chosen approach satisfies the heterogeneous requirements of the various institutes of the Center and is also applicable to other nuclear plants

  17. Prompt neutron fission spectrum mean energies for the fissile nuclides and 252Cf

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of 252 Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, 233 U, 235 U, 239 Pu, and 241 Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs

  18. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    International Nuclear Information System (INIS)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  19. FUP1--an unified program for calculating all fast neutron data of fissile nucleus

    International Nuclear Information System (INIS)

    Cai Chonghai; Zuo Yixin

    1990-01-01

    FUP1 is the first edition of an unified program for calculating all the fast neutron data in ENDF/B-4 format for fissile nucleus. Following data are calculated with FUP1 code: the total cross section, elastic scattering cross section, nonelastic cross section, total including up to 40 isolated levels and continuum state inelastic cross sections. In FUP1 the energy region of incident neutron is restricted to 10 Kev to 20 Mev. The advantages of this program are its perfect function, convenient to users and running very fast

  20. Nuclear dissipation effects on fission and evaporation in systems of intermediate fissility

    Directory of Open Access Journals (Sweden)

    Gelli N.

    2010-03-01

    Full Text Available The systems of intermediate fissility 132Ce and 158Er have been studied experimentally and theoretically in order to investigate the dissipation properties of nuclear matter. Cross sections of fusion-fission and evaporation residues channels together with charged particles multiplicities in both channels, their spectra, angular correlations and mass-energy distribution of fission fragments have been measured. Theoretical analysis has been performed using multi-dimensional stochastic approach with realistic treatment of particle evaporation. The results of analysis show that full one-body or unusually strong two-body dissipation allows to reproduce experimental data. No temperature dependent dissipation was needed.

  1. International safeguards of fissionable material

    International Nuclear Information System (INIS)

    Tempus, P.

    1991-01-01

    From the very beginning nuclear fissile materials have been subject to state and - outside nuclear weapon states - also to international monitoring. The latter was a principal task of the International Atomic Energy Agency, a UN affiliated organisation formed in 1957 based in Vienna. The legal, technical and political aspects of its monitoring activity are explained

  2. Fuel conditioning facility material accountancy

    International Nuclear Information System (INIS)

    Yacout, A.M.; Bucher, R.G.; Orechwa, Y.

    1995-01-01

    The operation of the Fuel conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. It differs significantly, therefore, from traditional PUREX process facilities in both processing technology and safeguards implications. For example, the fissile material is processed in FCF only in batches and is transferred within the facility only as solid, well-characterized items; there are no liquid steams containing fissile material within the facility, nor entering or leaving the facility. The analysis of a single batch lends itself also to an analytical relationship between the safeguards criteria, such as alarm limit, detection probability, and maximum significant amount of fissile material, and the accounting system's performance, as it is reflected in the variance associated with the estimate of the inventory difference. This relation, together with the sensitivity of the inventory difference to the uncertainties in the measurements, allows a thorough evaluation of the power of the accounting system. The system for the accountancy of the fissile material in the FCF has two main components: a system to gather and store information during the operation of the facility, and a system to interpret this information with regard to meeting safeguards criteria. These are described and the precision of the inventory closure over one batch evaluated

  3. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  4. Evaluation of Generalized Performance across Materials When Using Video Technology by Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    Science.gov (United States)

    Mechling, Linda C.; Ayres, Kevin M.; Foster, Ashley L.; Bryant, Kathryn J.

    2015-01-01

    The purpose of this study was to evaluate the ability of four high school-aged students with a diagnosis of autism spectrum disorder and moderate intellectual disability to generalize performance of skills when using materials different from those presented through video models. An adapted alternating treatments design was used to evaluate student…

  5. 76 FR 50331 - Hazardous Materials Regulations; Compatibility With the Regulations of the International Atomic...

    Science.gov (United States)

    2011-08-12

    ... geometry requirements applicable to tested fissile material packages. This TS-R-1 change is applicable to... percussion test.) The TS-R-1 revisions pertaining to the solar insolation conditions to be assumed in...

  6. Materials Information for Science and Technology (MIST): Project overview: Phase 1 and 2 and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-11-01

    The National Bureau of Standards and the Department of Energy have embarked on a program to build a demonstration computerized materials data system called Materials Information for Science and Technology (MIST). This report documents the first two phases of the project. The emphasis of the first phase was on determining what information was needed and how it could impact user productivity. The second phase data from the Aerospace Metal Handbook on a set of alloys was digitized and incorporated in the system.

  7. Finite element implementation of the Hoek-Brown material model with general strain softening behavior

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed; Clausen, Johan Christian; Damkilde, Lars

    2015-01-01

    A numerical implementation of the Hoek–Brown criterion is presented, which is capable of modeling different post-failure behaviors observed in jointed rock mass. This is done by making the material parameters a function of the accumulated plastic strain. The implementation is for use in finite...... for perfectly-plastic, brittle and strain softening material behavior and the results are compared with known solutions....

  8. Electronuclear fissile fuel production. Linear accelerator fuel regenerator and producer LAFR and LAFP

    International Nuclear Information System (INIS)

    Steinberg, M.; Powell, J.R.; Takahashi, H.; Grand, P.; Kouts, H.J.C.

    1978-04-01

    A linear accelerator fuel generator is proposed to enrich naturally occurring fertile U-238 or thorium 232 with fissile Pu-239 or U-233 for use in LWR power reactors. High energy proton beams in the range of 1 to 3 GeV energy are made to impinge on a centrally located dispersed liquid lead target producing spallation neutrons which are then absorbed by a surrounding assembly of fabricated LWR fuel elements. The accelerator-target design is reviewed and a typical fuel cycle system and economic analysis is presented. One 300 MW beam (300 ma-1 GeV) linear accelerator fuel regenerator can provide fuel for 3 to 1000 MW(e) LWR power reactors over its 30-year lifetime. There is a significant saving in natural uranium requirement which is a factor of 4.5 over the present LWR fuel requirement assuming the restraint of no fissile fuel recovery by reprocessing. A modest increase (approximately 10%) in fuel cycle and power production cost is incurred over the present LWR fuel cycle cost. The linear accelerator fuel regenerator and producer assures a long-term supply of fuel for the LWR power economy even with the restraint of the non-proliferation policy of no reprocessing. It can also supply hot-denatured thorium U-233 fuel operating in a secured reprocessing fuel center

  9. Influence of the Density Law on Various Fissile Single Unit and Array Storage Methods

    International Nuclear Information System (INIS)

    Huang, S.T.

    2011-01-01

    The advancement of computational technology has resulted in the wide-spread availability of powerful radiation transport Monte Carlo codes. Prevailing practices today rely heavily on Monte Carlo codes to provide the basis for assessing the reactivity of various fissile systems for nuclear criticality safety (NCS). In 1958, Weinberg and Wigner expressed their concerns on a 'deplorable trend in reactor design - the tendency to substitute a code for a theory'. Unfortunately, their concerns have largely become a reality in many modern NCS practices. lacking the time or information to understand the underlying neutron physics of the fissile system under consideration is indeed a deplorable trend. The purpose of this paper is to demonstrate that many features of criticality hand calculation methods are indeed based upon the fundamentals of the density law and that many correlations of important physics parameters can be more easily understood from such a perspective. Historically, the density law was recognized by many pioneers in the field, including during the Manhattan Project. However, it was by and large an 'oral tradition' in that bits and pieces of great physical insights of the pioneers were scattered in many earlier publications. This paper attempts to bring together some of the 'jewels' of the pioneers which might have been lost or forgotten.

  10. Comparison of thorium-based fuels with different fissile components in existing BWRs

    International Nuclear Information System (INIS)

    Bjoerk, Klara Insulander; Fhager, Valentin; Demaziere, Christophe

    2009-01-01

    Three different types of thorium based BWR fuel have been developed, in each of which thorium was combined with a different fissile component, the three components being reactor grade plutonium, uranium enriched to 20% in uranium 235 and pure uranium 233. A BWR nuclear bundle design, based on the geometrical fuel assembly design GE14, was developed for each of these fissile components. The properties and performance of the corresponding fuel assemblies were investigated via full core calculations carried out for an existing BWR and compared with the ones of an ordinary Low Enriched Uranium (LEU) fuel, which was developed for reference. The fuel assemblies and cores were designed to meet existing fuel design criteria, and were then analyzed with regards to reactivity coefficients, delayed neutron fractions, control rod worths and shutdown margins. The results show that all three alternatives seem to be feasible, although some difficulties remain with complying with the thermal limits, and with the moderator temperature and coolant void coefficients of the U-233 containing fuel being positive under some circumstances. (author)

  11. Some methods for the detection of fissionable matter; Quelques methodes de detection des corps fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Guery, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-01

    A number of equipments or processes allowing to detect uranium or plutonium in industrial plants, and in particular to measure solution concentrations, are studied here. Each method has its own field of applications and has its own performances, which we have tried to define by calculations and by experiments. The following topics have been treated: {gamma} absorptiometer with an Am source, detection test by neutron multiplication, apparatus for the measurement of the {alpha} activity of a solution, fissionable matter detection by {gamma} emission, fissionable matter detection by neutron emission. (author) [French] On examine ici plusieurs appareils ou procedes qui permettent de detecter l'uranium ou le plutonium dans les installations industrielles, et en particulier de mesurer les concentrations de solutions. Chacune des methodes a son domaine d'application et ses performances, qu'on a tente de definir par le calcul et par des experiences. Les sujets traites sont les suivants: absorptiometre {gamma} a source d'americium, essais de detection par multiplication neutronique, appareil de mesure de l'activite {alpha} d'une solution, detection des matieres fissiles par leur emission {gamma}, detection des matieres fissiles par leur emission neutronique. (auteur)

  12. Physics concept on the constellation type fissile fuels and its application to the prospective Th-232U Reactor

    International Nuclear Information System (INIS)

    Zhang, Jiahua

    1994-01-01

    In contrast with the conventional nuclear reactor which usually fuelled with on single fissile nuclide, a constellation type fissile fuels reactor consists of a parent nuclide such as 232 Th or 238 U and its whole family of neutron generated daughter nuclides. All of them are regarded as fissile fuels but of quite different fission ability. The concentration of each daughter nuclide is determined by its saturate concentration ratio with the parent nuclide. In such fuel system, the whole fuel consumed by neutron reaction almost completely results in fission products. In this article, some properties of such fuel system, determination of the saturate concentration of each daughter nuclide and applicability to Th- 233 U fueled reactor will be discussed. 3 refs., 1 tab., 2 figs

  13. Radioactivity decontamination of materials commonly used as surfaces in general-purpose radioisotope laboratories.

    Science.gov (United States)

