WorldWideScience

Sample records for fire fighting simulation

  1. Fire fighting capability assessment program Bruce B NGS

    International Nuclear Information System (INIS)

    1995-05-01

    This is a report on the completion of work relating to the assessment of the capability of Bruce B NGS to cope with a large fire incident. This included an evaluation of an exercise scenario that would simulate a large fire incident and of their fire plans and procedures. Finally the execution of fire plans by Bruce B NGS, as demonstrated by their application of human and material resources during a simulated large fire, was observed. The fire fighting equipment and the personal protective clothing and associated equipment that was in use was all of good quality and in good condition. There had also been notable improvement in communications equipment. Similarly, the human resources that had been assigned to fire fighting and rescue crews and that were available were more than adequate. Use of a logical incident command system, and the adoption of proper policy and procedures for radio communications were equally significant improvements. Practice should correct the breakdowns that occurred in these areas during the exercise. As well, there remains a need for the development of policy on fire fighting and rescue operations with more depth and clarity. In summary, the key point to be recognized is the degree of improvement that has been realized since the previous evaluation in 1990. Clearly the Emergency Response Teams organization of Bruce B NGS is evolving into an effective fire fighting force. Providing that the deficiencies identified in this report are addressed satisfactorily, Fire Cross is confident that the organization will have the capability to provide rescue and fire fighting services that will satisfy the need. 2 figs

  2. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    Science.gov (United States)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  3. Fire fighting capability assessment program Darlington NGS

    International Nuclear Information System (INIS)

    1995-05-01

    This is a report on the completion of work relating to the assessment of the capability of Darlington NGS to cope with a large fire incident. This included an evaluation of an exercise scenario that would simulate a large fire incident and of their fire plans and procedures which became the subject of interim reports as part of the process of preparing for the fire fighting and rescue exercise. Finally the execution of fire plans by Darlington Nuclear Generating Station (NGS), as demonstrated by their application of human and material resources during a simulated large fire, was observed. 1 tab., 1 fig

  4. Methods and means of sodium fire fighting

    International Nuclear Information System (INIS)

    Zemskij, G.T.

    1985-01-01

    Methods and means for coaling sodium fire fighting are analyzed. Their advantages and drawbacks are considered. Comparative data on sodium fire fighting using some of considered compositions are presented. High efficiency of self-expanding compositions (Grafeks SK-23 and RS) is noted. Properties of MGS new composition for sodium fire fighting are considered. High fighting ability of the composition independent of burning metal layer width is shown. It is noted that fire fighting MGS efficiency decreases with growth of time of free fire burning which affects fire fighting methods. Technical means of powder delivery to burning sodium are reported

  5. Manual fire fighting tactics at Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jee, Moon Hak; Moon, Chan Kook

    2012-01-01

    The general requirements of fire protection at nuclear power plant (NPP) are fire protection program, fire hazard analysis, and fire prevention features. In addition, specific fire protection requirements such as water supplies, fire detection, fire protection of safe related equipment, and safe shutdown capabilities must be provided. Particularly, manual fire fighting is required as specific requirements with the provisions to secure manual fire suppression, fire brigade and its training, and administrative controls for manual fire fighting. If a fire is alarmed and confirmed to be a real fire, the fire brigade must take manual fire fighting activities as requested at fire protection program. According to the present requirements in itself, there is not any specific manual fire fighting ways or practical strategies. In general, fire zones or compartments at NPPs are built in a confined condition. In theory, the fire condition will change from a combustible-controlled fire to a ventilation-governing fire with the time duration. In case of pool fire with the abundant oxygen and flammable liquid, it can take just a few minutes for the flash-over to occur. For the well-confined fire zone, it will change from a flame fire to a smoldering state before the entrance door is opened by the fire brigade. In this context, the manual fire fighting activities must be based on a quantitative analysis and a fire risk evaluation. At this paper, it was suggested that the fire zones at NPPs should be grouped on the inherent functions and fire characteristics. Based on the fire risk characteristics and the fire zone grouping, the manual fire fighting tactics are suggested as an advanced fire fighting solution

  6. Evaluation of a wearable physiological status monitor during simulated fire fighting activities.

    Science.gov (United States)

    Smith, Denise L; Haller, Jeannie M; Dolezal, Brett A; Cooper, Christopher B; Fehling, Patricia C

    2014-01-01

    A physiological status monitor (PSM) has been embedded in a fire-resistant shirt. The purpose of this research study was to examine the ability of the PSM-shirt to accurately detect heart rate (HR) and respiratory rate (RR) when worn under structural fire fighting personal protective equipment (PPE) during the performance of various activities relevant to fire fighting. Eleven healthy, college-aged men completed three activities (walking, searching/crawling, and ascending/descending stairs) that are routinely performed during fire fighting operations while wearing the PSM-shirt under structural fire fighting PPE. Heart rate and RR recorded by the PSM-shirt were compared to criterion values measured concurrently with an ECG and portable metabolic measurement system, respectively. For all activities combined (overall) and for each activity, small differences were found between the PSM-shirt and ECG (mean difference [95% CI]: overall: -0.4 beats/min [-0.8, -0.1]; treadmill: -0.4 beats/min [-0.7, -0.1]; search: -1.7 beats/min [-3.1, -.04]; stairs: 0.4 beats/min [0.04, 0.7]). Standard error of the estimate was 3.5 beats/min for all tasks combined and 1.9, 5.9, and 1.9 beats/min for the treadmill walk, search, and stair ascent/descent, respectively. Correlations between the PSM-shirt and criterion heart rates were high (r = 0.95 to r = 0.99). The mean difference between RR recorded by the PSM-shirt and criterion overall was 1.1 breaths/min (95% CI: -1.9 to -0.4). The standard error of the estimate for RR ranged from 4.2 breaths/min (treadmill) to 8.2 breaths/min (search), with an overall value of 6.2 breaths/min. These findings suggest that the PSM-shirt provides valid measures of HR and useful approximations of RR when worn during fire fighting duties.

  7. Computer-aided system for fire fighting in an underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses structure of an algorithm for computer-aided planning of fire fighting and rescue in an underground coal mine. The algorithm developed by the Mining Institute of the Wroclaw Technical University consists of ten options: regulations on fire fighting, fire alarm for miners working underground (rescue ways, fire zones etc.), information system for mine management, movements of fire fighting teams, distribution of fire fighting equipment, assessment of explosion hazards of fire gases, fire gas temperature control of blower operation, detection of endogenous fires, ventilation control. 2 refs.

  8. Learning fire-fighting lessons after Chernobyl

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Fire protection measures in Soviet nuclear power plants were set out in November 1987, in the Nuclear Power Plant Design Fire Protection Standards (VSN 01-87, USSR Ministry of Atomic Energy). The most important of these measures are. Avoiding as far as possible the use of combustible materials in plant structures and equipment. Dividing buildings and areas into suitable fire-fighting zones. Ensuring reliable fire protection of the control and safety systems. Protecting technical personnel from the dangers of a fire while they are performing essential accident-repair work and facilitating evacuation procedures (providing at least two evacuation routes and exits, anti-smoke protection of evacuation routes and control panel areas etc). Installing automatic fire-extinguishing and fire alarm systems. Providing various stationary facilities and equipment to assist the use of mobile fire-fighting appliances. In addition, a special fire-fighting division is being set up in every nuclear power plant while the first unit is still being constructed. These divisions work in close co-operation with the technical personnel management of the plant and with the bodies responsible for monitoring nuclear safety. (author)

  9. 75 FR 221 - Airworthiness Directives; Fire Fighting Enterprises Limited Portable Halon 1211 Fire...

    Science.gov (United States)

    2010-01-05

    ... Airworthiness Directives; Fire Fighting Enterprises Limited Portable Halon 1211 Fire Extinguishers as Installed... specification, have been supplied to the aviation industry for use in fire extinguishing equipment. * * * * * * * * * * * This Halon 1211 has subsequently been used to fill certain FFE [Fire Fighting Enterprises] portable...

  10. EFFICIENCY OF FIRE-FIGHTING PROTECTION OBJECTS IN PROVISION OF FIRE SAFETY AT INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    A. V. Zhovna

    2008-01-01

    Full Text Available The paper gives an analysis of economic results pertaining to organization of a system for fire-fighting protection of industrial enterprises in theRepublicofBelarus. Statistical data on operational conditions of technical means of fire-fighting protection, particularly, automatic systems for detection and extinguishing of fires, systems of internal fire-fighting water-supply.  Requirements and provisions  of normative and technical documents are thoroughly studied. Observance of these documents is to ensure the required level of  fire safety. On the basis of the obtained results concerning  economic analysis of efficiency optimization directions are defined for selection of technical means of fire-fighting protection at objects of industrial purpose.

  11. EFFICIENCY OF FIRE-FIGHTING PROTECTION OBJECTS IN PROVISION OF FIRE SAFETY AT INDUSTRIAL ENTERPRISES

    OpenAIRE

    A. V. Zhovna

    2008-01-01

    The paper gives an analysis of economic results pertaining to organization of a system for fire-fighting protection of industrial enterprises in theRepublicofBelarus. Statistical data on operational conditions of technical means of fire-fighting protection, particularly, automatic systems for detection and extinguishing of fires, systems of internal fire-fighting water-supply.  Requirements and provisions  of normative and technical documents are thoroughly studied. Observance of these docume...

  12. Estimation of Forest Fire-fighting Budgets Using Climate Indexes

    OpenAIRE

    Zhen Xu; G. Cornelis van Kooten

    2012-01-01

    Given the complexity and relative short length of current predicting system for fire behavior, it is inappropriate to be referred for planning fire-fighting budgets of BC government due to the severe uncertainty of fire behavior across fire seasons. Therefore, a simple weather derived index for predicting fire frequency and burned area is developed in this paper to investigate the potential feasibility to predict fire behavior and fire-fighting expenses for the upcoming fire season using clim...

  13. Clinimetric quality of the fire fighting simulation test as part of the Dutch fire fighters Workers' Health Surveillance

    Directory of Open Access Journals (Sweden)

    Sluiter Judith K

    2010-02-01

    Full Text Available Abstract Background Clinimetric data for the fire fighting simulation test (FFST, a new test proposed for the Workers' Health Surveillance (WHS of Dutch fire fighters, were evaluated. Methods Twenty-one fire fighters took the FFST three times with one and three weeks between testing. Clinimetric quality was determined by means of reliability, agreement and validity. For reliability and agreement, the intraclass correlation coefficient (ICC, and standard error of measurement (SEM, were analysed. For construct validity, the tests from 45 fire fighters were correlated with their own and their supervisors' rated work ability. Results The ICCs were 0.56 and 0.79 at the one-week and three-week test-retest periods, respectively. Testing times ranged from 9 to 17 minutes; the SEMs were 70 s at the one-week and 40 s at the three-week test-retest periods. The construct validity was moderate (-0.47 ≤ r ≤ -0.33; p Conclusions The FFST was reliable with acceptable agreement after three weeks. Construct validity was moderate. We recommend using FFST as a part of the WHS for Dutch fire fighters. It is advised that fire fighters should perform the FFST once as a trial before judging their performance in testing time during the second performance.

  14. Impacts of fire, fire-fighting chemicals and post-fire stabilization techniques on the soil-plant system

    OpenAIRE

    Fernández Fernández, María

    2017-01-01

    Forest fires, as well as fire-fighting chemicals, greatly affect the soil-plant system causing vegetation loss, alterations of soil properties and nutrient losses through volatilization, leaching and erosion. Soil recovery after fires depends on the regeneration of the vegetation cover, which protects the soil and prevents erosion. Fire-fighting chemicals contain compounds potentially toxic for plants and soil organisms, and thus their use might hamper the regeneration of burnt ecosystems. In...

  15. Training Effectiveness Evaluation (TEE) of the Advanced Fire Fighting Training System. Focus on the Trained Person.

    Science.gov (United States)

    Cordell, Curtis C.; And Others

    A training effectiveness evaluation of the Navy Advanced Fire Fighting Training System was conducted. This system incorporates simulated fires as well as curriculum materials and instruction. The fires are non-pollutant, computer controlled, and installed in a simulated shipboard environment. Two teams of 15 to 16 persons, with varying amounts of…

  16. Crisis management with applicability on fire fighting plants

    Science.gov (United States)

    Panaitescu, M.; Panaitescu, F. V.; Voicu, I.; Dumitrescu, L. G.

    2017-08-01

    The paper presents a case study for a crisis management analysis which address to fire fighting plants. The procedures include the steps of FTA (Failure tree analysis). The purpose of the present paper is to describe this crisis management plan with tools of FTA. The crisis management procedures have applicability on anticipated and emergency situations and help to describe and planning a worst-case scenario plan. For this issue must calculate the probabilities in different situations for fire fighting plants. In the conclusions of paper is analised the block diagram with components of fire fighting plant and are presented the solutions for each possible risk situations.

  17. 46 CFR 167.45-30 - Use of approved fire-fighting equipment.

    Science.gov (United States)

    2010-10-01

    ... PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-30 Use of approved fire-fighting equipment. Portable fire extinguishers or fire-extinguishing systems which conform... 46 Shipping 7 2010-10-01 2010-10-01 false Use of approved fire-fighting equipment. 167.45-30...

  18. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  19. Fire protection at hot laboratories: Prevention, surveillance and fire-fighting

    International Nuclear Information System (INIS)

    Chappellier, A.M.

    1976-01-01

    After pointing out that fire in a hot laboratory can be an important factor contributing to a radioactivity accident, the author briefly recalls the items to be taken into account in a fire hazard analysis. He then describes various important aspects of prevention, detection and fire-fighting which - at the French Commissariat a l'Energie Atomique - are governed by already defined rules or by guidelines which are sufficiently advanced to give a clear idea of the final conclusions to be drawn therefrom. From the point of view protection, the concept of fire sector has been evolved, at hot laboratories, becomes the fire and contamination sector, so as to ensure under all circumstances the containment of any radioactive materials dispersed in the premises on fire. Regarding fire detection, a study should be made on the constraints specific to the facility and liable to affect detector operation. These include ventilation, radiations, neutral or corrosive atmosphere, etc. As regards fire-fighting, two particular aspects are dealt with, namely the question of using water in case of fire and action to be taken concerning ventilation. A practical example - the protection of a ventilation system - is described. In conclusion the paper refers to the need for a thorough analysis specific to each hot laboratory, and to the importance of preparing an operational plan so as to avoid any dangerous improvisations in case of an accident. (author)

  20. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    Science.gov (United States)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be

  1. Estimation of Forest Fire-fighting Budgets Using Climate Indexes

    NARCIS (Netherlands)

    Xu, Z.; Kooten, van G.C.

    2012-01-01

    Given the complexity and relative short length of current predicting system for fire behavior, it is inappropriate to be referred for planning fire-fighting budgets of BC government due to the severe uncertainty of fire behavior across fire seasons. Therefore, a simple weather derived index for

  2. A WebGIS-based command control system for forest fire fighting

    Science.gov (United States)

    Yang, Jianyu; Ming, Dongping; Zhang, Xiaodong; Huang, Haitao

    2006-10-01

    Forest is a finite resource and fire prevention is crucial work. However, once a forest fire or accident occurs, timely and effective fire-fighting is the only necessary measure. The aim of this research is to build a computerized command control system based on WEBGIS to direct fire-fighting. Firstly, this paper introduces the total technique flow and functional modules of the system. Secondly, this paper analyses the key techniques for building the system, and they are data obtaining, data organizing & management, architecture of WebGIS and sharing & interoperation technique. In the end, this paper demonstrates the on line martial symbol editing function to show the running result of system. The practical application of this system showed that it played very important role in the forest fire fighting work. In addition, this paper proposes some strategic recommendations for the further development of the system.

  3. A WSN-based tool for urban and industrial fire-fighting.

    Science.gov (United States)

    De San Bernabe Clemente, Alberto; Martínez-de Dios, José Ramiro; Ollero Baturone, Aníbal

    2012-11-06

    This paper describes a WSN tool to increase safety in urban and industrial fire-fighting activities. Unlike most approaches, we assume that there is no preexisting WSN in the building, which involves interesting advantages but imposes some constraints. The system integrates the following functionalities: fire monitoring, firefighter monitoring and dynamic escape path guiding. It also includes a robust localization method that employs RSSI-range models dynamically trained to cope with the peculiarities of the environment. The training and application stages of the method are applied simultaneously, resulting in significant adaptability. Besides simulations and laboratory tests, a prototype of the proposed system has been validated in close-to-operational conditions.

  4. WILDLAND FIRE MANAGEMENT: Improved Planning Will Help Agencies Better Identify Fire-Fighting Preparedness Needs

    National Research Council Canada - National Science Library

    Hill, Barry

    2002-01-01

    Each year, wildland fires on federal lands burn millions of acres of forests, grasslands, and desert, and federal land management agencies expend hundreds of millions of dollars to fight these fires...

  5. Fire fighting precautions at Bohunice Atomic Power Plants

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Some shortcomings are discussed of the project design of fire protection at the V-1 and V-2 nuclear power plants. The basic shortcoming of the system is insufficient division of the units for fire protection. Fire fighting measures are described for cable areas, switch houses and outside transformers, primary and secondary circuits and auxiliary units. Measures are presented for increasing fire safety in Jaslovske Bohunice proceedi.ng from experience gained with a fire which had occurred at a nuclear power plant in Armenia. (E.S.)

  6. Fire fighting at Chernobyl and fire protection at UK nuclear power stations

    International Nuclear Information System (INIS)

    Bindon, F.J.L.

    1987-01-01

    The fire fighting measures undertaken by the fire crews at the Chernobyl reactor accident are described. This information highlights the need to develop engineering equipment which will give a far greater degree of personnel protection to fire crews and others in radiological accidents. The British position on fire protection at nuclear power stations is outlined. The general levels of radiation exposure which would be used as a guide to persons in the vicinity of a radiation accident are also given. (UK)

  7. Fighting and preventing post-earthquake fires in nuclear power plant

    International Nuclear Information System (INIS)

    Lu Xuefeng; Zhang Xin

    2011-01-01

    Nuclear power plant post-earthquake fires will cause not only personnel injury, severe economic loss, but also serious environmental pollution. For the moment, nuclear power is in a position of rapid development in China. Considering the earthquake-prone characteristics of our country, it is of great engineering importance to investigate the nuclear power plant post-earthquake fires. This article analyzes the cause, influential factors and development characteristics of nuclear power plant post-earthquake fires in details, and summarizes the three principles should be followed in fighting and preventing nuclear power plant post-earthquake fires, such as solving problems in order of importance and urgency, isolation prior to prevention, immediate repair and regular patrol. Three aspects were pointed out that should be paid attention in fighting and preventing post-earthquake fires. (authors)

  8. A WSN-Based Tool for Urban and Industrial Fire-Fighting

    Directory of Open Access Journals (Sweden)

    Aníbal Ollero Baturone

    2012-11-01

    Full Text Available This paper describes a WSN tool to increase safety in urban and industrial fire-fighting activities. Unlike most approaches, we assume that there is no preexisting WSN in the building, which involves interesting advantages but imposes some constraints. The system integrates the following functionalities: fire monitoring, firefighter monitoring and dynamic escape path guiding. It also includes a robust localization method that employs RSSI-range models dynamically trained to cope with the peculiarities of the environment. The training and application stages of the method are applied simultaneously, resulting in significant adaptability. Besides simulations and laboratory tests, a prototype of the proposed system has been validated in close-to-operational conditions.

  9. Criticality and fire-fighting - Recent developments at Westinghouse, Springfields Fuels Limited

    International Nuclear Information System (INIS)

    Hill, D. A.; Clemson, P. D.

    2009-01-01

    Fire-fighting advice in criticality-controlled areas has traditionally presented unique challenges to the nuclear industry, primarily because of the introduction of moderators / reflectors from water and foam and the potential rearrangement of materials. In an actual emergency, the decision to use water-based fire extinguishing methods is best influenced by a consensus between the criticality and fire specialists as part of the emergency planning process. A recent review of the fire-fighting arrangements at the site operated by Springfields Fuels Limited (SFL) in Preston in the United Kingdom has identified that more detailed guidance may be valuable relating to the specific areas and materials at risk, particularly to highlight the degree of risk and provide guidance on the risk of criticality if water-based fire extinguishing methods were deemed necessary. This has prompted consideration of a criticality 'Fire Tag' system, consisting of colour coded markers in the area (an immediate visual indicator of both the degree of risk and the appropriate fire-fighting response) and single sheet cards (specific guidance for the areas and materials at risk), with the process supported by appropriate training. The approach is currently being trialled on a small scale, and initial feedback from personnel has been positive. (authors)

  10. Fires in rooms containing electrical components - incident planning, fire fighting tactics, risks

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ottosson, Jan; Lindskog, BertiI; Soederquist Bende, Evy; Eriksson, Fredrik; Haffling, Stefan

    2006-12-01

    On July 1, 2005 a fire occurred within an electrical switch room at Forsmark Nuclear Power Plant. At the evaluation of the incident it was identified that the pre-fire plans did not give sufficient information in order to make the appropriate decisions. Questions raised based on the incident are how decisions are made and orders are delegated with respect to the incident command, which fire fighting tactic should be used, which types of extinguishing media should be used, what are the risks with respect to safety of staff and safety of the reactor. Lessons learned from the fire at Forsmark were that pre-incident planning was at hand but the information was not sufficient to make the correct initial decisions that might be critical for life and property. One of the most crucial ingredients in all safety related work is to utilize previous experience in order to maintain a high degree of safety. Lessons learnt are also the foundation on which the ability to construct or create strong barriers against a certain fault phenomena, fault mechanism or type of initial event. In the case of nuclear processes, fire is considered as an important and critical initial event which has to be recognized in a number of cases in order to maintain a safe process. The likelihood for a fire to represent an initial event should not be underestimated and can therefore not be neglected, probabilistically or deterministically, unless the inherent safety systems can not control the event in an acceptable manner. Regardless of safety measures and lessons learnt from previous experiences in the construction and the operation of the nuclear facility, fires can occur. Previous experiences point out that process system, e.g. systems that are part of the turbine, are more frequently subject to fire incidents compared to ordinary safety systems. Fires in electrical components, often electrical cabinets, can be difficult to handle and to extinguish quickly. This report presents the background work

  11. SIMULATION OF LANDMARK APPROACH FOR WALL FOLLOWING ALGORITHM ON FIRE-FIGHTING ROBOT USING V-REP

    Directory of Open Access Journals (Sweden)

    Sumarsih Condroayu Purbarani

    2015-08-01

    Full Text Available Autonomous mobile robot has been implemented to assist humans in their daily activity. Autonomous robots have also contributed significantly in human safety. Autonomous mobile robot have been implemented to assist humans in their daily activity. Autonomous robots Have also contributed significantly in human safety. An example of the autonomous robot in the human safety sector is the fire fighting robot, which is the main topic of this paper. As an autonomous robot, the fire fighting robot needs a robust navigation ability to execute a given task in the shortest time interval. Wall-following algorithm is one of several navigating algorithm that simplifies this autonomous navigation problem. As a contribution, we propose two methods that could be combined to make the existing wall-following algorithm more robust. The combined wall-flowing algorithm will be compared to the original wall-following algorithm. By doing so, we could determine which method has more impact on the robot’s navigation robustness. Our goal is to see which method is more effective when combined with the wall-following algorithm.

  12. Improving Reliability of a fire-fighting pump set with Axiomatic Design

    Directory of Open Access Journals (Sweden)

    Arcidiacono Gabriele

    2017-01-01

    Full Text Available This paper introduces a case study featuring Axiomatic Design and Multi-Level Hierarchical model (MLH applied to redesign a fire-fighting pump set. In particular, two different design concepts are presented to be applied to the supporting frame of the system to limit a vibration problem that can arise during potential malfunctioning of the fire-fighting pump. The selection of the best design has been carried out through reliability evaluation process and through the cost of failure based on the MLH model.

  13. New technological developments in oil well fire fighting equipment and methods

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, B.; Matthews, R.T.

    1995-12-31

    Since Drake`s first oil well in 1859, well fires have been frequent and disastrous. Hardly a year has passed in over a century without a well fire somewhere in the world. In the 1920`s the classic method of fire fighting using explosives to starve the fire of oxygen was developed and it has been used extensively ever since. While explosives are still one of the most frequently used methods today, several other methods are used to supplement it where special conditions exist. Tunneling at an angle from a safe distance is used in some cases, especially where the fire is too hot for a close approach on the ground surface. Pumping drilling muds into a well to plug it is another method that has been used successfully for some time. Diverter wells are occasionally used, and sometimes simply pumping enough water on a well fire is sufficient to extinguish it. Of course, prevention is always the best solution. Many advances in blow-out prevention devices have been developed in the last 50 years and the number of fires has been substantially reduced compared to the number of wells drilled. However, very little in new technology has been applied to oil well fire fighting in the 1960s, 1970s, or 1980s. Overall technological progress has accelerated tremendously in this period, of course, but new materials and equipment were not applied to this field for some reason. Saddam Hussein`s environmental holocaust in Kuwait changed that by causing many people throughout the world to focus their creative energy on more efficient oil well fire fighting methods.

  14. Three-dimensional tracking for efficient fire fighting in complex situations

    Science.gov (United States)

    Akhloufi, Moulay; Rossi, Lucile

    2009-05-01

    Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.

  15. The simulation of surface fire spread based on Rothermel model in windthrow area of Changbai Mountain (Jilin, China)

    Science.gov (United States)

    Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying

    2018-03-01

    The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.

  16. Multi-Level Wild Land Fire Fighting Management Support System for an Optimized Guidance of Ground and Air Forces

    Science.gov (United States)

    Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard

    2016-04-01

    missions. The ongoing development focuses on the following topics: (1) Development of a multi-level management solution to coordinate and guide different airborne and terrestrial deployed firefighting modules as well as related data processing and data distribution activities. (2) Further, a targeted control of the thermal sensor based on a rotating mirror system to extend the "area performance" (covered area per hour) in time critical situations for the monitoring requirements during forest fire events. (3) Novel computer vision methods for analysis of thermal sensor signatures, which allow an automatic classification of different forest fire types and situations. (4) A module for simulation-based decision support for planning and evaluation of resource usage and the effectiveness of performed fire-fighting measures. (5) Integration of wearable systems to assist ground teams in rescue operations as well as a mobile information system into innovative command and fire-fighting vehicles. In addition, the paper gives an outlook on future perspectives including a first concept for the integration of the near real-time multilevel forest fire fighting management system into an "EU Civil Protection Team" to support the EU civil protection modules and the Emergency Response Coordination Centre in Brussels. Keywords: Airborne sensing, multi sensor imaging, near real-time fire monitoring, simulation-based decision support, forest firefighting management, firefighting impact analysis.

  17. Interim guidelines for protecting fire-fighting personnel from multiple hazards at nuclear plant sites

    International Nuclear Information System (INIS)

    Klein, A.R.; Bloom, C.W.

    1989-07-01

    This report provides interim guidelines for reducing the impact to fire fighting and other supporting emergency response personnel from the multiple hazards of radiation, heat stress, and trauma when fighting a fire in a United States commercial nuclear power plant. Interim guidelines are provided for fire brigade composition, training, equipment, procedures, strategies, heat stress and trauma. In addition, task definitions are provided to evaluate and further enhance the interim guidelines over the long term. 19 refs

  18. Performance Evaluation of the Combined Agent Fire Fighting System (CAFFS)

    National Research Council Canada - National Science Library

    Kalberer, Jennifer

    2003-01-01

    ... of the location. The Combined Agent Fire Fighting System (CAFFS) employs innovations in nozzle design, lightweight composites and combination agents to design a system with extinguishment capabilities of much larger ARFF vehicles...

  19. Fire fighting system for inflammable liquids and process using it

    International Nuclear Information System (INIS)

    Levillain, C.

    1988-01-01

    For fighting fires of flammable liquids, such as liquid sodium or hydrocarbons, a layer of floating spheres (cellular concrete or hollow metal) is maintained on the surface by a square or preferentially triangular-meshed metallic net [fr

  20. Monitoring system of multiple fire fighting based on computer vision

    Science.gov (United States)

    Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2010-10-01

    With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.

  1. Performance Evaluation Facility for Fire Fighting Thermal Imager

    International Nuclear Information System (INIS)

    Kim, Sung Chan; Amon, Francine; Hamins, Anthony

    2007-01-01

    The present study investigates the characteristics of obscuring media inside an optical smoke cell, which is a bench-scale testing facility for the evaluation of thermal imaging cameras used by fire fighters. Light extinction coefficient and visibility through the smoke cell is characterized by the measured laser transmittance. The laser transmittance along the axial direction of the smoke cell is relatively uniform at upper and lower part for various air/fuel volume flow rate. Contrast level based image quality of visible CCD camera through the smoke cell is compared with that of thermal imaging camera. The optical smoke cell can be used as well-controlled and effective laboratory-scale test apparatus to evaluate the performance of thermal imaging camera for fire fighting application

  2. Fires in rooms containing electrical components - incident planning, fire fighting tactics, risks; Braender i driftrum - Insatsplaner, slaeckteknik, risker

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Tommy; Ottosson, Jan; Lindskog, BertiI; Soederquist Bende, Evy; Eriksson, Fredrik; Haffling, Stefan

    2006-12-15

    On July 1, 2005 a fire occurred within an electrical switch room at Forsmark Nuclear Power Plant. At the evaluation of the incident it was identified that the pre-fire plans did not give sufficient information in order to make the appropriate decisions. Questions raised based on the incident are how decisions are made and orders are delegated with respect to the incident command, which fire fighting tactic should be used, which types of extinguishing media should be used, what are the risks with respect to safety of staff and safety of the reactor. Lessons learned from the fire at Forsmark were that pre-incident planning was at hand but the information was not sufficient to make the correct initial decisions that might be critical for life and property. One of the most crucial ingredients in all safety related work is to utilize previous experience in order to maintain a high degree of safety. Lessons learnt are also the foundation on which the ability to construct or create strong barriers against a certain fault phenomena, fault mechanism or type of initial event. In the case of nuclear processes, fire is considered as an important and critical initial event which has to be recognized in a number of cases in order to maintain a safe process. The likelihood for a fire to represent an initial event should not be underestimated and can therefore not be neglected, probabilistically or deterministically, unless the inherent safety systems can not control the event in an acceptable manner. Regardless of safety measures and lessons learnt from previous experiences in the construction and the operation of the nuclear facility, fires can occur. Previous experiences point out that process system, e.g. systems that are part of the turbine, are more frequently subject to fire incidents compared to ordinary safety systems. Fires in electrical components, often electrical cabinets, can be difficult to handle and to extinguish quickly. This report presents the background work

  3. Peace-time radiological training for fire fighting and paramedic staff

    International Nuclear Information System (INIS)

    The shipment of radioactive materials over commercial highways has had a proven record of safety for many years. Accidents involving radioactive material have been rare. However, good emergency planning requires that fire protection agencies be prepared for such an incident. In an effort to provide this preparedness, the Benton County Department of Emergency Services, with the cooperation of the Washington Public Power Supply System and US Department of Energy, Richland Office, has prepared this manual for local fire fighting and paramedic staff. This manual provides a basic understanding of radioactivity and the role of these teams during an emergency involving radioactive material

  4. All fired up

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Members of the Directorate and their support staff took part in a fire-fighting course organised by the CERN Fire Brigade just before the end-of-year break.  The Bulletin takes a look at the fire-fighting training on offer at CERN.   At CERN the risk of fire can never be under-estimated. In order to train personnel in the use of fire extinguishers, CERN's fire training centre in Prévessin acquired a fire-simulation platform in 2012. On the morning of 17 December 2012, ten members of the CERN directorate and their support staff tried out the platform, following in the footsteps of 400 other members of the CERN community who had already attended the course. The participants were welcomed to the training centre by Gilles Colin, a fire-fighter and instructor, who gave them a 30-minute introduction to general safety and the different types of fire and fire extinguishers, followed by an hour of practical instruction in the simulation facility. There they were able to pract...

  5. Indicator Systems for School and Teacher Evaluation: Fire-Fighting It Is!

    Science.gov (United States)

    Fitz-Gibbon, C. T.

    In 1979, Gene Glass suggested that it might not be possible to evaluate schools nor to create widely applicable research findings, but that the complexity of education was such that merely "fire-fighting," establishing monitoring systems to alert about educational events, was the best approach. In the United Kingdom, monitoring systems…

  6. Fire fighting. Measures to guarantee the safety of the radioactive installations

    International Nuclear Information System (INIS)

    Orta Aguilera, R.

    1993-01-01

    The work relates the incidence of the aspects related to the fire prevention and fighting as well as the activities of rescue and saving in the radioactive facilities, with the objective of guaranteeing a strict safety regime of all installations along the country so as to reduce to the minimum the risk for the personnel, the population and the environment

  7. Forest Monitoring and Wildland Early Fire Detection by a Hierarchical Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Antonio Molina-Pico

    2016-01-01

    Full Text Available A wildland fire is an uncontrolled fire that occurs mainly in forest areas, although it can also invade urban or agricultural areas. Among the main causes of wildfires, human factors, either intentional or accidental, are the most usual ones. The number and impact of forest fires are expected to grow as a consequence of the global warming. In order to fight against these disasters, it is necessary to adopt a comprehensive, multifaceted approach that enables a continuous situational awareness and instant responsiveness. This paper describes a hierarchical wireless sensor network aimed at early fire detection in risky areas, integrated with the fire fighting command centres, geographical information systems, and fire simulators. This configuration has been successfully tested in two fire simulations involving all the key players in fire fighting operations: fire brigades, communication systems, and aerial, coordination, and land means.

  8. Inspection of fire protection measures and fire fighting capability at nuclear power plants. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1994-01-01

    The present publication has been developed with the help of experts from regulatory, operating and engineering organizations, all with practical experience in the field of fire protection of nuclear power plants. The publication outlines practices for inspecting the fire protection measures at nuclear power plants in accordance with Safety Series No.50-SG-D2(Rev.1), Fire Protection in Nuclear Power Plants, and includes a comprehensive fire safety inspection checklist of the specific elements to be addressed when evaluating the adequacy and effectiveness of the fire protection measures and manual fire fighting capability available at operating nuclear power plants. The publication will be useful not only to regulators and safety assessors but also to operators and designers. The book addresses a specialized topic and it is recommended that it be used in conjunction with Safety Guide No.50-SG-D2(Rev.1)

  9. Utilisation of a new fire fighting device on board of a diesel vehicle in the underground German black coal industry; Einsatz einer neuartigen bordfesten Loeschanlage auf dieselgetriebenen Fahrzeugen im untertaegigen deutschen Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Fetting, Dieter; Alze, Matthias [Bergwerk Ost, Hamm (Germany); Cerny, Udo [RAG Aktiengesellschaft, Herne (Germany). Servicebereich Technik und Logistik - DZGR

    2010-03-15

    In the German hard coal mining industry approximately since the 1970ies, automatically releasing stationary powder snow based fire fighting systems are built on diesel vehicles due to reasons of fire protection. These fire fighting systems are to recognize a developing fire by sensors and to extinguish the fire by an automatic output of a fire fighting agent with high rate (HRD = High Rate Discharge) into a closed engine compartment or within the range of hydraulics. Simultaneously with the releasing of the fire extinguishing system the engine of the vehicle is stop automatically. Due to the stationary fire fighting systems diesel vehicles are not classified with views of risk as fire load.

  10. Numerical modelling of the work of a pulsed aerosol system for fire fighting at the ignitions of liquid hydrocarbon fuels

    Science.gov (United States)

    Rychkov, A. D.

    2009-06-01

    The work of a pulsed aerosol system for fire fighting is modelled, which is designed for fire fighting at oil storages and at the spills of oil products, whose vapors were modelled by gaseous methane. The system represents a device for separate installation, which consists of a charge of solid propellant (the gas generator) and a container with fine-dispersed powder of the flame-damper substance. The methane combustion was described by a one-stage gross-reaction, the influence of the concentration of vapors of the flame-damper substance on the combustion process was taken into account by reducing the pre-exponent factor in the Arrhenius law and was described by an empirical dependence. The computational experiment showed that the application of the pulsed aerosol system for fire fighting ensures an efficient transport of fine-dispersed aerosol particles of the flame-damping substance and its forming vapors to the combustion zone; the concentration of particles ensures the damping of the heat source.

  11. Discovery Mondays - Men of fire: the fire brigade show their mettle

    CERN Multimedia

    2004-01-01

    Flashover and backdraught, these technical terms refer to two of the most dangerous phenomena associated with fires. In order to train in dealing with them, in the course of their fire fighting duties the CERN fire brigade use special simulation equipment. The demonstrations are rather spectacular... Thrills are therefore guaranteed at the next Discovery Monday on 2 February! In the course of the evening, you will see fire-fighters demonstrate climbing techniques including abseiling, a method they would have to use to access underground structures on the CERN site in the event of an accident. The accomplished climbers (the Hazardous Environments Response Team) will provide detailed explanations of the rescue techniques and procedures they use in tunnels and hazardous environments. However, the remit of the CERN fire brigade goes well beyond fire-fighting. It ranges from monitoring confined spaces to dealing with flooding and preventing chemical hazards. A wide range of equipment enables them to fulfil thei...

  12. Simulating wildfire spread behavior between two NASA Active Fire data timeframes

    Science.gov (United States)

    Adhikari, B.; Hodza, P.; Xu, C.; Minckley, T. A.

    2017-12-01

    Although NASA's Active Fire dataset is considered valuable in mapping the spatial distribution and extent of wildfires across the world, the data is only available at approximately 12-hour time intervals, creating uncertainties and risks associated with fire spread and behavior between the two Visible Infrared Imaging Radiometer Satellite (VIIRS) data collection timeframes. Our study seeks to close the information gap for the United States by using the latest Active Fire data collected for instance around 0130 hours as an ignition source and critical inputs to a wildfire model by uniquely incorporating forecasted and real-time weather conditions for predicting fire perimeter at the next 12 hour reporting time (i.e. around 1330 hours). The model ingests highly dynamic variables such as fuel moisture, temperature, relative humidity, wind among others, and prompts a Monte Carlo simulation exercise that uses a varying range of possible values for evaluating all possible wildfire behaviors. The Monte Carlo simulation implemented in this model provides a measure of the relative wildfire risk levels at various locations based on the number of times those sites are intersected by simulated fire perimeters. Model calibration is achieved using data at next reporting time (i.e. after 12 hours) to enhance the predictive quality at further time steps. While initial results indicate that the calibrated model can predict the overall geometry and direction of wildland fire spread, the model seems to over-predict the sizes of most fire perimeters possibly due to unaccounted fire suppression activities. Nonetheless, the results of this study show great promise in aiding wildland fire tracking, fighting and risk management.

  13. Neuromuscular Responses to Simulated Brazilian Jiu-Jitsu Fights

    Directory of Open Access Journals (Sweden)

    Corrêa da Silva Bruno Victor

    2014-12-01

    Full Text Available The aim of this study was to investigate the neuromuscular performance responses following successive Brazilian Jiu-Jitsu (BJJ fights. Twenty-three BJJ athletes (age: 26.3 ± 6.3 years; body mass: 79.4 ± 9.7 kg; body height: 1.80 ± 0.1 m undertook 3 simulated BJJ fights (10 min duration each separated by 15 min of rest. Neuromuscular performance was measured by the bench press throw (BPT and vertical counter movement jump (VCMJ tests, assessed before the 1st fight (Pre and after the last one (Post. Blood lactate (LA was measured at Pre, 1 min Post, and 15 min Post fights. Paired t-tests were employed in order to compare the BPT and VCMJ results. One-way ANOVA with Bonferroni post hoc tests were utilized to compare LA responses. The results revealed a significant (p < 0.05 increase in VCMJ performance (40.8 ± 5.5 cm Pre vs. 42.0 ± 5.8 cm Post, but no significant changes in the BPT (814 ± 167 W Pre vs. 835 ± 213 W Post were observed. LA concentration increased significantly (p < 0.05 at Post, both in the 1st min and the 15th min of recovery. We concluded that successive simulated BJJ fights demanded considerable anaerobic contribution of ATP supply, reinforcing the high-intensity intermittent nature of the sport. Nevertheless, no negative impact on acute neuromuscular performance (power was observed.

  14. Foam formation in low expansion fire fighting equipment

    International Nuclear Information System (INIS)

    Rogers, Lucy Elizabeth

    2001-01-01

    This thesis describes an investigation into the foam generation mechanisms involved in producing foam from a low expansion fire fighting branchpipe. The investigation was carried out using scale models of branchpipes, and a high-speed video camera was used to study the formation of the foam. The experiments provided evidence of three possible methods of bubble formation within this type of system: Stage 1 - Mixing within the branchpipe; Stage 2 - Air entrainment and bubble growth during the flight of the jet; Stage 3 - Aeration produced from the collision of the high speed jet onto a surface. Each stage is described in detail and the mechanism which has the greatest effect on the expansion ratio of the foam produced has been determined. The relevance of these findings to the design of branchpipes is discussed. (author)

  15. The importance of fire simulation in fire prediction

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje B.

    2014-01-01

    Full Text Available The appearance of fire in objects with lot of humans inside represents very possible real situation that could be very danger and could cause destructive consequences on human lives and material properties. Very important influence in fire prediction, fire protection, human and material properties safety could be a fire simulation in object. This simulation could give many useful information of possible fire propagation; possible and existed evacuation routes; possible and exited placing of fire, smoke, temperature conditions in object and many other information of crucial importance for human lives and material properties, such as the best places for sensors position, optimal number of sensors, projection of possible evacuation routes etc. There are many different programs for fire simulation. This paper presents complete fire simulation in Electrotechnical school Nikola Tesla in Niš in FDS.

