WorldWideScience

Sample records for fish population dynamics

  1. Fish population dynamics

    National Research Council Canada - National Science Library

    Gulland, J. A

    1977-01-01

    This book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing...

  2. An examination of the population dynamics of syngnathid fishes within Tampa Bay, Florida, USA

    Directory of Open Access Journals (Sweden)

    Heather D. MASONJONES, Emily ROSE, Lori Benson McRAE,Danielle L. DIXSON

    2010-02-01

    Full Text Available Seagrass ecosystems worldwide have been declining, leading to a decrease in associated fish populations, especially those with low mobility such as syngnathids (pipefish and seahorses. This two-year pilot study investigated seasonal patterns in density, growth, site fidelity, and population dynamics of Tampa Bay (FL syngnathid fishes at a site adjacent to two marinas under construction. Using a modified mark-recapture technique, fish were collected periodically from three closely located sites that varied in seagrass species (Thalassia spp., Syringodium spp., and mixed-grass sites and their distance from open water, but had consistent physical/chemical environmental characteristics. Fish were marked, photographed for body size and gender measurements, and released the same day at the capture site. Of the 5695 individuals surveyed, 49 individuals were recaptured, indicating a large, flexible population. Population density peaks were observed in July of both years, with low densities in late winter and late summer. Spatially, syngnathid densities were highest closest to the mouth of the bay and lowest near the shoreline. Seven species of syngnathid fishes were observed, and species-specific patterns of seagrass use emerged during the study. However, only two species, Syngnathus scovelli and Hippocampus zosterae, were observed at high frequencies. For these two species, body size decreased across the study period, but while S. scovelli’s population density decreased, H. zosterae’s increased. Across six of the seven species, population size declined over the course of this preliminary study; however, seasonal shifts were impossible to distinguish from potential anthropogenic effects of construction [Current Zoology 56 (1: 118–133, 2010].

  3. The dynamics of fish populations in the Palancar stream,a small tributary of the river Guadalquivir, Spain

    Science.gov (United States)

    Bravo, Ramón; Soriguer, Mila C.; Villar, Noelia; Hernando, José A.

    2001-02-01

    The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.

  4. Population Dynamic Of Rabbit Fish Siganus Canaliculatus In Gulf Of Bone Luwu Regency South Sulawesi

    Directory of Open Access Journals (Sweden)

    Irman Halid

    2015-08-01

    Full Text Available Rabbitfish Siganus canaliculatus is ones of coral reef inhabitants are exploited intensively and suspected population decline so the necessary management measures was needed. The study aims to analyze aspects of the dynamics of rabbit fish populations in the Bone Gulf Luwu waters. Data was collected by Staratied Random Sampling estimation of the size structure the number of age groups and average length of fish per age group use a column diagram and Bhattacharya method. Population growth is analyzed using the Von Bertalanffy equation exponential growth the value of L K by Ford and Walford method and t0 by Pauly method. The total mortality fishing mortality the rate of exploitation and Y R were estimated by methods of Beverton and Holt and natural mortality by method of Pauly. The results showed that the population of rabbit fish in the waters of the Gulf of Bone Luwu consists of five age groups has the average length and the lenth range of 8.0904 cm and 5.7 to 9.0 cm on the relative age of one year 10.9222 cm and 9.0 to 12.3 cm on the relative age of two years from 12.3 to 15.6 cm 14.1543 cm on the relative age of three years 16.8949 cm and 15.6 to 18.9 cm on the relative age four years and 19.4906 cm and 18.9 to 20.7 cm on the relative age of five years. Maximum length Lamp8734 of 30.5814 cm and the growth rate coefficient K of 0.1572 per year while the t0 value of -1.4815 ofyear. The total mortality Z of 1.6913 per year the mortality M of 0.6109 fishing mortality t 1.0804 per year the rate of exploitation E of 0.6388 and optimal exploitation rate Eopt of 0.50 the value of Y R is now 0.0127 and the value of Y R optimal 0.0150. The conclusion that the population is dominated medium sized fish slow population growth as a result of the high mortality rate of the capture and exploitation as well as the recruitment process is not optimal.

  5. Impact of climate change on fish population dynamics in the baltic sea: a dynamical downscaling investigation

    DEFF Research Database (Denmark)

    Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin

    2012-01-01

    Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics...... and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated...... to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass...

  6. Master Middle Ware: A Tool to Integrate Water Resources and Fish Population Dynamics Models

    Science.gov (United States)

    Yi, S.; Sandoval Solis, S.; Thompson, L. C.; Kilduff, D. P.

    2017-12-01

    Linking models that investigate separate components of ecosystem processes has the potential to unify messages regarding management decisions by evaluating potential trade-offs in a cohesive framework. This project aimed to improve the ability of riparian resource managers to forecast future water availability conditions and resultant fish habitat suitability, in order to better inform their management decisions. To accomplish this goal, we developed a middleware tool that is capable of linking and overseeing the operations of two existing models, a water resource planning tool Water Evaluation and Planning (WEAP) model and a habitat-based fish population dynamics model (WEAPhish). First, we designed the Master Middle Ware (MMW) software in Visual Basic for Application® in one Excel® file that provided a familiar framework for both data input and output Second, MMW was used to link and jointly operate WEAP and WEAPhish, using Visual Basic Application (VBA) macros to implement system level calls to run the models. To demonstrate the utility of this approach, hydrological, biological, and middleware model components were developed for the Butte Creek basin. This tributary of the Sacramento River, California is managed for both hydropower and the persistence of a threatened population of spring-run Chinook salmon (Oncorhynchus tschawytscha). While we have demonstrated the use of MMW for a particular watershed and fish population, MMW can be customized for use with different rivers and fish populations, assuming basic data requirements are met. This model integration improves on ad hoc linkages for managing data transfer between software programs by providing a consistent, user-friendly, and familiar interface across different model implementations. Furthermore, the data-viewing capabilities of MMW facilitate the rapid interpretation of model results by hydrologists, fisheries biologists, and resource managers, in order to accelerate learning and management decision

  7. Quantifying relative fishing impact on fish populations based on spatio-temporal overlap of fishing effort and stock density

    DEFF Research Database (Denmark)

    Vinther, Morten; Eero, Margit

    2013-01-01

    Evaluations of the effects of management measures on fish populations are usually based on the analyses of population dynamics and estimates of fishing mortality from stock assessments. However, this approach may not be applicable in all cases, in particular for data-limited stocks, which may...... GAM analyses to predict local cod densities and combine this with spatio-temporal data of fishing effort based on VMS (Vessel Monitoring System). To quantify local fishing impact on the stock, retention probability of the gears is taken into account. The results indicate a substantial decline...... in the impact of the Danish demersal trawl fleet on cod in the Kattegat in recent years, due to a combination of closed areas, introduction of selective gears and changes in overall effort....

  8. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    Science.gov (United States)

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  9. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    Science.gov (United States)

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17°C to 32°C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years.

  10. Fish and fire: Post-wildfire sediment dynamics and implications for the viability of trout populations

    Science.gov (United States)

    Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.

    2017-12-01

    Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the

  11. PISCATOR, an individual-based model to analyze the dynamics of lake fish communities

    NARCIS (Netherlands)

    Nes, van E.H.; Lammens, E.H.R.R.; Scheffer, M.

    2002-01-01

    Unraveling the mechanisms that drive dynamics of multi-species fish communities is notoriously difficult. Not only are the interactions between fish populations complex, but also the functional niche of individual animals changes profoundly as they grow, making variation in size within populations

  12. DISPLACE: a dynamic, individual-based model for spatial fishing planning and effort displacement: Integrating underlying fish population models

    DEFF Research Database (Denmark)

    Bastardie, Francois; Nielsen, J. Rasmus; Miethe, Tanja

    or to the alteration of individual fishing patterns. We demonstrate that integrating the spatial activity of vessels and local fish stock abundance dynamics allow for interactions and more realistic predictions of fishermen behaviour, revenues and stock abundance......We previously developed a spatially explicit, individual-based model (IBM) evaluating the bio-economic efficiency of fishing vessel movements between regions according to the catching and targeting of different species based on the most recent high resolution spatial fishery data. The main purpose...... was to test the effects of alternative fishing effort allocation scenarios related to fuel consumption, energy efficiency (value per litre of fuel), sustainable fish stock harvesting, and profitability of the fisheries. The assumption here was constant underlying resource availability. Now, an advanced...

  13. Estuarine fish biodiversity of Socotra Island (N.W. Indian Ocean): from the fish community to the functioning of Terapon jarbua populations

    OpenAIRE

    Lavergne, Edouard

    2012-01-01

    Understanding connectivity between estuarine nurseries and marine habitats is fundamental to explore fish population dynamics and to the design of effective conservation and fisheries management strategies. The aim of this work was to provide the first faunistic and ecological baseline of Socotra Island (North-Western Indian Ocean) estuaries and lagoon fishes for governmental coastal managers and decision makers, with a particular focus on the population functioning of a sentinel species: Ter...

  14. Interacting trophic forcing and the population dynamics of herring

    DEFF Research Database (Denmark)

    Lindegren, Martin; Ostman, Orjan; Gardmark, Anna

    2011-01-01

    -up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue....... Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life...... cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua...

  15. Invasive aquarium fish transform ecosystem nutrient dynamics

    Science.gov (United States)

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642

  16. Why fishing magnifies fluctuations in fish abundance.

    Science.gov (United States)

    Anderson, Christian N K; Hsieh, Chih-hao; Sandin, Stuart A; Hewitt, Roger; Hollowed, Anne; Beddington, John; May, Robert M; Sugihara, George

    2008-04-17

    It is now clear that fished populations can fluctuate more than unharvested stocks. However, it is not clear why. Here we distinguish among three major competing mechanisms for this phenomenon, by using the 50-year California Cooperative Oceanic Fisheries Investigations (CalCOFI) larval fish record. First, variable fishing pressure directly increases variability in exploited populations. Second, commercial fishing can decrease the average body size and age of a stock, causing the truncated population to track environmental fluctuations directly. Third, age-truncated or juvenescent populations have increasingly unstable population dynamics because of changing demographic parameters such as intrinsic growth rates. We find no evidence for the first hypothesis, limited evidence for the second and strong evidence for the third. Therefore, in California Current fisheries, increased temporal variability in the population does not arise from variable exploitation, nor does it reflect direct environmental tracking. More fundamentally, it arises from increased instability in dynamics. This finding has implications for resource management as an empirical example of how selective harvesting can alter the basic dynamics of exploited populations, and lead to unstable booms and busts that can precede systematic declines in stock levels.

  17. Population structure and adaptation in fishes

    DEFF Research Database (Denmark)

    Limborg, Morten

    Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra-specific......Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra......-specific population structure and adaptive divergence. The large population sizes and high migration rates common to most marine fishes impede the differentiating effect of genetic drift, having led to expectations of no population structure and that the occurrence of local adaptation should be rare in these species....... Comprehensive genetic analyses on the small pelagic fish European sprat (Sprattus sprattus) revealed significant population structure throughout its distribution with an overall pattern of reduced connectivity across environmental transition zones. Population structure reflected both historical separations over...

  18. On the dynamics of exploited fish populations

    National Research Council Canada - National Science Library

    Beverton, R. J. H; Holt, Sidney J

    1993-01-01

    ...-brooding cichlids, and viviparity in many sharks and toothcarps. Moreover, fish are of considerable importance to the survival of the human species in the form of nutritious, delicious and diverse food. Rational exploitation and management of our global stocks of fishes must rely upon a detailed and precise insight of their biology. The...

  19. A moving target--incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations.

    Science.gov (United States)

    Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C

    2016-04-01

    Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.

  20. Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate

    DEFF Research Database (Denmark)

    Eero, Margit; MacKenzie, Brian; Köster, Fritz

    2011-01-01

    to changes in fish populations can be analyzed with empirical data. In this study we investigate how climate variability and multiple human impacts (fishing, marine mammal hunting, eutrophication) have affected multi-decadal scale dynamics of cod in the Baltic Sea during the 20th century.We document...... significant climate-driven variations in cod recruitment production at multi-annual timescales, which had major impacts on population dynamics and the yields to commercial fisheries. We also quantify the roles of marine mammal predation, eutrophication, and exploitation on the development of the cod...

  1. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    Science.gov (United States)

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  2. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations

    Science.gov (United States)

    Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.

    2013-09-01

    Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our

  3. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  4. Population dynamics of the sand shiner (notropis stramineus) in non-wadeable rivers of Iowa

    Science.gov (United States)

    Smith, C.D.; Neebling, T.E.; Quist, M.C.

    2010-01-01

    The sand shiner (Notropis stramineus) is a common cyprinid found throughout the Great Plains region of North America that plays an important ecological role in aquatic systems. This study was conducted to describe population dynamics of sand shiners including age structure, growth, mortality, and recruitment variability in 15 non-wadeable rivers in Iowa. Fish were collected during June-August (2007-2008) using a modified Missouri trawl, a seine, and boat-mounted electrofishing. Scales were removed for age and growth analysis. A total of 3,443 fish was sampled from 15 populations across Iowa, of which 676 were aged. Iowa's sand shiner populations consisted primarily of age-1 fish (53% of all fish sampled), followed by age-2 fish (30%), age-0 fish (15%), and age-3 fish (2%). Sand shiners grew an average of 38.5 mm (SE = 5.7) during their first year, 13.8 mm (4.5) during their second year, and 9.0 mm (6.9) during their third year. Total annual mortality varied from 35.0% to 92.3% among populations with a mean of 77.9% (0.2). Incremental mortality rates were 84.5% (0.2) between age 1 and age 2, and 92.0% (0.1) between age 2 and age 3. Recruitment was highly variable, as indicated by a mean recruitment variation index of-0.12 (0.54). Overall, the sand shiner was characterized by relatively low mean age, fast growth, high mortality, and high recruitment variability. Indices of sand shiner population dynamics were poorly correlated with habitat characteristics.

  5. Population persistence of stream fish in response to environmental change: integrating data and models across space

    Science.gov (United States)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  6. Population dynamics of the invasive fish, Gambusia affinis , in ...

    African Journals Online (AJOL)

    Repeated-measures ANOVA analyses on the catch per unit effort (CPUE) of G. affinis between sampling events and dams revealed significant differences in population dynamics among dams, although an overall trend of rapid increase followed by plateau in summer, with a rapid decline in winter was seen in most dams.

  7. Fishes in a changing world: learning from the past to promote sustainability of fish populations.

    Science.gov (United States)

    Gordon, T A C; Harding, H R; Clever, F K; Davidson, I K; Davison, W; Montgomery, D W; Weatherhead, R C; Windsor, F M; Armstrong, J D; Bardonnet, A; Bergman, E; Britton, J R; Côté, I M; D'agostino, D; Greenberg, L A; Harborne, A R; Kahilainen, K K; Metcalfe, N B; Mills, S C; Milner, N J; Mittermayer, F H; Montorio, L; Nedelec, S L; Prokkola, J M; Rutterford, L A; Salvanes, A G V; Simpson, S D; Vainikka, A; Pinnegar, J K; Santos, E M

    2018-03-01

    Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future. © 2018 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  8. Climate, invasive species and land use drive population dynamics of a cold-water specialist

    Science.gov (United States)

    Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M; Muhlfeld, Clint C.

    2017-01-01

    Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences population dynamics in the context of other existing stressors.We used long-term data from 92 populations of bull trout Salvelinus confluentus – one of North America's most cold-adapted fishes – to quantify additive and interactive effects of climate, invasive species and land use on population dynamics (abundance, variability and growth rate).Populations were generally depressed, more variable and declining where spawning and rearing stream habitat was limited, invasive species and land use were prevalent and stream temperatures were highest. Increasing stream temperature acted additively and independently, whereas land use and invasive species had additive and interactive effects (i.e. the impact of one stressor depended on exposure to the other stressor).Most (58%–78%) of the explained variation in population dynamics was attributed to the presence of invasive species, differences in life history and management actions in foraging habitats in rivers, lakes and reservoirs. Although invasive fishes had strong negative effects on populations in foraging habitats, proactive control programmes appeared to effectively temper their negative impact.Synthesis and applications. Long-term demographic data emphasize that climate warming will exacerbate imperilment of cold-water specialists like bull trout, yet other stressors – especially invasive fishes – are immediate threats that can be addressed by proactive management actions. Therefore, climate-adaptation strategies for freshwater biodiversity should consider existing abiotic and biotic stressors, some of which provide potential and realized opportunity for conservation

  9. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  10. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  11. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    Science.gov (United States)

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  12. Fish populations in Plynlimon streams

    Directory of Open Access Journals (Sweden)

    D. T. Crisp

    1997-01-01

    Full Text Available In Plynlimon streams, brown trout (Salmo trutta L. are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996. Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  13. One Fish, Two Fish, Redfish, You Fish!

    Science.gov (United States)

    White, Katherine; Timmons, Maryellen; Medders, Paul

    2011-01-01

    The recreational fishing activity presented in this article provides a hands-on, problem-based experience for students; it unites biology, math, economics, environmental policy, and population dynamics concepts. In addition, the activity allows students to shape environmental policy in a realistic setting and evaluate their peers' work. By…

  14. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    Science.gov (United States)

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  15. Population dynamics of Glossina fuscipes fuscipes on Buvuma Island, Lake Victoria, Uganda

    International Nuclear Information System (INIS)

    Ogwal, L.M.; Kangwagye, T.N.

    1990-01-01

    A survey made of Buvuma Island to establish the incidence, distribution and population dynamics of tsetse flies showed that Glossina fuscipes fuscipes Newstead was the most abundant species. This species occurred in the southeastern, western and northern parts of the island. Although the fly is both riverine and peridomestic in its habits, the survey revealed that its population was concentrated mainly within a distance of about 2 km from the lake shores around houses, in banana plantations, at forest edges and roadsides, in fishing villages and ports of call, on grazing grounds and at water collection points. Studies of the population dynamics revealed seasonal variations in the abundance of the species, with a peak during the main dry season, i.e. in the months of January and February. The breeding peak was reached during the minor rainy season. Trap catches were highest in fishing villages and ports of call, followed in decreasing order by catches at forest edge and roadside locations, at water collection points, around houses, in banana plantations and on grazing grounds. It appears that the fishing villages and ports of call were possibly the most suitable breeding grounds. The efficiency of the traps was reflected in the fact that G. f. fuscipes populations were reduced by up to 95% in Tome and 90% in the Bulopa-Walwanda and Lwenyanja villages. Many puparia were also found on the sandy beaches around fishing villages and ports of call. There was evidence of fly movement between the islands and the mainland, indicating that, although geographically isolated, Buvuma Island is not isolated from the mainland in terms of tsetse fly movement. (author). 21 refs, 5 figs, 1 tab

  16. Forecasting fish stock dynamics under climate change: Baltic herring (Clupea harengus) as a case study

    DEFF Research Database (Denmark)

    Bartolino, V.; Margonski, P.; Lindegren, Martin

    2014-01-01

    Climate change and anthropogenic disturbances may affect marine populations and ecosystems through multiple pathways. In this study we present a framework in which we integrate existing models and knowledge on basic regulatory processes to investigate the potential impact of future scenarios...... of fisheries exploitation and climate change on the temporal dynamics of the central Baltic herring stock. Alternative scenarios of increasing sea surface temperature and decreasing salinity of the Baltic Sea from a global climate model were combined with two alternative fishing scenarios, and their direct......-term fish dynamics can be an informative tool to derive expectations of the potential long-term impact of alternative future scenarios of exploitation and climate change...

  17. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish

    DEFF Research Database (Denmark)

    Kerr, Lisa A.; Hintzen, Niels T.; Cadrin, Steven X.

    2017-01-01

    for overexploitation of unique spawning components, which can lead to loss of productivity and reduced biodiversity along with destabilization of local and regional stock dynamics. Furthermore, ignoring complex population structure and stock connectivity can lead to misperception of the magnitude of fish productivity......, which can translate to suboptimal utilization of the resource. We describe approaches that are currently being applied to improve the assessment and management process for marine fish in situations where complex spatial structure has led to an observed mismatch between the scale of biological...... and resilience of fish species....

  18. Climate change effects on North American inland fish populations and assemblages

    Science.gov (United States)

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  19. DYNAMICS OF PIKE (ESOX LUCIUS LINNAEUS, 1758 AGE STRUCTURE IN THE DNIEPER LOWER REACHES IN CONNECTION WITH FISHING

    Directory of Open Access Journals (Sweden)

    K. Geina

    2015-03-01

    Full Text Available Purpose. To analyze the dynamics of pike (Esox luceus Linnaeus, 1758 age structure of the Dnieper lower reaches in conditions of the modification of fishing pressure. Methodology. An analysis of fishing situation has been performed based on data of official fishery statistics. Fish sampling was done at control-observation posts of the Institute of Fisheries of the NAAS of Ukraine and directly in the fishery. Juvenile fish yield was determined using a complex of fry fishing gears using a stationary net-station. Field and cameral processing of the material was performed using generally accepted methods. Findings. A retrospective analysis of the situation in the Dnieper-Bug lower reach system clearly indicates on the presence of continuous tendency of catch decline of representative of native fish fauna – pike. With relatively uniform indices of the “yield” of its juveniles before Dnieper flow impoundment and in conditions of present time, its commercial catches significantly dropped. The dynamics of pike current age structure indicates on an increase of relative density of age groups, which form the recruitment of the commercial portion of the population (1-1+ and a decrease of importance of the component of the right side of age series. A discrepancy between the observed changes of the age group and commercial harvest quantities indicates on increased human pressure on this species. Originality. For the first, we analyzed the dynamics of fish juvenile “yield” and age structure of pike commercial stock of the Dnieper lower reaches in the river flow transformation process. Practical value. A decrease of the ichthyomass of piscivorous fishes in the Dnieper lower reaches results in changes of fish populations of littoral biotopes towards the prevalence of the dominance of coarse species that lead to a deterioration of forage availability for a number of valuable commercial species. An increase of the number of pike can regulate the strain

  20. Modeling the fish community population dynamics and forecasting the eradication success of an exotic fish from an alpine stream

    Science.gov (United States)

    Laplanche, Christophe; Elger, Arnaud; Santoul, Frédéric; Thiede, Gary P.; Budy, Phaedra

    2018-01-01

    Management actions aimed at eradicating exotic fish species from riverine ecosystems can be better informed by forecasting abilities of mechanistic models. We illustrate this point with an example of the Logan River, Utah, originally populated with endemic cutthroat trout (Oncorhynchus clarkii utah), which compete with exotic brown trout (Salmo trutta). The coexistence equilibrium was disrupted by a large scale, experimental removal of the exotic species in 2009–2011 (on average, 8.2% of the stock each year), followed by an increase in the density of the native species. We built a spatially-explicit, reaction-diffusion model encompassing four key processes: population growth in heterogeneous habitat, competition, dispersal, and a management action. We calibrated the model with detailed long-term monitoring data (2001–2016) collected along the 35.4-km long river main channel. Our model, although simple, did a remarkable job reproducing the system steady state prior to the management action. Insights gained from the model independent predictions are consistent with available knowledge and indicate that the exotic species is more competitive; however, the native species still occupies more favorable habitat upstream. Dynamic runs of the model also recreated the observed increase of the native species following the management action. The model can simulate two possible distinct long-term outcomes: recovery or eradication of the exotic species. The processing of available knowledge using Bayesian methods allowed us to conclude that the chance for eradication of the invader was low at the beginning of the experimental removal (0.7% in 2009) and increased (20.5% in 2016) by using more recent monitoring data. We show that accessible mathematical and numerical tools can provide highly informative insights for managers (e.g., outcome of their conservation actions), identify knowledge gaps, and provide testable theory for researchers.

  1. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    Science.gov (United States)

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  2. First genealogy for a wild marine fish population reveals multigenerational philopatry

    KAUST Repository

    Salles, Océ ane C.; Pujol, Benoit; Maynard, Jeffrey A.; Almany, Glenn R.; Berumen, Michael L.; Jones, Geoffrey P.; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R.; Planes, Serge

    2016-01-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.

  3. First genealogy for a wild marine fish population reveals multigenerational philopatry

    KAUST Repository

    Salles, Océane C.

    2016-11-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.

  4. Dynamics and management of stage-structured fish stocks.

    Science.gov (United States)

    Meng, Xinzhu; Lundström, Niklas L P; Bodin, Mats; Brännström, Åke

    2013-01-01

    With increasing fishing pressures having brought several stocks to the brink of collapse, there is a need for developing efficient harvesting methods that account for factors beyond merely yield or profit. We consider the dynamics and management of a stage-structured fish stock. Our work is based on a consumer-resource model which De Roos et al. (in Theor. Popul. Biol. 73, 47-62, 2008) have derived as an approximation of a physiologically-structured counterpart. First, we rigorously prove the existence of steady states in both models, that the models share the same steady states, and that there exists at most one positive steady state. Furthermore, we carry out numerical investigations which suggest that a steady state is globally stable if it is locally stable. Second, we consider multiobjective harvesting strategies which account for yield, profit, and the recovery potential of the fish stock. The recovery potential is a measure of how quickly a fish stock can recover from a major disturbance and serves as an indication of the extinction risk associated with a harvesting strategy. Our analysis reveals that a small reduction in yield or profit allows for a disproportional increase in recovery potential. We also show that there exists a harvesting strategy with yield close to the maximum sustainable yield (MSY) and profit close to that associated with the maximum economic yield (MEY). In offering a good compromise between MSY and MEY, we believe that this harvesting strategy is preferable in most instances. Third, we consider the impact of harvesting on population size structure and analytically determine the most and least harmful harvesting strategies. We conclude that the most harmful harvesting strategy consists of harvesting both adults and juveniles, while harvesting only adults is the least harmful strategy. Finally, we find that a high percentage of juvenile biomass indicates elevated extinction risk and might therefore serve as an early-warning signal of

  5. Exploitation dynamics of small fish stocks like Arctic cisco

    Science.gov (United States)

    Nielsen, Jennifer L.

    2004-01-01

    Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the

  6. Muscle dynamics in fish during steady swimming

    DEFF Research Database (Denmark)

    Shadwick, RE; Steffensen, JF; Katz, SL

    1998-01-01

    SYNOPSIS. Recent research in fish locomotion has been dominated by an interest in the dynamic mechanical properties of the swimming musculature. Prior observations have indicated that waves of muscle activation travel along the body of an undulating fish faster than the resulting waves of muscular...... position in swimming fish. Quantification of muscle contractile properties in cyclic contractions relies on in vitro experiments using strain and activation data collected in vivo. In this paper we discuss the relation between these parameters and body kinematics. Using videoradiographic data from swimming...... constant cross-section of red muscle along much of the body suggests that positive power for swimming is generated fairly uniformly along the length of the fish....

  7. Population parameters and dynamic pool models of commercial fishes in the Beibu Gulf, northern South China Sea

    Science.gov (United States)

    Wang, Xuehui; Qiu, Yongsong; Du, Feiyan; Lin, Zhaojin; Sun, Dianrong; Huang, Shuolin

    2012-01-01

    Length-frequency data of eight commercial fish species in the Beibu Gulf (Golf of Tonkin), northern South China Sea, were collected during 2006-2007. Length-weight relationships and growth and mortality parameters were analyzed using FiSAT II software. Five species had isometric growth, two species had negative allometric growth, and one species had positive allometric growth. Overall, the exploitation rates of the eight species were lower in 2006-2007 than in 1997-1999: for four species ( Saurida tumbil, Saurida undosquamis, Argyrosomus macrocephalus, and Nemipterus virgatus) it was lower in 2006-2007 than in 1997-1999, for two species ( Parargyrops edita and Trichiurus haumela) it remained the same, and for the other two species ( Trachurus japonicus and Decapterus maruadsi) it was higher in 2006-2007 than in 1997-1999. The exploitation rates might have declined because of the decline in fishing intensity caused by high crude oil prices. The optimum exploitation rate, estimated using Beverton-Holt dynamic pool models, indicated that although fishes in the Beibu Gulf could sustain high exploitation rates, the under-size fishes at first capture resulted in low yields. To increase the yield per recruitment, it is more effective to increase the size at first capture than to control fishing effort.

  8. Optimal pulse fishing policy in stage-structured models with birth pulses

    International Nuclear Information System (INIS)

    Gao Shujing; Chen Lansun; Sun Lihua

    2005-01-01

    In this paper, we propose exploited models with stage structure for the dynamics in a fish population for which periodic birth pulse and pulse fishing occur at different fixed time. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Bifurcation diagrams are constructed with the birth rate (or pulse fishing time or harvesting effort) as the bifurcation parameter, and these are observed to display complex dynamic behaviors, including chaotic bands with period windows, period-doubling, multi-period-halving and incomplete period-doubling bifurcation, pitch-fork and tangent bifurcation, non-unique dynamics (meaning that several attractors or attractor and chaos coexist) and attractor crisis. This suggests that birth pulse and pulse fishing provide a natural period or cyclicity that make the dynamical behaviors more complex. Moreover, we show that the pulse fishing has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. An interesting result is obtained that, after the birth pulse, the population can sustain much higher harvesting effort if the mature fish is removed as early as possible

  9. STRUCTURE, GROWTH AND MORPHOLOGY OF FISH POPULATIONS FROM GRAVEL-PIT VUKOVINA

    Directory of Open Access Journals (Sweden)

    Ivan Jakovlić

    2001-12-01

    Full Text Available After the structure of fish populations from gravel-pit Vukovina was determined, those populations were checked for 10 morphometric and 4 meristic parameters, as well as for length-mass relationship. For chub (Leuciscus cephalus and pumpkinseed (Lepomis gibbosus some meristic characters expressed the values beyond those mentioned in the standard key for the freshwater fish species determination. When compared to other locations, length-mass relationship and condition factor (CF were significantly lower for all checked populations. This indicates that gravel-pit Vukovina is extremely oligotrophic and has very poor fish production.

  10. Paleoecological studies on variability in marine fish populations: A long-term perspective on the impacts of climatic change on marine ecosystems

    Science.gov (United States)

    Finney, Bruce P.; Alheit, Jürgen; Emeis, Kay-Christian; Field, David B.; Gutiérrez, Dimitri; Struck, Ulrich

    2010-02-01

    The use of historical fishing records to understand relationships between climatic change and fish abundance is limited by the relatively short duration of these records, and complications due to the strong influence of human activity in addition to climatic change. Sedimentary records containing scales, bones or geochemical proxies of variability in fish populations provide unique insights on long-term ecosystem dynamics and relationships with climatic change. Available records from Holocene sediments are summarized and synthesized. The records are from several widespread locations near or along the continental margins of the South Atlantic and Pacific oceans, including Alaska, USA (Pacific salmon), Saanich and Effingham Inlets, British Columbia, Canada (pelagic fish), Santa Barbara Basin, California, USA (Northern anchovies and Pacific sardines), Gulf of California, Mexico (Pacific sardines, Northern anchovies and Pacific hake), Peru upwelling system (sardines, anchovies and hake), and Benguela Current System, South Africa (sardines, anchovies and hake). These records demonstrate that fish population sizes are not constant, and varied significantly over a range of time scales prior to the advent of large-scale commercial fishing. In addition to the decadal-scale variability commonly observed in historical records, the long-term records reveal substantial variability over centennial and millennial time scales. Shifts in abundance are often, but not always, correlated with regional and/or global climatic changes. The long-term perspective reveals different patterns of variability in fish populations, as well as fish-climate relationships, than suggested by analysis of historical records. Many records suggest prominent changes in fish abundance at ca. 1000-1200 AD, during the Little Ice Age, and during the transition at the end of the Little Ice Age in the 19th century that may be correlative, and that were likely driven by major hemispheric or global

  11. Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish

    NARCIS (Netherlands)

    Huijbers, C.M.; Nagelekerken, I.; Debrot, A.O.; Jongejans, E.

    2013-01-01

    Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived

  12. Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.

    Science.gov (United States)

    Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T

    2015-11-01

    Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.

  13. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    Science.gov (United States)

    Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.

    2012-02-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.

  14. The dynamics of fish populations in the Palancar stream, a small tributary of the river Guadalquivir, Spain

    OpenAIRE

    Bravo, R.; Soriguer, M.C.; Villar, N.; Hernando, J.A.

    2000-01-01

    The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought per...

  15. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    Science.gov (United States)

    Fidler, Robert Young, III

    Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted

  16. Quantifying the interplay between environmental and social effects on aggregated-fish dynamics.

    Directory of Open Access Journals (Sweden)

    Manuela Capello

    Full Text Available Demonstrating and quantifying the respective roles of social interactions and external stimuli governing fish dynamics is key to understanding fish spatial distribution. If seminal studies have contributed to our understanding of fish spatial organization in schools, little experimental information is available on fish in their natural environment, where aggregations often occur in the presence of spatial heterogeneities. Here, we applied novel modeling approaches coupled to accurate acoustic tracking for studying the dynamics of a group of gregarious fish in a heterogeneous environment. To this purpose, we acoustically tracked with submeter resolution the positions of twelve small pelagic fish (Selar crumenophthalmus in the presence of an anchored floating object, constituting a point of attraction for several fish species. We constructed a field-based model for aggregated-fish dynamics, deriving effective interactions for both social and external stimuli from experiments. We tuned the model parameters that best fit the experimental data and quantified the importance of social interactions in the aggregation, providing an explanation for the spatial structure of fish aggregations found around floating objects. Our results can be generalized to other gregarious species and contexts as long as it is possible to observe the fine-scale movements of a subset of individuals.

  17. Consumption dynamics of the adult piscivorous fish community in Spirit Lake, Iowa

    Science.gov (United States)

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2004-01-01

    At Spirit Lake, one of Iowa's most important fisheries, walleye Sander vitreus (formerly Stizostedion vitreum) is one of the most popular species with anglers. Despite a century of walleye stocking and management in Spirit Lake, walleye growth rate, size structure, and angler harvest continue to decline. Our purpose was to determine the magnitude and dynamics of walleye population consumption relative to those of other piscivorous species in Spirit Lake, which would allow managers to judge the feasibility of increasing the abundance, growth rate, and size structure of the walleye population. We quantified food consumption by the adult piscivorous fish community in Spirit Lake over a 3-year period. Data on population dynamics, diet, energy density, and water temperature from 1995 to 1997 were used in bioenergetics models to estimate total consumption by walleye, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieu, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus, and northern pike Esox lucius. Estimated annual consumption by the piscivorous community varied roughly fourfold, ranging from 154,752 kg in 1995 to 662,776 kg in 1997. Walleyes dominated total consumption, accounting for 68, 73, and 90% (1995-1997, respectively) of total food consumption. Walleyes were also the dominant consumers of fish, accounting for 76, 86, and 97% of piscivorous consumption; yellow perch followed, accounting for 16% of piscivorous consumption in 1995 and 12% in 1996. Yellow perch were the predominant fish prey species in all 3 years, accounting for 68, 52, and 36% of the total prey consumed. Natural reproduction is weak, so high walleye densities are maintained by intensive stocking. Walleye stocking drives piscivorous consumption in Spirit Lake, and yearly variation in the cannibalism of stocked walleye fry may be an important determinant of walleye year-class strength and angler success. Reducing walleye stocking intensity, varying stocking

  18. Elucidating dynamic responses of North Pacific fish populations to climatic forcing: Influence of life-history strategy

    Science.gov (United States)

    Yatsu, A.; Aydin, K. Y.; King, J. R.; McFarlane, G. A.; Chiba, S.; Tadokoro, K.; Kaeriyama, M.; Watanabe, Y.

    2008-05-01

    In order to explore mechanistic linkages between low-frequency ocean/climate variability, and fish population responses, we undertook comparative studies of time-series of recruitment-related productivity and the biomass levels of fish stocks representing five life-history strategies in the northern North Pacific between the 1950s and the present. We selected seven species: Japanese sardine ( Sardinopus melanostictus) and California sardine ( Sardinopus sagax) (opportunistic strategists), walleye pollock ( Theragra chalcogramma, intermediate strategist), pink salmon ( Oncorhynchus gorbuscha, salmonic strategist), sablefish ( Anoplopoma fimbria) and Pacific halibut ( Hippoglossus stenolepis) (periodic strategists) and spiny dogfish ( Squalus acanthias, equilibrium strategist). The responses in terms of productivity of sardine, pink salmon, sablefish and halibut to climatic regime shifts were generally immediate, delayed, or no substantial responses depending on the particular regime shift year and fish stock (population). In walleye pollock, there were some periods of high productivity and low productivity, but not coincidental to climatic regime shifts, likely due to indirect climate forcing impacts on both bottom-up and top-down processes. Biomass of zooplankton and all fish stocks examined, except for spiny dogfish whose data were limited, indicated a decadal pattern with the most gradual changes in periodic strategists and most intensive and rapid changes in opportunistic strategists. Responses of sardine productivity to regime shifts were the most intense, probably due to the absence of density-dependent effects and the availability of refuges from predators when sardine biomass was extremely low. Spiny dogfish were least affected by environmental variability. Conversely, spiny dogfish are likely to withstand only modest harvest rates due to their very low intrinsic rate of increase. Thus, each life-history strategy type had a unique response to climatic

  19. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NARCIS (Netherlands)

    Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  20. Seasonal dynamics of fish assemblage in a pond canal

    Czech Academy of Sciences Publication Activity Database

    Musil, J.; Adámek, Zdeněk; Baranyi, Ch.

    2007-01-01

    Roč. 15, č. 3-4 (2007), s. 217-226 ISSN 0967-6120. [New Challenges in Pond Aquaculture. České Budějovice, 26.04.2005-28.04.2005] Institutional research plan: CEZ:AV0Z60930519 Keywords : fish assemblage * pond canal * species richness * seasonal dynamics * alien species Subject RIV: GL - Fishing Impact factor: 0.828, year: 2007

  1. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    Science.gov (United States)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly

  2. Bottom-up effects of climate on fish populations: data from the Continuous Plankton Recorder

    DEFF Research Database (Denmark)

    Pitois, S.G.; Lynam, C.P.; Jansen, Teunis

    2012-01-01

    The Continuous Plankton Recorder (CPR) dataset on fish larvae has an extensive spatio-temporal coverage that allows the responses of fish populations to past changes in climate variability, including abrupt changes such as regime shifts, to be investigated. The newly available dataset offers...... in the plankton ecosystem, while the larvae of migratory species such as Atlantic mackerel responded more to hydrographic changes. Climate variability seems more likely to influence fish populations through bottom-up control via a cascading effect from changes in the North Atlantic Oscillation (NAO) impacting...... with fishing effects interacting with climate effects and this study supports furthering our under - standing of such interactions before attempting to predict how fish populations respond to climate variability...

  3. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  4. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds.

    Science.gov (United States)

    Moore, Jonathan W; Yeakel, Justin D; Peard, Dean; Lough, Jeff; Beere, Mark

    2014-09-01

    Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7·6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2·5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. This study provides evidence that life-history diversity can dampen fluctuations in

  5. Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.

    Science.gov (United States)

    Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D

    2015-03-03

    Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.

  6. Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH.

    Science.gov (United States)

    Scherthan, Harry

    2017-01-01

    The mouse (Mus musculus) represents the central mammalian genetic model system for biomedical and developmental research. Mutant mouse models have provided important insights into chromosome dynamics during the complex meiotic differentiation program that compensates for the genome doubling at fertilization. Homologous chromosomes (homologues) undergo dynamic pairing and recombine during first meiotic prophase before they become partitioned into four haploid sets by two consecutive meiotic divisions that lack an intervening S-phase. Fluorescence in situ hybridization (FISH) has been instrumental in the visualization and imaging of the dynamic reshaping of chromosome territories and mobility during prophase I, in which meiotic telomeres were found to act as pacemakers for the chromosome pairing dance. FISH combined with immunofluorescence (IF) co-staining of nuclear proteins has been instrumental for the visualization and imaging of mammalian meiotic chromosome behavior. This chapter describes FISH and IF methods for the analysis of chromosome dynamics in nuclei of paraffin-embedded mouse testes. The techniques have proven useful for fresh and archived paraffin testis material of several mammalian species.

  7. Mesocosm experiments on tritium dynamics in carp fish

    International Nuclear Information System (INIS)

    Reji, T.K.; Vishnu, M.S.; Joshi, R.M.; Dileep, B.N.; Baburajan, A.; Ravi, P.M.

    2013-01-01

    Tritium dynamics in carp fish (Cyprinus carpio) was studied in a locally designed mesocosm simulating a lake condition. The fishes were reared in an experimental tank containing tritiated water. Tissue Free water tritium (TFWT) concentration and Organically Bound Tritium (OBT) was measured for 3 months period. TFWT reached equilibrium with exposed water within one day. Detectable amount of OBT was observed after two months of exposure. OBT to TFWT ratio was 0.1. Estimated OBT was in agreement with that calculated using IAEA specific activity model. (author)

  8. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea

    DEFF Research Database (Denmark)

    Carlson, Craig A; Morris, Robert; Parsons, Rachel

    2009-01-01

    , resolving their temporal dynamics can provide important insights to the cycling of organic and inorganic nutrients. This quantitative time-series data revealed distinct annual distribution patterns of SAR11 abundance in the euphotic (0-120) and upper mesopelagic (160-300 m) zones that were reproducibly...... correlated with seasonal mixing and stratification of the water column. Terminal restriction fragment length polymorphism (T-RFLP) data generated from a decade of samples collected at BATS were combined with the FISH data to model the annual dynamics of SAR11 subclade populations. 16S rRNA gene clone...... the Sargasso Sea surface layer, and revealed new details of their population dynamics....

  9. Coral reef fish populations can persist without immigration

    KAUST Repository

    Salles, Océane C.

    2015-11-18

    Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase.

  10. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    Science.gov (United States)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer

  11. Border Collision Bifurcations in a Generalized Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Lilia M. Ladino

    2016-01-01

    Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.

  12. Population dynamics of bowfin in a south Georgia reservoir: latitudinal comparisons of population structure, growth, and mortality

    Science.gov (United States)

    Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael

    2014-01-01

    The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.