    Leonardi, Natalia M; Tesán, Fiorella C; Zubillaga, Marcela B; Salgueiro, María J

    2014-12-01

    In accord with as-low-as-reasonably-achievable and good-manufacturing-practice concepts, the present study evaluated the efficiency of radioactivity decontamination of materials commonly used in laboratory surfaces and whether solvent spills on these materials affect the findings. Four materials were evaluated: stainless steel, a surface comprising one-third acrylic resin and two-thirds natural minerals, an epoxy cover, and vinyl-based multipurpose flooring. Radioactive material was eluted from a (99)Mo/(99m)Tc generator, and samples of the surfaces were control-contaminated with 37 MBq (100 μL) of this eluate. The same procedure was repeated with samples of surfaces previously treated with 4 solvents: methanol, methyl ethyl ketone, acetone, and ethanol. The wet radioactive contamination was allowed to dry and then was removed with cotton swabs soaked in soapy water. The effectiveness of decontamination was defined as the percentage of activity removed per cotton swab, and the efficacy of decontamination was defined as the total percentage of activity removed, which was obtained by summing the percentages of activity in all the swabs required to complete the decontamination. Decontamination using our protocol was most effective and most efficacious for stainless steel and multipurpose flooring. Moreover, treatment with common organic solvents seemed not to affect the decontamination of these surfaces. Decontamination of the other two materials was less efficient and was interfered with by the organic solvents; there was also great variability in the overall results obtained for these other two materials. In expanding our laboratory, it is possible for us to select those surface materials on which our decontamination protocol works best. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Perspectives on nuclear material safety management methods at DOE sites

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1997-01-01

    The management of nuclear materials, and fissile materials in particular, at the USDOE facilities is undergoing significant changes. These result in large part from decreasing requirements for these materials in the US weapons program. Not only is new production no longer required, but returns must be handled and safely stored. Eventually surplus fissile material will be used for power production, or else put into a form suitable for long term disposition. In the meanwhile concentrates must be stored with protection against releases of radioactive material to the environment, and also against theft or deliberate dispersion. In addition, cleaning up large volumes of materials contaminated with fissile isotopes will be a major activity, and there will also be some quantity of spent fuel containing enriched uranium that cannot readily be processed. All these activities pose safety problems, some of which are addressed here

  15. Particular cases of materials balance equation generalized for gas deposits associated to the coal

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez, A; Bejarano, A

    1997-01-01

    One of the fundamental principles used in the work, developed in engineering is the law of the matter conservation. The application of this principle to the hydrocarbons fields, with the purpose of to quantify and to be predicted expresses by means of materials balance method. While the equation construction of conventional materials balance and the calculations that come with their application are not a difficult task, the approach of selection of the solution that better it represents the deposit it is one of the problems that the petroleum engineer should face. The materials balance is a useful analysis method of the deposit operation, reserves estimate of raw and gas, and prediction of the future behavior of the deposit. The coal, beds, devonian shales and geo pressurized-aquifer are some examples of natural gas sources and to possess production mechanisms and behaviors significantly different to the traditional than have been considered as non conventional deposits

  16. Development of a General Shocked-Materials-Response Description for Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Steven M. Valone

    2000-07-01

    This report outlines broad modeling issues pertaining to polymeric materials behavior under detonation conditions. Models applicable system wide are necessary to cope with the broad range of polymers and complex composite forms that can appear in Laboratory weapons systems. Nine major topics are discussed to span the breadth of materials, forms, and physical phenomena encountered when shocking polymers and foams over wide ranges of temperatures, pressures, shock strengths, confinement conditions, and geometries. The recommendations for directions of more intensive investigation consider physical fidelity, computational complexity, and application over widely varying physical conditions of temperature, pressure, and shock strength.

  17. Routine inspection effort required for verification of a nuclear material production cutoff convention

    International Nuclear Information System (INIS)

    Dougherty, D.; Fainberg, A.; Sanborn, J.; Allentuck, J.; Sun, C.

    1996-11-01

    On 27 September 1993, President Clinton proposed open-quotes... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.close quotes The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as open-quotes the Cutoff Conventionclose quotes) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced after entry into force (EIF) of the accord under international safeguards. open-quotes Productionclose quotes would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards

  18. Materials information for science and technology (MIST): Project overview: Phases I and II and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-01-01

    This report documents the initial phases of the Materials Information for Science and Technology (MIST) project jointly supported by the Department of Energy and the National Bureau of Standards. The purpose of MIST is to demonstrate the power and utility of computer access to materials property data. The initial goals include: to exercise the concept of a computer network of materials databases and to build a demonstration of such a system suitable for use as the core of operational systems in the future. Phases I and II are described in detail herein. In addition, a discussion is given of the expected usage of the system. The primary MIST prototype project is running on an IBM 3084 under STS at the Stanford University's Information Technology Services (ITS). Users can access the Stanford system via ARPANET, TELENET, and TYMNET, as well as via commercial telephone lines. For fastest response time and use of the full screen PRISM interface, direct connection using a 2400 baud modem with the MNP error-correcting protocol over standard telephone lines gives the best results - though slower speed connections and a line-oriented interface are also available. This report gives detailed plans regarding the properties to be enterend and the materials to be entered into the system.

  19. Implementation of an anisotropic damage material model using general second order damage tensor

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Mori, K.; Wisselink, H.H.; Pietrzyk, M.; Kusiak, J.; Meinders, Vincent T.; ten Horn, Carel; Majta, J.; Hartley, P.; Lin, J.

    2010-01-01

    Damage in metals is mainly the process of the initiation and growth of voids. With the growing complexity in materials and forming proc-esses, it becomes inevitable to include anisotropy in damage (tensorial damage variable). Most of the anisotropic damage models define the damage tensor in the

  20. 40 CFR 230.60 - General evaluation of dredged or fill material.

    Science.gov (United States)

    2010-07-01

    ... (previous tests, the presence of polluting industries and information about their discharge or runoff into... is most likely to be free from chemical, biological, or other pollutants where it is composed... industries, municipalities, or other sources, including types and amounts of waste materials discharged along...

  1. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  2. A facile route to ketene-functionalized polymers for general materials applications

    Science.gov (United States)

    Leibfarth, Frank A.; Kang, Minhyuk; Ham, Myungsoo; Kim, Joohee; Campos, Luis M.; Gupta, Nalini; Moon, Bongjin; Hawker, Craig J.

    2010-03-01

    Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.

  3. New applications of a generalized Hooke’s law for second gradient materials

    Directory of Open Access Journals (Sweden)

    K. Enakoutsa

    2015-05-01

    Full Text Available We provide analytical solutions to the problems of a circular bending of a beam in plane strain and the torsion of a non-circular cross-section beam, the beams obeying a second-gradient elasticity law proposed by the author, following a previous suggestion of Dell’Isola et al. (2009. The motivation was to find benchmark analytical solutions that can serve to grasp the physical foundations of second gradient elasticity laws for heterogeneous materials. The analytical solution of the circular beam problem presents the additional advantage to establish some nice properties on the unknown second gradient elastic moduli introduced by Enakoutsa (2014 model and the classical elasticity constants for both incompressible and compressible heterogeneous elastic materials. A framework to find the elastic moduli of the new model is also proposed.

  4. Ministerial Decree of 27 July 1966; procedure for the notification of holding and accounting radioactive material within the meaning and in implementation of Section 30 of the Decree of the President of the Republic No. 185 of 13 February 1964, and determination of the value of the total quantity of radioactivity in radioactive material within the meaning and in implementation of Sections 3 and 13 of Act No. 1860 of 31 December 1962 respectively amended by Sections 1 and 3 of the Decree of the President of the Republic No. 1704 of 30 December 1965

    International Nuclear Information System (INIS)

    1966-01-01

    This Decree establishes the levels of radioactivity and the procedure for applying the system of notification and accounting of radioactive materials with the exception of special fissile materials, source materials and ores. (NEA) [fr

  5. Verification of nuclear material balances: General theory and application to a highly enriched uranium fabrication plant

    International Nuclear Information System (INIS)

    Avenhaus, R.; Beedgen, R.; Neu, H.

    1980-08-01

    In the theoretical part it is shown that under the assumption, that in case of diversion the operator falsifies all data by a class specific amount, it is optimal in the sense of the probability of detection to use the difference MUF-D as the test statistics. However, as there are arguments for keeping the two tests separately, and furthermore, as it is not clear that the combined test statistics is optimal for any diversion strategy, the overall guaranteed probability of detection for the bivariate test is determined. A numerical example is given applying the theoretical part. Using the material balance data of a Highly Enriched Uranium fabrication plant the variances of MUF, D (no diversion) and MUF-D are calculated with the help of the standard deviations of operator and inspector measurements. The two inventories of the material balance are stratified. The samples sizes of the strata and the total inspection effort for data verification are determined by game theoretical methods (attribute sampling). On the basis of these results the overall detection probability of the combined system (data verification and material accountancy) is determined both for the MUF-D test and the bivariate (D,MUF) test as a function of the goal quantity. The results of both tests are evaluated for different diversion strategies. (orig./HP) [de

  6. The OENORM S 5200 'Radioactivity in building materials' as a tool for radiation protection of the general population

    International Nuclear Information System (INIS)

    Kunsch, B.

    1989-04-01

    This report comprises two papers, one which is announced in the title, i.e. B. Kunsch, F. Steger, E. Tschirf: The OENORM S 5200 'Radioactivity in building materials' as a tool for radiation protection of the general population; and in addition a paper by F. Steger, H. Stadtmann, P. Kindl, L. Breitenhuber: Radon in dwellings: investigations and measurements. The two papers are treated separately. (qui)

  7. The wetted solid---A generalization of the Plateau problem and its implications for sintered materials

    International Nuclear Information System (INIS)

    Salamon, P.; Bernholc, J.; Berry, R.S.; Carrera-Patino, M.E.; Andresen, B.

    1990-01-01

    A new generalization of the Plateau problem that includes the constraint of enclosing a given region is introduced. Physically, the problem is important insofar as it bears on sintering processes and the structure of wetted porous media. Some primal and dual characterizations of the solutions are offered and aspects of the problem are illustrated in one and two dimensions in order to clarify the combinatorial elements and demonstrate the importance of numerous local minima

  8. The wetted solid - a generalization of Plateau's problem and its implications for sintered materials

    International Nuclear Information System (INIS)

    Salomon, P.; Berry, R.S.; Carrera-Patino, M.E.; Chicago Univ., IL; Andresen, B.

    1988-01-01

    We introduce a new generalization of the Plateau problem which includes the constraint of enclosing a given region. Physically the problem is important insofar as it bears on sintering processes and on the structure of wetted porous media. Some primal and dual characterizations of the solutions are offered, and aspects of the problem are illustrated in one and two dimensions in order to clarify the combinatorial elements and to demonstrate the importance of numerous local minima. (orig.)