  16. Fighting Smoldering Fires in Silos – A Cautionary Note on Using Carbon Dioxide to Inert

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2017-01-01

    This communication seeks to draw attention to the hazards of releasing liquid carbon dioxide into environments where an ignitable atmosphere may exist. Static discharges have sufficient energy to ignite flammable vapors and an internal explosion may result when fighting smoldering fires using...... this approach. A recent article in Biomass and Bioenergy examines an explosion in a Norwegian wood pellet silo when attempting to suppress a smoldering fire with CO₂. The article argues that the electrostatic hazard of CO₂ is widely under-appreciated and incidents like this are avoidable....

  17. Fighting fire with gas. CO{sub 2} extinguishes smouldering fires in biomass silos and waste bunkers; Effizientes Feuerwehr-Gas. CO{sub 2} loescht Schwelbraende in Biomasse-Silos und Abfallbunkern

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-07-01

    Organic materials are a great source of energy and so biomass is in big demand. But wherever large amounts of wood, waste and straw are stored in huge silos, there is also a risk of smouldering fires and even explosions. Conventional methods are relatively ineffective at extinguishing fires such as these. But a new extinguishing system from Linde uses CO{sub 2} to effectively fight smouldering fires at the source. (orig.)

  18. The “Forest Fire Project”, National cartographic portal of the Italian Environmental Department: an example of management of cartographic data to support forest fires fighting plans in national parks

    Directory of Open Access Journals (Sweden)

    Petrucci B

    2010-02-01

    Full Text Available The “Forest Fire Project” on the National cartographic portal (http://www.pcn.minambiente.it has been created by the Italian Ministry of Environment Territory and Sea (METS. The project is intended to support forest fire fighting plans in national protected areas as provided for by article 8 of the law November 21th 2000, no. 353 “Framework law on forest fires”. The project brings out the results of previous projects carried out in collaboration with several research institutes. Cartographic information is made available as free and reliable knowledge base in order to facilitate the draw up and implementation of the “Forest Fire Plans”, including the actual activity of forest fire extinction. Map information can be further implemented by various subjects such as researchers, land planning programmers or managers. The National cartographic portal gives the opportunity of overlaying various cartographic information and base maps supporting the “Forest Fire Project”; moreover it is possible to add other layers from other sources, through URL. Adequate “personalised” overlaps - which can be saved on one’s own GIS - allow in depth analysis and deductions aimed at specific objectives of territorial planning and management and in particular of Forest Fire Fighting Plans.

  19. Risk assessment of main control board fire using fire dynamics simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il, E-mail: dikang@kaeri.re.kr [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Kilyoo; Jang, Seung-Cheol [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Yoo, Seong Yeon [Chungnam National University, 79, Daehagro, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-08-15

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk.

  20. Risk assessment of main control board fire using fire dynamics simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol; Yoo, Seong Yeon

    2015-01-01

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk

  1. A portable W-band radar system for enhancement of infrared vision in fire fighting operations

    Science.gov (United States)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver

    2016-10-01

    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  2. Weather Observation Systems and Efficiency of Fighting Forest Fires

    Science.gov (United States)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  3. Discovery Mondays - Men of fire: the fire brigade show their mettle

    CERN Multimedia

    2004-01-01

    Flashover and backdraught, these technical terms refer to two of the most dangerous phenomena associated with fires. In order to train in dealing with them, in the course of their fire fighting duties the CERN fire brigade use special simulation equipment. The demonstrations are rather spectacular... Thrills are therefore guaranteed at the next Discovery Monday on 2 February! In the course of the evening, you will see fire-fighters demonstrate climbing techniques including abseiling, a method they would have to use to access underground structures on the CERN site in the event of an accident. The accomplished climbers (the Hazardous Environments Response Team) will provide detailed explanations of the rescue techniques and procedures they use in tunnels and hazardous environments. CERN firemen simulate the backdraft phenomena for training. The demonstration, which you will have the opportunity to observe, on the next Discovery Monday, is spectacular. However, the remit of the CERN fire brigade goes well b...

  4. Chemistry fighting against fires

    International Nuclear Information System (INIS)

    Raffalsky, K.

    1975-01-01

    A detailed report is given on the general principle 'fire' and on fires as fast chemical reactions between consumable material and oxygen of the air (exothermal oxidation) as well as on the classes of fires A to D. Class D includes strongly incadescent burnable metals such as K, Na, Li, Cs, Rb, U, Pu, Ce, Zr, Be, Ca, Sr, Ba etc. The burning process, the extinguishing effects, the development of the extinguisher and its present state are individually dealt with. (HK/LH) [de

  5. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Science.gov (United States)

    Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fighting fires in nuclear plants

    International Nuclear Information System (INIS)

    Fantom, L.F.; Weldon, G.E.

    1978-01-01

    Since the Browns Ferry incident, the specter of fires at nuclear plants has been the focus of attention by NRC, the utilities, and the public. There are sophisticated hardware and software available - in the form of fire-protection systems and equipment and training and fire-protection programs. Potential fire losses at nuclear faclities can be staggering. Thus, it behooves all those involved to maximize fire-protection security while simultaneously minimizing the chance of human error, which cancels out the effectiveness of the most up-to-date protective systems and devices

  7. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung Cheol

    2013-01-01

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP

  8. Fire risk analysis, fire simulation, fire spreading and impact of smoke and heat on instrumentation electronics - State-of-the-Art Report

    International Nuclear Information System (INIS)

    Roewekamp, M.; Bertrand, R.; Bonneval, F.; Hamblen, D.; Siu, N.; Aulamo, H.; Martila, J.; Sandberg, J.; Virolainen, R.

    2000-01-01

    OECD countries. The contents of each chapter are based on the writers' knowledge on his or her national practices and on the results of the questionnaire. The emphasis in the descriptions of the national practices also reflects the information supplied by the responding countries. Fire PSA is also used in other OECD countries, but the scope of this report is limited to those countries which responded to the questionnaire. The contents of this report are as follows: Fire PSA methodology overview - Based on a review of fire risk studies performed in the contributing countries, the report addresses different methodology and applications issues. Methodology issues, treated in Chapter 2, include the treatment of physical barriers, fire detection and suppression systems and fire fighting. They also include the treatment of operator actions and dependencies (both direct and indirect) between a fire and the plant's safety systems, definition of initiating events, and screening methods. Key assumptions and the effect of plant operational state (i.e., full power vs. low power operation) are dealt with in the report as well. Fire simulation models and codes applied or available - Chapter 3 of the report identifies which fire simulation codes have been used in actual PSAs. The models and scenarios used in different codes are described. To build confidence on fire simulation models, validation against experimental results in different types of fires is necessary. Fire experiments and the pre- and post experiment calculation used for code validation as well as ongoing fire simulation code development projects are discussed. Examples of fire scenarios and typical modeling assumptions are treated and numerous references are given in Chapter 3. References for experimental case studies and related simulation models and codes used for analyzing the production and spreading of smoke are also provided. The impact of smoke and heat - The immediate consequences of fires are caused by heat

  9. 浅谈火电厂稳高压消防给水系统的若干问题%Existing problems of stabilized high pressure fire fighting water supply system in thermal power plant

    Institute of Scientific and Technical Information of China (English)

    赵佰波; 王欣

    2012-01-01

    The definitions of stabilized high pressure fire fighting water supply system and temporary high pressure fire fighting water supply system were introduced, and a comparison between the two systems was carried out. Some suggestions for the setup of pump adapters and fire water tanks of stabilized high pressure fire fighting water supply system in thermal power plant were pointed out.%介绍了稳高压消防给水系统与临时高压消防给水系统的定义,进行了两类消防给水系统的对比,对火电厂稳高压消防给水系统水泵接合器及消防水箱的设置提出建议.

  10. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    International Nuclear Information System (INIS)

    Fernández-Fernández, M.; Gómez-Rey, M.X.; González-Prieto, S.J.

    2015-01-01

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ 15 N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH 4 + –N and NO 3 − –N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ 15 N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years. - Highlights: • We hypothesized

  11. Computer code structure for evaluation of fire protection measures and fighting capability at nuclear plants

    International Nuclear Information System (INIS)

    Anton, V.

    1997-01-01

    In this work a computer code structure for Fire Protection Measures (FPM) and Fire Fighting Capability (FFC) at Nuclear Power Plants (NPP) is presented. It allows to evaluate the category (satisfactory (s), needs for further evaluation (n), unsatisfactory (u)) to which belongs the given NPP for a self-control in view of an IAEA inspection. This possibility of a self assessment resulted from IAEA documents. Our approach is based on international experience gained in this field and stated in IAEA recommendations. As an illustration we used the FORTRAN programming language statement to make clear the structure of the computer code for the problem taken into account. This computer programme can be conceived so that some literal message in English and Romanian languages be displayed beside the percentage assessments. (author)

  12. 29 CFR 1915.505 - Fire response.

    Science.gov (United States)

    2010-07-01

    ... accomplished; (3) Set up an incident management system to coordinate and direct fire response functions...-2000 Standard on Protective Ensemble for Structural Fire Fighting (incorporated by reference, see... for Proximity Fire Fighting (incorporated by reference, see § 1915.5). (6) Personal Alert Safety...

  13. Evaluation Of Fire Safety And Protection At PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ahmad Nabil Ab Rahim; Alfred Sanggau Ligam; Nurhayati Ramli; Mohd Fazli Zakaria; Naim Syauqi Hamzah; Phongsakorn Prak; Mohammad Suhaimi Kassim; Zarina Masood

    2014-01-01

    Fire hazard is one of many risks that can affect the safety operation of PUSPATI TRIGA Reactor. Reactor building in Malaysian Nuclear Agency was built in 1980s and the fire system has been introduced since then. The evaluation of the fire safety system at this time is important to ensure the efficiency of fire prevention, fighting and mitigation task that probably occurs. This evaluation involves with the fire fighting system and equipment, integrity of the system from the perspective of management and equipment, fire fighting procedure and fire fighting response team. (author)

  14. PERENCANAAN DAN ANALISA SISTEM SPRINKLER OTOMATIS DAN KEBUTUHAN AIR PEMADAMAN FIRE FIGHTING HOTEL XX

    Directory of Open Access Journals (Sweden)

    Rahesa Dwi Putri

    2017-02-01

    Full Text Available Dalam pembangunan sebuah gedung terdapat suatu utilitas keamanan salah satunya adalah sistem instalasi sprinkler yang dirancang sesuai dengan standar proteksi kebakaran yang disiapkan untuk mencegah, memadamkan dan menanggulangi kebakaran dalam bangunan gedung. Pada perencanaan sistem sprinkler ini bertujuan untuk memahami dan melakukan perhitungan pada kecepatan aliran dan tekanan serta merencanakan kebutuhan air pada pemadaman fire fighting gedung hotel. Penulis melakukan penganalisaan dan perhitungan dengan menentukan discharge coefficient of the sprinkler k-factor pada kecepatan aliran fluida, selanjutnya menggunakan presure loss dari Hazen-Williams dan dilakukan kebutuhan air dengan mengacu pada Azas Bernoulli, yang penulis sebut dengan metode Step by Step. Dari hasil perhitungan ini didapat bahwa hubungan antara kecepatan aliran pada sprinkler otomatis ini dengan pressure loss yang terjadi dipengaruhi oleh area yang direncanakan, diameter pipa yang digunakan serta panjang pipa. Dimana perencanaan ini mengacu pada standar yang berlaku seperti Standar Nasional Indonesia (SNI dan National Fire Protection Association (NFPA yang harus dipakai dalam perencanaan siste sprinkler otomatis pada sebuah gedung.

  15. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, M., E-mail: mariafernandez@iiag.csic.es; Gómez-Rey, M.X., E-mail: mxgomez@iiag.csic.es; González-Prieto, S.J., E-mail: serafin@iiag.csic.es

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ{sup 15}N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH{sub 4}{sup +}–N and NO{sub 3}{sup −}–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ{sup 15}N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years

  16. Automatic fire hydrant valve development

    International Nuclear Information System (INIS)

    Drumheller, K.

    1976-01-01

    The development of a remotely-controlled valve to operate a fire hydrant is described. Assembled from off-the-shelf components, the prototype illustrates that a valve light enough to be handled by one man is possible. However, it does not have the ruggedness or reliability needed for actual fire-fighting operations. Preliminary testing by City of Tacoma fire department personnel indicates that the valve may indeed contribute significantly to fire-fighting efficiency

  17. Browns Ferry fire

    International Nuclear Information System (INIS)

    Harkleroad, J.R.

    1983-01-01

    A synopsis of the March 22, 1975 fire at Browns Ferry Nuclear Plant is discussed. Emphasis is placed on events prior to and during the fire. How the fire started, fire fighting activities, fire and smoke development, and restoration activities are discussed

  18. Experimental ship fire measurements with simulated radioactive cargo

    International Nuclear Information System (INIS)

    Koski, J.A.; Arviso, M.; Bobbe, J.G.; Wix, S.D.; Cole, J.K.; Hohnstreiter, G.F.; Beene, D.E. Jr.

    1997-10-01

    Results from a series of eight test fires ranging in size from 2.2 to 18.8 MW conducted aboard the Coast Guard fire test ship Mayo Lykes at Mobile, Alabama are presented and discussed. Tests aboard the break bulk type cargo ship consisted of heptane spray fires simulating engine room and galley fires, wood crib fires simulating cargo hold fires, and pool fires staged for comparison to land based regulatory fire results. Primary instrumentation for the tests consisted of two pipe calorimeters that simulated a typical package shape for radioactive materials packages

  19. Experimental ship fire measurements with simulated radioactive cargo

    International Nuclear Information System (INIS)

    Koski, J.A.; Arvisol, M.; Bobbe, J.G.; Wix, S.D.; Cole, J.K.; Hohnstreiter, G.F.; Wix, S.D.; Beene, D.E.; Keane, M.P.

    1998-01-01

    Results from a series of eight test fires ranging in size from 2.2 to 18.8 MW conducted aboard the Coast Guard fire test ship Mayo Lykes at Mobile, Alabama are presented and discussed. Tests aboard the break-bulk type cargo ship consisted of heptane spray fires simulating engine room and galley fires, wood crib fires simulating cargo hold fires, and pool fires staged for comparison to land-based regulatory fire results. Primary instrumentation for the tests consisted of two pipe calorimeters that simulated a typical package shape for radioactive materials packages. (authors)

  20. Normalization of water flow rate for external fire fighting of the buildings in settlements with zone water supply

    Directory of Open Access Journals (Sweden)

    Deryushev Leonid Georgievich

    2014-12-01

    Full Text Available In the article the requirements for fire safety assurance are justified for the objects, in which water is supplied with account for serial and parallel area zoning. In the process of zoning the district is segregated into such parts, for which head rate in any point of selection of water from network will not exceed 6 bar. In the current regulatory rules the requirements for the calculation of the costs of water points are stated, as well as in case of extinguishing fires at the sites with water-supply systems zones. It is recommended to analyze each zone of the system of water-supply separately, without interrelation with the common water feeders, water consumers and services of fire extinguishing. Such an approach to assign water discharge for fire extinguishing results in the decrease of fire safety of an object, deforms calculation technique of outside systems of water-supply of the similar-type objects located in different parts of the terrain. Taking the number of fires and water consumption for fire suppression by the number of residents in each zone, we thus underestimate the capacity of the pipeline system. It is offered to make changes in Norms and Standards in force on fire safety of settlements. The recommendations on regulation of the number of fires and water flow for fire fighting in residential objects with zoned systems of water-supply are formulated.

  1. Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.

    Science.gov (United States)

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2011-11-01

    The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.

  2. Fire simulation of the canister transfer and installation vehicle

    International Nuclear Information System (INIS)

    Peltokorpi, L.

    2012-12-01

    A pyrolysis model of the canister transfer and installation vehicle was developed and vehicle fires in the final disposal tunnel and in the central tunnel were simulated using the fire simulation program FDS (Fire Dynamics Simulator). For comparison, same vehicle fire was also simulated at conditions in which the fire remained as a fuel controlled during the whole simulation. The purpose of the fire simulations was to simulate the fire behaviour realistically taking into account for example the limitations coming from the lack of oxygen. The material parameters for the rubber were defined and the simulation models for the tyres developed by simulating the fire test of a front wheel loader rubber tyre done by SP Technical Research Institute of Sweden. In these simulations the most important phenomena were successfully brought out but the timing of the phenomena was difficult. The final values for the rubber material parameters were chosen so that the simulated fire behaviour was at least as intense as the measured one. In the vehicle fire simulations a hydraulic oil or diesel leak causing a pool fire size of 2 MW and 2 m 2 was assumed. The pool fire was assumed to be located under the tyres of the SPMT (Self Propelled Modular Transporters) transporter. In each of the vehicle fire simulations only the tyres of the SPMT transporter were observed to be burning whereas the tyres of the trailer remained untouched. In the fuel controlled fire the maximum power was slightly under 10 MW which was reached in about 18 minutes. In the final disposal tunnel the growth of the fire was limited due to the lack of oxygen and the relatively fast air flows existing in the tunnel. Fast air flows caused the flame spreading to be limited to the certain directions. In the final disposal tunnel fire the maximum power was slightly over 7 MW which was reached about 8 minutes after the ignition. In the central tunnel there was no shortage of oxygen but the spread of the fire was limited due

  3. Models for fleet sizing and localization of fire-fighting for attendance to accidents in platforms; Modelos para dimensionamento de frota e localizacao de embarcacoes fire-fighting para atendimento a acidentes em plataformas

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Afonso Celso; Brinati, Marco Antonio [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1996-12-31

    The increasing degree of use of maritime resources claims the establishment of a modern protection and assistance system to prevent and control maritime accidents. The usual safety systems for maritime accidents, generally, have the aid of specialized fleets in the attendance. This work presents models to determine the location and the profile of a specialized fleet for fire fighting, in order to guarantee the adequate attendance to expected accidents in a marine oil field. To modelling the problem, two means of analysis are considered: a deterministic model of integer programming and a probabilistic model. Considering the geographic location and the size of platforms as input data, the deterministic model establishes, among the available vessels, the fleet profile and location in order to minimize the fleet cost assuring the attendance to each platform within the standard requirements. The probabilistic model starts from a given solution for the fleet profile and vessel location and, by means of estimating the utilization factors of each vessel, proposes possible improvements in the fleet location, in order to maximize the probability of attending the accidents. A simulation model was elaborated to validate the results from the probabilistic model. The obtained results indicate the usefulness of every model, not only to a rational location problem solution, but also, for the analysis of the operational fleet performance. (author) 11 refs., 4 figs., 4 tabs.

  4. Simulation of forced-ventilation fires

    International Nuclear Information System (INIS)

    Krause, F.R.; Gregory, W.S.

    1982-01-01

    Fire hazard descriptions and compartment fire models are assessed as input to airflow network analysis methods that simulate the exposure of ventilation system components to fire products. The assessment considered the availability of hazard descriptions and models for predicting simultaneous heat and mass release at special compartment openings that are characterized by a one-dimensional and controllable volumetric flux

  5. Fire safety study of Dodewaard and Borssele nuclear power plants

    International Nuclear Information System (INIS)

    1988-03-01

    From the nuclear and conventional fire safety audits of both Dutch nuclear power plants performed under supervision of the Nuclear Safety Inspectorate and the Inspectorate for the Fire Services it turns out that the fire safety is sufficient however amenable for improvement. Besides a detailed description of the method of examination, the study 'Fire Safety' contains the results of the audit and 14 respectively 15 recommendations for improvement of the fire safety in Dodewaard and Borssele. The suggested recommendations which are applicable to both power plants are the following: fire fighting training for operators and guards, a complete emergency ventilation system of the control room, increase in the number of detectors and alarms, an increase in the quantity of water available for high-pressure fire fighting, improvement of fire barriers between several redundancies of nuclear safety systems, an investigation and possible improvement of the heat and radiation protection offered by presently used fire fighting suits. For Dodewaard a closed emergency staircase in the reactor building (secondary containment) is deemed necessary for personnel emergency escape routes and continued fire fighting if required

  6. Fire precautions at petroleum refineries and bulk storage installations

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Topics covered in this Code of Practice include petroleum products and combustion, site evaluation for fire defence, and fire prevention, protection, detection, systems, fighting, and fire fighting facilities in storage areas. Appendices cover legal requirements and enforcement arrangements, application rates for fire water and foam, codes of practice, flammable limits of petroleum compounds, flash points and spontaneous ignition temperatures and classification of fires. (UK)

  7. Fighting forest fires in Brazil

    Science.gov (United States)

    José Carlos Mendes de Morais

    2013-01-01

    Fire has been used in Brazil for many years, but the increased use of this tool, combined with natural events and the presence of large forest and agricultural areas, has led to a significant jump in the number of forest fires, most of them caused by accident. To optimize existing resources and to cope with growing demand, action levels were adopted according to the...

  8. Turbine oil fires in the Moabit and Reuter power stations

    International Nuclear Information System (INIS)

    Kissmann, G.

    1977-01-01

    The article describes the fire resulting from turbine oil ignition after a manometer line break, the fire fighting measures, the amount of damage, and secondary damage. Conclusions are drawn for the prevention and fighting of oil fires. (ORU) [de

  9. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  10. PG BN 1600 sodium fire protection system

    International Nuclear Information System (INIS)

    Bar, J.; Urbancik, L.

    1978-12-01

    A design was developed of a fire protection system for steam generator of a 1600 MW sodium cooled fast reactor (BN-1600). Chemical reactions are described of liquid sodium with atmospheric components and solid materials coming into contact with sodium in its release from the steam generator, and in safeguarding protection against sodium fires. The requirements for the purity of nitrogen as an atmosphere inert to liquid sodium are given. Characteristics and basic parameters are shown of level and spray fires, elementary terms are explained concerning the properties of aerosols formed during fires, the methods and means of release signalling and fire alarm are described as are fire precautions using fire-fighting equipment, modifying the support tank and the cell bottom and building sewage pits. The design of the system comprises an alarm system for liquid sodium using point and line electric contact sensors and flame photometer based aerosol sensors as well as a fire-fighting system based on the system of channelling liquid sodium into emergency discharge tanks filled with an inert gas, a set of fire extinguishers and other fire fighting material, and measures for the elimination of sodium fire consequences. (J.B.)

  11. Simulating spatial and temporally related fire weather

    Science.gov (United States)

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  12. Fighting fires... with science

    CERN Document Server

    Anaïs Schaeffer

    2016-01-01

    CERN firefighters are working with a research centre in the United States to develop more effective firefighting techniques.   One of the UL FSRI’s model houses is set alight... in the interest of science. (Photo: ©UL FSRI) For around ten years, the Underwriters Laboratories Firefighter Safety Research Institute (UL FSRI) has been carrying out scientific research on the various techniques used by firefighters in the United States and around the world. This research has focused on evaluating the effectiveness and safety of current practices worldwide with the aim of developing even better techniques. In many cases the research has shown that a combination of techniques gives the best results. The interiors of the model houses are fully furnished. (Photo: ©UL FSRI) Art Arnalich, who has worked with fire brigades in the United States and Europe and is now a member of CERN’s Fire Brigade, has actively participated in this research since 2013. His knowledge of ...

  13. Central display system of figures in fire alarm

    International Nuclear Information System (INIS)

    Fang Shaohong; Zhu Zicheng; Zhu Liqun; Ren Yi; Yu Hongmei; Du Chengbao; Xie Guoxue

    1997-01-01

    A new type of 'central display system of figures in fire alarm' includes two parts: (1) software package of drawing picture; (2) real time processing and operate system (POS). Main function of the software package is to draw floor plane figures, fire-fighting facility signs and room numbers; and then all pictures are used in POS. Main functions of POS are to process fire alarm, faults and activation of fire fighting control facility, save and print reports, look over floor plane figures, look over concrete condition of fire fighting facilities, and to show appropriate prompt according to different case. This system realizes many functions, such as, control with mouse, operation with push-button, menu operation interface, flip windows to prompt, and chinese character. It have won acclaim for its amazing interface, its convenience to operate, its reliability and flexibility

  14. Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters

    Energy Technology Data Exchange (ETDEWEB)

    Denise Baclawski

    2010-03-08

    The University of Nevada, Reno Fire Science Academy (FSA) applied for grant funding to develop and deliver programs for municipal, rural, and volunteer firefighters. The FSA specializes in preparing responders for a variety of emergency events, including flammable liquid fires resulting from accidents, intentional acts, or natural disasters. Live fire training on full scale burnable props is the hallmark of FSA training, allowing responders to practice critical skills in a realistic, yet safe environment. Unfortunately, flammable liquid live fire training is often not accessible to municipal, rural, or volunteer firefighters due to limited department training budgets, even though most department personnel will be exposed to flammable liquid fire incidents during the course of their careers. In response to this training need, the FSA developed a course during the first year of the grant (Year One), Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters. During the three years of the grant, a total of 2,029 emergency responders received this training. In Year Three, two new courses, a train-the-trainer for Responding to Terrorist Incidents in Your Community and Management of Large-Scale Disasters for Public Officials were developed and pilot tested during the Real-World Disaster Management Conference held at the FSA in June of 2007. Two research projects were conducted during Years Two and Three. The first, conducted over a two year period, evaluated student surveys regarding the value of the flammable liquids training received. The second was a needs assessment conducted for rural Nevada. Both projects provided important feedback and a basis for curricula development and improvements.

  15. CERN Fire Brigade rescue simulation

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The CERN Fire Brigade is made up of experienced firemen from all of the 20 Member States. In these images they are seen at a 'Discovery Monday' held at the Microcosm exhibition. Here visitors learn how the Fire Brigade deal with various situations, including a simulated cave rescue performed by the Hazardous Environments Response Team.

  16. Fire fighting in a radionuclide laboratory

    International Nuclear Information System (INIS)

    Wenzel, H.

    1991-01-01

    A fire-brigade was called to a laboratory which held a handling licence for the radionuclides C-14, T, P-32, Se-75, Mo-99, and S-35. The fire-brigade was unaware of a release of radionuclides. Therefore they used respiratory equipment, and all persons present were subsequently examined for contamination. (DG) [de

  17. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  18. Fire protection

    International Nuclear Information System (INIS)

    Janetzky, E.

    1980-01-01

    Safety and fire prevention measurements have to be treated like the activities developing, planning, construction and erection. Therefore it is necessary that these measurements have to be integrated into the activities mentioned above at an early stage in order to guarantee their effectiveness. With regard to fire accidents the statistics of the insurance companies concerned show that the damage caused increased in the last years mainly due to high concentration of material. Organization of fire prevention and fire fighting, reasons of fire break out, characteristics and behaviour of fire, smoke and fire detection, smoke and heat venting, fire extinguishers (portable and stationary), construction material in presence of fire, respiratory protection etc. will be discussed. (orig./RW)

  19. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Lim, Ho Gon

    2015-01-01

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time

  20. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time.

  1. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  2. Fighting with Fires: Decentralize Control to Increase Responsiveness

    National Research Council Canada - National Science Library

    Johnson, Robert

    2001-01-01

    .... The examination of theory explains how the Army's centralized control of fires to facilitate massing of fires, coupled with a poorly developed digital fire control system are the root causes of failure...

  3. Improvement of fire fighting means for NPPs

    International Nuclear Information System (INIS)

    Viktorov, V.V.

    1993-01-01

    The problems dealing with testing of flame dampers for NPP ventilation systems are considered. The characteristics of the Darmatt fire-resistant material developed for protection of cable lines and equipment against fire effects are given

  4. Environmental contamination by perfluorinated carboxylates and sulfonates following the use of fire-fighting foam in Tomakomai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Nobuyoshi; Taniyasu, Sachi; Horii, Yuichi; Hanari, Nobuyasu; Okazawa, Tsuyoshi [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Kannan, K. [Wadsworth Center, New York State Department of Health, Albany, NY (United States); Petrick, G. [Kiel Univ. (Germany). Inst. for Marine Research

    2004-09-15

    On September 26, 2003, a magnitude (M) 8.3 offshore earthquake struck Hokkaido, Japan. The earthquake and ensuing tsunami injured hundreds of people and resulted in significant damage to port and coastal communities. Immediately following the earthquake, a major fire occurred at an oil storage facility of a refinery (Idematsu Kosan Company Ltd) located in the west part of Tomakomai, a Pacific coast city in southern Hokkaido. Idemitsu Kosan Company is the second largest oil refinery in Japan, with a capacity of 140,000 barrels per day (bpd) in Tomakomai. Forty five of the 105 oil storage tanks were damaged following the earthquake and resulted in release of petroleum naphtha, which ignited accidentally. The first fire was reported immediately after the earthquake on 26 September 2003 and was extinguished after 7 hours. The second fire occurred on 28 September and lasted for 44 h. More than three hundred fireman and about one hundred fire engines were brought from several prefectures by air carriers to extinguish the fire. More than 130,000 L of fire fighting foams (FFF) was delivered to extinguish these fires and at least 40,000 L was used. Detailed information regarding the type of FFF used was not available, but aqueous film forming foams (AFFF) have been used in the control of fuel-related fires. Perfluorooctane sulfonate (PFOS) and related perfluorinated acids are a component of AFFF. The issue of environmental pollution by perfluorinated compounds (PFCs) including perfluorinated carboxylates and sulfonates has received much attention in the last four years. PFCs possess unique physicochemical properties and exhibit a wide range of volatility/ water solubility depending on the functional group. Environmental dynamics of PFCs is complex due to their unique characteristics and to their release from multitude of sources with various compositions. Previous studies have reported on environmental contamination by PFCs due to accidental release of AFFF. Large amount of

  5. CFES--California Fire Economics Simulator: A Computerized System for Wildland Fire Protection Planning

    Science.gov (United States)

    Jeremy S. Fried; J. Keith Gilless; Robert E. Martin

    1987-01-01

    The University of California's Department of Forestry and Resource Management, under contract with the California Department of Forestry and Fire Protection, has developed and released the first version of the California Fire Economics Simulator (CFES). The current release is adapted from the Initial Action Assessment component of the USFS's National Fire...

  6. A method for ensemble wildland fire simulation

    Science.gov (United States)

    Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain

    2011-01-01

    An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...

  7. Cascading effects of fire exclusion in the Rocky Mountain ecosystems: a literature review

    Science.gov (United States)

    Robert E. Keane; Kevin C. Ryan; Tom T. Veblen; Craig D. Allen; Jessie Logan; Brad Hawkes

    2002-01-01

    The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent...

  8. A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery

    Directory of Open Access Journals (Sweden)

    Xiangsheng Kong

    2009-02-01

    Full Text Available The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m2 and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m2, only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m2, the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection.

  9. Cost of two fire

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.

    2001-01-01

    The problem of the protection of nuclear sites in connection with the fires in summer of 2000 near two greatest nuclear sites: the Pacific Northwest National Laboratory located on the site of Hanford Nuclear Center, and Los Alamos National Laboratory is considered. Both fires occur beyond the Laboratories. Undertaken urgent procedures for fire fighting and recovery of the objects are characterized [ru

  10. Fire simulation of pool fire with effects of a ventilation controlled compartment by using a fire model, CFAST

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Shirai, Koji; Eguchi, Yuzuru; Matsuyama, Ken

    2015-01-01

    The basic performance for numerical analysis of fire parameters in a compartment by using a zone model, CFAST (Consolidated model of Fire growth And Smoke Transport), which has been widely applied for fire protection design of buildings, was examined. Special attentions were paid to the effects of compartment geometry under poor ventilation conditions with mechanical systems. The simulations were carried out under conditions corresponding to previous experiments, in which fire parameters have been precisely measured. The comparison between numerical simulations and experiments indicated that the CFAST principally has a capability to represent the time-histories of air-temperature in the high air-temperature layer generated in the vicinity of ceiling of the compartment, by applying the proper boundary conditions. These results suggest that numerical analysis for time-series of air temperature and smoke concentration in compartments must be a powerful tool for discussion on validity of fire protection schemes. (author)

  11. French research on a general approach to sodium fires

    International Nuclear Information System (INIS)

    Malet, JC.

    1989-01-01

    This document gives a general idea of how one may deal with the safety of an installation in case of a sodium leak generating either a sodium pool fire, or a sodium spray fire, or a combined sodium fire, and in case of a sodium leak either with or without fire and/or any aggravating phenomenon such as aerosols or sodium-concrete reactions, for example. This paper describes the means used to reduce fire consequences. These means are either design codes used for dimensioning premises with their ventilation system or for defining a course of action to be taken in case of fire, or equipment and components (fire fighting equipment, detection devices, etc.) used to prevent or to fight fires, or finally, to repair the installation after a fire, the latter operation including the processing of the residues. (author)

  12. Combustion of metals, prevention and fire fighting

    International Nuclear Information System (INIS)

    Mellottee, H.

    1991-01-01

    The paper reviews the knowledge on metal combustion. Few works are devoted on metals such as magnesium or titanium. On the contrary liquid metals used as coolants, especially sodium, are much more studied. Results obtained on pool fires and spray fires are briefly given for global safety analysis of LMFBR. 11 refs

  13. 46 CFR 132.120 - Fire pumps.

    Science.gov (United States)

    2010-10-01

    ... deck. (g) No branch line may be directly connected to the fire main except for fighting fires or for... main system, it must lead from a discharge manifold near the fire pump. (i) The total cross-sectional... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 132.120 Section 132.120 Shipping COAST GUARD...

  14. Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II

    Science.gov (United States)

    Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard

    2009-01-01

    Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...

  15. Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in the Missouri Ozarks

    Science.gov (United States)

    Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson

    2008-01-01

    We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...

  16. 46 CFR 27.209 - What are the requirements for training crews to respond to fires?

    Science.gov (United States)

    2010-10-01

    ... are familiar with their fire-fighting duties, and, specifically, with the following contingencies: (1) Fighting a fire in the engine room and elsewhere on board the vessel, including how to— (i) Operate all of the fire-extinguishing equipment on board the vessel; (ii) Stop any mechanical ventilation system for...

  17. Assessing accuracy of point fire intervals across landscapes with simulation modelling

    Science.gov (United States)

    Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall

    2007-01-01

    We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...

  18. Fire Safety. Managing School Facilities, Guide 6.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  19. Analysis of fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    Hosser, D.; Schneider, U.

    1982-01-01

    Regulations and test specifications for fire prevention in nuclear power plants are presented as well as the fire protection measures in a newly constructed nuclear power plant. Although the emphasis is placed differently, all rules are based on the following single measures: Fire prevention, fire detection, fire fighting, fire checking, attack, flight, and rescue, organisational measures. (orig./GL) [de

  20. Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Filippi

    2018-06-01

    Full Text Available The Aullene fire devastated more than 3000 ha of Mediterranean maquis and pine forest in July 2009. The simulation of combustion processes, as well as atmospheric dynamics represents a challenge for such scenarios because of the various involved scales, from the scale of the individual flames to the larger regional scale. A coupled approach between the Meso-NH (Meso-scale Non-Hydrostatic atmospheric model running in LES (Large Eddy Simulation mode and the ForeFire fire spread model is proposed for predicting fine- to large-scale effects of this extreme wildfire, showing that such simulation is possible in a reasonable time using current supercomputers. The coupling involves the surface wind to drive the fire, while heat from combustion and water vapor fluxes are injected into the atmosphere at each atmospheric time step. To be representative of the phenomenon, a sub-meter resolution was used for the simulation of the fire front, while atmospheric simulations were performed with nested grids from 2400-m to 50-m resolution. Simulations were run with or without feedback from the fire to the atmospheric model, or without coupling from the atmosphere to the fire. In the two-way mode, the burnt area was reproduced with a good degree of realism at the local scale, where an acceleration in the valley wind and over sloping terrain pushed the fire line to locations in accordance with fire passing point observations. At the regional scale, the simulated fire plume compares well with the satellite image. The study explores the strong fire-atmosphere interactions leading to intense convective updrafts extending above the boundary layer, significant downdrafts behind the fire line in the upper plume, and horizontal wind speeds feeding strong inflow into the base of the convective updrafts. The fire-induced dynamics is induced by strong near-surface sensible heat fluxes reaching maximum values of 240 kW m − 2 . The dynamical production of turbulent kinetic

  1. Specialists' meeting on sodium fires

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Kuznetsova, R.I.

    1989-01-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires

  2. Specialists' meeting on sodium fires

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Kuznetsova, R I [eds.

    1989-07-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires.

  3. Experimental determination of the shipboard fire environment for simulated radioactive material packages

    International Nuclear Information System (INIS)

    Koski, J.A.; Bobbe, J.G.; Arviso, M.

    1997-03-01

    A series of eight fire tests with simulated radioactive material shipping containers aboard the test ship Mayo Lykes, a break-bulk freighter, is described. The tests simulate three basic types of fires: engine room fires, cargo fires and open pool fires. Detailed results from the tests include temperatures, heat fluxes and air flows measured during the fires. The first examination of the results indicates that shipboard fires are not significantly different from fires encountered in land transport. 13 refs., 15 figs., 11 tabs

  4. Fire simulation of the canister transfer and installation vehicle; Kapselin siirto- ja asennusajoneuvon palosimulointi

    Energy Technology Data Exchange (ETDEWEB)

    Peltokorpi, L. [Fortum Power and Heat Oy, Espoo (Finland)

    2012-12-15

    A pyrolysis model of the canister transfer and installation vehicle was developed and vehicle fires in the final disposal tunnel and in the central tunnel were simulated using the fire simulation program FDS (Fire Dynamics Simulator). For comparison, same vehicle fire was also simulated at conditions in which the fire remained as a fuel controlled during the whole simulation. The purpose of the fire simulations was to simulate the fire behaviour realistically taking into account for example the limitations coming from the lack of oxygen. The material parameters for the rubber were defined and the simulation models for the tyres developed by simulating the fire test of a front wheel loader rubber tyre done by SP Technical Research Institute of Sweden. In these simulations the most important phenomena were successfully brought out but the timing of the phenomena was difficult. The final values for the rubber material parameters were chosen so that the simulated fire behaviour was at least as intense as the measured one. In the vehicle fire simulations a hydraulic oil or diesel leak causing a pool fire size of 2 MW and 2 m{sup 2} was assumed. The pool fire was assumed to be located under the tyres of the SPMT (Self Propelled Modular Transporters) transporter. In each of the vehicle fire simulations only the tyres of the SPMT transporter were observed to be burning whereas the tyres of the trailer remained untouched. In the fuel controlled fire the maximum power was slightly under 10 MW which was reached in about 18 minutes. In the final disposal tunnel the growth of the fire was limited due to the lack of oxygen and the relatively fast air flows existing in the tunnel. Fast air flows caused the flame spreading to be limited to the certain directions. In the final disposal tunnel fire the maximum power was slightly over 7 MW which was reached about 8 minutes after the ignition. In the central tunnel there was no shortage of oxygen but the spread of the fire was limited

  5. Review of the IAEA fire symposium

    International Nuclear Information System (INIS)

    Fischer, J.

    1991-01-01

    The IAEA Symposium on Fire Protection and Fire Fighting in Nuclear Installations covered a large scope in the field in order to provide the opportunity for screening all aspects of present technology, research and development, standardization, licensing and fire fighting practices. Although application to any nuclear facility was within its scope, the majority of presentations concerned nuclear power plants. The approach to fire protection is the classical one in all plant designs: reduction of fire loads, appropriate zoning, manual and automatic extinguishment. However, methods of analysis and consequence prediction are changing. Computerized fire modelling is becoming a powerful tool in this area; probabilistic analytical methods are being improved, though they are not yet used widely for fire hazards. Differences in opinion were revealed in the definition of barrier resistance, the prediction of cable insulation behaviour and the optimal design of extinguishing systems. Greater international co-operation, especially in these areas, may be a good way of optimizing results with limited resources. Discussion contributions showed interest in exchange of experience in more specialized topics and encouraged the IAEA to increase its activity in the area of fire protection. (orig.)

  6. You Do Not Talk about Fight Club if You Do Not Notice Fight Club: Inattentional Blindness for a Simulated Real-World Assault

    Directory of Open Access Journals (Sweden)

    Christopher F Chabris

    2011-02-01

    Full Text Available Inattentional blindness—the failure to see visible and otherwise salient events when one is paying attention to something else—has been proposed as an explanation for various real-world events. In one such event, a Boston police officer chasing a suspect ran past a brutal assault and was prosecuted for perjury when he claimed not to have seen it. However, there have been no experimental studies of inattentional blindness in real-world conditions. We simulated the Boston incident by having subjects run after a confederate along a route near which three other confederates staged a fight. At night only 35% of subjects noticed the fight; during the day 56% noticed. We manipulated the attentional load on the subjects and found that increasing the load significantly decreased noticing. These results provide evidence that inattentional blindness can occur during real-world situations, including the Boston case.

  7. You do not talk about Fight Club if you do not notice Fight Club: Inattentional blindness for a simulated real-world assault.

    Science.gov (United States)

    Chabris, Christopher F; Weinberger, Adam; Fontaine, Matthew; Simons, Daniel J

    2011-01-01

    Inattentional blindness-the failure to see visible and otherwise salient events when one is paying attention to something else-has been proposed as an explanation for various real-world events. In one such event, a Boston police officer chasing a suspect ran past a brutal assault and was prosecuted for perjury when he claimed not to have seen it. However, there have been no experimental studies of inattentional blindness in real-world conditions. We simulated the Boston incident by having subjects run after a confederate along a route near which three other confederates staged a fight. At night only 35% of subjects noticed the fight; during the day 56% noticed. We manipulated the attentional load on the subjects and found that increasing the load significantly decreased noticing. These results provide evidence that inattentional blindness can occur during real-world situations, including the Boston case.

  8. A fire management simulation model using stochastic arrival times

    Science.gov (United States)

    Eric L. Smith

    1987-01-01

    Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...