  13. An individual-based probabilistic model for simulating fisheries population dynamics

    Directory of Open Access Journals (Sweden)

    Jie Cao

    2016-12-01

    Full Text Available The purpose of stock assessment is to support managers to provide intelligent decisions regarding removal from fish populations. Errors in assessment models may have devastating impacts on the population fitness and negative impacts on the economy of the resource users. Thus, accuracte estimations of population size, growth rates are critical for success. Evaluating and testing the behavior and performance of stock assessment models and assessing the consequences of model mis-specification and the impact of management strategies requires an operating model that accurately describe the dynamics of the target species, and can resolve spatial and seasonal changes. In addition, the most thorough evaluations of assessment models use an operating model that takes a different form than the assessment model. This paper presents an individual-based probabilistic model used to simulate the complex dynamics of populations and their associated fisheries. Various components of population dynamics are expressed as random Bernoulli trials in the model and detailed life and fishery histories of each individual are tracked over their life span. The simulation model is designed to be flexible so it can be used for different species and fisheries. It can simulate mixing among multiple stocks and link stock-recruit relationships to environmental factors. Furthermore, the model allows for flexibility in sub-models (e.g., growth and recruitment and model assumptions (e.g., age- or size-dependent selectivity. This model enables the user to conduct various simulation studies, including testing the performance of assessment models under different assumptions, assessing the impacts of model mis-specification and evaluating management strategies.

  14. Distribution of 137Cs among individuals in fish and mammal populations in Chornobyl

    International Nuclear Information System (INIS)

    Smith, M.; Glenn, T.; Oleksyk, T.; Gashchak, S.; Zalissky, A.

    2001-01-01

    The frequency distribution of 137 Cs in populations of fish and mammals is not normal, because there is a strong relationship between the standard deviation and the mean of the distributions for both fish and mammals. The distribution for mammals is more skewed than for fish. These two types of vertebrates probably use their environment in fundamentally different ways and/or 137 Cs is distributed more heterogeneously in terrestrial than in aquatic environments. The greatest risk from the contaminant is confined to a few individuals in each population

  15. The effects of river flooding on the fish populations of two eastern ...

    African Journals Online (AJOL)

    fish populations in two eastern Cape estuaries is compared. .... Methods. Catch per unit effort (CPUE) of fish in the Swartkops and Sundays estuaries was obtained by means of gill-nets. ..... Abundance of other species was little affected ex-.

  16. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    Science.gov (United States)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  17. Fish population responses to hydrological variation in a seasonal wetland in southeast México

    Directory of Open Access Journals (Sweden)

    Luis H. Escalera-Vázquez

    2017-06-01

    Full Text Available ABSTRACT Hydrological variation differently affects fish species. In the present study, the response of local populations of 13 fish local species to hydrological variation in a tropical wetland was evaluated. The objectives were to analyze the abundance response of fish species with distinct life history strategies and to assess the role of hydrological variation on fish population patterns. We found that opportunistic strategists were favored by high hydrological variation in drought periods, the equilibrium strategists were related to stable habitats, and periodic strategists were regulated by floods and temperature. However, the life history strategies identified for some species in this study do not correspond to the classification reported in other studies. Our results highlight the importance to study the abundance responses of species at local and regional scales to identify variations in life-history strategies, which can reflect local adaptations of species to hydrological changes, this is useful in order to understand and predict the responses of fish populations to the local environment.

  18. Population dynamics

    Directory of Open Access Journals (Sweden)

    Cooch, E. G.

    2004-06-01

    Full Text Available Increases or decreases in the size of populations over space and time are, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change over time in the abundance of some population is the simple difference between the number of additions (individuals entering the population minus the number of subtractions (individuals leaving the population. Of course, the precise nature of the pattern and process of these additions and subtractions is often complex, and population biology is often replete with fairly dense mathematical representations of both processes. While there is no doubt that analysis of such abstract descriptions of populations has been of considerable value in advancing our, there has often existed a palpable discomfort when the ‘beautiful math’ is faced with the often ‘ugly realities’ of empirical data. In some cases, this attempted merger is abandoned altogether, because of the paucity of ‘good empirical data’ with which the theoretician can modify and evaluate more conceptually–based models. In some cases, the lack of ‘data’ is more accurately represented as a lack of robust estimates of one or more parameters. It is in this arena that methods developed to analyze multiple encounter data from individually marked organisms has seen perhaps the greatest advances. These methods have rapidly evolved to facilitate not only estimation of one or more vital rates, critical to population modeling and analysis, but also to allow for direct estimation of both the dynamics of populations (e.g., Pradel, 1996, and factors influencing those dynamics (e.g., Nichols et al., 2000. The interconnections between the various vital rates, their estimation, and incorporation into models, was the general subject of our plenary presentation by Hal Caswell (Caswell & Fujiwara, 2004. Caswell notes that although interest has traditionally

  19. SIMULATION SCENARIO OF INTRODUCTION OF FISH WHITEBAIT WITH THE ACCOUNT OF BIOGENIC ELEMENTS DYNAMICS

    Directory of Open Access Journals (Sweden)

    V. V. Michailov

    2017-01-01

    Full Text Available The article discusses the expansion of the previously formulated approach to modeling aspects of the reproductive cycle, taking into account the changes in the habitat and metamorphosis in the development of fish. Excessive accumulation of nutrients with prolonged use of a reservoir for artificial growth of juveniles or accelerated decomposition of organic nitrogen and phosphorus may in some cases affect the success of the reproductive process. This creates an indirect effect on long-term trends in population dynamics. In some cases, the increase in the influx of organic phosphorus further leads to a state of eutrophication and may affect the insufficient aeration of breeding sites, leading to hypoxia for hatched larvae. Even worsen the situation with the consumption of oxygen in the water at the mass destruction of eggs. Lack of organic matter leads to insufficient development of planktonic organisms for optimal growth of fishes. The system of survivability equations for calculation competing individuals of the generation is supplemented by a functional extension using an iterative model of biogenic elements dynamics, based on the analysis of processes in the ecosystem of Lake Chao. The block of the model for calculating the inflow and destruction of organic matter is synchronized with a continuous-discrete computational structure that takes into account the interrelated changes in mortality factors and the rate of development of juvenile fish during transitions between generalized ecological and physiological stages of development.

  20. Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population.

    Directory of Open Access Journals (Sweden)

    Valerio Bartolino

    Full Text Available Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes.

  1. Importance of the habitat choice behavior assumed when modeling the effects of food and temperature on fish populations

    Science.gov (United States)

    Wildhaber, Mark L.; Lamberson, Peter J.

    2004-01-01

    Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.

  2. Statistical modelling of fish stocks

    DEFF Research Database (Denmark)

    Kvist, Trine

    1999-01-01

    for modelling the dynamics of a fish population is suggested. A new approach is introduced to analyse the sources of variation in age composition data, which is one of the most important sources of information in the cohort based models for estimation of stock abundancies and mortalities. The approach combines...... and it is argued that an approach utilising stochastic differential equations might be advantagous in fish stoch assessments....

  3. Isolation and quantification of volatiles in fish by dynamic headspace sampling and mass spectrometry

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Haahr, Anne-Mette; Jensen, Benny

    1999-01-01

    A dynamic headspace sampling method for isolation of volatiles in fish has been developed. The sample preparation involved freezing of fish tissue in liquid nitrogen, pulverizing the tissue, and sampling of volatiles from an aqueous slurry of the fish powder. Similar volatile patterns were...

  4. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model in 2D

    NARCIS (Netherlands)

    Reid, D.A.P.; Hildenbrandt, H.; Padding, J.T.; Hemelrijk, C.K.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  5. Assessing risks to fish populations near a proposed disposal facility for used nuclear fuel

    International Nuclear Information System (INIS)

    Hart, D.; Miesenheimer, P.; Hull, R.

    1995-01-01

    The concept of used nuclear fuel disposal in the Canadian Shield is currently undergoing a federal environmental assessment review process. As part of this review, potential risks to brook trout populations in the vicinity of such an underground repository were considered. Chemical fate, transport and exposure models have been utilized to estimate the dose rates from released radionuclides and other fuel constituents, and these likely will not be sufficient to harm fish in nearby streams. However, other stressors such as habitat alteration (e.g., loss of upwelling) and/or fishing pressure associated with increased public access could have significant population impacts if the site is located in a pristine northern region. Population models are utilized to explore the risks of local population reduction for different combinations of fishing pressure and habitat degradation

  6. Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850

    Directory of Open Access Journals (Sweden)

    A Sanches

    Full Text Available Brycon hilarii is a migratory fish widely distributed throughout the Paraguay River Basin. It is appreciated in sport fishing and for its superior meat quality. It is also the main species for tourist attraction in the Bonito region (State of Mato Grosso do Sul, Brazil. Considering the lack of information on the genetic structure of the fish of this species, the aim of the present study was to detect the genetic variability of Brycon hilarii through RAPD markers. A total of eighty specimens collected in different seasons at four sites of the Miranda River sub-basin (Paraguay River Basin, Brazil were used for analysis. The results of genetic similarity, Shannon diversity, and AMOVA revealed differences between the sampling sites. Through AMOVA, differences between populations were more evident among the animals collected during the non-reproductive season, corresponding to a time of less movement of these fish. A population structuring model in which B. hilarii appears organized into genetically differentiated reproductive units that coexist and co-migrate through the studied system was suggested, contrasting the currently accepted idea that freshwater migratory fish form large panmictic populations in a determined hydrographic system. Despite the lack of a complete picture regarding the distribution of B. hilarii in the studied region, this initial idea on its population genetic structure could be an important contribution to providing aid for management and conservation programs of these fish.

  7. Monitoring of fish species in the Lamone river: distribution and morphometric measures of the populations

    Directory of Open Access Journals (Sweden)

    Riccardo Bozzi

    2010-01-01

    Full Text Available Fish samplings were carried out monthly from spring to autumn during 2008, on the Lamone river and the Campigno stream by an electrofishing, in order to verify the presence of fish populations and the most common species represented. Barb, Barbus plebejus, Blageon, Leuciscus muticellus, Chub, Leuciscus cephalus, South European Nase, Chondrostoma genei were identified. A small population of Brown trout, Salmo trutta fario was also recognized. Barb is the most represented species in all the sites. The samplings highlight that Lamone river presented conditions suitable to fully guarantee the life of the fish populations.

  8. Population genomics of marine fishes: next generation prospects and challenges

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Therkildsen, Nina Overgaard; Pujolar, J.M.

    2014-01-01

    Over the past few years, technological advances have facilitated giant leaps forward in our ability to generate genome-wide molecular data, offering exciting opportunities for gaining new insights into the ecology and evolution of species where genomic information is still limited. Marine fishes...... time scales, identifying genomic signatures associated with population divergence under gene flow, and determining the genetic basis of phenotypic traits. We also consider future challenges pertaining to the implementation of genome-wide coverage through next-generation sequencing and genotyping...... methods in marine fishes. Complications associated with fast decay of linkage disequilibrium, as expected for species with large effective population sizes, and the possibility that adaptation is associated with both soft selective sweeps and polygenic selection, leaving complex genomic signatures...

  9. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    Science.gov (United States)

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  10. Report of the Study Group on the History of Fish and Fisheries (SGHIST)

    DEFF Research Database (Denmark)

    The Study Group on the History of Fish and Fisheries (SGHIST) brings together fish-eries scientists, historians and marine biologists working on multidecadal to centen-nial changes in the marine environment, and aims at improving the understanding of the long term dynamics of fish populations...

  11. Assessment of the pelagic fish populations using CEN multi-mesh gillnets: consequences for the characterization of the fish communities

    Directory of Open Access Journals (Sweden)

    C. Deceliere-Vergès

    2008-01-01

    Full Text Available The contribution of CEN standard pelagic nets to the assessment of fish communities is tested by comparing three metrics (species composition, species abundance, and size structures measured in accordance with the standard (i.e. using benthic nets only to those calculated from the total effort (i.e. including pelagic nets. Hydroacoustic surveys were used simultaneously to assess fish densities in the pelagic habitat. The results show that in most cases the pelagic nets did not provide any extra information about these three metrics. However, their inclusion in the calculation of CPUE and size structures may affect the picture of the fish communities, especially in lakes containing salmonid populations. This study highlights the need to sample pelagic fish when assessing fish communities in order to determine lake quality.

  12. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example

    Science.gov (United States)

    Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.

    2017-01-01

    We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.

  13. Revisiting reproduction and population structure and dynamics of Procambarus clarkii eight years after its introduction into Lake Trasimeno (Central Italy

    Directory of Open Access Journals (Sweden)

    Dörr A.J.M.

    2013-06-01

    Full Text Available Understanding population dynamics and regulation is fundamental for predicting establishment and spread of invasive alien species. In addition, the population biology of invasive alien species offers an opportunity to study basic ecological processes. In this context, we investigated reproductive and growth plasticity in the invasive crayfish Procambarus clarkii in Lake Trasimeno (central Italy. In total, 3153 crayfish were collected monthly from June 2007 to July 2009. The molt status was assessed by evaluating the exoskeleton hardness. To assess the reproductive cycle, the gonado-somatic and wet hepato-somatic indices were calculated for females. The reproductive status of males was appraised as well. We estimated growth and longevity using the von Bertalanffy growth function, and calculated the total, natural and fishing mortality indices. We then compared our present data with those obtained from the same population eight years before. Our results indicate some changes in population dynamics and in both molting and reproductive periods since the initial invasion of the shallow lake investigated. Long-term differences in the life history of the Trasimeno population may be the result of selective pressures different from those of the native range, but may also result from colonization events and human interference caused by professional fishing activities.

  14. Modeling fish dynamics and effects of stress in a hydrologically pulsed ecosystem

    Science.gov (United States)

    DeAngelis, Donald L.; Loftus, William F.; Trexler, Joel C.; Ulanowicz, Robert E.

    1997-01-01

    Many wetlands undergo seasonal cycles in precipitation and water depth.This environmental seasonality is echoed in patterns of production of fishbiomass, which, in turn, influence the phenology of other components of thefood web, including wading birds. Human activities, such as drainage orother alterations of the hydrology, can exacerbate these natural cycles andresult in detrimental stresses on fish production and the higher trophic levels dependent on this production. In this paper we model theseasonal pattern of fish production in a freshwater marsh, with specialreference to the Everglades/Big Cypress region of southern Florida.The model illustrates the temporal pattern of production through theyear, which can result in very high densities of fish at the end of ahydroperiod (period of flooding), aswell as the importance of ponds and other deep depressions, both as refugia and sinks during dry periods. The model predicts that: (1) there is an effective threshold in the length of the hydroperiod that must beexceeded for high fish-population densities to be produced, (2) large,piscivorous fishes do not appear tohave a major impact on smaller fishes in the marsh habitat, and (3) therecovery of small-fish populations in the marsh following a major droughtmay require up to a year. The last of these results is relevant toassessing anthropogenic impacts on marsh production, as these effectsmay increase the severity and frequency of droughts.

  15. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    Science.gov (United States)

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  16. Identification of fish populations with particular reference to the pelagic fish stocks of the Indian Ocean region

    Digital Repository Service at National Institute of Oceanography (India)

    Dwivedi, S.N.

    The most essential step in any fishery management is the identification of discrete fish populations. This is particularly important for the development of Indian Ocean pelagic fisheries. The simple signal character analysis of meristic or metric...

  17. Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts on fish populations

    Science.gov (United States)

    Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.

    2009-01-01

    Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.

  18. GENETIC VARIABILITY OF THREE POPULATIONS OF FLYING FISH, Hirundichthy oxycephalus FROM MAKASSAR STRAIT

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2016-03-01

    Full Text Available Flying fish, Hirundichthy oxycephalus is one of economically important marine species to Indonesia, particularly in Makassar Strait and Flores Sea. However, there is a limited published data on genetic variation in molecular marker level of this species. Random Amplified Polymorphic DNA (RAPD was employed in this study to determine the genetic variability of three populations of flying fish collected from Takalar, Pare-Pare, and Majene in Makassar Strait. Genomic DNA was isolated from preserved muscle tissue using phenol-chloroform technique. Two selected arbitrary primers (CA-01 and P-40 were performed to generate RAPD finger printing of flying fish populations. The two primers generated a total of 81 fragments (loci and 50 polymorphic fragments with size ranging from 125 to 1,250 bp. There were no significant differences in number of fragment and number of polymorphic fragment among populations. The high polymorphism (63.5±7.4% was obtained from Takalar population followed by Pare-Pare (58.3±19.6% and Majene population (57.7±0.8%. Similarity index of individuals was 0.60±0.17 for Takalar, 0.63±0.17 for Majene and 0.75±0.21 for Pare-Pare population. Seven fragments were identified as species-specific markers of H. oxycephalus. The UPGMA cluster analysis showed that the Takalar population was genetically closer to Pare-Pare population (D= 0.0812 than to Majene population (D= 0.1873.

  19. Factors affecting the recovery of fish populations in an industrial river. [Brown trout

    Energy Technology Data Exchange (ETDEWEB)

    Turnpenny, A W.M.; Williams, R

    1981-01-01

    The river Ebbw Fawr, an industrial river of South-East Wales, was investigated over a three-year period to follow the re-establishment of fish populations as a result of pollution control measures at coal washeries and a steelworks on the river. These measures were effective in reducing levels of toxic materials and restoring dissolved oxygen levels and pH values acceptable for fish. Five freshwater fish species became established in parts of the river during the study period (1974-77). The brown trout Salmo trutta l. was the first to enter, followed by eel Anguilla anguilla l., stoneloach Noemacheilus barbatulus l., stickleback Gasterosteus aculeatus l. and bullhead Cottus gobio l., respectively. The flounder Platicthys flesus l., a euryhaline species, penetrated the river beyond the upper tidal limit. The minnow Phoxinus phoxinus l., a resident of other parts of the Ebbw system, did not recolonise during the study. Calculated toxicities and the results of fish caging tests indicated that water quality was satisfactory for fish populations throughout the river with the possible exception of a short reach immediately below the steelworks. The absence of fish from some upstream reaches with good water quality was due to the limited numbers of fish available for recolonisation and their restricted movements. Good growth and condition factors among the recolonising brown trout stock suggest that a sport fishery could be developed on the river, though constraints on spawning due to residual silt pollution indicate that stocking with hatchery reared fish will be necessary to maintain trout numbers.

  20. Hydrodynamic Modeling to Assess the Impact of Man-Made Fishing Canals on Floodplain Dynamics: A Case Study in the Logone Floodplain

    Science.gov (United States)

    Shastry, A. R.; Durand, M. T.; Fernandez, A.; Phang, S. C.; Hamilton, I.; Laborde, S.; Mark, B. G.; Moritz, M.; Neal, J. C.

    2017-12-01

    The Logone floodplain in northern Cameroon, also known as Yaayre, is an excellent example of coupled human-natural systems because of strong couplings between social, ecological and hydrologic systems. Overbank flow from the Logone River inundates the floodplain ( 8000 km2) annually and the flood is essential for fish populations and the fishers that depend on them for their livelihood. However, a recent trend of construction of fishing canals threatens to change flood dynamics like duration and timing of onset and may reduce fish productivity. Fishers dig canals during dry season, which are used to catch fish by collecting and channeling water during the flood recession. By connecting the floodplain to the river, these fishing canals act an extension of the river drainage network. The goal of this study is to characterize the relationship between the observed exponential increase in numbers of fishing canals and flood dynamics. We modelled the Logone floodplain as a two-dimensional hydrodynamic model with sub-grid parameterizations of channels using LISFLOOD-FP. We use a simplified version of the hydraulic system at a grid-cell size of 1-km, upscaled using a new high accuracy map of global terrain elevations from Shuttle Radar Topography Mission (SRTM). Using data from a field-collected survey performed in 2014, 1120 fishing canal were collated and parameterized as 111 sub-grid channels and the fishnet structure was represented as a combination of weir and mesh screens. 49 mapped floodplain depressions were also represented as sub-grid channels. In situ discharge observations available at Katoa between 2001 and 2007 were used as input for the model. Preliminary results show that presence of canals resulted in a 24% quicker recession of water in the natural depressions showing increasing canal numbers lead to quicker flood recession. We also investigate the rate of effect increasing number of fishing canals has on flood recession by simulating varying numbers of

  1. Population dynamics and fishery of dolphinfish (Coryphaena hippurus in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    Jordi Lleonart

    1999-12-01

    Full Text Available The dolphinfish (Coryphaena hippurus fishery based on the island of Majorca (western Mediterranean and the population dynamics of the species were studied between 1995 and 1996. Fishing effort, landings and length composition of the catches during the sampling period, as well as the historic catch data series and fleet were analysed. Virtual Population Analysis (VPA, taking as the time unit the week in 1995 and the fortnight in 1996, were also carried out. Dolphinfish is fished from August to December, with main catches in September-October, using anchored fish aggregation devices (FADs and surrounding net. The mooring areas, placed from 70 to 1200 m depth, are distributed among the boats registered for the year´s fishery. A total of 46 boats took part in this fishery in 1995 and 37 in 1996, with a catch of 128 and 52 metric tons respectively. These wide fluctuations are also shown in the annual catches of the 16year series, which ranged from 2 to more than 120 metric tons, showing a slightly increasing trend (4 tons per year. The comparison of different measures of effort (FADs, days and hours showed similar values of CPUE, although the number of FADs showed the lowest variation, with normal variances and average values not significantly different between harbours. The length composition of the catches ranged from 20 to 64 cm fork length, which corresponds to juveniles between 2 and 6 months of age. The main results of the VPA, which must be regarded in relative rather than absolute values, showed that the available population and the recruitment in 1995 are greater (around one order of magnitude than in 1996. For both years, the number of individuals declined in the course of the fishing season, while biomass increased during the first 5 weeks. The fact that the exploited fraction of the dolphinfish population is composed of 0-age class suggests that catch fluctuations might be related to environmental parameters and to the migratory

  2. Population dynamics of the yellowstripe scad (Selaroides leptolepis Cuvier, 1833) and Indian mackerel (Rastrelliger kanagurta Cuvier, 1816) in the Wondama Bay Water, Indonesia

    Science.gov (United States)

    Sala, R.; Bawole, R.; Runtuboi, F.; Mudjirahayu; Wopi, I. A.; Budisetiawan, J.; Irwanto

    2018-03-01

    The Wondama Bay water is located within the Cendrawasih Bay National Park and is potential for fishery resources, including pelagic fish such as yellowstripe scad (Selaroides leptolepis Cuvier, 1833) and Indian mackerel (Rastrelliger kanagurta Cuvier, 1816). Yet, information about the population dynamics of these species in the region is unknown until today. Meanwhile, the fishing activities have been quite intensive and include the dominant catches over the last ten years by traditional fishermen fishing using liftnets. Therefore, this study aims to determine some of specific characteristics of the population dynamics and fish utilization status of scad and mackerel in the waters of the Wondama Bay. Data used in this study were taken from direct observation of catch of liftnet fishery. The data then were analysed by using FISAT II to estimate the growth parameters, mortality rates, and yield per recruitment. The results showed that yellowstripe scad has the positive allometric growth, while Indian mackerel followed isometric growth. Models of fish growth were L(t) = 22 (1-e-3.0(t-0.05)) for yellowstripe scad and L(t) = 27.8 (1-e-4.0(t-0.04)) for Indian mackerel. The natural mortality (M) of 4.19 year-1, fishing mortality (F) of 5.01 year-1, and total mortality (Z) of 9.20 year-1 were for yellowstripe scad, and M of 4.74 year-1, F of 2.52 year-1 and Z of 7.26 year-1 were for Indian mackerel. Based on the mortality rates, estimated exploitation rate for the yellowatripe scad was 54 % and the Indian mackerel was 35 %. To increase the production of catch without increasing fishing effort (fishing mortality) can be done by increasing the size of fish caught or the Lc/L∞ should be greater than 0.5.

  3. Simulating mechanisms for dispersal, production and stranding of small forage fish in temporary wetland habitats

    Science.gov (United States)

    Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Jopp, Fred; Donalson, Douglas D.

    2013-01-01

    Movement strategies of small forage fish (wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.

  4. Genetic variation reveals influence of landscape connectivity on population dynamics and resiliency of western trout in disturbance-prone habitats

    Science.gov (United States)

    Helen M. Neville,; Gresswell, Robert E.; Dunham, Jason B.

    2012-01-01

    Salmonid fishes have evolved and persisted in dynamic ecosystems where disturbance events vary in frequency, magnitude, timing, and duration, as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry). In the western United States, one of the major drivers of disturbance in stream ecosystems is fire. Although there is a growing consensus that fish populations can ultimately benefit from the productive and heterogeneous habitats created by fire, to persist they obviously have to withstand the immediate and shorter-term effects of fire, which can reduce or even extirpate local populations. Movement among interconnected stream habitats is thought to be an important strategy enabling persistence during and following fire, and there is mounting concern that the extensive isolation of salmonid populations in fragmented habitats is reducing their resiliency to fire. In spite of this concern, there are few direct observations of salmonid responses to fire. In fact, guidance is based largely on a broader understanding of the influences of landscape structure and disturbance in general on salmonid fishes, and there is considerable uncertainty about how best to manage for salmonid resilience to wildfire. Studies are limited by the difficult logistics of following fish responses in the face of unpredictable events such as wildfires. Therefore, BACI (Before-After-Control-Impact) study designs are nearly impossible, and replication is similarly challenging because fires are often low-frequency events. Furthermore, conventional ecological study approaches (e.g., studies of fish distribution, abundance, life histories, and movement) are logistically difficult to implement. Overall, a major challenge to understanding resilience of salmonid populations in fire-prone environments is related to moving beyond localized case studies to those with broader applicability in wildfire management . Genetic data can be

  5. Lake Ontario benthic prey fish assessment, 2015

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  6. Dynamics of individual growth in a recovering population of lake trout (Salvelinus namaycush)

    Science.gov (United States)

    Fabrizio, Mary C.; Dorazio, Robert M.; Schram, Stephen T.

    2001-01-01

    In 1976, the Wisconsin Department of Natural Resources established a refuge for a nearly depleted population of lake trout (Salvelinus namaycush) at Gull Island Shoal, Lake Superior. The refuge was intended to reduce fishing mortality by protecting adult lake trout. We examined the growth dynamics of these lake trout during the period of recovery by comparing estimates of ndividual growth before and after the refuge was established. Our estimates are based on an annual mark-recapture survey conducted at the spawning area since 1969. We developed a model that allowed mean growth rates to differ among individuals of different sizes and that accommodated variation in growth rates of individuals of the same size. Likelihood ratio tests were used to determine if the mean growth increments of lake trout changed ater the refuge was established. Our results suggest that growth of mature lake trout (particularly wild fish) decreased significantly in the postrefuge period. This decreased growth may have been associated with a reduction in food availability. We also observed reductions in growth as wild fish grew older and larger, which suggests that the growth of these fish may be adequately approximated by a von Bertalanffy growth model if it becomes possible to obtain accurate ages.

  7. SPATIAL SEARCH IN COMMERCIAL FISHING: A DISCRETE CHOICE DYNAMIC PROGRAMMING APPROACH

    OpenAIRE

    Smith, Martin D.; Provencher, Bill

    2003-01-01

    We specify a discrete choice dynamic programming model of commercial fishing participation and location choices. This approach allows us to examine how fishermen collect information about resource abundance and whether their behavior is forward-looking.

  8. Nonbreeding-Season Drivers of Population Dynamics in Seasonal Migrants: Conservation Parallels Across Taxa

    Directory of Open Access Journals (Sweden)

    Anna M. Calvert

    2009-12-01

    Full Text Available For seasonal migrants, logistical constraints have often limited conservation efforts to improving survival and reproduction during the breeding season only. Yet, mounting empirical evidence suggests that events occurring throughout the migratory life cycle can critically alter the demography of many migrant species. Herein, we build upon recent syntheses of avian migration research to review the role of non-breeding seasons in determining the population dynamics and fitness of diverse migratory taxa, including salmonid fishes, marine mammals, ungulates, sea turtles, butterflies, and numerous bird groups. We discuss several similarities across these varied migrants: (i non-breeding survivorship tends to be a strong driver of population growth; (ii non-breeding events can affect fitness in subsequent seasons through seasonal interactions at individual- and population-levels; (iii broad-scale climatic influences often alter non-breeding resources and migration timing, and may amplify population impacts through covariation among seasonal vital rates; and (iv changes to both stationary and migratory non-breeding habitats can have important consequences for abundance and population trends. Finally, we draw on these patterns to recommend that future conservation research for seasonal migrants will benefit from: (1 more explicit recognition of the important parallels among taxonomically diverse migratory animals; (2 an expanded research perspective focused on quantification of all seasonal vital rates and their interactions; and (3 the development of detailed population projection models that account for complexity and uncertainty in migrant population dynamics.

  9. Status and trends of prey fish populations in Lake Michigan, 2013

    Science.gov (United States)

    Madenjian, Charles P.; Bunnell, David B.; Desorcie, Timothy J.; Kostich, Melissa Jean; Armenio, Patricia M.; Adams, Jean V.

    2015-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2013. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2013 was estimated at 29 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was more than three times the 2012 estimate. However, the unusually high standard error associated with the 2013 estimate indicated no significant increase in lake-wide biomass between 2012 and 2013. Moreover, the age distribution of alewives remained truncated with no alewife exceeding an age of 5. The population of age-1 and older alewives was dominated (i.e., 88%) by the 2010 and 2012 year-classes. Record low biomass was observed for deepwater sculpin (1.3 kt) and ninespine stickleback (0.004 kt) in 2013, while bloater (1.6 kt) and rainbow smelt (0.2 kt) biomasses remained at low levels. Slimy sculpin lake-wide biomass was 0.32 kt in 2013, marking the fourth consecutive year of a decline. The 2013 biomass of round goby was estimated at 10.9 kt, which represented the peak estimate to date. Burbot lake-wide biomass (0.4 kt in 2013) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimate of dreissenid mussels in 2013 was 23.2 kt. Overall, the total

  10. Higher freshwater fish and sea fish intake is inversely associated with colorectal cancer risk among Chinese population: a case-control study.

    Science.gov (United States)

    Xu, Ming; Fang, Yu-Jing; Chen, Yu-Ming; Lu, Min-Shan; Pan, Zhi-Zhong; Yan, Bo; Zhong, Xiao; Zhang, Cai-Xia

    2015-08-12

    The association between specific fish intake and colorectal cancer risk remains controversial. This study aimed to examine the association between specific fish intake and colorectal cancer risk in Chinese population in a large case control study. During July 2010 to November 2014, 1189 eligible colorectal cancer cases and 1189 frequency-matched controls (age and sex) completed in-person interviews. A validated food frequency questionnaire was used to estimate dietary intake. Multivariate logistical regression models were used to estimate the odds ratio (OR) and 95% confidence interval (95% CI) after adjusting for various confounders. A strong inverse association was found between freshwater fish intake and colorectal cancer risk. Compared with the lowest quartile, the highest quartile intake showed a risk reduction of 53% (OR 0.47, 95% CI = 0.36-0.60, Ptrend colorectal cancer risk. These results indicate that higher consumption of freshwater fish, sea fish and fresh fish is associated with a lower risk of colorectal caner.

  11. THE EFFECT OF CUTANEOUS SECRETIONS OF CYPRINIDAE FISH ON PATHOGENIC BACTERIA ERYSIPELOTHRIX RHUSIOPATHIAE POPULATIONS

    Directory of Open Access Journals (Sweden)

    O. Gulay

    2014-09-01

    Full Text Available Purpose. To investigate the effect of cutaneous secretions of Cyprinidae fish on the populations of pathogenic bacteria Erysipelothrix rhusiopathiae. Methodology. Pieces of filter paper were placed on the skin of live fish. After a 1 min. exposure, they were removed and placed in glass tubes for the extraction of water-soluble components. Tap water was used as a solvent (previously settled for 48 hours; 0,1 cm3 of water were needed for 1 cm2 area of the filter paper. After extraction, the aqueous solution of fish cutaneous secretions was sterilized by filtering it through filters with pore diameter <0,2 µm. The test was carried out with cultures of E. rhusiopathiae bacteria, which were incubated on heart-brain broth at a temperature of +36,7 ± 0,3 °С for 48-hours. After adding the sterilized tap water and cultures of E. rhusiopathiae bacteria, test samples contained fish cutaneous secretions at following ratios: 1:10, 1:100, 1:1000, 1:10000. As a control, sterilized tap water and E. rhusiopathiae bacteria at ratios similar to test samples were used. In 48 hours, samples were taken from the specimens cultured at a temperature of +18...+20 °С for determination of cell density in E. rhusiopathiae populations. Findings. Aquatic environment, which contains the secretions of skin glands of certain Cyprinidae species, creates favorable conditions for the reproduction and increase in the density of pathogenic E. rhusiopathiae populations. In the conditions of freshwater ecosystems, direct topical biocenotical and trophic relations may be created between pathogenic E. rhusiopathiae bacteria and the studied fish species (рrussian carp Carassius auratus gibelio and wild carp Cyprinus. Originality. For the first time we obtained the quantitative data that demonstrate a stimulating effect of cutaneous secretions of certain fish species on pathogenic E. rhusiopathiae populations. Practical value. The stimulating effect of cutaneous secretions of some

  12. Remotely Sensed Predictions and In Situ Observations of Lower Congo River Dynamics in Support of Fish Evolutionary Biology

    Science.gov (United States)

    Gardiner, N.; Bjerklie, D. M.

    2011-12-01

    Ongoing research into the evolution of fishes in the lower Congo River suggests a close tie between diversity and hydraulic complexity of flow in the channel. For example, fish populations on each side of the rapids at the head of the lower Congo are within 1.5 km of one another, a distance normally allowing for interbreeding in river systems of comparable size, yet these fish populations show about 5% divergence in their mitochondrial DNA signatures. The proximal reason for this divergence is hydraulic complexity: the speed and turbulence of water moving through the thalweg is a barrier to dispersal for these fishes. Further examination of fish diversity suggests additional correlations of evolutionary divergence of fish clades in association with geomorphic and hydraulic features such as deep pools, extensive systems of rapids, alternating sections of fast and slow current, and recurring whirlpools. Due to prohibitive travel costs, limited field time, and the large geographic domain (approximately 400 river km) of the study area, we undertook a nested set of remote sensing analyses to extract habitat features, geomorphic descriptors, and hydraulic parameters including channel forming velocity, depth, channel roughness, slope, and shear stress. Each of these estimated parameters is mapped for each 1 km segment of the river from the rapids described above to below Inga Falls, a massive cataract where several endemic fish species have been identified. To validate remote sensing estimates, we collected depth and velocity data within the river using gps-enabled sonar measurements from a kayak and Doppler profiling from a motor-driven dugout canoe. Observations corroborate remote sensing estimates of geomorphic parameters. Remote sensing-based estimates of channel-forming velocity and depth were less than the observed maximum channel depth but correlated well with channel properties within 1 km reach segments. This correspondence is notable. The empirical models used

  13. Proxy measures of fitness suggest coastal fish farms can act as population sources and not ecological traps for wild gadoid fish.

    Directory of Open Access Journals (Sweden)

    Tim Dempster

    Full Text Available BACKGROUND: Ecological traps form when artificial structures are added to natural habitats and induce mismatches between habitat preferences and fitness consequences. Their existence in terrestrial systems has been documented, yet little evidence suggests they occur in marine environments. Coastal fish farms are widespread artificial structures in coastal ecosystems and are highly attractive to wild fish. METHODOLOGY/PRINCIPAL FINDINGS: To investigate if coastal salmon farms act as ecological traps for wild Atlantic cod (Gadus morhua and saithe (Pollachius virens, we compared proxy measures of fitness between farm-associated fish and control fish caught distant from farms in nine locations throughout coastal Norway, the largest coastal fish farming industry in the world. Farms modified wild fish diets in both quality and quantity, thereby providing farm-associated wild fish with a strong trophic subsidy. This translated to greater somatic (saithe: 1.06-1.12 times; cod: 1.06-1.11 times and liver condition indices (saithe: 1.4-1.8 times; cod: 2.0-2.8 times than control fish caught distant from farms. Parasite loads of farm-associated wild fish were modified from control fish, with increased external and decreased internal parasites, however the strong effect of the trophic subsidy overrode any effects of altered loads upon condition. CONCLUSIONS AND SIGNIFICANCE: Proxy measures of fitness provided no evidence that salmon farms function as ecological traps for wild fish. We suggest fish farms may act as population sources for wild fish, provided they are protected from fishing while resident at farms to allow their increased condition to manifest as greater reproductive output.

  14. Apportioning bacterial carbon source utilization in soil using 14 C isotope analysis of FISH-targeted bacterial populations sorted by fluorescence activated cell sorting (FACS): 14 C-FISH-FACS.

    Science.gov (United States)

    Gougoulias, Christos; Meade, Andrew; Shaw, Liz J

    2018-02-19

    An unresolved need in microbial ecology is methodology to enable quantitative analysis of in situ microbial substrate carbon use at the population level. Here, we evaluated if a novel combination of radiocarbon-labelled substrate tracing, fluorescence in situ hybridisation (FISH) and fluorescence-activated cell sorting (FACS) to sort the FISH-targeted population for quantification of incorporated radioactivity ( 14 C-FISH-FACS) can address this need. Our test scenario used FISH probe PSE1284 targeting Pseudomonas spp. (and some Burkholderia spp.) and salicylic acid added to rhizosphere soil. We examined salicylic acid- 14 C fate (mineralized, cell-incorporated, extractable and non-extractable) and mass balance (0-24 h) and show that the PSE1284 population captured ∼ 50% of the Nycodenz extracted biomass 14 C. Analysis of the taxonomic distribution of the salicylic acid biodegradation trait suggested that PSE1284 population success was not due to conservation of this trait but due to competitiveness for the added carbon. Adding 50KBq of 14 C sample -1 enabled detection of 14 C in the sorted population at ∼ 60-600 times background; a sensitivity which demonstrates potential extension to analysis of rarer/less active populations. Given its sensitivity and compatibility with obtaining a C mass balance, 14 C-FISH-FACS allows quantitative dissection of C flow within the microbial biomass that has hitherto not been achieved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Overview on the effects of parasites on fish health

    Science.gov (United States)

    Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.

  16. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  17. Population dynamics at high Reynolds number

    NARCIS (Netherlands)

    Perlekar, P.; Benzi, R.; Nelson, D.R.; Toschi, F.

    2010-01-01

    We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasi-localization and a remarkable reduction in the carrying

  18. Does mobility explain variation in colonisation and population recovery among stream fishes?

    Science.gov (United States)

    Angermeier, Paul L.; Albanese, Brett; Peterson, James T.

    2009-01-01

    1. Colonisation and population recovery are crucial to species persistence in environmentally variable ecosystems, but are poorly understood processes. After documenting movement rates for several species of stream fish, we predicted that this variable would influence colonisation rates more strongly than local abundance, per cent occupancy, body size and taxonomic family. We also predicted that populations of species with higher movement rates would recover more rapidly than species with lower movement rates and that assemblage structure would change accordingly. 2. To test these predictions, we removed fishes from a headwater and a mainstem creek in southwest Virginia and monitored colonisation over a 2-year period. Using an information–theoretic approach, we evaluated the relative plausibility of 15 alternative models containing different combinations of our predictor variables. Our best-supported model contained movement rate and abundance and was 41 times more likely to account for observed patterns in colonisation rates than the next-best model. Movement rate and abundance were both positively related to colonisation rates and explained 88% of the variation in colonisation rates among species. 3. Population recovery, measured as the per cent of initial abundance restored, was also positively associated with movement rate. One species recovered within 3 months, most recovered within 2 years, but two species still had not recovered after 2 years. Despite high variation in recovery, the removal had only a slight impact on assemblage structure because species that were abundant in pre-removal samples were also abundant in post-removal samples. 4. The significance of interspecific variation in colonisation and recovery rates has been underappreciated because of the widely documented recovery of stream fish assemblages following fish kills and small-scale experimental defaunations. Our results indicate that recovery of the overall assemblage does not imply

  19. Structure and dynamics of Antarctic fish neuroglobin assessed by computer simulations.

    Science.gov (United States)

    Boron, Ignacio; Russo, Roberta; Boechi, Leonardo; Cheng, C-H Christina; di Prisco, Guido; Estrin, Darío A; Verde, Cinzia; Nadra, Alejandro D

    2011-03-01

    Neuroglobin (Ngb) is a heme protein, highly conserved along evolution, predominantly found in the nervous system. It is upregulated by hypoxia and ischemia and may have a neuroprotective role under hypoxic stress. Although many other roles have been proposed, the physiological function is still unclear. Antarctic icefishes lack hemoglobin and some species also lack myoglobin, but all have Ngb and thus may help the elucidation of Ngb function. We present the first theoretically derived structure of fish Ngb and describe its behavior using molecular dynamics simulations. Specifically, we sequenced and analyzed Ngbs from a colorless-blooded Antarctic icefish species Chaenocephalus aceratus and a related red-blooded species (Dissostichus mawsoni). Both fish Ngbs are 6-coordinated but have some peculiarities that differentiate them from mammalian counterparts: they have extensions in the N and C termini that can interact with the EF loop, and a gap in the alignment that changes the CD-region structure/dynamics that has been found to play a key role in human neuroglobin. Our results suggest that a single mutation between both fish Ngbs is responsible for significant difference in the behavior of the proteins. The functional role of these characteristics is discussed. Copyright © 2011 Wiley Periodicals, Inc.

  20. Ocean acidification alters fish populations indirectly through habitat modification

    Science.gov (United States)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  1. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  2. Distance, dams and drift: What structures populations of an endangered, benthic stream fish?

    Science.gov (United States)

    Roberts, James H.; Angermeier, Paul; Hallerman, Eric M.

    2013-01-01

    Spatial population structure plays an important role in species persistence, evolution and conservation. Benthic stream fishes are diverse and frequently imperilled, yet the determinants and spatial scaling of their population structure are understudied. We investigated the range-wide population genetic structure of Roanoke logperch (Percina rex), an endangered, benthic stream fish of the eastern United States. Fish were sampled from 35 sites and analysed at 11 microsatellite DNA loci. Clustering models were used to sort individuals into genetically cohesive groups and thereby estimate the spatial scaling of population structure. We then used Bayesian generalized linear mixed models (BGLMMs) to test alternative hypotheses about the environmental factors most responsible for generating structure, as measured by the differentiation statistic FST. Clustering models delineated seven discrete populations, whose boundaries coincided with agents of fragmentation, including hydroelectric dams and tailwaters. In the absence of hydrological barriers, gene flow was extensive throughout catchments, whereas there was no evidence for contemporary dispersal between catchments across barriers. In the best-supported BGLMM, FST was positively related to the spatial distance and degree of hydrological alteration between sites and negatively related to genetic diversity within sites. Whereas the effect of tailwaters was equivocal, dams strongly influenced differentiation: the effect of a dam on FST was comparable to that of a between-site distance of over 1200 km of unimpounded river. Overall, the effect of distance-mediated dispersal was negligible compared to the combined effects of fragmentation and genetic drift. The contemporary population structure of P. rex comprises a few geographically extensive ‘islands’ that are fragmented by hydroelectric projects. This information clarifies the importance of a catchment-scale perspective on conserving the species and

  3. Behavioural responses to human-induced change: Why fishing should not be ignored.

    Science.gov (United States)

    Diaz Pauli, Beatriz; Sih, Andrew

    2017-03-01

    Change in behaviour is usually the first response to human-induced environmental change and key for determining whether a species adapts to environmental change or becomes maladapted. Thus, understanding the behavioural response to human-induced changes is crucial in the interplay between ecology, evolution, conservation and management. Yet the behavioural response to fishing activities has been largely ignored. We review studies contrasting how fish behaviour affects catch by passive (e.g., long lines, angling) versus active gears (e.g., trawls, seines). We show that fishing not only targets certain behaviours, but it leads to a multitrait response including behavioural, physiological and life-history traits with population, community and ecosystem consequences. Fisheries-driven change (plastic or evolutionary) of fish behaviour and its correlated traits could impact fish populations well beyond their survival per se , affecting predation risk, foraging behaviour, dispersal, parental care, etc., and hence numerous ecological issues including population dynamics and trophic cascades . In particular, we discuss implications of behavioural responses to fishing for fisheries management and population resilience. More research on these topics, however, is needed to draw general conclusions, and we suggest fruitful directions for future studies.