  9. General technical requirements (GTR) for inventory monitoring systems (IMS) for the trilateral initiative

    International Nuclear Information System (INIS)

    Pshakin, Gennady M.; Kuleshov, I.; Shea, T.; Puckett, J.M.; Zhukov, I.; Mangan, Dennis L.; Matter, John C.; Waddoups, I.; Smathers, D.; Abhold, M.E.; Hsue, S.-T.; Chiaro, P.

    2002-01-01

    Pursuant to the Trilateral Initiative, the three parties (The Russian Federation, the United States, and the International Atomic Energy Agency) have been engaged in discussions concerning the structure of reliable monitoring systems for storage facilities having large inventories. The intent of these monitoring systems is to provide the capability for the IAEA to maintain continuity of knowledge in a sufficiently reliable manner that should there be equipment failure, loss of continuity of knowledge would be restricted to a small population of the inventory, and thus reinventory of the stored items would be minimized These facility-specific monitoring systems, referred to as Inventory Monitoring Systems (IMS) are to provide the principal means for the M A to assure that the containers of fissile material remain accounted under the Verification Agreements which are to be concluded between the IAEA and the Russian Federation and the lAEA and the United States for the verification of weapon-origin and other fissile material specified by each State as released from its defense programs. A technical experts working group for inventory monitoring systems has been meeting since Feb- of 2000 to formulate General Technical Requirements (GTR) for Inventory Monitoring Systems for the Trilateral Initiative. Although provisional agreement has been reached by the three parties concerning the GTR, it is considered a living document that can be updated as warranted by the three parties. This paper provides a summary of the GTR as it currently exists.

  10. On the determination of general plane stress states in orthotropic materials from ultrasonic velocity data in non symmetry planes

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando J.A.

    2015-01-01

    This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)

  11. Smuggling special nuclear materials

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    1999-01-01

    Ever since the collapse of the former Soviet Union reports have circulated with increasing frequency concerning attempts to smuggle materials from that country's civil and military nuclear programs. Such an increase obviously raises a number of concerns (outlined in the author's introduction), chief among which is the possibility that these materials might eventually fall into the hands of proliferant states or terrorist groups. The following issues are presented: significance of materials being smuggled; sources and smuggling routes; potential customers; international efforts to reduce nuclear smuggling; long-term disposition of fissile materials. (author)

  12. Representation of the neutron cross sections of several fertile and fissile nuclei in the resonance regions

    Energy Technology Data Exchange (ETDEWEB)

    de Saussure, G.; Perez, R.B. (Oak Ridge National Lab., TN (USA))

    1982-01-01

    Several problems related to the measurement, analysis and evaluation of the neutron cross sections of the main fertile and fissile nuclides in the resonance region are reviewed. In particular the ENDF/B-V representation of these cross sections is discussed. In recent years little progress has been made in improving our knowledge of the resolved resonance parameters of the fertile nuclei. It is suggested that this absence of progress is due to a lack of adequate methodologies to deal with the systematic errors arising from uncertainties in the analysis of the measurements. The ENDF/B treatment of the unresolved resonance region is commented on and the authors recommend the validation of the unresolved resonance range evaluations with appropriate transmission and self-indication measurements.

  13. A rational approximation to Reich-Moore collision matrix of non-fissile nuclides

    International Nuclear Information System (INIS)

    Devan, K.; Keshavamurthy, R.S.

    1999-01-01

    The cross sections of many important nuclides are represented in Reich-Moore (RM) formalism in the recent American Evaluated Nuclear Data file, ENDF/B-VI. Processing of cross sections with RM resonance parameters is much more difficult than the other multilevel formalisms such as MLBW and Adler-Adler. In this paper, we derive a rational approximation to the RM collision matrix in the vicinity of a resonance. This simplifies the cross section processing. The energy range of the validity of this approximation in the vicinity of a resonance is also derived. Choosing Ni 58 as an example, results of our approximation for a non-fissile nuclide are given for two typical s-wave resonances. Our rational approximation method is found to work with good accuracies in the vicinity of resonances

  14. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sinev, V. V., E-mail: vsinev@pcbai10.inr.ruhep.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  15. Criticality safety calculations of 'poison tube tank' compared with annular tanks for storing fissile solutions

    International Nuclear Information System (INIS)

    Gopalakrishnan, C.R.; Joseph, G.

    1995-01-01

    A comparative study of the shielded area space required for storing fissile solution by the conventional annular tank and by poison tube tank is made. Poison tube tank is similar to commercial heat exchanger. The neutron poisons studied are gadolinium oxide and borax. Variation of multiplication factor for an array of annular tanks containing uranium nitrate or plutonium nitrate solutions are presented for annular widths of 10, 7.5 and 5 cm. It is concluded that for the given concentration, 5 cm annular width tanks are safe at a pitch distance of 120 and 90 cm for uranium and plutonium solutions respectively. Using these, as reference values, it is found that the shielded area saving for the poison tube tank is a factor of 12 and 8 for the given concentration of uranium and plutonium solutions respectively. (author)

  16. Analysis of the differences in breeding ratio and fissile inventory between heterogeneous and homogeneous liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Tzanos, C.P.

    1980-01-01

    The differences in fissile inventory and breeding ratio, with respect to the differences in fertile inventory and neutron spectrum, between equivalent heterogeneous and homogeneous configurations were analyzed. To quantify the effect of spectral changes on reaction rate ratios, a calculational scheme based on properly prepared one-group cross-section sets was used

  17. Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.

    Science.gov (United States)

    Ackerman, David M; Wang, Jing; Evans, James W

    2012-06-01

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  18. Stb 342 - Decree of 4 June 1987 amending the Decree on the transport of fissionable materials, ores and radioactive substances

    International Nuclear Information System (INIS)

    1987-01-01

    The 1969 transport Decree governs all modes of transport of fissile and radioactive materials as well as ores in and to and from the Netherlands. The 1987 Decree amends it, in particular, for modernization purposes. (NEA) [fr

  19. Annual report 2001. General direction of energy and raw materials; Rapport annuel 2001. Direction generale de l'energie et des matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  20. Annual report 2001. General direction of energy and raw materials; Rapport annuel 2001. Direction generale de l'energie et des matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  1. International trade in carbon emission rights and basic materials: General equilibrium calculations for 2020

    International Nuclear Information System (INIS)

    Perroni, C.; Rutherford, T.F.

    1993-01-01

    Restrictions on CO 2 emissions affect international trade and the pattern of comparative advantage. This paper, based on calculations with a static general equilibrium model, suggests that international trade in carbon rights is a substitute for trade in energy-intensive goods, and thus international trading in carbon rights reduces sectoral effects of emission reductions. In our model, we surprisingly find that free riding by non-signatory countries may not render unilateral action ineffective. If the OECD unilaterally cuts global emissions by 5 per cent from 1990 levels by the year 2020, emission by non-OECD regions increase but offset less than 15 per cent of this cutback. Moreover, carbon taxes depress international oil prices and create incentives for increased trade in natural gas. 14 refs, 7 figs

  2. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn [School of Mechano-Electronic Engineering, Xidian University, Xi' an 710071, Shaanxi (China); Jin, Ke [School of Aerospace Science and Technology, Xidian University, Xi' an 710071, Shaanxi (China)

    2016-04-14

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.

  3. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  4. Fissile fuel breeding and minor actinide transmutation in the life engine

    International Nuclear Information System (INIS)

    Sahin, Suemer; Khan, Mohammad Javed; Ahmed, Rizwan

    2011-01-01

    zone (50 cm), containing MA as fissionable fuel. A 3rd ODS layer (2 cm) separates the molten salt zone on the right side from the graphite reflector (30 cm). Calculations have been conducted for a fusion driver power of 500 MW th in S 8 -P 3 approximation using 238-neutron groups. Minor actinides (MA) out of the nuclear waste of LWRs are used as fissile carbide fuel in TRISO particles with volume fractions of 0, 2, 3, 4 and 5% have been dispersed homogenously in the Flibe coolant. For these cases, tritium breeding at startup is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. In the course of plant operation, TBR and fissile neutron multiplication factor decrease gradually. For a self-sustained reactor, TBR > 1.05 can be kept for all cases over 8 years. Higher fissionable fuel content in the molten salt leads also to higher blanket energy multiplication, namely M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5% TRISO volume fraction at start up, respectively. For all investigated cases, fissile burn up exceeds 400 000 MW D/MT. Major damage mechanisms have been calculated as DPA = 50 and He = 176 appm per year. This implies a replacement of the first wall every 3 years.

  5. Physical protection of radioactive material in transport

    International Nuclear Information System (INIS)

    1975-01-01

    Safety in the transport of radioactive material is ensured by enclosing the material, when necessary, in packaging which prevents its dispersal and which absorbs to any adequate extent any radiation emitted by the material. Transport workers, the general public and the environment are thus protected against the harmful effects of the radioactive material. The packaging also serves the purpose of protecting its contents against the effects of rough handling and mishaps under normal transport conditions, and against the severe stresses and high temperatures that could be encountered in accidents accompanied by fires. If the radioactive material is also fissile, special design features are incorporated to prevent any possibility of criticality under normal transport conditions and in accidents. The safe transport requirements are designed to afford protection against unintentional opening of packages in normal handling and transport conditions and against damage in severe accident conditions; whereas the physical protection requirements are designed to prevent intentional opening of packages and deliberate damage. This clearly illustrates the difference in philosophical approach underlying the requirements for safe transport and for physical protection during transport. This difference in approach is, perhaps, most easily seen in the differing requirements for marking of consignments. While safety considerations dictate that packages be clearly labelled, physical protection considerations urge restraint in the use of special labels. Careful consideration must be given to such differences in approach in any attempt to harmonize the safety and physical protection aspects of transport. (author)

  6. Characterization of the thermalness of a fissile system with a two-group diffusion theory parameter

    International Nuclear Information System (INIS)

    Bredehoft, B.B.; Busch, R.D.

    1993-01-01

    In tabulating critical data, the hydrogen-to-fissile atom ratio (H/X) is commonly used to characterize the amount of moderation in a system. Though adequate in many cases, H/X does not account for the moderating contribution of other light nuclei contained in common uranium-moderator mixtures. This ratio also does not account for enrichment of the system, which affects the resonance absorption characteristics and, therefore, the moderating behavior of that system. To alleviate these problems, a two-energy-group diffusion theory analogy to the six-factor formula was applied to define a new parameter p/(η 2 · f 2 ), which describes the moderation characteristics or the 'thermalness' of a fissioning system and includes the effects of enrichment and the presence of moderators other than hydrogen. From an analysis of several low-enriched uranium systems with different moderators, it was found that the values of p/(η 2 · f 2 ) corresponding to minimum critical mass and volume tend to center in a narrower range than do the values of H/X for the same systems. Also, the thermalness parameter does not vary with the addition of a reflector and is applicable to systems with other than hydrogenous moderators. Based on these results, the thermalness parameter p/(η 2 · f 2 ) provides an effective means of characterizing moderated systems relative to optimum conditions

  7. Comment on the interpretation and application of limiting critical concentrations of fissile nuclides in water

    International Nuclear Information System (INIS)

    Clayton, E.D.; Durst, B.M.