  9. Inertisation and mine fire simulation using computer software

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Gillies; Hsin Wei Wu [Gillies Wu Mining Technology (Australia)

    2007-05-15

    Inertisation is a technique used to enhance the safety of underground coal mine areas either to avoid the potential for a combustion event or to stabilise a situation after an ignition, fire or heating. The primary objective of the study was to review coal mine inertisation in Australia, in particular, to focus on the use of the Polish mine fire simulation software 'VENTGRAPH' to gain better understanding of how inertisation (GAG, Mineshield, Nitrogen Pressure Swing Adsorption (Floxal) and Tomlinson Boiler) units interact with the complex ventilation behaviour underground during a substantial fire. Most emphasis has been given to understanding the behaviour of the GAG unit because of its high capacity output. Critical aspects targeted for examination include location of the unit for high priority fire positions, size of borehole or pipe range required, time required for inertisation output to interact with and extinguish a fire, effects of seam gases on fire behaviour with inertisation present and main fan management. The project aims to increase understanding of behaviour of mine fires in modern mine ventilation networks with the addition of inert gas streams. A second aim of the project has been to take findings from the simulation exercises and develop inertisation related modifications to the program in conjunction with the Polish program authors. Exercises based on Oaky North and Oaky No 1 mines have involved 'evaluation or auditing' of ability to deliver inert gases generated from GAG units to high priority underground fire locations. These exercises have been built around modelling of fire scenarios across the mine layouts. The fire simulation exercises at Oaky North and Oaky No 1 mines demonstrated that it is possible to efficiently evaluate possible inertisation strategies appropriate to a complex mine layout extracting a gassy seam and determine which approach strategy (if any) can be used to stabilise a mine in a timely fashion.

  10. Experimental Benchmarking of Fire Modeling Simulations. Final Report

    International Nuclear Information System (INIS)

    Greiner, Miles; Lopez, Carlos

    2003-01-01

    A series of large-scale fire tests were performed at Sandia National Laboratories to simulate a nuclear waste transport package under severe accident conditions. The test data were used to benchmark and adjust the Container Analysis Fire Environment (CAFE) computer code. CAFE is a computational fluid dynamics fire model that accurately calculates the heat transfer from a large fire to a massive engulfed transport package. CAFE will be used in transport package design studies and risk analyses

  11. FDS3 simulations of indoor hydrocarbon fires engulfing radioactive waste packages

    International Nuclear Information System (INIS)

    Bruecher, W.; Roewekamp, M.; Kunze, V.

    2004-01-01

    The thermal environment of a hypothetical large indoor hydrocarbon pool fire is more complex compared to outdoor fires and can be more severe for engulfed objects. In order to analyze potential thermal environments for interim storage of spent fuel casks or low-level radioactive waste packages engulfed in pool fires numerical simulations with the CFD fire code FDS3 were carried out for different storage configurations. In addition, data of indoor pool fire experiments were used to validate the model for this type of application. A series of pool fire experiments under different ventilation conditions and varied pool surface (1 m 2 - 4 m 2 ) inside a compartment of 3.6 m x 3.6 m x 5.7 m was conducted at iBMB (Institut fuer Baustoffe, Massivbau und Brandschutz) of Braunschweig University of Technology, Germany. The instrumentation included thermocouples, heatflux and pressure gauges, bi-directional flow probes and gas concentration measurements. A mock low-level waste drum equipped with outside and inside thermocouples was positioned as an additional heat sink near the fire source. Two of these experiments have recently been used for benchmarking a number of fire simulation codes within the International Collaborative Fire Model Project (ICFMP). FDS3 simulations by GRS of some of the above mentioned experiments will be presented showing the ability of the model to sufficiently well represent the fire environment in most cases. Further simulations were performed for hypothetical pool fire environments in interim storage facilities for German spent fuel transport and storage casks. The resulting temperature curves were then used for the thermomechanical analysis of the cask reaction performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung, see corresponding conference paper by Wieser et al.). The FDS3 pool fire simulations show that the fire environment is strongly influenced by the ventilation conditions and cooling effects depending on the number and

  12. Pre-fire planning for nuclear power plants

    International Nuclear Information System (INIS)

    Talbert, J.H.

    1980-01-01

    Regardless of the fire prevention measures which are taken, plant experience indicates that fires will occur in a nuclear power plant. When a fire occurs, the plant staff must handle the fire emergency. Pre-fire planning is a method of developing detailed fire attack plans and salvage operations to protect equipment from damage due to fire and fire fighting operations. This paper describes the purpose and use of a pre-fire plan to achieve these goals in nuclear power plants

  13. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    Science.gov (United States)

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  14. Optimization of investment economic in PCI using the methodology of benefits design in analysis of the spread of fires with FDS (Fire Dynamics Simulator) in areas of nuclear fire

    International Nuclear Information System (INIS)

    Salellas, J.

    2015-01-01

    Fire simulation analysis allows knowing the evolution and spread fire in areas of interest within a NPP such as control room, cable room and multi zone comportment among others. fires are a main concern regarding safety analysis of NPP. IDOM has the capability to carry out fire simulations, taken in to account smoke control, fire spread, toxicity levels, ventilation and all physical phenomena. As a result, appropriate fire protection measures can be assessed in each scenario. CFD tools applied to fire simulations can determine with higher resolution all damages caused during the fire. Furthermore, such tools can reduce costs due to a lower impact of design modifications. (Author)

  15. Kuwait summons more fire fighting teams

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-05

    Kuwait is calling in more muscle to help kill its wild wells. This paper reports on the latest action in Kuwait, the leasing of well control contracts to Abel Engineering/Well Control Inc., Houston, and China Petroleum Engineering Construction Co. (CPEC). Abel is the sixth North American well control company called to the scene, while CPEC is the first summoned from the East. In addition, the service responsible for combating well fires and blowouts in the U.S.S.R.'s Azerbaijan oil fields signed an agreement with Kuwait's government, apparently involving a contract valued at more than $100 million, to extinguish fires at 150 Kuwaiti wells, reported Eastern Bloc Energy, a publication of Eastern Bloc Research Ltd., Newton Kyme, U.K. More help likely is on the way.

  16. Probabilistic approach relative to fire scenarios study

    International Nuclear Information System (INIS)

    Chabot, Jean-Luc

    1998-01-01

    The main objective of this thesis is to develop a calculation method of the occurring probability of the fire scenarios (detection, setting of the intervention, extinction) taking into account the size and the impact of the fire on the surroundings. This new method is called 'hybrid simulation'. It includes in a unique modelling the processing of continuous and discrete phenomenon. Moreover, to correctly represent fire scenarios, it is necessary not to take only into account the 'continuous' growing of the fire itself but of also 'discrete' events like detection, fire fighting and extinction, human behaviour and related faults. For that purpose we couple a code modelling the physical aspects of the fire to Petri nets which is able to model these 'discrete' events, this coupling consists of driving the 'continuous' model by the occurring of the 'discrete' events. This new technique which can be used to cover 'discrete' and 'continuous' events in a single calculation represents a solution to dynamic reliability calculation problems, for which there is a continuously increasing demand for analysing reliability, availability of production and maintainability of complex industrial systems. (author) [fr

  17. 46 CFR 194.15-7 - Fire protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire protection. 194.15-7 Section 194.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE... § 194.15-7 Fire protection. (a) If a fixed or semiportable fire-fighting system is installed, it shall...

  18. Numerical simulation methods of fires in nuclear power plants

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L.

    1992-01-01

    Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)

  19. COMPUTATIONAL SIMULATION OF FIRE DEVELOPMENT INSIDE A TRADE CENTRE

    Directory of Open Access Journals (Sweden)

    Constantin LUPU

    2015-07-01

    Full Text Available Real scale fire experiments involve considerable costs compared to computational mathematical modelling. This paperwork is the result of such a virtual simulation of a fire occurred in a hypothetical wholesale warehouse comprising a large number of trade stands. The analysis starts from the ignition source located inside a trade stand towards the fire expansion over three groups of compartments, by highlighting the heat transfer, both in small spaces, as well as over large distances. In order to confirm the accuracy of the simulation, the obtained values are compared to the ones from the specialized literature.

  20. LNG pool fire simulation for domino effect analysis

    International Nuclear Information System (INIS)

    Masum Jujuly, Muhammad; Rahman, Aziz; Ahmed, Salim; Khan, Faisal

    2015-01-01

    A three-dimensional computational fluid dynamics (CFD) simulation of liquefied natural gas (LNG) pool fire has been performed using ANSYS CFX-14. The CFD model solves the fundamental governing equations of fluid dynamics, namely, the continuity, momentum and energy equations. Several built-in sub-models are used to capture the characteristics of pool fire. The Reynolds-averaged Navier–Stokes (RANS) equation for turbulence and the eddy-dissipation model for non-premixed combustion are used. For thermal radiation, the Monte Carlo (MC) radiation model is used with the Magnussen soot model. The CFD results are compared with a set of experimental data for validation; the results are consistent with experimental data. CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. - Highlights: • Simulation of pool fire using computational fluid dynamics (CFD) model. • Integration of CFD based pool fire model with domino effect. • Application of the integrated CFD based domino effect analysis

  1. The fire course and consequences to be drawn from the fire in the Browns Ferry nuclear power station

    International Nuclear Information System (INIS)

    Hoffmeister, N.

    1977-01-01

    After a short description of the fire course and the fire fighting measures during the cable fire at Browns Ferry nuclear power station, the effects on the safety system are given in chronological order, and consequences are drawn for a general fire protection programme for nuclear power plants. In this context, the licensing guideline of the NRC for fire protection in nuclear power plants is mentioned, which took particular account of the consequences to be drawn from the Browns Ferry fire. (ORU) [de

  2. Simulating wall and corner fire tests on wood products with the OSU room fire model

    Science.gov (United States)

    H. C. Tran

    1994-01-01

    This work demonstrates the complexity of modeling wall and corner fires in a compartment. The model chosen for this purpose is the Ohio State University (OSU) room fire model. This model was designed to simulate fire growth on walls in a compartment and therefore lends itself to direct comparison with standard room test results. The model input were bench-scale data...

  3. Training Fires on Indian Reservations in Idaho, Oregon, and Washington

    Science.gov (United States)

    The Federal Air Rules for Reservations (FARR) Open Burning Rule allows Fire Protection Services to request permission from EPA to conduct an outdoor burn by qualified personnel to train firefighters on fire suppression and fire fighting techniques.

  4. Fire and explosion security in the petroleum sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference has 12 presentations on topics regarding fire fighting, explosions and development scenarios, safety and security aspects, management of safety issues and measures and preparedness. Some accidents and fires are discussed. Some important problems with LNG with respects to plants, transport, fires and risk assessment are presented.

  5. Training of fire protection personnel in nuclear power plants

    International Nuclear Information System (INIS)

    Blaser, W.

    1980-01-01

    Training of fire protection personnel in nuclear power plants is divided up in three categories: training of fire protection commissioners which is mostly carried out externally; training of fire fighting personnel in the form of basic and repeated training usually by the fire protection commissioner; training of other employers with regard to behaviour in case of fire and during work involving a fire hazard. (orig.) [de

  6. Methods for Prediction of Temperature Distribution in Flashover Caused by Backdraft Fire

    Directory of Open Access Journals (Sweden)

    Guowei Zhang

    2014-01-01

    Full Text Available Accurately predicting temperature distribution in flashover fire is a key issue for evacuation and fire-fighting. Now many good flashover fire experiments have be conducted, but most of these experiments are proceeded in enclosure with fixed openings; researches on fire development and temperature distribution in flashover caused by backdraft fire did not receive enough attention. In order to study flashover phenomenon caused by backdraft fire, a full-scale fire experiment was conducted in one abandoned office building. Process of fire development and temperature distribution in room and corridor were separately recorded during the experiment. The experiment shows that fire development in enclosure is closely affected by the room ventilation. Unlike existing temperature curves which have only one temperature peak, temperature in flashover caused by backdraft may have more than one peak value and that there is a linear relationship between maximum peak temperature and distance away from fire compartment. Based on BFD curve and experimental data, mathematical models are proposed to predict temperature curve in flashover fire caused by backdraft at last. These conclusions and experiment data obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design.

  7. Experimental measurement of a shipboard fire environment with simulated radioactive materials packages

    International Nuclear Information System (INIS)

    Koski, J.A.; Wix, S.D.

    1996-01-01

    Results from a series of eight test fires ranging in size from 2.2 to 18.8 MW conducted aboard the Coast Guard fire test ship Mayo Lykes at Mobile, Alabama are presented and discussed. Tests aboard the break-bulk type cargo ship consisted of heptane spray fires simulating engine room and galley fires, wood crib fires simulating cargo hold fires, and pool fires staged for comparison to land-based regulatory fire results. Primary instrumentation for the tests consisted of two pipe calorimeters that simulated a typical package shape for radioactive materials packages. The calorimeters were both located adjacent to the fires and on the opposite side of the cargo hold bulkhead nearest the fire. The calorimeters were constructed from 1.5 m length sections of nominal 2 foot diameter schedule 60 steel pipe. Type K thermocouples were attached at 12 locations on the circumference and ends of the calorimeter. Fire heat fluxes to the calorimeter surfaces were estimated with the use of the Sandia SODDIT inverse heat conduction code. Experimental results from all types of tests are discussed, and some comparisons are made between the environments found on the ship and those found in land-based pool fire tests

  8. Fire and the Design of Educational Buildings. Building Bulletin 7. Sixth Edition.

    Science.gov (United States)

    Department of Education and Science, London (England).

    This bulletin offers guidance on English school premises regulations applying to safety protection against fires in the following general areas: means of escape in case of fire; precautionary measures to prevent fire; fire warning systems and fire fighting; fire spreading speed; structures and materials resistant to fires; and damage control. It…

  9. Global vegetation-fire pattern under different land use and climate conditions

    Science.gov (United States)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from

  10. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Directory of Open Access Journals (Sweden)

    Guilin Zheng

    2011-03-01

    Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  11. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    Science.gov (United States)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  12. Simulation of quaking aspen potential fire behavior in Northern Utah, USA

    Science.gov (United States)

    R. Justin DeRose; A. Joshua Leffler

    2014-01-01

    Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and...

  13. New tendencies in wildland fire simulation for understanding fire phenomena: An overview of the WFDS system capabilities in Mediterranean ecosystems

    Science.gov (United States)

    Pastor, E.; Tarragó, D.; Planas, E.

    2012-04-01

    Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.

  14. Real-time photorealistic stereoscopic rendering of fire

    Science.gov (United States)

    Rose, Benjamin M.; McAllister, David F.

    2007-02-01

    We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.

  15. Short- and medium-term effects of three fire fighting chemicals on the properties of a burnt soil

    International Nuclear Information System (INIS)

    Couto-Vazquez, A.; Gonzalez-Prieto, S.J.

    2006-01-01

    The impact of three fire fighting chemicals (FFC) on 11 chemical soil properties and on soil recovery (0-2 cm depth) was evaluated 1, 30, 90 and 365 days after a prescribed fire. Five treatments were considered: unburnt soil (United States) and burnt soil with 2 l m -2 of water alone (BS) or mixed with the foaming agent Auxquimica RFC-88 at 1% (BS + Fo), Firesorb at 1.5% (BS + Fi) and FR Cross ammonium polyphosphate at 20% (BS + Ap). At t = 1 day, soil pH increases in the order US 15 N decreased in all burnt soils (significatively in BS + Ap) due to the inputs of 15 N depleted ashes from leguminous vegetation. Compared with US, soil δ 15 N increased significantly in all burnt plots between t = 90 days (30 days in BS + Ap) and t = 365 days, suggesting a medium-term fire-triggered increment of N outputs ( 15 N depleted). As is habitually the case, there was a transient post-fire increase of NH 4 + -N levels (significative for BS + FFC plots) that lasted for 30 (BS, BS + Fo and BS + Fi) to 90 days (BS + Ap). The high initial NH 4 + -N levels in BS + Ap (200x that of US; 9-18x those of BS, BS + Fo and BS + Fi), and its persistence can delay the post-fire vegetation recovery due to the toxicity of NH 4 + to seeds and seedlings. NO 3 -N levels changed significantly only in BS + Ap between t = 30 and t = 90 days due to the nitrification of its large NH 4 + -N pool. Except in BS + Ap, whose soil P levels were 70-140x (t = 1 days) and 10-20x (t = 365 days) higher than in the other treatments, available P content in BS and BS + FFC was not significatively higher than in US. The concentrations of available cations in BS and BS + FFC were higher (not always significatively, except for K) than in US until t = 90 days, likely due to ashes- and FFC-derived cations. Contrarily to divalent cations, monovalent cations (more soluble and easily leached) decreased slowly until t = 90 days

  16. Fire spread simulation of a full scale cable tunnel

    International Nuclear Information System (INIS)

    Huhtanen, R.

    1999-11-01

    A fire simulation of a full scale tunnel was performed by using the commercial code EFFLUENT as the simulation platform. Estimation was made for fire spread on the stacked cable trays, possibility of fire spread to the cable trays on the opposite wall of the tunnel, detection time of smoke detectors in the smouldering phase and response of sprinkler heads in the flaming phase. According to the simulation, the rise of temperature in the smouldering phase is minimal, only of the order 1 deg C. The estimates of optical density of smoke show that normal smoke detectors should give an alarm within 2-4 minutes from the beginning of the smouldering phase, depending on the distance to the detector (in this case it was assumed that the thermal source connected to the smoke source was 50 W). The flow conditions at smoke detectors may be challenging, because the velocity magnitude is rather low at this phase. At 4 minutes the maximum velocity at the detectors is 0.12 m/s. During the flaming phase (beginning from 11 minutes) fire spreads on the stacked cable trays in an expected way, although the ignition criterion seems to perform poorly when ignition of new objects is considered. The Upper cable trays are forced to ignite by boundary condition definitions according to the experience found from ti full scale experiment and an earlier simulation. After 30 minutes the hot layer in the room becomes so hot that it speeds up the fire spread and the rate of heat release of burning objects. Further, the hot layer ignites the cable trays on the opposite wall of the tunnel after 45 minutes. It is estimated that the sprinkler heads would be activated at 20-22 minutes near the fire source and at 24-28 minutes little further from the fire source when fast sprinkler heads are used. The slow heads are activated between 26-32 minutes. (orig.)

  17. Plutonium fires; Incendies de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E.

    1959-06-23

    The author reports an information survey on accidents which occurred when handling plutonium. He first addresses accidents reported in documents. He indicates the circumstances and consequences of these accidents (explosion in glove boxes, fires of plutonium chips, plutonium fire followed by filter destruction, explosion during plutonium chip dissolution followed by chip fire). He describes hazards associated with plutonium fires: atmosphere and surface contamination, criticality. The author gives some advices to avoid plutonium fires. These advices concern electric installations, the use of flammable solvents, general cautions associated with plutonium handling, venting and filtration. He finally describes how to fight plutonium fires, and measures to be taken after the fire (staff contamination control, atmosphere control)

  18. Development of a Smart Residential Fire Protection System

    OpenAIRE

    Juhwan Oh; Zhongwei Jiang; Henry Panganiban

    2013-01-01

    Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual...

  19. Ecotoxicity of waste water from industrial fires fighting

    Science.gov (United States)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  20. Continental-scale simulation of burn probabilities, flame lengths, and fire size distribution for the United States

    Science.gov (United States)

    Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley

    2010-01-01

    Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...

  1. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  2. Numerical simulation of fire spread in terminal 2 of Belgrade airport

    Directory of Open Access Journals (Sweden)

    Stevanović Žarko

    2007-01-01

    Full Text Available This paper concern the results of software fire spread process prototype in terminal 2 of Belgrade airport using computational fluid dynamics. Numerical simulation of fire for the most critical fire scenario has been performed, primarily obtaining the space and time distribution of: velocity, pressure, temperature, and smoke concentration, assuming that HVAC systems have been switched off and all doors on the evacuation ways have been opened, just as the fire started. Also, two simulations have been compared of the smoke ventilation and not ventilation for the same scenario. Within the framework of the results presentation, isosurfaces of constant temperature (100 ºC and smoke concentration (4000 ppm are presented, based on the numerical simulation. Progression of these surfaces along the terminal 2 coincides to the experimental and experience evidence, forming the plume zone just above the fireplace, and spreading in the zone of underground ceiling and stairwell openings. .

  3. Study on aging management of fire protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Fang Huasong; Du Yu; Li Jianwen; Shi Haining; Tu Fengsheng

    2010-01-01

    Fire prevention, fire fighting and fire automatic alarms are three aspects which be included in fire protection system in nuclear power plants. The fire protection system can protect personnel, equipment etc in the fire, so their performance will have a direct influence on the safe operation in nuclear power plants. The disabled accidents caused by aging have happened continuously with the extension of time in the fire protection system, which is the major security risk during the running time in nuclear power plants. In view of the importance of fire protection system and the severity of aging problems, the aging are highly valued by the plant operators and related organizations. Though the feedback of operating experience in nuclear power plant, the impact of the fire-fighting equipment aging on system performance and reliability be assessed, the aging sensitive equipment be selected to carry out the aging analysis and to guide the management and maintenance to guarantee the healthy operation in life time of fire protection system in nuclear power plant. (authors)

  4. Calculations detailed progression of fire in NPP ALMARAZ through the code computational fire dynamics SIMULATOR

    International Nuclear Information System (INIS)

    Villar Sanchez, T.

    2012-01-01

    (FDS) is an advanced computational model of calculation of simulation of fire that numerically solves the Navier-Stokes equations in each cell of the mesh in each interval of time, having capacity to calculate accurately all those parameters of fire to NUREG-1805 has a limited capacity. The objective of the analysis is to compare the results obtained with the FDS with those obtained from spreadsheets of NUREG-1805 and deal widespread and realistic study of the propagation of a fire in different areas of NPP Almaraz.

  5. Methods and means for reducing pressure in systems for fire fighting and water spraying in mines

    Energy Technology Data Exchange (ETDEWEB)

    Kozlyuk, A I; Grin' , G V; Yushchenko, Yu N

    1986-01-01

    Valves are evaluated used in water systems for fire fighting and dust suppression in underground black coal mines in the USSR. Specifications of the KR-2, the KR-3 and the R-86 pressure-reducing valves used in deep mines are analyzed. The valves are characterized by low reliability, low capacity and low pressure reducing range. Therefore groups (parallel arrangement) of pressure-reducing valves are used. Using valve groups increases equipment cost. The pressure-reducing systems should consist of no more than 2 valves. The VNIIGD Institute developed the RKGD pressure-reducing valve with the following specifications: inlet pressure 6.87 MPa, outlet pressure from 0.98 to 2.45 MPa, water discharge 100 m/sup 3//h). The RKGD valves are characterized by high reliability but extremely high weight. Therefore, the VNIIGD Institute developed a modified version of pressure-reducing valve, called the PRK (with maximum inlet pressure of 5 MPa, outlet pressure ranging from 0.5 to 1.5 MPa, water discharge 80 m/sup 3//h and weighing 5 kg). Design of the PRK pressure-reducing valve is shown.

  6. 77 FR 67340 - National Fire Codes: Request for Comments on NFPA's Codes and Standards

    Science.gov (United States)

    2012-11-09

    ... Water Mist Fire P Protection Systems. NFPA 921 Guide for Fire and Explosion P Investigations. NFPA 1005 Standard for Professional P Qualifications for Marine Fire Fighting for Land-Based Fire Fighters. NFPA 1192... DEPARTMENT OF COMMERCE National Institute of Standards and Technology National Fire Codes: Request...

  7. Web service tools in the era of forest fire management and elimination

    Science.gov (United States)

    Poursanidis, Dimitris; Kochilakis, Giorgos; Chrysoulakis, Nektarios; Varella, Vasiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas

    2014-10-01

    Wildfires in forests and forested areas in South Europe, North America, Central Asia and Australia are a diachronic threat with crucial ecological, economic and social impacts. Last decade the frequency, the magnitude and the intensity of fires have increased even more because of the climate change. An efficient response to such disasters requires an effective planning, with an early detection system of the ignition area and an accurate prediction of fire propagation to support the rapid response mechanisms. For this reason, information systems able to predict and visualize the behavior of fires, are valuable tools for fire fighting. Such systems, able also to perform simulations that evaluate the fire development scenarios, based on weather conditions, become valuable Decision Support Tools for fire mitigation planning. A Web-based Information System (WIS) developed in the framework of the FLIRE (Floods and fire risk assessment and management) project, a LIFE+ co-funded by the European Commission research, is presented in this study. The FLIRE WIS use forest fuel maps which have been developed by using generalized fuel maps, satellite data and in-situ observations. Furthermore, it leverages data from meteorological stations and weather forecast from numerical models to feed the fire propagation model with the necessary for the simulations inputs and to visualize the model's results for user defined time periods and steps. The user has real-time access to FLIRE WIS via any web browser from any platform (PC, Laptop, Tablet, Smartphone).

  8. Immersive virtual reality-based training improves response in a simulated operating room fire scenario.

    Science.gov (United States)

    Sankaranarayanan, Ganesh; Wooley, Lizzy; Hogg, Deborah; Dorozhkin, Denis; Olasky, Jaisa; Chauhan, Sanket; Fleshman, James W; De, Suvranu; Scott, Daniel; Jones, Daniel B

    2018-01-25

    SAGES FUSE curriculum provides didactic knowledge on OR fire prevention. The objective of this study is to evaluate the impact of an immersive virtual reality (VR)-based OR fire training simulation system in combination with FUSE didactics. The study compared a control with a simulation group. After a pre-test questionnaire that assessed the baseline knowledge, both groups were given didactic material that consists of a 10-min presentation and reading materials about precautions and stopping an OR fire from the FUSE manual. The simulation group practiced on the OR fire simulation for one session that consisted of five trials within a week from the pre-test. One week later, both groups were reassessed using a questionnaire. A week after the post-test both groups also participated in a simulated OR fire scenario while their performance was videotaped for assessment. A total of 20 subjects (ten per group) participated in this IRB approved study. Median test scores for the control group increased from 5.5 to 9.00 (p = 0.011) and for the simulation group it increased from 5.0 to 8.5 (p = 0.005). Both groups started at the same baseline (pre-test, p = 0.529) and reached similar level in cognitive knowledge (post-test, p = 0.853). However, when tested in the mock OR fire scenario, 70% of the simulation group subjects were able to perform the correct sequence of steps in extinguishing the simulated fire whereas only 20% subjects in the control group were able to do so (p = 0.003). The simulation group was better than control group in correctly identifying the oxidizer (p = 0.03) and ignition source (p = 0.014). Interactive VR-based hands-on training was found to be a relatively inexpensive and effective mode for teaching OR fire prevention and management scenarios.

  9. The use of CAFE-3D for the simulation of tunnel fires

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, C.; Koski, J.A.; Hohnstreiter, G.F.; Khalil, I. [Sandia National Labs., Albuquerque, NM (United States); Suo-Anttila, A. [Alion Science and Technology, Albuquerque, NM (United States)

    2004-07-01

    Fires after accidents inside tunnels, such as the July 2001 Howard Street Tunnel fire in Baltimore, Maryland, USA, have raised stakeholder questions concerning the survivability of a spent nuclear fuel (SNF) transport cask when exposed to similar thermal environments. The analysis of tunnel fires is a computational challenge because of the need for very large computational domains in order to fully simulate such a problem. In this paper, the analyses of two different tunnel fire scenarios are described and the performance of typical SNF casks when exposed to these tunnel fire environments is discussed. The CAFE-3D fire code is used to model a series of fires inside tunnels, and the thermal performance of a SNF transportation cask within such fire environments is estimated with the use of the MSC PATRAN-P/Thermal finite element analysis code. The methodology used to simulate this type of fire scenario as well as a description of the manner in which the CAFE code couples the computational fluid dynamics and the finite element analysis techniques are also presented.

  10. The use of CAFE-3D for the simulation of tunnel fires

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Hohnstreiter, G.F.; Khalil, I.; Suo-Anttila, A.

    2004-01-01

    Fires after accidents inside tunnels, such as the July 2001 Howard Street Tunnel fire in Baltimore, Maryland, USA, have raised stakeholder questions concerning the survivability of a spent nuclear fuel (SNF) transport cask when exposed to similar thermal environments. The analysis of tunnel fires is a computational challenge because of the need for very large computational domains in order to fully simulate such a problem. In this paper, the analyses of two different tunnel fire scenarios are described and the performance of typical SNF casks when exposed to these tunnel fire environments is discussed. The CAFE-3D fire code is used to model a series of fires inside tunnels, and the thermal performance of a SNF transportation cask within such fire environments is estimated with the use of the MSC PATRAN-P/Thermal finite element analysis code. The methodology used to simulate this type of fire scenario as well as a description of the manner in which the CAFE code couples the computational fluid dynamics and the finite element analysis techniques are also presented

  11. Szendro - type Integrated Vegetation Fire Management--Wildfire Management Program from Hungary

    Science.gov (United States)

    Ágoston Restás

    2006-01-01

    Szendrő Fire Department is located in the northeastern part of Hungary. The main task is to fight against wildfire and mitigate the impact of fire at the Aggtelek National Park -- which belongs to the UNESCO World Heritage list. Because of greater effectiveness, in 2004 the Fire Department started a project named Integrated Vegetation Fire Management (IVFM)....

  12. Analysing initial attack on wildland fires using stochastic simulation.

    Science.gov (United States)

    Jeremy S. Fried; J. Keith Gilless; James. Spero

    2006-01-01

    Stochastic simulation models of initial attack on wildland fire can be designed to reflect the complexity of the environmental, administrative, and institutional context in which wildland fire protection agencies operate, but such complexity may come at the cost of a considerable investment in data acquisition and management. This cost may be well justified when it...

  13. Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department

    International Nuclear Information System (INIS)

    Good, D.E.

    1994-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995

  14. Development of a Smart Residential Fire Protection System

    Directory of Open Access Journals (Sweden)

    Juhwan Oh

    2013-01-01

    Full Text Available Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual fire test suggests that the developed wireless system for the smart residential fire protection system is reliable in terms of sensors and their communication linkage.

  15. Coupled numerical simulation of fire in tunnel

    Science.gov (United States)

    Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.

    2018-01-01

    In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is

  16. Fire and earthquake counter measures in radiation handling facilities

    International Nuclear Information System (INIS)

    1985-01-01

    'Fire countermeasures in radiation handling facilities' published in 1961 is still widely utilized as a valuable guideline for those handling radiation through the revision in 1972. However, science and technology rapidly advanced, and the relevant laws were revised after the publication, and many points which do not conform to the present state have become to be found. Therefore, it was decided to rewrite this book, and the new book has been completed. The title was changed to 'Fire and earthquake countermeasures in radiation handling facilities', and the countermeasures to earthquakes were added. Moreover, consideration was given so that the book is sufficiently useful also for those concerned with fire fighting, not only for those handling radiation. In this book, the way of thinking about the countermeasures against fires and earthquakes, the countermeasures in normal state and when a fire or an earthquake occurred, the countermeasures when the warning declaration has been announced, and the data on fires, earthquakes, the risk of radioisotopes, fire fighting equipment, the earthquake counter measures for equipment, protectors and radiation measuring instruments, first aid, the example of emergency system in radiation handling facilities, the activities of fire fighters, the example of accidents and so on are described. (Kako, I.)

  17. Organizing for Emergencies - Issues in Wildfire Fighting in Croatia

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2015-01-01

    Full Text Available Croatia's accession to the European Union implies inevitable changes in the national emergency management system. New requirements for adjustment in accordance with the EU standards and practices also apply to the fire-services organization. Harmonious functioning of a large number of relatively autonomous organizations related to the National Protection and Rescue Directorate necessitates clear decision-making authority and coordination mechanisms as well as a high level of interoperability and core competencies development. This paper gives an overview of the Croatian fire protection organization along with its accompanying legislation, followed by an analysis of identified problems, especially those concerning fighting of wildfire. In our research a survey questionnaire comprised of Likert-scale items was used to assess the attitudes and experiences of trained fire department members. The respondents reported a relatively low evaluation of effectiveness and appropriateness of the following key fire service attributes: organizational structure, legislation and firefighting logistics support. From the obtained results guidelines can be drawn for possible redesign of the emergency management organization, especially those concerning the fire protection service.

  18. Overestimating Resource Value and Its Effects on Fighting Decisions

    OpenAIRE

    Dugatkin, Lee Alan; Dugatkin, Aaron David

    2011-01-01

    Much work in behavioral ecology has shown that animals fight over resources such as food, and that they make strategic decisions about when to engage in such fights. Here, we examine the evolution of one, heretofore unexamined, component of that strategic decision about whether to fight for a resource. We present the results of a computer simulation that examined the evolution of over- or underestimating the value of a resource (food) as a function of an individual's current hunger level. In ...

  19. Simulating the influences of various fire regimes on caribou winter habitat

    Science.gov (United States)

    Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.

    2006-01-01

    Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  20. “Use of fire extinguishers”—a new course with a new simulator

    CERN Multimedia

    HSE Unit & GS/FB

    2012-01-01

    Don’t wait, sign up! A new training course, “Handling of fire extinguishers”, is available since the beginning of March 2012. The training course is given by members of CERN’s Fire Brigade (GS-FB) and is intended for all members of personnel of CERN. Upon successful completion of the training course, you will be able to do the following: recognise a potentially combustible item and the various fire classes; choose the appropriate extinguisher for a given fire class; handle a fire extinguisher properly and efficiently; apply CERN's safety instructions. An important part of the training are the different firefighting exercises conducted using a new simulator, which makes it possible to simulate real conditions such as the following: a fire in the office; a fire in an electrical cabinet; a fire involving chemicals.        Don’t wait:  sign up for the training course directly ...

  1. 77 FR 58081 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Science.gov (United States)

    2012-09-19

    ... 332919 Nozzles, fire fighting, manufacturing. Manufacturing 334290 Fire detection and alarm systems... substitutes for halon 1301 for use in total flooding fire suppression systems in normally unoccupied spaces... regulated Category NAICS Code entities Construction 238210 Alarm system (e.g., fire, burglar), electric...

  2. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    International Nuclear Information System (INIS)

    Good, D.E.

    1995-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline

  3. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  4. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Science.gov (United States)

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  5. Numerical simulation of the fire-spread under a nuclear burst

    International Nuclear Information System (INIS)

    Zhang Suochun; Lei Guangyao; Wang Yiren; Huang Weizhang

    1992-01-01

    In the paper, the authors are concerned only with computer simulation of the fires of buildings ignited on urban areas produced by a nuclear burst. Some qualitative results for the simplest model by using the parameters of fire-spread from Japanese Hiroshima are obtained by the numerical test

  6. Optimization of investment economic in PCI using the methodology of benefits design in analysis of the spread of fires with FDS (Fire Dynamics Simulator) in areas of nuclear fire; Optimizacion de la inversion economica en PCI mediante la metodologia de diseo prestaional en el analisis de la propagacion de incendios con FDS (Fire Dynnamics Simulator) en areas de fuego de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Salellas, J.

    2015-07-01

    Fire simulation analysis allows knowing the evolution and spread fire in areas of interest within a NPP such as control room, cable room and multi zone comportment among others. fires are a main concern regarding safety analysis of NPP. IDOM has the capability to carry out fire simulations, taken in to account smoke control, fire spread, toxicity levels, ventilation and all physical phenomena. As a result, appropriate fire protection measures can be assessed in each scenario. CFD tools applied to fire simulations can determine with higher resolution all damages caused during the fire. Furthermore, such tools can reduce costs due to a lower impact of design modifications. (Author)

  7. Prove of structural fire design in nuclear power plants

    International Nuclear Information System (INIS)

    Schneider, U.; Hosser, D.; Max, U.

    1986-01-01

    Based on the application of comprehensive heat balance calculations the whole parameters like geometry, fire load, ventilation conditions etc. of a German PWR were covered. A practical design procedure based on diagrams was developed whereby separate diagrams for oil and cable fires were presented. A probabilistic safety concept was employed as to account for the specific variations of fire parameters as fire load and area, ventilation condition, rate of burning. With respect to the frequency of fire occurrences and the impact of fire fighting measures on the spread of fires latest statistical data of a special BMI investigation were used. (orig./HP) [de

  8. Large eddy simulation of a mechanically ventilated compartment fire for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bao P. [Dalian Univ. of Technology (China). Faculty of Energy and Power Engineering; Wen, Jennifer X. [Warwick Univ. (United Kingdom). Warwick FIRE, School of Engineering

    2015-12-15

    This paper deals with the modelling of a mechanically ventilated compartment fire which is a commonplace in nuclear fire scenarios. An advanced Computational Fluid Dynamics (CFD) field model with a wall conjugate heat transfer treatment is proposed. It simultaneously solves the compartment fire flow and the wall heat conduction. The flow solver is based on the Large Eddy Simulation (LES) based fire simulation solver FireFOAM within the frame of open source CFD code OpenFOAM {sup registered}. An extended eddy dissipation model is used to calculate the chemical reaction rate. A soot model based on the concept of smoke point height is employed to model the soot formation and oxidation. A finite volume method is adopted to model the radiative heat transfer. The ventilation flow is modelled by a simplified Bernoulli equation neglecting the detailed information on the ventilation system. The proposed model is validated against a single room fire test with forced mechanical ventilations. The predictions are in reasonably good agreement with experimental data.

  9. DAYCENT Simulations to Test the Influence of Fire Regime and Fire Suppression on Trace Gas Fluxes and Nitrogen Biogeochemistry of Colorado Forests

    Directory of Open Access Journals (Sweden)

    Mark A. Gathany

    2012-07-01

    Full Text Available Biological activity and the physical environment regulate greenhouse gas fluxes (CH4, N2O and NO from upland soils. Wildfires are known to alter these factors such that we collected daily weather records, fire return intervals, or specific fire years, and soil data of four specific sites along the Colorado Front Range. These data were used as primary inputs into DAYCENT. In this paper we test the ability of DAYCENT to simulate four forested sites in this area and to address two objectives: (1 to evaluate the short-term influence of fire on trace gas fluxes from burned landscapes; and (2 to compare trace gas fluxes among locations and between pre-/post- fire suppression. The model simulations indicate that CH4 oxidation is relatively unaffected by wildfire. In contrast, gross nitrification rates were reduced by 13.5–37.1% during the fire suppression period. At two of the sites, we calculated increases in gross nitrification rates (>100%, and N2O and NO fluxes during the year of fire relative to the year before a fire. Simulated fire suppression exhibited decreased gross nitrification rates presumably as nitrogen is immobilized. This finding concurs with other studies that highlight the importance of forest fires to maintain soil nitrogen availability.

  10. Full-scale horizontal cable-tray tests: Fire-propagation characteristics

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    At the Fermi National Accelerator Center (Fermilab), as at any high-energy physics laboratory, the experimental program depends on complex arrays of equipment that require years to assemble and place in service. These equipment arrays are typically located in enclosed tunnels or experimental halls and could be destroyed by rapidly propagating, uncontrolled fire. Cable trays, both vertical and horizontal, are an integral and ubiquitous component of these installations. Concurrently, throughout industry and within the professional fire-fighting community, there has been concern over the flammability and fire propagation characteristics of electrical cables in open cable trays. While some information was available concerning fire propagation in vertical cable trays, little was known about fires in horizontal cable trays. In view of the potential for loss of equipment and facilities, not to mention the programmatic impact of a fire, Fermilab initiated a program of full-scale, horizontal cable-tray fire tests to determine the flammability and rate of horizontal fire propagation in cable-tray configurations and cable mixed typical of those existing in underground tunnel enclosures and support buildings as Fermilab. This series of tests addressed the effects of ventilation rates and cable-tray fill, fire-fighting techniques, and the effectiveness and value of automatic sprinklers, smoke detection, and cable-coating fire barriers in detecting, controlling, or extinguishing a cable-tray fire. Detailed descriptions of each fire test, including sketches of cable-tray configuration and contents, instrumentation, ventilation rates, Fermilab Fire Department personnel observations, photographs, and graphs of thermocouple readings are available in a report of these tests prepared by the Fermilab Safety Section

  11. OCULUS fire: a command and control system for fire management with crowd sourcing and social media interconnectivity

    Science.gov (United States)

    Thomopoulos, Stelios C. A.; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Dimitros, Kostantinos; Margonis, Christos; Thanos, Giorgos Konstantinos; Skroumpelou, Katerina

    2016-05-01

    AF3 (Advanced Forest Fire Fighting2) is a European FP7 research project that intends to improve the efficiency of current fire-fighting operations and the protection of human lives, the environment and property by developing innovative technologies to ensure the integration between existing and new systems. To reach this objective, the AF3 project focuses on innovative active and passive countermeasures, early detection and monitoring, integrated crisis management and advanced public information channels. OCULUS Fire is the innovative control and command system developed within AF3 as a monitoring, GIS and Knowledge Extraction System and Visualization Tool. OCULUS Fire includes (a) an interface for real-time updating and reconstructing of maps to enable rerouting based on estimated hazards and risks, (b) processing of GIS dynamic re-construction and mission re-routing, based on the fusion of airborne, satellite, ground and ancillary geolocation data, (c) visualization components for the C2 monitoring system, displaying and managing information arriving from a variety of sources and (d) mission and situational awareness module for OCULUS Fire ground monitoring system being part of an Integrated Crisis Management Information System for ground and ancillary sensors. OCULUS Fire will also process and visualise information from public information channels, social media and also mobile applications by helpful citizens and volunteers. Social networking, community building and crowdsourcing features will enable a higher reliability and less false alarm rates when using such data in the context of safety and security applications.

  12. Validation process of ISIS CFD software for fire simulation

    International Nuclear Information System (INIS)

    Lapuerta, C.; Suard, S.; Babik, F.; Rigollet, L.

    2012-01-01

    Fire propagation constitutes a major safety concern in nuclear facilities. In this context, IRSN is developing a CFD code, named ISIS, dedicated to fire simulations. This software is based on a coherent set of models that can be used to describe a fire in large, mechanically ventilated compartments. The system of balance equations obtained by combining these models is discretized in time using fractional step methods, including a pressure correction technique for solving hydrodynamic equations. Discretization in space combines two techniques, each proven in the relevant context: mixed finite elements for hydrodynamic equations and finite volumes for transport equations. ISIS is currently in an advanced stage of verification and validation. The results obtained for a full-scale fire test performed at IRSN are presented.