  4. Comparison of sampling methodologies and estimation of population parameters for a temporary fish ectoparasite

    Directory of Open Access Journals (Sweden)

    J.M. Artim

    2016-08-01

    Full Text Available Characterizing spatio-temporal variation in the density of organisms in a community is a crucial part of ecological study. However, doing so for small, motile, cryptic species presents multiple challenges, especially where multiple life history stages are involved. Gnathiid isopods are ecologically important marine ectoparasites, micropredators that live in substrate for most of their lives, emerging only once during each juvenile stage to feed on fish blood. Many gnathiid species are nocturnal and most have distinct substrate preferences. Studies of gnathiid use of habitat, exploitation of hosts, and population dynamics have used various trap designs to estimate rates of gnathiid emergence, study sensory ecology, and identify host susceptibility. In the studies reported here, we compare and contrast the performance of emergence, fish-baited and light trap designs, outline the key features of these traps, and determine some life cycle parameters derived from trap counts for the Eastern Caribbean coral-reef gnathiid, Gnathia marleyi. We also used counts from large emergence traps and light traps to estimate additional life cycle parameters, emergence rates, and total gnathiid density on substrate, and to calibrate the light trap design to provide estimates of rate of emergence and total gnathiid density in habitat not amenable to emergence trap deployment.

  5. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations

    International Nuclear Information System (INIS)

    Tong, Yindong; Wang, Mengzhu; Bu, Xiaoge; Guo, Xin; Lin, Yan; Lin, Huiming; Li, Jing; Zhang, Wei; Wang, Xuejun

    2017-01-01

    We assessed mercury (Hg) pollution in China's coastal waters, including the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, based on a nationwide dataset from 301 sampling sites. A methylmercury (MeHg) intake model for humans based on the marine food chain and human fish consumption was established to determine the linkage between water pollutants and the pollutant intake by humans. The predicted MeHg concentration in fish from the Bohai Sea was the highest among the four seas included in the study. The MeHg intake through dietary ingestion was dominant for the fish and was considerably higher than the MeHg intake through water respiration. The predicted MeHg concentrations in human blood in the coastal regions of China ranged from 1.37 to 2.77 μg/L for pregnant woman and from 0.43 to 1.00 μg/L for infants, respectively, based on different diet sources. The carnivorous fish consumption advisory for pregnant women was estimated to be 288–654 g per week to maintain MeHg concentrations in human blood at levels below the threshold level (4.4 μg/L established by the US Environmental Protection Agency). With a 50% increase in Hg concentrations in water in the Bohai Sea, the bioaccumulated MeHg concentration (4.5 μg/L) in the fish consumers will be higher than the threshold level. This study demonstrates the importance in controlling Hg pollution in China's coastal waters. An official recommendation guideline for the fish consumption rate and its sources will be necessary for vulnerable populations in China. - Graphical abstract: MeHg transfer route from the marine food chain to vulnerable population. - Highlights: • Predicted MeHg concentrations in pregnant woman and infant’s blood in China’s coastal regions are below threshold level. • The carnivorous fish consumption advisory for pregnant women is estimated to be 288–654 g per week. g • If with a 50% increase in Hg in Bohai Sea, the bioaccumulated MeHg concentration in

  6. Higher freshwater fish and sea fish intake is inversely associated with colorectal cancer risk among Chinese population: a case-control study

    OpenAIRE

    Xu, Ming; Fang, Yu-Jing; Chen, Yu-Ming; Lu, Min-Shan; Pan, Zhi-Zhong; Yan, Bo; Zhong, Xiao; Zhang, Cai-Xia

    2015-01-01

    The association between specific fish intake and colorectal cancer risk remains controversial. This study aimed to examine the association between specific fish intake and colorectal cancer risk in Chinese population in a large case control study. During July 2010 to November 2014, 1189 eligible colorectal cancer cases and 1189 frequency-matched controls (age and sex) completed in-person interviews. A validated food frequency questionnaire was used to estimate dietary intake. Multivariate log...

  7. Population Viability Analysis of the Endangered Shortnose Sturgeon

    Science.gov (United States)

    2011-12-01

    ll- 1 ) 0.0 0.2 0.4 0.6 0.8 Sturgeon ( left ) Prey ( right ) Figure 11. Model-simulated shortnose sturgeon population dynamics and prey dynamics over a...indicate low substrate diversity dominated by silt/sand substrate. ix ACRONYMS DO Dissolved oxygen DOC Dissolved organic carbon EFDC...fewer fish than the largest known population in the Hudson River ( Bain et al. 2007). Population estimates for this population have varied between 75

  8. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    Science.gov (United States)

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  9. Allee effects on population dynamics with delay

    International Nuclear Information System (INIS)

    Celik, C.; Merdan, H.; Duman, O.; Akin, O.

    2008-01-01

    In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay

  10. Development of fish populations in seismostrsss conditions of the south of Russia

    Directory of Open Access Journals (Sweden)

    P. V. Lyushvin

    2009-01-01

    Full Text Available The last decades communications between reproduction of many food fishes and traditionally considered factors are lost, is unpredictable time recessions food are observed. The purpose of thepresent work to show, that in the seismo-seas of the south of Russia where there is a unloading litosheric fluids, seismo factors often are defining in reproduction fishes. Earthquakes lead to shortterm unloadings on breaks of an earth's crust through the made active volcanos and griffins of hundreds tons litosheric waters and km³ gases (metane, hydrogen, hydrogen sulphide, radon, etc.. Presence of some of these fluids even in midget concentration (less than 0.1-1 ml/½ causes destruction young fishes, infringement of reproductive functions due to what the food base crabs grows, and after their reproduction and extraction. Landslide reductions of fish populations in current decade it is caused by passage of a maximum of century cyclicity of earthquakes.

  11. Structural stability of nonlinear population dynamics.

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  12. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  13. Distribution and abundance of fish populations in the Middle Wabash River

    International Nuclear Information System (INIS)

    Teppen, T.C.; Gammon, J.R.

    1976-01-01

    A field investigation was made of the distribution and abundance of fish within a 161-km portion of the Wabash River to determine effects of heated effluents as well as changes in water quality on ichthyofaunal communities within the river. Twenty-six sampling stations were electrofished, sequentially, four times in 1974 with extended sampling efforts made in the vicinity of two power-generating stations studied since 1967 and 1968. During August an overall rise in river temperature of 4 0 C was observed from upstream to downstream, with several chemical factors also showing slight increases. Although the majority of species populations were influenced either negatively or positively by the gradient of river conditions available to them, the only statistically significant parameters found in the analysis of community structure involved a lower diversity by weight below Terre Haute and a greater abundance of fish above the Cayuga generating station. Decreases occurred downstream in populations of redhorse (Moxostoma sp.), sauger (Stizostedion canadense), longear sunfish (Lepomis megalotis), and gizzard shad (Dorosoma cepedianum), with increases downstream observed in flathead catfish (Pylodictis olivaris), shortnose gar (Lepisosteus platostomus), longnose gar (E. osseus), and bowfin (Amia calva) populations. Carp (Cyprinus carpio) were present in large numbers throughout the study area with a tremendous population increase evident in recent years. Although species associations were variable among the segments, overall community parameters remained relatively unaffected

  14. Turbulence, larval fish ecology and fisheries recruitment : a review of field studies

    DEFF Research Database (Denmark)

    MacKenzie, Brian

    2000-01-01

    , and recruitment in entire populations. One of the main findings is that field studies show contrasting effects of turbulence on feeding, growth and mortality rates in nature and on recruitment. Coincident and multiple variations in ecosystem processes, lack of understanding of how some of these processes (e......Fish recruitment varies widely between years but much of this variability cannot be explained by most models of fish population dynamics. In this review, I examine the role of environmental variability on fish recruitment, and ill particular how turbulence affects feeding and growth of larval fish.......g. larval diet composition, feeding behaviour, growth rates, prey patchiness) respond to turbulence, and unavoidable sampling artifacts are mainly responsible for this result. Upwelling as well as frontal processes appear important for larval fish growth and survival, and turbulence levels vary both within...

  15. Estimation of age structure of fish populations from length-frequency data

    International Nuclear Information System (INIS)

    Kumar, K.D.; Adams, S.M.

    1977-01-01

    A probability model is presented to determine the age structure of a fish population from length-frequency data. It is shown that when the age-length key is available, maximum-likelihood estimates of the age structure can be obtained. When the key is not available, approximate estimates of the age structure can be obtained. The model is used for determination of the age structure of populations of channel catfish and white crappie. Practical applications of the model to impact assessment are discussed

  16. Global multi-decadal ocean climate and small-pelagic fish population

    International Nuclear Information System (INIS)

    Tourre, Yves M; Lluch-Cota, Salvador E; White, Warren B

    2007-01-01

    Ocean climate, environmental and biological conditions vary on several spatio-temporal scales. Besides climate change associated with anthropogenic activity, there is growing evidence of a natural global multi-decadal climate signal in the ocean-atmosphere-biosphere climate system. The spatio-temporal evolution of this signal is thus analyzed during the 20th century and compared to the variability of small-pelagic fish landings. It is argued that the low-frequency global ocean environment and plankton ecosystems must be modified such that small-pelagic populations vary accordingly. A small-pelagic global index or fishing 'regime indicator series' (RIS) (i.e. a small-pelagic abundance indicator) is used. RIS is derived from fish landings data in the four main fishing areas in the Pacific and Atlantic oceans. Global RIS changes phase (from positive to negative values) when SST multi-decadal anomalies are out-of-phase between the eastern Pacific and southern Atlantic. RIS also displays maxima during the mid-30s to early-40s and the late-70s to early-80s when the multi-decadal signal was approximately changing phases (Tourre and White 2006 Geophys. Res. Lett. 33 L06716). It is recognized that other factors may modulate fish stocks, including anthropogenic predation. Nevertheless it is proposed that variable climate and environment, and the low-frequency 'global synchrony' of small-pelagic landings (Schwartzlose et al 1999 S. Afr. J. Mar. Sci. 21 289-347), could be associated with the multi-decadal changes in global ocean climate conditions

  17. Population dynamics on heterogeneous bacterial substrates

    Science.gov (United States)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  18. Analysis of impingement impacts on Hudson River fish populations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; van Winkle, W.

    1988-01-01

    Impacts of impingement, expressed as reductions in year-class abundance, were calculated for six Hudson River fish populations. Estimates were made for the 1974 and 1975 year classes of white perch, striped bass, Atlantic tomcod, and American shad, and the 1974 year classes of alewife and blueback herring. The maximum estimated reductions in year-class abundance were less than 5% for all year classes except the 1974 and 1975 white perch year classes and the 1974 striped bass year class. Only for white perch were the estimates greater than 10% per year. For striped bass, the 146,000 fish from the 1974 year class that were killed by impingement could have produced 12,000-16,000 5-year-old fish or 270-300 10-year-olds. Also estimated were the reductions in mortality that could have been achieved had closed-cycle cooling systems been installed at one or more of three power plants (Bowline point, Indian Point, and Roseton) and had the screen-wash systems at Bowline Point and Indian Point been modified to improve the survival of impinged fish. Closed-cycle cooling at all three plants would have reduced impingement impacts on white perch, striped bass, and Atlantic tomcod by 75% or more; installation of closed-cycle cooling at Indian Point alone would have reduced impingement impacts on white perch and Atlantic tomcod by 50%-80%. Modified traveling screens would have been less effective than closed-cycle cooling, but still would have reduced impingement impacts on white perch by roughly 20%. 23 refs., 1 fig., 3 tabs

  19. Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics

    Science.gov (United States)

    Smith, William E.; Kwak, Thomas J.

    2014-01-01

    Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9-12% were semi-amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi-amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest.

  20. Historical Population Estimates For Several Fish Species At Offshore Oil and Gas Structures in the US Gulf of Mexico

    Science.gov (United States)

    Gitschlag, G.

    2016-02-01

    Population estimates were calculated for four fish species occurring at offshore oil and gas structures in water depths of 14-32 m off the Louisiana and upper Texas coasts in the US Gulf of Mexico. From 1993-1999 sampling was conducted at eight offshore platforms in conjunction with explosive salvage of the structures. To estimate fish population size prior to detonation of explosives, a fish mark-recapture study was conducted. Fish were captured on rod and reel using assorted hook sizes. Traps were occasionally used to supplement catches. Fish were tagged below the dorsal fin with plastic t-bar tags using tagging guns. Only fish that were alive and in good condition were released. Recapture sampling was conducted after explosives were detonated during salvage operations. Personnel operating from inflatable boats used dip nets to collect all dead fish that floated to the surface. Divers collected representative samples of dead fish that sank to the sea floor. Data provided estimates for red snapper (Lutjanus campechanus), Atlantic spadefish (Chaetodipterus faber), gray triggerfish (Balistes capriscus), and blue runner (Caranx crysos) at one or more of the eight platforms studied. At seven platforms, population size for red snapper was calculated at 503-1,943 with a 95% CI of 478. Abundance estimates for Atlantic spadefish at three platforms ranged from 1,432-1,782 with a 95% CI of 473. At three platforms, population size of gray triggerfish was 63-129 with a 95% CI of 82. Blue runner abundance at one platform was 558. Unlike the other three species which occur close to the platforms, blue runner range widely and recapture of this species was dependent on fish schools being in close proximity to the platform at the time explosives were detonated. Tag recapture was as high as 73% for red snapper at one structure studied.

  1. High-throughput telomere length quantification by FISH and its application to human population studies.

    Science.gov (United States)

    Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A

    2007-03-27

    A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.

  2. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    Science.gov (United States)

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource

  3. Population dynamics in variable environments

    CERN Document Server

    Tuljapurkar, Shripad

    1990-01-01

    Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula­ tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...

  4. Serum apolipoproteins in relation to intakes of fish in population of Arkhangelsk County

    Directory of Open Access Journals (Sweden)

    Petrenya Natalia

    2012-06-01

    Full Text Available Abstract Background Diets rich in omega-3 fatty acids and low in saturated fat were found beneficially associated with blood lipids and cardio-vascular health. Lean reindeer meet and local cold water white-fish species high in omega-3 are among the main sources of nutrients in the rural area of the Nenets Autonomous Okrug (NAO in Russia and are not normally consumed by the urban population from the same region. The aims of the study were firstly, to compare serum lipid profiles of residents of urban (Arkhangelsk city and rural (NAO regions of Arkhangelsk County, and secondly, to investigate the effects of fish consumption on the predictor of cardiovascular events apolipoprotein (Apo B/ApoA-I ratio in these populations. Methods A cross-sectional study conducted in Arkhangelsk County, Russia. Sample size of 249 adults: 132 subjects from Arkhangelsk city, aged 21–70 and 117 subject (87% Ethnic Nenets from NAO, aged 18–69. Results We observed more favorable lipid levels in NAO compared to Arkhangelsk participants. Age-adjusted geometric means of ApoB/ApoA-I ratio were 1.02 and 0.98 in men and women from Arkhangelsk; 0.84 and 0.91 in men and women from NAO respectively. Age and consumption of animal fat were positively associated with ApoB/ApoA-I ratio in women (pooled samples from Arkhangelsk and NAO. Body mass index and low levels of physical activity were positively associated with ApoB/ApoA-I ratio in men (pooled samples from Arkhangelsk and NAO. Reported oily fish consumption was not significantly correlated with ApoB/ApoA-I ratio. Conclusion The population sample from rural NAO, consisting largely of the indigenous Arctic population Nenets with healthier dietary sources, had a relatively less atherogenic lipid profile compared to the urban Arkhangelsk group. Fish consumption had no effect on apolipoproteins profile.

  5. Population dynamical responses to climate change

    DEFF Research Database (Denmark)

    Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas

    2008-01-01

    approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...... of arctic fox were not significantly related to changes in lemming abundance, both the stoat and the breeding of long-tailed skua were mainly related to lemming dynamics. The predator-prey system at Zackenberg differentiates from previously described systems in high-arctic Greenland, which, we suggest...

  6. Marine foraging and annual fish consumption of a south polar Skua population in the maritime Antarctic

    NARCIS (Netherlands)

    Hahn, S.M.; Ritz, M.S.; Reinhardt, K.

    2008-01-01

    Pelagic fish are an important component of Antarctic food webs but few quantitative data exist on energy transfer from fish to seabirds for the Seasonal Pack-ice Zone. We studied a local population of south polar, skuas Catharacta maccormicki during a whole breeding cycle and estimated its entire

  7. Intervention analysis of power plant impact on fish populations

    International Nuclear Information System (INIS)

    Madenjian, C.P.

    1984-01-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation. Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s

  8. Rooted Rights Systems in Turbulent Water: The Dynamics of Collective Fishing Rights in La Albufera, Valencia, Spain

    NARCIS (Netherlands)

    Boelens, R.A.; Claudin, V.

    2015-01-01

    Valencia's Albufera Lake is a wetlands area where different sociolegal systems interact. Its El Palmar community is governed by customary laws for fishing and territorial control. These exist alongside, yet in tension with, governmental laws. This article examines the dynamics of fishing rights,

  9. Rooted rights systems in turbulent waters: the dynamics of collective fishing rights in La Albufera, Valencia, Spain

    NARCIS (Netherlands)

    Boelens, R.; Claudin, V.

    2015-01-01

    Valencia's Albufera Lake is a wetlands area where different sociolegal systems interact. Its El Palmar community is governed by customary laws for fishing and territorial control. These exist alongside, yet in tension with, governmental laws. This article examines the dynamics of fishing rights,

  10. Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment.

    Science.gov (United States)

    Gouskov, Alexandre; Reyes, Marta; Wirthner-Bitterlin, Lisa; Vorburger, Christoph

    2016-02-01

    The Rhine catchment in Switzerland has been transformed by a chain of hydroelectric power stations. We addressed the impact of fragmentation on the genetic structure of fish populations by focusing on the European chub (Squalius cephalus). This fish species is not stocked and copes well with altered habitats, enabling an assessment of the effects of fragmentation per se. Using microsatellites, we genotyped 2133 chub from 47 sites within the catchment fragmented by 37 hydroelectric power stations, two weirs and the Rhine Falls. The shallow genetic population structure reflected drainage topology and was affected significantly by barriers to migration. The effect of power stations equipped with fishpasses on genetic differentiation was detectable, albeit weaker than that of man-made barriers without fishpasses. The Rhine Falls as the only long-standing natural obstacle (formed 14 000 to 17 000 years ago) also had a strong effect. Man-made barriers also exacerbated the upstream decrease in allelic diversity in the catchment, particularly when lacking fishpasses. Thus, existing fishpasses do have the desired effect of mitigating fragmentation, but barriers still reduce population connectivity in a fish that traverses fishpasses better than many other species. Less mobile species are likely to be affected more severely.

  11. Physiology can contribute to better understanding, management, and conservation of coral reef fishes.

    Science.gov (United States)

    Illing, Björn; Rummer, Jodie L

    2017-01-01

    Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more

  12. The Impacts of Recently Established Fish Populations on Zooplankton Communities in a Desert Spring, and Potential Conflicts in Setting Conservation Goals

    Directory of Open Access Journals (Sweden)

    Sujan M. Henkanaththegedara

    2015-01-01

    Full Text Available Desert springs, which harbor diverse and endemic invertebrate assemblages, are often used as refuge habitats for protected fish species. Additionally, many of these springs have been colonized by invasive fish species. However, the potential impacts of recently established fish populations on invertebrate communities in desert springs have been relatively unexplored. We conducted a mesocosm experiment to assess the impact of both protected and invasive fish on community structure of spring-dwelling invertebrates focusing on zooplankton. Experimental populations of spring zooplankton communities were established and randomly assigned to one of three treatments, (1 invasive western mosquitofish (Gambusia affinis; (2 endangered Mohave tui chub (Siphateles bicolor mohavensis; and (3 fishless control. Final populations of zooplankton and fish were sampled, sorted, identified and counted. The treatment differences of zooplankton communities were analyzed by comparing the densities of six major zooplankton taxa. Further, we performed nonmetric multidimensional scaling (NMDS to visualize the patterns of zooplankton community assemblages. Four zooplankton taxa, crustacean nauplii, cladocera, calanoid and cyclopoid copepods had significantly lower densities in fish treatments compared to fishless control. Overall, invasive mosquitofish caused a 78.8% reduction in zooplankton density, while Mohave tui chub caused a 65.1% reduction. Both protected and invasive fish had similar effects on zooplankton except for cladocerans where tui chub caused a 60% reduction in density, whereas mosquitofish virtually eliminated cladocerans. The presence of fish also had a significant effect on zooplankton community structure due to population declines and local extirpations presumably due to fish predation. This work shows that conservation-translocations undertaken to conserve protected fish species may impact spring-dwelling invertebrate communities, and such impacts are

  13. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  14. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    Directory of Open Access Journals (Sweden)

    Lennart Balk

    Full Text Available Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills.Samples from natural populations of haddock (Melanogrammus aeglefinus and Atlantic cod (Gadus morhua in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea.It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  15. Adoption Of Improved Fish Technologies Among Fish Farmers In ...

    African Journals Online (AJOL)

    A shortfall exists between fish supply and fish demand in the country despite the introduction of improved technology to fish farmers. This led to huge wage bill on the importation of fish to meet the protein need of the ever increasing population. This prompted this study with focus on adoption of improved fish technologies ...

  16. Population dynamics and population control of Galium aparine L.

    NARCIS (Netherlands)

    Weide, van der R.Y.

    1993-01-01

    The population biology of Galium aparine L. needs to be better understood, in order to be able to rationalize decisions about the short- and long-term control of this weed species for different cropping practices.

    A population dynamics model was developed to

  17. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics

    International Nuclear Information System (INIS)

    Yan, Yang; Yong-Liang, Yu; Bing-Gang, Tong; Guan-Hao, Wu

    2008-01-01

    We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming

  18. Evolutionary dynamics of cooperation in neutral populations

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2018-01-01

    Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.

  19. Energetic and ecological constraints on population density of reef fishes.

    Science.gov (United States)

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).

  20. Status and future of Lake Huron fish communities

    Science.gov (United States)

    Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.

  1. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment

    Science.gov (United States)

    Brochier, Timothée; Auger, Pierre-Amaël; Pecquerie, Laure; Machu, Eric; Capet, Xavier; Thiaw, Modou; Mbaye, Baye Cheikh; Braham, Cheikh-Baye; Ettahiri, Omar; Charouki, Najib; Sène, Ousseynou Ndaw; Werner, Francisco; Brehmer, Patrice

    2018-05-01

    Small pelagic fish (SPF) species are heavily exploited in eastern boundary upwelling systems (EBUS) as their transformation products are increasingly used in the world's food chain. Management relies on regular monitoring, but there is a lack of robust theories for the emergence of the populations' traits and their evolution in highly variable environments. This work aims to address existing knowledge gaps by combining physical and biogeochemical modelling with an individual life-cycle based model applied to round sardinella (Sardinella aurita) off northwest Africa, a key species for regional food security. Our approach focused on the processes responsible for seasonal migrations, spatio-temporal size-structure, and interannual biomass fluctuations. Emergence of preferred habitat resulted from interactions between natal homing behavior and environmental variability that impacts early life stages. Exploration of the environment by the fishes was determined by swimming capabilities, mesoscale to regional habitat structure, and horizontal currents. Fish spatio-temporal abundance variability emerged from a complex combination of distinct life-history traits. An alongshore gradient in fish size distributions is reported and validated by in situ measurements. New insights into population structure are provided, within an area where the species is abundant year-round (Mauritania) and with latitudinal migrations of variable (300-1200 km) amplitude. Interannual biomass fluctuations were linked to modulations of fish recruitment over the Sahara Bank driven by variability in alongshore current intensity. The identified processes constitute an analytical framework that can be implemented in other EBUS and used to explore impacts of regional climate change on SPF.

  2. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    Science.gov (United States)

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  3. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  4. Fishing effects on energy use by North Sea fishes

    NARCIS (Netherlands)

    Jennings, S.; Hal, van R.; Hiddink, J.G.; Maxwell, T.A.D.

    2008-01-01

    Fishing affects patterns of energy use in fish populations, as demonstrated by changes in population energy consumption and the size and age when energy demands are greatest. We compare theoretical predictions and observed patterns of energy use (expressed as the primary production required to

  5. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  6. Fishing degrades size structure of coral reef fish communities.

    Science.gov (United States)

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016

  7. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    Science.gov (United States)

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  8. The Good, The Bad, and The Distant: Soundscape Cues for Larval Fish.

    Science.gov (United States)

    Piercy, Julius J B; Smith, David J; Codling, Edward A; Hill, Adam J; Simpson, Stephen D

    2016-01-01

    Coral reef noise is an important navigation cue for settling reef fish larvae and can thus potentially affect reef population dynamics. Recent evidence has shown that fish are able to discriminate between the soundscapes of different types of habitat (e.g., mangrove and reef). In this study, we investigated whether discernible acoustic differences were present between sites within the same coral reef system. Differences in sound intensity and transient content were found between sites, but site-dependent temporal variation was also present. We discuss the implications of these findings for settling fish larvae.

  9. Comparing climate change and species invasions as drivers of coldwater fish population extirpations.

    Directory of Open Access Journals (Sweden)

    Sapna Sharma

    Full Text Available Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax on cisco (Coregonus artedii population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC of future temperature conditions for 15 general circulation models in 2046-2065 and 2081-2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25-70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change.

  10. Founding population size of an aquatic invasive species

    Science.gov (United States)

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  11. The use of fish remains in sediments for the reconstruction of paleoproductivity

    Energy Technology Data Exchange (ETDEWEB)

    Drago, T; Santos, A M P; Pinheiro, J [Institute Nacional de Recursos Biologicos (INRB), L-IPIMAR, Av. 5 de Outubro s/n 8700-305 OLHaO (Portugal); Ferreira-Bartrina, V [Centra de Investigacion CientIfica y de Educacion Superior de Ensenada- CICESE, Km. 107 Carretera Tijuana, C.P.22860, Ensenada, B.C. (Mexico)], E-mail: tdrago@ipimar.pt

    2009-01-01

    The majority of the works concerning fish productivity are based in fish landing records. However, in order to understand the causes of variability in fish productivity (natural and/or anthropogenic) it is essential to have information from periods when human impacts (e.g., fisheries) are considered unimportant. This can be achieved through the use of fish remains, i.e. scales, vertebrae and otoliths, from sediment records. The obtained data can be used to develop time series of fish stocks revealing the history of fish population dynamics over the last centuries or millennia. The majority of these works are located in Eastern Boundary Current Systems (e.g., Benguela, Peru-Humboldt, California), because these are associated with coastal upwelling and high productivity, which in some cases is at the origin of low bottom oxygen levels, leading to scale preservation. A search for fish remains in the Portuguese margin sediments is in progress in the context of the ongoing research project POPEI (High-resolution oceanic paleoproductivity and environmental changes; correlation with fish populations), which intend to fill the gap in studies of this type for the Canary Current System. In this paper we review some general ideas of the use of fish remains, related studies, methodologies and data processing, as well as presenting the first results of POPEI.

  12. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  13. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  14. Fish Commoditization: Sustainability Strategies to Protect Living Fish

    Science.gov (United States)

    Lam, Mimi E.; Pitcher, Tony J.

    2012-01-01

    The impacts of early fishing on aquatic ecosystems were minimal, as primitive technologies were used to harvest fish primarily for food. As fishing technology grew more sophisticated and human populations dispersed and expanded, local economies transitioned from subsistence to barter and trade. Expanded trade networks and mercantilization led to…

  15. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.; Harrison, Hugo B.; Almany, Glenn R.; Berumen, Michael L.; Bode, Michael; Bonin, Mary C.; Choukroun, Severine; Doherty, Peter J.; Frisch, Ashley J.; Saenz-Agudelo, Pablo; Jones, Geoffrey P.

    2016-01-01

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  16. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  17. A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species.

    Science.gov (United States)

    Gutierrez, Juan B; Teem, John L

    2006-07-21

    A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.

  18. Modelling the Dynamics of an Aedes albopictus Population

    Directory of Open Access Journals (Sweden)

    Thomas Anung Basuki

    2010-08-01

    Full Text Available We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.

  19. The role of carrion supply in the abundance of deep-water fish off California.

    Science.gov (United States)

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.

  20. Design and dynamic modeling of electrorheological fluid-based variable-stiffness fin for robotic fish

    Science.gov (United States)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.

  1. Within and between population variation in epidermal club cell investment in a freshwater prey fish: a cautionary tale for evolutionary ecologists.

    Directory of Open Access Journals (Sweden)

    Aditya K Manek

    Full Text Available Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging.

  2. Knowledge about fish consumption advisories: a risk communication failure within a university population.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2008-02-15

    Considerable attention has focused on whether people are aware of fish consumption advisories, particularly among fishermen and as a function of demographic variables. Yet little attention has been directed at the messages people are receiving from fish consumption advisories. This study examines knowledge about the benefits and risks of fish in relation to ethnicity and the degree of knowledge in a general university population in New Jersey. Subjects were asked open-ended questions about risks and benefits and responses were grouped into categories. A far greater percent of people had heard something about the risks and benefits of eating fish than could report specific information about the risks or benefits. While only 16% of subjects did not know what the benefits of eating fish were, 62% did not have any specific information about why there were warnings. However, for people who had some specific information, a higher proportion (57%) could identify the chemicals (PCBs, mercury) causing the risks, than could identify omega-3 fatty acids as contributing to benefits (40%). Much of the knowledge was very general, such as eating fish is "good for the heart", "good for you", or "brain food". Less than half of the subjects could name species of fish that were either high or low in contaminants. There were ethnic disparities in knowledge about both the benefits and the risks from fish consumption. A higher percentage of whites knew about both the benefits and risks of fish consumption than others; Asians knew the least about the risks, and blacks and hispanics knew the least about the benefits. There were also ethnic differences in ability to name fish that are low in contaminants, or high in contaminants. Minorities, particularly hispanics, were unable to list species that are high in contaminants. We identified three levels of knowledge about fish consumption: 1) whether people are aware of the risks or benefits of fish consumption, 2) whether they have any

  3. Spatial and temporal dynamics of commercial reef-fish fisheries on the West Florida Shelf: Understanding drivers of fleet behavior and the implications for future management

    Science.gov (United States)

    Cockrell, M.; Murawski, S. A.; Sanchirico, J. N.; O'Farrell, S.; Strelcheck, A.

    2016-02-01

    Spatial and temporal patterns of fishing activity have historically been described over relatively coarse scales or with limited datasets. However, new and innovative approaches for fisheries management will require an understanding of both species population dynamics and fleet behavior at finer spatial and temporal resolution. In this study we describe the spatial and temporal patterns of commercial reef-fish fisheries on the West Florida Shelf (WFS) from 2006-14, using a combination of on-board observer, catch logbook, and vessel satellite tracking data. The satellite tracking data is both high resolution (ie, records from each vessel at least once every hour for the duration of a trip), and required of all federally-permitted reef fish vessels in the Gulf of Mexico, making this a uniquely rich and powerful dataset. Along with spatial and temporal fishery dynamics, we quantified concomitant patterns in fishery economics and catch metrics, such as total landings and catch composition. Fishery patterns were correlated to a number of variables across the vessel, trip, and whole fleet scales, including vessel size, distance from home port, number of days at sea, and days available to fish. Notably, changes in management structure during the years examined (eg, establishment of a seasonal closed area in 2009 and implementation of an individual fishing quota system for Grouper-Tilefish in 2010), as well as emergency spatial closures during the Deepwater Horizon oil spill in 2010, enabled us to examine the impacts of specific management frameworks on the WFS reef-fish fishery. This research highlights the need to better understand the biological, economic, and social impacts within fisheries when managing for conservation and fisheries sustainability. We discuss our results in the context of a changing policy and management landscape for marine and coastal resources in the Gulf of Mexico.

  4. An account on the assemblage of fish larvae in Ponnani estuary, South India

    Directory of Open Access Journals (Sweden)

    Ranjeet Kutty

    2017-03-01

    Full Text Available Estuarine environments are one of the most dynamic aquatic ecosystems and serve many important functions in coastal waters. Larval fish dynamics contribute significantly to understanding the ecology of fish populations as they can indicate the spawning-stock biomass and recruitment in adult fish stocks. Initial development stages of fishes are particularly vulnerable and are influenced by physical and biological processes. Hence the present study was aimed to characterize ichthyoplankton assemblages, to evaluate environmental influence in its structure. Ponnani backwater fish larvae assemblages displayed a clear seasonal pattern presenting higher abundances and diversities during warmer months. Throughout the year there is a wide fluctuation in salinity, temperature and primary productivity in these backwaters enabling it to be classified under stressful environment for larval forms of certain economically important marine fishes.  A detailed analysis made to study the interaction of selected environmental parameters with ichthyofaunal diversity in Ponnani backwater provided a clear understanding on the influence of these variables on the distribution of marine fish larvae in the region. The results of the present analysis provided a model for the prediction of larval diversity from the prevailing environmental parameters.

  5. On the stochastic approach to marine population dynamics

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrandis

    2007-03-01

    survival model based on the Weibull distribution for the population lifetime. Finally, the Weibull survival model is elaborated in order to obtain some reference parameters that are useful for management purposes. This section does not deal exhaustively with the biological and fishery reference parameters covered in the specialised monographs (Caddy and Mahon, 1996; Cadima, 2000. We focused our work in two directions. Firstly, the principal tools generating the usual reference parameters were adapted to the proposed Weibull model. This is the case of biomass per recruit and yield per recruit, which generate some of the important reference points used for management purposes, such as the FMSY, F0.1, Fmed. They also provide important and useful concepts such as virgin biomass and overexploitation growth. For this adaptation, it was necessary to previously adapt the critical age as well as the overall natural, fishing and total mortality rates. Secondly, we analysed some indices broadly used in all population dynamics (including human populations but only marginally dealt with in fishery science, such as life expectancy, mean residual lifetime and median survival time. These parameters are redundant with mortality rates in the classical exponential model, but are not so trivial in a more general framework.

  6. Study of physiological and genotoxic status of fish populations of Azerbaijan shore of the Caspian sea

    International Nuclear Information System (INIS)

    Kasimov, R.Yu.; Palatnikov, G.M.; Mekhtiev, A.A.

    2005-01-01

    Full text : According to the studies conducted on Ecotox program of Caspian Ecological program, littoral waters of Azerbaijan and Iran are characterized with high content of heavy metals and organic compounds. Actually, all these substances are not just toxicants but mutagens as well. Taking into account these considerations, it appears important to be aware of physiological and genotoxic status of fish populations dwelling along Azerbaijan shore of the Caspian Sea for present time. The purpose of proposed project is collecting data concerning actual physiological and genotoxic status of fish populations dwelling in the littoral zone of Azerbaijan shore of the Caspian Sea. That will present the real picture of ecological status of ichtyofauna in Azerbaijan sector of the Caspian Sea and give grounds to conduct comparative analysis of changes while conducting all kinds of activities in the sea with the data provided within this project's frames. For this purpose we offer to conduct studies of fish populations along Azerbaijan littoral zone of the Caspian Sea beginning from north ones, sharing all shore into 5-6 points where fish catches should be done. Not less than 5 specimens of attached-dwelling fish, for instance gobies, are planned to catch in each of defined points. Blood samples for genotoxic analysis and samples of muscles, livers and gills for immunochemical and histopathological analysis will be taken. Along with this in these points the analysis of water - oxygen content, ph, salinity, temperature will be realized. Physiological status of fish will be evaluated by determination of serotonin-modulating protein content in ELISA-test. This analysis gives precise estimation of serotonergic system status that is very sensitive to adverse conditions. The second test - histopathological tissue studies gives grounds to determine functional status of internal organs of caught fish. The third test - micronuclei counting in erythrocytes. This technique allows

  7. Implications of fisheries during the spawning season for the sustainable management and recovery of depleted fish stocks: a conceptual framework

    NARCIS (Netherlands)

    Rijnsdorp, A.D.

    2009-01-01

    Fishing during the spawning season may negatively affects the reproductive potential and reproductive dynamics of exploited fish stocks due to a variety of mechanisms such as the disturbance of the natural spawning behaviour, effects on the age, size and sex composition of the spawning population

  8. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories.

    Science.gov (United States)

    Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M

    2011-08-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of

  9. Which Fish Should I Eat? Perspectives Influencing Fish Consumption Choices

    Science.gov (United States)

    Choi, Anna L.; Karagas, Margaret R.; Mariën, Koenraad; Rheinberger, Christoph M.; Schoeny, Rita; Sunderland, Elsie; Korrick, Susan

    2012-01-01

    Background: Diverse perspectives have influenced fish consumption choices. Objectives: We summarized the issue of fish consumption choice from toxicological, nutritional, ecological, and economic points of view; identified areas of overlap and disagreement among these viewpoints; and reviewed effects of previous fish consumption advisories. Methods: We reviewed published scientific literature, public health guidelines, and advisories related to fish consumption, focusing on advisories targeted at U.S. populations. However, our conclusions apply to groups having similar fish consumption patterns. Discussion: There are many possible combinations of matters related to fish consumption, but few, if any, fish consumption patterns optimize all domains. Fish provides a rich source of protein and other nutrients, but because of contamination by methylmercury and other toxicants, higher fish intake often leads to greater toxicant exposure. Furthermore, stocks of wild fish are not adequate to meet the nutrient demands of the growing world population, and fish consumption choices also have a broad economic impact on the fishing industry. Most guidance does not account for ecological and economic impacts of different fish consumption choices. Conclusion: Despite the relative lack of information integrating the health, ecological, and economic impacts of different fish choices, clear and simple guidance is necessary to effect desired changes. Thus, more comprehensive advice can be developed to describe the multiple impacts of fish consumption. In addition, policy and fishery management inter-ventions will be necessary to ensure long-term availability of fish as an important source of human nutrition. PMID:22534056

  10. Fish production and climate: Sprat in the Baltic Sea

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Köster, Fritz

    2004-01-01

    Processes controlling the production of new fish (recruitment) are poorly understood and therefore challenge population ecologists and resource managers. Sprat in the Baltic Sea is no exception: recruitment varies widely between years and is virtually independent of the biomass of mature sprat......-scale climate variability (North Atlantic Oscillation), Baltic Sea ice coverage, and water temperature. These relationships increase our understanding of sprat population dynamics and enable a desirable integration of fisheries ecology and management with climatology and oceanography....

  11. Mercury exposure through fish consumption in riparian populations at reservoir Guri, using nuclear techniques, Bolivar State, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Dario; Gali, Gladys; Carneiro, Flor; Paolini, Jorge; Venegas, Gladys; Marquez, Oscar

    2001-07-01

    The reservoir Guri located at the south of Venezuela in Bolivar State arose from damming the Caroni river and its main tributary, the Paraguay river. It was built between the years 1963 and 1986. The reservoir, whose primary use is the electric power generation followed by others beneficial uses such as water supply and recreation, was opened to commercial fishing recently. The riparian population is about 8,030 inhabitants: 7,389 toward the left side (west) and 641 toward the right side (cast) and it is distributed in populated centers, villages and in dispersed areas. The young population is the most conspicuous: 46 % and 52% on the right and left sides, respectively, with predominance of the masculine sex (86%). The reservoir Guri, the same as some reservoirs from other countries has shown what has been called 'dam effect', a term used to designate the occurrence of bioaccumulation process in reservoirs due to the high mercury levels found mainly in piscivorous fish species which are the most preferred by fish consumers. In a sample of 42 specimens of the carnivorous trophic level, the average value of total mercury was 1. 90 ppm, with a maximum value of 6.04 ppm. For the detritivorous trophic level, in a sample of 17 specimens, the average value of total mercury was 0.27 ppm, with a maximum value of 0.69 ppm, while for the omnivorous trophic level, in a sample of 6 specimens, the average value of total mercury was 0.55 ppm, with a maximum value of 0.99 ppm. The source of mercury in fishes from reservoir Guri has not been determined; however, in some sectors of the flooded area activities were carried out of exploitation of aluvional gold using metallic mercury for gold recovery and burning the amalgam at open ceiling. The objective of this research project is to determine the relationship among the ingestion of fish coming from reservoir Guri, the levels of organic mercury in hair and the appearance of signs and symptoms of neurotoxicity in a sample

  12. Mercury exposure through fish consumption in riparian populations at reservoir Guri, using nuclear techniques, Bolivar State, Venezuela

    International Nuclear Information System (INIS)

    Bermudez, Dario; Gali, Gladys; Carneiro, Flor; Paolini, Jorge; Venegas, Gladys; Marquez, Oscar

    2001-01-01

    The reservoir Guri located at the south of Venezuela in Bolivar State arose from damming the Caroni river and its main tributary, the Paraguay river. It was built between the years 1963 and 1986. The reservoir, whose primary use is the electric power generation followed by others beneficial uses such as water supply and recreation, was opened to commercial fishing recently. The riparian population is about 8,030 inhabitants: 7,389 toward the left side (west) and 641 toward the right side (cast) and it is distributed in populated centers, villages and in dispersed areas. The young population is the most conspicuous: 46 % and 52% on the right and left sides, respectively, with predominance of the masculine sex (86%). The reservoir Guri, the same as some reservoirs from other countries has shown what has been called 'dam effect', a term used to designate the occurrence of bioaccumulation process in reservoirs due to the high mercury levels found mainly in piscivorous fish species which are the most preferred by fish consumers. In a sample of 42 specimens of the carnivorous trophic level, the average value of total mercury was 1. 90 ppm, with a maximum value of 6.04 ppm. For the detritivorous trophic level, in a sample of 17 specimens, the average value of total mercury was 0.27 ppm, with a maximum value of 0.69 ppm, while for the omnivorous trophic level, in a sample of 6 specimens, the average value of total mercury was 0.55 ppm, with a maximum value of 0.99 ppm. The source of mercury in fishes from reservoir Guri has not been determined; however, in some sectors of the flooded area activities were carried out of exploitation of aluvional gold using metallic mercury for gold recovery and burning the amalgam at open ceiling. The objective of this research project is to determine the relationship among the ingestion of fish coming from reservoir Guri, the levels of organic mercury in hair and the appearance of signs and symptoms of neurotoxicity in a sample

  13. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  14. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  15. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    Science.gov (United States)

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  16. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    Directory of Open Access Journals (Sweden)

    Serena Hackerott

    2017-05-01

    Full Text Available Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  17. 76 FR 27017 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-05-10

    ... FURTHER INFORMATION CONTACT: Garth Griffin, Portland, OR, ph.: 503- 231-2005, Fax: 503-230-5441, e-mail... Snohomish River estuary, and Shilshole Bay, Washington. The goal of these projects is to understand changes....g., trophic web effects, plant and animal community dynamics, and forage fish population...