    1977-01-01

    Calculations of the infinite multiplication factor for aqueous homogeneous mixtures of mixed oxides of plutonium and natural uranium at low fissile concentrations (7 g Pu/l) disclose a maximum to occur in the value of k/sub infinity/ at a weight fraction, Pu/(Pu + U), of approximately 0.0035. With mixed oxide solutions containing 7 g Pu/l, the value of k/sub infinity/ is estimated to be nearly 1.04, whereas in the absence of the natural uranium, the maximum value of k/sub infinity/ at 7 g Pu/l in water is approximately 4% less or near unity. The occurrence of this peak in value of k/sub infinity/ is due to the 235 U content in the natural uranium. Thus, in the presence of natural uranium, it should be borne in mind that the limiting subcritical concentration of plutonium (given as 7.0 g Pu/l) in water must be reduced to values <7.0 g Pu/l to ensure subcriticality of the mixture

  8. Analysis and Characterization of Damage and Failure Utilizing a Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.

  9. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment

  11. Aims and methods of nuclear materials management

    International Nuclear Information System (INIS)

    Leven, D.; Schier, H.

    1979-05-01

    Whilst international safeguarding of fissile materials against abuse has been the subject of extensive debate, little public attention has so far been devoted to the internal security of these materials. All countries using nuclear energy for peaceful purposes have laid down appropriate regulations. In the Federal Republic of Germany safeguards are required, for instance, by the Atomic Energy Act, and are therefore a prerequisite for licensing. The aims and methods of national nuclear materials management are contrasted with viewpoints on international safeguards

  12. The design, construction and testing of packaging[Radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    Essentially uniform regulations, based on the IAEA Regulations for the Safe Transport of Radioactive Materials, have been adopted on a world-wide basis with the aim of ensuring safety in the transport of radioactive and fissile substances by road, rail, sea and air. The application of these regulations over a period of almost 20 years has resulted in practically complete safety in the sense that there has been no evidence of death or injury that could be attributed to the special properties of the material even when consignments were involved in serious accidents. In the regulations, reliance is placed, to the greatest extent possible, on the packaging to provide adequate shielding and containment of the contents under both normal transport and accident conditions. The Agency organized an international seminar in 1971 to consider the performance tests that have to be applied to packaging to demonstrate compliance with the regulatory requirements. The general conclusion was that the testing programme specified in the regulations was adequate for the near future, but that further consideration should be given to assessing the risks presented by the increasing volume of transport. The second international seminar, which is the subject of this report, dealt with all aspects of the design, construction and testing of packaging for the transport both of relatively small quantities of radioactive substances, which are being used to an ever increasing extent for medical and research purposes, and of the much larger quantities arising in various stages of the nuclear fuel cycle. The programme covered the general requirements for packaging; risk assessment for the transport of various radioactive and fissile substances, including plutonium; specific features of the design and construction of packaging; quality assurance; damage simulation tests, including calculational methods and scale-model testing; tests for the retention of shielding and containment after damage; and the

  13. Proceedings of the twenty fourth annual general meeting of Materials Research Society of India and theme symposium on advanced materials for energy applications: abstract and souvenir book

    International Nuclear Information System (INIS)

    2013-01-01

    Materials science and engineering plays a crucial role in the development of advanced technologies that include development of materials that can withstand high temperatures and intense neutron dose, development of advanced sensors and radiochemical processing methodologies. The contributed papers in the symposium were focussed on energy materials: thermoelectrics, photovoltaics; nuclear materials: alloys and glasses; oxides and ceramics; alloys and intermetallics; fictionalised nanomaterials and applications; thin films; soft matter and bio materials etc. Papers relevant to INIS are indexed separately

  14. Current flow in a 3-terminal thin film contact with dissimilar materials and general geometric aspect ratios

    International Nuclear Information System (INIS)

    Zhang Peng; Hung, Derek M H; Lau, Y Y

    2013-01-01

    The current flow pattern, together with the contact resistance, is calculated analytically in a Cartesian 3-terminal thin film contact with dissimilar materials. The resistivities and the geometric dimensions in the individual contact members, as well as the terminal voltages, may assume arbitrary values. We show that the current flow patterns and the contact resistance may be conveniently decomposed into the even and odd solution. The even solution gives exclusively and totally the current flowing from the source to the gate. The odd solution gives exclusively and totally the current flowing from the source to the drain. Current crowding at the edges, and current partition in different regions are displayed. The analytic solutions are validated using a simulation code. The bounds on the variation of the contact resistance are given. This paper may be considered as the generalization of the transmission line model and the Kennedy-Murley model that were used extensively in the characterization of thin-film devices. For completeness, we include the general results for the cylindrical geometry, which are qualitatively similar to the even solution of the Cartesian geometry.

  15. Patient information materials in general practices and promotion of health literacy: an observational study of their effectiveness.

    Science.gov (United States)

    Protheroe, Joanne; Estacio, Emee Vida; Saidy-Khan, Sirandou

    2015-03-01

    Government policy in the UK emphasises providing patients with good health information to encourage participation in their health care. Patient information leaflets (PILs) form part of this policy and have been shown to affect patient health outcomes; however, many are poorly written. To describe the PILs in general practice surgeries in Stoke-on-Trent in terms of readability and variety of content. An observational study of randomly selected GP practices (n = 17) across Stoke-on-Trent. PILs were assessed for readability (Flesch Reading Ease and Flesch-Kincaid Grade Level) and compared with national skills level data and with the recommended level for medical information. The PILs were also categorised for content using the Rudd (2007) health material classification framework. A total of 345 PILs were collected and assessed. Only 24.3% meet recommended reading-level criteria. Compared with national skills levels, over 75% of the PILs collected were too complex for at least 15% of the English population. Of the PILs, 47.8% were classified as 'systems navigation' (information regarding services); 22.9% were disease prevention (screening and immunisations); 14.2% personal and public safety; and less than 10% were for managing illness or health promotion. Current PILs in general practices do not all promote health literacy. Information only accessible to a proportion of higher skilled patients may increase inequalities in health. Less than 10% of PILs promote managing illness or healthy lifestyles. Processes must be put in place to improve the readability and variety of content of PILs in GP practices. © British Journal of General Practice 2015.

  16. Derivation of general expression for variance in difference in the contents of active ingredient in raw material as determined at seller's and purchaser's site

    International Nuclear Information System (INIS)

    Narasimha Murty, B.; Prahlad, B.

    2012-01-01

    Material supply from a supplier to purchaser involve weighing of the material at both the sites. It is always of interest to know whether there is any difference in the weight of the material and more importantly in the weight of the active ingredient supplied and received. This paper describes the derivation of general expression for variance in difference in the contents of active ingredient in raw material as determined at the seller's and purchaser's site. The derived expression for the variance in difference in the content of active ingredient as determined at seller's and purchaser's site is a generic one though its application is demonstrated for two raw materials

  17. Inquiry and Blended Learning Based Learning Material Development for Improving Student Achievement on General Physics I of Mathematics and Natural Science of State University of Medan

    Science.gov (United States)

    Motlan; Sinulinggga, Karya; Siagian, Henok

    2016-01-01

    The aim of this research is to determine if inquiry and blended learning based materials can improve student's achievement. The learning materials are: book, worksheet, and test, website, etc. The type of this research is quasi experiment using two-group pretest posttest design. The population is all students of first year who take general physics…

  18. Inventory of Health and Physical Fitness Promotion Materials, Research and Articles from Periodicals of General Interest. Final Report. Report No. 7.

    Science.gov (United States)

    Bozzo, Robert; And Others

    This document reports on an effort to identify, collect, and catalog: (1) various fitness- and health-related promotion materials available to the general public by federal, state, and local agencies; and (2) informational items distributed by the private sector. Printed materials are categorized as: (1) currently available brochures and pamphlets…

  19. IFLA General Conference, 1986. Pre-Conference Seminar on Automated Systems for Access to Multilingual and Multiscript Library materials: Problems and Solutions. Papers.

    Science.gov (United States)

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    A seminar which considered problems and solutions regarding automated systems for access to multilingual and multiscript library materials was held as a pre-session before the IFLA general conference in 1986. Papers presented include: (1) "Romanized and Transliterated Databases of Asian Language Materials--History, Problems, and…

  20. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.

    Science.gov (United States)

    Narooei, K; Arman, M

    2018-03-01

    In this research, the exponential stretched based hyperelastic strain energy was generalized to the hyper-viscoelastic model using the heredity integral of deformation history to take into account the strain rate effects on the mechanical behavior of materials. The heredity integral was approximated by the approach of Goh et al. to determine the model parameters and the same estimation was used for constitutive modeling. To present the ability of the proposed hyper-viscoelastic model, the stress-strain response of the thermoplastic elastomer gel tissue at different strain rates from 0.001 to 100/s was studied. In addition to better agreement between the current model and experimental data in comparison to the extended Mooney-Rivlin hyper-viscoelastic model, a stable material behavior was predicted for pure shear and balance biaxial deformation modes. To present the engineering application of current model, the Kolsky bars impact test of gel tissue was simulated and the effects of specimen size and inertia on the uniform deformation were investigated. As the mechanical response of polyurea was provided over wide strain rates of 0.0016-6500/s, the current model was applied to fit the experimental data. The results were shown more accuracy could be expected from the current research than the extended Ogden hyper-viscoelastic model. In the final verification example, the pig skin experimental data was used to determine parameters of the hyper-viscoelastic model. Subsequently, a specimen of pig skin at different strain rates was loaded to a fixed strain and the change of stress with time (stress relaxation) was obtained. The stress relaxation results were revealed the peak stress increases by applied strain rate until the saturated loading rate and the equilibrium stress with magnitude of 0.281MPa could be reached. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A novel method for active fissile mass estimation with a pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Dubi, C., E-mail: chendb331@gmail.com [Physics Department, Nuclear Research Center of the Negev, POB 9001, Beer Sheva (Israel); Ridnik, T.; Israelashvili, I. [Physics Department, Nuclear Research Center of the Negev, POB 9001, Beer Sheva (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Via E. Fermi, 2749 JRC, Ispra (Italy)

    2013-07-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding “neutron noise”. In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected.

  2. A novel method for active fissile mass estimation with a pulsed neutron source

    International Nuclear Information System (INIS)

    Dubi, C.; Ridnik, T.; Israelashvili, I.; Pedersen, B.

    2013-01-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding “neutron noise”. In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected

  3. Computerized real-time materials accountability system for safeguards material control

    International Nuclear Information System (INIS)

    Spencer, W.F.; Affel, R.G.; Austin, H.C.; Nichols, J.P.; Stoutt, B.H.; Wachter, J.W.