  13. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    Science.gov (United States)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using

  14. Using Space Technologies for a timely detection of forest fires: the experience of end-users in 3 Italian Regions

    Science.gov (United States)

    Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio

    2013-04-01

    Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite

  15. Underground Coal-Fires in Xinjiang, China: A Continued Effort in Applying Geophysics to Solve a Local Problem and to Mitigate a Global Hazard

    Science.gov (United States)

    Wuttke, M. W.; Halisch, M.; Tanner, D. C.; Cai, Z. Y.; Zeng, Q.; Wang, C.

    2012-04-01

    Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. In Xinjiang since more than 50 years a rigorous strategy for fire fighting on local and regional scale is persued. The Xinjiang Coalfield Fire Fighting Bureau (FFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. Through the FFB, China is struggling to overcome this, but the activities could be much enhanced by the continuation of the already successful conjoint operations. The last ten years have seen two successful cooperative projects between China and Germany on the field of coal-fire fighting, namely the German Technical Cooperation Project on Coal Fire in Xinjiang and the Sino-German Coal Fire Research Initiative funded by the corresponding ministeries of both countries. A persistent task in the fire fighting is the identification and supervision of areas with higher risks for the ignition of coal fires, the exploration of already ignited fire zones to extinguish the fires and the monitoring of extinguished fires to detect as early as possible process that may foster re-ignition. This can be achieved by modeling both the structures and the processes that are involved. This has also been a promising part of the past cooperation projects, yet to be transformed into a standard application of fire fighting procedures. In this contribution we describe the plans for a new conjoint project between China and Germany where on the basis of field investigations and

  16. Marginal conditions for the insurance against fire events in waste incinerators; Randbedingungen fuer die Versicherung gegen Brandereignisse in Abfallverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Weschenbach, Harry [VMD-Prinas GmbH, Essen (Germany)

    2012-11-01

    Insurance companies represent not only damage compensation systems, but also a worldwide financial services operating compensation of damages against the insurance premium. The insurance industry has adapted itself to the industrial development. The comprehensive risk management was supplemented increasingly. Especially in the case of damage prevention and fire fighting, the insurance industry falls back on the comprehensive risk management. The fire insurance companies have learned to evaluate fire risks more technically and economically and to impact the design concepts of fire fighting. Under these conditions, in the case of major industrial risks the fire insurance companies are willing to provide an extensive insurance coverage.

  17. DEVELOPMENT OF USER-FRIENDLY SIMULATION SYSTEM OF EARTHQUAKE INDUCED URBAN SPREADING FIRE

    Science.gov (United States)

    Tsujihara, Osamu; Gawa, Hidemi; Hayashi, Hirofumi

    In the simulation of earthquake induced urban spreading fire, the produce of the analytical model of the target area is required as well as the analysis of spreading fire and the presentati on of the results. In order to promote the use of the simulation, it is important that the simulation system is non-intrusive and the analysis results can be demonstrated by the realistic presentation. In this study, the simulation system is developed based on the Petri-net algorithm, in which the easy operation can be realized in the modeling of the target area of the simulation through the presentation of analytical results by realistic 3-D animation.

  18. The fire brigade renovates

    CERN Multimedia

    2002-01-01

    The new fire engine at CERN's Fire Station. A shiny brand-new fire engine is now attracting all the attention of the members of CERN's fire brigade. Since the beginning of last week this engine has taken over from an 18-year-old one, which has now been 'retired' from service. This modern vehicle, built in Brescia, Italy, is much lighter and more powerful than the old one and is equipped to allow the fire service to tackle most call-outs without the support of at least one other vehicle, as is currently necessary. The new fire engine is designed to transport six fire-fighters, 2000 litres of water, and is equipped not only for fire fighting actions but also to respond initially to any other kind of call-out, such as traffic accidents, chemical incidents, pollution, lightning, etc. It goes almost without saying that it is provided with the most modern safety measures, a low centre of gravity, as well as a special chassis and a combination pump (low and high pressure), which improve the safety and performance ...

  19. Extinguishing smouldering fires in silos. BRANDFORSK project 745-961

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisaari, M.; Baroudi, D.; Latva, R. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1998-11-01

    Combustible, porous materials may self-ignite during their storage time in silos as a result of internal heating. The self-ignition process may be slow, and it results in smouldering fires that are extremely difficult to extinguish. Suitable means to fight the smouldering fire were studied both theoretically and experimentally. General heat and mass transfer equations for porous media subject to fires and suppression were written. The equations together with dimensional analysis revealed critical parameters, like the grain size and moisture content, affecting the combustion and suppression process, but they also revealed the complexity of the problem. Experimental results of over 50 tests with varying combustibles and suppression agents were used as the basis for proposed qualitative guidelines on how to fight a smouldering silo fire. Among the potential gaseous agents, CO{sub 2} was found to be the most efficient one. Low expansion foam was also found to be a potential candidate, but its applicability requires further confirmation. Quantifying the guidelines requires a whole new study on the detection of a smouldering fire. The same detection system should be capable of monitoring the suppression process and - most importantly - verifying the extinguishment. (orig.) 46 refs.

  20. Numerical Simulations for a Typical Train Fire in China

    Directory of Open Access Journals (Sweden)

    W. K. Chow

    2011-01-01

    Full Text Available Railway is the key transport means in China including the Mainland, Taiwan, and Hong Kong. Consequent to so many big arson and accidental fires in the public transport systems including trains and buses, fire safety in passenger trains is a concern. Numerical simulations with Computational Fluid Dynamics on identified fire scenarios with typical train compartments in China will be reported in this paper. The heat release rate of the first ignited item was taken as the input parameter. The mass lost rate of fuel vapor of other combustibles was estimated to predict the resultant heat release rates by the combustion models in the software. Results on air flow, velocity vectors, temperature distribution, smoke layer height, and smoke spread patterns inside the train compartment were analyzed. The results are useful for working out appropriate fire safety measures for train vehicles and determining the design fire for subway stations and railway tunnels.

  1. CFD simulation of coal and straw co-firing

    DEFF Research Database (Denmark)

    Junker, Helle; Hvid, Søren L.; Larsen, Ejvind

    This paper presents the results of a major R&D program with the objective to develop CFD based tools to assess the impact of biomass co-firing in suspension fired pulverized coal power plants. The models have been developed through a series of Danish research projects with the overall objective...... to collect results from fundamental research and make it operational in boiler design through implementation in a Computational Fluid Dynamics based simulation tool. This paper summarizes the developments in modeling of; particle motion, particle conversion, ash deposition on heat transfer surfaces, and NOx...

  2. An empirical test of Lanchester's square law: mortality during battles of the fire ant Solenopsis invicta

    Science.gov (United States)

    Plowes, Nicola J.R; Adams, Eldridge S

    2005-01-01

    Lanchester's models of attrition describe casualty rates during battles between groups as functions of the numbers of individuals and their fighting abilities. Originally developed to describe human warfare, Lanchester's square law has been hypothesized to apply broadly to social animals as well, with important consequences for their aggressive behaviour and social structure. According to the square law, the fighting ability of a group is proportional to the square of the number of individuals, but rises only linearly with fighting ability of individuals within the group. By analyzing mortality rates of fire ants (Solenopsis invicta) fighting in different numerical ratios, we provide the first quantitative test of Lanchester's model for a non-human animal. Casualty rates of fire ants were not consistent with the square law; instead, group fighting ability was an approximately linear function of group size. This implies that the relative numbers of casualties incurred by two fighting groups are not strongly affected by relative group sizes and that battles do not disproportionately favour group size over individual prowess. PMID:16096093

  3. 76 FR 22381 - National Fire Codes: Request for Comments on NFPA Technical Committee Reports

    Science.gov (United States)

    2011-04-21

    ... Stored Electrical P Energy Emergency and Standby Power Systems. NFPA 291 Recommended Practice for Fire P.... NFPA 400 Hazardous Materials Code....... P NFPA 402 Guide for Aircraft Rescue and P Fire-Fighting... Installation, P Maintenance, and Use of Emergency Services Communications Systems. NFPA 1500 Standard on Fire...

  4. Fire monitoring from space: from research to operation

    Science.gov (United States)

    Pergola, Nicola; Filizzola, Carolina; Corrado, Rosita; Coviello, Irina; lacava, Teodosio; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Tramutoli, Valerio

    2013-04-01

    Each summer fires rage through European forests, burning hundreds of thousands of hectares per year, as a result of the many (up to 60000) forest fires that usually occur annually in Europe. Fires can threaten public health and safety, destroy property and cause economic damages. Despite of their medium extension (the average burnt area is less than 6 ha), much smaller if compared with other regions like the USA and Canada, the number of simultaneous active fires in Europe can be very high, fomented by weather conditions that, especially in summer times and for countries of South Europe, are particularly favourable to a rapid and dramatic development of flames. Fires still are not only a social problem, but also an environmental emergency, producing a continuous impoverishment of forests and possibly indirectly triggering other natural hazards (e.g. making slopes, without the trees action, more prone to landslides). Additionally, there is a general concern about the loss of biodiversity and the contribution to land degradation that fires may cause. Earth Observation satellite systems have been largely tested for fire detection and monitoring from space. Their spectral capability, synoptic view and revisit times can offer an added value in the operational use not only in real time, during fires fighting activities, but also in near-real or delay time during the phases of risk management and mitigation. However, the practice of an actual operational use of satellite products by end-users is still not usual at European level. This work is based on the experience carried out jointly by CNR-IMAA and the National Civil Protection Department (DPC), in the framework of a five-year agreement in which the operational use of an Earth observation satellite system for fires spotting and monitoring is tested. Satellite-based products, developed not only for detecting fires but also for continuously monitoring their evolution in time domain, have been provided to Civil Protection

  5. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    Science.gov (United States)

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Development of Human Factors Engineering Requirements for Fire Fighting Protective Equipment

    National Research Council Canada - National Science Library

    Hopmeier, Michael; Christen, Hank T; Malone, Michael V

    2005-01-01

    This report is the result of an effort to develop an understanding of fire fighter needs through an assessment of relevant research and fire fighter-related literature, forums, conferences, and symposia...

  7. Planning for fire control and protection of personnel

    International Nuclear Information System (INIS)

    Rule, A.V.

    1989-01-01

    Because nuclear installations are designed and built to high standards with segregation and fire barriers included, the risk from fires is not high. However, small fires can become large and nuclear sites present additional hazards to fire fighters because of radiation release and from metal fires (magnesium alloys and sodium) which require special techniques of firefighting. All sites have their own fire fighting force which would tackle a fire initially and these should train and work in close cooperation with the Local Authority fire service. The main points raised concern radiation protection for the fire fighters including the issuing of emergency dosemeters and potassium iodate tablets, decontamination of personnel, vehicles and equipment, communications, and the need for standardisation of plans at all installations throughout the country. (U.K.)

  8. Fire protection programme during construction of the Chashma nuclear power plant

    International Nuclear Information System (INIS)

    Mian Umer, M.

    1998-01-01

    A clear view is given of several measures that have been taken with regard to fire prevention, protection and fire fighting during all phases of the construction, installation and commissioning of the Chasma nuclear power plant to protect personnel and equipment so that any delays in plant operation as a result of fire incident can be avoided. These measures include the precautions taken, the provisions made for fire extinguishers and hydrants, and the setting up of a fire brigade. An overview is also given of the fire incidents that have occurred. (author)

  9. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    Science.gov (United States)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  10. A GIS-based decision support system for determining the shortest and safest route to forest fires: a case study in Mediterranean Region of Turkey.

    Science.gov (United States)

    Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun

    2012-03-01

    The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area.

  11. Fatigue risk management by volunteer fire-fighters: Use of informal strategies to augment formal policy.

    Science.gov (United States)

    Dawson, Drew; Mayger, Katherine; Thomas, Matthew J W; Thompson, Kirrilly

    2015-11-01

    An increasing number and intensity of catastrophic fire events in Australia has led to increasing demands on a mainly volunteer fire-fighting workforce. Despite the increasing likelihood of fatigue in the emergency services environment, there is not yet a systematic, unified approach to fatigue management in fire agencies across Australia. Accordingly, the aim of this study was to identify informal strategies used in volunteer fire-fighting and examine how these strategies are transmitted across the workforce. Thirty experienced Australian volunteer fire-fighters were interviewed in August 2010. The study identified informal fatigue-management behaviours at the individual, team and brigade level that have evolved in fire-fighting environments and are regularly implemented. However, their purpose was not explicitly recognized as such. This apparent paradox - that fatigue proofing behaviours exist but that they are not openly understood as such - may well resolve a potential conflict between a culture of indefatigability in the emergency services sector and the frequent need to operate safely while fatigued. However, formal controls require fire-fighters and their organisations to acknowledge and accept their vulnerability. This suggests two important areas in which to improve formal fatigue risk management in the emergency services sector: (1) identifying and formalising tacit or informal fatigue coping strategies as legitimate elements of the fatigue risk management system; and (2) developing culturally appropriate techniques for systematically communicating fatigue levels to self and others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 76 FR 22383 - National Fire Codes: Request for Proposals for Revision of Codes and Standards

    Science.gov (United States)

    2011-04-21

    ... Chemical Extinguishing Systems. NFPA 22-2008 Standard for Water 5/23/2011 Tanks for Private Fire Protection... Ensembles for Technical Rescue Incidents. NFPA 1925-2008 Standard on Marine Fire- 5/23/2011 Fighting Vessels... DEPARTMENT OF COMMERCE National Institute of Standards and Technology National Fire Codes: Request...

  13. Compound depositions from the BOPEC fires on Bonaire : Measurements and risk assessment

    NARCIS (Netherlands)

    van de Meent D; Bodar CWM; Boshuis ME; de Groot AC; de Zwart D; Hoffer SM; Janssen PJCM; Mooij M; de Groot GM; Peijnenburg WJGM; Verbruggen EMJ; IMG; SEC; LER; mev

    2011-01-01

    Some polycyclic aromatic hydrocarbons (PAHs) and some perfluorinated fire fighting foam constituents (especially perfluorooctane sulfonate, PFOS) were found in deposited soot and in water on Bonaire due to the BOPEC oil depot fires in September 2010. The soot deposition did not result in elevated

  14. 76 FR 70414 - National Fire Protection Association (NFPA) Proposes To Revise Codes and Standards

    Science.gov (United States)

    2011-11-14

    ... Commercial Cooking Operations. NFPA 99--2012 Health Care Facilities Code 6/22/2012 NFPA 99B--2010 Standard... Explosion Investigations..... 1/4/2012 NFPA 1005--2007 Standard for Professional Qualifications for 1/4/2012 Marine Fire Fighting for Land-Based Fire Fighters. NFPA 1021--2009 Standard for Fire Officer Professional...

  15. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    Science.gov (United States)

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change

  16. An ensemble approach to simulate CO2 emissions from natural fires

    Science.gov (United States)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2014-06-01

    This paper presents ensemble simulations with the global climate model developed at the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM). These simulations are forced by historical reconstructions of concentrations of well-mixed greenhouse gases (CO2, CH4, and N2O), sulfate aerosols (both in the troposphere and stratosphere), extent of crops and pastures, and total solar irradiance for AD 850-2005 (hereafter all years are taken as being AD) and by the Representative Concentration Pathway (RCP) scenarios for the same forcing agents until the year 2300. Our model implements GlobFIRM (Global FIRe Model) as a scheme for calculating characteristics of natural fires. Comparing to the original GlobFIRM model, in our implementation, the scheme is extended by a module accounting for CO2 release from soil during fires. The novel approach of our paper is to simulate natural fires in an ensemble fashion. Different ensemble members in the present paper are constructed by varying the values of parameters of the natural fires module. These members are constrained by the GFED-3.1 data set for the burnt area and CO2 release from fires and further subjected to Bayesian averaging. Our simulations are the first coupled model assessment of future changes in gross characteristics of natural fires. In our model, the present-day (1998-2011) global area burnt due to natural fires is (2.1 ± 0.4) × 106 km2 yr-1 (ensemble mean and intra-ensemble standard deviation are presented), and the respective CO2 emissions to the atmosphere are (1.4 ± 0.2) Pg C yr-1. The latter value is in agreement with the corresponding GFED estimates. The area burnt by natural fires is generally larger than the GFED estimates except in boreal Eurasia, where it is realistic, and in Australia, where it is smaller than these estimates. Regionally, the modelled CO2 emissions are larger (smaller) than the GFED estimates in Europe (in the tropics and north-eastern Eurasia). From

  17. Potential production of palm oil-based foaming agent as fire extinguisher of peatlands in Indonesia: Literature review

    Science.gov (United States)

    Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.

    2017-05-01

    This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.

  18. A Cellular Automata-Based Simulation Tool for Real Fire Accident Prevention

    Directory of Open Access Journals (Sweden)

    Jacek M. Czerniak

    2018-01-01

    Full Text Available Many serious real-life problems could be simulated using cellular automata theory. There were a lot of fires in public places which kill many people. Proposed method, called Cellular Automata Evaluation (CAEva in short, is using cellular automata theory and could be used for checking buildings conditions for fire accident. The tests performed on real accident showed that an appropriately configured program allows obtaining a realistic simulation of human evacuation. The authors analyze some real accidents and proved that CAEva method appears as a very promising solution, especially in the cases of building renovations or temporary unavailability of escape routes.

  19. Simulation of the Intercontinental Transport, Aging, and Removal of a Boreal Fire Smoke Plume

    Science.gov (United States)

    Ghan, S. J.; Chapman, E. G.; Easter, R. C.; Reid, J. S.; Justice, C.

    2003-12-01

    Back trajectories suggest that an elevated absorbing aerosol plume observed over Oklahoma in May 2003 can be traced to intense forest fires in Siberia two weeks earlier. The Fire Locating and Modeling of Burning Emissions (FLAMBE) product is used to estimate smoke emissions from those fires. The Model for Integrated Research on Atmospheric Model Exchanges (MIRAGE) is used to simulate the transport, aging, radiative properties, and removal of the aerosol. The simulated aerosol optical depth is compared with satellite retrievals, and the vertical structure of the plume is compared with in situ measurements. Sensitivity experiments are performed to determine the sensitivity of the simulated plume to uncertainty in the emissions vertical profile, mass flux, size distribution, and composition.

  20. Water Supply Systems For Aircraft Fire And Rescue Protection

    Science.gov (United States)

    1995-01-01

    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  1. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    Science.gov (United States)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  2. Suppression of pool fires with HRC-125 in a simulated engine nacelle.

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, David R. (INS, Inc., Lexington Park, MD); Hewson, John C.

    2007-06-01

    CFD simulations are conducted to predict the distribution of fire suppressant in an engine nacelle and to predict the suppression of pool fires by the application of this suppressant. In the baseline configuration, which is based on an installed system, suppressant is injected through four nozzles at a rate fast enough to suppress all simulated pool fires. Variations that reduce the mass of the suppression system (reducing the impact of the suppression system on meeting mission needs) are considered, including a reduction in the rate of suppressant injection, a reduction in the mass of suppressant and a reduction in the number of nozzles. In general, these variations should work to reduce the effectiveness of the suppression system, but the CFD results point out certain changes that have negligible impact, at least for the range of phenomena considered here. The results are compared with measurements where available. Comparisons with suppressant measurements are reasonable. A series of twenty-three fire suppression tests were conducted to check the predictions. The pre-test predictions were generally successful in identifying the range of successful suppression tests. In two separate cases, each where one nozzle of the suppression system was capped, the simulation results did indicate a failure to suppress for a condition where the tests indicated successful suppression. When the test-suppressant discharge rate was reduced by roughly 25%, the tests were in agreement with the predictions. That is, the simulations predict a failure to suppress slightly before observed in these cases.

  3. Fire protection for nuclear power plants. Part 1. Fundamental approaches. Version 6/99

    International Nuclear Information System (INIS)

    1999-06-01

    The KTA nuclear safety code sets out the fundamental approaches and principles for the prevention of fires in nuclear power plants, addressing aspects such as initiation, spreading, and effects of a fire: (a) Fire load and ignition sources, (b) structural and plant engineering conditions, (c) ways and means relating to fire call and fire fighting. Relevant technical and organisational measures are defined. Scope and quality of fire prevention measures to be taken, as well the relevant in-service inspection activities are determined according to the protective goals pursued in each case. (orig./CB) [de

  4. Fire simulation in nuclear facilities: the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    Burkett, M.W.; Martin, R.A.; Fenton, D.L.; Gunaji, M.V.

    1984-01-01

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabiities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  5. Fire simulation in nuclear facilities--the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    Burkett, M.W.; Martin, R.A.; Fenton, D.L.; Gunaji, M.V.

    1985-01-01

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabilities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  6. General multiplex centralized fire-alarm display system

    International Nuclear Information System (INIS)

    Zhu Liqun; Chen Jinming

    2002-01-01

    The fire-alarm display system is developed, which can connect with each type of fire controllers produced in the factory and SIGMASYS controllers. It can display whole alarm information. The display system software gathers communication, database and multimedia, has functions of inspecting fire, showing alarm, storing data, searching information and so on. The drawing software lets the user expediently add, delete, move and modify fire detection or fire fighting facilities on the building floor maps. The graphic transform software lets the display use the vectorgraph produced by popular plotting software such as Auto CAD. The system software provides the administration function, such as log book of changing shift and managing workers etc.. The software executed on Windows 98 platform. The user interface is friendly and reliable in operation

  7. Probabilistic assessment of fire related events in CWPH (Pilot study)

    International Nuclear Information System (INIS)

    Chatterjee, D.; Maity, S.C.; Guptan, Rajee; Mohan, Nalini; Ghadge, S.G.; Bajaj, S.S.

    2006-01-01

    As a part of Fire PSA for KAPS, a pilot study has been taken up identifying CWPH as the important zone vulnerable to fire. As the CWPH houses pumps belonging to all important cooling (APWC, FFW, NAHPPW, NALPW, etc.) of both the units, a single fire leads to failure of multiple safety/safety support system cooling affecting the safety of the plant. The objective of this study is as follows: Familiarising with the various published Fire-PSA study, comparing and finalisation of the computer code amongst various codes available with DAE, identifying and sequencing different activities involved for carrying out Fire PSA, i.e. Zoning and Sub-Zoning of Fire Source Area, Fire vulnerability of System and Component surrounding Fire Source, etc., finalization of report format and documentation. Computer Code FDS is used to carry out Fire Hazard Analysis. FDS is the latest state-of the-art software package extensively used for Fire Hazard Analysis. It develops a 3D scenario for any given fire giving credit to actual physical location of fire load and ventilation. It gives the time dependent of any fire in a specific zone crediting the time required by operator to take necessary preventive action which helps in quantifying the probability of error for any particular operator's for PSA study. To identify the most vulnerable sub-zone in CWPH, a walk down was organized and physical location of each load; their separation, fire barrier, ventilator in the room, arrangement of fire protection/fighting system, localized operator's room were reviewed. Fire in the middle diesel tank with pump is considered as initiating event in the sub-zone of CWPH. The Event Tree for this initiating event for CWPH was developed. Event Tree end states are identified as large fire i.e. fire which is failed to be detected by both means, i.e. early and late and failure in fighting by both means i.e. early and late. (author)

  8. Are post-fire silvicultural treatments a useful tool to fight the climate change threat in terms of plant diversity?

    Science.gov (United States)

    Hedo de Santiago, Javier; Esteban Lucasr Borja, Manuel; de las Heras, Jorge

    2016-04-01

    Adaptative forest management demands a huge scientific knowledge about post-fire vegetation dynamics, taking into account the current context of global change. We hypothesized that management practices should be carry out taking into account the climate change effect, to obtain better results in the biodiversity maintenance across time. All of this with respect to diversity and species composition of the post-fire naturally regenerated Aleppo pine forests understory. The study was carried out in two post-fire naturally regenerated Aleppo pine forests in the Southeastern of the Iberian Peninsula, under contrasting climatic conditions: Yeste (Albacete) shows a dry climate and Calasparra (Murcia) shows a semiarid climate. Thinning as post-fire silvicultural treatment was carried out five years after the wildfire event, in the year 1999. An experiment of artificial drought was designed to evacuate 15% of the natural rainfall in both sites, Yeste and Calasparra, to simulate climate change. Taking into account all the variables (site, silvicultural treatment and artificial drought), alpha diversity indices including species richness, Shannon and Simpson diversity indices, and plant cover, were analyzed as a measure of vegetation abundance. The results showed that plant species were affected by thinning, whereas induced drought affected total cover and species, with lower values at Yeste. Significant site variation was also observed in soil properties, species richness and total plant cover, conversely to the plant species diversity indices. We conclude that the plant community shows different responses to a simulated environment of climate change depending on the experimental site.

  9. Performance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread and Data Transmission

    Science.gov (United States)

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563

  10. Extinguisher powder for liquid metal fires

    Energy Technology Data Exchange (ETDEWEB)

    Menzenhauer, P; Ochs, G [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung

    1978-11-01

    The extinguisher introduced here based on graphite exhibited considerably improved extinguishing properties compared to other extinguishing powders. It has no aggressive properties, is, as for as could be tested in the short time available, non-hygroscopic and thus very easy to remove after extinguishing and cooling of the fire. The amount of extinguisher necessary is only a fraction of the amounts needed of other common powders. Storage is no problem and nerely a small storage amount is required. This extinguisher is excellently suitable for fighting sodium surface fires.

  11. Extinguisher powder for liquid metal fires

    International Nuclear Information System (INIS)

    Menzenhauer, P.; Ochs, G.

    1978-01-01

    The extinguisher introduced here based on graphite exhibited considerably improved extinguishing properties compared to other extinguishing powders. It has no aggressive properties, is, as for as could be tested in the short time available, non-hygroscopic and thus very easy to remove after extinguishing and cooling of the fire. The amount of extinguisher necessary is only a fraction of the amounts needed of other common powders. Storage is no problem and nerely a small storage amount is required. This extinguisher is excellently suitable for fighting sodium surface fires. (orig./HP) [de

  12. Simulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia

    Directory of Open Access Journals (Sweden)

    Ksenia Brazhnik

    2017-02-01

    Full Text Available Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire in tandem with a spatially-explicit, individually-based gap dynamics model SIBBORK (SIBerian BOReal forest simulator calibrated to Krasnoyarsk Region. DISTURB-F simulates the effect of forest fire on the boreal ecosystem, namely the mortality of all or only the susceptible trees (loss of biomass, i.e., carbon within the forested landscape. The fire module captures some important feedbacks between climate, fire and vegetation structure. We investigated the potential climate-driven changes in the fire regime and vegetation in middle and south taiga in central Siberia, a region with extensive boreal forest and rapidly changing climate. The output from this coupled simulation can be used to estimate carbon losses from the ecosystem as a result of fires of different sizes and intensities over the course of secondary succession (decades to centuries. Furthermore, it may be used to assess the post-fire carbon storage capacity of potential future forests, the structure and composition of which may differ significantly from current Eurasian boreal forests due to regeneration under a different climate.

  13. 10 CFR Appendix R to Part 50 - Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979

    Science.gov (United States)

    2010-01-01

    ... service-water/fire-water uses the minimum volume for fire uses shall be ensured by means of dedicated... knowledge of his or her role in the fire fighting strategy for the area assumed to contain the fire... LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. R Appendix R to Part 50—Fire Protection...

  14. 3-Dimensional numerical simulation of sodium spray fire accidents in LMFBRs

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou; Han Lang

    2005-01-01

    In order to estimate and foresee the sequence of sodium spray fires that may occur in the liquid metal cooled fast breeder reactors (LMFBRs), this paper develops a program to analyze such sodium fire accidents. The present study gives a 3-dimensional numerical analysis code for sodium spray fires. The spatial distributions of gas temperature and chemical species concentrations in the cell that sodium spray fires happened are given. This paper gives detailed explanation of combustion models and heat transfer models that applied in the program. And the calculation procedure and method in solving the fluid field are narrated in detail. Good agreements of an overall transient behavior are obtained in a sodium spray combustion test analysis. The comparison between the analytical and experimental results shows that the program presented in this paper is creditable and reasonable for simulating the sodium spray fires. (author)

  15. Spatial interpolation and simulation of post-burn duff thickness after prescribed fire

    Science.gov (United States)

    Peter R. Robichaud; S. M. Miller

    1999-01-01

    Prescribed fire is used as a site treatment after timber harvesting. These fires result in spatial patterns with some portions consuming all of the forest floor material (duff) and others consuming little. Prior to the burn, spatial sampling of duff thickness and duff water content can be used to generate geostatistical spatial simulations of these characteristics....

  16. Fire Play: ICCARUS--Intelligent Command and Control, Acquisition and Review Using Simulation

    Science.gov (United States)

    Powell, James; Wright, Theo; Newland, Paul; Creed, Chris; Logan, Brian

    2008-01-01

    Is it possible to educate a fire officer to deal intelligently with the command and control of a major fire event he will never have experienced? The authors of this paper believe there is, and present here just one solution to this training challenge. It involves the development of an intelligent simulation based upon computer managed interactive…

  17. Stochastic representation of fire behavior in a wildland fire protection planning model for California.

    Science.gov (United States)

    J. Keith Gilless; Jeremy S. Fried

    1998-01-01

    A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...

  18. Fire Source Accessibility of Water Mist Fire Suppression Improvement through Flow Method Control

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Ho; Kim, Hyeong Taek; Kim, Yun Jung; Park, Mun Hee [KHNP CRI, Daejeon (Korea, Republic of)

    2013-10-15

    Recently, nuclear power plants set CO{sub 2} fire suppression system. However it is hard to establish and to maintain and it also has difficulties performing function test. Therefore, it needs to develop a new fire suppression system to replace the existing CO{sub 2} fire suppression systems in nuclear power plant. In fact, already, there exist alternatives - gas fire suppression system or clean fire extinguishing agent, but it is hard to apply because it requires a highly complicated plan. However, water mist fire suppression system which has both water system and gas system uses small amount of water and droplet, so it is excellent at oxygen displacement and more suitable for nuclear power plant because it can avoid second damage caused by fire fighting water. This paper explains about enclosure effect of water mist fire suppression. And it suggests a study direction about water mist fire source approach improvement and enclosure effect improvement, using flow method control of ventilation system. Water mist fire suppression can be influenced by various variable. And flow and direction of ventilation system are important variable. Expectations of the plan for more fire source ventilation system is as in the following. It enhances enclosure effects of water mists, so it improves extinguish performance. Also the same effect as a inert gas injection causes can be achieved. Lastly, it is considered that combustible accessibility of water mists will increase because of descending air currents.

  19. Cock-fighting

    DEFF Research Database (Denmark)

    Lech, Marcel Lysgaard

    2018-01-01

    That Cock-fighting was extremely popular the ancient Greece, is clearly showed by the numerous depictions on vases and its symbolic and metaphorical range among the language of the Athenians. Greek comedy exploits and expands the metaphorical use of cock-fighting in both the linguistic and the pe...

  20. Investigations concerning fire-induced accidents in nuclear facilities

    International Nuclear Information System (INIS)

    Lamuth, P.; Lernout, L.A.; Bonneval, F.; Cottaz, M.

    1996-01-01

    In the context of fire protection in technical buildings of French nuclear facilities, three principles have been adopted: prevention, detection and fire-fighting. Their implementation makes it possible on the one hand to limit the fire ignition and the fire growth, and on the other hand to prevent fire extent which would lead to unavailability of several safety related equipment. Although progress has been made in this direction, the fire risks have still not been eliminated. It is therefore essential to evaluate the fire effects and to assess their consequences. To this end, three main R and D programs have been conducted into fires. Part I sets out the fire PSA methodology used for a 900 MWe PWR. Part II gives an outline of two fire and ventilation computer codes useful for the fire PSA. Finally, part III gives an outline of the tests already performed and those currently under way in the two laboratories of the Institut de Protection et de Surete Nucleaire (IPSN) in order to qualify the codes and provide useful information for the safety assessment. (author)

  1. Temperature field simulation of complex structures in fire environment

    International Nuclear Information System (INIS)

    Li Weifen; Hao Zhiming; Li Minghai

    2010-01-01

    In this paper, the typical model of the system of dangerous goods - steel - wood composite structure including components of explosives is used as the research object. Using MARC program, the temperature field of the structure in the fire environment is simulated. Radiation, conduction and convection heat transfer within the gap of the structure are taken into account, contact heat transfer is also considered. The phenomenon of thermal decomposition of wood in high temperature is deal with by equivalent method. The results show that the temperature of the explosives is not high in the fire environment. The timber inside the composite structure has played a very good insulation effect of explosives.

  2. Extinction of metal fires

    International Nuclear Information System (INIS)

    Mellottee, H.

    1977-01-01

    The main points of a large bibliography on liquid and solid metal fires are set out. The various methods used to fight these fires are presented; covering by powders is specially emphasized. Since this method has promising results, the various possible techniques, extinction by cooling the metal, by blanketing, by formation of a continuous insulating layer (by fusion or pyrolysis of a powder) or by a surface reaction between powder and metal are studied. The conditions of conservation and use of powders are outlined, then the various powders are described: inert powders, powders undergoing a physical transformation (fusion or vitrification of an organic compound, fusion of eutectic inorganic mixtures), multiple effect powders. Precise examples are quoted [fr

  3. EDV supported dynamic fire protection concept adaptation during dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Mummert, Maxi; Traichel, Anke; Dilger, Matthias

    2013-01-01

    Fire protection concepts are supposed to be a decision guide for the definition of measures and priorities in fire fighting and fire prevention. In case of reactor dismantling a fire protection concept for the actual status is required. Following the fuel removal from the reactor the protection goals are reduced to the safe confinement of radioactive materials and the restriction of radiation exposure. A dynamic fire protection concept was developed to allow the compliance with the required protection measures with respect to the protection targets. The implementation of the dynamic fire protection concept simplifies the planning of the dismantling steps and to adjust the fire protection measured in the frame of changes in the plant.

  4. Aerial wildfire fighting: history, current situation, problems and perspectives

    Directory of Open Access Journals (Sweden)

    A. V. Bryukhanov

    2017-10-01

    Full Text Available Nowadays aviation is among the most effective ways of early detection and suppression of wildfires. At the moment for the aerial wildfire fighting a few dozen models of aircraft are used worldwide, which are regularly modernized and renewed. In this article, authors give information about the history of fighting wildfires from the air, as well as analyze the current state of the issue with the use of aircraft and helicopter airtankers for firefighting, both at international level and in the territory of the Russian Federation. It is revealed that the most popular in the world still are the ground-based firefighting aircraft (regardless of the class of the carrying capacity. Amphibious firefighting aircraft now exist only in light (carrying capacity up to 5 tons and in medium type (capacity up to 15 tons. Among the helicopter aviation, heavy firefighting helicopters are mostly widely spread, as well as medium multipurpose helicopters, which are, apart from suppression, involved into delivery of people and goods to forest fire sites. The article is devoted to the main directions, according to which the development of aircraft tanker equipment abroad and in Russia occurs. The attention is directed to the most promising developments, and specific recommendations on how to increase the effectiveness of the fire aviation usage in Russia are given. Based on the studies carried out, a conclusion is drawn that for different countries there can be promising different types of firefighting aircraft, considering their landing field infrastructure, characteristics of forests and hydro systems, as well as the total area of the forest fund.

  5. Workshop on explosions, BLEVEs, fires, etc.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this workshop will be to provide a bridge between engineering practices, modeling, and measurement of fires and explosions, and use this information in a practical manner to improve the fire safety of the process facility. New techniques and information are available on the means to prevent, predict and mitigate fires and explosions. A review of BLEVEs and methods for preventing and protecting against the effects of BLEVES in large petrochemical facilities. Observations and the use of models that have been successful in predicting the effects of vapor explosions for the prevention of collapse of structures and mitigation of the effects of vapor explosions in process facilities are presented. Recent work involving the measurement of radiation from large jet fires at the Kuwaiti oil fields and fire tests of crude oil spills on the sea is discussed. Fire radiation measurement can be used to predict effects on structures, facilities, and the complexity of fire fighting operations required for control of spill and pool fires. Practical applications of techniques for prevention and control of explosions within building, resulting from failures of autoclaves or release of flammable gas to the atmosphere of the building are discussed.

  6. Sodium fires and nuclear power station safety

    International Nuclear Information System (INIS)

    Ivanenko, V.N.; Zubin, A.; Drobyshev, A.V.

    1986-01-01

    The danger of sodium aerosol release at a design basis accident (DBA) of a sodium-cooled fast reactor that involves coolant leakage and burning, is being analyzed. It has been shown that radioactive and toxic releases at DBA do not exceed permissible values. Some means of sodium fire fighting are described. (author)

  7. Interesting spontaneous combustion fire at Haus Aden colliery

    Energy Technology Data Exchange (ETDEWEB)

    Both, W; Weinheimer, O

    1976-02-05

    Spontaneous combustion ahead of the face occurred in an over-worked and under-worked seam. When the first cavity containing hot ash was found, an attempt to extinguish the fire with water was abandoned because of the quantity of steam produced, but the fire was extinguished by covering it with paste containing magnesium chloride and hydroxide and calcium chloride. Mining operations continued while the coal surrounding the hot region was cooled with water. The steps taken to detect and deal with other fires in advance of the face are described. These included pre-infusion with calcium chloride solution via boreholes and treatment of the hot cavities encountered with magnesium chloride paste. This method of fire-fighting was more successful than the use of water alone.

  8. Ignition and combustion of sodium, fire consequences, extinguishment and prevention

    International Nuclear Information System (INIS)

    Malet, J.C.

    1996-01-01

    This document presents the results of work carried out at the IPSN on: sodium inflammation, sodium combustion (pool fires and sprayed jet fires), extinguishment (passive means and extinguishing powder), the physico-chemical behaviour of aerosols and their filtration, the protection means of concretes, intervention during and after a fire, treatment of residues, intervention equipment. The calculation codes developed during these studies are described. The experimental basis which allowed the qualification of these codes and the technological means aimed at prevention and sodium fire fighting, was obtained using programmes carried out in the experimental facilities existing in Cadarache or in collaboration with the German teams of Karlsruhe

  9. Ignition and combustion of sodium, fire consequences, extinguishment and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [Institut de Protection et de Surete Nucleaire, Laboratoire d' Experimentation de Modelisation des Feux, C.E. Cadarache, Saint-Paul-lez-Durance (France). E-mail: malet at ipsncad.cea.fr

    1996-07-01

    This document presents the results of work carried out at the IPSN on: sodium inflammation, sodium combustion (pool fires and sprayed jet fires), extinguishment (passive means and extinguishing powder), the physico-chemical behaviour of aerosols and their filtration, the protection means of concretes, intervention during and after a fire, treatment of residues, intervention equipment. The calculation codes developed during these studies are described. The experimental basis which allowed the qualification of these codes and the technological means aimed at prevention and sodium fire fighting, was obtained using programmes carried out in the experimental facilities existing in Cadarache or in collaboration with the German teams of Karlsruhe.

  10. Aircraft Carrier Flight and Hangar Deck Fire Protection: History and Current Status

    National Research Council Canada - National Science Library

    Darwin, Robert L; Bowman, Howard L; Hunstad, Mary; Leach, William B; Williams, Frederick W

    2005-01-01

    .... Next, a review of firefighting systems, including the firefighting agents currently in use, as well as the current tactics for fighting fires on the flight deck and the hangar deck, is provided...

  11. Bridging EOS remote sensing measurements and fire emissions, smoke dispersion, and air quality DSS in the Eastern US

    Science.gov (United States)

    John J. Qu; Xianjun Hao; Ruixin Yang; Swarvanu Dasgupta; Sanjeeb Bhoi; Menas Kafatos

    1999-01-01

    Fire eniissions, smoke dispersiotl. ancl air quality are very important for fire fighting and planing of prescribed burning. BlueskyRATNS (BSR) is a comprehenisive and state-of-the-art Decision Support System (DSS) for fire managers and air quality managers to plan fiiels treatments and support state air qiiality smoke regulatory actions, especially related to...

  12. Enclosure environment characterization testing for the base line validation of computer fire simulation codes

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1987-03-01

    This report describes a series of fire tests conducted under the direction of Sandia National Laboratories for the US Nuclear Regulatory Commission. The primary purpose of these tests was to provide data against which to validate computer fire environment simulation models to be used in the analysis of nuclear power plant enclosure fire situations. Examples of the data gathered during three of the tests are presented, though the primary objective of this report is to provide a timely description of the test effort itself. These tests were conducted in an enclosure measuring 60x40x20 feet constructed at the Factory Mutual Research Corporation fires test facility in Rhode Island. All of the tests utilized forced ventilation conditions. The ventilation system was designed to simulate typical nuclear power plant installation practices and ventilation rates. A total of 22 tests using simple gas burner, heptane pool, methanol pool, and PMMA solid fires was conducted. Four of these tests were conducted with a full-scale control room mockup in place. Parameters varied during testing were fire intensity, enclosure ventilation rate, and fire location. Data gathered include air temperatures, air velocities, radiative and convective heat flux levels, optical smoke densities, inner and outer enclosure surface temperatures, enclosure surface heat flux levels, and gas concentrations within the enclosure in the exhaust stream

  13. Possibility of increasing the fire-suppression efficiency of the foam in automatic extinguishing installations

    Science.gov (United States)

    Kachanov, I. V.; Veremenyuk, V. V.; Karpenchuk, I. V.; Pavlyukov, S. Yu.