  18. Report of the Workshop on Population Characteristics and Change in Coastal Fishing Communities: Madras, India, 10-14 March 1997

    National Research Council Canada - National Science Library

    1997-01-01

    This workshop brought together 23 fisheries scientists/socio-economists and population experts with experience in demographic and population research on fishing communities and in fisheries management...

  19. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations

    Science.gov (United States)

    DuFour, Mark R.; May, Cassandra J.; Roseman, Edward F.; Ludsin, Stuart A.; Vandergoot, Christopher S.; Pritt, Jeremy J.; Fraker, Michael E.; Davis, Jeremiah J.; Tyson, Jeffery T.; Miner, Jeffery G.; Marschall, Elizabeth A.; Mayer, Christine M.

    2015-01-01

    Habitat degradation and harvest have upset the natural buffering mechanism (i.e., portfolio effects) of many large-scale multi-stock fisheries by reducing spawning stock diversity that is vital for generating population stability and resilience. The application of portfolio theory offers a means to guide management activities by quantifying the importance of multi-stock dynamics and suggesting conservation and restoration strategies to improve naturally occurring portfolio effects. Our application of portfolio theory to Lake Erie Sander vitreus (walleye), a large population that is supported by riverine and open-lake reef spawning stocks, has shown that portfolio effects generated by annual inter-stock larval fish production are currently suboptimal when compared to potential buffering capacity. Reduced production from riverine stocks has resulted in a single open-lake reef stock dominating larval production, and in turn, high inter-annual recruitment variability during recent years. Our analyses have shown (1) a weak average correlation between annual river and reef larval production (ρ̄ = 0.24), suggesting that a natural buffering capacity exists in the population, and (2) expanded annual production of larvae (potential recruits) from riverine stocks could stabilize the fishery by dampening inter-annual recruitment variation. Ultimately, our results demonstrate how portfolio theory can be used to quantify the importance of spawning stock diversity and guide management on ecologically relevant scales (i.e., spawning stocks) leading to greater stability and resilience of multi-stock populations and fisheries.

  20. Allee effects on population dynamics in continuous (overlapping) case

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.; Akin, O.; Celik, C.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a continuous population dynamics with delay under the Allee effect which occurs at low population density. The mathematical results and numerical simulations show the stabilizing role of the Allee effects on the stability of the equilibrium point of this population dynamics.

  1. Analysis of Population Dynamics in World Economy

    OpenAIRE

    Martin, Gress

    2011-01-01

    Population dynamics is an important topic in current world economy. The size and growth of population have an impact on economic growth and development of individual countries and vice versa, economic development influences demographic variables in a country. The aim of the article is to analyze historical development of world population, population stock change and relations between population stock change and economic development.

  2. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  3. It is the economy, stupid! Projecting the fate of fish populations using ecological-economic modeling.

    Science.gov (United States)

    Quaas, Martin F; Reusch, Thorsten B H; Schmidt, Jörn O; Tahvonen, Olli; Voss, Rudi

    2016-01-01

    Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond. © 2015 John Wiley & Sons Ltd.

  4. Water-level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species.

    Science.gov (United States)

    Nevado, B; Mautner, S; Sturmbauer, C; Verheyen, E

    2013-08-01

    Understanding how genetic variation is generated and maintained in natural populations, and how this process unfolds in a changing environment, remains a central issue in biological research. In this work, we analysed patterns of genetic diversity from several populations of three cichlid species from Lake Tanganyika in parallel, using the mitochondrial DNA control region. We sampled populations inhabiting the littoral rocky habitats in both very deep and very shallow areas of the lake. We hypothesized that the former would constitute relatively older, more stable and genetically more diverse populations, because they should have been less severely affected by the well-documented episodes of dramatic water-level fluctuations. In agreement with our predictions, populations of all three species sampled in very shallow shorelines showed traces of stronger population growth than populations of the same species inhabiting deep shorelines. However, contrary to our working hypothesis, we found a significant trend towards increased genetic diversity in the younger, demographically less stable populations inhabiting shallow areas, in comparison with the older and more stable populations inhabiting the deep shorelines. We interpret this finding as the result of the establishment of metapopulation dynamics in the former shorelines, by the frequent perturbation and reshuffling of individuals between populations due to the lake-level fluctuations. The repeated succession of periods of allopatric separation and secondary contact is likely to have further increased the rapid pace of speciation in lacustrine cichlids. © 2013 John Wiley & Sons Ltd.

  5. The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses

    International Nuclear Information System (INIS)

    Gao Shujing; Chen Lansun

    2005-01-01

    In this paper, we propose an exploited single-species discrete model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Using the stroboscopic map, we obtain an exact cycle of the system, and obtain the threshold conditions for its stability. Bifurcation diagrams are constructed with the birth rate as the bifurcation parameter, and these are observed to display complex dynamic behaviors, including chaotic bands with period windows, pitch-fork and tangent bifurcation. This suggests that birth pulse provides a natural period or cyclicity that makes the dynamical behavior more complex. Moreover, we show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. An interesting result is obtained that, after the birth pulse, the earlier culling the mature fish, the larger harvest can tolerate

  6. Can north american fish passage tools work for South american migratory fishes?

    Directory of Open Access Journals (Sweden)

    Claudio Rafael Mariano Baigún

    Full Text Available In North America, the Numerical Fish Surrogate (NFS is used to design fish bypass systems for emigrating juvenile salmon as they migrate from hatchery outfalls and rearing habitats to adult habitat in the oceans. The NFS is constructed of three linked modules: 1 a computational fluid dynamics model describes the complex flow fields upstream of dams at a scale sufficiently resolved to analyze, understand and forecast fish movement, 2 a particle tracking model interpolates hydraulic information from the fixed nodes of the computational fluid model mesh to multiple locations relevant to migrating fish, and 3 a behavior model simulates the cognition and behavior of individual fish in response to the fluid dynamics predicted by the computational fluid dynamics model. These three modules together create a virtual reality where virtual fish exhibit realistic dam approach behaviors and can be counted at dam exits in ways similar to the real world. Once calibrated and validated with measured fish movement and passage data, the NFS can accurately predict fish passage proportions with sufficient precision to allow engineers to select one optimum alternative from among many competing structural or operational bypass alternatives. Although South American fish species are different from North American species, it is likely that the basic computational architecture and numerical methods of the NFS can be used for fish conservation in South America. Consequently, the extensive investment made in the creation of the NFS need not be duplicated in South America. However, its use in South America will require that the behavioral response of the continent's unique fishes to hydrodynamic cues must be described, codified and tested before the NFS can be used to conserve fishes by helping design efficient South American bypass systems. To this end, we identify studies that could be used to describe the movement behavior of South American fishes of sufficient detail

  7. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  8. Perturbation analysis of transient population dynamics using matrix projection models

    DEFF Research Database (Denmark)

    Stott, Iain

    2016-01-01

    Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... these methods to know exactly what is being measured. Despite a wealth of existing methods, I identify some areas that would benefit from further development....

  9. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Science.gov (United States)

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λbounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  10. How life history characteristics and environmental forcing shape settlement success of coral reef fishes

    DEFF Research Database (Denmark)

    Wong-Ala, Jennifer; Comfort, Christina; Gove, Jamison

    2018-01-01

    Larval settlement is shaped by the interaction of biological processes (e.g., life history strategies, behavior etc.) and the environment (e.g., temperature, currents etc.). This is particularly true for many reef fishes where larval stages disperse offshore, often spending weeks to months...... in the pelagic realm before settling to shallow-water reefs. Our ability to predict reef fish settlement and subsequent recruitment and population dynamics depends on our ability to characterize how biological processes interact with the dynamic physical environment. Here we develop and apply an individual...... (PLD), body morphology, etc. We employ our biophysical model to examine how biology interacts with the physical environment to shape settlement predictions for reef fish off western and southern Hawai‘i Island. Linked to prevailing surface currents, we find increased probabilities of settling...

  11. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    example, the salmonids in the coastal rivers and streams, and the larger interconnected streams, rivers, and lakes of the interior exhibit a variety of ecotypes and migratory life histories (Healey 1986; Trotter 1989; Larson and McIntire 1993; Northcote 1997). This life-history variation appears to be associated with adaptation to spatial and temporal variation in environment (e.g., Schaffer and Elson 1975; Carl and Healey 1984; Beacham and Murray 1987), and there is some evidence of the genetic heritability of life-history traits (Carl and Healey 1984; Gharrett and Smoker 1993; Hankin, Nicholas, and Downey 1993). Persistence of any level of biological organization (e.g., life-history type, population, metapopulation, subspecies, species, community) is related to the interaction of environmental and biological components, and intraspecific diversity is a means of spreading risk (sensu den Boer 1968) of extirpation in dynamic environments (Gresswell 1999). Unfortunately, despite the broad distribution and extensive intraspecific diversity, persistence of native fishes is uncertain in the Pacific Northwest. Many populations of anadromous salmonids, once synonymous with vigorous biological communities throughout the region, are threatened with extinction (Nehlsen, Williams, and Lichatowich 1991; Frissell 1993; Thurow, Lee, and Rieman 1997). Furthermore, over half of the native taxa in the Columbia River Basin are either listed under the Endangered Species Act, are being considered for listing, or are deemed sensitive by the management agencies (Lee et al. 1997; Thurow, Lee, and Rieman 1997). Potamodromous species like bull trout Salvelinus confluentus are estimated to occur as strong populations in less than 5% of their potential range (Rieman, Lee, and Thurow 1997). Although not currently listed under the endangered species list, the coastal cutthroat trout Oncorhynchus clarki is managed as a sensitive species in Oregon and California (Hall, Bisson, and Gresswell 1997

  12. Fish assemblages

    Science.gov (United States)

    McGarvey, Daniel J.; Falke, Jeffrey A.; Li, Hiram W.; Li, Judith; Hauer, F. Richard; Lamberti, G.A.

    2017-01-01

    Methods to sample fishes in stream ecosystems and to analyze the raw data, focusing primarily on assemblage-level (all fish species combined) analyses, are presented in this chapter. We begin with guidance on sample site selection, permitting for fish collection, and information-gathering steps to be completed prior to conducting fieldwork. Basic sampling methods (visual surveying, electrofishing, and seining) are presented with specific instructions for estimating population sizes via visual, capture-recapture, and depletion surveys, in addition to new guidance on environmental DNA (eDNA) methods. Steps to process fish specimens in the field including the use of anesthesia and preservation of whole specimens or tissue samples (for genetic or stable isotope analysis) are also presented. Data analysis methods include characterization of size-structure within populations, estimation of species richness and diversity, and application of fish functional traits. We conclude with three advanced topics in assemblage-level analysis: multidimensional scaling (MDS), ecological networks, and loop analysis.

  13. Assessment of fish populations and habitat on Oculina Bank, a deep-sea coral marine protected area off eastern Florida

    OpenAIRE

    Harter , Stacey L.; Ribera, Marta M.; Shepard, Andrew N.; Reed, John K.

    2009-01-01

    A portion of the Oculina Bank located off eastern Florida is a marine protected area (MPA) preserved for its dense populations of the ivory tree coral (Oculina varicosa), which provides important habitat for fish. Surveys of fish assemblages and benthic habitat were conducted inside and outside the MPA in 2003 and 2005 by using remotely operated vehicle video transects and digital still imagery. Fish species composition, biodiversity, and grouper densities were used to determine w...

  14. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis.

    Directory of Open Access Journals (Sweden)

    Bing-Jian Liu

    Full Text Available The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2. Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource.

  15. Fish populations under stress. The example of the Lower Neckar river; Fischpopulationen unter Stress. Das Beispiel des Unteren Neckars

    Energy Technology Data Exchange (ETDEWEB)

    Braunbeck, Thomas; Brauns, Annika; Keiter, Steffen [Sektion Aquatische Oekologie und Toxikologie, Univ. Heidelberg (Germany); Hollert, Henner [Inst. fuer Umweltforschung (Biologie V), Lehr- und Forschungsgebiet Oekosystemanalyse, Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany); Schwartz, Patrick [Basel Univ. (CH). Mensch-Gesellschaft-Umwelt (MGU)

    2009-04-15

    Background, aim, and scope: Reports about declines or unusual structures of fish populations in native aquatic systems in Central Europe and North America are in sharp contrast to an obvious improvement of general water quality. The Neckar River may serve as an example of a formerly severely contaminated freshwater system in Southern Germany, the ecological situation of which could be substantially improved over the last three decades. Nevertheless, there are still deficits in the composition of the fish fauna, which cannot be explained by conventional chemical-analytical, hydromorphological and limnological methodologies. Therefore, in search of explanations for ecological deficits, ecotoxicological investigations with an increasing focus on sediment contamination have been performed along the Lower Neckar River over a period of 10 years. In addition to sediment tests, fish populations were screened for genotoxic and embryotoxic effects as well as alterations in the structure of central metabolic organs such as the liver. Materials and methods: Roach (Rutilus rutilus) and gudgeon (Gobio gobio) from the Lower Neckar River were studied with respect to histo- and cytological alterations of the liver as well as the induction of genotoxicity in liver, gut, gills and blood cells by means of the comet and micronucleus assays. At the same time, both native sediments and acetonic sediment extracts were tested for toxicity to zebrafish (Danio rerio) embryos and permanent fish cell cultures. Results: Massive disturbances of the liver ultrastructure indicate severe stress in the fish from the Lower Neckar River despite good supply of nutrition. Both cyto- and embryotoxicity tests document a considerable toxic potential of sediments from the Lower Neckar River, and results of both the comet assay and the micronucleus test provide evidence of the presence of genotoxic agents in the sediments and their effects in fish. There has been no decrease of genotoxicity over the last 10

  16. Mercury exposure in a high fish eating Bolivian Amazonian population with intense small-scale gold-mining activities.

    Science.gov (United States)

    Barbieri, Flavia Laura; Cournil, Amandine; Gardon, Jacques

    2009-08-01

    Methylmercury exposure in Amazonian communities through fish consumption has been widely documented in Brazil. There is still a lack of data in other Amazonian countries, which is why we conducted this study in the Bolivian Amazon basin. Simple random sampling was used from a small village located in the lower Beni River, where there is intense gold mining and high fish consumption. All participants were interviewed and hair samples were taken to measure total mercury concentrations. The hair mercury geometric mean in the general population was 3.02 microg/g (CI: 2.69-3.37; range: 0.42-15.65). Age and gender were not directly associated with mercury levels. Fish consumption showed a positive relation and so did occupation, especially small-scale gold mining. Hair mercury levels were lower than those found in Brazilian studies, but still higher than in non-exposed populations. It is necessary to assess mercury exposure in the Amazonian regions where data is still lacking, using a standardized indicator.

  17. Central-marginal population dynamics in species invasions

    Directory of Open Access Journals (Sweden)

    Qinfeng eGuo

    2014-06-01

    Full Text Available The species’ range limits and associated central-marginal (C-M; i.e., from species range center to margin population dynamics continue to draw increasing attention because of their importance for current emerging issues such as biotic invasions and epidemic diseases under global change. Previous studies have mainly focused on species borders and C-M process in natural settings for native species. More recently, growing efforts are devoted to examine the C-M patterns and process for invasive species partly due to their relatively short history, highly dynamic populations, and management implications. Here I examine recent findings and information gaps related to (1 the C-M population dynamics linked to species invasions, and (2 the possible effects of climate change and land use on the C-M patterns and processes. Unlike most native species that are relatively stable (some even having contracting populations or ranges, many invasive species are still spreading fast and form new distribution or abundance centers. Because of the strong nonlinearity of population demographic or vital rates (i.e. birth, death, immigration and emigration across the C-M gradients and the increased complexity of species ranges due to habitat fragmentation, multiple introductions, range-wide C-M comparisons and simulation involving multiple vital rates are needed in the future.

  18. Salmonella Typhimurium and Staphylococcus aureus dynamics in/on variable (micro)structures of fish-based model systems at suboptimal temperatures.

    Science.gov (United States)

    Baka, Maria; Verheyen, Davy; Cornette, Nicolas; Vercruyssen, Stijn; Van Impe, Jan F

    2017-01-02

    The limited knowledge concerning the influence of food (micro)structure on microbial dynamics decreases the accuracy of the developed predictive models, as most studies have mainly been based on experimental data obtained in liquid microbiological media or in/on real foods. The use of model systems has a great potential when studying this complex factor. Apart from the variability in (micro)structural properties, model systems vary in compositional aspects, as a consequence of their (micro)structural variation. In this study, different experimental food model systems, with compositional and physicochemical properties similar to fish patés, are developed to study the influence of food (micro)structure on microbial dynamics. The microbiological safety of fish products is of major importance given the numerous cases of salmonellosis and infections attributed to staphylococcus toxins. The model systems understudy represent food (micro)structures of liquids, aqueous gels, emulsions and gelled emulsions. The growth/inactivation dynamics and a modelling approach of combined growth and inactivation of Salmonella Typhimurium and Staphylococcus aureus, related to fish products, are investigated in/on these model systems at temperatures relevant to fish products' common storage (4°C) and to abuse storage temperatures (8 and 12°C). ComBase (http://www.combase.cc/) predictions compared with the maximum specific growth rate (μ max ) values estimated by the Baranyi and Roberts model in the current study indicated that the (micro)structure influences the microbial dynamics. Overall, ComBase overestimated microbial growth at the same pH, a w and storage temperature. Finally, the storage temperature had also an influence on how much each model system affected the microbial dynamics. Copyright © 2016. Published by Elsevier B.V.

  19. Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries?

    OpenAIRE

    Bailey, D.M.; Collins, M.A.; Gordon, J.D.M.; Zuur, A.F.; Priede, I.G.

    2009-01-01

    A severe scarcity of life history and population data for deep-water fishes is a major impediment to successful fisheries management. Long-term data for non-target species and those living deeper than the fishing grounds are particularly rare. We analysed a unique dataset of scientific trawls made from 1977 to 1989 and from 1997 to 2002, at depths from 800 to 4800 m. Over this time, overall fish abundance fell significantly at all depths from 800 to 2500 m, considerably deeper than the maximu...

  20. Clinical epidemiology of reduced kidney function among elderly male fishing and agricultural population in Taipei, Taiwan.

    Science.gov (United States)

    Kuo, Chi-Mei; Chien, Wu-Hsiung; Shen, Hsi-Che; Hu, Yi-Chun; Chen, Yu-Fen; Tung, Tao-Hsin

    2013-01-01

    To quantify the prevalence of and associated factors for chronic kidney disease (CKD) among male elderly fishing and agricultural population in Taipei, Taiwan. Subjects (n = 2,766) aged 65 years and over voluntarily admitted to a teaching hospital for a physical checkup were collected in 2010. CKD was defined as an estimated glomerular filtration rate agricultural population.

  1. Fish-allergic patients may be able to eat fish.

    Science.gov (United States)

    Mourad, Ahmad A; Bahna, Sami L

    2015-03-01

    Reported fish allergy prevalence varies widely, with an estimated prevalence of 0.2% in the general population. Sensitization to fish can occur by ingestion, skin contact or inhalation. The manifestations can be IgE or non-IgE mediated. Several fish allergens have been identified, with parvalbumins being the major allergen in various species. Allergenicity varies among fish species and is affected by processing or preparation methods. Adverse reactions after eating fish are often claimed to be 'allergy' but could be a reaction to hidden food allergen, fish parasite, fish toxins or histamine in spoiled fish. Identifying such causes would allow free consumption of fish. Correct diagnosis of fish allergy, including the specific species, might provide the patient with safe alternatives. Patients have been generally advised for strict universal avoidance of fish. However, testing with various fish species or preparations might identify one or more forms that can be tolerated.

  2. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    Science.gov (United States)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization

  3. A new model for simulating growth in fish

    Directory of Open Access Journals (Sweden)

    Johannes Hamre

    2014-01-01

    Full Text Available A real dynamic population model calculates change in population sizes independent of time. The Beverton & Holt (B&H model commonly used in fish assessment includes the von Bertalanffy growth function which has age or accumulated time as an independent variable. As a result the B&H model has to assume constant fish growth. However, growth in fish is highly variable depending on food availability and environmental conditions. We propose a new growth model where the length increment of fish living under constant conditions and unlimited food supply, decreases linearly with increasing fish length until it reaches zero at a maximal fish length. The model is independent of time and includes a term which accounts for the environmental variation. In the present study, the model was validated in zebrafish held at constant conditions. There was a good fit of the model to data on observed growth in Norwegian spring spawning herring, capelin from the Barents Sea, North Sea herring and in farmed coastal cod. Growth data from Walleye Pollock from the Eastern Bering Sea and blue whiting from the Norwegian Sea also fitted reasonably well to the model, whereas data from cod from the North Sea showed a good fit to the model only above a length of 70 cm. Cod from the Barents Sea did not grow according to the model. The last results can be explained by environmental factors and variable food availability in the time under study. The model implicates that the efficiency of energy conversion from food decreases as the individual animal approaches its maximal length and is postulated to represent a natural law of fish growth.

  4. Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations.

    Science.gov (United States)

    Soares, José Maria; Gomes, José M; Anjos, Marcelo R; Silveira, Josianne N; Custódio, Flavia B; Gloria, M Beatriz A

    2018-07-01

    The objective of this study was to quantify total mercury in highly popular Amazonian fish pacu, curimatã, jaraqui, and sardinha from the Madeira River and to estimate the exposure to methylmercury from fish consumption. The samples were obtained from two locations - Puruzinho Igarapé and Santa Rosa - near Humaitá, Amazonia, Brazil in two seasons of 2015 (high and low waters). The fish were identified, weighed and measured, and lipids were quantified. Total mercury was determined by gold amalgamation-atomic absorption spectrometry. Mean levels were used to calculate exposure of Amazonian and riverine populations. There was significant correlation (p < 0.05) between length × weight for all fish; length × lipid and weight × lipid were significant only for pacu. Total mercury levels varied along muscle tissue for the fish, except for sardinha; therefore muscle from the dorsal area along the fish were sampled, homogenized and used for analysis. The levels of total mercury varied from 0.01 to 0.46 mg/kg, with higher median levels in sardinha (0.24 mg/kg), followed by curimatã (0.16 mg/kg), jaraqui (0.13 mg/kg) and pacu (0.04 mg/kg), corresponding with the respective feeding habits along the trophic chain. Total mercury levels were not affected by the location of fish capture and by high and low waters seasons. Total mercury correlated significantly with length and weight for jaraqui and with length for sardinha (negative correlation). Total mercury levels in fish complied with legislation; however, exposures to methylmercury from fish consumption overpassed the safe intake reference dose for sardinha for Amazonians; however, for the riverine communities, all of the fish would cause potential health risk, mainly for children and women of childbearing age. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Patterns of variations in large pelagic fish: A comparative approach between the Indian and the Atlantic Oceans

    Science.gov (United States)

    Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.

    2010-07-01

    Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.

  6. Fish reproduction

    National Research Council Canada - National Science Library

    Rocha, Maria João; Arukwe, Augustine; Kapoor, B. G

    2008-01-01

    ... of reproductive systems is essential for such studies. Fishes comprise over 28,000 species, with a remarkable variability in morphology, physiology and environmental adaptation. Knowledge on fish reproduction is scattered across numerous sources that shows a dynamic research field. The Editors believe it to be an opportune moment for a...

  7. Exploring fish microbial communities to mitigate emerging diseases in aquaculture.

    Science.gov (United States)

    de Bruijn, Irene; Liu, Yiying; Wiegertjes, Geert F; Raaijmakers, Jos M

    2018-01-01

    Aquaculture is the fastest growing animal food sector worldwide and expected to further increase to feed the growing human population. However, existing and (re-)emerging diseases are hampering fish and shellfish cultivation and yield. For many diseases, vaccination protocols are not in place and the excessive use of antibiotics and other chemicals is of substantial concern. A more sustainable disease control strategy to protect fish and shellfish from (re-)emerging diseases could be achieved by introduction or augmentation of beneficial microbes. To establish and maintain a 'healthy' fish microbiome, a fundamental understanding of the diversity and temporal-spatial dynamics of fish-associated microbial communities and their impact on growth and health of their aquatic hosts is required. This review describes insights in the diversity and functions of the fish bacterial communities elucidated with next-generation sequencing and discusses the potential of the microbes to mitigate (re-)emerging diseases in aquaculture. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  9. Fish waste as an alternative resource for gulls along the Patagonian coast: availability, use, and potential consequences

    Energy Technology Data Exchange (ETDEWEB)

    Yorio, Pablo; Caille, Guillermo

    2004-04-01

    We evaluated the volumes of waste from fish processing plants in Chubut Province, Argentina, and discuss its potential consequences for Kelp Gull (Larus dominicanus) population dynamics and coastal management. Mean volume of waste produced between 1989 and 2001 in three coastal cities was 49.8 {+-} 10.9 thousand tons y{sup -1}. The amount of waste varied between years and cities, being larger at Puerto Madryn and Comodoro Rivadavia than at Rawson (24.1, 19.3 and 6.4 thousand tons y{sup -1}, respectively). Waste was disposed at the three cities during all months of the sampled years. Large numbers of Kelp Gulls have been recorded taking advantage of fish waste disposed at these waste sites throughout the year. Considering its energetic content, waste generated at processing plants may support a population of between 101 000 and 209 000 Kelp Gulls. Fish waste could be contributing to their population expansion through increased survival and breeding success. Conflicts due to the use of waste and derived effects on other coastal species and human populations could be minimized by adequate fish waste management.

  10. Fish waste as an alternative resource for gulls along the Patagonian coast: availability, use, and potential consequences

    International Nuclear Information System (INIS)

    Yorio, Pablo; Caille, Guillermo

    2004-01-01

    We evaluated the volumes of waste from fish processing plants in Chubut Province, Argentina, and discuss its potential consequences for Kelp Gull (Larus dominicanus) population dynamics and coastal management. Mean volume of waste produced between 1989 and 2001 in three coastal cities was 49.8 ± 10.9 thousand tons y -1 . The amount of waste varied between years and cities, being larger at Puerto Madryn and Comodoro Rivadavia than at Rawson (24.1, 19.3 and 6.4 thousand tons y -1 , respectively). Waste was disposed at the three cities during all months of the sampled years. Large numbers of Kelp Gulls have been recorded taking advantage of fish waste disposed at these waste sites throughout the year. Considering its energetic content, waste generated at processing plants may support a population of between 101 000 and 209 000 Kelp Gulls. Fish waste could be contributing to their population expansion through increased survival and breeding success. Conflicts due to the use of waste and derived effects on other coastal species and human populations could be minimized by adequate fish waste management

  11. Population Genetic Structure and Genetic Diversity in Twisted-Jaw Fish, Belodontichthys truncatus Kottelat & Ng, 1999 (Siluriformes: Siluridae, from Mekong Basin

    Directory of Open Access Journals (Sweden)

    Surapon Yodsiri

    2017-01-01

    Full Text Available The Mekong River and its tributaries possess the second highest diversity in fish species in the world. However, the fish biodiversity in this river is threatened by several human activities, such as hydropower plant construction. Understanding the genetic diversity and genetic structure of the species is important for natural resource management. Belodontichthys truncatus Kottelat & Ng is endemic to the Mekong River basin and is an important food source for people in this area. In this study, the genetic diversity, genetic structure, and demographic history of the twisted-jaw fish, B. truncatus, were investigated using mitochondrial cytochrome b gene sequences. A total of 124 fish specimens were collected from 10 locations in the Mekong and its tributaries. Relatively high genetic diversity was found in populations of B. truncatus compared to other catfish species in the Mekong River. The genetic structure analysis revealed that a population from the Chi River in Thailand was genetically significantly different from other populations, which is possibly due to the effect of genetic drift. Demographic history analysis indicated that B. truncatus has undergone recent demographic expansion dating back to the end of the Pleistocene glaciation.

  12. Monitoring of East Channel dredge areas benthic fish population and its implications

    International Nuclear Information System (INIS)

    Drabble, Ray

    2012-01-01

    Regional annual sampling of commercial fish stocks formed a high priority for monitoring studies attendant with the granting of aggregate dredging licenses in the Eastern Channel Region (ECR) which had previously not been dredged. An assessment of 4 m beam trawl sampling between 2005 and 2008 following the granting of licences in 2006 is provided. The majority of fish species have shown marked reductions in abundance since commencement of dredging. Draghead entrainment has been identified as a possible contributory cause based upon the known vulnerability of selected species (). Other environmental factors considered offer no explanation for the changes in abundance. Comparative analyses with ICES data for plaice and sole over the study period demonstrate that changes in the ECR do not result from seasonal flux in the wider populations. An alternative impact model and potential mitigation measures are suggested.

  13. Body size and geographic range do not explain long term variation in fish populations: a Bayesian phylogenetic approach to testing assembly processes in stream fish assemblages.

    Directory of Open Access Journals (Sweden)

    Stephen J Jacquemin

    Full Text Available We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 - 2010 local scale population variation of fishes in West Fork White River (Indiana, USA. The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon's local scale habitat and biotic assemblages.

  14. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish.

    Science.gov (United States)

    Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P

    2018-01-12

    Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST  = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.

  16. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    Science.gov (United States)

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fish robotics and hydrodynamics

    Science.gov (United States)

    Lauder, George

    2010-11-01

    Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.

  18. Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatan, Mexico

    Science.gov (United States)

    Vega-Cendejas, Ma. Eugenia; Hernández de Santillana, Mireya

    2004-06-01

    Rio Lagartos, a tropical coastal lagoon in northern Yucatan Peninsula of Mexico, is characterized by high salinity during most of the year (55 psu annual average). Even though the area has been designated as a wetland of international importance because of its great biodiversity, fish species composition and distribution are unknown. To determine whether the salinity gradient was influencing fish assemblages or not, fish populations were sampled seasonally by seine and trawl from 1992 to 1993 and bimonthly during 1997. We identified 81 fish species, eight of which accounted for 53.1% considering the Importance Value Index ( Floridichthys polyommus, Sphoeroides testudineus, Eucinostomus argenteus, Eucinostomus gula, Fundulus majalis, Strongylura notata, Cyprinodon artifrons and Elops saurus). Species richness and density declined from the mouth to the inner zone where extreme salinity conditions are prominent (>80) and competitive interactions decreased. However, in Coloradas basin (53 average sanity) and in the inlet of the lagoon, the highest fish density and number of species were observed. Greater habitat heterogeneity and fish immigration were considered as the best explanation. Multivariate analysis found three zones distinguished by fish occurrence, abundance and distribution. Ichthyofaunal spatial differences were attributed to selective recruitment from the Gulf of Mexico due to salinity gradient and to changing climatic periods. Estuarine and euryhaline marine species are abundant, with estuarine dependent ones entering the system according to environmental preferences. This knowledge will contribute to the management of the Special Biosphere Reserve through baseline data to evaluate environmental and anthropogenic changes.

  19. Effect of exposure on salmon lice Lepeophtheirus salmonis population dynamics in Faroese salmon farms

    DEFF Research Database (Denmark)

    Patursson, Esbern J.; Simonsen, Knud; Visser, Andre

    2017-01-01

    We assessed variations in salmon lice Lepeophtheirus salmonis population dynamics in Faroese salmon farms in relationship to their physical exposure to local circulation patterns and flushing with adjacent waters. Factors used in this study to quantify physical exposure are estimates...... of the freshwater exchange rate, the tidal exchange rate and dispersion by tidal currents. Salmon farms were ranked according to the rate of increase in the average numbers of salmon lice per fish. In a multiple linear regression, physical exposure together with temperature were shown to have a significant effect...... threshold of salmon stocking numbers for outbreaks of infection. The study presents a simple method of characterizing salmon farming fjords in terms of their different exposure levels and how they relate to potential self-infection at these sites...

  20. Population and evolutionary dynamics in spatially structured seasonally varying environments.

    Science.gov (United States)

    Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin

    2018-03-25

    Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can

  1. Population structure, fluctuating asymmetry and genetic variability in an endemic and highly isolated Astyanax fish population (Characidae

    Directory of Open Access Journals (Sweden)

    Maria Claudia Gross

    2004-01-01

    Full Text Available Morphological and chromosomal markers were used to infer the structure and genetic variability of a population of fish of the genus Astyanax, geographically isolated at sinkhole 2 of Vila Velha State Park, Paraná, Brazil. Two morphotypes types were observed, the standard phenotype I and phenotype II which showed an anatomical alteration probably due to an inbreeding process. Fluctuating asymmetry (FA analysis of different characters showed low levels of morphological variation among the population from sinkhole 2 and in another population from the Tibagi river (Paraná, Brazil. The Astyanax karyotype was characterized in terms of chromosomal morphology, constitutive heterochromatin and nucleolar organizer regions. Males and females presented similar karyotypes (2n=48, 6M+18SM+14ST+10A with no evidence of a sex chromosome system. One female from sinkhole 2 was a natural triploid with 2n=3x=72 chromosomes (9M+27SM+21ST+15A. The data are discussed regarding the maintenance of population structure and their evolutionary importance, our data suggesting that Astyanax from the Vila Velha State Park sinkhole 2 is a recently isolated population.

  2. A computational fluid dynamics modeling study of guide walls for downstream fish passage

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2017-01-01

    A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.

  3. Comparative energetics of the 5 fish classes on the basis of dynamic energy budgets

    Science.gov (United States)

    Kooijman, Sebastiaan A. L. M.; Lika, Konstadia

    2014-11-01

    The eco-physiology of taxa in an evolutionary context can best be studied by a comparison of parameter values of the energy budget that accounts for the inter-relationships of all endpoints of energy allocation. To this end, the parameters of the standard Dynamic Energy Budget (DEB) model have been estimated for 64 fish species from all 5 fish classes. The values are compared with those of the whole collection of over 300 species from most large animal phyla. The goodness of fit was very high, but the data were rather incomplete, compared with the energy balance for full life cycles. Metabolic acceleration, where maximum specific assimilation and energy conductance increase with length between birth and metabolic metamorphosis, seems to be confined, among fish, to some species of ray-finned fish and seems to have evolved independently several times in this taxon. We introduce a new altriciality index, i.e. the ratio of the maturity levels at puberty and birth, and conclude that ray-finned fish are more altricial, and cartilaginous fish are more precocial than typical animals. Fish allocate more to reproduction than typical animals. Parameter estimates show that 66% of the fish species considered invest less in reproduction than the value that would maximize the reproduction rate of fully grown individuals. By comparison, 85% of all the animal species in the collection do so. Consistent with theoretical expectations, allocation to reproduction and maturity at birth increase with cubed (ultimate structural) length, and reserve capacity with length for non-ray-finned fish, with the consequence that reproduction rate decreases with length. Ray-finned fish, however, have a maturity at birth and a reserve capacity almost independent of length, and a reproduction rate that increases with cubed length. Reserve capacity tends to increase with ultimate length for non-accelerating ray-finned fish, but not for accelerating species. Reproduction rate decreases inter

  4. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  5. Individual-based modeling of fish: Linking to physical models and water quality.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A.

    1997-08-01

    The individual-based modeling approach for the simulating fish population and community dynamics is gaining popularity. Individual-based modeling has been used in many other fields, such as forest succession and astronomy. The popularity of the individual-based approach is partly a result of the lack of success of the more aggregate modeling approaches traditionally used for simulating fish population and community dynamics. Also, recent recognition that it is often the atypical individual that survives has fostered interest in the individual-based approach. Two general types of individual-based models are distribution and configuration. Distribution models follow the probability distributions of individual characteristics, such as length and age. Configuration models explicitly simulate each individual; the sum over individuals being the population. DeAngelis et al (1992) showed that, when distribution and configuration models were formulated from the same common pool of information, both approaches generated similar predictions. The distribution approach was more compact and general, while the configuration approach was more flexible. Simple biological changes, such as making growth rate dependent on previous days growth rates, were easy to implement in the configuration version but prevented simple analytical solution of the distribution version.

  6. Conservation physiology of marine fishes: state of the art and prospects for policy

    DEFF Research Database (Denmark)

    McKenzie, David J.; Axelsson, Michael; Chabot, Denis

    2016-01-01

    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes...... broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however......, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change...

  7. Assessing the impact of power plant mortality on the compensatory reserve of fish populations

    International Nuclear Information System (INIS)

    Goodyear, C.P.

    1977-01-01

    A technique is presented to quantify the concepts of compensation and compensatory reserve in exploited fish populations. The technique was used to examine the impact of power plant mortality on a hypothetical striped bass population. Power plant mortality had a more severe impact on the compensation ratio and compensatory reserve for an exploited stock. The technique can be applied to determine a critical compensation ratio which could serve as a standard against which additional sources of mortality, such as those caused by power plants, could be measured

  8. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.; Baird, Andrew Hamilton; Depczynski, Martial R.; Gonzá lez-Cabello, Alonso; Hoey, Andrew; Lefé vre, Carine D.; Tanner, Jennifer K.

    2012-01-01

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  9. Coral recovery may not herald the return of fishes on damaged coral reefs

    KAUST Repository

    Bellwood, David R.

    2012-03-25

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals. © 2012 Springer-Verlag.

  10. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  11. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  12. Population characteristics of channel catfish near the northern edge of their distribution: implications for management

    Science.gov (United States)

    Carter-Lynn, K. P.; Quist, Michael C.

    2015-01-01

    Channel catfish, Ictalurus punctatus (Rafinesque), populations in six lakes in northern Idaho, USA, were sampled to describe their population characteristics. During the summers of 2011 and 2012, 4864 channel catfish were sampled. Channel catfish populations had low to moderate catch rates, and length structure was dominated by fish Channel catfish were in good body condition. All populations were maintained by stocking age-1 or age-2 fish. Growth of fish reared in thermally enriched environments prior to stocking was fast compared to other North American channel catfish populations. After stocking, growth of channel catfish declined rapidly. Once stocked, cold water temperatures, prey resources and (or) genetic capabilities limited growth. Total annual mortality of age 2 and older channel catfish was generally channel catfish population dynamics and highlights important considerations associated with their ecology and management.

  13. Dynamics of a physiologically structured population in a time-varying environment

    DEFF Research Database (Denmark)

    Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste

    2016-01-01

    Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...

  14. Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.

  15. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...

  16. Population dynamics of active and total ciliate populations in arable soil amended with wheat

    DEFF Research Database (Denmark)

    Ekelund, F.; Frederiksen, Helle B.; Ronn, R.

    2002-01-01

    of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable...

  17. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    Science.gov (United States)

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  18. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jochem, Warren C [ORNL; Sims, Kelly M [ORNL; Bright, Eddie A [ORNL; Urban, Marie L [ORNL; Rose, Amy N [ORNL; Coleman, Phil R [ORNL; Bhaduri, Budhendra L [ORNL

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  19. DYNAMICS OF Cercospora zeina POPULATIONS IN MAIZE-BASED ...

    African Journals Online (AJOL)

    ACSS

    DYNAMICS OFCercospora zeina POPULATIONS IN MAIZE-BASED AGRO- ..... Population differentiation of Cercospora zeina in three districts of Uganda based on analysis of molecular variance ..... interactions: The example of the Erysiphe.

  20. Development of working hypotheses linking management of the Missouri River to population dynamics of Scaphirhynchus albus (pallid sturgeon)

    Science.gov (United States)

    Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.

    2016-01-20

    This report documents a process of filtering of hypotheses that relate Missouri River Scaphirhynchus albus (pallid sturgeon) population dynamics to management actions including flow alterations, channel reconfigurations, and pallid sturgeon population augmentation. The filtering process was a partnership among U.S. Geological Survey, U.S. Army Corps of Engineers, and U.S. Fish and Wildlife Service to contribute to the Missouri River Recovery Management Plan process. The objective of the filtering process was to produce a set of hypotheses with high relevance to pallid sturgeon population dynamics and decision making on the Missouri River. The Missouri River Pallid Sturgeon Effects Analysis team filtered hundreds of potential hypotheses implicit in conceptual ecological models to develop a set of 40 candidate dominant hypotheses that were identified by experts as being important in pallid sturgeon population dynamics. Using a modified Delphi process and additional expert opinion, the team reduced this set of hypotheses to 23 working dominant hypotheses. We then matched the 23 hypotheses with management actions that could influence the biotic outcomes, resulting in as many as 176 potential effects between management actions and pallid sturgeon in the Missouri River. This number was consolidated to a candidate set of 53 working management hypotheses because some management actions applied to multiple life stages of the pallid sturgeon. We used an additional round of expert surveys to identify a set of 30 working management hypotheses. Finally, the set of working management hypotheses was filtered by the U.S. Army Corps of Engineers, Missouri River Recovery Program for actions that were within the agency’s authority and jurisdiction. This round resulted in a set of 21 hypotheses for initial modeling of linkages from management to pallid sturgeon population responses.

  1. Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions.