    1975-01-01

    A real-time, computer-based system is described which provides safeguards material control at the Oak Ridge National Laboratory. Originally installed in 1972 to provide computerized real-time fissile materials accountability for criticality control purposes, the system has been expanded to provide accountability of all source and nuclear materials (SNM) and to utilize the on-line inventory files in support of the Laboratory physical protection and surveillance procedures. (auth)

  4. The effectiveness of three sets of school-based instructional materials and community training on the acquisition and generalization of community laundry skills by students with severe handicaps.

    Science.gov (United States)

    Morrow, S A; Bates, P E

    1987-01-01

    This study examined the effectiveness of three sets of school-based instructional materials and community training on acquisition and generalization of a community laundry skill by nine students with severe handicaps. School-based instruction involved artificial materials (pictures), simulated materials (cardboard replica of a community washing machine), and natural materials (modified home model washing machine). Generalization assessments were conducted at two different community laundromats, on two machines represented fully by the school-based instructional materials and two machines not represented fully by these materials. After three phases of school-based instruction, the students were provided ten community training trials in one laundromat setting and a final assessment was conducted in both the trained and untrained community settings. A multiple probe design across students was used to evaluate the effectiveness of the three types of school instruction and community training. After systematic training, most of the students increased their laundry performance with all three sets of school-based materials; however, generalization of these acquired skills was limited in the two community settings. Direct training in one of the community settings resulted in more efficient acquisition of the laundry skills and enhanced generalization to the untrained laundromat setting for most of the students. Results of this study are discussed in regard to the issue of school versus community-based instruction and recommendations are made for future research in this area.

  5. SOR/89-426, Transport Packaging of Radioactive Materials Regulations, amendment

    International Nuclear Information System (INIS)

    1989-01-01

    These Regulations of 24 August 1989 amend the Transport Packaging of Radioactive Materials Regulations by clarifying the text and specifying certain requirements. In particular certain definitions have been replaced, namely those of ''Fissile Class III package'' and ''Special form radioactive material''. Also, this latter material may not be carried without a certificate attesting that it meets the requirements of the Regulations. (NEA)

  6. Tank 40 final sludge batch 9 chemical and fissile radionuclide characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, W. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-26

    A sample of Sludge Batch (SB) 9 was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS)i. The SB9 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is fed to the Defense Waste Processing Facility (DWPF) as SB9. At the Savannah River National Laboratory (SRNL), the 3-L Tank 40 SB9 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 547 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO3/HCl (aqua regiaii) in sealed Teflon® vessels and four with NaOH/Na2O2 (alkali or peroxide fusioniii) using Zr crucibles. Three Analytical Reference Glass – 1iv (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma – mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB9 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic

  7. Contributions at the Tripoli Monte Carlo code qualifying on critical experiences and at neutronic interaction study of fissile units

    International Nuclear Information System (INIS)

    Nouri, A.

    1994-01-01

    Criticality studies in nuclear fuel cycle are based on Monte Carlo method. These codes use multigroup cross sections which can verify by experimental configurations or by use of reference codes such Tripoli 2. In this Tripoli 2 code nuclear data are errors attached and asked for experimental studies with critical experiences. This is one of the aim of this thesis. To calculate the keff of interacted fissile units we have used the multigroup Monte Carlo code Moret with convergence problems. A new estimator of reactions rates permit to better approximate the neutrons exchange between units and a new importance function has been tested. 2 annexes

  8. 78 FR 32309 - Distribution of Source Material to Exempt Persons and to General Licensees and Revision of...

    Science.gov (United States)

    2013-05-29

    ... thorium as ``source material'' for atomic weapons and the nuclear fuel cycle. Exemptions from licensing... material in a powdered form, which allows for a greater chance of inhalation or ingestion of the source...

  9. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ∼12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated

  10. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  11. Estimating the Cross-Shelf Export of Riverine Materials: Part 1. General Relationships From an Idealized Numerical Model

    Science.gov (United States)

    Izett, Jonathan G.; Fennel, Katja

    2018-02-01

    Rivers deliver large amounts of terrestrially derived materials (such as nutrients, sediments, and pollutants) to the coastal ocean, but a global quantification of the fate of this delivery is lacking. Nutrients can accumulate on shelves, potentially driving high levels of primary production with negative consequences like hypoxia, or be exported across the shelf to the open ocean where impacts are minimized. Global biogeochemical models cannot resolve the relatively small-scale processes governing river plume dynamics and cross-shelf export; instead, river inputs are often parameterized assuming an "all or nothing" approach. Recently, Sharples et al. (2017), https://doi.org/10.1002/2016GB005483 proposed the SP number—a dimensionless number relating the estimated size of a plume as a function of latitude to the local shelf width—as a simple estimator of cross-shelf export. We extend their work, which is solely based on theoretical and empirical scaling arguments, and address some of its limitations using a numerical model of an idealized river plume. In a large number of simulations, we test whether the SP number can accurately describe export in unforced cases and with tidal and wind forcings imposed. Our numerical experiments confirm that the SP number can be used to estimate export and enable refinement of the quantitative relationships proposed by Sharples et al. We show that, in general, external forcing has only a weak influence compared to latitude and derive empirical relationships from the results of the numerical experiments that can be used to estimate riverine freshwater export to the open ocean.

  12. Upgrade of general control system employed for Materials and Life Science Experimental Facility of J-PARC

    International Nuclear Information System (INIS)

    Watanabe, Akihiko; Sakai, Kenji; Ooi, Motoki; Meigo, Shin-ichiro; Takada, Hiroshi

    2013-11-01

    The General Control System (GCS) of the Materials and Life Science Experimental Facility (MLF) of J-PARC controls various devices of a pulsed spallation neutron source and a muon target which are driven by proton beams with energy of 3 GeV and a power of 1 MW, neutron instruments of 23 neutron beam lines and muon instruments of 4 secondary muon beam lines under a network of the control system of accelerators. The current GCS has performed its function as designed since operating MLF was started in 2008. However, it has a weakness that it costs very much in the maintenance because of its poor flexibility on Operating System (OS) and software versions. For example, all computers composed of the GCS must be replaced when the OS is upgraded. For improving the potential flexibility of the GCS in maintenance in view of sustainable long-term operation, therefore, we have re-examined the framework software and those employed for individual functions of GCS under the condition of current functions so as to control all local control panels by plural exclusive PCs, and acquire, store and distribute operation data over 7000 items in the suitable data format. Furthermore, we have made a prototype of an upgraded GCS and evaluated its concrete performances with true data/information such as data transmission speed from PLCs, control functions from operating windows, storage capability of data server and long-term stability/reliability of the system. In conclusion, we decided to adopt following softwares for the upgraded GCS: Experimental Physics and Industrial Control System (EPICS) as framework software, Takebishi-made OPC server as data input/output module, Control System Studio (CSS) as user interface window and PostgreSQL as the data storage server. (author)

  13. The international inspection of a US excess fissile material storage facility with and without remote monitoring: A cost comparison

    International Nuclear Information System (INIS)

    Abrams, M.; Nilsen, C.; Tolk, K.M.; McGilvary, R.C. III

    1996-01-01

    This study estimates the DOE-incurred costs in preparing for and hosting potential IAEA inspections of an excess pit storage facility at the Pantex Site with and without the aid of remote monitoring. Focus was on whether an investment in remote monitoring is recoverable, ie, whether the costs for installing, operating, and maintaining a remote monitoring system (RMS) are overcome by the costs that would be incurred without its use. A baseline RMS incorporating demonstrated technologies is defined and its cost estimated. This estimate and several multiples of it, together with estimates of labor and operational costs incurred under a postulated inspection regime serve as the bases of this study. A key finding is that, for the range of parameters considered, the times for investment recovery are reached relatively quickly, ie, within a decade after the inspection regime's onset. Investment recovery times, expenditures in reaching them, and average annual cost accrual rates are provided as function of RMS initial cost. A guideline indicating when investment recovery is theoretically possible is also provided

  14. Institute of Genetics and of Toxicology of Fissile Materials. Progress report on research and development work in 1992

    International Nuclear Information System (INIS)

    1993-03-01

    In the year under report, the institute's scope of investigations comprised the seven topics surveyed in the following together with the most recent research results obtained. These were genetic repair and genetic regulation mechanisms, biologic carcinogenesis, molecular genetics of eukaryotic genes, genetic mouse models of human disorders, toxicology of radioactive and non-radioactive heavy metals as well as environmental toxicology at the molecular and cellular levels. (orig./MG) [de

  15. Simulation and preliminary experimental results for an active neutron counter using a neutron generator for a fissile material accounting

    International Nuclear Information System (INIS)

    Ahn, Seong-Kyu; Lee, Tae-Hoon; Shin, Hee-Sung; Kim, Ho-Dong

    2009-01-01

    An active neutron coincidence counter using a neutron generator as an interrogation source has been suggested. Because of the high energy of the interrogation neutron source, 2.5 MeV, the induced fission rate is strongly affected by the moderator design. MCNPX simulation has been performed to evaluate the performance achieved with these moderators. The side- and bottom-moderator are significantly important to thermalize neutrons to induce fission. Based on the simulation results, the moderators are designed to be adapted to the experimental system. Their preliminary performance has been tested by using natural uranium oxide powder samples. For a sample of up to 3.5 kg, which contains 21.7 g of 235 U, 2.64 cps/g- 235 U coincidence events have been measured. Mean background error was 9.57 cps and the resultant coincidence error was 13.8 cps. The experimental result shows the current status of an active counting using a neutron generator which still has some challenges to overcome. However, the controllability of an interrogation source makes this system more applicable for a variety of combinations with other non-destructive methods like a passive coincidence counting especially under a harsh environment such as a hot cell. More precise experimental setup and tests with higher enriched samples will be followed to develop a system to apply it to an active measurement for the safeguards of a spent fuel treatment process.

  16. A setup for active neutron analysis of the fissile material content in fuel assemblies of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushuev, A. V.; Kozhin, A. F., E-mail: alexfkozhin@yandex.ru; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    An active neutron method for measuring the residual mass of {sup 235}U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual {sup 235}U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of {sup 238}U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.

  17. Safety analysis report: packages. LP-50 tritium package (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Gates, A.A.; McCarthy, P.G.; Edl, J.W.

    1975-04-01

    Elemental tritium is shipped at low pressure in a stainless steel container (LP-50) sealed within an aluminum vessel and surrounded by a minimum of 4-in. thick Celotex insulation in a steel drum. The structural, thermal, containment, shielding, and criticality safety aspects of this package are evaluated. Procedures for loading and unloading, empty cask transport, acceptance testing and maintenance, and quality assurance requirements for the LP-50 package are described in detail. (U.S.)