    2013-05-01

    The mechanics of movement of a liquid in the diffuser of the injector of an automatic extinguishing installation with preaeration of the fire-fighting substance was theoretically investigated. An integral solution of the equation for movement of the preaerated fire-fighting gas-liquid mixture in the indicated diffuser has been obtained. A mathematical model of two-phase liquid flow in this diffuser, which allows one to calculate the distribution of the average pressure in the diffuser along its length and to determine the loss in this pressure, has been developed. This model can be used for designing the output region of a hydraulic system with a hydrodynamic drag providing the operation of its injector in a definite regime.

  14. L-026: EPR-First Responders: Action Guides Extinguishing Fire Brigades

    International Nuclear Information System (INIS)

    2011-01-01

    This conference will cover how and when to apply the Fire Brigades. Instructions and guidelines within the IAEA-EPR-First Responders to be used to guide the fire fighting brigade in a radiological emergency response to radioactive material in a manner that will minimize risks while performing the task. It will take into consideration the use of several types of monitoring equipment such as oxygen level meters, sight explosive, chemical meters and radiation detectors

  15. Fire protection of nuclear power plant cable ducts

    International Nuclear Information System (INIS)

    Kandrac, J.; Lukac, L.

    1987-01-01

    Fire protection of cable ducts in the Bohunice and Dukovany V-2 nuclear power plants is of a fourtier type. The first level consists in preventive measures incorporated in the power plant design and layout. The second level consists in early detection and a quick repressive action provided by an electric fire alarm system and a stationary spray system, respectively. Fire partitions and glands represent the third level while special spray, paint and lining materials represent the fourth level of the protection. Briefly discussed are the results of an analysis of the stationary spray system and the effects reducing the efficiency of a fire-fighting action using this system. The analysis showed the need of putting off cable duct fires using mobile facilities in case the stationary spray system cannot cope any longer. (Z.M.). 3 figs., 2 refs

  16. A Forest Fire Sensor Web Concept with UAVSAR

    Science.gov (United States)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  17. Numerical Field Model Simulation of Full Scale Fire Tests in a Closed Spherical/Cylindrical Vessel.

    Science.gov (United States)

    1987-12-01

    the behavior of an actual fire on board a ship. The computer model will be verified by the experimental data obtained in Fire-l. It is important to... behavior in simulations where convection is important. The upwind differencing scheme takes into account the unsymmetrical phenomenon of convection by using...TANK CELL ON THE NORTH SIDE) FOR A * * PARTICULAR FIRE CELL * * COSUMS (I,J) = THE ARRAY TO STORE THE SIMILIAR VALUE FOR THE FIRE * * CELL TO THE SOUTH

  18. Applicability of ISO 16697 Data to Spacecraft Fire Fighting Strategies

    Science.gov (United States)

    Hirsch, David B.; Beeson, Harold D.

    2012-01-01

    Presentation Agenda: (1) Selected variables affecting oxygen consumption during spacecraft fires, (2) General overview of ISO 16697, (3) Estimated amounts of material consumed during combustion in typical ISS enclosures, (4) Discussion on potential applications.

  19. Experiments and CFD simulations of DTBP pool fires; Experimentelle Untersuchungen und CFD-Simulationen von DTBP-Poolfeuern

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Hyunjoo

    2007-07-01

    Flammable liquids are used increasingly often world-wide. Their storage, transport and chemical reactions are a considerable safety problem in industrial plants. Heat release and combustion products of big fires are a high hazard for persons, the immediate vicinity and the environment in general. Investigations of pool fires were carried out for a realistic assessment of the potential hazards to persons and plants in the immediate vicinity. Most of the available data on fire effects, safety distances and other measures relevant to fire protection are for hydrocarbons, alcohols and liquefied gases. LIttle is known on pool fires of liquid organic peroxides, which have quite different combustion characteristics with higher mass burnup rates and higher heat emissions into the vicinity. The dissertation presents experiments to characterize the combustion characteristics of organic peroxides as a function of the pool diameter. Di-tert-butylperoxide (DTBPL) was chosen for the experiments because it has a relatively high thermal stability as compared to other organic peroxides. Mass burnup rates, flame temperatures, the surface emissive power (SEP), the strength of thermal radiation and the flame length were measured as a function of the pool diameter. Further, parameters required for CFD simulations of DTBP pool fires were identified experimentally in order to ensure realistic modelling of real fires as a basis, e.g., for assessing safety distances. Experiments on large pool fires are costly and require much equipment and technical preparations so that fires are limited to pool diameters of only a few meters as a rule. CFD simulations would be capable of improving the prediction of safety-relevant parameters like flame temperature, surface emissive power, radiation strength and flame length without limiting the pool diameter or the fuel volume. Appropriate sub-models were used for modelling pool fires of organic peroxides, and the simulation results were critically

  20. Global simulations of smoke from Kuwaiti oil fires and possible effects on climate

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.A.; Malone, R.C.; Kao, C.Y.J.

    1991-01-01

    The Los Alamos Global Climate Model has bee used to simulate the global evolution of the Kuwaiti oil fire smoke and its potential effects on the climate. The initial simulations were done shortly before the fires were lit in January 1991. They indicated that such an event would not result in a Mini Nuclear Winter'' as some people were suggesting. Further simulations during the year suggested that the smoke could be responsible for subtle regional climate changes in the spring such as a 5 degree centigrade decrease in the surface temperature in Kuwait, a 10% decrease in precipitation in Saudi Arabia and a 10% increase in precipitation in the Tibetan Plateau region. These results are in qualitative agreement with the observations this year.

  1. Global simulations of smoke from Kuwaiti oil fires and possible effects on climate

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.A.; Malone, R.C.; Kao, C.Y.J.

    1991-12-31

    The Los Alamos Global Climate Model has bee used to simulate the global evolution of the Kuwaiti oil fire smoke and its potential effects on the climate. The initial simulations were done shortly before the fires were lit in January 1991. They indicated that such an event would not result in a ``Mini Nuclear Winter`` as some people were suggesting. Further simulations during the year suggested that the smoke could be responsible for subtle regional climate changes in the spring such as a 5 degree centigrade decrease in the surface temperature in Kuwait, a 10% decrease in precipitation in Saudi Arabia and a 10% increase in precipitation in the Tibetan Plateau region. These results are in qualitative agreement with the observations this year.

  2. Fire simulation in large compartments with a fire model 'CFAST'. Part 1. Survey of applicability for analyzing air-temperature profile in compartments

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Shirai, Koji; Eguchi, Yuzuru; Sano, Tadashi

    2012-01-01

    The basic performance of numerical analysis of air-temperature profiles in large-scale compartments by using a zone model, CFAST (Consolidated model of Fire growth And Smoke Transport), which has been widely applied for fire protection design of buildings is examined. Special attentions are paid to the dependence of the setting boundary conditions and the choosing model parameters. The simulations carried out under the denkyoken-test conditions, in which the air-temperature profiles in compartments and the heat-release rate of a fire have been precisely measured, indicate that the CFAST has a capability to appropriately represent the time-histories of air-temperature in the high air-temperature layer generated in the vicinity of ceiling of the compartment which includes the source of a fire, by applying the proper boundary conditions, i.e., time-histories of air-temperature in the upper (high temperature) layer given by the CFAST agree well with those of observations. The sensitivity analysis in the simulations also reveals that the appropriately setting of the boundary-conditions, especially for the heat-release ratio from a fire and the heat-transfer rate from walls of compartments to ambient air is vital. Contrary to this, the impacts of choosing numerical parameters on the air-temperature analysis are quite small. (author)

  3. Impacts of prescribed fire on soil loss and soil quality

    NARCIS (Netherlands)

    Shakesby, Richard A.; Martins Bento, Celia; Ferreira, Carla S.S.; Ferreira, António J.D.; Stoof, C.R.; Urbanek, Emilia; Walsh, Rory P.D.

    2015-01-01

    Prescribed (controlled) fire has recently been adopted as an important wildfire-fighting strategy in the Mediterranean. Relatively little research, however, has assessed its impacts on soil erosion and soil quality. This paper investigates hillslope-scale losses of soil, organic matter and

  4. Cinema Fire Modelling by FDS

    International Nuclear Information System (INIS)

    Glasa, J; Valasek, L; Weisenpacher, P; Halada, L

    2013-01-01

    Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations

  5. Cinema Fire Modelling by FDS

    Science.gov (United States)

    Glasa, J.; Valasek, L.; Weisenpacher, P.; Halada, L.

    2013-02-01

    Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations

  6. PCDD/F and Aromatic Emissions from Simulated Forest and Grassland Fires

    Science.gov (United States)

    Emissions of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) from simulated grassland and forest fires were quantitatively sampled to derive emission factors in support of PCDD/F inventory development. Grasses from Kentucky and Minnesota; forest shrubs fro...

  7. Surface Accessibility with Spatial Analysis During Fire Extinguishing Procedures: Example on the Island of Vis

    Directory of Open Access Journals (Sweden)

    Kruno Lepoglavec

    2017-01-01

    Full Text Available Background and Purpose: The existing public and forest transport infrastructure (truck forest roads are permanent objects used when passing through forests. They also serve as a firefighter belt and provide direct access to firefighting vehicles, or are used as the starting point where firefighting teams extinguish fires or move toward remote fires. The paper identifies the existing fire road network (including public roads, forest roads, non-classified roads and fire roads for access of firefighting vehicles during fire extinguishing interventions. Material and Methods: An analysis of the intervention rate was conducted on a dispersive sample (35 positions from two volunteer fire associations (VFA on the island of Vis. Also, an analysis of the surface availability to fire vehicles concerning the time of departure from the fire station was conducted, as well as the comparison with the Standard time of intervention defined by the regulations on fire department organization in the Republic of Croatia. Results: For each simulated fire location for intervention of two existing volunteer fire associations: VFA Komiža and VFA Vis, results show that for a few fire locations, despite a smaller distance from the VFA Komiža, a quicker intervention is possible from the VFA Vis (locations 4, 5 and 14, and vice versa (locations 21, 22 and 25. With the use of a New Service Area, tool intervention times regarding different areas were calculated. Intervention times were divided into intervals: 25 min. The last two categories of area are beyond reach for firefighters within the Standard time of intervention (15 min and together they comprise to 27.88% of the total research area. Conclusions: The results of Closest Facility tool indicate that for the simulated fire position the best/fastest route is not always the shortest one, because of a significant effect of the structural elements of each road, the state of the road and the longitudinal slope of the road

  8. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    Science.gov (United States)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  9. Fire safety in nuclear power stations

    International Nuclear Information System (INIS)

    Kench, R.L.

    1988-01-01

    This is the first of a three-part report on the fire hazards in nuclear power stations and some of the precautions necessary. This part lists the United Kingdom reactors, outlines how they work, the fuels used, the use of moderators and coolants and the control systems. Although the risk of fire is no higher than in fossil-fuel stations the consequences can be more serious. The radioactive materials used mean that there is biological shielding round the core, limitations on waste emissions allowed and limited access to some zones. Reliable shut-down systems are needed. Care in the use of water to fight fires must be exercised -it can act as a moderator and cause an otherwise safe core to go critical. The Wigner effect in graphite moderated reactors is explained. Fires in graphite can be extinguished by carbon dioxide. Argon, chlorine and sodium silicate can also be effective. In sodium cooled reactors fires can be allowed to burn themselves out, or TEC and argon could be used to extinguish the flame. (UK)

  10. Action taken by the french safety authorities for fire protection and fire fighting in basic nuclear plants

    International Nuclear Information System (INIS)

    Savornin, J.; Gibault, M.; Berger, R.; Kaluzny, Y.; Wallard, H.E.; Winter, D.

    1989-03-01

    The safety goal for nuclear installations is to prevent the dispersal of radioactive substances, both in the work area and outside the buildings into the environment. It is therefore at the design stage, then during construction and subsequent operation that it is necessary to take preventive measures against the outbreak of fire, and to take precautions to ensure that the consequences will always be limited. The paper describes the arrangements made by the French safety authorities to provide protection against fire in both nuclear plants and nuclear fuel cycle installations at all these stages

  11. Determination of pumper truck intervention ratios in zones with high fire potential by using geographical information system

    Science.gov (United States)

    Aricak, Burak; Kucuk, Omer; Enez, Korhan

    2014-01-01

    Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.

  12. Foam for combating mine fires

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    The application of foam in dealing with underground fire is well known due to its smothering action by cutting off air feed to burning fuel as well as acting as coolant. Besides plugging air feed to fire, water could be virtually reached to the fire affected areas much beyond the jet range as underground galleries with low roof restrict jet range of water. This method also enables a closer approach of a fire fighting team by isolating the toxic gases and smoke with a foam plug. The paper describes the development of high expansion foam composition and its application technology in order that foam plug method can be suitably utilized for combating mine fires in India. Three compositions were recommended for generation of high expansion foam: (a) 0.5% sodium/ammonium lauryl sulphate, 0.15 to 0.2% sodium carboxy methyl cellulose, 0.1% booster; (b) 0.5% sodium/ammonium lauryl sulfate, 0.12 to 0.15% alkaline solution of gum arabic, 0.1 to 0.2% ferrous gluconate; and (c) 0.35% sodium/ammonium lauryl sulfate, 0.20% booster, 0.2% xylene sulfonate.

  13. Simulation and Damage Analysis of an Accidental Jet Fire in a High-Pressure Compressed Pump Shelter

    OpenAIRE

    Jang, Chang Bong; Choi, Sang-Won

    2016-01-01

    Background: As one of the most frequently occurring accidents in a chemical plant, a fire accident may occur at any place where transfer or handling of combustible materials is routinely performed. Methods: In particular, a jet fire incident in a chemical plant operated under high pressure may bring severe damage. To review this event numerically, Computational Fluid Dynamics methodology was used to simulate a jet fire at a pipe of a compressor under high pressure. Results: For jet fire...

  14. A study of operation of station fire brigade with comparison for Japan and the U.S

    International Nuclear Information System (INIS)

    Ichiki, Kuniyasu

    2011-01-01

    With the occurrence of a fire at Kashiwazaki Kariwa No. 3 unit on a site transformer when Niigata Chuetsu Offshore Earthquake occurred in 2007, the movement of establishing station fire brigade broke out all over Japan. Fire brigade of U.S. power stations is an organization structured with the standards of clear requirements. Some of station fire event reports include examples of activation of station fire brigade. Preparing station fire brigade with good expertise is quite meaningful on the viewpoint of ruling out significant threats of fire against nuclear safety, such as Browns Ferry station fire occurred in 1975. The purpose of this study is to extract useful knowledge through making research on examples of operations of station fire brigade of both Japan and the U.S. As for fire occurrence, relatively frequent fires are seen at Japanese stations with miscellaneous components or some material for works. In the U.S., on the other hand, we can identify relatively frequent fires occurred with important equipment. This might make fire brigades of the U.S. well-prepared for fire fighting by establishing fire-coping strategies for every location in the station. Also, in some stations, fire brigade is continuously trained to enhance its firefighting and rescuing abilities. With the aspect of training of brigades, they are often assembled with devoted staff, which enable them acquiring frequent training and educations to improve their skills further. Fire fighting and rescuing are inevitably dangerous task. This is why frequent training is essential in order to prevent injuries and to keep up their motivation. Unfortunately, the circumstance for brigades in Japan is not helpful enough in experiencing special training needed for them. We have to figure out some way to get over such disadvantages. (author)

  15. Simulation on spread of fire smoke in the elevator shaft for a high-rise building

    Directory of Open Access Journals (Sweden)

    Yunchun Xia

    2014-01-01

    Full Text Available Spread of fire smoke in the elevator shaft of a high-rise building is influenced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187°C in 5 min, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.

  16. VISUAL-SEVEIF, a tool for integrating fire behavior simulation and economic evaluation of the impact of Wildfires

    Science.gov (United States)

    Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Ángel Herrera Machuca; Jesús Mª Rodríguez Leal

    2013-01-01

    Progress made in recent years in fire science, particularly as applied to forest fire protection, coupled with the increased power offered by mathematical processors integrated into computers, has led to important developments in the field of dynamic and static simulation of forest fires. Furthermore, and similarly, econometric models applied to economic...

  17. Fire and blast safety manual for fuel element manufacture

    International Nuclear Information System (INIS)

    Ensinger, U.; Koehler, B.; Mester, W.; Riotte, H.G.; Sehrbrock, H.W.

    1988-01-01

    The manual aims to enable people involved in the planning, operation, supervision, licensing or appraisal of fuel element factories to make a quick and accurate assessment of blast safety. In Part A, technical plant principles are shown, and a summary lists the flammable materials and ignition sources to be found in fuel element factories, together with theoretical details of what happens during a fire or a blast. Part B comprises a list of possible fires and explosions in fuel element factories and ways of preventing them. Typical fire and explosion scenarios are analysed more closely on the basis of experiments. Part B also contains a list and an assessment of actual fires and explosions which have occurred in fuel element factories. Part C contains safety measures to protect against fire and explosion, in-built fire safety, fire safety in plant design, explosion protection and measures to protect people from radiation and other hazards when fighting fires. A distinction is drawn between UO 2 , MOX and HTR fuel elements. (orig./DG) [de

  18. Fire Research Enclosure

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Simulates submarine fires, enclosed aircraft fires, and fires in enclosures at shore facilities .DESCRIPTION: FIRE I is a pressurizable, 324 cu m(11,400 cu...

  19. Fighting Fires with Fire - An Airman's Perspective on the Development of Joint Publication 3-09, Doctrine for Joint Fire Support

    National Research Council Canada - National Science Library

    Vittori, Jay

    1999-01-01

    This study is an Air Force doctrinaire's account of the development of Joint Publication 3-09, Doctrine for Joint Fire Support, the most controversial joint military doctrine publication ever produced...

  20. Using cellular automata to simulate forest fire propagation in Portugal

    Science.gov (United States)

    Freire, Joana; daCamara, Carlos

    2017-04-01

    Wildfires in the Mediterranean region have severe damaging effects mainly due to large fire events [1, 2]. When restricting to Portugal, wildfires have burned over 1:4 million ha in the last decade. Considering the increasing tendency in the extent and severity of wildfires [1, 2], the availability of modeling tools of fire episodes is of crucial importance. Two main types of mathematical models are generally available, namely deterministic and stochastic models. Deterministic models attempt a description of fires, fuel and atmosphere as multiphase continua prescribing mass, momentum and energy conservation, which typically leads to systems of coupled PDEs to be solved numerically on a grid. Simpler descriptions, such as FARSITE, neglect the interaction with atmosphere and propagate the fire front using wave techniques. One of the most important stochastic models are Cellular Automata (CA), in which space is discretized into cells, and physical quantities take on a finite set of values at each cell. The cells evolve in discrete time according to a set of transition rules, and the states of the neighboring cells. In the present work, we implement and then improve a simple and fast CA model designed to operationally simulate wildfires in Portugal. The reference CA model chosen [3] has the advantage of having been applied successfully in other Mediterranean ecosystems, namely to historical fires in Greece. The model is defined on a square grid with propagation to 8 nearest and next-nearest neighbors, where each cell is characterized by 4 possible discrete states, corresponding to burning, not-yet burned, fuel-free and completely burned cells, with 4 possible rules of evolution which take into account fuel properties, meteorological conditions, and topography. As a CA model, it offers the possibility to run a very high number of simulations in order to verify and apply the model, and is easily modified by implementing additional variables and different rules for the

  1. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  2. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...

  3. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  4. Simulation of pulverized coal fired boiler: reaction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.P.; Lansarin, M.A.; Secchi, A.R.; Mendes, T.F. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica. Grupo de Modelagem, Simulacao, Controle e Otimizacao de Processos)]. E-mail: {cperdomo, marla, arge, talita}@enq.ufrgs.br

    2005-06-15

    This work is part of a joint project to built a computational tool for power plant simulation, dealing specifically with the reaction chamber (place of the boiler where the fuel is burned). In order to describe the conversion of chemical energy to thermal energy, an one dimensional pseudo-homogeneous mathematical model, with variable physical properties, and based on mass and energy balances, was developed. The equations were implemented in the gPROMS simulator and the model parameters were estimated using the module gEST of this software, with experimental data from a large-scale coal-fired utility boiler and kinetic data from the open literature. The results showed that the model predicts the composition of the outlet combustion gas satisfactorily. (author)

  5. Heat shields for aircraft - A new concept to save lives in crash fires.

    Science.gov (United States)

    Neel, C. B.; Parker, J. A.; Fish, R. H.; Henshaw, J.; Newland, J. H.; Tempesta, F. L.

    1971-01-01

    A passenger compartment surrounded by a fire-retardant shell, to protect the occupants long enough for the fire to burn out or for fire-fighting equipment to reach the aircraft and extinguish it, is proposed as a new concept for saving lives in crash fires. This concept is made possible by the recent development of two new fire-retardant materials: a very lightweight foam plastic, called polyisocyanurate foam, and an intumescent paint. Exposed to heat, the intumescent paint expands to many times its original thickness and insulates the surface underneath it. Demonstration tests are illustrated, described and discussed. However, some problems, such as preventing fuselage rupture and protecting windows, must be solved before such a system can be used.

  6. Global sensitivity analysis using emulators, with an example analysis of large fire plumes based on FDS simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Adrian [Health and Safety Laboratory, Harpur Hill, Buxton (United Kingdom)

    2015-12-15

    Uncertainty in model predictions of the behaviour of fires is an important issue in fire safety analysis in nuclear power plants. A global sensitivity analysis can help identify the input parameters or sub-models that have the most significant effect on model predictions. However, to perform a global sensitivity analysis using Monte Carlo sampling might require thousands of simulations to be performed and therefore would not be practical for an analysis based on a complex fire code using computational fluid dynamics (CFD). An alternative approach is to perform a global sensitivity analysis using an emulator. Gaussian process emulators can be built using a limited number of simulations and once built a global sensitivity analysis can be performed on an emulator, rather than using simulations directly. Typically reliable emulators can be built using ten simulations for each parameter under consideration, therefore allowing a global sensitivity analysis to be performed, even for a complex computer code. In this paper we use an example of a large scale pool fire to demonstrate an emulator based approach to global sensitivity analysis. In that work an emulator based global sensitivity analysis was used to identify the key uncertain model inputs affecting the entrainment rates and flame heights in large Liquefied Natural Gas (LNG) fire plumes. The pool fire simulations were performed using the Fire Dynamics Simulator (FDS) software. Five model inputs were varied: the fire diameter, burn rate, radiative fraction, computational grid cell size and choice of turbulence model. The ranges used for these parameters in the analysis were determined from experiment and literature. The Gaussian process emulators used in the analysis were created using 127 FDS simulations. The emulators were checked for reliability, and then used to perform a global sensitivity analysis and uncertainty analysis. Large-scale ignited releases of LNG on water were performed by Sandia National

  7. Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data

    Directory of Open Access Journals (Sweden)

    N. Spichtinger

    2004-01-01

    Full Text Available Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS aerosol index (AI data and Global Ozone Monitoring Experiment (GOME tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.

  8. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  9. FDS5 Simulation for OECD PRISME Fire Test of DOOR PRSD5

    International Nuclear Information System (INIS)

    Lee, Kyu Bok; Park, Jong Seuk

    2009-01-01

    OECD/NEA PRISME Fire Project is an international co-operation project to investigate fire propagation by means of experiments and analyses for nuclear power plant applications. This project focuses on the generation of experimental data for fire and smoke propagation from the fire room to adjacent rooms under various conditions and room configurations. In addition, analyses using computer codes are performed to understand the phenomena of interest and to produce a consistent interpretation of the experimental results. The PRISME Project is composed of series of tests named as SOURCE, DOOR, LEAK and Global Tests. The SOURCE is composed of tests to characterize the fire source, and the DOOR is to study fire and smoke propagation through an open door, while the LEAK is to investigate hot gas leakages through other modes of openings such as holes, a slot, a duct, and a partially opened door. The Global test will be conducted as integral tests on the basis of the results of the previous separate effects tests. In this paper, simulations are performed with FDS5 computer code for the DOOR Test No.5 (PRS D 5) and the calculation results are compared with the corresponding experimental data to study the code capability to predict the phenomena of the hot gas propagation between two rooms

  10. Proof of safer operation of power station plant during a fire by linking in fire simulation and system technical analysis

    International Nuclear Information System (INIS)

    Hensel, W.; Beyer, H.; Samman, A.

    1997-01-01

    In order to attain the basic aims of protection in power station plant, a series of systems, which must be available also in the event of a fire, are provided. The thermal loads for the systems and components which are necessary to attain the aims of protection are ascertained by means of a simulation of the cause of the fire for the specific scenario. Statements on the availability of the systems and components in the specific scenario are derived from the design values used as the basis. (orig.) [de

  11. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de; Aguiar, Laís Alencar de

    2017-01-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  12. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de, E-mail: erica.ndomingos@gmail.com, E-mail: zrlima@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Aguiar, Laís Alencar de, E-mail: laguiars@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  13. Application of wildfire simulation methods to assess wildfire exposure in a Mediterranean fire-prone area (Sardinia, Italy)

    Science.gov (United States)

    Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.

    2012-12-01

    Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009

  14. Hanford fire department FY 99 annual work plan WBS 6.5.7

    Energy Technology Data Exchange (ETDEWEB)

    GOOD, D.E.

    1999-02-24

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education.

  15. Hanford fire department FY 1999 annual work plan WBS 6.5.7

    International Nuclear Information System (INIS)

    GOOD, D.E.

    1999-01-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education

  16. Born to win? Testing the fighting hypothesis in realistic fights: left-handedness in the Ultimate Fighting Championship

    OpenAIRE

    Pollet, Thomas V.; Stulp, Gert; Groothuis, Ton G. G.

    2013-01-01

    Given the heritability of human left-handedness and its purported associations with fitness-lowering traits, the persistence of the minority of left-handedness in human populations is an evolutionary puzzle. The fighting hypothesis proposes that these negative fitness costs are offset by fitness gains for left-handers when involved in fights with right-handers, as being a minority would generate a surprise effect increasing the chance of winning. The finding that left-handers are overrepresen...

  17. The French fire protection concept. Vulnerability analysis

    International Nuclear Information System (INIS)

    Kaercher, M.

    1998-01-01

    The French fire protection concept is based on a principle of three levels of defence in depth: fire prevention, fire containing and fire controlling. Fire prevention is based on arrangements which prevent the fire from starting or which make difficult for the fire to start. Fire containing is based on design measures so that the fire will have no impact on the safety of the installation. For fire controlling, equipment nad personnel are on duty in order to detect, to fight and to gain control over the fire as early as possible. The French fire protection concept gives priority to fire containing based on passive structural measures. All buildings containing safety equipment are divided into fire compartments (or fire areas) and fire cells (or fire zones). Basically, a compartment houses safety equipment belonging to one division (or train) so that the other division is always available to reach the plant safe shut down or to mitigate an accident. Because there is a large number of fire compartments and fire cells, deviations from the general principle can be observed. To this reason the RCC-I (Design and Construction Rules applicable for fire protection) requires to implement an assessment of the principle of division. This assessment is called vulnerability analysis. The vulnerability analysis is usually performed at the end of the project, before erection. It is also possible to perform a vulnerability analysis in an operating nuclear power plant in the scope of a fire safety upgrading programme. In the vulnerability analysis, the functional failure of all the equipment (except for those protected by a qualified fire barrier, designed or able to withstand the fire consequences) within the fire compartment or cell, where the fire breaks out, is postulated. The potential consequences for the plant safety are analysed

  18. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Science.gov (United States)

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  19. Design and Realization of Ship Fire Simulation Training System Based on Unity3D

    Science.gov (United States)

    Ting, Ye; Feng, Chen; Wenqiang, Wang; Kai, Yang

    2018-01-01

    Ship fire training is a very important training to ensure the safety of the ship, but limited by the characteristics of the ship itself, it is difficult to carry out fire training on the ship. This paper proposes to introduce a virtual reality technology to build a set of ship fire simulation training system, used to improve the quality of training, reduce training costs. First, the system design ideas are elaborated, and the system architecture diagram is given. Then, the key technologies in the process of system implementation are analyzed. Finally, the system examples are built and tested.

  20. Fire Risk Analysis and Optimization of Fire Prevention Management for Green Building Design and High Rise Buildings: Hong Kong Experience

    Directory of Open Access Journals (Sweden)

    Yau Albert

    2014-12-01

    Full Text Available There are many iconic high rise buildings in Hong Kong, for example, International Commercial Centre, International Financial Centre, etc. Fire safety issue in high rise buildings has been raised by local fire professionals in terms of occupant evacuation, means of fire-fighting by fire fighters, sprinkler systems to automatically put off fires in buildings, etc. Fire risk becomes an important issue in building fire safety because it relates to life safety of building occupants where they live and work in high rise buildings in Hong Kong. The aim of this research is to identify the fire risk for different types of high rise buildings in Hong Kong and to optimise the fire prevention management for those high rise buildings with higher level of fire risk and to validate the model and also to carry out the study of the conflict between the current fire safety building code and the current trend of green building design. Survey via the 7-point scale questionnaire was conducted through 50 participants and their responses were received and analysed via the statistical tool SPSS software computer program. A number of statistical methods of testing for significantly difference in samples were adopted to carry out the analysis of the data received. When the statistical analysis was completed, the results of the data analysis were validated by two Fire Safety Experts in this area of specialisation and also by quantitative fire risk analysis.

  1. Wildland Fire Behaviour Case Studies and Fuel Models for Landscape-Scale Fire Modeling

    Directory of Open Access Journals (Sweden)

    Paul-Antoine Santoni

    2011-01-01

    Full Text Available This work presents the extension of a physical model for the spreading of surface fire at landscape scale. In previous work, the model was validated at laboratory scale for fire spreading across litters. The model was then modified to consider the structure of actual vegetation and was included in the wildland fire calculation system Forefire that allows converting the two-dimensional model of fire spread to three dimensions, taking into account spatial information. Two wildland fire behavior case studies were elaborated and used as a basis to test the simulator. Both fires were reconstructed, paying attention to the vegetation mapping, fire history, and meteorological data. The local calibration of the simulator required the development of appropriate fuel models for shrubland vegetation (maquis for use with the model of fire spread. This study showed the capabilities of the simulator during the typical drought season characterizing the Mediterranean climate when most wildfires occur.

  2. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  3. Taekwondo Fighting in Training Does Not Simulate the Affective and Cognitive Demands of Competition: Implications for Behavior and Transfer.

    Science.gov (United States)

    Maloney, Michael A; Renshaw, Ian; Headrick, Jonathon; Martin, David T; Farrow, Damian

    2018-01-01

    Enhancing practice design is critical to facilitate transfer of learning. Considerable research has focused on the role of perceptual information in practice simulation, yet has neglected how affect and cognition are shaped by practice environments and whether this influences the fidelity of behavior (Headrick et al., 2015). This study filled this gap by examining the fidelity of individual (cognition, affect, and actions) and interpersonal behavior of 10 highly skilled Australian Taekwondo athletes fighting in training compared to competition. Interpersonal behavior was assessed by tracking location coordinates to analyze distance-time coordination tendencies of the fighter-fighter system. Individual actions were assessed through notational analysis and approximate entropy calculations of coordinate data to quantify the (un)predictability of movement displacement. Affect and cognition were assessed with mixed-methods that included perceptual scales measuring anxiety, arousal, and mental effort, and post-fight video-facilitated confrontational interviews to explore how affect and cognitions might differ. Quantitative differences were assessed with mixed models and dependent t -tests. Results reveal that individual and interpersonal behavior differed between training and competition. In training, individuals attacked less ( d = 0.81, p training, fighters had lower anxiety ( d = -1.26, p interpersonal behavior, with larger interpersonal distances generated by the fighter-fighter system in training ( d = 0.80, p training environment, such as reductions in pressure, arousal, and mental challenge. Findings highlight the specificity of performer-environment interactions. Fighting in training affords reduced affective and cognitive demands and a decrease in action fidelity compared to competition. In addition to sampling information, representative practice needs to consider modeling the cognitions and affect of competition to enhance transfer.

  4. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment

    Science.gov (United States)

    Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri

    2007-10-01

    Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.

  5. Smouldering Fires in the Earth System

    Science.gov (United States)

    Rein, G.

    2012-04-01

    Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and

  6. Fire test of DOT 7A Boxes

    International Nuclear Information System (INIS)

    Jensen, J.D.

    1979-05-01

    The primary objective of conducting the full-scale fire tests of the DOT (Department of Transportation) 7A FRP Boxes was to provide information to assist in quantifying the fire hazard of the storage located at the Radioactive Waste Management Complex (RWMC), and to learn if changing the storage array will decrease the fire risk. Also, the level of fire fighting and fire protection required to maintain the risk at the RWMC within acceptable DOE guidelines was investigated. Two full-scale fire tests were conducted at Southwest Research Institute (SwRI) in June 1978, using the DOE 7A FRP Plywood Storage Containers. The fire tests showed that when subjected to a substantial ignition source, the boxes will propagate fire as long as no fire-suppression measures are taken. Fire will breach the boxes and spread the radioactive contaminated waste if it is not extinguished. As the fire progresses, additional boxes will become involved, and eventually the entire storage array will ignite. It is recommended that the use of DOT 7A Boxes be discontinued and replaced with noncombustible storage containers. In the event this is not practicable, guidance recommendations are presented to minimize the large fire loss potential. It is also recommended that an investigation be conducted into the number of boxes that can be destroyed and still maintain a safe environment for employees and the public. This investigation should include how far radioactive contamination will spread, what cleanup will be required, anticipated exposure of the people within the area, and the public impact of such a fire

  7. CERN firemen share their expertise

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Firemen from local fire brigades have been coming to CERN to learn modern fire-fighting techniques. This apparatus allows the simulation of the spectacular backdraft phenomenon, so firemen training at CERN learn to understand it.

  8. DynCorp Tricities Services, Inc. Hanford fire department FY 1998 annual work plan

    International Nuclear Information System (INIS)

    Good, D.E.

    1997-01-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the U.S. Department of Energy operated Hanford site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. This fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This plan provides a program overview, program baselines, and schedule baseline

  9. Evaluation of Fire Hazard and Safety Management of Heritage Buildings in Georgetown, Penang

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-03-01

    Full Text Available Fire is a subject that is always neglected and ignored as far as heritage buildings are concerned. Unlike newly-built buildings, which are required under UBBL to undergo certain fire protection system tests, people are less likely to carry out such tests and detailed assessments for heritage buildings. Thus, this research is significant as it is aimed at accomplishing several objectives including studying the current fire emergency plan, besides identifying and assessing the possible fire hazards in heritage buildings in Penang. Several case studies were carried out at a few premises such as the Khoo Kongsi, Cheah Kongsi, Hock Teik Chen Shin Temple and the Teochew Temple with the aid of the Fire Rescue Department Malaysia (FRDM. The results obtained from this study will be discussed according to several aspects focusing on general health and safety management at the site, the fire-fighting system, fire exit routes and signage at the temples, fire hazards, and fire detection and alarm.

  10. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  11. Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I: reference simulation

    Directory of Open Access Journals (Sweden)

    J. Trentmann

    2006-01-01

    Full Text Available Wildland fires in boreal regions have the potential to initiate deep convection, so-called pyro-convection, due to their release of sensible heat. Under favorable atmospheric conditions, large fires can result in pyro-convection that transports the emissions into the upper troposphere and the lower stratosphere. Here, we present three-dimensional model simulations of the injection of fire emissions into the lower stratosphere by pyro-convection. These model simulations are constrained and evaluated with observations obtained from the Chisholm fire in Alberta, Canada, in 2001. The active tracer high resolution atmospheric model (ATHAM is initialized with observations obtained by radiosonde. Information on the fire forcing is obtained from ground-based observations of the mass and moisture of the burned fuel. Based on radar observations, the pyro-convection reached an altitude of about 13 km, well above the tropopause, which was located at about 11.2 km. The model simulation yields a similarly strong convection with an overshoot of the convection above the tropopause. The main outflow from the pyro-convection occurs at about 10.6 km, but a significant fraction (about 8% of the emitted mass of the smoke aerosol is transported above the tropopause. In contrast to regular convection, the region with maximum updraft velocity in the pyro-convection is located close to the surface above the fire. This results in high updraft velocities >10 m s−1 at cloud base. The temperature anomaly in the plume decreases rapidly with height from values above 50 K at the fire to about 5 K at about 3000 m above the fire. While the sensible heat released from the fire is responsible for the initiation of convection in the model, the release of latent heat from condensation and freezing dominates the overall energy budget. Emissions of water vapor from the fire do not significantly contribute to the energy budget of the convection.

  12. Relationship between number and intensity of fighting: evidence from cow fighting tournaments in Valdostana cattle

    Directory of Open Access Journals (Sweden)

    Cristina Sartori

    2014-10-01

    Full Text Available Cattle establish firm dominance relationships through ritualised fights. This study aimed at investigating behaviours involved in dominance relationships and effect of factors such as weight, age and repeated fighting experience in fighting dynamics. Subject of the study was the Valdostana breed, whose cows assess dominance relationships in traditional competitions. Tournaments consist in rounds in which cows interact in pairs to assess dominance. Only winners participate in subsequent rounds. An amount of 120 fights involving 145 cows was retained, and winners (51 cows were considered as focal individuals. An ethogram of agonistic interactions was established, including behaviours of different agonistic intensity as physical interactions (pushes, clashes, displays (threats, vocalisations, and non agonistic approaches. A transition diagram of behaviours showed a tendency to express firstly non agonistic approaches and lastly more aggressive clashes. A mixed linear model analysis on traits like competition intensity, duration, and type of behaviours expressed showed a significant effect of age difference on behaviours. However, the most important factor was the number of rounds performed: from the first to subsequent fights agonistic intensity and physical contacts increased, and displays reduced. This may be due either to the fact that more aggressive individuals were likely to be the winners, or that in higher rounds the opponents were more similar regarding fighting ability or aggressiveness and thus more intense fights occurred. The increased aggressiveness after repeated situations of competition suggests suggests that careful attention should be paid to welfare when animals are exposed to situations of high competition, like regrouping.

  13. Research field of fire technology in Finland

    Science.gov (United States)

    Loikkanen, P.; Holm, C.

    1987-02-01

    The goal of the study is to give an overview of the whole diversified research field of fire technology and its problems. For this reason the research subjects have been grouped so that the responsibilities of different authorities, the legislation and specifications, various fields of technology, areas of industry, and groups of products could all be found as clearly as possible. The field has been divided into nine sub-areas. They are: general grounds, fire physics and chemistry, structural fire prevention, textiles and furnishings, devices for heating and other use, detection, fire fighting and rescue, quality control, and special problems. The sub-areas have been divided into 34 main subjects and these, excluding those of special problems, further into as many as 117 subject groups. Characteristics and problems of the sub-areas and the main subjects have been described. The subject groups have been characterized by key words and concepts which outline the projects. No concrete research projects and programs have, however, been directly suggested because their extent and contents depend essentially on financing and other available resources.

  14. Application of Paste Backfill in Underground Coal Fires

    Science.gov (United States)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  15. Joint simulation of regional areas burned in Canadian forest fires: A Markov Chain Monte Carlo approach

    Science.gov (United States)

    Steen Magnussen

    2009-01-01

    Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...

  16. Forest Service Turns to NREL for Help Fighting Fires More Sustainably |

    Science.gov (United States)

    to need power," said Mike Ferris, public information officer for the Forest Service. "We're going to need phones and some sort of internet connectivity." Ferris said he's worked in fire camps bring in a caterer and a shower unit," Ferris said. "Both of those are going to need power. If

  17. Application of fire and evacuation models in evaluation of fire safety in railway tunnels

    Science.gov (United States)

    Cábová, Kamila; Apeltauer, Tomáš; Okřinová, Petra; Wald, František

    2017-09-01

    The paper describes an application of numerical simulation of fire dynamics and evacuation of people in a tunnel. The software tool Fire Dynamics Simulator is used to simulate temperature resolution and development of smoke in a railway tunnel. Comparing to temperature curves which are usually used in the design stage results of the model show that the numerical model gives lower temperature of hot smoke layer. Outputs of the numerical simulation of fire also enable to improve models of evacuation of people during fires in tunnels. In the presented study the calculated high of smoke layer in the tunnel is in 10 min after the fire ignition lower than the level of 2.2 m which is considered as the maximal limit for safe evacuation. Simulation of the evacuation process in bigger scale together with fire dynamics can provide very valuable information about important security conditions like Available Safe Evacuation Time (ASET) vs Required Safe Evacuation Time (RSET). On given example in software EXODUS the paper summarizes selected results of evacuation model which should be in mind of a designer when preparing an evacuation plan.

  18. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    Science.gov (United States)

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  19. Psychophysiological states and special performance of boxers with different styles of fight

    Directory of Open Access Journals (Sweden)

    V.V. Aksutin

    2014-12-01

    Full Text Available Purpose : The style of the fight is one of the important factors that affect the quality of the arts in boxing. Particularly important factor in the modern boxing are the mental processes that are involved in forecasting and analyzing the situation that arises in the ring and are associated with cognitive functions. Purpose - to examine the psychophysiological state and a special performance for skilled boxers with different styles of input match. Material : 22 highly qualification boxer aged 18-23 years were studies. The absolute and the relative strength of serial and single strikes were studied. Definition of special performance and power strokes performed on a special simulator. Recorded the absolute and relative strength of serial and single strikes. Results : The results show that the attacking style of the fight in boxing is accompanied by the presence of a high level of efficiency, reduction of fatigue, anxiety, and depending on the condition of vegetative functions. Showed a reduction in the growth of autonomy and heteronomy in the structure of psycho-physiological state of boxers with the attacking style of the fight, which indicates the presence of compromise and avoidance of external failures. Conclusions : Boxers with attacking style of fight characterized by high values of the left side impact forces and reduce the values of the right direct strike force, compared with boxers protective style of fight.

  20. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    Science.gov (United States)

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street

  1. German data for risk based fire safety assessment

    International Nuclear Information System (INIS)

    Roewekamp, M.; Berg, H.P.