    Directory of Open Access Journals (Sweden)

    Christine Ward-Paige

    Full Text Available BACKGROUND: Increasingly, underwater visual censuses (UVC are used to assess fish populations. Several studies have demonstrated the effectiveness of protected areas for increasing fish abundance or provided insight into the natural abundance and structure of reef fish communities in remote areas. Recently, high apex predator densities (>100,000 individuals x km(-2 and biomasses (>4 tonnes x ha(-1 have been reported for some remote islands suggesting the occurrence of inverted trophic biomass pyramids. However, few studies have critically evaluated the methods used for sampling conspicuous and highly mobile fish such as sharks. Ideally, UVC are done instantaneously, however, researchers often count animals that enter the survey area after the survey has started, thus performing non-instantaneous UVC. METHODOLOGY/PRINCIPAL FINDINGS: We developed a simulation model to evaluate counts obtained by divers deploying non-instantaneous belt-transect and stationary-point-count techniques. We assessed how fish speed and survey procedure (visibility, diver speed, survey time and dimensions affect observed fish counts. Results indicate that the bias caused by fish speed alone is huge, while survey procedures had varying effects. Because the fastest fishes tend to be the largest, the bias would have significant implications on their biomass contribution. Therefore, caution is needed when describing abundance, biomass, and community structure based on non-instantaneous UVC, especially for highly mobile species such as sharks. CONCLUSIONS/SIGNIFICANCE: Based on our results, we urge that published literature state explicitly whether instantaneous counts were made and that survey procedures be accounted for when non-instantaneous counts are used. Using published density and biomass values of communities that include sharks we explore the effect of this bias and suggest that further investigation may be needed to determine pristine shark abundances and the

  2. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    International Nuclear Information System (INIS)

    Ennaas, Nadia; Hammami, Riadh; Gomaa, Ahmed; Bédard, François; Biron, Éric; Subirade, Muriel; Beaulieu, Lucie; Fliss, Ismail

    2016-01-01

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  3. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ennaas, Nadia [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Hammami, Riadh, E-mail: riadh.hammami@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Gomaa, Ahmed [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Bédard, François; Biron, Éric [Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1V 4G2 Québec, QC (Canada); Subirade, Muriel [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Beaulieu, Lucie, E-mail: lucie.beaulieu@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Department of Biology, Chemistry and Geography, Université du Québec à Rimouski (UQAR), 300 Allée des Ursulines, Rimouski, QC G5L 3A1 (Canada); Fliss, Ismail, E-mail: ismail.fliss@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada)

    2016-04-29

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  4. Occupancy models for monitoring marine fish: a bayesian hierarchical approach to model imperfect detection with a novel gear combination.

    Directory of Open Access Journals (Sweden)

    Lewis G Coggins

    Full Text Available Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when

  5. Occupancy models for monitoring marine fish: a bayesian hierarchical approach to model imperfect detection with a novel gear combination.

    Science.gov (United States)

    Coggins, Lewis G; Bacheler, Nathan M; Gwinn, Daniel C

    2014-01-01

    Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors

  6. Occupancy Models for Monitoring Marine Fish: A Bayesian Hierarchical Approach to Model Imperfect Detection with a Novel Gear Combination

    Science.gov (United States)

    Coggins, Lewis G.; Bacheler, Nathan M.; Gwinn, Daniel C.

    2014-01-01

    Occupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes. We employ simultaneous sampling using fish traps and novel underwater camera observations to generate the requisite replicate samples for occupancy models of red snapper, a reef fish species. Since the replicate samples are collected simultaneously by multiple sampling devices, many typical problems encountered when obtaining replicate observations are avoided. Our results suggest that augmenting traditional fish trap sampling with camera observations not only doubled the probability of detecting red snapper in reef habitats off the Southeast coast of the United States, but supplied the necessary observations to infer factors influencing population distribution and abundance while accounting for imperfect detection. We found that detection probabilities tended to be higher for camera traps than traditional fish traps. Furthermore, camera trap detections were influenced by the current direction and turbidity of the water, indicating that collecting data on these variables is important for future monitoring. These models indicate that the distribution and abundance of this species is more heavily influenced by latitude and depth than by micro-scale reef characteristics lending credence to previous characterizations of red snapper as a reef habitat generalist. This study demonstrates the utility of simultaneous sampling devices, including camera traps, in aquatic environments to inform occupancy models and account for imperfect detection when describing factors

  7. Fish collagen is an important panallergen in the Japanese population.

    Science.gov (United States)

    Kobayashi, Y; Akiyama, H; Huge, J; Kubota, H; Chikazawa, S; Satoh, T; Miyake, T; Uhara, H; Okuyama, R; Nakagawara, R; Aihara, M; Hamada-Sato, N

    2016-05-01

    Collagen was identified as a fish allergen in early 2000s. Although its allergenic potential has been suggested to be low, risks associated with collagen as a fish allergen have not been evaluated to a greater extent. In this study, we aimed to clarify the importance of collagen as a fish allergen. Our results showed that 50% of Japanese patients with fish allergy had immunoglobulin E (IgE) against mackerel collagen, whereas 44% had IgE against mackerel parvalbumin. IgE inhibition assay revealed high cross-reactivity of mackerel collagen to 22 fish species (inhibition rates: 87-98%). Furthermore, a recently developed allergy test demonstrated that collagen triggered IgE cross-linking on mast cells. These data indicate that fish collagen is an important and very common panallergen in fish consumed in Japan. The high rate of individuals' collagen allergy may be attributable to the traditional Japanese custom of raw fish consumption. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Fish consumption, not fatty acid status, is related to quality of life in a healthy population

    NARCIS (Netherlands)

    Schiepers, Olga; De Groot, Renate; Jolles, Jelle; Van Boxtel, Martin

    2010-01-01

    Schiepers, O. J., De Groot, R. H. M., Jolles, J., & Van Boxtel, M. P. J. (2010). Fish consumption, not fatty acid status, is related to quality of life in a healthy population. Prostaglandins Leukot Essent Fatty Acids, 83(1), 31-35.

  9. Impact of acadja fisheries on the population dynamics of Sarotherodon melanotheron and Hemichromis fasciatus in a Lake Nokoué (Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Niyonkuru C.

    2010-08-01

    Full Text Available In Lake Nokoué fishermen have developed the acadjas system which operates as an extensive aquaculture practice. Little is known about the population dynamics of fish fauna which colonizes those acadjas. Therefore, population parameters of two cichlids of Lake Nokoué, Sarotherodon melanotheron and Hemichromis fasciatus, sampled in areas within and without acadjas were investigated using length-frequency data collected between June 2003 and December 2004. For the two species, asymptotic length, L∞ was higher within than without acadjas (26.8 cm and 24.1 cm respectively for S. melanotheron; 18.5 cm and 16.5 cm respectively for H. faciatus. K and Φ′ values recorded outside acadjas were higher than inside acadjas for H. fasciatus whereas the same values were very slightly different without and within acadjas for S. melanotheron. H. fasciatus is a fish predator and branches or woody debris of acadjas are not favourable for its hunting activities.The total and natural mortality rates for the two species were higher outside than inside acadjas showing so the role of protection insured by acadjas systems. Acadjas have more impact on H. fasciatus than on S. melanotheron. A possibility of management is to reorganize the distribution of acadjas over Lake Nokoué in order to keep some areas in which no acadjas would be allowed for fish species that growth is better without acadjas.

  10. POPULATION DYNAMICS OF PSEUDO-NITZSCHIA SPECIES ...

    African Journals Online (AJOL)

    nb

    current study aimed at assessing the population dynamics of Pseudo-nitzschia ... and to the developing aquaculture industry ... B. Hotel. Pangani Island. Bongoyo Island. Mbudya Island. Msasani Bay ... Salinity values did not show clear trends.

  11. Intake of mercury through fish consumption

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Kiprawi, A.Z.; Ismail, R.B.; Hassan, R.B.; Wood, A.K.; Rahman, S.A.

    1995-01-01

    Fish has been known as a source of non-occupational mercury exposure to fish consuming population groups, and this is shown by the high hair mercury levels. In this study, hair samples collected from fishermen and their families, and commercial marine fishes were analyzed for mercury and methylmercury by neutron activation and gas chromatography. The results showed a correlation between hair mercury levels and fish consumption patterns. The levels of mercury found in this study were similar to those reported by other workers for fish consuming population groups worldwide. (author)

  12. ECOLOGICAL AND EVOLUTIONARY APPLICATIONS FOR ENVIRONMENTAL SEX REVERSAL OF FISH.

    Science.gov (United States)

    Mcnair, Alistair; Lokman, P Mark; Closs, Gerard P; Nakagawa, Shinichi

    2015-03-01

    Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes.

  13. The finite state projection approach to analyze dynamics of heterogeneous populations

    Science.gov (United States)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  14. A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species.

    Science.gov (United States)

    Free, Christopher M; Jensen, Olaf P; Mendsaikhan, Bud

    2015-01-01

    Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake's fish populations, especially that of the endangered endemic Hovsgol grayling (Thymallus nigrescens). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3-4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (Lota lota) showed a significant decrease in population abundance from 2009-2013. However, grayling, burbot, and roach (Rutilus rutilus) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11-15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.

  15. Critical dynamics in population vaccinating behavior.

    Science.gov (United States)

    Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T

    2017-12-26

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.

  16. Coalbed gas environmental resource information project : fish population and habitat study review : Similkameen and Tulameen coalfields : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    This paper provided an overview of fish and fish habitats in the Similkameen and Tulameen coalfields area. The report consisted of a literature review as well as the examination of a regional-specific database. Discussions and interviews were conducted with First Nations, members of the oil and gas industry, and various governmental and non-governmental organizations. The report identified fish species in the region, and provided details of fish distribution and habitat, and obstructions and constraints to fish populations. Information on sensitive species was also provided. Watershed and hydrological overviews were provided, as well as summary tables for all relevant data. Online mapping and resource databases were used to prepare a profile of fish and fish habitat studies. Sensitive species information was obtained from online governmental mapping resources. The acquired data were then used to produce resource lists and habitat tables for streams and rivers residing within or transiting through the area. Four fish species were identified as species at risk, and an additional fish species was considered to be endangered. It was concluded that a centralized and mandatory reporting system must be developed to ensure that all documents are deposited within a single central library. Approximately 80 per cent of the information gathered for the report did not exist in the Environmental Resources Information Project (ERIP) database. 16 refs., 11 tabs., 1 fig.

  17. Comparing demersal fish assemblage between periods of contrasting climate and fishing pressure

    NARCIS (Netherlands)

    Hofstede, ter R.; Rijnsdorp, A.D.

    2011-01-01

    Fish communities are dynamic and their structure is known to change over time. Traditionally, these changes were considered to be fisheries-induced, but recent analyses also suggest that global warming could affect the distribution, abundance, and assemblage composition of marine fish. However,

  18. How systematic age underestimation can impede understanding of fish population dynamics: Lessons learned from a Lake Superior cisco stock

    Science.gov (United States)

    Yule, D.L.; Stockwell, J.D.; Black, J.A.; Cullis, K.I.; Cholwek, G.A.; Myers, J.T.

    2008-01-01

    Systematic underestimation of fish age can impede understanding of recruitment variability and adaptive strategies (like longevity) and can bias estimates of survivorship. We suspected that previous estimates of annual survival (S; range = 0.20-0.44) for Lake Superior ciscoes Coregonus artedi developed from scale ages were biased low. To test this hypothesis, we estimated the total instantaneous mortality rate of adult ciscoes from the Thunder Bay, Ontario, stock by use of cohort-based catch curves developed from commercial gill-net catches and otolith-aged fish. Mean S based on otolith ages was greater for adult females (0.80) than for adult males (0.75), but these differences were not significant. Applying the results of a study of agreement between scale and otolith ages, we modeled a scale age for each otolith-aged fish to reconstruct catch curves. Using modeled scale ages, estimates of S (0.42 for females, 0.36 for males) were comparable with those reported in past studies. We conducted a November 2005 acoustic and midwater trawl survey to estimate the abundance of ciscoes when the fish were being harvested for roe. Estimated exploitation rates were 0.085 for females and 0.025 for males, and the instantaneous rates of fishing mortality were 0.089 for females and 0.025 for males. The instantaneous rates of natural mortality were 0.131 and 0.265 for females and males, respectively. Using otolith ages, we found that strong year-classes at large during November 2005 were caught in high numbers as age-1 fish in previous annual bottom trawl surveys, whereas weak or absent year-classes were not. For decades, large-scale fisheries on the Great Lakes were allowed to operate because ciscoes were assumed to be short lived and to have regular recruitment. We postulate that the collapse of these fisheries was linked in part to a misunderstanding of cisco biology driven by scale-ageing error. ?? Copyright by the American Fisheries Society 2008.

  19. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  20. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  1. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  2. Differences in the metabolic rates of exploited and unexploited fish populations: a signature of recreational fisheries induced evolution?

    Directory of Open Access Journals (Sweden)

    Jan-Michael Hessenauer

    Full Text Available Non-random mortality associated with commercial and recreational fisheries have the potential to cause evolutionary changes in fish populations. Inland recreational fisheries offer unique opportunities for the study of fisheries induced evolution due to the ability to replicate study systems, limited gene flow among populations, and the existence of unexploited reference populations. Experimental research has demonstrated that angling vulnerability is heritable in Largemouth Bass Micropterus salmoides, and is correlated with elevated resting metabolic rates (RMR and higher fitness. However, whether such differences are present in wild populations is unclear. This study sought to quantify differences in RMR among replicated exploited and unexploited populations of Largemouth Bass. We collected age-0 Largemouth Bass from two Connecticut drinking water reservoirs unexploited by anglers for almost a century, and two exploited lakes, then transported and reared them in the same pond. Field RMR of individuals from each population was quantified using intermittent-flow respirometry. Individuals from unexploited reservoirs had a significantly higher mean RMR (6% than individuals from exploited populations. These findings are consistent with expectations derived from artificial selection by angling on Largemouth Bass, suggesting that recreational angling may act as an evolutionary force influencing the metabolic rates of fishes in the wild. Reduced RMR as a result of fisheries induced evolution may have ecosystem level effects on energy demand, and be common in exploited recreational populations globally.

  3. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Zhehuang Huang

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  4. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    Science.gov (United States)

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  5. Delay differential systems for tick population dynamics.

    Science.gov (United States)

    Fan, Guihong; Thieme, Horst R; Zhu, Huaiping

    2015-11-01

    Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.

  6. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals.

    Science.gov (United States)

    Herbert-Read, James E; Kremer, Louise; Bruintjes, Rick; Radford, Andrew N; Ioannou, Christos C

    2017-09-27

    Noise produced from a variety of human activities can affect the physiology and behaviour of individual animals, but whether noise disrupts the social behaviour of animals is largely unknown. Animal groups such as flocks of birds or shoals of fish use simple interaction rules to coordinate their movements with near neighbours. In turn, this coordination allows individuals to gain the benefits of group living such as reduced predation risk and social information exchange. Noise could change how individuals interact in groups if noise is perceived as a threat, or if it masked, distracted or stressed individuals, and this could have impacts on the benefits of grouping. Here, we recorded trajectories of individual juvenile seabass ( Dicentrarchus labrax ) in groups under controlled laboratory conditions. Groups were exposed to playbacks of either ambient background sound recorded in their natural habitat, or playbacks of pile-driving, commonly used in marine construction. The pile-driving playback affected the structure and dynamics of the fish shoals significantly more than the ambient-sound playback. Compared to the ambient-sound playback, groups experiencing the pile-driving playback became less cohesive, less directionally ordered, and were less correlated in speed and directional changes. In effect, the additional-noise treatment disrupted the abilities of individuals to coordinate their movements with one another. Our work highlights the potential for noise pollution from pile-driving to disrupt the collective dynamics of fish shoals, which could have implications for the functional benefits of a group's collective behaviour. © 2017 The Authors.

  7. Internal doses to Ukrainian populations using Dnieper River water

    International Nuclear Information System (INIS)

    Berkovski, V.; Ratia, G.; Nasvit, O.

    1996-01-01

    The dynamics of internal doses from 137 Cs and 90 Sr as a consequence of the use of Dnieper River water were calculated. Local peculiarities of municipal tap, irrigation, and fish consumption in the Ukraine were considered. The dynamics of 90 Sr accumulation in human bone as a result of the use of Dnieper water is simulated. The dose predictions are based on de facto data and the stochastic forecast of radionuclide concentrations in Dnieper reservoirs. A large array of statistical data on the age-structures of exposed populations, food consumption rate, agricultural production, fish contamination, and site-specific parameters were used. Exposures are estimated for 12 regions of the Dnieper basin and the Crimea Republic. The maximal individual annual committed effective doses are 1.7 x 10 -5 and 2.7 x 10 -5 Sv from 90 Sr and 137 Cs, respectively, due to the use of water in 1986 by members of the population in the Kievska region. Commercial fishermen on the Kievska reservoir, who consumed 360 kg y -1 of fish in 1986, received 4.7 x 10 -4 and 5 x 10 -3 Sv from 90 Sr and 137 Cs, respectively. The contributions to the collective (over 70 6) effective dose of irrigation, municipal tap water, and fish consumption for members of the general public, respectively, are 18%, 43%,39% in the Kievska region; 8%,25%,67% in the Poltavska region; 50% 50%, 0% (no Dnieper fish consumed) in the Crimea Republic. The predicted contribution of 90 Sr to collective dose resulting from the use of water is 80%. The collective dose to the population of the Dnieper regions (32.5 million people) is 3,000 person-Sv, due to the use of water. 14 refs., 12 figs., 2 tabs

  8. Modeling the population dynamics of Pacific yew.

    Science.gov (United States)

    Richard T. Busing; Thomas A. Spies

    1995-01-01

    A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade...

  9. Stochastic population dynamic models as probability networks

    Science.gov (United States)

    M.E. and D.C. Lee. Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  10. Fish Rhabdoviruses

    Science.gov (United States)

    Kurath, G.; Winton, J.

    2008-01-01

    Many important viral pathogens of fish are members of the family Rhabdoviridae. The viruses in this large group cause significant losses in populations of wild fish as well as among fish reared in aquaculture. Fish rhabdoviruses often have a wide host and geographic range, and infect aquatic animals in both freshwater and seawater. The fish rhabdoviruses comprise a diverse collection of isolates that can be placed in one of two quite different groups: isolates that are members of the established genusNovirhabdovirus, and those that are most similar to members of the genus Vesiculovirus. Because the diseases caused by fish rhabdoviruses are important to aquaculture, diagnostic methods for their detection and identification are well established. In addition to regulations designed to reduce the spread of fish viruses, a significant body of research has addressed methods for the control or prevention of diseases caused by fish rhabdoviruses, including vaccination. The number of reported fish rhabdoviruses continues to grow as a result of the expansion of aquaculture, the increase in global trade, the development of improved diagnostic methods, and heightened surveillance activities. Fish rhabdoviruses serve as useful components of model systems to study vertebrate virus disease, epidemiology, and immunology.

  11. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  12. A resilience approach can improve anadromous fish restoration

    Science.gov (United States)

    Waldman, John R.; Wilson, Karen A.; Mather, Martha E.; Snyder, Noah P.

    2016-01-01

    Most anadromous fish populations remain at low levels or are in decline despite substantial investments in restoration. We explore whether a resilience perspective (i.e., a different paradigm for understanding populations, communities, and ecosystems) is a viable alternative framework for anadromous fish restoration. Many life history traits have allowed anadromous fish to thrive in unimpacted ecosystems but have become contemporary curses as anthropogenic effects increase. This contradiction creates a significant conservation challenge but also makes these fish excellent candidates for a resilience approach. A resilience approach recognizes the need to maintain life history, population, and habitat characteristics that increase the ability of a population to withstand and recover from multiple disturbances. To evaluate whether a resilience approach represents a viable strategy for anadromous fish restoration, we review four issues: (1) how resilience theory can inform anadromous fish restoration, (2) how a resilience-based approach is fundamentally different than extant anadromous fish restoration strategies, (3) ecological characteristics that historically benefited anadromous fish persistence, and (4) examples of how human impacts harm anadromous fish and how a resilience approach might produce more successful outcomes. We close by suggesting new research and restoration directions for implementation of a resilience-based approach.

  13. Computer simulation of population dynamics inside the urban environment

    Science.gov (United States)

    Andreev, A. S.; Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.; Tikhomirov, V. V.

    2017-12-01

    In this paper using a mathematical model of the so-called “space-dynamic” approach we investigate the problem of development and temporal dynamics of different urban population groups. For simplicity we consider an interaction of only two population groups inside a single urban area with axial symmetry. This problem can be described qualitatively by a system of two non-stationary nonlinear differential equations of the diffusion type with boundary conditions of the third type. The results of numerical simulations show that with a suitable choice of the diffusion coefficients and interaction functions between different population groups we can receive different scenarios of population dynamics: from complete displacement of one population group by another (originally more “aggressive”) to the “peaceful” situation of co-existence of them together.

  14. Inability to demonstrate fish-to-fish transmission of Ichthyophonus from laboratory infected Pacific herring Clupea pallasii to naïve conspecifics.

    Science.gov (United States)

    Gregg, J L; Grady, C A; Friedman, C S; Hershberger, P K

    2012-06-13

    The parasite Ichthyophonus is enzootic in many marine fish populations of the northern Atlantic and Pacific Oceans. Forage fishes are a likely source of infection for higher trophic level predators; however, the processes that maintain Ichthyophonus in forage fish populations (primarily clupeids) are not well understood. Lack of an identified intermediate host has led to the convenient hypothesis that the parasite can be maintained within populations of schooling fishes by waterborne fish-to-fish transmission. To test this hypothesis we established Ichthyophonus infections in Age-1 and young-of-the-year (YOY) Pacific herring Clupea pallasii (Valenciennes) via intraperitoneal (IP) injection and cohabitated these donors with naïve conspecifics (sentinels) in the laboratory. IP injections established infection in 75 to 84% of donor herring, and this exposure led to clinical disease and mortality in the YOY cohort. However, after cohabitation for 113 d no infections were detected in naïve sentinels. These data do not preclude the possibility of fish-to-fish transmission, but they do suggest that other transmission processes are necessary to maintain Ichthyophonus in wild Pacific herring populations.

  15. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  16. Information Dynamics in the Interaction between a Prey and a Predator Fish

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2015-10-01

    Full Text Available Accessing information efficiently is vital for animals to make the optimal decisions, and it is particularly important when they are facing predators. Yet until now, very few quantitative conclusions have been drawn about the information dynamics in the interaction between animals due to the lack of appropriate theoretic measures. Here, we employ transfer entropy (TE, a new information-theoretic and model-free measure, to explore the information dynamics in the interaction between a predator and a prey fish. We conduct experiments in which a predator and a prey fish are confined in separate parts of an arena, but can communicate with each other visually and tactilely. TE is calculated on the pair’s coarse-grained state of the trajectories. We find that the prey’s TE is generally significantly bigger than the predator’s during trials, which indicates that the dominant information is transmitted from predator to prey. We then demonstrate that the direction of information flow is irrelevant to the parameters used in the coarse-grained procedures. We further calculate the prey’s TE at different distances between it and the predator. The resulted figure shows that there is a high plateau in the mid-range of the distance and that drops quickly at both the near and the far ends. This result reflects that there is a sensitive space zone where the prey is highly vigilant of the predator’s position.

  17. Influence of habitat degradation on fish replenishment

    Science.gov (United States)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  18. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an ultraoligotrophic lake with no manipulative management

    Science.gov (United States)

    Buktenica, M.W.; Girdner, S.F.; Larson, G.L.; McIntire, C.D.

    2007-01-01

    Crater Lake is a unique environment to evaluate the ecology of introduced kokanee and rainbow trout because of its otherwise pristine state, low productivity, absence of manipulative management, and lack of lotic systems for fish spawning. Between 1986 and 2004, kokanee displayed a great deal of variation in population demographics with a pattern that reoccurred in about 10 years. We believe that the reoccurring pattern resulted from density dependent growth, and associated changes in reproduction and abundance, driven by prey resource limitation that resulted from low lake productivity exacerbated by prey consumption when kokanee were abundant. Kokanee fed primarily on small-bodied prey from the mid-water column; whereas rainbow trout fed on large-bodied prey from the benthos and lake surface. Cladoceran zooplankton abundance may be regulated by kokanee. And kokanee growth and reproductive success may be influenced by the availability of Daphnia pulicaria, which was absent in zooplankton samples collected annually from 1990 to 1995, and after 1999. Distribution and diel migration of kokanee varied over the duration of the study and appeared to be most closely associated with prey availability, maximization of bioenergetic efficiency, and fish density. Rainbow trout were less abundant than were kokanee and exhibited less variation in population demographics, distribution, and food habits. There is some evidence that the population dynamics of rainbow trout were in-part related to the availability of kokanee as prey. ?? 2007 Springer Science+Business Media B.V.

  19. Contribution of conservation genetics in assessing neotropical freshwater fish biodiversity

    Directory of Open Access Journals (Sweden)

    NM. Piorski

    Full Text Available Human activities have a considerable impact on hydrographic systems and fish fauna. The present review on conservation genetics of neotropical freshwater fish reveals that DNA analyses have been promoting increased knowledge on the genetic structure of fish species and their response to environmental changes. This knowledge is fundamental to the management of wild fish populations and the establishment of Evolutionary Significant Units capable of conserving genetic integrity. While population structuring can occur even in long-distance migratory fish, isolated populations can show reduced genetic variation and be at greater risk of extinction. Phylogeography and phylogeny have been powerful tools in understanding the evolution of fish populations, species and communities in distinct neotropic environments. Captive fish can be used to introduce new individuals and genes into the wild and their benefits and disadvantages can be monitored through genetic analysis. Understanding how fish biodiversity in neotropical freshwaters is generated and maintained is highly important, as these habitats are transformed by human development and fish communities are increasingly exploited as food sources to sustain a growing human population.

  20. Population Dynamics and Cost-Benefit Analysis. An Attempt to Relate Population Dynamics via Lifetime Reproductive Success to Short-Term Decisions

    NARCIS (Netherlands)

    Tinbergen, J.M.; Balen, J.H. van; Drent, P.J.; Cavé, A.J.; Mertens, J.A.L.; Boer-Hazewinkel, J. den

    1987-01-01

    1. The aim of this article is to explore whether cost-benefit analysis of behaviour may help to understand the population dynamics of a species. The Great Tit is taken as an example. 2. The lifetime reproductive success in different populations of Great Tits amounts from 0.7 (Hoge Veluwe, Wytham) to

  1. Geometric and morphometric analysis of fish scales to identity genera, species and populations case study: the Cyprinid family

    Directory of Open Access Journals (Sweden)

    Seyedeh Narjes Tabatabei

    2014-01-01

    Full Text Available Using fish scale to identity species and population is a rapid, safe and low cost method. Hence, this study was carried out to investigate the possibility of using geometric and morphometric methods in fish scales for rapid identification of species and populations and compare the efficiency of applying few and/or high number of landmark points. For this purpose, scales of one population of Luciobarbus capito, four populations of Alburnoides eichwaldii and two populations of Rutilus frisii kutum, all belonging to cyprinid family, were examined. On two-dimensional images of the scales 7 and 23 landmark points were digitized in two separate times using TpsDig2, respectively. Landmark data after generalized procrustes analysis were analyzed using Principal Component Analysis (PCA, Canonical Variate Analysis (CVA and Cluster Analysis. The results of both methods (using 7 and 23 landmark points showed significant differences of the shape of scales among the three species studied (P0.05. The results also showed that few number of landmarks could display the differences between scale shapes. According to the results of this study, it could be stated that the scale of each species had unique shape patterns which could be utilized as a species identification key.

  2. Particle algorithms for population dynamics in flows

    International Nuclear Information System (INIS)

    Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone

    2011-01-01

    We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.

  3. Methodology for predicting cooling water effects on fish

    International Nuclear Information System (INIS)

    Cakiroglu, C.; Yurteri, C.

    1998-01-01

    The mathematical model presented here predicts the long-term effects of once-through cooling water systems on local fish populations. The fish life cycle model simulates different life stages of fish by using appropriate expressions representing growth and mortality rates. The heart of the developed modeling approach is the prediction of plant-caused reduction in total fish population by estimating recruitment to adult population with and without entrainment of ichthyoplankton and impingement of small fish. The model was applied to a local fish species, gilthead (Aparus aurata), for the case of a proposed power plant in the Aegean region of Turkey. The simulations indicate that entrainment and impingement may lead to a population reduction of about 2% to 8% in the long run. In many cases, an impact of this size can be considered rather unimportant. In the case of sensitive and ecologically values species facing extinction, however, necessary precautions should be taken to minimize or totally avoid such an impact

  4. Population dynamics of rural Ethiopia.

    Science.gov (United States)

    Bariabagar, H

    1978-01-01

    2 rounds of the national sample surveys, conducted by the central statistical office of Ethiopia during 1964-1967 and 1969-1971, provide the only comprehensive demographic data for the country and are the basis for this discussion of rural Ethiopia's population dynamics. The population of Ethiopia is predominantly rural. Agglomerations of 2000 and over inhabitants constitute about 14% of the population, and this indicates that Ethiopia has a low level of urbanization. In rural Ethiopia, international migration was negligent in the 1970's and the age structure can be assumed to be the results of past trends of fertility and mortality conditions. The reported crude birthrate (38.2), crude death rate (12.3) and infant mortality rate (90) of rural Ethiopia fall short of the averages for African countries. Prospects of population growth of rural Ethiopia would be immense. At the rate of natural increase of between 2.4 and 3.0% per annum, the population would double in 24-29 years. Regarding population issues, the programs of the National Democratic Revolution of Ethiopia faces the following main challenging problems: 1) carrying out national population censuses in order to obtain basic information for socialist planning; 2) minimizing or curtailing the existing high urban growth rates; 3) reducing rapidly growing population; and 5) mobilizing Ethiopian women to participate in the social, economic and political life of the country in order to create favorable conditions for future fertility reduction.

  5. Bio-economic evaluation of implementing trawl fishing gear with different selectivity

    DEFF Research Database (Denmark)

    Grønbæk Kronbak, Lone; Nielsen, J. Rasmus; Jørgensen, Ole A.

    2009-01-01

    The paper develops a biological-economic evaluation tool to analyse the consequences for trawl fishers of implementing more selective fishing technologies. This is done by merging a dynamic biological population model and an economic cost-benefit evaluation framework to describe the consequences...... with a baseline. The results from the evaluation are indicators for the consequences on ecological and economic levels. The results show that implementation of different selective fishing gear in the Kattegat and Skagerrak mixed trawl fisheries generally implies a trade off over time between rebuilding the stocks...... for the fish stocks, fishermen and society. The bio-economic evaluation is applied to the case of the Danish trawl fishery in Kattegat and Skagerrak, which experiences a high level of discards and byratches of several species. Four different kinds of selectivity scenarios are evaluated in comparison...

  6. Bio-economic evaluation of implementing trawl fishing gear with different selectivity

    DEFF Research Database (Denmark)

    Kronbak, Lone Grønbæk; Nielsen, J. Rasmus; Jørgensen, Ole A.

    2009-01-01

    The paper develops a biological-economic evaluation tool to analyse the consequences for trawl fishers of implementing more selective fishing technologies. This is done by merging a dynamic biological population model and an economic cost-benefit evaluation framework to describe the consequences...... with a baseline. The results from the evaluation are indicators for the consequences on ecological and economic levels. The results show that implementation of different selective fishing gear in the Kattegat and Skagerrak mixed trawl fisheries generally implies a trade off over time between rebuilding the stocks...... for the fish stocks, fishermen and society. The bio-economic evaluation is applied to the case of the Danish trawl fishery in Kattegat and Skagerrak, which experiences a high level of discards and bycatches of several species. Four different kinds of selectivity scenarios are evaluated in comparison...

  7. Historical Processes and Contemporary Anthropogenic Activities Influence Genetic Population Dynamics of Nassau Grouper (Epinephelus striatus within The Bahamas

    Directory of Open Access Journals (Sweden)

    Krista D. Sherman

    2017-12-01

    Full Text Available Severe declines of endangered Nassau grouper (Epinephelus striatus across The Bahamas and Caribbean have spurred efforts to improve their fisheries management and population conservation. The Bahamas is reported to hold the majority of fish spawning aggregations for Nassau grouper, however, the status and genetic population structure of fish within the country is largely unknown, presenting a major knowledge gap for their sustainable management. Between August 2014–February 2017, 464 individual Nassau grouper sampled from The Bahamas were genotyped using 15 polymorphic microsatellite loci to establish measures of population structure, genetic diversity and effective population size (Ne. Nassau grouper were characterized by mostly high levels of genetic diversity, but we found no evidence for geographic population structure. Microsatellite analyses revealed weak, but significant genetic differentiation of Nassau grouper throughout the Bahamian archipelago (Global FST 0.00236, p = 0.0001. Temporal analyses of changes in Ne over the last 1,000 generations provide evidence in support of a pronounced historic decline in Bahamian Nassau grouper that appears to pre-date anthropogenic fishing activities. M-ratio results corroborate significant reductions in Ne throughout The Bahamas, with evidence for population bottlenecks in three islands and an active fish spawning aggregation along with apparent signs of inbreeding at two islands. Current estimates of Ne for Nassau grouper are considerably lower compared with historic levels. These findings represent important new contributions to our understanding of the evolutionary history, demographics and genetic connectivity of this endangered species, which are of critical importance for advancing their sustainable management.

  8. Coupling population dynamics with earth system models: the POPEM model.

    Science.gov (United States)

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  9. Dynamics of Population on the Verge of Extinction

    OpenAIRE

    Oborny, B.; Meszena, G.; Szabo, G.

    2005-01-01

    Theoretical considerations suggest that extinction in dispersal-limited populations is necessarily a threshold-like process that is analogous to a critical phase transition in physics. We use this analogy to find robust, common features in the dynamics of extinctions, and suggest early warning signals which may indicate that a population is endangered. As the critical threshold of extinction is approached, the population spontaneously fragments into discrete subpopulations and, consequently, ...

  10. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hostetler

    Full Text Available Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008 study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1 for 9 out of 18 years. The stochastic population growth rate λ(s was 0.92, suggesting a declining population; however, the 95% CI on λ(s included 1.0 (0.52-1.60. Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  11. [The dynamics of heath indicators of population of industrial town].

    Science.gov (United States)

    Kalinkin, D E; Karpov, A B; Takhauov, R M; Samoĭlova, Iu A

    2013-01-01

    The article presents the results of analysis of dynamics of health indicators of population of industrial town (medical demographic indicators, disability, morbidity of social hygienically important diseases) during 1970-2010. The classified administrative territorial municipality of Seversk constructed near the Siberian chemical industrial center, the internationally first-rate complex of nuclear industry enterprises was used as a research base. It is demonstrated that dynamics of health indicators of studied population had such negative tendencies as rapid population ageing, population loss due to decrease of natality and increase of mortality (population of able-bodied age included), prevalence of cardio-vascular diseases, malignant neoplasms and external causes, chronization of diseases. The established tendencies are to be considered in management decision making targeted to support and promote population health in industrial towns.

  12. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

    Science.gov (United States)

    Lou, Yijun; Zhao, Xiao-Qiang

    2017-04-01

    There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

  13. Network evolution induced by the dynamical rules of two populations

    Science.gov (United States)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  14. Population connectivity among geographic variants within the Lutjanidae (Pisces of the Mexican Pacific coast through fish scale shape recognition

    Directory of Open Access Journals (Sweden)

    Ana L. Ibáñez

    2012-11-01

    Full Text Available Fish scale shape was used to identify geographic variants among Lutjanidae (Lutjanus argentiventris, L. guttatus and L. peru. Specimens were collected from three different geographic areas, north to south of the tropical Pacific coast of Mexico: Puerto Vallarta (PV, Manzanillo (MA and Caleta de Campos (CC. Configuration of landmark coordinates of fish scales were scaled, translated and rotated using generalized procrustes analysis, followed by principal components analysis of resulting shape coordinates. Principal component scores were submitted to cross-validated discriminant analysis to determine the efficacy of scale landmarks for discrimination by geographic variants. This was done with shape and form (shape plus size. PV and MA were recognized as one population different from the CC sampling area. Using only shape (without size, identification rates predicted geographic variant membership much better than chance (91.3%, 70.6% and 85.4% for L. argentiventris, L. guttatus and L. peru, respectively, and taking size into account, classification is somewhat improved (90.6%, 80.1% and 87.5% for L. argentiventris, L. guttatus and L. peru, respectively. Consistency of the two populations for the three species shows non-fortuitous events. Population discrimination confirmed previous genetic studies that show a zoogeographic barrier between the North Equatorial Current and the California Current. The method is non-destructive, fast and less expensive than genetic analysis, thus allowing screening of many individuals for traceability of fish.

  15. Impact of climate change and population growth on a risk assessment for endocrine disruption in fish due to steroid estrogens in England and Wales

    International Nuclear Information System (INIS)

    Keller, V.D.J.; Lloyd, P.; Terry, J.A.; Williams, R.J.

    2015-01-01

    In England and Wales, steroid estrogens: estrone, estradiol and ethinylestradiol have previously been identified as the main chemicals causing endocrine disruption in male fish. A national risk assessment is already available for intersex in fish arising from estrogens under current flow conditions. This study presents, to our knowledge, the first set of national catchment-based risk assessments for steroid estrogen under future scenarios. The river flows and temperatures were perturbed using three climate change scenarios (ranging from relatively dry to wet). The effects of demographic changes on estrogen consumption and human population served by sewage treatment works were also included. Compared to the current situation, the results indicated increased future risk:the percentage of high risk category sites, where endocrine disruption is more likely to occur, increased. These increases were mainly caused by changes in human population. This study provides regulators with valuable information to prepare for this potential increased risk. - Highlights: • Risk assessment for the 2050's including climate change and population changes. • Three climate scenarios considered (changes in river flow and river temperature). • Increased risk from fish intersex across all scenarios in England and Wales. • Population is the main factor causing the risk increase for the 2050's. - The predicted increase in risk of endocrine disruption in fish due to steroid estrogens in England and Wales in the 2050's is mainly due to human population increase rather than climate change

  16. Bounds on the dynamics of sink populations with noisy immigration.

    Science.gov (United States)

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Population dynamics model for plasmid bearing and plasmid lacking ...

    African Journals Online (AJOL)

    Streptokinase production in bioreactor is well associated to cell population dynamics. It is an established fact that two types of cell populations are found to emerge from the initial pool of recombinant cell population. This phenomenon leads to an undesired loss in yield of the product. Primary metabolites, like acetic acid etc ...

  18. Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Möllmann, C.; Köster, Fritz

    2002-01-01

    . Additionally this study investigated the effect of predation by the major planktivorous fish species herring (Clupea harengus) and sprat (Sprattus sprattus) for the period 1977-1996 in the Gotland Basin (Central Baltic Sea). Examination of consumption by these fish species in relation to copepod production...... by sprat on CV/CVI of both copepod species in spring resulted in higher copepod mortality rates. In consequence, based on these results we suggest that the increase in the sprat stock since the late 1980s contributed to a decline of P. elongatus, and additionally prevented an even more pronounced...

  19. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Science.gov (United States)

    Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J

    2012-01-01

    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  20. Effects of marine reserves versus nursery habitat availability on structure of reef fish communities.

    Directory of Open Access Journals (Sweden)

    Ivan Nagelkerken

    Full Text Available No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas for small nursery fish (≤ 25 cm total length. For large-bodied individuals of nursery species (>25 cm total length, an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass than from proximity to nurseries (139% higher. The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.

  1. Trophic dynamics of hexabromocyclododecane diastereomers and enantiomers in fish in a laboratory feeding study.

    Science.gov (United States)

    Luo, Xiao-Jun; Ruan, Wei; Zeng, Yan-Hong; Liu, Hong-Ying; Chen, She-Jun; Wu, Jiang-Ping; Mai, Bi-Xian

    2013-11-01

    The laboratory trophic transfer of hexabromocyclododecanes (HBCDs) was studied using predatory (oscar) fish and a prey species (tiger barb) exposed to a technical HBCD. Gut absorption, dynamic changes of diastereomer pattern and enantiomer fractions, and potential metabolism of HBCDs were examined. Compared with β- or γ-HBCD, α-HBCD showed lower absorption efficiency in the gut of oscar fish. A predominance of γ-HBCD was observed in the tiger barb after 5 d HBCD-exposed and oscar feeding on the tiger barb for 16 d. After 20 d of depuration, 41.1% γ-HBCD and 42.7% β-HBCD disappeared, and α-HBCD exceeded the initial amount. The transformation from γ-HBCD predominance in the food to α-HBCD predominance in the oscar was attributed mainly to the isomerization of γ-HBCD (at least 3% and up to 22.7%) to α-HBCD. Selective enrichment of the (+) α- and (-) β-enantiomers and no enantioselective enrichment of γ-HBCD were observed in the tiger barbs. No enantioselective uptake of the 3 diasteromers was found in the oscar gut. The enantiomer fractions of α- and γ-diastereomers were significantly higher, but that of β-diastereomer were significantly lower in the oscars than in the tiger barbs, indicating enantioselective metabolism of the 3 diastereomers. Two HBCD monohydroxylated metabolites were detected in the 2 fish species, but their composition patterns differed, indicating a species-specific metabolism of HBCD in the studied fish species. © 2013 SETAC.

  2. Fish population and habitat analysis in Buck Creek, Washington, prior to recolonization by anadromous salmonids after the removal of Condit Dam

    Science.gov (United States)

    Allen, M. Brady; Burkhardt, Jeanette; Munz, Carrie; Connolly, Patrick J.

    2012-01-01

    We assessed the physical and biotic conditions in the part of Buck Creek, Washington, potentially accessible to anadromous fishes. This creek is a major tributary to the White Salmon River upstream of Condit Dam, which was breached in October 2011. Habitat and fish populations were characterized in four stream reaches. Reach breaks were based on stream gradient, water withdrawals, and fish barriers. Buck Creek generally was confined, with a single straight channel and low sinuosity. Boulders and cobble were the dominant stream substrate, with limited gravel available for spawning. Large-cobble riffles were 83 percent of the available fish habitat. Pools, comprising 15 percent of the surface area, mostly were formed by bedrock with little instream cover and low complexity. Instream wood averaged 6—10 pieces per 100 meters, 80 percent of which was less than 50 centimeters in diameter. Water temperature in Buck Creek rarely exceeded 16 degrees Celsius and did so for only 1 day at river kilometer (rkm) 3 and 11 days at rkm 0.2 in late July and early August 2009. The maximum temperature recorded was 17.2 degrees Celsius at rkm 0.2 on August 2, 2009. Minimum summer discharge in Buck Creek was 3.3 cubic feet per second downstream of an irrigation diversion (rkm 3.1) and 7.7 cubic feet per second at its confluence with the White Salmon River. Rainbow trout (Oncorhynchus mykiss) was the dominant fish species in all reaches. The abundance of age-1 or older rainbow trout was similar between reaches. However, in 2009 and 2010, the greatest abundance of age-0 rainbow trout (8 fish per meter) was in the most downstream reach. These analyses in Buck Creek are important for understanding the factors that may limit fish abundance and productivity, and they will help identify and prioritize potential restoration actions. The data collected constitute baseline information of pre-dam removal conditions that will allow assessment of changes in fish populations now that Condit Dam has

  3. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  4. Activity concentration and population dose from natural occurring radionuclide (40K) due to consumption of fresh water fish

    International Nuclear Information System (INIS)

    Jha, M.K.; Patra, A.K.; Jaison, T.J.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The objective of this study was to measure the concentration of natural occurring radionuclide ( 40 K) in different fresh water fish collected from Moticher lake near Kakrapar, Gujarat. The three types of commonly available fresh water fish in Moticher lake are Notopterus sps, Ophiocephalus sps. and Tor sps. The 40 K activity (Bq/kg flesh wt.) was found to be in the range of 38-100 (Notopterus sps.), 33-123 (Ophiocephalus sps.) and 80-116 (Tor sps.) respectively. The ingestion dose (μSv/y) to the adult population around Kakrapar was estimated due to the consumption of fresh water fish and found to be in the range of 7.7-20.5 (Notopterus sps.), 6.8-25.0 (Ophiocephalus sps.) and 16.0-24.0 (Tor sps.) respectively. (author)

  5. Population dynamics of Pseudo-nitzschia species ...

    African Journals Online (AJOL)

    The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...