  18. The expansion of nuclear energy in industrialized and developing countries: Reasons, market shares, fissile material supply and waste management

    International Nuclear Information System (INIS)

    Schwarz, D.

    1992-01-01

    At present there are more ethical-anthropological reasons than economic ones which speak for an expansion of nuclear energy: Ecological, climatic, peace and resource policy problems which most porbably will be unsolvable by real human beings and expensive methods leaving out nuclear energy. The risks resulting from that exceed by several orders of magnitude the risk which would be involved in the operation of various thousands of modern nuclear power plants. Most of the nuclear power plants are and will be operated today and tomorrow in industrialized countries; however, some of them are running already today in several threshold countries. Therefore the safety of nuclear power plants must be such as to permit their construction anywhere. Together with intensified saving, nuclear energy can solve energy policy problems in all sectors of the energy market predominantly in a non-fossil way, namely by taking over almost the entire power generation, by economical application of power instead of fossil fuels, rendering at the same time a large number of energy services, and supplying process and heating heat. Uranium supply will be solved internationally by prospection and increased uranium exploitation, or by the breeder, at economically reasonable cost. Safe waste management is technically feasible. Lack of acceptance neccessitates at present safe intermediate storage at reasonable cost. When discussing this question the ethical aspect of nuclear energy expansion should be stressed. (orig./UA) [de

  19. Application Of Vacuum Salt Distillation Technology For The Removal Of Fluoride And Chloride From Legacy Fissile Materials

    International Nuclear Information System (INIS)

    Pierce, R.; Peters, T.

    2011-01-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO 2 ). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl 2 ), calcium fluoride (CaF 2 ), and plutonium fluoride (PuF 3 ) were of particular concern. To enable the use of the same operating conditions for the distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl 2 , CaF 2 and PuF 3 below 1000 C using VSD technology.

  20. Safety analysis report; packages LP-50 tritium package. (Packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Gates, A.A.; McCarthy, P.G.; Edl, J.W.; Chalfant, G.G.

    1975-05-01

    Elemental tritium is shipped at low pressure in a stainless steel container (LP-50) surrounded by an aluminum vessel and Celotex insulation at least 4 in. thick in a steel drum. The total weight of the package is 260 lbs maximum. The various components that constitute the package are described and are shown in 7 figures. The safety analysis includes: structural evaluations; thermal evaluations; containment; operating procedures; acceptance tests and maintenance program; and design review

  1. Safety analysis report: packages. LP-12 tritium package (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    Gates, A.A.; McCarthy, P.G.; Edl, J.W.

    1975-05-01

    Elemental tritium is shipped at low pressure in a stainless steel container (LP-12) within an aluminum vessel and surrounded by 3.9 in.-thick Celotex insulation in a steel drum. Information is presented on the packaging design, evaluation of the structural, thermal, containment, shielding, and criticality characteristics of the package, procedures for loading, unloading, transporting, and testing the LP-12, and quality assurance requirements. (U.S.)

  2. Computational and Experimental Investigations of the Coolant Flow in the Cassette Fissile Core of a KLT-40S Reactor

    Science.gov (United States)

    Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.

    2017-07-01

    Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).

  3. The environmental assessment of nuclear materials disposition options: A transportation perspective

    International Nuclear Information System (INIS)

    Wilson, R.K.; Clauss, D.B.; Moyer, J.W.

    1994-01-01

    The US Department of Energy has undertaken a program to evaluate and select options for the long-term storage and disposition of fissile materials declared surplus to defense needs as a result of the end of the Cold War. The transport of surplus fissile material will be an important and highly visible aspect of the environmental impact studies and other planning documents required for implementation of the disposition options. This report defines the roles and requirements for transportation of fissile materials in the program, and discusses an existing methodology for determining the environmental impact in terms of risk. While it will be some time before specific alternatives are chosen that will permit the completion of detailed risk calculations, the analytical models for performing the probabilistic risk assessments already exist with much of the supporting data related to the transportation system. This report summarizes the various types of data required and identifies sources for that data

  4. INMACS - An approach to on-line nuclear materials accounting and control in a fuel fabrication environment

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.; Paul, R.N.

    1977-08-01

    Taking advantage of modern system technologies, the concept of an Integrated Nuclear Materials Accounting and Control System (INMACS) was formulated as an alternative solution to manual inventory procedures. The selected approach offers prospects for tackling the more general fissile materials inventory problem while satisfying the immediate requirements of the Fuel Fabrication Pilot Line at CRNL. A PDP-11/40 minicomputer system was purchased, and a Data Base Management System (DBMS) was designed and implemented to provide a uniform file handling capability. The specific requirements of the Pilot Line were met by a package of application programs. About 16 man-years have been spent on the project. INMACS has been installed in the field and its usefulness as an on-line inventory system will be demonstrated in the Pilot Line. (author)

  5. Mineralogy and microstructure of roofing slate: thermo-optical behaviour and fissility

    Directory of Open Access Journals (Sweden)

    García-Guinea, J.

    1998-09-01

    Full Text Available The mineralogy and microstructure, which affect the slaty cleavage, are linked with the strong preferred orientation of phyllosilicates and this enables the rock to be split into large, thin, flat sheets. Roofing slate samples with different commercial fissilities have been analyzed by radioluminescence (RL, thermoluminescence (3DTL, by X-ray diffraction (XRD, by scanning electron microscopy (SEM using the back-scattered mode (BSEI and by electron microprobe (EMP. They are made up of white micas, chlorite, quartz, detrital feldspars, ilmenite, pyrite, rutile apatite and tourmaline. Texturally, all consist of silt-sized clasts of detrital quartz, feldspars, chlorite-mica stacks, muscovite and ilmenite in a recrystalline, lepidoblastic matrix of white micas and chlorite with quartz lenses, all showing a very strong preferred orientation. The luminescence emission centers are a low broad blue band around the 400 nm spectra positions linked with alkali losses and formation of [AlO4]º defects; a peak at 473 nm interpreted as a the first thermal step (150-300ºC of a non-isothermal dehydroxylation of the slate phyllosilicates; and a 568 nm peak which agrees with Mn2+ point defects in aluminosilicate lattices. The studies on the slaty cleavage could be significant because Spain is the largest producer of roofing slate tiles in the world (87% of world production.

    La exfoliación de las pizarras depende fundamentalmente de su mineralogía y microestructura, especialmente de la fuerte orientación de los filosilicatos. Esta propiedad permite hendir o abrir las pizarras de techar en láminas muy grandes, delgadas y planas. Se han analizado varias pizarras de techar con diferentes calidades comerciales, correspondientes a diferentes grados de físibilidad, por radioluminiscencia (RL, termoluminiscencia espectral (TL3D, difracción de rayos X (DRX, microscopía electrónica de barrido (MEB utilizando el modo backscattered (BSEI

  6. Novel Approaches to Spectral Properties of Correlated Electron Materials: From Generalized Kohn-Sham Theory to Screened Exchange Dynamical Mean Field Theory

    Science.gov (United States)

    Delange, Pascal; Backes, Steffen; van Roekeghem, Ambroise; Pourovskii, Leonid; Jiang, Hong; Biermann, Silke

    2018-04-01

    The most intriguing properties of emergent materials are typically consequences of highly correlated quantum states of their electronic degrees of freedom. Describing those materials from first principles remains a challenge for modern condensed matter theory. Here, we review, apply and discuss novel approaches to spectral properties of correlated electron materials, assessing current day predictive capabilities of electronic structure calculations. In particular, we focus on the recent Screened Exchange Dynamical Mean-Field Theory scheme and its relation to generalized Kohn-Sham Theory. These concepts are illustrated on the transition metal pnictide BaCo2As2 and elemental zinc and cadmium.

  7. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  8. Nuclear data of the major actinide fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W.P.; Saussure, G. De

    1984-01-01

    The effect of nuclear data of the major actinide fuel materials on the design accuracy, economics and safety of nuclear power systems is discussed. Since most of the data are measured relative to measurement standards, in particular the fission cross-section of /sup 235/U, data must be examined to ensure that absolute measurements and relative measurements are correctly handled. Nuclear data of fissile materials, fertile materials and minor plutonium isotopes are discussed.

  9. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 1: Summary of exercise

    International Nuclear Information System (INIS)

    Libby, R.A.; Davis, C.; Segal, J.E.; Stanbro, W.D.

    1995-08-01

    In a September 1993 address to the United Nations General Assembly, President Clinton announced a new nonproliferation and export control policy that established a framework for US efforts to prevent the proliferation of weapons of mass destruction. The new policy proposed that the US undertake a comprehensive approach to the growing accumulation of fissile material. One of the key elements was for the US to support a special nuclear materials (SNM) multilateral convention prohibiting the production of highly enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside of international safeguards. This policy is often referred to as the President's Cutoff Initiative or the Fissile Material Cutoff Treaty (FMCT). Because both the US Department of Energy (DOE) and foreign reprocessing facilities similar to PUREX will likely to be inspected under a FMCT, the DOE Office of Arms Control and Nonproliferation, Negotiations and Analysis Division (DOE/NN-41) tasked Pacific Northwest Laboratory (PNL) to perform an information gathering exercise, the PUREX Exercise, using the Plutonium-Uranium Extraction (PUREX) Plant located on the Hanford Site in Washington State. PUREX is a former production reactor fuel reprocessing plant currently undergoing a transition to a ''decontamination and decommissioning (D ampersand D) ready'' mode. The PUREX Exercise was conducted March 29--30, 1994, to examine aspects of the imposition of several possible cutoff regimes and to study verification of non-production of SNM for nuclear weapons purposes or outside of safeguards. A follow-up activity to further examine various additional verification regimes was held at Los Alamos National Laboratory (LANL) on May 10, 1994

  10. Predicting fissile content of spent nuclear fuel assemblies with the Passive Neutron Albedo Reactivity technique and Monte Carlo code emulation

    International Nuclear Information System (INIS)

    Conlin, Jeremy Lloyd; Tobin, Stephen J.

    2011-01-01

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed. (author)

  11. Generalized railway tank car safety design optimization for hazardous materials transport: Addressing the trade-off between transportation efficiency and safety

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Barkan, Christopher P.L.

    2011-01-01

    North America railways offer safe and generally the most economical means of long distance transport of hazardous materials. Nevertheless, in the event of a train accident releases of these materials can pose substantial risk to human health, property or the environment. The majority of railway shipments of hazardous materials are in tank cars. Improving the safety design of these cars to make them more robust in accidents generally increases their weight thereby reducing their capacity and consequent transportation efficiency. This paper presents a generalized tank car safety design optimization model that addresses this tradeoff. The optimization model enables evaluation of each element of tank car safety design, independently and in combination with one another. We present the optimization model by identifying a set of Pareto-optimal solutions for a baseline tank car design in a bicriteria decision problem. This model provides a quantitative framework for a rational decision-making process involving tank car safety design enhancements to reduce the risk of transporting hazardous materials.