    1998-01-01

    Different types of data are necessary to perform risk based fire safety assessments and, in particular, to quantify the fire event tree considering the plant specific conditions. Data on fire barriers, fire detection and extinguishing, including also data on secondary effects of a fire, have to be used for quantifying the potential hazard and damage states. The existing German database on fires in nuclear power plants (NPPs) is very small. Therefore, in general generic data, mainly from US databases, are used for risk based safety assessments. Due to several differences in the plant design and conditions generic data can only be used as conservative assumptions. World-wide existing generic data on personnel failures in case of fire fighting have only to be adapted to the plant specific conditions inside the NPP to be investigated. In contrary, unavailabilities of fire barrier elements may differ strongly depending on different standards, testing requirements, etc. In addition, the operational behaviour of active fire protection equipment may vary depending on type and manufacturer. The necessity for more detailed and for additional plant specific data was the main reason for generating updated German data on the operational behaviour of active fire protection equipment/features in NPPs to support risk based fire safety analyses being recommended to be carried out as an additional tool to deterministic fire hazard analyses in the frame of safety reviews. The results of these investigations revealed a broader and more realistic database for technical reliability of active fire protection means, but improvements as well as collection of further data are still necessary. (author)

  2. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  3. 76 FR 17327 - 100th Anniversary of the Triangle Shirtwaist Factory Fire

    Science.gov (United States)

    2011-03-29

    ... responsibility to provide a safe environment for all American workers. NOW, THEREFORE, I, BARACK OBAMA, President... since the Triangle factory fire, we are still fighting to provide adequate working conditions for all... collective bargaining as a tool to give workers a seat at the tables of power. Working Americans are the...

  4. Rubber acid damage in fire hoses

    Energy Technology Data Exchange (ETDEWEB)

    Thaysen, A C; Bunker, H J; Adams, M E

    1945-03-17

    Hose failure observed in rubber-lined fire hoses may be due to sulfuric acid formed from sulfur present in hoses when they are not properly dried. Microorganisms were observed in numerous samples of hose liquid and as a result of the experiments which were carried it was concluded that: the production of rubber acid in hose is due to the activity of sulfur-oxidizing bacteria of the Thiobacterium thiooxidans group. Such acid will invariably be formed when the hoses are stored with the linings wet, when the responsible bacteria are present and when the free sulfur content of the hoses exceeds 0.1 precent. The alternative of preventing the introduction of the causal bacteria does not appear practical since the water used in fire-fighting in the London district is taken from static supplies.

  5. Intelligent agents for training on-board fire fighting

    NARCIS (Netherlands)

    Bosch, K. van den; Harbers, M.; Heuvelink, A.; Doesburg, W. van

    2009-01-01

    Simulation-based training in complex decision making often requires ample personnel for playing various roles (e.g. team mates, adversaries). Using intelligent agents may diminish the need for staff. However, to achieve goal-directed training, events in the simulation as well as the behavior of key

  6. US Research on Wildland Fires??…with a Focus on EPA’s Efforts

    Science.gov (United States)

    The United States spends more than $1 billion every year to fight wildfires. According to National Interagency Fire Center data, of the 10 years with the largest acreage burned, nine have occurred since 2000 (as of 2012). This period coincides with many of the warmest years on re...

  7. Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design

    Science.gov (United States)

    Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley

    2004-01-01

    Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...

  8. No evidence of increased fire risk due to agricultural land abandonment in Sardinia (Italy

    Directory of Open Access Journals (Sweden)

    C. Ricotta

    2012-05-01

    Full Text Available Different land cover types are related to different levels of fire hazard through their vegetation structure and fuel load composition. Therefore, understanding the relationships between landscape changes and fire behavior is of crucial importance for developing adequate fire fighting and fire prevention strategies for a changing world. In the last decades the abandonment of agricultural lands and pastoral activities has been the major driver of landscape transformations in Mediterranean Europe. As agricultural land abandonment typically promotes an increase in plant biomass (fuel load, a number of authors argue that vegetation succession in abandoned fields and pastures is expected to increase fire hazard. In this short paper, based on 28 493 fires in Sardinia (Italy in the period 2001–2010, we show that there is no evidence of increased probability of fire ignition in abandoned rural areas. To the contrary, in Sardinia the decreased human impact associated with agricultural land abandonment leads to a statistically significant decrease of fire ignition probability.

  9. Numerical modeling of the effects of fire-induced convection and fire-atmosphere interactions on wildfire spread and fire plume dynamics

    Science.gov (United States)

    Sun, Ruiyu

    It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a

  10. Report on full-scale horizontal cable tray fire tests, FY 1988

    International Nuclear Information System (INIS)

    Riches, W.M.

    1988-09-01

    In recent years, there has been much discussion throughout industry and various governmental and fire protection agencies relative to the flammability and fire propagation characteristics of electrical cables in open cable trays. It has been acknowledged that under actual fire conditions, in the presence of other combustibles, electrical cable insulation can contribute to combustible fire loading and toxicity of smoke generation. Considerable research has been conducted on vertical cable tray fire propagation, mostly under small scale laboratory conditions. In July 1987, the Fermi National Accelerator Laboratory initiated a program of full scale, horizontal cable tray fire tests, in the absence of other building combustible loading, to determine the flammability and rate of horizontal fire propagation in cable tray configurations and cable mixes typical of those existing in underground tunnel enclosures and support buildings at the Laboratory. The series of tests addressed the effects of ventilation rates and cable tray fill, fire fighting techniques, and effectiveness and value of automatic sprinklers, smoke detection and cable coating fire barriers in detecting, controlling or extinguishing a cable tray fire. This report includes a description of the series of fire tests completed in June 1988, as well as conclusions reached from the test results

  11. Fire extinguishing of electrical equipment under voltage at nuclear power plants

    International Nuclear Information System (INIS)

    Capek, Josef

    2009-01-01

    Fire extinguishing on equipment that is under voltage is always hazardous. Conventional fire fighting equipment applicable to this task includes powder and gas extinguishers, which, however, have some drawbacks. Therefore, attention has been increasingly devoted to high-pressure fire extinguishing, whose assets include better heat removal as compared to a full water flow where the majority of the water runs off without any cooling effect. This article describes the testing of some types and combinations of extinguishing techniques and their interpretation based on earth-leakage current measurement and determination of a safe distance for fire extinguishing. Methodology described in CSN IEC 60-1:1994 and CSN EN 3-7:2004 was applied. To meet the criterion, none of the tests was to exhibit an earth-leakage current higher than 0.5 mA. In the accredited laboratory test room setup, 3 extinguishing equipment arrangements proved to extinguish fire on electrical equipment under voltage at a safe distance of 1 m (or 3 m). (orig.)

  12. 105-DR Large Sodium Fire Facility decontamination, sampling, and analysis plan

    International Nuclear Information System (INIS)

    Knaus, Z.C.

    1995-01-01

    This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility in the 100-D Area of the Hanford Site. The LSFF was established to investigate fire fighting and safety associated with alkali metal fires in the liquid metal fast breeder reactor facilities. The decontamination, sampling, and analysis plan identifies the decontamination procedures, sampling locations, any special handling requirements, quality control samples, required chemical analysis, and data validation needed to meet the requirements of the 105-DR Large Sodium Fire Facility Closure Plan in compliance with the Resource Conservation and Recovery Act

  13. Overestimating resource value and its effects on fighting decisions.

    Directory of Open Access Journals (Sweden)

    Lee Alan Dugatkin

    Full Text Available Much work in behavioral ecology has shown that animals fight over resources such as food, and that they make strategic decisions about when to engage in such fights. Here, we examine the evolution of one, heretofore unexamined, component of that strategic decision about whether to fight for a resource. We present the results of a computer simulation that examined the evolution of over- or underestimating the value of a resource (food as a function of an individual's current hunger level. In our model, animals fought for food when they perceived their current food level to be below the mean for the environment. We considered seven strategies for estimating food value: 1 always underestimate food value, 2 always overestimate food value, 3 never over- or underestimate food value, 4 overestimate food value when hungry, 5 underestimate food value when hungry, 6 overestimate food value when relatively satiated, and 7 underestimate food value when relatively satiated. We first competed all seven strategies against each other when they began at approximately equal frequencies. In such a competition, two strategies--"always overestimate food value," and "overestimate food value when hungry"--were very successful. We next competed each of these strategies against the default strategy of "never over- or underestimate," when the default strategy was set at 99% of the population. Again, the strategies of "always overestimate food value" and "overestimate food value when hungry" fared well. Our results suggest that overestimating food value when deciding whether to fight should be favored by natural selection.

  14. Breaking Terrorists’ Will To Fight

    Science.gov (United States)

    2014-06-01

    guillotine spreads in all of France and brings to justice all the traitors. There is no other means to inspire the...the end, we shall fight in France , we shall fight on the seas and oceans, we shall fight with growing confidence and growing strength in the air, we...deprivation: “Any ideology—even the very best, even Marxism -Leninism itself—is ineffective unless it is linked with objective realities, meets

  15. Fight Bac! | Partnership for Food Safety Education

    Science.gov (United States)

    Fight Bac! Fight Bac! Fight Bac! Partnership for Food Safety Education Supporting consumers to & Symptoms Food Safety Glossary Food Safety Education Food Safety Education Month 2017 Don't Wing Spanish Resources Food Safety Education Food Safety Education Month 2017 Don't Wing It The Story of Your

  16. Fire safety

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J.; Huhtanen, R.; Palmen, H.; Salminen, A.; Turtola, A.

    1998-01-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  17. Validation and uncertainty quantification of Fuego simulations of calorimeter heating in a wind-driven hydrocarbon pool fire.

    Energy Technology Data Exchange (ETDEWEB)

    Domino, Stefan Paul; Figueroa, Victor G.; Romero, Vicente Jose; Glaze, David Jason; Sherman, Martin P.; Luketa-Hanlin, Anay Josephine

    2009-12-01

    The objective of this work is to perform an uncertainty quantification (UQ) and model validation analysis of simulations of tests in the cross-wind test facility (XTF) at Sandia National Laboratories. In these tests, a calorimeter was subjected to a fire and the thermal response was measured via thermocouples. The UQ and validation analysis pertains to the experimental and predicted thermal response of the calorimeter. The calculations were performed using Sierra/Fuego/Syrinx/Calore, an Advanced Simulation and Computing (ASC) code capable of predicting object thermal response to a fire environment. Based on the validation results at eight diversely representative TC locations on the calorimeter the predicted calorimeter temperatures effectively bound the experimental temperatures. This post-validates Sandia's first integrated use of fire modeling with thermal response modeling and associated uncertainty estimates in an abnormal-thermal QMU analysis.

  18. New perspectives in fire management in South American savannas: The importance of intercultural governance.

    Science.gov (United States)

    Mistry, Jayalaxshmi; Schmidt, Isabel Belloni; Eloy, Ludivine; Bilbao, Bibiana

    2018-05-11

    Wildfires continue to cause damage to property, livelihoods and environments around the world. Acknowledging that dealing with wildfires has to go beyond fire-fighting, governments in countries with fire-prone ecosystems have begun to recognize the multiple perspectives of landscape burning and the need to engage with local communities and their practices. In this perspective, we outline the experiences of Brazil and Venezuela, two countries where fire management has been highly contested, but where there have been recent advances in fire management approaches. Success of these new initiatives have been measured by the reduction in wildfire extent through prescribed burning, and the opening of a dialogue on fire management between government agencies and local communities. Yet, it is clear that further developments in community participation need to take place in order to avoid the appropriation of local knowledge systems by institutions, and to better reflect more equitable fire governance.

  19. Updating of the fire fighting systems and organization at the Embalse nuclear power plant, Argentina

    International Nuclear Information System (INIS)

    Acevedo, C.F.

    1998-01-01

    A brief description is given of the updating carried out at the Embalse NPP after commissioning, covering the station fire equivalent loads, the station weak points from the fire point of view, the possible upgrading of systems or technological improvements, early alarm and automatic actions, organizations, education and training, and drills. (author)

  20. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the

  1. Current Status of Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2002-01-01

    The approach for fire risk assessment to be applied within periodic safety reviews of nuclear power plants in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis. For that purpose, a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. This standard event tree has to be adapted to each critical fire zone or room. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. In order to perform a quantitative fire risk assessment, a basic data base must be established which should, e.g., include initiating frequencies, reliability data for all fire protection measures, fire barriers, etc. Detailed plant-specific information is needed on ignition sources, detection and extinguishing systems, manual fire fighting, stationary fire suppression systems. As one contributor to fire specific PSA input data, reliability data for the active fire protection measures are required for the application in the fire specific event tree analysis. These data needed to be estimated are unavailabilities per demand or failure rates per hour of plant operation for those components or systems belonging to the active fire protection means. The data on potential failures or unavailabilities per demand of the respective fire protection measures were gained from the plant specific documentation of inspection and maintenance. The assessment whether the detected findings are estimated as failures or only as deficiencies or deteriorations requires a deep insight in the plant specific operating conditions for the fire protection means and needs careful engineering

  2. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    Science.gov (United States)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  3. Automatic Code Checking Applied to Fire Fighting and Panic Projects in a BIM Environment - BIMSCIP

    Directory of Open Access Journals (Sweden)

    Marcelo Franco Porto

    2017-06-01

    Full Text Available This work presents a computational implementation of an automatic conformity verification of building projects using a 3D modeling platform for BIM. This program was developed in C# language and based itself on the 9th Technical Instruction from Military Fire Brigade of the State of Minas Gerais which covers regulations of fire load in buildings and hazardous areas.

  4. An algorithm to help design fire simulation and other data base work

    Science.gov (United States)

    Romain Mees

    1974-01-01

    The data necessary for fire simulation may be made available through an algorithm based on tracing of boundaries composed of straight-line segments. Useful assumptions are that if a closed boundary does not contain a given point, then any other closed boundary contained within the former one does not contain the location; and that a given location will be contained in...

  5. Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons

    Science.gov (United States)

    Russo, Ana; Ramos, Alexandre; Trigo, Ricardo

    2013-04-01

    Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and lightning occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by lightning, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by lightning. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire activity in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) lightning

  6. Performance assessment of fire-sat monitoring system based on satellite time series for fire danger estimation : the experience of the pre-operative application in the Basilicata Region (Italy)

    Science.gov (United States)

    Lanorte, Antonio; Desantis, Fortunato; Aromando, Angelo; Lasaponara, Rosa

    2013-04-01

    This paper presents the results we obtained in the context of the FIRE-SAT project during the 2012 operative application of the satellite based tools for fire monitoring. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger monitoring and fire effect estimation based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS), ASTER, Landsat TM data were used. Novel data processing techniques have been developed by researchers of the ARGON Laboratory of the CNR-IMAA for the operative monitoring of fire. In this paper we only focus on the danger estimation model which has been fruitfully used since 2008 to 2012 as an reliable operative tool to support and optimize fire fighting strategies from the alert to the management of resources including fire attacks. The daily updating of fire danger is carried out using satellite MODIS images selected for their spectral capability and availability free of charge from NASA web site. This makes these data sets very suitable for an effective systematic (daily) and sustainable low-cost monitoring of large areas. The preoperative use of the integrated model, pointed out that the system properly monitor spatial and temporal variations of fire susceptibility and provide useful information of both fire severity and post fire regeneration capability.

  7. Measurements and simulation for design optimization for low NOx coal-firing system

    Energy Technology Data Exchange (ETDEWEB)

    E. Bar-Ziv; Y. Yasur; B. Chudnovsky; L. Levin; A. Talanker [Ben-Gurion University of Negev, Beer-Sheva (Israel)

    2003-07-01

    The information required to design a utility steam generator is the heat balance, fuel analysis and emission. These establish the furnace wall configuration, the heat release rates, and the firing technology. The furnace must be sized for (1) residence time for complete combustion with low NOx, and (2) reduction of flue gas temperature to minimize ash deposition. To meet these, computational fluid dynamics (CFD) of the combustion process in the furnace were performed and proven to be a powerful tool for this purpose. Still, reliable numerical simulations require careful interpretation and comparison with measurements. We report numerical results and measurements for a 575 MW pulverized coal tangential firing boiler of the Hadera power plant of Israel Electric Corporation (IEC). Measured and calculated values were found to be in reasonable agreement. We used the simulations for optimization and investigated temperature distribution, heat fluxes and concentration of chemical species. We optimized both the furnace flue gas temperature entering the convective path and the staged residence time for low NOx. We tested mass flow rates through close-coupled and separate overfire air ports and its arrangement and the coal powder fineness. These parameters can control the mixing rate between the fuel and the oxidizer streams and can affect the most important characteristics of the boiler such as temperature regimes, coal burning rate and nitrogen oxidation/reduction. From this effort, IEC started to improve the boiler performance by replacing the existing typical tangential burners to low NOx firing system to ensure the current regulation requirements of emission pollutions.

  8. Modeling of compartment fire

    International Nuclear Information System (INIS)

    Sathiah, P.; Siccama, A.; Visser, D.; Komen, E.

    2011-01-01

    Fire accident in a containment is a serious threat to nuclear reactors. Fire can cause substantial loss to life and property. The risk posed by fire can also exceed the risk from internal events within a nuclear reactor. Numerous research efforts have been performed to understand and analyze the phenomenon of fire in nuclear reactor and its consequences. Modeling of fire is an important subject in the field of fire safety engineering. Two approaches which are commonly used in fire modeling are zonal modeling and field modeling. The objective of this work is to compare zonal and field modeling approach against a pool fired experiment performed in a well-confined compartment. Numerical simulations were performed against experiments, which were conducted within PRISME program under the framework of OECD. In these experiments, effects of ventilation flow rate on heat release rate in a confined and mechanically ventilated compartment is investigated. Time dependent changes in gas temperature and oxygen mass fraction were measured. The trends obtained by numerical simulation performed using zonal model and field model compares well with experiments. Further validation is needed before this code can be used for fire safety analyses. (author)

  9. Ferocious Fighting between Male Grasshoppers

    Science.gov (United States)

    Umbers, Kate D. L.; Tatarnic, Nikolai J.; Holwell, Gregory I.; Herberstein, Marie E.

    2012-01-01

    Contests among individuals over mating opportunities are common across diverse taxa, yet physical conflict is relatively rare. Due to the potentially fatal consequences of physical fighting, most animals employ mechanisms of conflict resolution involving signalling and ritualistic assessment. Here we provide the first evidence of ubiquitous escalated fighting in grasshoppers. The chameleon grasshopper (Kosciuscola tristis) is an Australian alpine specialist, in which males engage in highly aggressive combat over ovipositing females. We describe discrete agonistic behaviours including mandible flaring, mounting, grappling, kicking and biting, and their use depending on the individual’s role as challenger or defender. We show that male role predicts damage, with challengers being more heavily damaged than males defending females (defenders). Challengers also possess wider mandibles than defenders, but are similar in other metrics of body size. Our data suggest that fights escalate between males matched in body size and that mandibles are used as weapons in this species. This system represents an exciting opportunity for future research into the evolution of costly fighting behaviour in an otherwise placid group. PMID:23166725

  10. Ferocious fighting between male grasshoppers.

    Directory of Open Access Journals (Sweden)

    Kate D L Umbers

    Full Text Available Contests among individuals over mating opportunities are common across diverse taxa, yet physical conflict is relatively rare. Due to the potentially fatal consequences of physical fighting, most animals employ mechanisms of conflict resolution involving signalling and ritualistic assessment. Here we provide the first evidence of ubiquitous escalated fighting in grasshoppers. The chameleon grasshopper (Kosciuscola tristis is an Australian alpine specialist, in which males engage in highly aggressive combat over ovipositing females. We describe discrete agonistic behaviours including mandible flaring, mounting, grappling, kicking and biting, and their use depending on the individual's role as challenger or defender. We show that male role predicts damage, with challengers being more heavily damaged than males defending females (defenders. Challengers also possess wider mandibles than defenders, but are similar in other metrics of body size. Our data suggest that fights escalate between males matched in body size and that mandibles are used as weapons in this species. This system represents an exciting opportunity for future research into the evolution of costly fighting behaviour in an otherwise placid group.

  11. Applicability of the 'constructional fire prevention for industrial plants' to power plants

    International Nuclear Information System (INIS)

    Hammacher, P.

    1978-01-01

    Power plants, especially nuclear power plants, are considered because of their high value and large construction volume to be among the most important industrial constructions of our time. They have a very exposed position from the point of view of fire prevention because of their constructional and operational concept. The efforts in the Federal Republic of Germany to standardize laws and regulations for fire prevention in industrial plants (industrial construction code, DIN 18230) must be supported if only because they would simplify the licensing procedure. However these regulations cannot be applied in many cases and especially in the main buildings of thermal power plants without restricting or even endangering the function or the safety of such plants. At the present state of the art many parts of the power plant can surely be defined as 'fire safe'. Fire endangered plant components and rooms are protected according to their importance by different measures (constructional measures, fire-fighting equipments, extractors for flue gases and for heat, fire-brigade of the plant). (orig.) [de

  12. Hegelian Phenomenology of Spirit and Boxing Fight

    Directory of Open Access Journals (Sweden)

    Kosiewicz Jerzy

    2018-03-01

    Full Text Available In the presented text the author points out to anthropological as well as axiological foundations of the boxing fight from the viewpoint of Hegel’s philosophy. In the genial idealist’s views it is possible to perceive the appreciation of the body, which constitutes a necessary basis for the man’s physical activity, for his work oriented towards the self-transformation and the transformation of the external world, as well as for rivalry and the hand-to-hand fight. While focusing our attention on the issue of rivalry and on the situation of the fight - and regarding it from the viewpoint of the master - slave theory (included in the phenomenology of spirit, it is possible to proclaim that even a conventionalised boxing fight - that is, restricted by cultural and sports rules of the game - has features of the fight to the death between two Hegelian forms of selfknowledge striving for self-affirmation and self-realisation. In the boxing fight, similarly as in the above mentioned Hegelian theory, a problem of work and of the development of the human individual (that is, of the subject, self-knowledge, the participant of the fight appears. There appears also a prospect of death as a possible end of merciless rivalry. The fight revalues the human way in an important way, whereas the prospect for death, the awareness of its proximity, the feeling that its close and possible, saturates the life with additional values. It places the boxer, just like every subject fighting in a similar or a different way, on the path towards absolute abstraction - that is, it brings him closer to his self-fulfilment in the Absolute, to the absolute synthesis. The Hegelian viewpoint enables also to appreciate the boxing fight as a manifestation of low culture (being in contrast with high culture, to turn attention to the relations which - according to Hegel - take place between the Absolute and the man, as well as to show which place is occupied by the subject both in

  13. Fire, humans and landscape. Is there a connection?

    Science.gov (United States)

    Valese, Eva; Ascoli, Davide; Conedera, Marco; Held, Alex

    2013-04-01

    Fire evolved on the earth under the direct influence of climate and the accumulation of burnable biomass at various times and spatial scales. As a result, fire regimes depend not only on climatic and biological factors, but also greatly reflect the cultural background of how people do manage ecosystems and fire. A new awareness among scientists and managers has been rising about the ecological role of fire and the necessity to understand its past natural and cultural dynamics in different ecosystems, in order to preserve present ecosystem functionality and minimize management costs and negative impacts. As a consequence we assisted in the last decades to a general shift from the fire control to the fire management approach, where fire prevention, fire danger rating, fire ecology, fire pre-suppression and suppression strategies are fully integrated in the landscape management. Nowadays, a large number of authors recognize that a total suppression strategy, as the one adopted during last decades, leads to a fire paradox: the more we fight for putting out all fires, the more extreme events occur and cause long term damages. The aim of this review is to provide a state of art about the connection between fire, humans and landscape, along time and space. Negative and positive impacts on ecosystem services and values are put in evidence, as well as their incidence on human aptitude to fire use as to fire suppression. In order to capture a consistent fragment of fire history, palaeofires and related palynological studies are considered. They enable a valuable, even if partial, look at the millenary fire regime. Actual strategies and future directions are described in order to show what are the alternatives for living with fire, since removing completely this disturbance from earth is not a option, nor feasible neither advisable. Examples from the world, in particular from the Alps and the Mediterranean basin, are shown for better illustrating the signature of

  14. Numerical simulations of forest fire propagation and smoke transport as an external hazard assessment methodology development for a nuclear power plant

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamano, Hidemasa

    2016-01-01

    A new method has been developed to assess potential challenges by forest fire smoke on a cooling function of a decay heat removal system (DHRS) of a sodium-cooled fast reactor. Combinational numerical simulations of a forest fire propagation and a smoke transport were performed to evaluate a cumulative amount of smoke captured on air filters of the DHRS. The forest fire propagation simulations were performed using FARSITE code to evaluate a temporal increase of a forest fire spread area, a frontal fireline location, reaction intensity, and fireline intensity. Peripheral boundary of the forest fire spread area is shaped like an ellipse on the terrain, and the active forest fire area from which smoke is produced as a forest fire product is increased with forest fire spread. The smoke transport simulations were performed using ALOFT-FT code where a spatial distribution of smoke density, especially of particle matter (PM), is evaluated. The snapshot (i.e. at a certain time step) outputs by FARSITE on the reaction intensity and the fireline intensity were utilized as the input data for ALOFT-FT, while it was conservatively assumed that the smoke generated from the active forest fire area along the periphery boundary rises up from the frontal fireline location nearest to a nuclear power plant (NPP) and that prevailing wind transports all smoke to an NPP in the leeward side. The evaluated time-dependent changes of spatial PM density were utilized to calculate a cumulative amount of PM captured on the air filters of the DHRS. Sensitivity analysis was performed on prevailing wind speed to which both the fireline intensity and the smoke transport behavior are sensitive. The total amount of PM on the air filters was conservatively estimated around several hundred grams per m 2 which is well below the utilization limit. (author)

  15. Assessment of exposure to carbon monoxide group of firefighters from fire fighting and rescue units

    Directory of Open Access Journals (Sweden)

    Jadwiga Lembas-Bogaczyk

    2011-03-01

    Full Text Available Firemen threat during fire burning of chemical substances indicated presence of carbon monoxide (CO in all cases. Carbon monoxide causes death of fire. Inhaled through respiratory system, links with hemoglobin, thus blocking transport and distribution of oxygen in the body. This leads to tissue anoxia, which is a direct threat to firefighters’ life. The purpose of this study was to assess the exposure to carbon monoxide of participating firefighters extinguishing fire. Estimation of carbon monoxide quantity absorbed by firefighters was isolated in a group of 40 firefighters from Fire Extinguishing and Rescue Unit of State Fire in Nysa. The study was conducted by measuring carbon monoxide in exhaled air. For measurement of carbon monoxide concentration in exhaled air Micro CO meter was used. Results were demonstrated separately for nonsmokers (n425 and smokers (n415. Mean COHb[%] levels in nonsmokers, measured prior the rescue action was 0,3950,3% and increased statistically significant after the action to 0,6150,34%, while in the group smokers, this level was 2,1750,64% before the action and increased insignificantly after the action to 2,3350,63%. The average COHb level in the same groups before and after exercise, was respectively: for nonsmokers prior to exercise was 0,4850,28% and after exercise decreased statistically significant to 0,3050,27%. In the group of smokers before exercise was 2,2350,61% and decreased statistically significant up to 1,5450,71%. It was no difference between the group of age and time of employment.

  16. Analysis Evacuation Route for KM Zahro Express on Fire Condition using Agent Based Modeling and Fire Dynamics Simulatior

    Directory of Open Access Journals (Sweden)

    Trika Pitana

    2017-09-01

    Full Text Available Safety is the thing that needs to be preferred by users of transport, passengers should also understand about safety procedures and evacuation procedures in the means of transport. There have been many accidents that happen in the world of transport, particularly in the shipping world, from 2010 to 2016 is no more than 50 accidents of ships in accordance with the cause recorded by KNKT (Komisi Nasional Keselamatan Transportasi. On this research was discussed the evacuation time on the ship KM Zahro express that occurred earlier in the year 2017 in the Kepulauan Seribu, DKI Jakarta. Almost all passenger dead caused by fire from power source in engine room. This thesis will explaine about evacuation time and dangers from fire that interfere the process of evacuation. The methods used are Agent Based Modeling and Simulation (ABMS and Fire Dynamics Simulator (FDS for modeling fire simulation. Agent-Based Modeling software (pathfinder and Fire Dynamics Simulator software (pyrosim are used to calculate time evacuation in normal condition and fire condition of KM Zahro Express. Agent-Based Modeling and Simulator (ABMS is a modeling method that aims to model complex problems based on real cases. Agent-Based Modeling and Simulator (ABMS is designed to model a place that has a seat, path, exit door, humans, and others. Pyrosim is a graphical user interface for the Fire Dynamics Simulator (FDS. FDS models can predict smoke, temperature, carbon monoxide, and other substances during fires.  In this case the existing models can be used to plan and prepare an emergency if unwanted things happen. As well as using basic rules which refer to the Safety Of Life At Sea (SOLAS and International Maritime Organization (IMO. Result of Evacuation simulation calculation on emergency conditions (two rear exit doors will be closed that match at actually condition is 29,783 minutes (respon is not taken in this simulation, calculation results obtained from simulation of

  17. Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned

    Science.gov (United States)

    Rodman Linn; Kerry Anderson; Judith Winterkamp; Alyssa Broos; Michael Wotton; Jean-Luc Dupuy; Francois Pimont; Carleton Edminster

    2012-01-01

    Field experiments are one way to develop or validate wildland fire-behavior models. It is important to consider the implications of assumptions relating to the locality of measurements with respect to the fire, the temporal frequency of the measured data, and the changes to local winds that might be caused by the experimental configuration. Twenty FIRETEC simulations...

  18. A multimodal 3D framework for fire characteristics estimation

    Science.gov (United States)

    Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.

    2018-02-01

    In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.

  19. Advanced Simulation Tool for Improved Damage Assessment 2) Water-Mist Suppression of Large Scale Compartment Fires

    National Research Council Canada - National Science Library

    Prasad, Kuldeep

    2000-01-01

    .... In the first report, we adopted a domain decomposition approach, based on the multiblock Chimera technique, to simulate fires in single uncluttered compartments and predicted spread of smoke in multi...

  20. Gas Detection Instrument Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ANSONG FENG

    2013-06-01

    Full Text Available The wireless sensor network is used to simulate poisonous gas generating system in the Fire-Fighting Simulated Training System. In the paper, we use the wireless signal to simulate the poisonous gas source and use received signal strength indicator (RSSI to simulate the distance between the fireman and the gas source. The gas detection instrument samples the temperature and sphygmus of the trainee and uses the wireless signal as poisonous gas signal. When the trainee enters into the poisonous gas area, the gas detection instrument warns with sound and light and sends the type, density value, the location of the poisonous gas and vital signs of the trainee to host. The paper discusses the software and hardware design of the gas detection instrument. The system has been used to the several of Fire-Fighting training systems.

  1. Challenges to fire protection measures at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Narama, Takeshi

    2015-01-01

    New regulatory standards for fire protection at nuclear power plants have been established by the Nuclear Regulation Authority. This paper introduces the measures taken by the Hamaoka Nuclear Power Station for the following four items, which were especially big changes. (1) To install a combination of sensors of different types or instruments with equivalent functions so as to be able to emit unique signals to inform a fire in the early stage. (2) To conduct 'UL vertical burn test' as the demonstration test for self-extinguishing performance as the condition for flame-retardant cable. (3) To install automatic fire-extinguishers or fixed fire-extinguishing devices of manual type at the spots where fire-fighting is difficult due to the filling of smoke in a fire or the effect of radiation. (4) To separate the system for purpose of ensuring safety function to attain the high-temperature shutdown and cold-temperature shutdown of a reactor whatever fire may happen at the nuclear facilities. The examples of the installation of fire-extinguishers as the measures for the above Item (3) are as follows; (A) as for the devices containing oil, a foam-extinguishing agent is released against each target device from the nozzle, and (B) for large vertical pump motors indoors and relatively small pump motors, IA type automatic foam extinguishing systems are installed. (A.O.)

  2. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    Science.gov (United States)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  3. Firing patterns in the adaptive exponential integrate-and-fire model.

    Science.gov (United States)

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  4. Smouldering Subsurface Fires in the Earth System

    Science.gov (United States)

    Rein, Guillermo

    2010-05-01

    Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently

  5. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario FireRangers during Fire Deployments.

    Directory of Open Access Journals (Sweden)

    A H Robertson

    Full Text Available The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments.Participants (n = 21 from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA, Project Fire (P, and Fire Base (B deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV monitoring devices (Zephyr BioHarness3 units. Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software.Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate; P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR for protein was acceptable: 22-25% (across deployment types. Whereas the AMDR for fat and carbohydrates were high: 40-50%; and low: 27-37% respectively, across deployment types.This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices.

  6. Improvement of fire protection measures for nuclear power plants

    International Nuclear Information System (INIS)

    2012-01-01

    Improvements of fire protection measures for nuclear power plants were performed as following items: Development of fire hazard analysis method. Application of developed Fire Dynamic tool to actual plants, With regard to fire tests for the fire data acquisition, cable fire test and oil fire test were performed. Implementation of fire hazard analysis code and simulation were performed as following items: Fire analysis codes FDS, SYLVIA, CFAST were implemented in order to analyze the fire progression phenomena, Trial simulation of fire hazard as Metal-Clad Switch Gear Fire of ONAGAWA NPP in Tohoku earthquake (HEAF accident). (author)

  7. Fighting Fire with Fire

    DEFF Research Database (Denmark)

    Bossetta, Michael

    2017-01-01

    Advancing the concept of populism as a political style, this study compares the debate performances of two British party leaders, Nick Clegg and Nigel Farage, as they clashed in a pair of televised debates over Britain’s EU membership ahead of the 2014 European Parliament elections. The argument ...

  8. Prescribed fire effects on field-derived and simulated forest carbon stocks over time

    Science.gov (United States)

    Nicole M. Vaillant; Alicia L. Reiner; Erin K. Noonan-Wright

    2013-01-01

    To better understand the impact of prescribed fire on carbon stocks, we quantified aboveground and belowground carbon stocks within five pools (live trees and coarse roots, dead trees and coarse roots, live understory vegetation, down woody debris, and litter and duff) and potential carbon emissions from a simulated wildfire before and up to 8 years after prescribed...

  9. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2005-06-01

    Full Text Available This paper presents a new architecture called FAIS for implementing intelligent agents cooperating in a special Multi Agent environment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  10. Characterization of a mine fire using atmospheric monitoring system sensor data.

    Science.gov (United States)

    Yuan, L; Thomas, R A; Zhou, L

    2017-06-01

    Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.

  11. FOCUS: a fire management planning system -- final report

    Science.gov (United States)

    Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey

    1981-01-01

    FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...

  12. CFD simulation of a fire in the living area of three storey residential house to evaluate life safety in houses

    International Nuclear Information System (INIS)

    Bounagui, A.; Benichou, N.; Kashef, A.; McCartney, C.

    2004-01-01

    Over time there have been changes in construction practices, building designs and materials and construction technologies. The Institute for Research in Construction (IRC) at the National Research Council of Canada (NRC) is undertaking research project to determine the impact of innovative residential construction products and systems on the fire safety of houses. The research study includes two phases: experimental and numerical. A new three-level full-scale experimental facility, representing a typical single-family house, has been built to study the structural fire performance, smoke movement and tenability conditions in the event of a fire. In the event of a fire in the first storey of a house, fire and smoke can move up to the main and second floors either through an open door or any openings in the floor structure between the basement and the main floor rendering the upper floor untenable for the occupants. Using CFD simulations this paper investigates the effect of the state of a stairwell door (opened or closed) on the fire development as well as on the moving up of the toxic gases to the upper floors. Simulation results were then used to estimate the time when conditions would become untenable, based on criteria found in the literature. (author)

  13. Dangers of releasing CO₂ to fight fires in the cargo hold of seagoing bulk carriers

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess; Jarleivson Hilduberg, Øssur

    the application of CO₂ to deep-seated fires involving solids subject to smoldering, but without identifying or alerting the reader to the potential presence of explosive pyrolysis gases. NFPA 12 appears to presume that electrostatic discharges will dissipate safety if metal nozzles are used and the entire system......On seagoing general cargo vessels, the cargo is stored in bulk in the holds. Fire protection for cargo holds comprises detection and firefighting capability. Detection normally incorporates a smoke sampling system that continuously draws air from each cargo hold and passes it to a smoke detector...... cabinet. The fire can be fought by flooding the cargo hold with inert carbon dioxide. The carbon dioxide is stored in its liquid form at pressures in excess of 50 bar and kept in multiple vertical steel cylinders arranged in a battery. For firefighting to be effective, SOLAS regulations require...

  14. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Luo, Xu; Wang, Yu Li; Zhang, Jin Quan

    2018-03-01

    Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus

  15. The turbine oil fire in the nuclear power plant, Muehleberg

    International Nuclear Information System (INIS)

    Lutz, H.R.

    1972-01-01

    At 21.15 hours on the evening of the 28th July 1971, a turbine oil fire broke out in the Nuclear Power Plant Muehleberg of the Bernische Kraftwerke AG, resulting in damage amounting to around 20 million Swiss Francs and a delay of some ten months in putting the plant into operation. The plant is equipped with a General Electric boiling water reactor and two BBC saturated steam turbines. Up to the time of the fire, both turbo-sets had already been run singly up to their full capacity of 160 MWe and the initial trials with both sets working parallel were shortly due to be carried out. Following the outbreak of fire, the causes of which are described in the contributions of the authors Hagn, L. and H. Huppmann and Christian, H. and H. Grupp, fire fighting action was immediately taken, in line with the emergency measures laid down in the operating regulations. With the assistance of the Berne City Fire Brigade, the blaze in the roof of the turbine hall was first extinguished and the spreading cable conflagration then fought, using foam and water. (orig.) [de

  16. Applications of Near Real-Time Image and Fire Products from MODIS

    Science.gov (United States)

    Schmaltz, J. E.; Ilavajhala, S.; Teague, M.; Ye, G.; Masuoka, E.; Davies, D.; Murphy, K. J.; Michael, K.

    2010-12-01

    NASA’s MODIS Rapid Response Project (http://rapidfire.sci.gsfc.nasa.gov/) has been providing MODIS fire detections and imagery in near real-time since 2001. The Rapid Response system is part of the Land and Atmospheres Near-real time Capability for EOS (LANCE-MODIS) system. Current capabilities include providing MODIS imagery in true color and false color band combinations, a vegetation index, and temperature - in both uncorrected swath format and geographically corrected subset regions. The geographically-corrected subsets images cover the world's land areas and adjoining waters, as well as the entire Arctic and Antarctic. These data are available within a few hours of data acquisition. The images are accessed by large number of user communities to obtain a rapid, 250 meter-resolution overview of ground conditions for fire management, crop and famine monitoring and forecasting, disaster response (fires, oil spills, floods, storms), dust and aerosol monitoring, aviation (tracking volcanic ash), monitoring sea ice conditions, environmental monitoring, and more. In addition, the scientific community uses imagery to locate phenomena of interest prior to ordering and processing data and to support the day-to-day planning of field campaigns. The MODIS Rapid Response project has also been providing a near real-time data feed on fire locations and MODIS imagery subsets to the Fire Information for Resource Management System (FIRMS) project (http://maps.geog.umd.edu/firms). FIRMS provides timely availability of fire location information, which is essential in preventing and fighting large forest/wild fires. Products are available through a WebGIS for visualizing MODIS hotspots and MCD45 Burned Area images, an email alerting tool to deliver fire data on daily/weekly/near real-time basis, active data downloads in formats such as shape, KML, CSV, WMS, etc., along with MODIS imagery subsets. FIRMS’ user base covers more than 100 countries and territories. A recent user

  17. Feasibility and acceptability of workers' health surveillance for fire fighters.

    Science.gov (United States)

    Plat, Marie-Christine J; Frings-Dresen, Monique Hw; Sluiter, Judith K

    2011-09-01

    The objective of this study was to test the feasibility and acceptability of a new workers' health surveillance (WHS) for fire fighters in a Dutch pilot-implementation project. In three fire departments, between November 2007 and February 2009, feasibility was tested with respect to i) worker intent to change health and behavior; ii) the quality of instructions for testing teams; iii) the planned procedure in the field; and iv) future WHS organisation. Acceptability involved i) satisfaction with WHS and ii) verification of the job-specificity of the content of two physical tests of WHS. Fire fighters were surveyed after completing WHS, three testing teams were interviewed, and the content of the two tests was studied by experts. nearly all of the 275 fire fighters intended to improve their health when recommended by the occupational physician. The testing teams found the instructions to be clear, and they were mostly positive about the organisation of WHS. Acceptability: the fire fighters rated WHS at eight points (out of a maximum of ten). The experts also reached a consensus about the optimal job-specific content of the future functional physical tests. Overall, it is feasible and acceptable to implement WHS in a definitive form in the Dutch fire-fighting sector.

  18. Analysis of Moisture Evaporation from Underwear Designed for Fire-Fighters

    Directory of Open Access Journals (Sweden)

    Elena Onofrei

    2015-03-01

    Full Text Available In this study we analysed the effect of moisture on the thermal protective performance of fire-fighter clothing in case of routine fire-fighting conditions. In the first stage of this research we investigated simultaneous heat and moisture transfer through a single-layer fabric, used as underwear for fire-fighters, at different moisture conditions. In the second stage of the study, the underwear in dry and wet state was tested together with protective clothing systems for fire-fighter consisting of three or four layers. It was found that during the evaporation of the moisture, a temperature plateau appeared during which temperatures hardly rose. The energy consumption used for the phase change of moisture located in the assembly dominated the heat transfer process as long as there was moisture present. As soon as all water had evaporated, the temperatures approached the temperatures measured for dry samples. The moisture within the clothing assembly did not lead to increased temperatures compared with the measurements with dry samples. This research has confirmed that moisture can positively affect the thermal protection of a clothing system.