  6. Effects of demographic structure on key properties of stochastic density-independent population dynamics.

    Science.gov (United States)

    Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar

    2012-12-01

    The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Aspiration dynamics of multi-player games in finite populations.

    Science.gov (United States)

    Du, Jinming; Wu, Bin; Altrock, Philipp M; Wang, Long

    2014-05-06

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics.

  8. On the population dynamics of the malaria vector

    International Nuclear Information System (INIS)

    Ngwa, G.A.

    2005-10-01

    A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)

  9. A synthesis of ecological and fish-community changes in Lake Ontario, 1970-2000

    Science.gov (United States)

    Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.

    2005-01-01

    We assessed stressors associated with ecological and fishcommunity changes in Lake Ontario since 1970, when the first symposium on Salmonid Communities in Oligotrophic Lakes (SCOL I) was held (J. Fish. Res. Board Can. 29: 613-616). Phosphorus controls implemented in the early 1970s were undeniably successful; lower food-web studies showed declines in algal abundance and epilimnetic zooplankton production and a shift in pelagic primary productivity toward smaller organisms. Stressors on the fish community prior to 1970 such as exploitation, sea lamprey (Petromyzon marinus) predation, and effects of nuisance populations of alewife (Alosa pseudoharengus) were largely ameliorated by the 1990s. The alewife became a pivotal species supporting a multi-million-dollar salmonid sport fishery, but alewife-induced thiamine deficiency continued to hamper restoration and sustainability of native lake trout (Salvelinus namaycush). Expanding salmonine populations dependent on alewife raised concerns about predator demand and prey supply, leading to reductions in salmonine stocking in the early 1990s. Relaxation of the predation impact by alewives and their shift to deeper water allowed recovery of native fishes such as threespine stickleback (Gasterosteus aculeatus) and emerald shiner (Notropis atherinoides). The return of the Lake Ontario ecosystem to historical conditions has been impeded by unplanned introductions. Establishment of Dreissena spp. led to increased water clarity and increased vectoring of lower trophic-level production to benthic habitats and contributed to the collapse of Diporeia spp. populations, behavioral modifications of key fish species, and the decline of native lake whitefish (Coregonus clupeaformis). Despite reduced productivity, exotic-species introductions, and changes in the fish community, offshore Mysis relicta populations remained relatively stable. The effects of climate and climate change on the population abundance and dynamics of Lake Ontario

  10. High population variability and source-sink dynamics in a solitary bee species.

    Science.gov (United States)

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.

  11. Fish distribution studies near N Reactor, Summer 1983

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Page, T.L.

    1984-06-01

    This report summarizes field studies that were initiated in July 1983 to provide estimates of the relative distribution of late-summer outmigrant juvenile salmonids and juvenile resident fish upstream of the N Reactor 009 Outfall. Chinook salmon are among the fish species most sensitive to thermal effects, and impacts to the juvenile outmigrant populations are of particular concern to state and federal regulatory and fisheries management agencies. Therefore, the distribution studies were conducted from late July through September, a period when high ambient river temperatures and low river flows make these salmonid populations most susceptible to thermal effects. In addition, data were not available on the spatial distribution of outmigrant juvenile chinook salmon in late summer. Information on the relative distribution of resident fish populations was also gathered. Previous studies of midstream distribution of juvenile resident fish were limited to a description of ichthyoplankton populations (Beak Consultants, Inc. 1980 Page et al. 1982), and no data were available on vertical or horizontal distribution of juvenile resident fish species near N Reactor. Relative densities and spatial distribution estimates of juvenile salmonid and resident fish species will be used in conjunction with laboratory thermal effects studies (Neitzel et al. 1984) and with plume characterization studies (Ecker et al. 1983) to assess potential impacts of thermal discharge on fish populations near N Reactor.

  12. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  13. The scaling of population persistence with carrying capacity does not asymptote in populations of a fish experiencing extreme climate variability.

    Science.gov (United States)

    White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R

    2017-06-14

    Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).

  14. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.

    Science.gov (United States)

    Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg

    2016-11-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.

  15. Fish and hydroelectricity

    International Nuclear Information System (INIS)

    Zorpette, G.

    1990-01-01

    This paper reports on the problems that hydroelectric plants have regarding fish populations. The utilities that operate these plants are finding that accommodating migrating fish presents unique engineering challenges, not the least of which involves designing and building systems to protect fish species whose migratory behavior remains something of a mystery. Where such systems cannot be built, the status of hydroelectric dams may be in doubt, as is now the case with several dams in the United States. A further twist in some regions in the possibility that certain migratory fish will be declared threatened or endangered-a development that could wreak havoc on the hydroelectric energy supply in those regions

  16. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges.

    Science.gov (United States)

    Papaioannou, Eleni; Giaouris, Efstathios D; Berillis, Panagiotis; Boziaris, Ioannis S

    2018-02-21

    The progressive ability of a six-strains L. monocytogenes cocktail to form biofilm on stainless steel (SS), under fish-processing simulated conditions, was investigated, together with the biocide tolerance of the developed sessile communities. To do this, the pathogenic bacteria were left to form biofilms on SS coupons incubated at 15°C, for up to 240h, in periodically renewable model fish juice substrate, prepared by aquatic extraction of sea bream flesh, under both mono-species and mixed-culture conditions. In the latter case, L. monocytogenes cells were left to produce biofilms together with either a five-strains cocktail of four Pseudomonas species (fragi, savastanoi, putida and fluorescens), or whole fish indigenous microflora. The biofilm populations of L. monocytogenes, Pseudomonas spp., Enterobacteriaceae, H 2 S producing and aerobic plate count (APC) bacteria, both before and after disinfection, were enumerated by selective agar plating, following their removal from surfaces through bead vortexing. Scanning electron microscopy was also applied to monitor biofilm formation dynamics and anti-biofilm biocidal actions. Results revealed the clear dominance of Pseudomonas spp. bacteria in all the mixed-culture sessile communities throughout the whole incubation period, with the in parallel sole presence of L. monocytogenes cells to further increase (ca. 10-fold) their sessile growth. With respect to L. monocytogenes and under mono-species conditions, its maximum biofilm population (ca. 6logCFU/cm 2 ) was reached at 192h of incubation, whereas when solely Pseudomonas spp. cells were also present, its biofilm formation was either slightly hindered or favored, depending on the incubation day. However, when all the fish indigenous microflora was present, biofilm formation by the pathogen was greatly hampered and never exceeded 3logCFU/cm 2 , while under the same conditions, APC biofilm counts had already surpassed 7logCFU/cm 2 by the end of the first 96h of

  17. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    Directory of Open Access Journals (Sweden)

    Gretchen J A Hansen

    Full Text Available Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance and "occasional" (rare occurrence and low abundance species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions.

  18. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    Science.gov (United States)

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  19. Cooperative Game for Fish Harvesting and Pollution Control

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    We study fishery strategies in a shallow river subject to agricultural and industrial pollution. The flowing pollutants in the river are modeled by a nonlinear stochastic differential equation in a general manner. The logistic growth model for the fish population is modified to cover the pollution impact on the fish growth rate. A stochastic cooperative game is formulated to design strategies for preserving the fish population by controlling the pollution as well as the harvesting fish.

  20. Defining thresholds of sustainable impact on benthic communities in relation to fishing disturbance.

    Science.gov (United States)

    Lambert, G I; Murray, L G; Hiddink, J G; Hinz, H; Lincoln, H; Hold, N; Cambiè, G; Kaiser, M J

    2017-07-14

    While the direct physical impact on seabed biota is well understood, no studies have defined thresholds to inform an ecosystem-based approach to managing fishing impacts. We addressed this knowledge gap using a large-scale experiment that created a controlled gradient of fishing intensity and assessed the immediate impacts and short-term recovery. We observed a mosaic of taxon-specific responses at various thresholds. The lowest threshold of significant lasting impact occurred between 1 and 3 times fished and elicited a decrease in abundance of 39 to 70% for some sessile epifaunal organisms (cnidarians, bryozoans). This contrasted with significant increases in abundance and/or biomass of scavenging species (epifaunal echinoderms, infaunal crustaceans) by two to four-fold in areas fished twice and more. In spite of these significant specific responses, the benthic community structure, biomass and abundance at the population level appeared resilient to fishing. Overall, natural temporal variation in community metrics exceeded the effects of fishing in this highly dynamic study site, suggesting that an acute level of disturbance (fished over six times) would match the level of natural variation. We discuss the implications of our findings for natural resources management with respect to context-specific human disturbance and provide guidance for best fishing practices.

  1. Population characteristics and the influence of discharge on Bluehead Sucker and Flannelmouth Sucker

    Science.gov (United States)

    Klein, Zachary B.; Breen, Matthew J.; Quist, Michael C.

    2017-01-01

    Rivers are among some of the most complex and important ecosystems in the world. Unfortunately, many fishes endemic to rivers have suffered declines in abundance and distribution suggesting that alterations to lotic environments have negatively influenced native fish populations. Of the 35 fishes native to the Colorado River basin (CRB), seven are considered either endangered, threatened, or species of special concern. As such, the conservation of fishes native to the CRB is a primary interest for natural resource management agencies. One of the major factors limiting the conservation and management of fishes endemic to the CRB is the lack of basic information on their ecology and population characteristics. We sought to describe the population dynamics and demographics of three populations of Bluehead Suckers (Catostomus discobolus) and Flannelmouth Suckers (C. latipinnis) in Utah. Additionally, we evaluated the potential influence of altered flow regimes on the recruitment and growth of Bluehead Suckers and Flannelmouth Suckers. Mortality of Bluehead Suckers and Flannelmouth Suckers from the Green, Strawberry, and White rivers was comparable to other populations. Growth of Bluehead Suckers and Flannelmouth Suckers was higher in the Green, Strawberry, and White rivers when compared to other populations in the CRB. Similarly, recruitment indices suggested that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers had more stable recruitment than other populations in the CRB. Models relating growth and recruitment to hydrological indices provided little explanatory power. Notwithstanding, our results indicate that Bluehead Suckers and Flannelmouth Suckers in the Green, Strawberry, and White rivers represent fairly stable populations and provide baseline information that will be valuable for the effective management and conservation of the species.

  2. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  3. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-01-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  4. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  5. Impact of black rhinoceros (Diceros bicornis minor) on a local population of Euphorbia bothae in the Great Fish River Reserve, South Africa

    NARCIS (Netherlands)

    Luske, B.L.; Mertens, T.; Lent, P.C.; Boer, de W.F.; Prins, H.H.T.

    2009-01-01

    In the Great Fish River Reserve, South Africa, black rhinoceros (Diceros bicornis minor) feed extensively on a local population of Euphorbia bothae. Maintaining the endangered black rhinoceros and the protected E. bothae population are both conservation priorities of the reserve. Therefore, the

  6. Bioaccumulation of trace metals and total petroleum and genotoxicity responses in an edible fish population as indicators of marine pollution.

    Science.gov (United States)

    D'Costa, Avelyno; Shyama, S K; Praveen Kumar, M K

    2017-08-01

    The present study reports the genetic damage and the concentrations of trace metals and total petroleum hydrocarbons prevailing in natural populations of an edible fish, Arius arius in different seasons along the coast of Goa, India as an indicator of the pollution status of coastal water. Fish were collected from a suspected polluted site and a reference site in the pre-monsoon, monsoon and post-monsoon seasons. Physico-chemical parameters as well as the concentrations of total petroleum hydrocarbons (TPH) and trace metals in the water and sediment as well as the tissues of fish collected from these sites were recorded. The genotoxicity status of the fish was assessed employing the micronucleus test and comet assay. A positive correlation (p<0.001) was observed between the tail DNA and micronuclei in all the fish collected. Multiple regression analysis revealed that tissue and environmental pollutant concentrations and genotoxicity were positively associated and higher in the tissues of the fish collected from the polluted site. Pollution indicators and genotoxicity tests, combined with other physiological or biochemical parameters represent an essential integrated approach for efficient monitoring of aquatic ecosystems in Goa. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Modeling structured population dynamics using data from unmarked individuals

    Science.gov (United States)

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  8. What a difference a bay makes: natural variation in dietary resources mediates growth in a recently settled herbivorous fish

    Science.gov (United States)

    Priest, Mark A.; Halford, Andrew R.; Clements, Kendall D.; Douglas, Emily; Abellana, Sheena L.; McIlwain, Jennifer L.

    2016-12-01

    Processes acting during the early stages of coral reef fish life cycles have a disproportionate influence on their adult abundance and community structure. Higher growth rates, for example, confer a major fitness advantage in larval and juvenile fishes, with larger fish undergoing significantly less mortality. The role of dietary resources in the size-structuring process has not been well validated, especially at the early post-settlement phase, where competition and predation are seen as preeminent drivers of juvenile fish assemblage structure. Here, we report on a size differential of 10-20% between recently settled Siganus spinus rabbitfish recruits from different bays around the Pacific island of Guam. This difference was maintained across multiple recruitment events within and between years. After confirming the validity of our observations through otolith increment analysis, subsequent investigation into the drivers of this variation revealed significant differences in the structure of algal assemblages between bays, congruent with the observed differences in size of the recently settled fish. Gut analyses showed a greater presence of algal types with higher levels of nitrogen and phosphorus in the stomachs of fish from Tanguisson, the bay with the largest observed recruits. To ensure this mechanism was one of causation and not correlation, we conducted a fully factorial experiment in which S. spinus recruits sampled from different bays were reared on all combinations of algal diets representative of the different bays. Recruits on the `Tanguisson' diet grew faster than recruits on other diets, regardless of their origin. We propose that the greater availability of high-quality dietary resources at this location is likely conferring benefits that impact on the population-level dynamics of this species. The spatial and temporal extent of this process clearly implicates food as a limiting resource, capable of mediating fish population dynamics at multiple

  9. The Effect on Selenium Concentrations of a Randomized Intervention with Fish and Mussels in a Population with Relatively Low Habitual Dietary Selenium Intake

    DEFF Research Database (Denmark)

    Outzen, Malene; Tjønneland, Anne; Larsen, Erik Huusfeldt

    2015-01-01

    Selenium status of the Danish population is below that assumed optimal for the suggested protective effects against chronic diseases, including certain cancers. Fish and shellfish are important dietary sources of selenium in Denmark. We investigated the effect of increased fish and mussel intake...... on selenium blood concentrations in a population with relatively low habitual dietary selenium intake. We randomly assigned 102 healthy men and women (all non-smokers) aged 48-76 years to an intervention group (n = 51) or a control group (n = 51). Intervention participants received 1000 g fish and mussels....../week for 26 weeks (similar to 50 mu g selenium/day). Controls received no intervention. Non-fasting blood samples were taken and whole blood selenium was determined using inductively coupled plasma-mass spectrometry (ICP-MS), and plasma selenoprotein P (SelP) was determined by high performance liquid...

  10. Self-Recruitment in the Bumphead Parrotfish Under Different Levels of Fishing Pressure in the Solomon Islands

    KAUST Repository

    Lozano-Cortés, Diego

    2014-12-01

    Knowledge in the spatial patterns of fish larval dispersal is crucial for the establishment of a sustainable management of fisheries and species conservation. Direct quantification of larval dispersal is a challenging task due to the difficulty associated with larval tracking in the vast ocean. However, genetic approaches can be used to estimate it. Here, I employed genetic markers (microsatellites) as a proxy to determine dispersal patterns and self-recruitment levels using parentage analysis in the bumphead parrotfish (Bolbometapon muricatum) in the Solomon Islands. Tissue samples of 3924 fish (1692 juveniles, 1121 males and 1111 females) were collected from a spear-fishery at the Kia District in Santa Isabel Island. The samples come from three distinct zones with different fishing pressure histories (lightly fished, recently fished, and heavily fished). The mean dispersal distance estimated for the bumphead parrotfish was 36.5 Km (range 4 – 78 Km) and the genetic diversity for the population studied was low in comparison with other reef fishes. The parentage analysis identified 68 parent–offspring relationships, which represents a self-recruitment level of almost 50 %. Most of the recruits were produced in the zone that recently started to be fished and most of these recruits dispersed to the heavily fished zone. Comparisons of genetic diversity and relatedness among adults and juveniles suggested the potential occurrence of sweepstakes reproductive success. These results suggest that management measures must be taken straightaway to assure the sustainability of the spear-fishery. These measures may imply the ban on juveniles fishing in the heavily fished zone and the larger adults in the recently fished zone. Overall, the population dynamics of the studied system seem to be strongly shaped by self-recruitment and sweepstakes reproduction events.

  11. Self-Recruitment in the Bumphead Parrotfish Under Different Levels of Fishing Pressure in the Solomon Islands

    KAUST Repository

    Lozano-Corté s, Diego

    2014-01-01

    Knowledge in the spatial patterns of fish larval dispersal is crucial for the establishment of a sustainable management of fisheries and species conservation. Direct quantification of larval dispersal is a challenging task due to the difficulty associated with larval tracking in the vast ocean. However, genetic approaches can be used to estimate it. Here, I employed genetic markers (microsatellites) as a proxy to determine dispersal patterns and self-recruitment levels using parentage analysis in the bumphead parrotfish (Bolbometapon muricatum) in the Solomon Islands. Tissue samples of 3924 fish (1692 juveniles, 1121 males and 1111 females) were collected from a spear-fishery at the Kia District in Santa Isabel Island. The samples come from three distinct zones with different fishing pressure histories (lightly fished, recently fished, and heavily fished). The mean dispersal distance estimated for the bumphead parrotfish was 36.5 Km (range 4 – 78 Km) and the genetic diversity for the population studied was low in comparison with other reef fishes. The parentage analysis identified 68 parent–offspring relationships, which represents a self-recruitment level of almost 50 %. Most of the recruits were produced in the zone that recently started to be fished and most of these recruits dispersed to the heavily fished zone. Comparisons of genetic diversity and relatedness among adults and juveniles suggested the potential occurrence of sweepstakes reproductive success. These results suggest that management measures must be taken straightaway to assure the sustainability of the spear-fishery. These measures may imply the ban on juveniles fishing in the heavily fished zone and the larger adults in the recently fished zone. Overall, the population dynamics of the studied system seem to be strongly shaped by self-recruitment and sweepstakes reproduction events.

  12. Population dynamics and distribution of the coffee berry borer ...

    African Journals Online (AJOL)

    Population dynamics and distribution of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) were studied on Coffea arabica L. in southwestern region of Ethiopia. Thirty coffee trees were sampled at weekly intervals from 2000 to 2001. Findings of this study showed that coffee berry borer population ...

  13. Quantifying temporal trends in fisheries abundance using Bayesian dynamic linear models: A case study of riverine Smallmouth Bass populations

    Science.gov (United States)

    Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler

    2018-01-01

    Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.

  14. [Population dynamics and armed violence in Colombia, 1985-2010].

    Science.gov (United States)

    Salaya, Hernán Eduardo; Rodríguez, Jesús

    2014-09-01

    Describe changes in the population structure of Colombia's municipalities in relation to internal displacement in response to armed violence. A descriptive ecological study was carried out. Secondary sources were consulted, taken from the Consolidated Registry of Displaced Population and from the National Administrative Department of Statistics, to calculate expulsion and reception rates for population displaced by violence from 2002 to 2010. Based on these rates, four groups were created of municipalities in the extreme quartile for each rate during the entire period, which were classified as high expulsion, low expulsion, high reception, and low reception. Subsequently, population pyramids and structure indicators were constructed for each group of municipalities for two comparative reference years (1985 and 2010). Municipalities with high expulsion or reception rates experienced a slower epidemiological transition, with lower mean ages and aging indices. The high expulsion group had the least regression, based on the Sundbärg index. In the high reception group, the masculinity ratio decreased the most, especially among the economically active population, and it had the highest population growth. Population dynamics in Colombia have been affected by armed violence and changes in these dynamics are not uniform across the country, leading to important social, economic, and cultural consequences. This study is useful for decision-making and public policy making.

  15. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    Science.gov (United States)

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  16. Duration of pregnancy in relation to fish oil supplementation and habitual fish intake: a randomised clinical trial with fish oil

    DEFF Research Database (Denmark)

    Olsen, Sjurdur Frodi; Østerdal, M L; Salvig, J D

    2007-01-01

    OBJECTIVE: To examine the effect of fish oil supplementation on duration of pregnancy, conditional on the woman's habitual fish intake. DESIGN: Multicentre 1:1 randomised clinical trial of effect of fish oil in a high-risk population of pregnant women in whom habitual fish intake was assessed...... at randomisation. SETTING: Nineteen university delivery wards in seven European countries. SUBJECTS: Pregnant women with preterm delivery, intrauterine growth retardation (IUGR), or pregnancy-induced hypertension (PIH) in a previous pregnancy (group 1, n=495); with twin pregnancies (group 2, n=367......); or with suspicion of IUGR or threatening preeclampsia in the current pregnancy (group 3, n=106). Women were stratified into low, middle, or high fish consumers. METHODS: The intervention group received fish oil capsules providing 2.7 g long-chain n-3 fatty acids per day (n-3 poly unsaturated fatty acids (PUFA...

  17. Combination of genetics and spatial modelling highlights the sensitivity of cod (Gadus morhua) population diversity in the North Sea to distributions of fishing

    DEFF Research Database (Denmark)

    Heath, Michael R.; Culling, Mark A.; Crozier, Walter W.

    2014-01-01

    Conserving genetic diversity in animal populations is important for sustaining their ability to respond to environmental change. However, the “between-population” component of genetic diversity (biocomplexity) is threatened in many exploited populations, particularly marine fish, where harvest ma...

  18. Recovery of a US endangered fish.

    Directory of Open Access Journals (Sweden)

    Mark B Bain

    Full Text Available BACKGROUND: More fish have been afforded US Endangered Species Act protection than any other vertebrate taxonomic group, and none has been designated as recovered. Shortnose sturgeon (Acipenser brevirostrum occupy large rivers and estuaries along the Atlantic coast of North America, and the species has been protected by the US Endangered Species Act since its enactment. METHODOLOGY/PRINCIPAL FINDINGS: Data on the shortnose sturgeon in the Hudson River (New York to Albany, NY, USA were obtained from a 1970s population study, a population and fish distribution study we conducted in the late 1990s, and a fish monitoring program during the 1980s and 1990s. Population estimates indicate a late 1990s abundance of about 60,000 fish, dominated by adults. The Hudson River population has increased by more than 400% since the 1970s, appears healthy, and has attributes typical for a long-lived species. Our population estimates exceed the government and scientific population recovery criteria by more than 500%, we found a positive trend in population abundance, and key habitats have remained intact despite heavy human river use. CONCLUSIONS/SIGNIFICANCE: Scientists and legislators have called for changes in the US Endangered Species Act, the Act is being debated in the US Congress, and the Act has been characterized as failing to recover species. Recovery of the Hudson River population of shortnose sturgeon suggests the combination of species and habitat protection with patience can yield successful species recovery, even near one of the world's largest human population centers.

  19. Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management.

    Science.gov (United States)

    Aluja, Martín; Ordano, Mariano; Guillén, Larissa; Rull, Juan

    2012-06-01

    Fruit flies (Diptera: Tephritidae) are devastating agricultural pests worldwide but studies on their long-term population dynamics are sparse. Our aim was to determine the mechanisms driving long-term population dynamics as a prerequisite for ecologically based areawide pest management. The population density of three pestiferous Anastrepha species [Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann)] was determined in grapefruit (Citrus x paradisi Macfad.), mango (Mangifera indica L.), and sapodilla [Manilkara zapota (L.) P. Royen] orchards in central Veracruz, México, on a weekly basis over an 11-yr period. Fly populations exhibited relatively stable dynamics over time. Population dynamics were mainly driven by a direct density-dependent effect and a seasonal feedback process. We discovered direct and delayed influences that were correlated with both local (rainfall and air temperature) and global climatic variation (El Niño Southern Oscillation [ENSO] and North Atlantic Oscillation [NAO]), and detected differences among species and location of orchards with respect to the magnitude and nature (linear or nonlinear) of the observed effects, suggesting that highly mobile pest outbreaks become uncertain in response to significant climatic events at both global and local levels. That both NAO and ENSO affected Anastrepha population dynamics, coupled with the high mobility of Anastrepha adults and the discovery that when measured as rate of population change, local population fluctuations exhibited stable dynamics over time, suggests potential management scenarios for the species studied lie beyond the local scale and should be approached from an areawide perspective. Localized efforts, from individual growers will probably prove ineffective, and nonsustainable.

  20. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  1. Additive and Synergistic Impacts of Fishing and Warming on the Growth of a Temperate Marine Fish

    Science.gov (United States)

    Morrongiello, J.

    2016-02-01

    Fishing and climate change are having profound impacts on the trajectory and variability of marine populations. However, despite the wealth of work undertaken in marine environments on the causes of longer-term biological change, the effects of these two drivers have traditionally been considered in isolation or just additively. Such an approach obviously overlooks the potential for significant synergistic or antagonistic interactions between fishing and climate to occur. Indeed, it is increasingly becoming acknowledged that the direction and magnitude of biological responses to natural environmental variation and climate change can be mediated by other anthropogenic disturbances such as fishing, and vice versa. Somatic growth is an ideal candidate with which to explore the impacts of fishing and environmental variability due to its strong biological relevance and its heightened sensitivity to natural and anthropogenic drivers. I developed 19-year growth biochronologies (1980-1999) for three south-east Australian populations of a site-attached temperate reef fish, purple wrasse (Notolabrus fucicola) using individual-based growth information naturally archived in otoliths. A commercial wrasse fishery began in the early 1990s; before this there was negligible recreational or commercial fishing. The growth of older fish was proportionally higher and that of the youngest fish proportionally lower after the onset of commercial fishing; 2-year olds grew 7.4% slower, but 5-year-olds grew 10.3% and 10-year-olds 26% faster in the latter period. These results are consistent with a density dependent response to harvesting. Average growth rates across all ages increased by 6.6%.oC-1, reflecting either a direct or indirect temperature effect in this global marine 'hotspot'. Finally, the distribution of individual thermal reaction norms significantly changed post fishing, showing that fishing and temperature can have a synergetic impact on marine populations via within

  2. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed; Shamma, Jeff S.

    2017-01-01

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population

  3. Red Sea Acropora hemprichii Bacterial Population Dynamics under Adverse Anthropogenic Conditions

    KAUST Repository

    Lizcano, Javier

    2012-08-01

    Reef-building corals are cornerstones of life in the oceans. Understanding their interactions with microorganisms and their surrounding physicochemical conditions is important to comprehend reef functioning and ultimately protect coral reef ecosystems. Corals associate with a complex and specific array of microorganisms that supposedly affect their physiology and therefore can significantly determine the condition of a coral ecosystem. As environmental conditions may shape bacterial diversity and ecology in the coral symbiosis, ecosystem changes might have unfavorable consequences for the holobiont, to date poorly understood. Here, we were studying microbial community changes in A. hemprichii as a consequence of simulated eutrophication and overfishing over a period of 16 weeks by using in situ caging and slow release fertilizer treatments in an undisturbed Red Sea reef (22.18ºN, 38.57ºW). We used 16S rDNA amplicon sequencing to evaluate the individual and combined effects of overnutrification and fishing pressure, two of the most common local threats to coral reefs. With our data we hope to better understand bacterial population dynamics under anthropogenic influences and its role in coral resilience. Projecting further, this data will be useful to better predict the consequences of human activity on reef ecosystems.

  4. Consequences of Hatch Phenology on Stages of Fish Recruitment.

    Directory of Open Access Journals (Sweden)

    David M Bogner

    Full Text Available Little is known about how hatch phenology (e.g., the start, peak, and duration of hatching could influence subsequent recruitment of freshwater fishes into a population. We used two commonly sympatric fish species that exhibit different hatching phenologies to examine recruitment across multiple life stages. Nine yellow perch (Perca flavescens and bluegill (Lepomis macrochirus annual cohorts were sampled from 2004 through 2013 across larval, age-0, age-1, and age-2 life stages in a Nebraska (U.S.A. Sandhill lake. Yellow perch hatched earlier in the season and displayed a more truncated hatch duration compared to bluegill. The timing of hatch influenced recruitment dynamics for both species but important hatching metrics were not similar between species across life stages. A longer hatch duration resulted in greater larval yellow perch abundance but greater age-1 bluegill abundance. In contrast, bluegill larval and age-0 abundances were greater during years when hatching duration was shorter and commenced earlier, whereas age-0 yellow perch abundance was greater when hatching occurred earlier. As a result of hatch phenology, yellow perch recruitment variability was minimized sooner (age-0 life stage than bluegill (age-1 life stage. Collectively, hatch phenology influenced recruitment dynamics across multiple life stages but was unique for each species. Understanding the complexities of when progeny enter an environment and how this influences eventual recruitment into a population will be critical in the face of ongoing climate change.

  5. Social Information Links Individual Behavior to Population and Community Dynamics.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew

    2018-05-07

    When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Network evolution induced by the dynamical rules of two populations

    International Nuclear Information System (INIS)

    Platini, Thierry; Zia, R K P

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (N a and N b ) and preferred degree (κ a and κ b a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees (k bb ) and (k ab ) presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal N a = N b , the ratio of the restricted degree θ 0 = (k ab )/(k bb ) appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t 1 = κ b ) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ 0 = 1. Interestingly, in the intermediate time regime (defined for t 1 2 ∝κ a and for which θ 0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ 0 = 3

  7. Linking temporal changes in the demographic structure and individual growth to the decline in the population of a tropical fish

    Science.gov (United States)

    Sirot, Charlotte; Darnaude, Audrey M.; Guilhaumon, François; Ramos-Miranda, Julia; Flores-Hernandez, Domingo; Panfili, Jacques

    2015-11-01

    The exceptional biodiversity and productivity of tropical coastal lagoons can only be preserved by identifying the causes for the decline in the populations living in these vulnerable ecosystems. The Terminos lagoon in Mexico provided an opportunity for studying this issue as some of its fish populations, in particular the Silver Perch (Bairdiella chrysoura), have declined significantly since the 1980s. Fish sampling campaigns carried out over the whole lagoon area in 1979-81 and again in 2006-2011 revealed the mechanisms which may have been responsible for this decline. Based on biometrical data for 295 juveniles and adults from the two periods and on somatic growth derived from 173 otoliths, a study of the temporal changes in the demographic structure and life history traits (individual growth and body condition) made it possible to distinguish the causes of the decline in the B. chrysoura population. Growth models for the lagoon in 1980-1981 and 2006-2011 showed no significant change in the growth parameters of the population over the last 30 years with a logistic model giving an accurate estimate (R2 = 0.66) of the size-at-age for both periods. The decline in the B. chrysoura population could not be explained by an overall decrease in individual size and condition in the lagoon, the average standard length (SL) and Fulton index (FI) having increased slightly since 1980-1981 (4.6 mm and 0.02 for juveniles and 5.42 mm and 0.07 for adults). However, the size structure of the population in the lagoon has changed, with a significant shift in the size distribution of juveniles with a marked reduction in the proportion of juveniles ≤ 60 mm in the captures (90.9% fewer than in 1980-1981). As the otolith growth rate of fish during the first 4 months also decreased significantly between the two sampling periods (-15%), it is suggested that the main reason for the decline in the abundance and biomass of B. chrysoura within this system may be that its habitats are less

  8. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  9. The population dynamical implications of male-biased parasitism in different mating systems.

    Directory of Open Access Journals (Sweden)

    Martin R Miller

    2007-07-01

    Full Text Available Although there is growing evidence that males tend to suffer higher levels of parasitism than females, the implications of this for the population dynamics of the host population are not yet understood. Here we build on an established 'two-sex' model and investigate how increased susceptibility to infection in males affects the dynamics, under different mating systems. We investigate the effect of pathogenic disease at different case mortalities, under both monogamous and polygynous mating systems. If the case mortality is low, then male-biased parasitism appears similar to unbiased parasitism in terms of its effect on the population dynamics. At higher case mortalities, we identified significant differences between male-biased and unbiased parasitism. A host population may therefore be differentially affected by male-biased and unbiased parasitism. The dynamical outcome is likely to depend on a complex interaction between the host's mating system and demography, and the parasite virulence.

  10. Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion.

    Science.gov (United States)

    Larsson, Karin; Harrysson, Hanna; Havenaar, Robert; Alminger, Marie; Undeland, Ingrid

    2016-02-01

    Marine lipids contain a high proportion of polyunsaturated fatty acids (PUFA), including the characteristic long chain (LC) n-3 PUFA. Upon peroxidation these lipids generate reactive products, such as malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE), which can form covalent adducts with biomolecules and thus are regarded as genotoxic and cytotoxic. PUFA peroxidation can occur both before and after ingestion. The aim of this study was to determine what levels of MDA, HHE and HNE can evolve in the gastric and intestinal lumen after ingesting meals containing fish or fish oil using a dynamic gastrointestinal (GI) model (TIM). The impact of the fish muscle matrix, lipid content, fish species, and oven baking on GI oxidation was evaluated. MDA and HHE concentrations in gastric lumen increased for all meals during digestion, with the highest level found with herring mince; ∼ 25 μM MDA and ∼ 850 nM HHE. Aldehyde concentrations reached in intestinal lumen during digestion of fish containing meals were generally lower than in gastric lumen, while isolated herring oils (bulk and emulsified) generated higher MDA and HHE values in intestinal lumen compared to gastric lumen. Based on aldehyde levels in gastric lumen, meals containing herring lipids were ranked: raw herring (17% lipid) = baked herring (4% lipid) > raw herring (4% lipid) ≫ herring oil emulsion > herring oil. Herring developed higher concentrations of MDA and HHE during gastric digestion compared to salmon, which initially contained lower levels of oxidation products. Cooked salmon generated higher MDA concentrations during digestion than raw salmon. Low levels of HNE were observed during digestion of all test meals, in accordance with the low content of n-6 PUFA in fish lipids.

  11. The ecology of parasites of freshwater fishes: the search for patterns.

    Science.gov (United States)

    Kennedy, C R

    2009-10-01

    Developments in the study of the ecology of helminth parasites of freshwater fishes over the last half century are reviewed. Most research has of necessity been field based and has involved the search for patterns in population and community dynamics that are repeatable in space and time. Mathematical models predict that under certain conditions host and parasite populations can attain equilibrial levels through operation of regulatory factors. Such factors have been identified in several host-parasite systems and some parasite populations have been shown to persist over long time-periods. However, there is no convincing evidence that fish parasite populations are stable and regulated since in all cases alternative explanations are equally acceptable and it appears that they are non-equilibrial systems. It has proved particularly difficult to detect replicable patterns in parasite communities. Inter-specific competition, evidenced by functional and numerical responses, has been detected in several communities but its occurrence is erratic and its significance unclear. Some studies have failed to find any nested patterns in parasite community structure and richness, whereas others have identified such patterns although they are seldom constant over space and time. Departures from randomness appear to be the exception and then only temporary. It appears that parasite communities are non-equilibrial, stochastic assemblages rather than structured and organized.

  12. How to control chaotic behaviour and population size with proportional feedback

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Eduardo, E-mail: eliz@dma.uvigo.e [Departamento de Matematica Aplicada II, E.T.S.E. Telecomunicacion, Universidade de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2010-01-18

    We study the control of chaos in one-dimensional discrete maps as they often occur in modelling population dynamics. For managing the population, we seek to suppress any possible chaotic behavior, leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen among a broad range of possible values. In particular, the size of the population can be enhanced by control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and it has important implications in the design of strategies in such areas as fishing, pest management, and conservation biology.

  13. How to control chaotic behaviour and population size with proportional feedback

    International Nuclear Information System (INIS)

    Liz, Eduardo

    2010-01-01

    We study the control of chaos in one-dimensional discrete maps as they often occur in modelling population dynamics. For managing the population, we seek to suppress any possible chaotic behavior, leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen among a broad range of possible values. In particular, the size of the population can be enhanced by control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and it has important implications in the design of strategies in such areas as fishing, pest management, and conservation biology.

  14. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures

    Science.gov (United States)

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats. PMID:28002499

  15. Effects of wind farms on harbour porpoise behaviour and population dynamics

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Tougaard, Jakob; Teilmann, Jonas

    We developed an individual-based simulation model in order to study the cumulative impacts of wind farms and ship traffic on the long-term survival and population dynamics of the harbour porpoise (Phocoena phocoena) in Kattegat and the Belt Seas. The model is based on knowl- edge of the porpoises...... at distances >1 km. Our simulations suggest that operating wind farms and wind farms under construction do not affect the size or dynamics of the harbour porpoise population in Kattegat. Ship traffic may, in contrast, cause the population size to decrease....

  16. Specific IgE to fish extracts does not predict allergy to specific species within an adult fish allergic population.

    Science.gov (United States)

    Schulkes, Karlijn Jg; Klemans, Rob Jb; Knigge, Lidy; de Bruin-Weller, Marjolein; Bruijnzeel-Koomen, Carla Afm; Marknell deWitt, Asa; Lidholm, Jonas; Knulst, André C

    2014-01-01

    Fish is an important cause of food allergy. Studies on fish allergy are scarce and in most cases limited to serological evaluation. Our objective was to study patterns of self-reported allergy and tolerance to different commonly consumed fish species and its correlation to IgE sensitization to the same species. Thirty-eight adult fish allergic patients completed a questionnaire regarding atopy, age of onset and symptoms to 13 commonly consumed fish species in the Netherlands (pangasius, cod, herring, eel, hake, pollock, mackerel, tilapia, salmon, sardine, tuna, plaice and swordfish). Specific IgE to these fish extracts were analyzed by ImmunoCAP. Median age of onset of fish allergy was 8.5 years. Severe reactions were reported by the majority of patients (n = 20 (53%) respiratory and of these 20 patients, 6 also had cardiovascular symptoms). After diagnosis, 66% of the patients had eliminated all fish from their diet. Allergy to all species ever tried was reported by 59%. In relation to species ever tried, cod (84%) and herring (79%) were the most frequently reported culprit species while hake (57%) and swordfish (55%) were the least frequent. A positive sIgE (value ≥ 0.35 kUA/L) to the culprit species ranged between 50% (swordfish) and 100% (hake). In tolerant patients, a negative sIgE (value allergy or tolerance was 82% and 25%, respectively. Sensitization to cod parvalbumin (Gad c 1) was present in 77% of all patients. Serological cross-reactivity between fish species is frequent, but in a significant proportion of patients, clinical relevance appears to be limited to only certain species. A well-taken history or food challenge is required for discrimination between allergy to the different fish species.

  17. Ecophysiological responses to the effect of annual management on an endemic viviparous fish in central plateau of Mexico

    Directory of Open Access Journals (Sweden)

    Fernando Garcia-Trejo

    Full Text Available Studies on the biological aspects of fish typically focus on species that currently have commercial value, causing species that lack such market value to be ignored. This is the case of several freshwater fish, specifically of several members of the Goodeidae family. In the State of Querétaro there are several species of this family characterized for being viviparous and having distinctive sexual dimorphism that may have commercial potential. The subject of this study is Girardinichthys multiradiatus, a viviparous fish endemic to the upper-half of the Lerma River basin. The lack of knowledge regarding its biology and ecology has prevented the development of guidelines to manage its habitat and to preserve its population. The objective was to determine the ecophysiological responses of G. multiradiatus to its environmental management. From the sampling (24 hours every two months population structure and dynamics were analyzed throughout a hydrological cycle using meristic data (standard length. Trophic and ecophysiological responses to fluctuations in environmental factors were also identified. Although the mexcalpique is a polytrophic species, results show that it prefers feeding on Diptera or Cladocera, while detritus is the third substance frequently found in their stomachs. Environmentally, the water regime is responsible for fluctuations in the population dynamics of the species, while temperature changes are the most influence its energy balance. These results can guide efforts to conserve this species and its habitat.

  18. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    Directory of Open Access Journals (Sweden)

    Joseph G Makin

    2015-11-01

    Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

  19. Evidence of a variable "unsampled" pelagic fish biomass in shallow water (< 20 m): the case of the Gulf of Lion

    OpenAIRE

    Brehmer, Patrice; Guillard, J.; Guennegan, Y.; Bigot, J.L.; Liorzou, B.

    2006-01-01

    Studies of small pelagic fish biomass are limited by the fact that research vessels and fishing boats are usually restricted to working areas with a bottom depth > 20 m. Consequently, "unsampled" areas can represent a large proportion of the continental shelf, and the biomass in those areas can be important and must be taken into account in assessment methods in order to avoid misleading interpretations in population dynamics. A time-series tell years long has been compiled from acoustic-asse...

  20. Fish allergy: in review.

    Science.gov (United States)

    Sharp, Michael F; Lopata, Andreas L

    2014-06-01

    Globally, the rising consumption of fish and its derivatives, due to its nutritional value and divergence of international cuisines, has led to an increase in reports of adverse reactions to fish. Reactions to fish are not only mediated by the immune system causing allergies, but are often caused by various toxins and parasites including ciguatera and Anisakis. Allergic reactions to fish can be serious and life threatening and children usually do not outgrow this type of food allergy. The route of exposure is not only restricted to ingestion but include manual handling and inhalation of cooking vapors in the domestic and occupational environment. Prevalence rates of self-reported fish allergy range from 0.2 to 2.29 % in the general population, but can reach up to 8 % among fish processing workers. Fish allergy seems to vary with geographical eating habits, type of fish processing, and fish species exposure. The major fish allergen characterized is parvalbumin in addition to several less well-known allergens. This contemporary review discusses interesting and new findings in the area of fish allergy including demographics, novel allergens identified, immunological mechanisms of sensitization, and innovative approaches in diagnosing and managing this life-long disease.