  12. A production of non-strain spacing of lattice planes measurement equipment and a measurement of general structure material

    International Nuclear Information System (INIS)

    Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio

    2001-01-01

    It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)

  13. Fissile fuel production and usage of thermal reactor waste fueled with UO2 by means of hybrid reactor system

    International Nuclear Information System (INIS)

    Ipek, O.

    1997-01-01

    The use of Fast Breeder Reactors to produce fissile fuel from nuclear waste and the operation of these reactors with a new neutron source are becoming today' topic. In the thermonuclear reactors, it is possible to use 2.45-14.1 MeV - neutrons which can be obtained by D-T, D-D Semicatalyzed (D-D) and other fusion reactions. To be able to do these, Hybrid Reactor System, which still has experimental and theoretical studies, have to be taken into consideration.In this study, neutronic analysis of hybrid blanket with grafit reflector, is performed. D-T driven fusion reaction is surrounded by UO 2 fuel layer and the production of ''2''3''9Pu fissile fuel from waste ''2''3''8U is analyzed. It is also compared to the other possible fusion reactions. The results show that 815.8 kg/year ''2''3''8Pu with D-T reaction and 1431.6 kg/year ''2''3''8Pu with semicatalyzed (D-D) reaction can be produced for 1000 MW fusion power. This means production of 2.8/ year and 4.94/ year LWR respectively. In addition, 1000 MW fusion flower is is multiplicated to 3415 MW and 4274 MW for D-T and semicatalyzed (D-D) reactions respectively. The system works subcritical and these values are 0.4115 and 0.312 in order. The calculations, ANISN-ORNL code, S 16 -P 3 approach and DLC36 data library are used

  14. Dredging Operations Technical Support Program. General Decisionmaking Framework for Management of Dredged Material: Example Application to Commencement Bay, Washington.

    Science.gov (United States)

    1991-06-01

    Figure 4) and was used to predict surface runoff water quality from dredged material as part of the CE/EPA FVP ( Westerdahl and Skogerboe 1981; Lee and...Sedimrnts," Miscellaneous Paper D-83-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Westerdahl , H. E., and Skogerboe, J. G. 1981

  15. 40 CFR 63.7886 - What are the general standards I must meet for my affected remediation material management units?

    Science.gov (United States)

    2010-07-01

    ... refinery) is no longer subject to this subpart. (3) If the remediation material management unit is also... emissions limitations and work practice standards under the other subpart (e.g., you install and operate the required air pollution controls or have implemented the required work practice to reduce HAP emissions to...

  16. Regulation on the general conditions of sale and delivery of radioactive materials of the 15th December 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The regulation governing the cooperation between suppliers and customers of radioactive materials was issued by the Ministry of Chemical Industry and entered into force on 1 March 1988. The following articles are covered: definition, contents and form of supply contracts, licensing and registration, quality and labelling, delivery note, transport, terms of delivery, quality control, packaging, and reuse

  17. The Voroshilov Lectures. Materials from the Soviet General Staff Academy. Volume 1. Issues of Soviet Military Strategy,

    Science.gov (United States)

    1989-06-01

    army defensive operation, this was the companion course to the material presented in the third semester on front offensive operations. In addition, a...center and supporting elements. Glossary 359 KOSMICHESKAIA SISTEMA Space system: A grouping of space and ground-based forces and means assigned to

  18. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Science.gov (United States)

    2010-01-01

    ... facilities and materials except the States' traditional regulatory authority over generation, sale, and... qualified in the field increased, questions arose as to the role State authorities should play with regard... Commission determines should, because of the hazards or potential hazards thereof, not be so disposed of...

  19. A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges

    International Nuclear Information System (INIS)

    Song Chongmin

    2010-01-01

    A definition of generalized stress intensity factors is proposed. It is based on a matrix function solution for singular stress fields obtained from the scaled boundary finite-element method. The dimensions of the matrix are equal to the number of singular terms. Not only real and complex power singularities but also power-logarithmic singularities are represented in a unified expression without explicitly determining the type of singularity. The generalized stress intensity factors are evaluated directly from the definition by following standard stress recovery procedures in the finite element method. Numerical examples are presented to valid the definition and evaluation procedure.

  20. Efficient use of energy and materials: progress and policies. A report of the Secretary-General of the United Nations

    International Nuclear Information System (INIS)

    1996-01-01

    There is growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvements, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency improvements. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions; information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities of final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries. (author). 1 fig

  1. Nuclear nonsense, black-market bombs, and fissile flim-flam

    International Nuclear Information System (INIS)

    Belyaninov, K.

    1994-01-01

    This article describes the findings of three undercover Russian journalists who broke into the black market for nuclear materials. They relate their experiences of contacting brokers, describe the proposed deals, and reveal the results of some of the tests of samples. The economic pressures behind the black market are described. The dangers to the participants of the black market and potential dangers to the public from uncontrolled trade in nuclear materials are discussed

  2. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed

  3. The control of the exposure of the general public to radioactive materials in the environs of the Atomic Weapons Research Establishment (AWRE) Aldermaston

    International Nuclear Information System (INIS)

    Gallop, R.G.C.; Warren, B.B.; Hannan, A.M.; Saxby, W.N.

    1987-01-01

    The Atomic Weapons Research Establishment (AWRE) at Aldermaston discharges very small amounts of radioactive materials to the local environment. Calculations based on source information indicate that the resultant dose to the general public is less than 0.1% of the local natural radiation background. This conclusion is confirmed by the detailed and extensive environmental monitoring programme carried out by AWRE in the surrounding locality. (author)

  4. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    International Nuclear Information System (INIS)

    Enqvist, Andreas

    2008-03-01

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible sample

  5. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas

    2008-03-15

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible

  6. Materials of Criticality Safety Concern in Waste Packages

    International Nuclear Information System (INIS)

    Larson, S.L.; Day, B.A.

    2006-01-01

    10 CFR 71.55 requires in part that the fissile material package remain subcritical when considering 'the most reactive credible configuration consistent with the chemical and physical form of the material'. As waste drums and packages may contain unlimited types of materials, determination of the appropriately bounding moderator and reflector materials to ensure compliance with 71.55 requires a comprehensive analysis. Such an analysis was performed to determine the materials or elements that produce the most reactive configuration with regards to both moderation and reflection of a Pu-239 system. The study was originally performed for the TRUPACT-II shipping package and thus the historical fissile mass limit for the package, 325 g Pu-239, was used [1]. Reactivity calculations were performed with the SCALE package to numerically assess the moderation or reflection merits of the materials [2]. Additional details and results are given in SAIC-1322-001 [3]. The development of payload controls utilizing process knowledge to determine the classification of special moderator and/or reflector materials and the associated fissile mass limit is also addressed. (authors)

  7. Nuclear materials identification by photon interrogation

    International Nuclear Information System (INIS)

    Pozzi, S.A.; Monville, M.; Padovani, E.

    2005-01-01

    We describe a preliminary modification to the Monte Carlo codes MCNP-X and MCNP-PoliMi that is aimed at simulating the neutron and photon field generated by interrogating fissile (and non-fissile) material with a high energy photon source. Photo-atomic and photo-nuclear collisions are modeled, with particular emphasis on the generation of secondary particles that are emitted as a result of these interactions. The simulations can be used to design and analyze measurements that are performed in a wide variety of scenarios. An application of the methodology to the interrogation of packages on a luggage belt conveyor is presented. Preliminary results show that it is possible to detect 5 Kg of highly enriched uranium in a package by measuring the correlation function between 2 detectors. This correlation function is based on the detection of prompt radiation from photonuclear events

  8. Fracture in quasi-brittle materials: experimental and numerical approach for the determination of an incremental model with generalized variables

    International Nuclear Information System (INIS)

    Morice, Erwan

    2014-01-01

    Fracture in quasi-brittle materials, such as ceramics or concrete, can be represented schematically by series of events of nucleation and coalescence of micro-cracks. Modeling this process is an important challenge for the reliability and life prediction of concrete structures, in particular the prediction of the permeability of damaged structures. A multi-scale approach is proposed. The global behavior is modeled within the fracture mechanics framework and the local behavior is modeled by the discrete element method. An approach was developed to condense the non linear behavior of the mortar. A model reduction technic is used to extract the relevant information from the discrete elements method. To do so, the velocity field is partitioned into mode I, II, linear and non-linear components, each component being characterized by an intensity factor and a fixed spatial distribution. The response of the material is hence condensed in the evolution of the intensity factors, used as non-local variables. A model was also proposed to predict the behavior of the crack for proportional and non-proportional mixed mode I+II loadings. An experimental campaign was finally conducted to characterize the fatigue and fracture behavior of mortar. The results show that fatigue crack growth can be of significant importance. The experimental velocity field determined, in the crack tip region, by DIC, were analyzed using the same technic as that used for analyzing the fields obtained by the discrete element method showing consistent results. (author)

  9. Neutrons as Party Animals: An Analogy for Understanding Heavy-Element Fissility

    Science.gov (United States)

    Reed, B. Cameron

    2012-01-01

    I teach a general education class on the history of nuclear physics and the Manhattan Project. About halfway through the course we come to the discovery of fission and Niels Bohr's insight that it is the rare isotope of uranium, U-235, which fissions under slow-neutron bombardment as opposed to the much more common U-238 isotope. As an…

  10. Risk Assessment for Current and Projected Uses of Source Material Under a U.S. NRC General License and Exemption Request

    International Nuclear Information System (INIS)

    Smith, Michael A.; Napier, Bruce A.; Strom, Daniel J.; Short, Steven M.; Beatty, Cassandra V.; Stoker, Natasha F.; Newman, Teridee

    2006-01-01

    Source material is used under specific license, general license, and various exemptions from licensing requirements in 10 CFR Part 40. Because the Atomic Energy Act of 1946 focused on source material primarily in terms of its significance to the production of special nuclear material, the initial regulation of source material did not, apparently, give much emphasis to public health and safety. This emphasis on the production of special nuclear material continued in later modifications to the regulations. Because the last major update of these regulations was over 40 years ago (1961), the NRC is concerned that the current regulations for source materials may not be consistent with current health and safety regulations. Current industrial trends indicate a general decline in the use of thorium and uranium. Thorium was traditionally used in ceramics for refractory purposes but now is primarily used in scientific research, in a few electrical applications, as a chemical catalyst, and in optical lenses. Uranium, once popular in pigments and glazes, is now almost entirely limited to military applications that require special licensure and in scientific research. Due to high-disposal costs, increasingly stringent regulations, and public concerns related to the natural radioactivity of source material, industry is rapidly developing substitutes and alternate processes that do not involve the use of uranium and thorium. For these reasons, the downward trend in the use of source material is expected to continue. Researchers at Pacific Northwest National Laboratory (PNNL) identified how source materials meeting the exemption and general license requirements of 10 CFR 40.13(a), 40.13(b), and 40.22 are currently being used in industry and by the public. Based on the results of an extensive literature and internet search, few ?truly? new uses of source material were discovered that were not already considered in or represented by previous NRC analyses. Exceptions were (1) the

  11. Ministerial Decree of 3 March 1978 approving the general conditions of the third party liability insurance policy for operators of nuclear installations and the general conditions of insurance policies for third party liability for transport of nuclear materials

    International Nuclear Information System (INIS)

    1978-01-01

    This Decree by the Ministry for Industry, Commerce and Crafts and the Ministry for transport of Italy was made in implementation of Section 2 of the Decree No. 519 by the president of the Republic of 2 May 1975 amending Section 15 to 24 of Act No. 1860 of 31 December 1962 on the Peaceful Uses of Nuclear Energy. This present Decree approves the general conditions of third party liability insurance policies for operators of nuclear installations and for transport of radioactive materials. (NEA) [fr

  12. Impact of Material and Architecture Model Parameters on the Failure of Woven Ceramic Matrix Composites (CMCs) via the Multiscale Generalized Method of Cells

    Science.gov (United States)

    Liu, Kuang C.; Arnold, Steven M.