  19. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    Science.gov (United States)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the

  20. Improvement of fire protection measures for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Improvements of fire protection measures for nuclear power plants were performed as following items: Development of fire hazard analysis method. Application of developed Fire Dynamic Tool to actual plants (FDT{sup S}), With regard to fire tests for the fire data acquisition, cable fire test and High Energy Arcing Faults (HEAF) fire test were performed. Implementation of fire hazard analysis code and simulation were performed as following items: Fire analysis codes FDS, SYLVIA, and CFAST were implemented in order to analyze the fire progression phenomena. Trial simulation of HEAF accident of Onagawa NPP in Tohoku earthquake. (author)

  1. Date Fighting and Sexual Risk Behaviours among Adolescents ...

    African Journals Online (AJOL)

    The study seeks to examine the prevalence of date fighting and its role in sexual risk behaviours among 1079 boys and 1211 girls in 22 public secondary schools in Ibadan Nigeria. About 60% (1367) reported to have ever experienced at least a form of date fighting. Risk factors for date fighting in boys include, non use of ...

  2. A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment

    Directory of Open Access Journals (Sweden)

    Alborz Geramifard

    2008-11-01

    Full Text Available This paper presents a new architecture called FAIS for imple- menting intelligent agents cooperating in a special Multi Agent environ- ment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.

  3. Minimising the fire hazard from the use of belt conveyors in intake roadways

    Energy Technology Data Exchange (ETDEWEB)

    Leeming, J.R. [Health and Safety Executive, Sheffield, S. Yorkshire (United Kingdom)

    2010-07-01

    The fire that occurred a the Creswell underground coal mine in Derbyshire in 1950 in which 90 miners lost their lives was caused by a damaged rubber conveyor belt that ignited after being friction heated. The fire propagated along the intake trunk roadway by the burning belt itself, which ignited the timber roadway supports and hampered fire-fighting efforts. This paper demonstrated that operating conveyors in intake trunk roadways presents a risk that products of combustion can be carried to the working areas of a mine via ventilation pathways, thus creating a hazard to the underground miners. In North America, the use of belt air is not commonly used to ventilate working areas. However, these arrangements are common in the United Kingdom. As such, installation, inspection and maintenance standards have been created to minimize the risk of fire in underground, remotely operated belt conveyors in underground mines. Monitoring systems are also in place for early detection of any fire. A review of recent underground fires in the United Kingdom has shown that the measures adopted have been successful in avoiding uncontrollable fires. 13 refs., 5 figs.

  4. General fire protection guidelines for egyptian nuclear facilities. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Radhad, S; Hussien, A Z; Hammad, F H [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The purpose of this paper is to establish the regulatory requirements of that will provide and ensure fire protection of egyptian nuclear facilities. Those facilities that use, handle and store low and/or medium radioactive substances are included. Two or more classes of occupancy are considered to occur in the same building or structure. Fir protection measures and systems were reviewed for three of the egyptian Nuclear facilities. These are egypt first nuclear reactor (ETRR-1) building and systems, hot laboratories buildings and facilities, and the building including the AECL type Is-6500 industrial cobalt-60 gamma irradiator {sup E}gypt`s mega gamma I{sup .} The study includes the outlines of the various aspects of fire protection with a view to define the relevant highlights and scope of egyptian guideline for nuclear installations. The study considers fire protection aspects including the following items: 1- Site selection. 2- General facility design. 3- Fire alarm, detection and suppression systems. (4- Protection for specific areas/control room, cable spreading room, computer room) 5- Fire emergency response planning. 6- Fire water supply. 7- Emergency lighting and communication. 8- Rescue and escape routes. 9- Explosion protection. 10-Manual fire fighting. 11- Security consideration in the interest of fire protection. 12- quality assurance programme. Therefore, first of all the design stage, then during the construction stage, and later during the operation stage, measures must be taken to forestall the risks associated with the outbreak of fire and to ensure that consequences of fire accidents remain limited.

  5. General fire protection guidelines for egyptian nuclear facilities. Vol. 4

    International Nuclear Information System (INIS)

    Radhad, S.; Hussien, A.Z.; Hammad, F.H.

    1996-01-01

    The purpose of this paper is to establish the regulatory requirements of that will provide and ensure fire protection of egyptian nuclear facilities. Those facilities that use, handle and store low and/or medium radioactive substances are included. Two or more classes of occupancy are considered to occur in the same building or structure. Fir protection measures and systems were reviewed for three of the egyptian Nuclear facilities. These are egypt first nuclear reactor (ETRR-1) building and systems, hot laboratories buildings and facilities, and the building including the AECL type Is-6500 industrial cobalt-60 gamma irradiator E gypt's mega gamma I . The study includes the outlines of the various aspects of fire protection with a view to define the relevant highlights and scope of egyptian guideline for nuclear installations. The study considers fire protection aspects including the following items: 1- Site selection. 2- General facility design. 3- Fire alarm, detection and suppression systems. 4- Protection for specific areas/control room, cable spreading room, computer room) 5- Fire emergency response planning. 6- Fire water supply. 7- Emergency lighting and communication. 8- Rescue and escape routes. 9- Explosion protection. 10-Manual fire fighting. 11- Security consideration in the interest of fire protection. 12- quality assurance programme. Therefore, first of all the design stage, then during the construction stage, and later during the operation stage, measures must be taken to forestall the risks associated with the outbreak of fire and to ensure that consequences of fire accidents remain limited

  6. Investigation of a novel image segmentation method dedicated to forest fire applications

    Science.gov (United States)

    Rudz, S.; Chetehouna, K.; Hafiane, A.; Laurent, H.; Séro-Guillaume, O.

    2013-07-01

    To face fire it is crucial to understand its behaviour in order to maximize fighting means. To achieve this task, the development of a metrological tool is necessary for estimating both geometrical and physical parameters involved in forest fire modelling. A key parameter is to estimate fire positions accurately. In this paper an image processing tool especially dedicated to an accurate extraction of fire from an image is presented. In this work, the clustering on several colour spaces is investigated and it appears that the blue chrominance Cb from the YCbCr colour space is the most appropriate. As a consequence, a new segmentation algorithm dedicated to forest fire applications has been built using first an optimized k-means clustering in the Cb-channel and then some properties of fire pixels in the RGB colour space. Next, the performance of the proposed method is evaluated using three supervised evaluation criteria and then compared to other existing segmentation algorithms in the literature. Finally a conclusion is drawn, assessing the good behaviour of the developed algorithm. This paper is dedicated to the memory of Dr Olivier Séro-Guillaume (1950-2013), CNRS Research Director.

  7. Reducing the computational requirements for simulating tunnel fires by combining multiscale modelling and multiple processor calculation

    DEFF Research Database (Denmark)

    Vermesi, Izabella; Rein, Guillermo; Colella, Francesco

    2017-01-01

    Multiscale modelling of tunnel fires that uses a coupled 3D (fire area) and 1D (the rest of the tunnel) model is seen as the solution to the numerical problem of the large domains associated with long tunnels. The present study demonstrates the feasibility of the implementation of this method...... in FDS version 6.0, a widely used fire-specific, open source CFD software. Furthermore, it compares the reduction in simulation time given by multiscale modelling with the one given by the use of multiple processor calculation. This was done using a 1200m long tunnel with a rectangular cross......-section as a demonstration case. The multiscale implementation consisted of placing a 30MW fire in the centre of a 400m long 3D domain, along with two 400m long 1D ducts on each side of it, that were again bounded by two nodes each. A fixed volume flow was defined in the upstream duct and the two models were coupled...

  8. Fire risk in California

    Science.gov (United States)

    Peterson, Seth Howard

    Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger

  9. Effectiveness of Fire and Fire Surrogate Treatments For Controlling Wildfire Behavior in Piedmont Forests: A Simulation Study

    Science.gov (United States)

    Helen H. Mohr; Thomas A. Waldrop; Sandra Rideout; Ross J. Phillips; Charles T. Flint

    2004-01-01

    The need for fuel reduction has increased in United States forests due to decades of fire exclusion. Excessive fuel buildup has led to uncharacteristically severe fires in areas with historically short-interval, low-to-moderate-intensity fire regimes. The National Fire and Fire Surrogate (NFFS) Study compared the impacts of three fuel-reduction treatments on numerous...

  10. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  11. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  12. Fighting Back

    Science.gov (United States)

    Academe, 2005

    2005-01-01

    In this new feature of the "Academe" journal, work by faculty members is highlighted who are mobilizing in support of academic freedom on their campuses and beyond. This September-October issue of the journal includes the following brief reflections from faculty all relating to the central theme of "fighting back": "Free…

  13. Numerical simulations of fire spread in a Pinus pinaster needles fuel bed

    International Nuclear Information System (INIS)

    Menage, D; Chetehouna, K; Mell, W

    2012-01-01

    The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.

  14. Numerical simulations of fire spread in a Pinus pinaster needles fuel bed

    Science.gov (United States)

    Menage, D.; Chetehouna, K.; Mell, W.

    2012-11-01

    The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.

  15. Born to win? Testing the fighting hypothesis in realistic fights : left-handedness in the Ultimate Fighting Championship

    NARCIS (Netherlands)

    Pollet, Thomas V.; Stulp, Gert; Groothuis, Ton G. G.

    2013-01-01

    Given the heritability of human left-handedness and its purported associations with fitness-lowering traits, the persistence of the minority of left-handedness in human populations is an evolutionary puzzle. The fighting hypothesis proposes that these negative fitness costs are offset by fitness

  16. Born to win? Testing the fighting hypothesis in realistic fights: left-handedness in the Ultimate Fighting Championship

    NARCIS (Netherlands)

    Pollet, T.V.; Stulp, G.; Groothuis, T.G.G.

    2013-01-01

    Given the heritability of human left-handedness and its purported associations with fitness-lowering traits, the persistence of the minority of left-handedness in human populations is an evolutionary puzzle. The fighting hypothesis proposes that these negative fitness costs are offset by fitness

  17. The Cosmic Baryon Cycle in the FIRE Simulations

    Science.gov (United States)

    Anglés-Alcázar, Daniel

    2017-07-01

    The exchange of mass, energy, and metals between galaxies and their surrounding circumgalactic medium represents an integral part of the modern paradigm of galaxy formation. In this talk, I will present recent progress in understanding the cosmic baryon cycle using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project. Local stellar feedback processes regulate star formation in galaxies and shape the multi-phase structure of the interstellar medium while driving large-scale outflows that connect galaxies with the circumgalactic medium. I will discuss the efficiency of winds evacuating gas from galaxies, the ubiquity and properties of wind recycling, and the importance of intergalactic transfer, i.e. the exchange of gas between galaxies via winds. I will show that intergalactic transfer can dominate late time gas accretion onto Milky Way-mass galaxies over fresh accretion and standard wind recycling.

  18. Fully predictive simulation of real-scale cable tray fire based on small-scale laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Beji, Tarek; Merci, Bart [Ghent Univ. (Belgium). Dept. of Flow, Heat and Combustion Mechanics; Bonte, Frederick [Bel V, Brussels (Belgium)

    2015-12-15

    This paper presents a computational fluid dynamics (CFD)-based modelling strategy for real-scale cable tray fires. The challenge was to perform fully predictive simulations (that could be called 'blind' simulations) using solely information from laboratory-scale experiments, in addition to the geometrical arrangement of the cables. The results of the latter experiments were used (1) to construct the fuel molecule and the chemical reaction for combustion, and (2) to estimate the overall pyrolysis and burning behaviour. More particularly, the strategy regarding the second point consists of adopting a surface-based pyrolysis model. Since the burning behaviour of each cable could not be tracked individually (due to computational constraints), 'groups' of cables were modelled with an overall cable surface area equal to the actual value. The results obtained for one large-scale test (a stack of five horizontal trays) are quite encouraging, especially for the peak Heat Release Rate (HRR) that was predicted with a relative deviation of 3 %. The time to reach the peak is however overestimated by 4.7 min (i.e. 94 %). Also, the fire duration is overestimated by 5 min (i.e. 24 %). These discrepancies are mainly attributed to differences in the HRRPUA (heat release rate per unit area) profiles between the small-scale and large-scale. The latter was calculated by estimating the burning area of cables using video fire analysis (VFA).

  19. Perceived aggressiveness predicts fighting performance in mixed-martial-arts fighters.

    Science.gov (United States)

    Trebicky, Vít; Havlícek, Jan; Roberts, S Craig; Little, Anthony C; Kleisner, Karel

    2013-09-01

    Accurate assessment of competitive ability is a critical component of contest behavior in animals, and it could be just as important in human competition, particularly in human ancestral populations. Here, we tested the role that facial perception plays in this assessment by investigating the association between both perceived aggressiveness and perceived fighting ability in fighters' faces and their actual fighting success. Perceived aggressiveness was positively associated with the proportion of fights won, after we controlled for the effect of weight, which also independently predicted perceived aggression. In contrast, perception of fighting ability was confounded by weight, and an association between perceived fighting ability and actual fighting success was restricted to heavyweight fighters. Shape regressions revealed that aggressive-looking faces are generally wider and have a broader chin, more prominent eyebrows, and a larger nose than less aggressive-looking faces. Our results indicate that perception of aggressiveness and fighting ability might cue different aspects of success in male-male physical confrontation.

  20. Retrieval of canopy moisture content for dynamic fire risk assessment using simulated MODIS bands

    Science.gov (United States)

    Maffei, Carmine; Leone, Antonio P.; Meoli, Giuseppe; Calabrò, Gaetano; Menenti, Massimo

    2007-10-01

    Forest fires are one of the major environmental hazards in Mediterranean Europe. Biomass burning reduces carbon fixation in terrestrial vegetation, while soil erosion increases in burned areas. For these reasons, more sophisticated prevention tools are needed by local authorities to forecast fire danger, allowing a sound allocation of intervention resources. Various factors contribute to the quantification of fire hazard, and among them vegetation moisture is the one that dictates vegetation susceptibility to fire ignition and propagation. Many authors have demonstrated the role of remote sensing in the assessment of vegetation equivalent water thickness (EWT), which is defined as the weight of liquid water per unit of leaf surface. However, fire models rely on the fuel moisture content (FMC) as a measure of vegetation moisture. FMC is defined as the ratio of the weight of the liquid water in a leaf over the weight of dry matter, and its retrieval from remote sensing measurements might be problematic, since it is calculated from two biophysical properties that independently affect vegetation reflectance spectrum. The aim of this research is to evaluate the potential of the Moderate Resolution Imaging Spectrometer (MODIS) in retrieving both EWT and FMC from top of the canopy reflectance. The PROSPECT radiative transfer code was used to simulate leaf reflectance and transmittance as a function of leaf properties, and the SAILH model was adopted to simulate the top of the canopy reflectance. A number of moisture spectral indexes have been calculated, based on MODIS bands, and their performance in predicting EWT and FMC has been evaluated. Results showed that traditional moisture spectral indexes can accurately predict EWT but not FMC. However, it has been found that it is possible to take advantage of the multiple MODIS short-wave infrared (SWIR) channels to improve the retrieval accuracy of FMC (r2 = 0.73). The effects of canopy structural properties on MODIS

  1. Browns Ferry nuclear power-plant fire on March 22, 1975

    International Nuclear Information System (INIS)

    Scott, R.L.

    1976-01-01

    A review is presented of the March 22, 1975, fire at the Browns Ferry nuclear power plant. The fire originated in the electrical cable trays and burned for 7 hr before it was extinguished by water. The use of water was delayed until the reactors were in a stable shutdown condition because of the possibility of shorting circuits, which might have caused further degradation of conditions that would have been more difficult to control. However, when water was authorized, the fire was quickly extinguished. The fire-fighting efforts and the damage caused by the fire are described. The loss of electrical power and control circuits resulted in the unavailability of emergency core-cooling systems and hampered efforts to provide normal cooling to the reactor fuel. The availability of alternate cooling methods is reviewed, the efforts to maintain cooling of the reactor fuel are discussed, and the basic reasons for the common-mode failures are described. Assessments of the fire were made by three groups in the U.S. Nuclear Regulatory Commission (NRC), as well as by an independent insurance group. Some of the details of these assessments are presented, in particular, some deficiencies that the NRC Office of Inspection and Enforcement found during its investigation and some of the lessons learned from the events as determined by the NRC Special Review Group

  2. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    Science.gov (United States)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model

  3. Computer-simulation study on fire behaviour in the ventilated cavity of ventilated façade systems

    Directory of Open Access Journals (Sweden)

    Giraldo María P.

    2013-11-01

    Full Text Available Fire spread through the façades is widely recognized as one of the fastest pathways of fire spreading in the buildings. Fire may spread through the façade in different ways depending on the type of façade system and on the elements and materials from which it is constructed. Ventilated façades are multilayer systems whose main feature is the creation of an air chamber of circulating air between the original building wall and the external cladding. The “chimney effect” in the air cavity is a mechanism that improves the façade's thermal behaviour and avoids the appearance of moisture from rain or condensation. However, in a event of fire, it may contribute to the quickest spreading of fire, representing a significant risk to the upper floors of a building. This study deals with some aspects of fire propagation through the ventilated cavity in ventilated façade systems. Also we review the provisions stipulated by the Spanish building code (Código Técnico de la Edificación, CTE [1] to avoid fire spread outside the building. The results highlight the importance of the use of proper fire barriers to ensure the compartmentalization of the ventilated cavity, as well as the use of non-combustible thermal insulation materials, among others. In addition, based on the results, it might be considered that the measures stipulated by the CTE are insufficient to limit the risks associated with this kind of façades systems. The study has been performed using field models of computational fluid-dynamics. In particular, the Fire Dynamics Simulator (FDS software has been used to numerically solve the mathematical integration models.

  4. FIGHTING ECONOMIC CRIME IN THE EUROPEAN ARENA

    Directory of Open Access Journals (Sweden)

    Anghel Cristian

    2010-12-01

    Full Text Available The present paper tries to put together a modest study on the actions taken at EU level in order to fight economic crime. A series of measures have been implemented at national and European level to create a framework for fighting criminality. The European institutions and the national authorities are improving their cooperation in order to fight the increasing number of economic crimes committed both in the private and public sector, while Member States are approximating their legislation to the provisions of the Community acquis. We have divided these efforts into five categories corresponding to the five main areas of economic crime identified at EU level: fight against fraud, which affects the financial interests of the European Union and mainly comprises fraudulent practices in the use of EU funds and in taxation, fight against piracy and counterfeiting, public and private corruption, money laundering and organised crime. In order to combat the negative influence criminality exerts on the development of the economy and of the overall society, for each of the above mentioned areas legislative, institutional, technical and administrative measures have been adopted. We have presented these measures considering their efficiency in meeting the targets set out and the role played in their implementation by the European and national institutions.

  5. Epidemiology of Muay Thai fight-related injuries.

    Science.gov (United States)

    Strotmeyer, Stephen; Coben, Jeffrey H; Fabio, Anthony; Songer, Thomas; Brooks, Maria

    2016-12-01

    Muay Thai is a combat sport of Thailand that uses stand-up striking along with various clinching techniques. Currently, little is known about the injuries and risk factors for injuries among Muay Thai fighters. Gaining more insight into the nature and frequency of injury in this sport provides part of the overall sports injury picture, within the larger burden of injury as a public health issue. Generating this information is a critical first step toward the broader goal of improving the health and safety of Muay Thai fighters engaged in competition. This study is based upon a survey of 195 Muay Thai fighters. Participants were asked to complete a retrospective web survey on fight-related injuries. Regression analyses were conducted to determine whether injuries during sanctioned fights were related to factors such as fight experience, use of protective equipment, and injury history. Participants were aged 18 to 47 years old (median 26), predominantly male (85.9%), and white (72.3%). Respondents were professional (n = 96, 49.2%) and amateur (n = 99, 50.8%). Fighters reported a mean fight experience of 15.8 fights. Of the 195 respondents, 108 (55.4%) reported sustaining an injury during the most recent fight. The primary body region injured was the extremities (58%) versus the head, with a lower amount of self-reported concussions (5.4%). Nearly 2/3 (66.7%) of all injured fighters reported that the injury did not interfere with the bout outcome. Nearly 25% reported they missed no training time as a result of the injury. Injuries were related to professional fighter status (OR = 2.5, 95% CI = 1.4-4.5), fight experience (OR = 2.7, 95% CI = 1.5-4.9), weight class (OR = 0.923 heavy versus light, 95% CI = .86-.99), age (OR = 0.90 > 26 versus ≤26, 95% CI = .85-.95), use of protective equipment (OR = .46, 95% CI = .26-.82) and previous injury (OR = 1.81, 95% CI = .98-3.3). Lighter, younger, and more experienced

  6. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  7. Fire Behavior in Pelalawan Peatland, Riau Province

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2006-01-01

    Full Text Available During dry season it is easily recognized that smoke will emerge at certain place both in Sumatra and Kalimantan that is in peatland. The worst situation occurred when fire burnt buried log in the logged over area where the fire fighter did not have any experience and knowledge on how to work with fire in peatland. Finally it had been found that one of the reasons why firefighter failed to fight fire in peatland is because they do not have any knowledge and experience on it. In order to know the fire behavior characteristics in different level of peat decomposition for fire management and sustainable management of the land for the community, research done in Pelalawan area, Riau Province, Indonesia, during dry season 2001. Three level of peat decomposition named Sapric, Hemic, and Fibric used. To conduct the research, two 400 m2 of plot each was established in every level of the peat decomposition. Burning done three weeks following slashing, cutting and drying at different time using circle method. During burning, flame length, rate of the spread of fire, flame temperature and following burning fuel left and the depth of peat destruction were measured. Results of research shown that in sapric site where sapric 2 has fuel load 9 ton ha-1 less than sapric 1, fire behavior was significantly different while peat destructed was deepest in sapric 2 with 31.87 cm. In hemic site where hemic 2 has fuel load 12.3 ton ha-1 more than hemic 1, fire behavior was significantly different and peat destructed deeper than hemic 1 that was 12.6 cm. In fibric site where fibric 1 has fuel load 3.5 ton ha-1 more than fibric 1, fire behavior was significantly different that has no burnt peat found. This results found that the different fuel characteristics (potency, moisture, bed depth, and type at the same level of peat decomposition will have significantly different fire behavior as it happened also on the depth of peat destruction except fibric. The same condition

  8. Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy

    Directory of Open Access Journals (Sweden)

    Alan A. Ager

    2017-12-01

    Full Text Available Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million ha landscape in the eastern Cascades of Oregon, USA. We hypothesized that at some level of burned area fuels would limit the growth of new fires, and fire effects on the composition and structure of forests would eventually reduce future fire intensity and severity. We found that doubling current rates of wildfire resulted in detectable feedbacks in area burned and fire intensity. Area burned in a given simulation year was reduced about 18% per unit area burned in the prior five years averaged across all scenarios. The reduction in area burned was accompanied by substantially lower fire severity, and vegetation shifted to open forest and grass-shrub conditions at the expense of old growth habitat. Negative fire feedbacks were slightly moderated by longer-term positive feedbacks, in which the effect of prior area burned diminished during the simulation. We discuss trade-offs between managing fuels with wildfire versus prescribed fire and mechanical fuel treatments from a social and policy standpoint. The study provides a useful modeling framework to consider the potential value of fire feedbacks as part of overall land management strategies to build fire resilient landscapes and reduce wildfire risk to communities in the western U.S. The results are also relevant to prior climate-wildfire studies that did not consider fire feedbacks in projections of future

  9. Weapon Simulator Test Methodology Investigation: Comparison of Live Fire and Weapon Simulator Test Methodologies and the Effects of Clothing and Individual Equipment on Marksmanship

    Science.gov (United States)

    2016-09-15

    variables analyzed included shot group tightness, radial error from the center of the target, and multiple time variables. The weapon simulator and...performance could be analyzed to determine if the weapon simulator data aligns with live fire data (i.e., if similar performance decrements appear in the...Analysis and Reporting The Noptel NOS4 software records shot performance data real-time and presents multiple statistical calculations as well as

  10. Fire Weather Products for Public and Emergency Use: Extending Professional Resources to the Public

    Science.gov (United States)

    Rogers, M. A.; Schranz, S.; Kriederman, L.

    2012-12-01

    Large wildfires require significant resources to combat, including dedicated meteorological support to provide accurate and timely forecasts to assist incident commanders in making decisions for logistical and tactical firefighting operations. Smaller fires often require the same capabilities for understanding fire and the fire weather environment, but access to needed resources and tools is often limited due to technical, training, or education limitations. Providing fire weather information and training to incident commanders for smaller wildfires should prove to enhance firefighting capabilities and improve safety for both firefighters and for the public as well. One of the premier tools used to support fire weather forecasting for the largest wildfires is the FX-Net product, a thin-client version of the Advanced Weather Interactive Processing System used by NWS incident meteorologists (IMETs) deployed to large wildfires. We present results from an ongoing project to extend the sophisticated products available from FX-Net to more accessible and mobile software platforms, such as Google Earth. The project involves input from IMETs and fire commanders to identify the key parameters used in fighting wildfires, and involves a large training component for fire responders to utilize simplified products to improve understanding of fire weather in the context of firefighting operations.

  11. Advanced numerical modelling of a fire. Final report

    International Nuclear Information System (INIS)

    Heikkilae, L.; Keski-Rahkonen, O.

    1996-03-01

    Experience and probabilistic risk assessments show that fires present a major hazard in a nuclear power plant (NPP). The PALOME project (1988-92) improved the quality of numerical simulation of fires to make it a useful tool for fire safety analysis. Some of the most advanced zone model fire simulation codes were acquired. The performance of the codes was studied through literature and personal interviews in earlier studies and BRI2 code from the Japanese Building Research Institute was selected for further use. In PALOME 2 project this work was continued. Information obtained from large-scale fire tests at the German HDR facility allowed reliable prediction of the rate of heat release and was used for code validation. BRI2 code was validated particularly by participation in the CEC standard problem 'Prediction of effects caused by a cable fire experiment within the HDR-facility'. Participation in the development of a new field model code SOFIE specifically for fire applications as British-Swedish-Finnish cooperation was one of the goals of the project. SOFIE code was implemented at VTT and the first results of validation simulations were obtained. Well instrumented fire tests on electronic cabinets were carried out to determine source terms for simulation of room fires and to estimate fire spread to adjacent cabinets. The particular aim of this study was to measure the rate of heat release from a fire in an electronic cabinet. From the three tests, differing mainly in the amount of the fire load, data was obtained for source terms in numerical modelling of fires in rooms containing electronic cabinets. On the basis of these tests also a simple natural ventilation model was derived. (19 refs.)

  12. Fires. A Joint Publication for U.S. Artillery Professionals. May-June 2011

    Science.gov (United States)

    2011-05-01

    network using lasers that enabled them to identify, from a Bradley Fighting Vehicle, a 10-digit code that could be passed internally, but not to...generation. It’s the way of life for an entire society. It includes codes of manners, dress, language, religion, and rituals. Other important...security during a foot patrol in Arghandab District, Iraq. (Photo by SPC Breanne Pye, U.S. Army) 48 May-June 2011 • Fires PFC Isaias Rodriguez

  13. FireStem2D — A two-dimensional heat transfer model for simulating tree stem injury in fires

    Science.gov (United States)

    Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...

  14. Response of fire detectors to different smokes

    International Nuclear Information System (INIS)

    Bjoerkman, J.; Keski-Rahkonen, O.

    1997-01-01

    The purpose of this work is to characterize the behavior of fire alarm systems based on smoke detectors on smoldering fires especially cable fires in nuclear power plants (NPP). Full-scale fire experiments were carried out in a laboratory designed according to the standard EN54-9. The laboratory was instrumented with additional equipment such as thermocouples and flow meters which are not used in standard fire sensitivity tests. This allows the results to be used as experimental data for validation tasks of numerical fire simulation computerized fluid dynamics (CFD)-codes. The ultimate goal of the research is to model theoretically smoldering and flaming cable fires, their smoke production, transfer of smoke to detectors, as well as the response of detectors and fire alarm systems to potential fires. This would allow the use of numerical fire simulation to predict fire hazards in different fire scenarios found important in PSA (probability safety assessment) of NPPs. This report concentrates on explaining full-scale fire experiments in the smoke sensitivity laboratory and experimental results from fire tests of detectors. Validation tasks with CFD-codes will be first carried out 'blind' without any idea about corresponding experimental results. Accordingly, the experimental results cannot be published in this report. (orig.)

  15. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    Directory of Open Access Journals (Sweden)

    Tineke Kraaij

    2017-08-01

    Full Text Available Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’. Factors (in decreasing order of importance affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire and fire return interval (>7 years had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting

  16. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    Science.gov (United States)

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid

  17. Decoupled numerical simulation of a solid fuel fired retort boiler

    International Nuclear Information System (INIS)

    Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.

    2014-01-01

    The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements

  18. The Safety Analysis of Shipborne Ammunition in Fire Environment

    Science.gov (United States)

    Ren, Junpeng; Wang, Xudong; Yue, Pengfei

    2017-12-01

    The safety of Ammunition has always been the focus of national military science and technology issues. And fire is one of the major safety threats to the ship’s ammunition storage environment, In this paper, Mk-82 shipborne aviation bomb has been taken as the study object, simulated the whole process of fire by using the FDS (Fire Detection System) software. According to the simulation results of FDS, ANSYS software was used to simulate the temperature field of Mk-82 carrier-based aviation bomb under fire environment, and the safety of aviation bomb in fire environment was analyzed. The result shows that the aviation bombs under the fire environment can occur the combustion or explosion after 70s constant cook-off, and it was a huge threat to the ship security.

  19. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  20. Numerical Modelling of Fire-Atmosphere Interactions and the 2003 Canberra Bushfires

    Science.gov (United States)

    Simpson, C.; Sturman, A.; Zawar-Reza, P.

    2010-12-01

    It is well known that the behaviour of a wildland fire is strongly associated with the conditions of its surrounding atmosphere. However, the two-way interactions between fire behaviour and the atmospheric conditions are not well understood. A numerical model is used to simulate wildland fires so that the nature of these fire-atmosphere interactions, and how they might affect fire behaviour, can be further investigated. The 2003 Canberra bushfires are used as a case study due to their highly destructive and unusual behaviour. On the 18th January 2003, these fires spread to the urban suburbs of Canberra, resulting in the loss of four lives and the destruction of over 500 homes. Fire-atmosphere interactions are believed to have played an important role in making these fires so destructive. WRF-Fire is used to perform real data simulations of the 2003 Canberra bushfires. WRF-Fire is a coupled fire-atmosphere model, which combines a semi-empirical fire spread model with an atmospheric model, allowing it to directly simulate the two-way interactions between a fire and its surrounding atmosphere. These simulations show the impact of the presence of a fire on conditions within the atmospheric boundary layer. This modification of the atmosphere, resulting from the injection of heat and moisture released by the fire, appears to have a direct feedback onto the overall fire behaviour. The bushfire simulations presented in this paper provide important scientific insights into the nature of fire-atmosphere interactions for a real situation. It is expected that they will also help fire managers in Australia to better understand why the 2003 Canberra bushfires were so destructive, as well as to gain improved insight into bushfire behaviour in general.

  1. Application of the Haines Index in the fire warning system

    Science.gov (United States)

    Kalin, Lovro; Marija, Mokoric; Tomislav, Kozaric

    2016-04-01

    Croatia, as all Mediterranean countries, is strongly affected by large wildfires, particularly in the coastal region. In the last two decades the number and intensity of fires has been significantly increased, which is unanimously associated with climate change, e.g. global warming. More extreme fires are observed, and the fire-fighting season has been expanded to June and September. The meteorological support for fire protection and planning is therefore even more important. At the Meteorological and Hydrological Service of Croatia a comprehensive monitoring and warning system has been established. It includes standard components, such as short term forecast of Fire Weather Index (FWI), but long range forecast as well. However, due to more frequent hot and dry seasons, FWI index often does not provide additional information of extremely high fire danger, since it regularly takes the highest values for long periods. Therefore the additional tools have been investigated. One of widely used meteorological products is the Haines index (HI). It provides information of potential fire growth, taking into account only the vertical instability of the atmosphere, and not the state of the fuel. Several analyses and studies carried out at the Service confirmed the correlation of high HI values with large and extreme fires. The Haines index forecast has been used at the Service for several years, employing European Centre for Medium Range Weather Forecast (ECMWF) global prediction model, as well as the limited-area Aladin model. The verification results show that these forecast are reliable, when compared to radiosonde measurements. All these results provided the introduction of the additional fire warnings, that are issued by the Service's Forecast Department.

  2. Rapid weight gain in professional boxing and correlation with fight decisions: analysis from 71 title fights.

    Science.gov (United States)

    Daniele, Gianlorenzo; Weinstein, Richard N; Wallace, Paul Wesley; Palmieri, Vincenzo; Bianco, Massimiliano

    2016-11-01

    Boxing is a sport where athletes compete in several weight categories. Professional boxers typically dehydrate to cut their weight for the weigh-in (24 h before the contest) and then rehydrate before the fight. The International Boxing Federation (IBF) mandates a second weigh-in 12 h before the fight. Our objectives were: 1) To quantify the weight gain (WG) from the 1st to the 2nd weigh-in; 2) to investigate whether rapid WG affects boxing performance (win/loss rate) and 3) whether weight discrepancy (WD) 15 between boxers exposes them to increased health risks (rate of fights ended before time limit). From official weigh-in reports of 71 IBF fights (142 fighters) the following data were gathered/calculated for each boxer: age, weight division, 1st weight, 2nd weight, WG between weigh-ins (kg and %), WD between opponents, and fight decision. Between the weigh-ins, the average WG was 2.52 ± 1.37 kg (range -0.3/6.4 kg) and 3.8 ± 2.2% of the initial body weight (range -0.4/9.3%) and the average WD 1.94 ± 1.50 kg (maximum 7.10 kg). Both WG and WD did not affect match outcomes. We observed tendencies for higher loss rate among boxers gaining more weight, and for higher victory rate in boxers with larger WD, however without reaching significance. A significant negative correlation was found between the 1st weight and the WG, both in absolute (r = -0.278, p = 0.001) and relative value (r = -0.497, p boxing performance were not found, single cases with an alarming high WG and WD were noted.

  3. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  4. Science You Can Use Bulletin: Fire on the mountain: What motivates homeowners to reduce their wildfire risk?

    Science.gov (United States)

    Sue Miller; Patty Champ; Hannah Brenkert-Smith

    2013-01-01

    New home building in the wildland-urban interface (WUI) continues unabated, despite the high financial and human costs of fighting fires in these areas. The goal of this research is to understand, through surveys and expert assessments, the attitudes and perceptions of WUI homeowners as they relate to taking action to reduce wildfire risk on their property. It also...

  5. A numerical simulation study on the impact of smoke aerosols from Russian forest fires on the air pollution over Asia

    Science.gov (United States)

    Zhu, Qingzhe; Liu, Yuzhi; Jia, Rui; Hua, Shan; Shao, Tianbin; Wang, Bing

    2018-06-01

    Serious forest fires were observed over Siberia, particularly in the vast area between Lake Baikal and the Gulf of Ob, during the period of 18-27 July 2016 using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite simultaneously detected a multitude of smoke aerosols surrounding the same area. Combing a Lagrangian Flexible Particle dispersion model (FLEXPART) executed using the Weather Research and Forecasting (WRF) model output, the transport of smoke aerosols and the quantification of impact of Russian forest fires on the Asia were investigated. From model simulations, two transport paths were determined for the smoke plumes from the Russian forest fires. The first path was directed southwestward from Russia to Central Asia and eventually Xinjiang Province of China, furthermore, the second path was directed southeastward through Mongolia to Northeast China. The FLEXPART-WRF model simulations also revealed that the smoke aerosol concentrations entering the Central Asia, Mongolia and Northern China were approximately 60-300 μg m-3, 40-250 μg m-3 and 5-140 μg m-3, respectively. Meanwhile, the aerosol particles from these forest fires have an impact on the air quality in Asia. With the arrival of smoke aerosols from the Russian forest fires, the near-surface PM10 concentrations over Altay, Hulunbuir and Harbin increased to 61, 146 and 42 μg m-3, respectively. In conclusion, smoke aerosols from Russian forest fires can variably influence the air quality over Central Asia, Mongolia and Northern China.

  6. The study of remote sensing dynamic monitoring for coalfield fire area in Shuixigou, Xinjiang

    International Nuclear Information System (INIS)

    Xia, Jun; Tashpolat-Tiyip

    2014-01-01

    The dynamic monitoring of fire area is particularly important in the controlling of underground coalfield fire. This paper took the Xinjiang Shuixigou coalfield fire area as an example, through the normalized processing of the multi-temporal thermal infrared images a generalized single-channel algorithm was used to retrieval the surface temperature. Combined with the method of single band optimal density split Sec-segmentation followed by dividing the fire area into the background region, serious combust region and more serious combust region. Thermal anomaly information in the coalfield fire area and analyse the spatial and temporal dynamics change of underground coalfield were calculated as follows:(1)fire area increased 2.03 times between 1990 and 2011, the annual average degree of dynamic changes was 1.28 in the first ten years and increased to 4.57 in the last ten years;(2)the gravity of the little serious area of the coalfield fire integrally moved north to northwest from 1990 to 2001, then northeast from 2001 to 2011;(3)there were three original independent child fire area A, B and C, but A and B merged between 1990 to 2001, C also trended close A and B until 2011. Remote sensing technology provides a feasible method for the dynamic monitoring of coalfield fire area and provides theory basis and scientific guidance for the prevention of coalfield fire disaster and implementation of coalfield fires fighting engineering

  7. Possibility of Fire Accident Analysis in Road Tunnel

    Directory of Open Access Journals (Sweden)

    Peter Vidmar

    2004-09-01

    Full Text Available The basic aim of this treatise is to research the relevant featuresof the control and management of fire event in road tunnels.The simulation of 200 meters long cut out of the road tunnelis performed with the computer code FDS (Fire DynamicsSimulator which is based on the computational fluid dynamics.FDS is used to simulate fire dynamics behavior in three differentscenarios: natural ventilation, forced ventilation with axialventilators and vertical smoke extraction.It is believed that the present research, the methodology appliedand its findings should promote and improve safety andreliability of fire safety in road tunnels and to cope with thecomplex contemporary logistic demands of safety and reliabilityin the transportation of passengers and goods.

  8. 49 CFR Appendix B to Part 179 - Procedures for Simulated Pool and Torch-Fire Testing

    Science.gov (United States)

    2010-10-01

    ... the plate. (4) The bare plate holder must be constructed in such a manner that the only heat transfer...) The bare plate holder must be constructed in such a manner that the only heat transfer to the back... SPECIFICATIONS FOR TANK CARS Pt. 179, App. B Appendix B to Part 179—Procedures for Simulated Pool and Torch-Fire...

  9. Historical and cultural fires, tribal management and research issue in Northern California: Trails, fires and tribulations

    Science.gov (United States)

    Frank K. Lake

    2013-01-01

    Indigenous people’s detailed traditional knowledge about fire, although superficially referenced in various writings, has not for the most part been analyzed in detail or simulated by resource managers, wildlife biologists, and ecologists. . . . Instead, scientists have developed the principles and theories of fire ecology, fire behavior and effects models, and...

  10. Fully coupled numerical simulation of fire in tunnels: From fire scenario to structural response

    Directory of Open Access Journals (Sweden)

    Pesavento F.

    2013-09-01

    Full Text Available In this paper we present an efficient tool for simulation of a fire scenario in a tunnel. The strategy adopted is based on a 3D-2D coupling technique between the fluid domain and the solid one. So, the thermally driven CFD part is solved in a three dimensional cavity i.e. the tunnel, and the concrete part is solved on 2D sections normal to the tunnel axis, at appropriate intervals. The heat flux and temperature values, which serve as coupling terms between the fluid and the structural problem, are interpolated between the sections. Between the solid and the fluid domain an interface layer is created for the calculation of the heat flux exchange based on a “wall law”. In the analysis of the concrete structures, concrete is treated as a multiphase porous material. Some examples of application of this fully coupled tool will be shown.

  11. Natural forest fires and controlled burning - a study of the literature

    International Nuclear Information System (INIS)

    Hoernsten, L.; Nohlgren, E.; Aldentun, Y.

    1995-01-01

    A study of the literature was made to elucidate the history of forest fires in Sweden. Both the frequency of natural forest fires and the extent of controlled burning as a forest-management technique were examined. The literature revealed that natural forest fires occurred every 40 to 160 years, depending on the type of site and the climatic conditions. Natural forest fires are an unusual occurrence nowadays, mainly thanks to effective fire-fighting methods but also because of the reduction in the quantity of combustible materials left in the stands in modern forestry practice. The report describes the factors influencing the occurrence and frequency of forest fires and the impact these have on flora and fauna. Controlled burning has a long history of use as a method of site preparation prior to natural regeneration. Peak usage of the method occurred in the 1950s and 1960s, since when it has steadily declined. An account is given of the methods used for controlled burning. In parallel with the study, we conducted a questionnaire survey among forest enterprises to identify current interest in controlled burning. The techniques used and the costs involved are discussed. In addition to Sweden, we also looked at controlled burning in Canada, Finland and the USA. Finland is closest to Sweden when it comes to the history of controlled burning and the current interest in fire for conservation purposes. 103 refs, 18 figs

  12. Fire simulation in radioactive waste disposal and the radiation risk associated

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento

    2018-01-01

    An atmospheric dispersion of radioactive material is one of the possible consequences of an accident scenario in nuclear installations, radiative and radioactive waste deposit. Taking into account a possibility of this release of radioactive material into the atmosphere this work proposes a modeling of the atmospheric dispersion from a fire scenario in a deposit of radioactive waste of low and middle level of radiation varying the amount of inventory released in the fire. For this simulation was adopted the software of physical codes of medical health, the HotSpot Health Physics Codes which uses the Gaussian model to calculate an atmospheric dispersion based on the Pasquill atmospheric stability classes. This software calculates a total effective dose in relation to distance, such as a compromised dose in a list of specific organs, among them the lung, object of work study for calculating the risk of cancer associated with a low dose of radiation. The radiological risk calculation is held by the BEIR V model, Biological Effects of Ionizing Radiations, one of the models to estimate the relative risk of cancer induced by ionizing radiation. (author)

  13. Evaluation of fire models for nuclear power plant applications. Benchmark exercise no. 4: Fuel pool fire inside a compartment - International panel report

    International Nuclear Information System (INIS)

    Klein-Hessling, W.; Roewekamp, M.; Riese, O.