  1. Building the bridge between animal movement and population dynamics.

    Science.gov (United States)

    Morales, Juan M; Moorcroft, Paul R; Matthiopoulos, Jason; Frair, Jacqueline L; Kie, John G; Powell, Roger A; Merrill, Evelyn H; Haydon, Daniel T

    2010-07-27

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through 'spatially informed' movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission-fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.

  2. Study on polychlorobiphenyl serum levels in French consumers of freshwater fish

    International Nuclear Information System (INIS)

    Desvignes, Virginie; Volatier, Jean-Luc; Bels, Frédéric de; Zeghnoun, Abdelkrim; Favrot, Marie-Christine; Marchand, Philippe; Le Bizec, Bruno; Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde

    2015-01-01

    Introduction: Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. Objectives: First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP + freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. Methods: We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Results: Consumption of PCB-BP + freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R 2 = 61%) and the consumption of PCB-BP + freshwater fish (R 2 = 2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP + freshwater fish consumption that do not exceed the critical body burden threshold. Conclusion: Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French general population

  3. Study on polychlorobiphenyl serum levels in French consumers of freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Desvignes, Virginie, E-mail: virginie.desvignes@anses.fr [Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27–31, avenue du Général Leclerc, Maisons-Alfort, F-94701 (France); Volatier, Jean-Luc [Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27–31, avenue du Général Leclerc, Maisons-Alfort, F-94701 (France); Bels, Frédéric de [Division for Public Health and Care, French National Cancer Institute (INCa), 52, avenue André Morizet, Boulogne Billancourt Cedex, F-92513 (France); Zeghnoun, Abdelkrim [Department of Environmental Health, French Institute for Public Health Surveillance (InVS), 12, rue du Val d' Osne, Saint-Maurice, F-94415 (France); Favrot, Marie-Christine [Ministry of Health, 14, avenue Duquesne, Paris, F-75350 (France); Marchand, Philippe; Le Bizec, Bruno [LUNAM Université, Oniris, Laboratoire d' Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, Nantes, F-44307 (France); Rivière, Gilles; Leblanc, Jean-Charles; Merlo, Mathilde [Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27–31, avenue du Général Leclerc, Maisons-Alfort, F-94701 (France)

    2015-02-01

    Introduction: Polychlorobiphenyls (PCBs) are persistent pollutants that are widespread in the environment and in foodstuffs, particularly in freshwater fish, which frequently exceed the maximum levels set by European regulations. Objectives: First, we describe the consumption of freshwater fish and serum PCB levels in French anglers, a population expected to have the highest level of dietary PCB exposure. Second, we investigated whether there is a statistical relationship between serum PCB levels and the angler consumption of freshwater fish with high PCB bioaccumulation potential (PCB-BP{sup +} freshwater fish) in order to make recommendations with regard to safe consumption of freshwater fish. Methods: We conducted a survey of anglers from six sites with contrasting PCB contamination levels. The survey included a food consumption frequency questionnaire and blood samples were taken to assess serum PCB levels. We used a regression model to determine the main factors contributing to serum PCB levels. Results: Consumption of PCB-BP{sup +} freshwater fish was relatively infrequent. Serum PCB levels of the study population and of women of childbearing age were in the same range as those observed in the French population and in neighbouring European countries, but higher than in the North American population. The two factors with the highest positive association with serum PCB levels were age (R{sup 2} = 61%) and the consumption of PCB-BP{sup +} freshwater fish (R{sup 2} = 2%). Using the regression model, we calculated, for several scenarios depending on the age and gender of the population, the maximum annual frequencies for PCB-BP{sup +} freshwater fish consumption that do not exceed the critical body burden threshold. Conclusion: Following the results of this study, the French agency for food, environmental and occupational health and safety (ANSES) issued an opinion and recommended some specific maximum freshwater fish consumption frequencies to protect the French

  4. The failure rate dynamics in heterogeneous populations

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2013-01-01

    Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given. -- Highlights: ► This paper provides the insight on the variability measures in heterogeneous populations. ► The conservative quality measures in heterogeneous populations are defined. ► The utility of these measures is illustrated by meaningful examples. ► This paper provides a better understanding of the dynamics in heterogeneous populations

  5. SIR dynamics in structured populations with heterogeneous connectivity

    OpenAIRE

    Volz, Erik

    2005-01-01

    Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...

  6. Population dynamics and ecology of Tilapia rendalli in Lago Sauce (Peru)

    Energy Technology Data Exchange (ETDEWEB)

    Wosnitza-Mendo, C.

    1980-01-01

    This is a practical contribution to development aid in Peru. It was to provide a basis for farming of Lago Sauce and similar lakes and introduce young Peruvian fishery biologists to practical and theoretical work with populations of freshwater fish. Various methods of biomass determination have been compared in order to find out why only small specimens of Tilapia rendalli have been caught and what ichthyobiomass was in the lake.

  7. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  8. Endangered river fish: factors hindering conservation and restoration

    Science.gov (United States)

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  9. Fish populations in a large group of acid-stressed lakes

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, H H

    1975-01-01

    The purpose of this study was to determine the effects of environmental stress on the number and diversity of fish species in a group of acid-stressed lakes. The study area was the La Cloche Mountains, a series of quartzite ridges covering 1,300 km/sup 2/ along the north shore of Georgian Bay and north channel of Lake Huron. Within these ridges are 173 lakes; 68 of the largest of these made up the study sample. The lakes of the La Cloche Mountains are undergoing rapid acidification. Coincident with this there has been the loss of sport fishes from several lakes. Lakes such as Nellie, Lumsden, O.S.A., Acid and Killarney supported good sport fisheries for the lake trout, (Salvelinus namaycush) for many years, but have ceased to do so in the last 5 to 15 years. Other sport fishes, notably the walleye (Stizostedion vitreum) and smallmouth bass (micropterus dolomieu) have disappeared from some of the La Cloche Lakes. Thus recreational fishing alone could not have been the cause of the change. Beamish (1974) recorded the extreme sparcity of the three remaining fish species in O.S.A. Lake. Many of the lakes of the La Cloche mountains are accessible only with difficulty and little or no information exists for these lakes prior to this study. This precluded simple comparison of these lakes before and during acidification. This lack of historic data determined in part the approach taken in this study; a comparison of the fish communities of a group of lakes differing in degree of acid stress.

  10. Population Dynamics of Early Human Migration in Britain.

    Directory of Open Access Journals (Sweden)

    Mayank N Vahia

    Full Text Available Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction.We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples' movement over ~2000 years before the present era.We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available.

  11. Geography, European colonization, and past population dynamics in Africa

    OpenAIRE

    Vaz Silva, Luis

    2005-01-01

    Past population dynamics in Africa have remained largely elusive due to the lack of demographic data. Researchers are understandably deterred from trying to explain what is not known and African historical population estimates suffer from this lack of interest. In this paper I explain present day African population densities using mostly ecological factors as explanatory variables. I find evidence supporting the view that ecological factors deeply affected precolonial patterns of human settle...

  12. Argument supporting the reality of compensation in fish populations and a plea to let them exercise it

    International Nuclear Information System (INIS)

    McFadden, J.T.

    1977-01-01

    Approaching population processes of fish from the perspective of compensation one envisions an established population as one in which survival or reproduction (or both) have been vastly suppressed for the reason that the population has become large. The natural factors that operate to suppress the biotic potential are many and are complexly intertwined, including availability of food, predators, disease, and physical factors such as temperature. Many of them have greater suppressive effect when the population is large than when it is small. If some new effect that kills off part of the population is introduced, it reduces the suppressive effect of many factors in the population's environment. As a consequence, survival rate or reproductive rate becomes higher and the population compensates in part for the reduction in size. When something causes a population to either increase or decrease in size, there is a tendency for eventual return to average size when the perturbation is removed. Populations do not usually become extinct or increase to infinity, but maintain the balance of nature

  13. Effects of constant immigration on the dynamics and persistence of stable and unstable Drosophila populations

    Science.gov (United States)

    Dey, Snigdhadip; Joshi, Amitabh

    2013-01-01

    Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546

  14. Nonlinear dynamics of interacting populations

    CERN Document Server

    Bazykin, Alexander D

    1998-01-01

    This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the

  15. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  16. An Empirical Study of AI Population Dynamics with Million-agent Reinforcement Learning

    OpenAIRE

    Yang, Yaodong; Yu, Lantao; Bai, Yiwei; Wang, Jun; Zhang, Weinan; Wen, Ying; Yu, Yong

    2017-01-01

    In this paper, we conduct an empirical study on discovering the ordered collective dynamics obtained by a population of artificial intelligence (AI) agents. Our intention is to put AI agents into a simulated natural context, and then to understand their induced dynamics at the population level. In particular, we aim to verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-sc...

  17. Proximate analysis of female population of wild feather back fish ...

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... Key words: Body composition, Notopterus notopterus, condition factor, wild fish. INTRODUCTION. Proximate body composition is the analysis of water, fat, protein and ash contents of the fish (Love, 1980). Proximate composition is a good indicator of physiology which is needed for routine analysis of ...

  18. Quality of a fished resource: Assessing spatial and temporal dynamics.

    Directory of Open Access Journals (Sweden)

    Sarah J Teck

    Full Text Available Understanding spatio-temporal variability in the demography of harvested species is essential to improve sustainability, especially if there is large geographic variation in demography. Reproductive patterns commonly vary spatially, which is particularly important for management of "roe"-based fisheries, since profits depend on both the number and reproductive condition of individuals. The red sea urchin, Mesocentrotus franciscanus, is harvested in California for its roe (gonad, which is sold to domestic and international sushi markets. The primary driver of price within this multi-million-dollar industry is gonad quality. A relatively simple measure of the fraction of the body mass that is gonad, the gonadosomatic index (GSI, provides important insight into the ecological and environmental factors associated with variability in reproductive quality, and hence value within the industry. We identified the seasonality of the reproductive cycle and determined whether it varied within a heavily fished region. We found that fishermen were predictable both temporally and spatially in collecting urchins according to the reproductive dynamics of urchins. We demonstrated the use of red sea urchin GSI as a simple, quantitative tool to predict quality, effort, landings, price, and value of the fishery. We found that current management is not effectively realizing some objectives for the southern California fishery, since the reproductive cycle does not match the cycle in northern California, where these management guidelines were originally shaped. Although regulations may not be meeting initial management goals, the scheme may in fact provide conservation benefits by curtailing effort during part of the high-quality fishing season right before spawning.

  19. Measurements of spatial population synchrony: influence of time series transformations.

    Science.gov (United States)

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  20. The demographic drivers of local population dynamics in two rare migratory birds.

    Science.gov (United States)

    Schaub, Michael; Reichlin, Thomas S; Abadi, Fitsum; Kéry, Marc; Jenni, Lukas; Arlettaz, Raphaël

    2012-01-01

    The exchange of individuals among populations can have strong effects on the dynamics and persistence of a given population. Yet, estimation of immigration rates remains one of the greatest challenges for animal demographers. Little empirical knowledge exists about the effects of immigration on population dynamics. New integrated population models fitted using Bayesian methods enable simultaneous estimation of fecundity, survival and immigration, as well as the growth rate of a population of interest. We applied this novel analytical framework to the demography of two populations of long-distance migratory birds, hoopoe Upupa epops and wryneck Jynx torquilla, in a study area in south-western Switzerland. During 2002-2010, the hoopoe population increased annually by 11%, while the wryneck population remained fairly stable. Apparent juvenile and adult survival probability was nearly identical in both species, but fecundity and immigration were slightly higher in the hoopoe. Hoopoe population growth rate was strongly correlated with juvenile survival, fecundity and immigration, while that of wrynecks strongly correlated only with immigration. This indicates that demographic components impacting the arrival of new individuals into the populations were more important for their dynamics than demographic components affecting the loss of individuals. The finding that immigration plays a crucial role in the population growth rates of these two rare species emphasizes the need for a broad rather than local perspective for population studies, and the development of wide-scale conservation actions.

  1. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    Energy Technology Data Exchange (ETDEWEB)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  2. A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH

    Directory of Open Access Journals (Sweden)

    Jinzhong FU

    2009-04-01

    Full Text Available The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA. Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number, location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation, low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution.

  3. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  4. Biodiversité des poissons estuariens de l'Ile de Socotra (Nord-Ouest de l'Océan Indien) : du peuplement ichtyologique au fonctionnement des populations de Terapon jarbua

    OpenAIRE

    Lavergne , Edouard

    2012-01-01

    Understanding connectivity between estuarine nurseries and marine habitats is fundamental to explore fish population dynamics and to the design of effective conservation and fisheries management strategies. The aim of this work was to provide the first faunistic and ecological baseline of Socotra Island (North-Western Indian Ocean) estuaries and lagoon fishes for governmental coastal managers and decision makers, with a particular focus on the population functioning of a sentinel species: Ter...

  5. Forecasting Tools Point to Fishing Hotspots

    Science.gov (United States)

    2009-01-01

    Private weather forecaster WorldWinds Inc. of Slidell, Louisiana has employed satellite-gathered oceanic data from Marshall Space Flight Center to create a service that is every fishing enthusiast s dream. The company's FishBytes system uses information about sea surface temperature and chlorophyll levels to forecast favorable conditions for certain fish populations. Transmitting the data to satellite radio subscribers, FishBytes provides maps that guide anglers to the areas they are most likely to make their favorite catch.

  6. Biochemical genetics of some Indian fishes

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Qasim, S.Z.

    similarities in their protein make up, whereas these taxonomically apart showed striking differences. Thus, the usefulness of employing this method was clearly demonstrated in fish taxonomy. The study of genetic struture of fish populations through the analysis...

  7. The basic approach to age-structured population dynamics models, methods and numerics

    CERN Document Server

    Iannelli, Mimmo

    2017-01-01

    This book provides an introduction to age-structured population modeling which emphasises the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology, and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modelling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behaviour of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students an...

  8. Meeting the Needs for More Fish Through Aquaculture

    Science.gov (United States)

    Giap, D. H.; Lam, T. J.

    2015-10-01

    Fish is one of the major sources of animal protein. Due to rising world populations, increasing income and urbanization, demand for fish has been increasing. In order to meet the need for more fish, aquaculture has become increasingly important as wild populations and production from capture fisheries have declined due to overfishing and poor management. In recent years, production from aquaculture has increased rapidly to address the shortfalls in capture fisheries, especially in Asia where aquaculture production accounts for about 90% of world aquaculture production by volume. This paper reviews the status of the world’s fish production, provides an update on Asian aquaculture, and highlights developments that are contributing to sustainable fish production, particularly integrated multi-trophic aquaculture and aquaponics.

  9. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    Science.gov (United States)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  10. Fluctuating interaction network and time-varying stability of a natural fish community

    Science.gov (United States)

    Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio

    2018-02-01

    Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.

  11. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  12. Kalispel Resident Fish Project : Annual Report, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Todd; Olson, Jason

    2003-03-01

    In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

  13. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    Science.gov (United States)

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  14. Population dynamics of light-limited phytoplankton : Microcosm experiments

    NARCIS (Netherlands)

    Huisman, Jef

    This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient

  15. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    Science.gov (United States)

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modelling the dynamics of fish contamination by Chernobyl radiocaesium: an analytical solution based on potassium mass balance

    International Nuclear Information System (INIS)

    Koulikov, Alexei O.; Meili, Markus

    2003-01-01

    After the sudden fallout from the Chernobyl nuclear accident in 1986, activities and bioaccumulation factors of radiocaesium ( 137 Cs, 134 Cs) fluctuated strongly over several years before reaching quasi-equilibrium, with patterns significantly differing among organisms. To model these dynamic relaxation processes based on ecological mechanisms we developed mass balance equations for 137 Cs in an aquatic food chain on the following basis: (a) potassium acts as a biogeochemical analogue ('carrier') of caesium; (b) the concentration of potassium in fish and other animals is effectively constant; (c) the main source of potassium in freshwater fish is the dietary uptake. The model is applicable to linear food chains of any number of trophic levels, while solutions evaluated here include the following food chain compartments: water, invertebrates (fish food), non-piscivorous fish, and piscivorous fish. The activity concentration in the water, which is considered as the secondary source of 137 Cs, is described by multi-component first-order decay function, although two components (fast and slow) are often sufficient to provide agreement with empirical data. In every compartment the turnover rate of caesium is considered as a constant over time. The analytical solution of the model equations describes the 137 Cs activity concentration in every compartment as a series of exponential functions, of which some are derived from the source pattern, and the others determined by the 137 Cs turnover rate in each food chain compartment. The model was tested with post-Chernobyl data from several long-term studies in lakes and provided a reasonable description of important radioecological aspects

  17. Source Array Support for Continuous Monitoring of Fish Population and Behavior by Instantaneous Continental-Shelf-Scale Imaging Using Ocean-Waveguide Acoustics

    National Research Council Canada - National Science Library

    Rynne, Ed; Gillette, David

    2006-01-01

    ...) Multistatic ASW Capability Enhancement Program (MACE) as the source of underwater sounds to support active bi-static sonar capabilities for monitoring fish populations and behaviors during a September/October 2006 sea test off the coast of Maine...

  18. Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity

    International Nuclear Information System (INIS)

    Tung Wenwen; Qi Yan; Gao, J.B.; Cao Yinhe; Billings, Lora

    2005-01-01

    In recent years it has been increasingly recognized that noise and determinism may have comparable but different influences on population dynamics. However, no simple analysis methods have been introduced into ecology which can readily characterize those impacts. In this paper, we study a population model with strong periodicity and both with and without noise. The noise-free model generates both quasi-periodic and chaotic dynamics for certain parameter values. Due to the strong periodicity, however, the generated chaotic dynamics have not been satisfactorily described. The dynamics becomes even more complicated when there is noise. Characterizing the chaotic and stochastic dynamics in this model thus represents a challenging problem. Here we show how the chaotic dynamics can be readily characterized by the direct dynamical test for deterministic chaos developed by [Gao JB, Zheng ZM. Europhys. Lett. 1994;25:485] and how the influence of noise on quasi-periodic motions can be characterized as asymmetric diffusions wandering along the quasi-periodic orbit. It is hoped that the introduced methods will be useful in studying other population models as well as population time series obtained both in field and laboratory experiments

  19. Efficient characterisation of large deviations using population dynamics

    Science.gov (United States)

    Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.

    2018-05-01

    We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.

  20. A Review on hematology and hemoglobin of fish

    Directory of Open Access Journals (Sweden)

    Ebru YILMAZ

    2015-01-01

    Full Text Available Determination of hematological parameters of fish living in natüre helps to recognize population and to determinate of pollutants in the aquatic environment. In this review, hematological parameters of fish, fish hemoglobin and the Bohr effect were given information.

  1. Ruffed grouse population dynamics in the central and southern Appalachians

    Science.gov (United States)

    John M. Giuliano Tirpak; C. Allan Miller; Thomas J. Allen; Steve Bittner; David A. Buehler; John W. Edwards; Craig A. Harper; William K. Igo; Gary W. Norman; M. Seamster; Dean F. Stauffer

    2006-01-01

    Ruffed grouse (Bonasa urnbellus; hereafter grouse) populations in the central and southern Appalachians are in decline. However, limited information on the dynamics of these populations prevents the development of effective management strategies to reverse these trends. We used radiotelemetry data collected on grouse to parameterize 6 models of...

  2. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    Science.gov (United States)

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Life history, population viability, and the potential for local adaptation in isolated trout populations

    Science.gov (United States)

    K. J. Carim; Y. Vindenes; L. A. Eby; C. Barfoot; L. A. Vollestad

    2017-01-01

    Habitat loss and fragmentation have caused population decline across taxa through impacts on life history diversity, dispersal patterns, and gene flow. Yet, intentional isolation of native fish populations is a frequently used management strategy to protect against negative interactions with invasive fish species. We evaluated the population viability and genetic...

  4. Modelling population dynamics model formulation, fitting and assessment using state-space methods

    CERN Document Server

    Newman, K B; Morgan, B J T; King, R; Borchers, D L; Cole, D J; Besbeas, P; Gimenez, O; Thomas, L

    2014-01-01

    This book gives a unifying framework for estimating the abundance of open populations: populations subject to births, deaths and movement, given imperfect measurements or samples of the populations.  The focus is primarily on populations of vertebrates for which dynamics are typically modelled within the framework of an annual cycle, and for which stochastic variability in the demographic processes is usually modest. Discrete-time models are developed in which animals can be assigned to discrete states such as age class, gender, maturity,  population (within a metapopulation), or species (for multi-species models). The book goes well beyond estimation of abundance, allowing inference on underlying population processes such as birth or recruitment, survival and movement. This requires the formulation and fitting of population dynamics models.  The resulting fitted models yield both estimates of abundance and estimates of parameters characterizing the underlying processes.  

  5. Population dynamics of potato cyst nematodes and associated damage to potato

    NARCIS (Netherlands)

    Schans, J.

    1993-01-01

    Population dynamics of potato cyst nematodes (PCN; Globoderarostochiensis (Woll.) Skarbilovich and G. pallida Stone) and their interactions with potato plants are insufficiently understood to explain variations of population

  6. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    Science.gov (United States)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  7. Movement patterns of stream-dwelling fishes from Mata Atlântica, Southeast Brazil.

    Science.gov (United States)

    Mazzoni, Rosana; Iglesias-Rios, Ricardo

    2012-12-01

    The identification of mechanisms of spatial-temporal variation, obtained from the quantification of natural populations, is a central topic of ecological research. Despite its importance to life-history theory, as well as to conservation and management of natural populations, no studies concerning movement patterns and home range of small stream-dwelling fishes from Brazilian rain forests are known. In the present study we aimed to describe the longitudinal pattern of long distance movement as well as local patterns of short movement (daily home-range) of fishes from a Mata Atlântica stream from Southeast Brazil. We gathered information about movement dynamic in order to discuss the relationship between swimming ability, fish morphology and home range. Long distance movement data were obtained in a mark-recapture experiment held in the field between June and September - 2008, on five sites along the Ubatiba stream. For this study, we had one day to mark fishes, on June-19, and 14 events for recapture. Considering the ten species that inhabit the study area, our study showed that four species: Astyanax janeiroensis, Astyanax hastatus, Parotocinclus maculicauda and Pimelodella lateristriga, moved at least 6 000m in 60 days. The other six species did not present long distance movements, as they were recaptured in the same site 90 days after being marked. For short distance study, movement data were obtained in one mark-recapture experiment held in a 100m long site subdivided into five 20m stretches where fishes were marked with different elastomer colours. We marked 583 specimens that after recapture showed two groups of different movement patterns. The first group was called "Long Movement Group" and the second one was called "Short Movement Group". The Long Movement Group showed, on average, 89.8% of moving fishes and 10.2% of non moving fishes, against 21.3% and 78.7%, respectively, for the Short Movement Group. It was concluded that fish movement could explain

  8. Movement patterns of stream-dwelling fishes from Mata Atlântica, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Rosana Mazzoni

    2012-12-01

    Full Text Available The identification of mechanisms of spatial-temporal variation, obtained from the quantification of natural populations, is a central topic of ecological research. Despite its importance to life-history theory, as well as to conservation and management of natural populations, no studies concerning movement patterns and home range of small stream-dwelling fishes from Brazilian rain forests are known. In the present study we aimed to describe the longitudinal pattern of long distance movement as well as local patterns of short movement (daily home-range of fishes from a Mata Atlântica stream from Southeast Brazil. We gathered information about movement dynamic in order to discuss the relationship between swimming ability, fish morphology and home range. Long distance movement data were obtained in a mark-recapture experiment held in the field between June and September - 2008, on five sites along the Ubatiba stream. For this study, we had one day to mark fishes, on June-19, and 14 events for recapture. Considering the ten species that inhabit the study area, our study showed that four species: Astyanax janeiroensis, Astyanax hastatus, Parotocinclus maculicauda and Pimelodella lateristriga, moved at least 6 000m in 60 days. The other six species did not present long distance movements, as they were recaptured in the same site 90 days after being marked. For short distance study, movement data were obtained in one mark-recapture experiment held in a 100m long site subdivided into five 20m stretches where fishes were marked with different elastomer colours. We marked 583 specimens that after recapture showed two groups of different movement patterns. The first group was called “Long Movement Group” and the second one was called “Short Movement Group”. The Long Movement Group showed, on average, 89.8% of moving fishes and 10.2% of non moving fishes, against 21.3% and 78.7%, respectively, for the Short Movement Group. It was concluded that

  9. [Dynamics of numbers of commercial fish in early ontogenesis in different areas of the Central-Eastern Atlantic].

    Science.gov (United States)

    Arkhipov, A G; Mamedov, A A; Simonova, T A; Tenitskaia, I A

    2011-01-01

    Changes in the quantitative composition of mass fish species at early stages of ontogenesis in different areas of the Central-Eastern Atlantic (CEA) in warm and cold seasons in 1994-2008 were analyzed in the paper. The most widespread representatives of ichthyocenosis of CEA were: European pilchard (Sardina pilchardus), common scad (Trachurus trachurus), round sardinella (Sardinella aurita), and West-African scad (Trachrus trecae). The data obtained indicate that, within the economic zone of Morocco, fluctuations of numbers at early stages of development in European pilchard and common scad are close over the entire water area under consideration (36 degrees-21 degrees N). The regularities of fluctuations of the numbers of ichthyoplankton are similar to the interannual changes in the biomass of fish in the area of Morocco. In the area of Mauritania (21 degrees-16 degrees N), fluctuations of numbers of the early stages of development of commercial fish cannot be unambiguously correlated with changes in the biomass of adult fish. It is known that, in the economic zone of Mauritania, there are Senegal-Mauritanian populations of round sardinella and West-African scad that inhabit waters of different states and are not completely assessed by our surveys. Therefore, no obvious relation was observed between the considered data.

  10. 36 CFR 2.3 - Fishing.

    Science.gov (United States)

    2010-07-01

    ... impact populations of native species adversely, and park management plans do not call for elimination of... time of catching the person did not possess the legal limit of fish. (8) Fishing from motor road bridges, from or within 200 feet of a public raft or float designated for water sports, or within the...

  11. Boom or bust? A comparative analysis of transient population dynamics in plants

    DEFF Research Database (Denmark)

    Stott, Iain; Franco, Miguel; Carslake, David

    2010-01-01

    researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...

  12. Relationship between snail population density and infection status of snails and fish with zoonotic trematodes in Vietnamese carp nurseries

    DEFF Research Database (Denmark)

    Clausen, Jesper Hedegaard; Madsen, Henry; Murrell, Kenneth Darwin

    2012-01-01

    ponds. Previous risk assessment on FZT transmission in the Red River Delta of Vietnam identified carp nursery ponds as major sites of transmission. In this study, we analyzed the association between snail population density and heterophyid trematode infection in snails with the rate of FZT transmission...... to juvenile fish raised in carp nurseries....

  13. The Bacterial Microflora of Fish, Revised

    Directory of Open Access Journals (Sweden)

    B. Austin

    2006-01-01

    Full Text Available The results of numerous studies indicate that fish possess bacterial populations on or in their skin, gills, digestive tract, and light-emitting organs. In addition, the internal organs (kidney, liver, and spleen of healthy fish may contain bacteria, but there is debate about whether or not muscle is actually sterile. Using traditional culture-dependent techniques, the numbers and taxonomic composition of the bacterial populations generally reflect those of the surrounding water. More modern culture-independent approaches have permitted the recognition of previously uncultured bacteria. The role of the organisms includes the ability to degrade complex molecules (therefore exercising a potential benefit in nutrition, to produce vitamins and polymers, and to be responsible for the emission of light by the light-emitting organs of deep-sea fish. Taxa, including Pseudomonas, may contribute to spoilage by the production of histamines in fish tissue.

  14. Spatio-Temporal Dynamics of Exploited Groundfish Species Assemblages Faced to Environmental and Fishing Forcings: Insights from the Mauritanian Exclusive Economic Zone.

    Directory of Open Access Journals (Sweden)

    Saïkou Oumar Kidé

    Full Text Available Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species at large spatio-temporal scales. We aim to investigate (1 the spatial and annual stability of groundfish assemblages, (2 relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages' structure. The Mauritanian Exclusive Economic Zone (MEEZ is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997-2010 from scientific trawl surveys (species abundance, logbooks of industrial fishery (fishing effort, sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a

  15. Application of fisheries management techniques to assessing impacts: task I report. [Assessment of chemical, radiological, and thermal impacts of nuclear power plants on fish populations

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Baker, K.S.; Fickeisen, D.H.; Metzger, R.M.; Skalski, J.R.

    1979-03-01

    Task I efforts examined the available fisheries management techniques and assessed their potential application in a confirmatory monitoring program. The objective of such monitoring programs is to confirm that the prediction of an insignificant impact (usually made in the FES) was correct. Fisheries resource managers have developed several tools for assessing the fish population response to stress (exploitation) and they were thought potentially useful for detecting nuclear power plant impacts. Techniques in three categories were examined; catch removal, population dynamics, and nondestructive censuses, and the report contains their description, examples of application, advantages, and disadvantages. The techniques applied at nuclear power plant sites were examined in detail to provide information on implementation and variability of specific approaches. The most suitable techniques to incorporate into a monitoring program confirming no impact appear to be those based on Catch Per Unity Effort (CPUE) and hydroacoustic data. In some specific cases, age and growth studies and indirect census techniques may be beneficial. Recommendations for task II efforts to incorporate these techniques into monitoring program designs are presented. These include development of guidelines for; (1) designing and implementing a data collection program; (2) interpreting these data and assessing the occurrence of impact, and (3) establishment of the monitoring program's ability to detect changes in the affected populations.

  16. Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a stochastic model of neuronal population dynamics with intrinsic noise. In the thermodynamic limit N→∞, where N determines the size of each population, the dynamics is described by deterministic Wilson-Cowan equations. On the other hand

  17. Biology as population dynamics: heuristics for transmission risk.

    Science.gov (United States)

    Keebler, Daniel; Walwyn, David; Welte, Alex

    2013-02-01

    Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence. © 2012 John Wiley & Sons A/S.

  18. Evaluation of Fish Passage Conditions for Juvenile Salmonids Using Sensor Fish at Detroit Dam, Oregon

    International Nuclear Information System (INIS)

    Duncan, Joanne P.

    2010-01-01

    Fish passage conditions through two spillways at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions through Spillbay 3 and Spillbay 6 at 1.5- and 3.5-ft gate openings, identifying potential fish injury regions of the routes. The study was performed in July 2009, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish and live fish were deployed at elevations approximately 3 ft above structure at depths determined using a computational fluid dynamics model. Data collected were analyzed to estimate (1) exposure conditions, particularly exposure to severe collision and shear events by passage route sub-regions; (2) differences in passage conditions between passage routes; and (3) relationships to live-fish injury and mortality data estimates.

  19. Use of Mathematical Optimization Models to Derive Healthy and Safe Fish Intake

    DEFF Research Database (Denmark)

    Persson, Maria; Fagt, Sisse; Pires, Sara Monteiro

    2018-01-01

    Recommended fish intake differs substantially from observed fish intake. In Denmark, ∼15% of the population consumes the state-recommended fish intake. How much fish individuals eat varies greatly, and this variation cannot be captured by considering the fish intake of the average population. We...... and 55 g/wk, respectively. Using fish intake as an example, we show how quadratic programming models may be used to advise individual consumers how to optimize their diet, taking both benefits and risks into account. This approach has the potential to increase compliance with dietary guidelines...

  20. An age structured model for obesity prevalence dynamics in populations

    Directory of Open Access Journals (Sweden)

    Gilberto González Parra

    2010-08-01

    Full Text Available Objective. Modeling the correlation of the development of obesity in a population with age and time and predict the dynamics of the correlation of the development of obesity in a population with age and time under different scenarios in Valencia (Spain. Materials and methods. An age structured mathematical model is used to describe the future dynamics of obesity prevalence for different ages in human population with excess weight. Simulation of the model with parameters estimated using the Health Survey of the Region of Valencia 2000 (4.319 interviews and Health Survey of the Region of Valencia 2005 (4.012 interviews. The model considers only overweight and obese populations since these subpopulations are the most relevant on obesity health concern. Results. The model allows predicting and studying the prevalence of obesity for each age. Results showed an increasing trend of obesity in the following years in well accordance with the trend observed in several countries. Conclusions. Based on the numerical simulations it is possible to conclude that the age structured mathematical model is suitable to forecast the obesity epidemic in each age group in different countries. Additionally, this type of models may be applied to study other characteristics of other populations such animal populations.

  1. Data-Limited Population-Status Evaluation of Two Coastal Fishes in Southern Angola Using Recreational Catch Length-Frequency Data.

    Science.gov (United States)

    Beckensteiner, Jennifer; Kaplan, David M; Potts, Warren M; Santos, Carmen V; O'Farrell, Michael R

    2016-01-01

    Excessive truncation of a population's size structure is often identified as an important deleterious effect of exploitation, yet the effect on population persistence of size-structure truncation caused by exploitation is often not quantified due to data limitations. In this study, we estimate changes in eggs per recruit (EPR) using annual length-frequency samples over a 9 year period to assess persistence of the two most important recreational fishes in southern Angola: west coast dusky kob (Argyrosomus coronus) and leerfish (Lichia amia). Using a length- and age-structured model, we improve on an existing method to fit this type of model to length-frequency data and estimate EPR. The objectives of the methodological changes are to add flexibility and robustness to the approach for assessing population status in data-limited situations. Results indicate that dusky kob presents very low levels of EPR (5%-10% of the per recruit reproductive capacity in the absence of fishing) in 2013, whereas large inter-annual variability in leerfish estimates suggest caution must be applied when drawing conclusions about its exploitation status. Using simulated length frequency data with known parameter values, we demonstrate that recruitment decline due to overexploitation leads to overestimation of EPR values. Considering the low levels of EPR estimated for the study species, recruitment limitation is not impossible and true EPR values may be even lower than our estimates. It is, therefore, likely that management action, such as the creation of Marine Protected Areas, is needed to reconstitute the west coast dusky kob population.

  2. Use of Mobile Device Data To Better Estimate Dynamic Population Size for Wastewater-Based Epidemiology.

    Science.gov (United States)

    Thomas, Kevin V; Amador, Arturo; Baz-Lomba, Jose Antonio; Reid, Malcolm

    2017-10-03

    Wastewater-based epidemiology is an established approach for quantifying community drug use and has recently been applied to estimate population exposure to contaminants such as pesticides and phthalate plasticizers. A major source of uncertainty in the population weighted biomarker loads generated is related to estimating the number of people present in a sewer catchment at the time of sample collection. Here, the population quantified from mobile device-based population activity patterns was used to provide dynamic population normalized loads of illicit drugs and pharmaceuticals during a known period of high net fluctuation in the catchment population. Mobile device-based population activity patterns have for the first time quantified the high degree of intraday, week, and month variability within a specific sewer catchment. Dynamic population normalization showed that per capita pharmaceutical use remained unchanged during the period when static normalization would have indicated an average reduction of up to 31%. Per capita illicit drug use increased significantly during the monitoring period, an observation that was only possible to measure using dynamic population normalization. The study quantitatively confirms previous assessments that population estimates can account for uncertainties of up to 55% in static normalized data. Mobile device-based population activity patterns allow for dynamic normalization that yields much improved temporal and spatial trend analysis.

  3. Tolga power plant. Assessment of impacts on the evertebrate population and fish; Tolga kraftverk. Utredning av konsekvenser for bunndyr og fisk

    Energy Technology Data Exchange (ETDEWEB)

    Museth, J.; Johnsen, S.I.; Sandlund, O.T.; Arnekleiv, J.V.; Kjaerstad, G.; Kraaboel, M.

    2012-07-01

    Based on existing literature and conducted investigations of influence to the various development options for Tolga power plant estimated to comprise between Glomma Hoeyegga south of Alvdal and Rost waterfall in Os. This is a river length of about 85 km. The value of the specific areas that will be directly affected by the various development options are assessed based on the relative importance of these for the maintenance of fish / Benthic production and preservation of life history variation in the impact area as a whole. These assessments are made on the basis of the area's size and the presence of key habitats (Eg. Spawning grounds, wintering grounds, nursery areas) in the affected areas. Assessment of the effect of the various development options are made regardless of valuation. Of influence today viable populations of both trout and grayling. These two species are In addition to the stone fill and partly minnows dominant in sections with high water speed, while the proportion of species like whitefish, perch, burbot, pike and bekkenioeye increases the more the floating parties. Grayling population in the area is considered very large compared with other rivers in eastern Norway. Telemetry and genetics studies showed that there are significant fish migrations in the impact and the stretch that will be directly affected by the various development options. An overall assessment of the consequences for grayling, trout, other fish species and benthic considered to medium negative (-) for option 3A, medium / small negative (- (-) for alternative 3B and 2A and small negative (-) for Alternative 2B. This assessment assumes that the bidirectional fish walks past the dam and upstream migrations past the tunnel outlet is maintained at a high level on a problem given high priority in planning, building and the action-oriented after studies. The assessment also requires measures to reduce scope and consequences of failures of the power plant implemented. If bi fish

  4. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas.

    Science.gov (United States)

    Campbell, Stuart J; Edgar, Graham J; Stuart-Smith, Rick D; Soler, German; Bates, Amanda E

    2018-04-01

    Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing-gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no-take, hook-and-line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no-take zones) most benefited community- and family-level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community-level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing-gear types that affect biomass of a diverse set of reef fish families. © 2017 Society for Conservation Biology.

  5. Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population.

    Science.gov (United States)

    Cushing, J M; Henson, Shandelle M

    2018-02-03

    For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.

  6. Relationship between mercury levels in hair and fish consumption in a population living near a hydroelectric tropical dam.

    Science.gov (United States)

    Marrugo-Negrete, José Luis; Ruiz-Guzmán, Javier Alonso; Díez, Sergi

    2013-02-01

    In the present study, total mercury (T-Hg) concentrations were assessed in human hair samples (n = 76) and fish muscle (n = 33) collected at Urrá dam, upstream Sinú river, northwestern Colombia. Based on interviews with study participants, weekly intakes of total mercury (WIT-Hg) and methylmercury (WIMeHg) by fish consumption were also estimated. T-Hg concentrations in hair samples ranged from 0.40 to 24.56 μg/g dw. The highest concentrations were recorded in children (CH) (2-15 years old, n = 24) with significant differences (p < 0.05) with respect to women of childbearing age (WCHA) (16-49 years old, n = 29) and the rest of the population (RP) (n = 23), which were not significantly different. The highest T-Hg concentrations in muscle tissue were recorded in the carnivorous fish (0.65-2.25 μg/g wet weight, ww), with significant differences (p < 0.05) compared to non-carnivorous fish (0.16-0.54 μg/g ww). WIT-Hg recorded the highest values in CH (2.18-50.41 μg/kg/week), with significant differences (p < 0.05) with respect to WCHA (2.02-23.54 μg/kg/week) and RP (1.09-24.71 μg/kg/week), which were not significantly different. Correlation analysis showed a significant relationship between weekly fish consumption and hair T-Hg in CH (r = 0.37, p < 0.05) and WCHA (r = 0.44, p < 0.05). This association was also observed with the number of days per week with fish consumption in CH (r = 0.37, p < 0.05) and WCHA (r = 0.45, p < 0.05). These results suggest that Hg exposure in people inhabiting the Urrá dam should be carefully monitored, particularly in vulnerable groups such as CH and WCHA.

  7. Tendency in fishing development and fish consumption in Serbia

    Directory of Open Access Journals (Sweden)

    Tešić Milan

    2013-01-01

    Full Text Available Production and catch of fish in Serbia increases from year to year, while in the world it reached its peak at the beginning of this century. Serbia has all the favorable natural and economic conditions for further development of fishing. Out of total production, that is, annual fish catch in Serbia, the greatest part is sold by organized purchase, lower part is exported, and the reminder goes to the market through retail. It is well known that food consumption, therefore fish consumption, depends on several factors such as the production level, retail price, consumers purchasing power and their eating habits. Therefore, when analyzing the tendency of production and consumption of fish in Serbia, it is important to investigate the influence of production, price and purchasing power of consumers on it. In order to investigate the set objective, there were used corresponding quantitative data obtained by Statistical Office of the Republic of Serbia. On the basis of the original data, there were determined certain parameters, which were used as variables for calculation of correlational-regressive and maginal analysis for determining the elasticity of demand and consummation of fish per capita in Serbia. Production and catch of fish in Serbia tended to increase during the observed period, with annual growth rate of 17.4%. Beside the fact that annual growth rate is 4.8%, fish consumption per capita in Serbia is still quite small (X=4.89kg, what is a consequence of population habit to consume predominantly meat. In our study we have found out that fish consumption in Serbia mostly depend on fish production per capita (rxy=0.6364, as well as on groos (rxy=0.6045 and net (rxy=0.5969 earnings. Also, it is determined that consumption elasticity has the highest growth in regard to fish production per capita. [Projekat Ministarstva nauke Republike Srbije, br. TR 31011

  8. Mercury in Forage Fish from Mexico and Central America: Implications for Fish-Eating Birds.

    Science.gov (United States)

    Elliott, John E; Kirk, David A; Elliott, Kyle H; Dorzinsky, Jessica; Lee, Sandi; Inzunza, Ernesto Ruelas; Cheng, Kimberly M T; Scheuhammer, Tony; Shaw, Patrick

    2015-11-01

    Mercury (Hg) is a global contaminant of aquatic food chains. Aquatic birds, such as the osprey (Pandion haliaetus), with migratory populations breeding in Canada and the northern United States and wintering in the Central and South America, can be exposed to mercury on both the breeding and wintering ranges. We examined Hg levels in 14 fish taxa from 24 osprey wintering sites identified from satellite telemetry. Our main goal was to determine whether fish species that feature in the diet of overwintering and resident fish-eating birds reached toxicity thresholds for Hg. Mean Hg levels in fish whole carcasses ranged from a high of 0.18 µg g(-1) (wet weight) in Scomberomorus sierra to a low of 0.009 µg g(-1) in Catostomidae. Average Hg levels were within published toxicity threshold values in forage fish for only two sites in Mexico (Puerto Vallarta and San Blas Estuary), and all were marine species, such as mackerel (Scomberomorus sierra), sea catfish (Ariopus spp.), and sardinas species (Centropomus spp.). Except for one sample from Nicaragua, sea catfish from Puerto Morazan, none of the fish from sites in Central America had Hg levels which exceeded the thresholds. Nonmetric multidimensional scaling revealed geographical differences in Hg levels with significant pairwise differences between sites along the Pacific Ocean (Mexico) versus the Bay of Campeche, partly due to differences in species composition of sampled fish (and species distributions). Hg increased with trophic level, as assessed by nitrogen stable isotope ratios (δ(15)N but not δ(13)C), in freshwater and marine, but not estuarine, environments. Hg concentrations in forage fish do not account for the elevated Hg reported for many osprey populations on the breeding grounds, thus primary sources of contamination appear to be in the north.