    2011-01-01

    It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the effects of many of these architectural parameters and material scatter of woven ceramic composite properties at the macroscale (woven RUC) will be studied to assess their sensitivity. The recently developed Multiscale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions. The macroscale responses investigated illustrate the effect of architectural and material parameters on a single RUC representing a five harness satin weave fabric. Results shows that the most critical architectural parameter is weave void shape and content with other parameters being less in severity. Variation of the matrix material properties was also studied to illustrate the influence of the material variability on the overall features of the composite stress-strain response.

  13. General corrosion, irradiation-corrosion, and environmental-mechanical evaluation of nuclear-waste-package structural-barrier materials. Progress report

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.; Nelson, J.L.

    1982-09-01

    Pacific Northwest Laboratory is studying the general corrosion, irradiation-corrosion, and environmentally enhanced crack propagation of five candidate materials in high-temperature aqueous environments simulating those expected in basalt and tuff repositories. The materials include three cast ferrous materials (ductile cast iron and two low-alloy Cr-Mo cast steels) and two titanium alloys, titanium Grade 2 (commercial purity) and Grade 12 (a Ti-Ni-Mo alloy). The general corrosion results are being obtained by autoclave exposure of specimens to slowly replenished simulated ground water flowing upward through a bed of the appropriate crushed rock (basalt or tuff), which is maintained at the desired test temperature (usually 250 0 C). In addition, tests are being performed in deionized water. Metal penetration rates of iron-base alloys are being derived by stripping off the corrosion product film and weighing the specimen after the appropriate exposure time. The corrosion of titanium alloy specimens is being determined by weight gain methods. The irradiation-corrosion studies are similar to the general corrosion tests, except that the specimen-bearing autoclaves are held in a 60 Co gamma radiation field at dose rates up to 2 x 10 6 rad/h. For evaluating the resistance of the candidate materials to environmentally enhanced crack propagation, three methods are being used: U-bend and fracture toughness specimens exposed in autoclaves; slow strain rate studies in repository-relevant environments to 300 0 C; and fatigue crack growth rate studies at ambient pressure and 90 0 C. The preliminary data suggest a 1-in. corrosion allowance for iron-base barrier elements intended for 1000-yr service in basalt or tuff repositories. No evidence has yet been found that titanium Grade 2 or Grade 12 is susceptible to environmentally induced crack propagation or, by extension, to stress corrosion cracking

  14. Some opinions about matter and material substances: from inanimate system -- to living according to A. Einstein general theory of relativity.

    Science.gov (United States)

    Topuria, T; Gogebashvili, N; Korsantia, B

    2005-11-01

    During transformation from inanimate to living, change of the space position of the matter causes the change of the field, as the space does not exist without the field, therefore the time-space as the properties of material substances, should undergo certain changes. The outside inanimate system, in this case a matrix, has its own time. The living system, in this case a cell, where the matter undergoes space conformation with the change of field and space-time, has its own time and it has begun to flow more rapidly than in matrix. From the surface of the body, from different energetic reservoirs oppositely charged matter substances following from special transport systems from the life system transmitted into lifeless one and change their matter space conformation, create transmission gradient that is the gradient border of time from lifeless system into live. In the case of a human, hypothetically, the gradient system of time must be of a complex scheme counting the inter-transformation and interaction gradients of outer and inner abdominal systems. Subconscious and consciousness by means of special links and messages, information selection interact and form unique connection between the systems. Subconscious serves for accelerated time system. Conscious by means of permanent contact with the environment collects and reacts in matrix time system By interconnection of these two systems ideal adaptation with the environment takes place. Time difference gradient system is an additional energy factor, by means of which respective ordered geometrical structures special for the given types are formed. The living organism is an inter-regulated interconnection global system resulting from the changes of matter and material substances space configuration.

  15. Validation of the 3D transport monte carlo code TRIPOLI-4.3 for moderated and unmoderated metallic fissile media configurations with JEF2.2 and ENDF/B-VI.4 cross section evaluations

    International Nuclear Information System (INIS)

    Gagnier, E.; Lee, Y.K.; Aguiar, L.; Vedrenne, N.

    2003-01-01

    This paper presents an extended validation of TRIPOLI-4.3 covering all the metallic fissile media configurations present in the CEA facilities. More than 300 ICSBEP benchmarks have been calculated with TRIPOLI-4.3 and compared to the experimental results. These benchmarks include high-enriched uranium fissile media and plutonium fissile media with a low content of plutonium 240. The configurations are calculated with continuous-energy cross-section libraries JEF2.2 and ENDF/B-VI.4 and compared to MCNP or SCALE results presented in the ICSBEP reports. (author)

  16. Preferences for Web-Based Information Material for Low Back Pain: Qualitative Interview Study on People Consulting a General Practitioner

    DEFF Research Database (Denmark)

    Riis, Allan; Hjelmager, Meulengracht Ditte; Vinther, Dausel Line

    2018-01-01

    in Denmark. Methods: This is a phenomenological qualitative study. Adults who had consulted their general practitioner because of LBP within the past 14 days were included. Each participated in a semistructured interview, which was audiotaped and transcribed for text condensation. Interviews were conducted...... at the participant?s home by 2 interviewers. Participants also completed a questionnaire that requested information on age, gender, internet usage, interest in searching new knowledge, LBP-related function, and pain. Results: Fifteen 45-min interviews were conducted. Participants had a median age of 40 years (range......-based information confusing, often difficult to comprehend, and not relevant for them, and they questioned the motives driving most hosting companies or organizations. The Patient Handbook, a Danish government-funded website that provides information to Danes about health, was mentioned as a trustworthy...

  17. Problems and management of radioactive sources and measures against illicit trafficking of nuclear materials in Bulgaria

    International Nuclear Information System (INIS)

    Strezov, A.

    1998-01-01

    Illicit trafficking of nuclear materials continues to pose a danger to public health and safety and to nuclear non proliferation efforts. The majority of cases so far have involved only small amounts of fissile materials or mainly radioactive sources in Bulgaria. A proper scheme for analysis of seized nuclear materials will be developed based on existing equipment for NDA analysis of nuclear materials supplemented by new system through PHARE project assistance by EU experts. (author)

  18. Test and evaluation of computerized nuclear material accounting methods. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    In accordance with the definition of a Material Balance Area (MBA) as a well-defined geographical area involving an Integral operation, the building housing the BFS-1 and BFS-1 critical facilities is considered to consist of one MBA. The BFS materials are in the form of small disks clad in stainless steel and each disk with nuclear material has its own serial number. Fissile material disks in the BFS MBA can be located at three key monitoring points: BFS-1 facility, BFS-2 facility and main storage of BFS fissile materials (storage 1). When used in the BFS-1 or BFS-2 critical facilities, the fissile material disks are loaded in tubes (fuel rods) forming critical assembly cores. The following specific features of the BFS MBA should be taken into account for the purpose of computerized accounting of nuclear material: (1) very large number of nuclear material items (about 70,000 fissile material items); and (2) periodically very intensive shuffling of nuclear material items. Requirements for the computerized system are determined by basic objectives of nuclear material accounting: (1) providing accurate information on the identity and location of all items in the BFS material balance area; (2) providing accurate information on location and identity of tamper-indicating devices; (3) tracking nuclear material inventories; (4) issuing periodic reports; (5) assisting with the detection of material gains or losses; (6) providing a history of nuclear material transactions; (7) preventing unauthorized access to the system and data falsification. In August 1995, the prototype computerized accounting system was installed on the BFS facility for trial operation. Information on two nuclear material types was entered into the data base: weapon-grade plutonium metal and 36% enriched uranium dioxide. The total number of the weapon-grade plutonium disks is 12,690 and the total number of the uranium dioxide disks is 1,700

  19. Sor/89-426, 24 August 1989, transport packaging of radioactive materials regulations, amendment

    International Nuclear Information System (INIS)

    1989-09-01

    These Regulations of 24 September 1983 were amended mainly to clarify the original text and further specify certain requirements. In particular, the definitions of A 1 , A 2 , Fissile Class III package and special Form Radioactive Material have been revoked and replaced by new definitions. Also, a new condition has been added regarding Special Form Radioactive Material. Henceforth, no such material may be transported without a certificate attesting that the material meets the requirements set out in Schedule XII of the Regulations [fr

  20. Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids

    International Nuclear Information System (INIS)

    Vasquez, Yolanda; Henkes, Amanda E.; Chris Bauer, J.; Schaak, Raymond E.

    2008-01-01

    The concept of nanocrystal conversion chemistry, which involves the use of pre-formed nanoparticles as templates for chemical transformation into derivative solids, has emerged as a powerful approach for designing the synthesis of complex nanocrystalline solids. The general strategy exploits established synthetic capabilities in simple nanocrystal systems and uses these nanocrystals as templates that help to define the composition, crystal structure, and morphology of product nanocrystals. This article highlights key examples of 'conversion chemistry' approaches to the synthesis of nanocrystalline solids using a variety of techniques, including galvanic replacement, diffusion, oxidation, and ion exchange. The discussion is organized according to classes of solids, highlighting the diverse target systems that are accessible using similar chemical concepts: metals, oxides, chalcogenides, phosphides, alloys, intermetallic compounds, sulfides, and nitrides. - Graphical abstract: Nanocrystal conversion chemistry uses pre-formed nanoparticles as templates for chemical transformation into derivative solids, helping to define the composition, crystal structure, and morphology of product nanocrystals that have more complex features than their precursor templates. This article highlights the application of this concept to diverse classes of solids, including metals, oxides, chalcogenides, phosphides, alloys, intermetallics, sulfides, and nitrides