    2006-11-01

    Fire simulations as well as their analytical validation procedures have gained more and more significance, particularly in the context of the fire safety analysis for operating nuclear power plants. Meanwhile, fire simulation models have been adapted as analytical tools for a risk oriented fire safety assessment. Calculated predictions can be used, on the one hand, for the improvements and upgrades of fire protection in nuclear power plants by the licensees and, on the other hand, as a tool for reproducible and clearly understandable estimations in assessing the available and/or foreseen fire protection measures by the authorities and their experts. For consideration of such aspects in the context of implementing new nuclear fire protection standards or of updating existing ones, an 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' also known as the 'International Collaborative Fire Model Project' (ICFMP) was started in 1999. It has made use of the experience and knowledge of a variety of worldwide expert institutions in this field to assess and improve, if necessary, the state-of-the-art with respect to modeling fires in nuclear power plants and other nuclear installations. This document contains the results of the ICFMP Benchmark Exercise No. 4, where two fuel pool fire experiments in an enclosure with two different natural vent sizes have been considered. Analyzing the results of different fire simulation codes and code types provides some indications with respect to the uncertainty of the results. This information is especially important in setting uncertainty parameters in probabilistic risk studies and to provide general insights concerning the applicability and limitations in the application of different types of fire simulation codes for this type of fire scenario and boundary conditions. During the benchmark procedure the participants performed different types of calculations. These included totally blind

  14. Deterministic analysis of mid scale outdoor fire

    International Nuclear Information System (INIS)

    Vidmar, P.; Petelin, S.

    2003-01-01

    The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. Mathematical fire model called FDS (Fire Dynamic Simulator) is used in the presented work. A CFD (Computational Fluid Dynamic) model using LES (Large Eddie Simulation) is used to calculate fire development and spread of combustion products in the environment. The fire source is located in the vicinity of the hazardous plant, power, chemical etc. The article presents the brief background of the FDS computer program and the initial and boundary conditions used in the mathematical model. Results discuss output data and check the validity of results. The work also presents some corrections of the physical model used, which influence the quality of results. The obtained results were discussed and compared with the Fire Safety Analysis report included in the Probabilistic Safety Assessment of Krsko nuclear power plant. (author)

  15. Forest fire forecasting tool for air quality modelling systems

    International Nuclear Information System (INIS)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-01-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  16. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wildland fire spread and behavior are complex Phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-FireChem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  17. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  18. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States

    Science.gov (United States)

    LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard

    2012-01-01

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...

  19. Regional variation in fire weather controls the reported occurrence of Scottish wildfires

    Directory of Open Access Journals (Sweden)

    G. Matt Davies

    2016-11-01

    Full Text Available Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  20. Regional variation in fire weather controls the reported occurrence of Scottish wildfires.

    Science.gov (United States)

    Davies, G Matt; Legg, Colin J

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  1. Corrective action plan for corrective action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Nacht, S.

    1999-01-01

    The Mercury Fire Training Pit is a former fire training area located in Area 23 of the Nevada Test Site (NTS). The Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting personnel at the NTS, and encompasses an area approximately 107 meters (m) (350 feet [ft]) by 137 m (450 ft). The Mercury Fire Training Pit formerly included a bermed burn pit with four small burn tanks, four large above ground storage tanks an overturned bus, a telephone pole storage area, and areas for burning sheds, pallets, and cables. Closure activities will include excavation of the impacted soil in the aboveground storage tank and burn pit areas to a depth of 1.5 m (5 ft), and excavation of the impacted surface soil downgradient of the former ASTs and burnpit areas to a depth of 0.3 m (1 ft). Excavated soil will be disposed in the Area 6 Hydrocarbon Landfill at the NTS

  2. Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest

    Science.gov (United States)

    Morris C. Johnson; Maureen C Kennedy; David L. Peterson

    2011-01-01

    We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We...

  3. Fighting status inequalities

    DEFF Research Database (Denmark)

    Nielsen, Morten Ebbe Juul; Landes, Xavier

    2016-01-01

    Status inequalities seem to play a fairly big role in creating inequalities in health. This article assumes that there can be good reasons to fight status inequalities in order to reduce inequalities in health. It examines whether the neorepublican ideal of non-dominance does a better job as a th...

  4. Computer simulation of forest fire and its possible usage

    International Nuclear Information System (INIS)

    Halada, L.; Weisenpacher, P.; Glasa, J.

    2005-01-01

    In this presentation authors deal with computer modelling of forest fires. Their possible usage is discussed. Results of modelling are compared with real forest fire in the National Park Slovensky Raj (Slovak Paradise) in 2000 year

  5. Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages

    Energy Technology Data Exchange (ETDEWEB)

    Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

    1999-05-01

    Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

  6. Morfofunctional parameters in judo's fight

    Directory of Open Access Journals (Sweden)

    Ítalo Sérgio Lopes Campos

    2017-12-01

    Full Text Available Considering the complexity of judo and the ample energy and neuromuscular demands, a whole process of competitive preparation must be directed to different physical capacities allowing the athlete to perform his combat actions with the best suitability possible. Mapping the  behaviour of a judo athlete from observations of behaviour units  in a real fighting situation would be a way of trying to identify the best topography or the best "aptitude" to achieve victory. The present investigation analysed the judo from the interactions of a real competition situation, aiming to verify, between winners and losers, possible differences or correlations between anthropometric parameters, motor performance and functional behaviours in a competitive situation. The results showed that: a the experience is decisive between winning or losing; b leg techniques are the most used between winners and losers, and losers use them more frequently; c there are different strategies between fights; d The energy cost in judo depends on the configuration of the fights. It is believed that such results can help coaches and athletes in guiding and rationalizing the training process in relation to performance determinants in judo.

  7. Cable fire tests in France

    International Nuclear Information System (INIS)

    Kaercher, M.

    2000-01-01

    Modifications are being carried out in all French nuclear power plants to improve fire safety. These modifications are based on a three level defense in depth concept: fire preventing, fire containing and fire controlling. Fire containing requires many modifications such as protection of cable races and assessment of fire propagation which both need R and D development. On one hand, cable wraps made with mineral wool were tested in all configurations including effect of aging, overheating and fire and qualified for the use as protection from common failure modes. On the other hand, cables races in scale one were subject to gas burner or solvent pool fire to simulate ignition and fire propagation between trays and flash over situations. These tests have been performed under several typical lay out conditions. The results of the tests can be used as input data in computer modelling for validation of fire protection measures. (orig.) [de

  8. Structural adaptations to diverse fighting styles in sexually selected weapons.

    Science.gov (United States)

    McCullough, Erin L; Tobalske, Bret W; Emlen, Douglas J

    2014-10-07

    The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male-male competition can drive the diversification of animal weapons.

  9. FIGHT ZONE WITH POINTS OF THE SHOTOKAN KARATE FEMALE COMPETITION

    Directory of Open Access Journals (Sweden)

    Nelson Kautzner Marques Junior

    2014-04-01

    Full Text Available The objective of the study was to determine the fight zone with point during the female kumite of competition. This study used a quantitative research for identify the fight zone with point (ippon or waza-ari or not during the female kumite of competition. Were selected on the Internet several championship of kumite of the JKA and of the ITKF. The study detected a high probability of point in the zone 7 and in the zone 2. The study determined that the most points at the corner occurred when the karateka practiced the attack in fight zone. Kruskal-Wallis ANOVA verified significant difference between the fight zone with points, H (10 = 29,49, p = 0,001. The Mann Whitney U test detected significant difference between the zone 5 with waza-ari versus all the zone. The greatest number of points in the fight zone was in agreement with the size of the fight zone. The central zone or zone 5 has 6x6 m, during the female kumite occurred more points, total of 68 waza-aris and 5 ippons. The study on the fight zone with points of the female kumite permits that the karateka has knowledge about the combat zones and guides the karateka before, during and after the female kumite. However, more studies should be done to confirm these findings.

  10. Flavonoids Fight Diseases

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 2. Flavonoids Fight Diseases. G Nagendrappa. Article-in-a-Box Volume 9 Issue 2 February 2004 pp 5-5. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/02/0005-0005. Author Affiliations.

  11. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  12. Validation of CFD simulation of recoilless EOD water cannon by firing experiments with high speed camera

    Science.gov (United States)

    Chantrasmi, Tonkid; Hongthong, Premsiri; Kongkaniti, Manop

    2018-01-01

    Water cannon used by Explosive Ordnance Disposal (EOD) were designed to propel a burst of water jet moving at high speed to target and disrupt an improvised explosive device (IED). The cannon could be mounted on a remotely controlled robot, so it is highly desirable for the cannon to be recoilless in order not to damage the robot after firing. In the previous work, a nonconventional design of the water cannon was conceived. The recoil was greatly reduced by backward sprays of water through a ring of slotted holes around the muzzle. This minimizes the need to manufacture new parts by utilizing all off-the-shelf components except the tailor-made muzzle. The design was then investigated numerically by a series of Computational Fluid Dynamics (CFD) simulations. In this work, high speed camera was employed in firing experiments to capture the motion of the water jet and the backward sprays. It was found that the experimental data agreed well with the simulation results in term of averaged exit velocities.

  13. Long-term changes in soil erosion due to forest fires. A rainfall simulation approach in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Pereira, Paulo; Matrix-Solera, Jorge; Giménez-Morera, Antonio; Úbeda, Xavier; Francos, Marcos; Alcañiz, Meritxell; Jordán, Antonio

    2016-04-01

    Soils are affected by the impacts of wildfires (Dlapa et al., 2013; Pereira et al., 2014; Tsibart et al., 2014; Dlapa et al., 2015, Hedo et al., 2015; Tessler et al., 2015). Soil erosion rates are highly affected by forest fires due to the removal of the above ground vegetation, the heat impact on the soil, the reduction of the organic matter, the ash cover, and the changes introduced by the rainfall on the soil surface (Lasanta and Cerdà, 2005; Mataix-Solera et al., 2011; Novara et al., 2011; Novara et al., 2013; Keesstra et al., 2014; Hedo et al., 2015; Pereira, 2015). Most of the research carried out on forest fire affected land paid attention to the "window of disturbance", which is the period that the soil losses are higher than before the forest fire and that last for few years (Cerdà, 1998a; Cerdà 1998b, Pérez-Cabello et al., 2011; Bodí et al., 2011; Bodí et al., 2012; Pereira et al., 2013: Pereira et al., 2015). However, the spatial and temporal variability of soil erosion is very high as a result of the uneven temporal and spatial distribution of the rainfall (Novara et al., 2011; Bisantino et al., 2015; Gessesse et al., 2015; Ochoa et al., 2015), and the window of disturbance cannot be easily found under natural rainfall. In order to understand the evolution of soil erosion after forest fires it is necessary to monitor fire affected sites over a long period of time, which will enable the assessment of the period affected by the window of disturbance (see Cerdà and Doerr, 2005). However, it is also possible to do measurements and experiments in areas with a different fire history. This will give us information about the temporal changes in soil erosion after forest fire. To reduce the spatial variability of rainfall we can use simulated rainfall that can be applied at multiple site with the same rainfall intensity and duration. For this purpose rainfall simulation can be of great help, in the laboratory (Moreno et al., 2014; Sadegui et al., 2015

  14. Book Review of Fight Club Written by Chuck Palahniuk

    OpenAIRE

    Nugroho, Adityo Widhi

    2016-01-01

    The main purpose of this writing is to review Fight Club by Chuck Palahniuk. The writer will discuss the strengths and weaknesses of this novel . The writer decided to choose Fight Club as final project because it is his favorite novel. Fight Club is a very interesting novel although it is hard to understand and disturbing because by showing the consumerism behaviour in this novel, Chuck Palahniuk tries to convey the message that the consumerism behaviour of society nowadays has become worse ...

  15. Numerical modeling of laboratory-scale surface-to-crown fire transition

    Science.gov (United States)

    Castle, Drew Clayton

    Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed

  16. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  17. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  18. Serious fighting-related injuries produce a significant reduction in intelligence.

    Science.gov (United States)

    Schwartz, Joseph A; Beaver, Kevin M

    2013-10-01

    Fighting-related injuries are common among adolescents within the United States, but how such injuries relate to subsequent cognitive functioning remains unclear. In particular, the long-term effect of fighting-related injuries suffered during important developmental periods, such as adolescence, on subsequent cognitive functioning has been overlooked by previous studies. The purpose of this study is to examine the association between sustaining serious fighting-related injuries and changes in verbal intelligence (IQ) over a 5- to 6-year time period. Longitudinal multivariate statistical models were used to analyze data from the National Longitudinal Study of Adolescent Health collected between 1994 and 2002 and analyzed in 2013. Even a single fighting-related injury resulted in a significant reduction in IQ over time even after controlling for age, race, sex, and changes in socioeconomic status (SES) over the study period. Additionally, females experienced a significantly greater reduction in IQ from each fighting-related injury than males. Fighting-related injuries have a significant impact on subsequent cognitive functioning and intelligence. The implications for future policies and research are discussed in more detail. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  19. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  20. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  1. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  2. THE CONTRIBUTION OF PLAY FIGHTING TO THE EMOTIONAL DEVELOPMENT OF CHILDREN

    Directory of Open Access Journals (Sweden)

    Ioan TRIFA

    2016-11-01

    Full Text Available Play fighting is a form of behavior in which partners compete with each other to gain an advantage. Behavior during play fighting largely resembles the behavior in a real fight, where partners encounter, push and pull down onto the ground, trying to get into a position whereby to control or to dominate the opponent. In the play, unlike the fight, movements are exaggerated and performed at a lower intensity, muscles being somewhat less tensed, and certain actions that can cause injury to the partner are inhibited or modified, while offensive-defensive roles will be reversed quite frequently. Play fighting can be considered a type of evolutionary adaptation designed to facilitate those experiences that will shape the cognitive and emotional development necessary for living in social communities. Research undertaken on different mammal species shows that play fighting offers many opportunities for expression and decoding emotions, improves emotional regulation and contributes to the development of coping mechanisms.

  3. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    Science.gov (United States)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  4. Heart rate and lactate responses to taekwondo fight in elite women performers

    Directory of Open Access Journals (Sweden)

    M Cardinale

    2008-06-01

    Full Text Available The purpose of this study was to examine heart rate (HR and blood lactate (LA concentration before, during and after a competitive Tae kwon do (TKD fight performed by elite women performers. Specifically, we were interested to see weather HR and LA responses to competitive fight were greater than to TKD or karate exercises published in scientific literature. Seven international-standard women TKD fighters participated in the study. HR was recorded continuously throughout the fight using Polar Vantage telemetric HR monitors. LA samples were taken before and 3 min after the fight and analysed using an Accusport portable lactate analyzer. At the beginning of the fight, HR significantly increased (p<0.01 from pre-fight values of 91.6±9.9 beats min-1 to 144.1±13.6 beats min-1. During the whole fight the HRmean was 186.6±2.5 beats min-1 and remained significantly elevated (p<0.01 at 3 min into recovery. HR values expressed as a percentage of HRmax averaged during the whole fight at 91.7±2.6% respectively. LA concentration significantly increased (p<0.01 3 min after the fight and averaged 82% of LApeak values measured after the VO2max test. Results of the present study indicate that physiological demands of competitive TKD fight in women, measured by HR and LA responses, are considerably higher than the physiological demands of TKD or karate training exercises. The observed HR and LA responses suggest to us that conditioning for TKD should generally emphasise high-intensity anaerobic exercise.

  5. 76 FR 26949 - Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight Attendant Rest Compartment

    Science.gov (United States)

    2011-05-10

    .... A means to fight a fire must be provided. This can be either a built-in extinguishing system or... entering the OFAR compartment through the vestibule to fight a fire will examine the vestibule and the... occupant's first action should be to leave the confined space, unless the occupant(s) is fighting the fire...

  6. 76 FR 44246 - Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight Attendant Rest Compartment

    Science.gov (United States)

    2011-07-25

    ... sole means to fight a fire or to supplement a built-in extinguishing system of limited suppression... the vestibule to fight a fire will examine the vestibule and the lavatory areas for the source of the... occupant's first action should be to leave the confined space, unless the occupant(s) is fighting the fire...

  7. Fighting terrorism in Africa: Benchmarking policy harmonization

    Science.gov (United States)

    Asongu, Simplice A.; Tchamyou, Vanessa S.; Minkoua N., Jules R.; Asongu, Ndemaze; Tchamyou, Nina P.

    2018-02-01

    This study assesses the feasibility of policy harmonization in the fight against terrorism in 53 African countries with data for the period 1980-2012. Four terrorism variables are used, namely: domestic, transnational, unclear and total terrorism dynamics. The empirical evidence is based on absolute beta catch-up and sigma convergence estimation techniques. There is substantial absence of catch-up. The lowest rate of convergence in terrorism is in landlocked countries for regressions pertaining to unclear terrorism (3.43% per annum for 174.9 years) while the highest rate of convergence is in upper-middle-income countries in domestic terrorism regressions (15.33% per annum for 39.13 years). After comparing results from the two estimation techniques, it is apparent that in the contemporary era, countries with low levels of terrorism are not catching-up their counterparts with high levels of terrorism. As a policy implication, whereas some common policies may be feasibly adopted for the fight against terrorism, the findings based on the last periodic phase (2004-2012) are indicative that country-specific policies would better pay-off in the fight against terrorism than blanket common policies. Some suggestions of measures in fighting transnational terrorism have been discussed in the light of an anticipated surge in cross-national terrorism incidences in the coming years.

  8. Classifying and comparing spatial models of fire dynamics

    Science.gov (United States)

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan

    2007-01-01

    Wildland fire is a significant disturbance in many ecosystems worldwide and the interaction of fire with climate and vegetation over long time spans has major effects on vegetation dynamics, ecosystem carbon budgets, and patterns of biodiversity. Landscape-Fire-Succession Models (LFSMs) that simulate the linked processes of fire and vegetation development in a spatial...

  9. Fire and fire extinguishment in silos. An experimental study[Storage of wood fuel pellets]; Brand och brandslaeckning i siloanlaeggningar. En experimentell studie

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Henry; Blomqvist, Per; Zhenghua Yan

    2007-01-15

    tight silo, as any holes or leaks will feed the pyrolysis with oxygen, and could further result in losses of the extinguishing gas. A silo should thus be designed with the means to close the silo air tight during extinguishment of a fire. The efficiency of the extinction could be further enhanced by application of low or medium expansion fire fighting foam on top of the stored material in the silo. It could further be appropriate to inject inert gas in the void top space of the silo in an early stage of the fire fighting in order to reduce the risk for gas/dust explosion. Generally, emptying of the silo should not be initiated before the fire is appropriately suppressed, i.e. not before the pyrolysis activity (temperature) has been considerably reduced. An inert atmosphere should further be maintained in the silo during the entire period while emptying the silo. Water should not be used as an extinguishing media, as water could result in considerably expansion (swelling) of the porous material in the silo. This could both damage the silo construction and make the stored material to stick on the silo walls.

  10. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  11. EU’s Role in Fighting Terrorism

    Directory of Open Access Journals (Sweden)

    Jana Maftei

    2009-06-01

    Full Text Available International terrorism, a phenomenon with constant development, is today acertainty and has dramatically marked the beginning of this century and millennium. Thisproblem has reached a global dimension and it represents a concern to the entire internationalcommunity. Over the time, numerous international and regional regulations have been framed, inorder to prevent and combat terrorism. The European Union condemns terrorist acts andrecognizes the central role of the United Nations, in fighting against terrorism and promotingsecurity, as well as the contribution of the new NATO in what concerns the defense and securitypromotion. Europe has to act more firmly in order to consolidate the defense against terrorismand the European Union’s borders. At the same time, the European Union considers that only aconcerted and firm action from all the states and the major actors on the international scenewould lead to the identification of the solutions which can contribute to the efficient fight againstterrorism and, by these means, provide for the international peace and security. The proportion ofthe danger terrorism represents has turned the fight against this phenomenon in an internationalcommunity’s desideratum.

  12. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  13. [Effects of fire recurrence on fire behaviour in cork oak woodlands (Quercus suber L.) and Mediterranean shrublands over the last fifty years].

    Science.gov (United States)

    Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry

    2015-12-01

    Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Computational fluid dynamic simulations of coal-fired utility boilers: An engineering tool

    Energy Technology Data Exchange (ETDEWEB)

    Efim Korytnyi; Roman Saveliev; Miron Perelman; Boris Chudnovsky; Ezra Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2009-01-15

    The objective of this study was to develop an engineering tool by which the combustion behavior of coals in coal-fired utility boilers can be predicted. We presented in this paper that computational fluid dynamic (CFD) codes can successfully predict performance of - and emission from - full-scale pulverized-coal utility boilers of various types, provided that the model parameters required for the simulation are properly chosen and validated. For that purpose we developed a methodology combining measurements in a 50 kW pilot-scale test facility with CFD simulations using the same CFD code configured for both test and full-scale furnaces. In this method model parameters of the coal processes are extracted and validated. This paper presents the importance of the validation of the model parameters which are used in CFD codes. Our results show very good fit of CFD simulations with various parameters measured in a test furnace and several types of utility boilers. The results of this study demonstrate the viability of the present methodology as an effective tool for optimization coal burning in full-scale utility boilers. 41 refs., 9 figs., 3 tabs.

  15. Fighting Human Trafficking in the European Union: A master’s thesis on the ability of EU law to fight trafficking in women for sexual exploitation

    OpenAIRE

    Nielsen, Stine Piilgaard Porner

    2011-01-01

    Human trafficking is considered to be modern day slavery. The EU continuously seeks to strengthen its fight against this crime, latest with the Directive on Prevention, Combat and Protection adopted in April 2011. But to what extent is the EU able to fight human trafficking through law? Human trafficking is a complex problem which can be assessed from different perspectives. The EU primarily addresses the fight against human trafficking through criminal law, and this thesis investigates the e...

  16. Fire behavior simulation in Mediterranean forests using the minimum travel time algorithm

    Science.gov (United States)

    Kostas Kalabokidis; Palaiologos Palaiologou; Mark A. Finney

    2014-01-01

    Recent large wildfires in Greece exemplify the need for pre-fire burn probability assessment and possible landscape fire flow estimation to enhance fire planning and resource allocation. The Minimum Travel Time (MTT) algorithm, incorporated as FlamMap's version five module, provide valuable fire behavior functions, while enabling multi-core utilization for the...

  17. Firing Control Optimization of Impulse Thrusters for Trajectory Correction Projectiles

    Directory of Open Access Journals (Sweden)

    Min Gao

    2015-01-01

    Full Text Available This paper presents an optimum control scheme of firing time and firing phase angle by taking impact point deviation as optimum objective function which takes account of the difference of longitudinal and horizontal correction efficiency, firing delay, roll rate, flight stability, and so forth. Simulations indicate that this control scheme can assure lateral impulse thrusters are activated at time and phase angle when the correction efficiency is higher. Further simulations show that the impact point dispersion is mainly influenced by the total impulse deployed, and the impulse, number, and firing interval need to be optimized to reduce the impact point dispersion of rockets. Live firing experiments with two trajectory correction rockets indicate that the firing control scheme works effectively.

  18. Ventilation of Animal Shelters in Wildland Fire Scenarios

    Science.gov (United States)

    Bova, A. S.; Bohrer, G.; Dickinson, M. B.

    2009-12-01

    The effects of wildland fires on cavity-nesting birds and bats, as well as fossorial mammals and burrow-using reptiles, are of considerable interest to the fire management community. However, relatively little is known about the degree of protection afforded by various animal shelters in wildland fire events. We present results from our ongoing investigation, utilizing NIST’s Fire Dynamics Simulator (FDS) and experimental data, of the effectiveness of common shelter configurations in protecting animals from combustion products. We compare two sets of simulations with observed experimental results. In the first set, wind tunnel experiments on single-entry room ventilation by Larsen and Heiselberg (2008) were simulated in a large domain resolved into 10 cm cubic cells. The set of 24 simulations comprised all combinations of incident wind speeds of 1,3 and 5 m/s; angles of attack of 0, 45, 90 and 180 degrees from the horizontal normal to the entrance; and temperature differences of 0 and 10 degrees C between the building interior and exterior. Simulation results were in good agreement with experimental data, thus providing a validation of FDS code for further ventilation experiments. In the second set, a cubic simulation domain of ~1m on edge and resolved into 1 cm cubic cells, was set up to represent the experiments by Ar et al. (2004) of wind-induced ventilation of woodpecker cavities. As in the experiments, we simulated wind parallel and perpendicular to the cavity entrance with different mean forcing velocities, and monitored the rates of evacuation of a neutral-buoyancy tracer from the cavity. Simulated ventilation rates in many, though not all, cases fell within the range of experimental data. Reasons for these differences, which include vagueness in the experimental setup, will be discussed. Our simulations provide a tool to estimate the viability of an animal in a shelter as a function of the shelter geometry and the fire intensity. In addition to the above

  19. The simulation of air recirculation and fire/explosion phenomena within a semiconductor factory

    International Nuclear Information System (INIS)

    I, Yet-Pole; Chiu, Y.-L.; Wu, S.-J.

    2009-01-01

    The semiconductor industry is the collection of capital-intensive firms that employ a variety of hazardous chemicals and engage in the design and fabrication of semiconductor devices. Owing to its processing characteristics, the fully confined structure of the fabrication area (fab) and the vertical airflow ventilation design restrict the applications of traditional consequence analysis techniques that are commonly used in other industries. The adverse situation also limits the advancement of a fire/explosion prevention design for the industry. In this research, a realistic model of a semiconductor factory with a fab, sub-fabrication area, supply air plenum, and return air plenum structures was constructed and the computational fluid dynamics algorithm was employed to simulate the possible fire/explosion range and its severity. The semiconductor factory has fan module units with high efficiency particulate air filters that can keep the airflow uniform within the cleanroom. This condition was modeled by 25 fans, three layers of porous ceiling, and one layer of porous floor. The obtained results predicted very well the real airflow pattern in the semiconductor factory. Different released gases, leak locations, and leak rates were applied to investigate their influence on the hazard range and severity. Common mitigation measures such as a water spray system and a pressure relief panel were also provided to study their potential effectiveness to relieve thermal radiation and overpressure hazards within a fab. The semiconductor industry can use this simulation procedure as a reference on how to implement a consequence analysis for a flammable gas release accident within an air recirculation cleanroom

  20. Strain gauge analysis of the effect of porcelain firing simulation on the prosthetic misfit of implant-supported frameworks.

    Science.gov (United States)

    De Vasconcellos, Diego Klee; Özcan, Mutlu; Maziero Volpato, Cláudia Ângela; Bottino, Marco Antonio; Yener, Esra Salihoğlu

    2012-06-01

    This study investigated the effect of porcelain firing on the misfit of implant-supported frameworks and analyzed the influence of preheat treatment on the dimensional alterations. Four external-hex cylindrical implants were placed in polyurethane block. Ten frameworks of screw-retained implant-supported prostheses were cast in Pd-Ag using 2 procedures: (1) control group (CG, n = 5): cast in segments and laser welded; and test group (TG, n = 5): cast in segments, preheated, and laser welded. All samples were subjected to firing to simulate porcelain veneering firing. Strain gauges were bonded around the implants, and microstrain values (με = 10⁻⁶ε) were recorded after welding (M1), oxidation cycle (M2), and glaze firing (M3). Data were statistically analyzed (2-way analysis of variance, Bonferroni, α = 0.05). The microstrain value in the CG at M3 (475.2 με) was significantly different from the values observed at M1 (355.6 με) and M2 (413.9 με). The values at M2 and M3 in the CG were not statistically different. Microstrain values recorded at different moments (M1: 361.6 με/M2: 335.3 με/M3: 307.2 με) did not show significant difference. The framework misfit deteriorates during firing cycles of porcelain veneering. Metal distortion after porcelain veneering could be controlled by preheat treatment.

  1. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    Science.gov (United States)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.

    2012-01-01

    Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse

  2. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    Science.gov (United States)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  3. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  4. Towards the development of full-fledged forest fire information systems

    Science.gov (United States)

    Baetens, J.; De Baets, B.

    2012-12-01

    Throughout the last decades much efforts have been spent in obtaining an increased understanding of wildfire dynamics and the way it is influenced by prevailing environmental conditions and settings, such as temperature, humidity, topography, vegetation abundance, and so on, since such a profound apprehension is a prerequisite for achieving enhanced wildfire prevention measures, as well as for optimizing fire fighting and disaster management. Amongst other things, this pursuit has culminated in the deployment of wildfire information systems, such as the Canadian Wildfire Information System (CWFIS), the European Forest Fire Information System (EFFIS) and the United States Active Fire Mapping Program and Landscape Fire and Resource Management Planning Tools (LANDFIRE), which inform any interested stakeholder, be it a citizen or a government official, about the current fire risk, the extent and location of current fires, the inflammability of the vegetation, and so on. Taking into account the coverage of these systems, it should be clear that they strongly rely upon satellite imagery that is obtained from dedicated sensors, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board of NASA's Terra and Aqua satellites and the Advanced Very High Resolution Radiometer (AVHRR) that is carried by NOAA satellites, or more general-purpose instruments on board of spacecrafts such as Landsat or SPOT. Yet, to this day the aforementioned information systems have not yet embraced the power of mathematical modeling in order to enable trustworthy forecasts of the spatio-temporal propagation of wildfires given their current extent, which would nonetheless be extremely useful for optimizing fire fighting and disaster management, taking appropriate preventive measures, and so on. The deployment of such full-fledged wildfire information systems requires a high-level integration of (real-time) satellite imagery, weather reports and forecasts, geographic information, and

  5. Main building fire drill safely concluded

    CERN Document Server

    CERN Bulletin

    2015-01-01

    Last week, a simulated fire in the stairwell of the Main Building put CERN’s emergency response procedures to the test.   Firefighters descend the stairwell in the Main Building as the simulated fire rises.   At 2 p.m. on 22 September, alarms sounded around CERN’s Main Building as an evacuation exercise got underway. A simulated fire in the  stairwell, complete with very realistic smoke, led to the evacuation of one of the busiest places at CERN. The Main Building complex includes the Carlson Wagonlit travel agency, the post office, UBS, Uniqa, the Users Office, the Staff Association and the Novae restaurant as well as the Main Auditorium, the Council Chamber and the Charpak meeting room. It was impressive to see how quickly the smoke propagated in the staircase as well as into the corridors, and equally impressive to see how smoothly, quickly and efficiently the evacuation proceeded. The...

  6. Fighting Windmills

    DEFF Research Database (Denmark)

    Brandt, Urs Steiner; Svendsen, Gert Tinggaard

    2004-01-01

    the environmentalists) demand changes in behaviour on moral grounds. In contrast, the Bootleggers (the producers of renewable energy), who profit from the very regulation, keep a low profile. The actual heavy subsidisation of renewable energy sources, such as wind energy, can be viewed as a successful policy outcome...... to be just as tough as fighting windmills and needs to be addressed in future and more rigorous empirical research. At the end of the day, transparent incentives of relevant stakeholders in the climate change issue are necessary preconditions for progress in the climate change negotiations....

  7. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  8. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  9. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  10. A study on the fire response of compressed hydrogen gas vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Yohsuke; Tomioka, Junichi; Suzuki, Jinji [Japan Automobile Research Institute (Japan)

    2010-07-01

    To investigate the events that could arise when fighting fires in vehicles with compressed hydrogen CFRP (carbon fiber reinforced plastic) composite cylinders, we conducted experiments to examine whether a hydrogen jet flame caused by the activation of the pressure relief device (PRD) can extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles. (orig.)

  11. African-American and Latino Parents’ Attitudes and Beliefs Regarding Adolescent Fighting and Its Prevention

    Science.gov (United States)

    Chen, RuiJun; Flores, Glenn; Shetgiri, Rashmi

    2015-01-01

    Adolescent fighting affects 25% of youth, with the highest rates among African-Americans and Latinos but little is known about parental views on youth fighting. The purpose of this study was to examine African-American and Latino parents’ perspectives on adolescent fighting and methods to prevent fighting. We conducted four focus groups with parents of African-American and Latino urban adolescents. Focus groups were stratified by race/ethnicity and fighting status. Groups were audiotaped, transcribed, and analyzed by three independent coders using thematic content analysis. Seventy-six percent of the 17 participants were female. Latino parents condoned fighting only as a last resort, and taught children about consequences of fighting, emotional regulation, and non-violent conflict-resolution strategies. African-American parents endorsed teaching non-violent strategies, but expressed some doubts about their effectiveness. African-American parents also suggested corporal punishment, but acknowledged that this may not be an optimal long-term strategy. Positive role modeling and involvement by teachers and other adults were cited as having important roles in fighting prevention. Suggested interventions included teaching adolescents non-violent conflict-resolution skills, anger management, and alternatives to fighting. Parents recommended that violence prevention programs incorporate the experiences of former fighters and be tailored to community needs. Study findings suggest that youth violence-prevention programs may benefit from addressing parental attitudes towards fighting and parent-child communication about fighting, teaching adolescents non-violent conflict-resolution skills, and tailoring programs by race/ethnicity. Promoting positive modeling and involvement by teachers and other adults also may be beneficial. PMID:27186064

  12. African-American and Latino Parents' Attitudes and Beliefs Regarding Adolescent Fighting and Its Prevention.

    Science.gov (United States)

    Chen, RuiJun; Flores, Glenn; Shetgiri, Rashmi

    2016-06-01

    Adolescent fighting affects 25% of youth, with the highest rates among African-Americans and Latinos but little is known about parental views on youth fighting. The purpose of this study was to examine African-American and Latino parents' perspectives on adolescent fighting and methods to prevent fighting. We conducted four focus groups with parents of African-American and Latino urban adolescents. Focus groups were stratified by race/ethnicity and fighting status. Groups were audiotaped, transcribed, and analyzed by three independent coders using thematic content analysis. Seventy-six percent of the 17 participants were female. Latino parents condoned fighting only as a last resort, and taught children about consequences of fighting, emotional regulation, and non-violent conflict-resolution strategies. African-American parents endorsed teaching non-violent strategies, but expressed some doubts about their effectiveness. African-American parents also suggested corporal punishment, but acknowledged that this may not be an optimal long-term strategy. Positive role modeling and involvement by teachers and other adults were cited as having important roles in fighting prevention. Suggested interventions included teaching adolescents non-violent conflict-resolution skills, anger management, and alternatives to fighting. Parents recommended that violence prevention programs incorporate the experiences of former fighters and be tailored to community needs. Study findings suggest that youth violence-prevention programs may benefit from addressing parental attitudes towards fighting and parent-child communication about fighting, teaching adolescents non-violent conflict-resolution skills, and tailoring programs by race/ethnicity. Promoting positive modeling and involvement by teachers and other adults also may be beneficial.

  13. SEILAF: Tactic optimization

    Science.gov (United States)

    Carlos Abrego Aguilar; F. Javier Romera López; Regina de la Rosa Calancha; Domingo Villalba. Indurria

    2013-01-01

    SEILAF is a system designed for training, simulation and research in the fight again forest fires in a 3D world of a great virtual realism. A consortium of technological centers CITIC and CATEC, enterprises such as INDRA and FASSA, and the University of Cordoba have taken part in the design. The simulation center is located in Aeropolis, near the airport of...

  14. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.

    Science.gov (United States)

    Qiu, Jing; Yu, Wei-Qiang; Zhang, Fu-Qiang; Smales, Roger J; Zhang, Yi-Lin; Lu, Chun-Hui

    2011-02-01

    This study evaluated the corrosion behaviour and surface properties of a commercial cobalt-chromium (Co-Cr) alloy and two nickel-chromium (Ni-Cr) alloys [beryllium (Be)-free and Be-containing] before and after a simulated porcelain-firing process. Before porcelain firing, the microstructure, surface composition and hardness, electrochemical corrosion properties, and metal-ion release of as-cast alloy specimens were examined. After firing, similar alloy specimens were examined for the same properties. In both as-cast and fired conditions, the Co-Cr alloy (Wirobond C) showed significantly more resistance to corrosion than the two Ni-Cr alloys. After firing, the corrosion rate of the Be-free Ni-Cr alloy (Stellite N9) increased significantly, which corresponded to a reduction in the levels of Cr, molybdenum (Mo), and Ni in the surface oxides and to a reduction in the thickness of the surface oxide film. The corrosion properties of the Co-Cr alloy and the Be-containing Ni-Cr alloy (ChangPing) were not significantly affected by the firing process. Porcelain firing also changed the microstructure and microhardness values of the alloys, and there were increases in the release of Co and Ni ions, especially for Ni from the Be-free Ni-Cr alloy. Thus, the corrosion rate of the Be-free Ni-Cr alloy increased significantly after porcelain firing, whereas the firing process had little effect on the corrosion susceptibility of the Co-Cr alloy and the Be-containing Ni-Cr alloy. © 2011 Eur J Oral Sci.

  15. Fire safety case study of a railway tunnel: Smoke evacuation

    Directory of Open Access Journals (Sweden)

    van Maele Karim

    2007-01-01

    Full Text Available When a fire occurs in a tunnel, it is of great importance to assure the safety of the occupants of the tunnel. This is achieved by creating smoke-free spaces in the tunnel through control of the smoke gases. In this paper, results are presented of a study concerning the fire safety in a real scale railway tunnel test case. Numerical simulations are performed in order to examine the possibility of natural ventilation of smoke in inclined tunnels. Several aspects are taken into account: the length of the simulated tunnel section, the slope of the tunnel and the possible effects of external wind at one portal of the tunnel. The Fire Dynamics Simulator of the National Institute of Standards and Technology, USA, is applied to perform the simulations. The simulations show that for the local behavior of the smoke during the early stages of the fire, the slope of the tunnel is of little importance. Secondly, the results show that external wind and/or pressure conditions have a large effect on the smoke gases inside the tunnel. Finally, some idea for the value of the critical ventilation velocity is given. The study also shows that computational fluid dynamics calculations are a valuable tool for large scale, real life complex fire cases. .

  16. Catchment-scale Validation of a Physically-based, Post-fire Runoff and Erosion Model

    Science.gov (United States)

    Quinn, D.; Brooks, E. S.; Robichaud, P. R.; Dobre, M.; Brown, R. E.; Wagenbrenner, J.

    2017-12-01

    The cascading consequences of fire-induced ecological changes have profound impacts on both natural and managed forest ecosystems. Forest managers tasked with implementing post-fire mitigation strategies need robust tools to evaluate the effectiveness of their decisions, particularly those affecting hydrological recovery. Various hillslope-scale interfaces of the physically-based Water Erosion Prediction Project (WEPP) model have been successfully validated for this purpose using fire-effected plot experiments, however these interfaces are explicitly designed to simulate single hillslopes. Spatially-distributed, catchment-scale WEPP interfaces have been developed over the past decade, however none have been validated for post-fire simulations, posing a barrier to adoption for forest managers. In this validation study, we compare WEPP simulations with pre- and post-fire hydrological records for three forested catchments (W. Willow, N. Thomas, and S. Thomas) that burned in the 2011 Wallow Fire in Northeastern Arizona, USA. Simulations were conducted using two approaches; the first using automatically created inputs from an online, spatial, post-fire WEPP interface, and the second using manually created inputs which incorporate the spatial variability of fire effects observed in the field. Both approaches were compared to five years of observed post-fire sediment and flow data to assess goodness of fit.

  17. Integrating fire management analysis into land management planning

    Science.gov (United States)

    Thomas J. Mills

    1983-01-01

    The analysis of alternative fire management programs should be integrated into the land and resource management planning process, but a single fire management analysis model cannot meet all planning needs. Therefore, a set of simulation models that are analytically separate from integrated land management planning models are required. The design of four levels of fire...

  18. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    International Nuclear Information System (INIS)

    Hinkle, A.W.; Jacobsen, P.H.; Lucas, D.R.

    1994-01-01

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M

  19. Numerical study of propagation of forest fires in the presence of fire breaks using an averaged setting

    Science.gov (United States)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    The forest fires spread in the pine forests have been numerically simulated using a three-dimensional mathematical model. The model was integrated with respect to the vertical coordinate because horizontal sizes of forest are much greater than the heights of trees. In this paper, the assignment and theoretical investigations of the problems of crown forest fires spread pass the firebreaks were carried out. In this context, a study ( mathematical modeling) of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with these fire breaks.

  20. Simulations of microphysical, radiative, and dynamical processes in a continental-scale forest fire smoke plume

    Science.gov (United States)

    Westphal, Douglas L.; Toon, Owen B.

    1991-01-01

    The impact of a large forest fire smoke plume on atmospheric processes is studied through a numerical model of meteorology, aerosols, and radiative transfer. The simulated smoke optical depths at 0.63-micron wavelength are in agreement with analyses of satellite data and show values as high as 1.8. The smoke has an albedo of 35 percent, or more than double the clear-sky value, and cools the surface by as much as 5 K. An imaginary refractive index, n sub im, of 0.01 yields results which closely match the observed cooling, single scattering albedo, and the Angstrom wavelength exponent. An n exp im of 0.1, typical of smoke from urban fires, produces 9 K cooling. Coagulation causes the geometric mean radius by number to increase from the initial value of 0.08 micron to a final value of 0.15 micron, while the specific extinction and absorption increase by 40 and 25 percent, respectively.