  9. Local variability mediates vulnerability of trout populations to land use and climate change

    Science.gov (United States)

    Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...

  10. Effects of fish removal in the Furnas Lake, Azores

    Directory of Open Access Journals (Sweden)

    Bio, A.

    2008-01-01

    Full Text Available The Furnas Lake is a small volcanic, monomitic and increasingly eutrophised water body. Next to agricultural nutrient inputs, high densities of herbivorous fish are thought to contribute to high levels of turbidity in the lake, through zooplankton consumption and re suspension of the nutrients accumulated in the sediment. According to the alternative state hypothesis a shift from turbid to clear water conditions is favoured by reduction of nutrient concentrations, increased light availability and reduction of planktivorous and benthos-feeding fish stock. To improve water quality in the Furnas Lake, a substantial part of the bottom-feeding fish population (62% of the estimated common carp population, Cyprinus carpio, and 5% of the estimated roach population, Rutilus rutilus was removed. Effects of fish removal on turbidity and associated trophic state were analysed next to post-manipulation chlorophyll a concentration, zooplankton and macrophytes densities. Results suggest that fish removal was not enough to change lake conditions towards a lasting clear state dominated by macrophytes. Excessive nutrient load, in water and sediments, nutrient input from the lake basin and fish recruitment causing enhanced zooplankton grazing are appointed causes. Any further biomanipulation efforts should be associated to nutrient reduction; and continued monitoring of water quality, fish stock, macrophytes and zooplankton is needed.

  11. Fish with Chips: Tracking Reef Fish Movements to Evaluate Size and Connectivity of Caribbean Marine Protected Areas

    Science.gov (United States)

    Pittman, Simon J.; Monaco, Mark E.; Friedlander, Alan M.; Legare, Bryan; Nemeth, Richard S.; Kendall, Matthew S.; Poti, Matthew; Clark, Randall D.; Wedding, Lisa M.; Caldow, Chris

    2014-01-01

    Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40–64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness. PMID:24797815

  12. Fish with chips: tracking reef fish movements to evaluate size and connectivity of Caribbean marine protected areas.

    Directory of Open Access Journals (Sweden)

    Simon J Pittman

    Full Text Available Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40-64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.

  13. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    Science.gov (United States)

    Burgess, O.T.; Pine, William E.; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  14. Drivers of waterfowl population dynamics: from teal to swans

    Science.gov (United States)

    Koons, David N.; Gunnarsson, Gunnar; Schmutz, Joel A.; Rotella, Jay J.

    2014-01-01

    Waterfowl are among the best studied and most extensively monitored species in the world. Given their global importance for sport and subsistence hunting, viewing and ecosystem functioning, great effort has been devoted since the middle part of the 20th century to understanding both the environmental and demographic mechanisms that influence waterfowl population and community dynamics. Here we use comparative approaches to summarise and contrast our understanding ofwaterfowl population dynamics across species as short-lived as the teal Anas discors and A.crecca to those such as the swans Cygnus sp. which have long life-spans. Specifically, we focus on population responses to vital rate perturbations across life history strategies, discuss bottom-up and top-down responses of waterfowlpopulations to global change, and summarise our current understanding of density dependence across waterfowl species. We close by identifying research needs and highlight ways to overcome the challenges of sustainably managing waterfowl populations in the 21st century.

  15. Biofilm population dynamics in a trickle-bed bioreactor used for the biodegradation of aromatic hydrocarbons from waste gas under transient conditions.

    Science.gov (United States)

    Hekmat, D; Feuchtinger, A; Stephan, M; Vortmeyer, D

    2004-04-01

    The dynamics of a multispecies biofilm population in a laboratory-scale trickle-bed bioreactor for the treatment of waste gas was examined. The model pollutant was a VOC-mixture of polyalkylated benzenes called Solvesso 100. Fluorescence in-situ hybridization (FISH) was applied in order to characterise the population composition. The bioreactor was operated under transient conditions by applying pollutant concentration shifts and a starvation phase. Only about 10% of the biofilm mass were cells, the rest consisted of extracellular polymeric substances (EPS). The average fraction of Solvesso 100-degrading cells during pollutant supply periods was less than 10%. About 60% of the cells were saprophytes and about 30% were inactive cells. During pollutant concentration shift experiments, the bioreactor performance adapted within a few hours. The biofilm population exhibited a dependency upon the direction of the shifts. The population reacted within days after a shift-down and within weeks after a shift-up. The pollutant-degraders reacted significantly faster compared to the other cells. During the long-term starvation phase, a shift of the population composition took place. However, this change of composition as well as the degree of metabolic activity was completely reversible. A direct correlation between the biodegradation rate of the bioreactor and the number of pollutant-degrading cells present in the biofilm could not be obtained due to insufficient experimental evidence.

  16. Cooperation guided by the coexistence of imitation dynamics and aspiration dynamics in structured populations

    Science.gov (United States)

    Xu, Kuangyi; Li, Kun; Cong, Rui; Wang, Long

    2017-02-01

    In the framework of the evolutionary game theory, two fundamentally different mechanisms, the imitation process and the aspiration-driven dynamics, can be adopted by players to update their strategies. In the former case, individuals imitate the strategy of a more successful peer, while in the latter case individuals change their strategies based on a comparison of payoffs they collect in the game to their own aspiration levels. Here we explore how cooperation evolves for the coexistence of these two dynamics. Intriguingly, cooperation reaches its lowest level when a certain moderate fraction of individuals pick aspiration-level-driven rule while the others choose pairwise comparison rule. Furthermore, when individuals can adjust their update rules besides their strategies, either imitation dynamics or aspiration-driven dynamics will finally take over the entire population, and the stationary cooperation level is determined by the outcome of competition between these two dynamics. We find that appropriate synergetic effects and moderate aspiration level boost the fixation probability of aspiration-driven dynamics most effectively. Our work may be helpful in understanding the cooperative behavior induced by the coexistence of imitation dynamics and aspiration dynamics in the society.

  17. Responses of epibenthic and nektonic macroinvertebrate communities to a gradient of fish size in ponds

    Directory of Open Access Journals (Sweden)

    Marek Nieoczym

    2014-07-01

    Full Text Available Size relationships between fish and organisms from adjacent trophic levels are crucial for predicting the structure and dynamics of aquatic ecosystems. We compared macroinvertebrate communities along a fish-size gradient created by separate stocking of three age cohorts of common carp Cyprinus carpio in semi-natural ponds. The specific size range of fish (small, medium and large corresponding to fish age in ponds was the factor most strongly associated with macroinvertebrate composition. The other significant habitat variables were dissolved oxygen concentration in the water and submerged vegetation abundance in the open-water zone. Among the most numerous taxa in the ponds, relative abundances of Hirudinea, Gastropoda, Odonata and Coleoptera were larger in the presence of small-sized than of larger-sized carp. However, fish size effect was not linear, in that macroinvertebrate assemblages were less similar between ponds containing medium- vs large-sized fish than between ponds with small- vs large-sized fish. The dissimilarity patterns were mainly determined by disparities in abundance of Corixidae, which unlike other taxa common in the ponds occurred in the greatest numbers in the presence of large-sized carp. Macroinvertebrate diversity was greatest in ponds with small-sized fish and was positively related to emergent macrophyte cover. Enhancement of emergent vegetation is recommended as the most effective management strategy to buffer adverse impacts of fish on macroinvertebrates. If fish are present in the system, assessment of the size structure of fish populations can be advantageous in unravelling the essential processes driving the variation in pond communities.

  18. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique.

    Science.gov (United States)

    Bartáková, Veronika; Reichard, Martin; Janko, Karel; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Cellerino, Alessandro; Bryja, Josef

    2013-09-12

    Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary

  19. Fishing elevates variability in the abundance of exploited species.

    Science.gov (United States)

    Hsieh, Chih-Hao; Reiss, Christian S; Hunter, John R; Beddington, John R; May, Robert M; Sugihara, George

    2006-10-19

    The separation of the effects of environmental variability from the impacts of fishing has been elusive, but is essential for sound fisheries management. We distinguish environmental effects from fishing effects by comparing the temporal variability of exploited versus unexploited fish stocks living in the same environments. Using the unique suite of 50-year-long larval fish surveys from the California Cooperative Oceanic Fisheries Investigations we analyse fishing as a treatment effect in a long-term ecological experiment. Here we present evidence from the marine environment that exploited species exhibit higher temporal variability in abundance than unexploited species. This remains true after accounting for life-history effects, abundance, ecological traits and phylogeny. The increased variability of exploited populations is probably caused by fishery-induced truncation of the age structure, which reduces the capacity of populations to buffer environmental events. Therefore, to avoid collapse, fisheries must be managed not only to sustain the total viable biomass but also to prevent the significant truncation of age structure. The double jeopardy of fishing to potentially deplete stock sizes and, more immediately, to amplify the peaks and valleys of population variability, calls for a precautionary management approach.

  20. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  1. Semiquantitative mercury determination in fish: a tool for poisoning prevention

    Directory of Open Access Journals (Sweden)

    YALLOUZ ALLEGRA V.

    2002-01-01

    Full Text Available Human exposure to mercury intoxication through contaminated fish ingestion has been well studied, mainly among Japanese population. The Brazilian population, particulaly in the Amazon region, is now in focus due to findings of fish contamination. Major health impacts caused by mercury affect mostly people who have a regular fish diet. A continuous checking for mercury content in the most consumed fish could prevent human intoxication. A simple, non-instrumental method to allow a continuous checking of the mercury content in fish was developed. Based on this method, we are proposing a prevention action where community agents can be trained to perform fish analysis. Technical Schools and Universities located nearby the affected areas would be in charge of quality control programs for the fish analysis as well as for the selection, training and update for operators.

  2. Missing cycles: Effect of climate change on population dynamics

    Indian Academy of Sciences (India)

    population dynamics of the larch budmoth – an insect pest which causes massive defoliation of entire larch forests ... hypothesized that global warming has led to the collapse of the cycles ... When temperatures increase after winter, and the.

  3. Demography and genome divergence of lake and stream populations of an East African cichlid fish.

    Science.gov (United States)

    Egger, Bernd; Roesti, Marius; Böhne, Astrid; Roth, Olivia; Salzburger, Walter

    2017-10-01

    Disentangling the processes and mechanisms underlying adaptive diversification is facilitated by the comparative study of replicate population pairs that have diverged along a similar environmental gradient. Such a setting is realized in a cichlid fish from southern Lake Tanganyika, Astatotilapia burtoni, which occurs within the lake proper as well as in various affluent rivers. Previously, we demonstrated that independent lake and stream populations show similar adaptations to the two habitat regimes. However, little is known about the evolutionary and demographic history of the A. burtoni populations in question and the patterns of genome divergence among them. Here, we apply restriction site-associated DNA sequencing (RADseq) to examine the evolutionary history, the population structure and genomic differentiation of lake and stream populations in A. burtoni. A phylogenetic reconstruction based on genome-wide molecular data largely resolved the evolutionary relationships among populations, allowing us to re-evaluate the independence of replicate lake-stream population clusters. Further, we detected a strong pattern of isolation by distance, with baseline genomic divergence increasing with geographic distance and decreasing with the level of gene flow between lake and stream populations. Genome divergence patterns were heterogeneous and inconsistent among lake-stream population clusters, which is explained by differences in divergence times, levels of gene flow and local selection regimes. In line with the latter, we only detected consistent outlier loci when the most divergent lake-stream population pair was excluded. Several of the thus identified candidate genes have inferred functions in immune and neuronal systems and show differences in gene expression between lake and stream populations. © 2017 John Wiley & Sons Ltd.

  4. Impact of environmental colored noise in single-species population dynamics

    Science.gov (United States)

    Spanio, Tommaso; Hidalgo, Jorge; Muñoz, Miguel A.

    2017-10-01

    Variability on external conditions has important consequences for the dynamics and the organization of biological systems. In many cases, the characteristic timescale of environmental changes as well as their correlations play a fundamental role in the way living systems adapt and respond to it. A proper mathematical approach to understand population dynamics, thus, requires approaches more refined than, e.g., simple white-noise approximations. To shed further light onto this problem, in this paper we propose a unifying framework based on different analytical and numerical tools available to deal with "colored" environmental noise. In particular, we employ a "unified colored noise approximation" to map the original problem into an effective one with white noise, and then we apply a standard path integral approach to gain analytical understanding. For the sake of specificity, we present our approach using as a guideline a variation of the contact process—which can also be seen as a birth-death process of the Malthus-Verhulst class—where the propagation or birth rate varies stochastically in time. Our approach allows us to tackle in a systematic manner some of the relevant questions concerning population dynamics under environmental variability, such as determining the stationary population density, establishing the conditions under which a population may become extinct, and estimating extinction times. We focus on the emerging phase diagram and its possible phase transitions, underlying how these are affected by the presence of environmental noise time-correlations.

  5. Population dynamics of Aphis gossypii Glover and in sole and intercropping systems of cotton and cowpea.

    Science.gov (United States)

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Garcia, Adriano G; Santos, Bárbara D B; Malaquias, José B

    2018-01-01

    Population dynamics of aphids have been studied in sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids Aphis gossypii and Aphis craccivora over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton, sole cowpea, and three arrangements of cotton intercropped with cowpea (t1, t2 and t3). The plants were infested with two aphid species and were evaluated at 7, 14, 28, 35, 42, and 49 days after the infestations. Mathematical models were used to fit the population dynamics of two aphid species. There were good fits for aphid dynamics by mathematical model over time. The highest population peak of both species A. gossypii and A. craccivora was found in the sole crops, and the lowest population peak was found in crop system t2. These results are important for integrated management programs of aphids in cotton and cowpea.

  6. Nonlinear dynamics in a business-cycle model with logistic population growth

    International Nuclear Information System (INIS)

    Brianzoni, Serena; Mammana, Cristiana; Michetti, Elisabetta

    2009-01-01

    We consider a discrete-time growth model of the Solow type where workers and shareholders have different but constant saving rates and the population growth dynamics is described by the logistic equation able to exhibit complicated dynamics. We show conditions for the resulting system having a compact global attractor and we describe its structure. We also perform a mainly numerical analysis using the critical lines method able to describe the strange attractor and the absorbing area, in order to show how cyclical or complex fluctuations may be produced in a business-cycle model. We study the dynamic behaviour of the model under different ranges of the main parameters, i.e. the elasticity of substitution between the two production factors and the one in the logistic equation (namely μ). We prove the existence of complex dynamics when the elasticity of substitution between production factors drops below one (so that capital income declines) or μ increases (so that the amplitude of movements in the population growth rate increases).

  7. Factors affecting the fishing impact on cartilaginous fishes in southeastern Spain (western Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Manuel Mendoza

    2014-03-01

    Full Text Available We propose a global index of impact based on the relative vulnerability of the local population of every species and the further application of regression trees globally optimized with evolutionary algorithms to study the fishing impact on the cartilaginous fish in southeastern Spain. The fishing impact is much higher in areas of less than 40 m depth within 11 km of the Cape Palos marine reserve. The impact also depends on the state of the sea and the kind of habitat. Deep-sea habitats associated with hard substrata and sandy beds show the highest impact, and sublittoral muds and habitats associated with circa littoral rocks with moderate energy show the lowest impact. The fishing impact changes throughout the moon cycle, showing different day-scale patterns associated with different habitats and different species compositions. Finally, we show that the global optimization of the regression trees can be essential to find some important patterns and that these trees are a useful tool for determining which areas are considered to be more important in terms of protection, taking into account specifically the vulnerability of the local populations.

  8. Bottom trawl assessment of Lake Ontario prey fishes

    Science.gov (United States)

    Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy

    2018-01-01

    Managing Lake Ontario fisheries in an ecosystem-context requires prey fish community and population data. Since 1978, multiple annual bottom trawl surveys have quantified prey fish dynamics to inform management relative to published Fish Community Objectives. In 2017, two whole-lake surveys collected 341 bottom trawls (spring: 204, fall: 137), at depths from 8-225m, and captured 751,350 fish from 29 species. Alewife were 90% of the total fish catch while Deepwater Sculpin, Round Goby, and Rainbow Smelt comprised the majority of the remaining total catch (3.8, 3.1, and 1.1% respectively). The adult Alewife abundance index for US waters increased in 2017 relative to 2016, however the index for Canadian waters declined. Adult Alewife condition, assessed by the predicted weight of a 165 mm fish (6.5 inches), declined in 2017 from record high values observed in spring 2016. Spring 2017 Alewife condition was slightly less than the 10-year average, but the fall value was well below the 10-year average, likely due to increased Age-1 Alewife abundance. The Age-1 Alewife abundance index was the highest observed in 40 years, and 8-times higher than the previous year. The Age-1 index estimates Alewife reproductive success the preceding year. The warm summer and winter of 2016 likely contributed to the large year class. In contrast the relatively cool 2017 spring and cold winter may result in a lower than average 2017 year class. Abundance indices for Rainbow Smelt, Cisco, and Emerald Shiner either declined or remained at low levels in 2017. Pelagic prey fish diversity continues to be low since a single species, Alewife, dominates the catch. Deepwater Sculpin were the most abundant benthic prey fish in 2017 because Round Goby abundance declined sharply from 2016. Slimy Sculpin density continued to decline and the 2017 biomass index for US waters was the lowest ever observed. Prior to Round Goby proliferation, juvenile Slimy Sculpin comprised ~10% of the Slimy Sculpin catch, but

  9. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.

    2017-07-20

    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  10. Proceedings of the International Workshop on age determination of oceanic pelagic fishes: Tunas, billfishes, and sharks, Miami, Florida, February 15-18,1982

    OpenAIRE

    1983-01-01

    Accurate and precise estimates of age and growth rates are essential parameters in understanding the population dynamics of fishes. Some of the more sophisticated stock assessment models, such as virtual population analysis, require age and growth information to partition catch data by age. Stock assessment efforts by regulatory agencies are usually directed at specific fisheries which are being heavily exploited and are suspected of being overfished. Interest in stock assessment of som...

  11. Assessments of fish catch composition of marine artisanal fishery in ...

    African Journals Online (AJOL)

    Fish is a major source of protein in human diets. Fish demand has been on the increase due to increase in human population which has resulted to wide gap between fish demand and supply. This study was carried out to elucidate the major fish species that are economically important in the study area. Assessment of fish ...

  12. Distribution and habitat use of the Missouri River and Lower Yellowstone River benthic fishes from 1996 to 1998: A baseline for fish community recovery

    Science.gov (United States)

    Wildhaber, M.L.; Gladish, D.W.; Arab, A.

    2011-01-01

    Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.

  13. Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria

    Science.gov (United States)

    2005-06-01

    1973. Ecology of Vibrio parahemolyticus in mixed-template amplifications: formation, consequences and elimination by Chesapeake Bay. J. Bacteriol. 113...Science 1930 and Engineering DOCTORAL DISSERTATION Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria by...DYNAMICS IN NATURAL POPULATIONS OF PLANKTONIC VIBRIO BACTERIA by Janelle Ren6e Thompson B.S. Biological Sciences, Stanford University 1998 M.S

  14. Competition or cooperation in transboundary fish stocks management: Insight from a dynamical model.

    Science.gov (United States)

    Nguyen, Trong Hieu; Brochier, Timothée; Auger, Pierre; Trinh, Viet Duoc; Brehmer, Patrice

    2018-06-14

    An idealized system of a shared fish stock associated with different exclusive economic zones (EEZ) is modelled. Parameters were estimated for the case of the small pelagic fisheries shared between Southern Morocco, Mauritania and the Senegambia. Two models of fishing effort distribution were explored. The first one considers independent national fisheries in each EEZ, with a cost per unit of fishing effort that depends on local fishery policy. The second one considers the case of a fully cooperative fishery performed by an international fleet freely moving across the borders. Both models are based on a set of six ordinary differential equations describing the time evolution of the fish biomass and the fishing effort. We take advantage of the two time scales to obtain a reduced model governing the total fish biomass of the system and fishing efforts in each zone. At the fast equilibrium, the fish distribution follows the ideal free distribution according to the carrying capacity in each area. Different equilibria can be reached according to management choices. When fishing fleets are independent and national fishery policies are not harmonized, in the general case, competition leads after a few decades to a scenario where only one fishery remains sustainable. In the case of sub-regional agreement acting on the adjustment of cost per unit of fishing effort in each EEZ, we found that a large number of equilibria exists. In this last case the initial distribution of fishing effort strongly impact the optimal equilibrium that can be reached. Lastly, the country with the highest carrying capacity density may get less landings when collaborating with other countries than if it minimises its fishing costs. The second fully cooperative model shows that a single international fishing fleet moving freely in the fishing areas leads to a sustainable equilibrium. Such findings should foster regional fisheries organizations to get potential new ways for neighbouring fish stock

  15. Determination of a site-specific reference dose for methylmercury for fish-eating populations.

    Science.gov (United States)

    Shipp, A M; Gentry, P R; Lawrence, G; Van Landingham, C; Covington, T; Clewell, H J; Gribben, K; Crump, K

    2000-11-01

    methylmercury, the exposures of concern for the Point Comfort site are from the chronic consumption of relatively low concentrations of methylmercury in fish. Since the publication of the USEPA RfD, several analyses of chronic exposure to methylmercury in fish-eating populations have been reported. The purpose of the analysis reported here was to evaluate the possibility of deriving an RfD for methylmercury, specifically for the case of fish ingestion, on the basis of these new studies. In order to better support the risk-management decisions associated with developing a remediation approach for the site in question, the analysis was designed to provide information on the distribution of acceptable ingestion rates across a population, which could reasonably be expected to be consistent with the results of the epidemiological studies of other fish-eating populations. Based on a review of the available literature on the effects of methylmercury, a study conducted with a population in the Seychelles Islands was selected as the critical study for this analysis. The exposures to methylmercury in this population result from chronic, multigenerational ingestion of contaminated fish. This prospective study was carefully conducted and analyzed, included a large cohort of mother-infant pairs, and was relatively free of confounding factors. The results of this study are essentially negative, and a no-observed-adverse-effect level (NOAEL) derived from the estimated exposures has recently been used by the Agency for Toxic Substances and Disease Registry (ATSDR) as the basis for a chronic oral minimal risk level (MRL) for methylmercury. In spite of the fact that no statistically significant effects were observed in this study, the data as reported are suitable for dose-response analysis using the BMD method. Evaluation of the BMD method used in this analysis, as well as in the current USEPA RfD, has demonstrated that the resulting 95% lower bound on the 10% benchmark dose (BMDL) represents a

  16. Coral reef fish populations can persist without immigration

    KAUST Repository

    Salles, Océ ane C.; Maynard, Jeffrey A.; Joannides, Marc; Barbu, Corentin M.; Saenz-Agudelo, Pablo; Almany, Glenn R.; Berumen, Michael L.; Thorrold, Simon R.; Jones, Geoffrey P.; Planes, Serge

    2015-01-01

    and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual

  17. Dietary exposure to perfluoroalkyl acids of specific French adult sub-populations: High seafood consumers, high freshwater fish consumers and pregnant women

    International Nuclear Information System (INIS)

    Yamada, A.; Bemrah, N.; Veyrand, B.; Pollono, C.; Merlo, M.; Desvignes, V.; Sirot, V.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are globally found in various media, including food and especially fishery products. In the present study, the dietary exposure to 15 perfluoroalkyl acids was assessed for 3 French adult populations, namely high seafood consumers, high freshwater fish consumers, and pregnant women. Purified food extracts were analysed by LC–MS/MS and PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFTeDA, PFBS, PFHxS, PFHpS, PFOS and PFDS were monitored and quantified according to the isotope dilution principle. Under lower bound (LB) hypothesis (i.e. contamination values < LOD considered as 0), high freshwater fish consumers appear as the most exposed to PFOS (7.5 ng.kg −1 bw.d −1 ), PFUnA (1.3 ng.kg −1 bw.d −1 ), PFDA (0.4 ng.kg −1 bw.d −1 ) and PFHpS (0.03 ng.kg −1 bw.d −1 ) while high seafood consumers appear as the most exposed to PFOA (1.2 ng.kg −1 bw.d −1 ), PFNA (0.2 ng.kg −1 bw.d −1 ) and PFHxS (0.06 ng.kg −1 bw.d −1 ). For all considered populations, the major exposure contributors are fish, seafood and water under LB hypothesis, while dairy products, bread and crispbread are the main contributors under upper bound (UB) hypothesis. Besides this food exposure assessment, further studies are needed to assess the more global PFAA exposure, taking into account indoor and outdoor air, dust and cutaneous contact, which could be other important contributors for this particular class of chemicals. - Highlights: • The dietary exposure was estimated for 15 perfluoroalkyl acids. • Despite the overestimation, the FFQ remains useful to evaluate the whole diet. • The high fish consumers are the most dietary exposed population. • Fishery products are the main exposure contributors under LB hypothesis

  18. Dietary exposure to perfluoroalkyl acids of specific French adult sub-populations: High seafood consumers, high freshwater fish consumers and pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, A., E-mail: ami.s.yamada@gmail.com [Risk Assessment Directorate, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27-31 avenue du Général Leclerc, Maisons-Alfort 94701 (France); Bemrah, N., E-mail: nawel.bemrah@anses.fr [Risk Assessment Directorate, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27-31 avenue du Général Leclerc, Maisons-Alfort 94701 (France); Veyrand, B., E-mail: bruno.veyrand@oniris-nantes.fr [LUNAM Université, Oniris, Laboratoire d' Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, Nantes 44307 (France); Pollono, C., E-mail: charles.pollono@oniris-nantes.fr [LUNAM Université, Oniris, Laboratoire d' Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, Nantes 44307 (France); Merlo, M., E-mail: mathilde.merlo@anses.fr [Risk Assessment Directorate, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27-31 avenue du Général Leclerc, Maisons-Alfort 94701 (France); Desvignes, V., E-mail: virginie.desvignes@anses.fr [Risk Assessment Directorate, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27-31 avenue du Général Leclerc, Maisons-Alfort 94701 (France); Sirot, V., E-mail: sirotv@gmail.com [Risk Assessment Directorate, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 27-31 avenue du Général Leclerc, Maisons-Alfort 94701 (France); and others

    2014-09-01

    Perfluoroalkyl acids (PFAAs) are globally found in various media, including food and especially fishery products. In the present study, the dietary exposure to 15 perfluoroalkyl acids was assessed for 3 French adult populations, namely high seafood consumers, high freshwater fish consumers, and pregnant women. Purified food extracts were analysed by LC–MS/MS and PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFTeDA, PFBS, PFHxS, PFHpS, PFOS and PFDS were monitored and quantified according to the isotope dilution principle. Under lower bound (LB) hypothesis (i.e. contamination values < LOD considered as 0), high freshwater fish consumers appear as the most exposed to PFOS (7.5 ng.kg{sup −1} bw.d{sup −1}), PFUnA (1.3 ng.kg{sup −1} bw.d{sup −1}), PFDA (0.4 ng.kg{sup −1} bw.d{sup −1}) and PFHpS (0.03 ng.kg{sup −1} bw.d{sup −1}) while high seafood consumers appear as the most exposed to PFOA (1.2 ng.kg{sup −1} bw.d{sup −1}), PFNA (0.2 ng.kg{sup −1} bw.d{sup −1}) and PFHxS (0.06 ng.kg{sup −1} bw.d{sup −1}). For all considered populations, the major exposure contributors are fish, seafood and water under LB hypothesis, while dairy products, bread and crispbread are the main contributors under upper bound (UB) hypothesis. Besides this food exposure assessment, further studies are needed to assess the more global PFAA exposure, taking into account indoor and outdoor air, dust and cutaneous contact, which could be other important contributors for this particular class of chemicals. - Highlights: • The dietary exposure was estimated for 15 perfluoroalkyl acids. • Despite the overestimation, the FFQ remains useful to evaluate the whole diet. • The high fish consumers are the most dietary exposed population. • Fishery products are the main exposure contributors under LB hypothesis.

  19. Demography of the Early Neolithic Population in Central Balkans: Population Dynamics Reconstruction Using Summed Radiocarbon Probability Distributions.

    Directory of Open Access Journals (Sweden)

    Marko Porčić

    Full Text Available The Central Balkans region is of great importance for understanding the spread of the Neolithic in Europe but the Early Neolithic population dynamics of the region is unknown. In this study we apply the method of summed calibrated probability distributions to a set of published radiocarbon dates from the Republic of Serbia in order to reconstruct population dynamics in the Early Neolithic in this part of the Central Balkans. The results indicate that there was a significant population growth after ~6200 calBC, when the Neolithic was introduced into the region, followed by a bust at the end of the Early Neolithic phase (~5400 calBC. These results are broadly consistent with the predictions of the Neolithic Demographic Transition theory and the patterns of population booms and busts detected in other regions of Europe. These results suggest that the cultural process that underlies the patterns observed in Central and Western Europe was also in operation in the Central Balkan Neolithic and that the population increase component of this process can be considered as an important factor for the spread of the Neolithic as envisioned in the demic diffusion hypothesis.

  20. Dinâmica populacional da matrinxã Brycon amazonicus (Characidae na Amazônia Central Population dynamics of matrinxã Brycon amazonicus (Characidae in Central Amazon

    Directory of Open Access Journals (Sweden)

    Leocy C. dos Santos Filho

    2009-06-01

    Full Text Available The matrinxã, Brycon amazonicus (Spix & Agassiz, 1829 is one of the most important fishery resources of the Amazonas state. Its population dynamics in Central Amazon was analyzed based on total landing and biometry data registered in the main landing port of Manaus, between 1994 and 2002. Growth and mortality rates were estimated separately for the rivers Purus, Madeira and Solimões. Differences in size structure and growth curves suggest that different population units exist among these rivers, requiring individualized evaluation and fisheries management strategies. The analysis of the yield per recruit does not indicate overexploitation. However, the highest relative exploitation rate was observed in the Madeira river. The suggested management strategies are related to restrictions to the fishery in the main fishing grounds during the migratory dispersal period, instead of restrictions during reproductive periods.

  1. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  2. Stickleback increase in the Baltic Sea - A thorny issue for coastal predatory fish

    Science.gov (United States)

    Bergström, Ulf; Olsson, Jens; Casini, Michele; Eriksson, Britas Klemens; Fredriksson, Ronny; Wennhage, Håkan; Appelberg, Magnus

    2015-09-01

    In the Baltic Sea, the mesopredator three-spined stickleback (Gasterosteus aculeatus) spends a large part of its life cycle in the open sea, but reproduces in shallow coastal habitats. In coastal waters, it may occur in high abundances, is a potent predator on eggs and larvae of fish, and has been shown to induce trophic cascades with resulting eutrophication symptoms through regulation of invertebrate grazers. Despite its potential significance for the coastal food web, little is known about its life history and population ecology. This paper provides a description of life history traits, migration patterns and spatiotemporal development of the species in the Baltic Sea during the past decades, and tests the hypothesis that stickleback may have a negative impact on populations of coastal predatory fish. Offshore and coastal data during the last 30 years show that stickleback has increased fourfold in the Bothnian Sea, 45-fold in the Central Baltic Sea and sevenfold in the Southern Baltic Sea. The abundances are similar in the two northern basins, and two orders of magnitude lower in the Southern Baltic Sea. The coastward spawning migration of sticklebacks from offshore areas peaks in early May, with most spawners being two years of age at a mean length of 65 mm. The early juvenile stage is spent at the coast, whereafter sticklebacks perform a seaward feeding migration in early autumn at a size of around 35 mm. A negative spatial relation between the abundance of stickleback and early life stages of perch and pike at coastal spawning areas was observed in spatial survey data, indicating strong interactions between the species. A negative temporal relationship was observed also between adult perch and stickleback in coastal fish monitoring programmes supporting the hypothesis that stickleback may have negative population level effects on coastal fish predators. The recent increase in stickleback populations in different basins of the Baltic Sea in combination with

  3. Fishing Nets between Two Seas: Guilds and Ship-Owner Associations in the Atlantic and Mediterranean Fishing Grounds of Andalusia

    Directory of Open Access Journals (Sweden)

    ISIDRO MAYA JARIEGO

    2016-01-01

    Full Text Available This study examines the organizational network of the extractive sector in Andalusian fishing enclaves. For this, we have evaluated 6 types of informal and institutional relationships between a total of 30 guilds and ship-owner associations in 21 Andalusian fi shing ports. The analyzed networks were found to have a core-periphery structure with the guilds playing a central role. The QAP procedure was used to identify two distinct contexts of relationship formation: informal meetings and the government fishing network (corresponding to formal meetings, such as fishing tables, port assemblies and fishing quota negotiations. We verified the existence of significant homophily dynamics based on both fishing ground and organization type.

  4. Changing Levels of Predation on Benthos as a Result of Exploitation of Fish Populations

    NARCIS (Netherlands)

    Hansson, S.; Frid, C.L.J.; Ragnarsson, S.A.; Rijnsdorp, A.; Steingrimsson, S.A.

    1999-01-01

    In many coastal areas fishing constitutes the dominant anthropogenic impact on coastal ecosystems. That fishing has altered the abundance and size spectra of fish communities is beyond doubt. We use time series of the abundance, in the North Sea, of 8 demersal fish species and data on food

  5. Use of population viability analysis to evaluate CITES trade-management options for threatened marine fishes.

    Science.gov (United States)

    Curtis, Janelle M R; Vincent, Amanda C J

    2008-10-01

    Achieving multiple conservation objectives can be challenging, particularly under high uncertainty. Having agreed to limit seahorse (Hippocampus) exports to sustainable levels, signatories to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) were offered the option of a single 10-cm minimum size limit (MSL) as an interim management measure for all Hippocampus species (> or =34). Although diverse stakeholders supported the recommended MSL, its biological and socioeconomic implications were not assessed quantitatively. We combined population viability analysis, model sensitivity analysis, and economic information to evaluate the trade-off between conservation threat to and long-term cumulative income from these exploited marine fishes of high conservation concern. We used the European long-snouted seahorse (Hippocampus guttulatus) as a representative species to compare the performance of MSLs set at alternative biological reference points. Our sensitivity analyses showed that in most of our scenarios, setting the MSL just above size at maturity (9.7 cm in H. guttulatus) would not prevent exploited populations from becoming listed as vulnerable. By contrast, the relative risk of decline and extinction were almost halved--at a cost of only a 5.6% reduction in long-term catches--by increasing the MSL to the size reached after at least one full reproductive season. On the basis of our analysis, a precautionary increase in the MSL could be compatible with sustaining fishers' livelihoods and international trade. Such management tactics that aid species conservation and have minimal effects on long term catch trends may help bolster the case for CITES trade management of other valuable marine fishes.

  6. Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.

    Science.gov (United States)

    Avilés, Leticia; Abbot, Patrick; Cutter, Asher D

    2002-02-01

    Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.

  7. Stream fish colonization but not persistence varies regionally across a large North American river basin

    Science.gov (United States)

    Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.

    2018-01-01

    Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.

  8. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  9. Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362

  10. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Directory of Open Access Journals (Sweden)

    Mauricio Lima

    Full Text Available Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors. Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  11. Spatially resolved fish population analysis for designing MPAs

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Mosegaard, Henrik; Jensen, Henrik

    2009-01-01

    demonstrated that ecosystem self-regulation must be included when modelling the efficiency of MPAs, and for lesser sandeel, that self-regulation partially counteracts the benefits of a fishing sanctuary. The use of realistic habitat connectivity is critical for both qualitative and quantitative MPA assessment...

  12. Modelling of population dynamics of red king crab using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Bakanev Sergey ...

    2012-10-01

    Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.

  13. Larvivorous fish for preventing malaria transmission

    Science.gov (United States)

    Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R

    2017-01-01

    reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Data collection and analysis Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. Main results We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These

  14. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    Science.gov (United States)

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).

  15. Monitoring fish distributions along electrofishing segments

    Science.gov (United States)

    Miranda, Leandro E.

    2014-01-01

    Electrofishing is widely used to monitor fish species composition and relative abundance in streams and lakes. According to standard protocols, multiple segments are selected in a body of water to monitor population relative abundance as the ratio of total catch to total sampling effort. The standard protocol provides an assessment of fish distribution at a macrohabitat scale among segments, but not within segments. An ancillary protocol was developed for assessing fish distribution at a finer scale within electrofishing segments. The ancillary protocol was used to estimate spacing, dispersion, and association of two species along shore segments in two local reservoirs. The added information provided by the ancillary protocol may be useful for assessing fish distribution relative to fish of the same species, to fish of different species, and to environmental or habitat characteristics.

  16. Collective dynamics of populations of weakly correlated filaments of incoherent white light

    International Nuclear Information System (INIS)

    Guo, Jinxin; Sheridan, John T; Saravanamuttu, Kalaichelvi

    2013-01-01

    We examined the dynamics of two populations of self-trapped filaments of spatially and temporally incoherent white light. The populations consisted of (i) independent filaments generated through self-trapping of incandescent speckles, and (ii) co-dependent filaments created through modulation instability of a broad incandescent beam. Both filament populations were positionally stable in conditions where individual pairs of self-trapped beams interact strongly. Both also acquired significantly broad intensity distributions, which were independent of their parent optical fields; a small but persistent number of high-intensity filaments was identified in both cases. These studies provide accessible routes to weakly correlated ensembles, insight into their collective behaviour such as self-stabilization and self-selected intensity distributions, and reveal intriguing similarities between the dynamics of two populations of different origins. (paper)

  17. Application of System Dynamics Methodology in Population Analysis

    Directory of Open Access Journals (Sweden)

    August Turina

    2009-09-01

    Full Text Available The goal of this work is to present the application of system dynamics and system thinking, as well as the advantages and possible defects of this analytic approach, in order to improve the analysis of complex systems such as population and, thereby, to monitor more effectively the underlying causes of migrations. This methodology has long been present in interdisciplinary scientific circles, but its scientific contribution has not been sufficiently applied in analysis practice in Croatia. Namely, the major part of system analysis is focused on detailed complexity rather than on dynamic complexity. Generally, the science of complexity deals with emergence, innovation, learning and adaptation. Complexity is viewed according to the number of system components, or through a number of combinations that must be continually analyzed in order to understand and consequently provide adequate decisions. Simulations containing thousands of variables and complex arrays of details distract overall attention from the basic cause patterns and key inter-relations emerging and prevailing within an analyzed population. Systems thinking offers a holistic and integral perspective for observation of the world.

  18. Chaos and order in stateless societies: Intercommunity exchange as a factor impacting the population dynamical patterns

    International Nuclear Information System (INIS)

    Medvinsky, Alexander B.; Rusakov, Alexey V.

    2011-01-01

    Highlights: → We model community dynamics in stateless societies. → Intercommunity barter is shown to be a factor impacting the societies dynamics. → Increase in the human population growth rate can lead to appearance of chaos. → Secular and millennial cycles are found to arise as a result of the barter. - Abstract: The once abstract notions of dynamical chaos now appear naturally in various systems [Kaplan D, Glass L. Understanding nonlinear dynamics. New York: Springer; 1995]. As a result, future trajectories of the systems may be difficult to predict. In this paper, we demonstrate the appearance of chaotic dynamics in model human communities, which consist of producers of agricultural product and producers of agricultural equipment. In the case of a solitary community, the horizon of predictability of the human population dynamics is shown to be dependent on both intrinsic instability of the dynamics and the chaotic attractor sizes. Since a separate community is usually a part of a larger commonality, we study the dynamics of social systems consisting of two interacting communities. We show that intercommunity barter can lead to stabilization of the dynamics in one of the communities, which implies persistence of stable equilibrium under changes of the maximum value of the human population growth rate. However, in the neighboring community, the equilibrium turns into a stable limit cycle as the maximum value of the human population growth rate increases. Following an increase in the maximum value of the human population growth rate leads to period-doubling bifurcations resulting in chaotic dynamics. The horizon of predictability of the chaotic oscillations is found to be limited by 5 years. We demonstrate that the intercommunity interaction can lead to the appearance of long-period harmonics in the chaotic time series. The period of the harmonics is of order 100 and 1000 years. Hence the long-period changes in the population size may be considered as an

  19. Chaos and order in stateless societies: Intercommunity exchange as a factor impacting the population dynamical patterns

    Energy Technology Data Exchange (ETDEWEB)

    Medvinsky, Alexander B., E-mail: medvinsky@iteb.ru [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region (Russian Federation); Rusakov, Alexey V. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region (Russian Federation)

    2011-06-15

    Highlights: > We model community dynamics in stateless societies. > Intercommunity barter is shown to be a factor impacting the societies dynamics. > Increase in the human population growth rate can lead to appearance of chaos. > Secular and millennial cycles are found to arise as a result of the barter. - Abstract: The once abstract notions of dynamical chaos now appear naturally in various systems [Kaplan D, Glass L. Understanding nonlinear dynamics. New York: Springer; 1995]. As a result, future trajectories of the systems may be difficult to predict. In this paper, we demonstrate the appearance of chaotic dynamics in model human communities, which consist of producers of agricultural product and producers of agricultural equipment. In the case of a solitary community, the horizon of predictability of the human population dynamics is shown to be dependent on both intrinsic instability of the dynamics and the chaotic attractor sizes. Since a separate community is usually a part of a larger commonality, we study the dynamics of social systems consisting of two interacting communities. We show that intercommunity barter can lead to stabilization of the dynamics in one of the communities, which implies persistence of stable equilibrium under changes of the maximum value of the human population growth rate. However, in the neighboring community, the equilibrium turns into a stable limit cycle as the maximum value of the human population growth rate increases. Following an increase in the maximum value of the human population growth rate leads to period-doubling bifurcations resulting in chaotic dynamics. The horizon of predictability of the chaotic oscillations is found to be limited by 5 years. We demonstrate that the intercommunity interaction can lead to the appearance of long-period harmonics in the chaotic time series. The period of the harmonics is of order 100 and 1000 years. Hence the long-period changes in the population size may be considered as an

  20. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    Science.gov (United States)

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082