WorldWideScience

Sample records for fire climate change

  1. Abrupt climate-independent fire regime changes

    Science.gov (United States)

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  2. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  3. Climate change and future fire regimes: Examples from California

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as

  4. Climate Change and Future Fire Regimes: Examples from California

    Directory of Open Access Journals (Sweden)

    Jon E. Keeley

    2016-08-01

    Full Text Available Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation

  5. Climate change impacts on forest fires: the stakeholders' perspective

    Science.gov (United States)

    Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.

    2012-04-01

    In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability

  6. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  7. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  8. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  9. Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere

    Science.gov (United States)

    Mariani, Michela; Holz, Andrés.; Veblen, Thomas T.; Williamson, Grant; Fletcher, Michael-Shawn; Bowman, David M. J. S.

    2018-05-01

    Recent changes in trend and variability of the main Southern Hemisphere climate modes are driven by a variety of factors, including increasing atmospheric greenhouse gases, changes in tropical sea surface temperature, and stratospheric ozone depletion and recovery. One of the most important implications for climatic change is its effect via climate teleconnections on natural ecosystems, water security, and fire variability in proximity to populated areas, thus threatening human lives and properties. Only sparse and fragmentary knowledge of relationships between teleconnections, lightning strikes, and fire is available during the observed record within the Southern Hemisphere. This constitutes a major knowledge gap for undertaking suitable management and conservation plans. Our analysis of documentary fire records from Mediterranean and temperate regions across the Southern Hemisphere reveals a critical increased strength of climate-fire teleconnections during the onset of the 21st century including a tight coupling between lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode, and rising temperatures across the Southern Hemisphere.

  10. Climate change, fire management, and ecological services in the southwestern US

    Science.gov (United States)

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  11. Climate change, fire and the carbon balance

    International Nuclear Information System (INIS)

    Amiro, B.; Flannigan, M.

    2004-01-01

    On average, forest fires have burned 2 to 3 million hectares annually in Canada over the last twenty years. Over the last 40 years, this amounts to 20 per cent of the amount of carbon released through fossil fuel emissions in Canada. This paper analyses the extent to which climate change may contribute to a disturbance in the carbon balance due to increased fire activity. In addition, data from FLUXNET-Canada was examined, indicating that carbon fluxes from younger forests show dramatic changes in diurnal carbon flux patterns, caused by reduced photosynthetic uptake during the day and less root respiration at night. Increases in fire are expected throughout much of the boreal forest towards the end of this century, with a lengthening of the fire season and increases in severity and intensity. It was concluded that there is the possibility of a positive feedback, where climate change could cause more fires, resulting in a greater release of carbon and thereby increasing greenhouse gas concentrations. Evidence that smoke promoted positive lightning strikes while reducing precipitation was also presented. It was suggested that certain self-limiting factors may prevent a run-away scenario. Changes to human and lightning ignition patterns, for example, may have an impact. It was also suggested that research efforts should focus on refining climate change estimates that account for landscape change and other aspects that control fire in Canada. 9 refs., 2 figs

  12. Climate Change, Wildland Fires and Public Health

    Science.gov (United States)

    Climate change is contributing to an increase in the severity of wildland fires. The annual acreage burned in the U.S. has risen steadily since 1985, and the fire season has lengthened. Wildland fires impair air quality by producing massive quantities of particulate air polluta...

  13. Fire, carbon, and climate change

    International Nuclear Information System (INIS)

    Amiro, B.; Flannigan, M.

    2005-01-01

    One million hectares of forest are harvested in Canada annually, with 1 to 8 million hectares destroyed by fire and a further 10 to 25 million hectares consumed by insects. Enhanced disturbances have meant that Canadian forests are becoming carbon sources instead of carbon sinks. Canadian fire statistics from the year 1920 were provided along with a map of large fires between 1980 and 1999. A cycle of combustion losses, decomposition and regeneration of forests was presented, along with a stylized concept of forest carbon life cycles with fire. Direct emissions from forests fires were evaluated. An annual net ecosystem production in Canadian boreal forests and stand age was presented. Projections of areas burned were presented based on weather and fire danger relationships, with statistics suggesting that a 75 to 120 per cent increase is likely to occur by the end of this century. Trend observations show that areas burned are correlated with increasing temperature caused by anthropogenic effects. Prevention, detection, suppression and fuels management were presented as areas that needed improvement in fire management. However, management strategies may only postpone an increase in forest fires. Changes in disturbances such as fire and insects will be a significant early impact of climate change on forests. tabs., figs

  14. How will climate change affect wildland fire severity in the western US?

    Science.gov (United States)

    Sean A. Parks; Carol Miller; John T. Abatzoglou; Lisa M. Holsinger; Marc-Andre Parisien; Solomon Z. Dobrowski

    2016-01-01

    Fire regime characteristics in North America are expected to change over the next several decades as a result of anthropogenic climate change. Although some fire regime characteristics (e.g., area burned and fire season length) are relatively well-studied in the context of a changing climate, fire severity has received less attention. In this study, we used...

  15. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N M; Parfenova, E [V N Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk, 660036 (Russian Federation); Soja, A J, E-mail: ncheby@forest.akadem.r, E-mail: Amber.J.Soja@nasa.go [National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Mail Stop 420, Hampton, VA 23681-2199 (United States)

    2009-10-15

    Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

  16. Western forests, fire risk, and climate change.

    Science.gov (United States)

    Valerie. Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  17. Western forest, fire risk, and climate change

    Science.gov (United States)

    Valerie Rapp

    2004-01-01

    Climate warming may first show up in forests as increased growth, which occurs as warmer temperatures, increased carbon dioxide, and more precipitation encourage higher rates of photosynthesis. The second way that climate change may show up in forests is through changes in disturbance regimes—the long-term patterns of fire, drought, insects, and diseases that are basic...

  18. Seasonal changes in the human alteration of fire regimes beyond the climate forcing

    Science.gov (United States)

    Fréjaville, Thibaut; Curt, Thomas

    2017-03-01

    Human activities have altered fire regimes for millennia by suppressing or enhancing natural fire activity. However, whether these anthropogenic pressures on fire activity have exceeded and will surpass climate forcing still remains uncertain. We tested if, how and the extent to which seasonal fire activity in southern France has recently (1976-2009) deviated from climate-expected trends. The latter were simulated using an ensemble of detrended fire-climate models. We found both seasonal and regional contrasts in climatic effects through a mixture of drought-driven and fuel-limited fire regimes. Dry contemporary conditions chiefly drove fire frequency and burned area, although higher fire activity was related to wetter conditions in the last three years. Surprisingly, the relative importance of preceding wet conditions was higher in winter than in summer, illustrating the strong potential dependency of regional fire-climate relationships on the human use and control of fires. In the Mediterranean mountains, warm winters and springs favour extensive fires in the following dry summer. These results highlight that increasing dryness with climate change could have antagonistic effects on fire regime by leading to larger fires in summer (moisture-limited), but lower fire activity in winter (fuel-limited fire regime). Furthermore, fire trends have significantly diverged from climatic expectations, with a strong negative alteration in fire activity in the Mediterranean lowlands and the summer burned area in the mountains. In contrast, alteration of winter fire frequency in the Mediterranean and Temperate mountains has shifted from positive to negative (or null) trends during the mid-1990s, a period when fire suppression policy underwent major revisions. Our findings demonstrate that changes in land-use and fire suppression policy have probably exceeded the strength of climate change effects on changing fire regime in southern Europe, making regional predictions of future

  19. Synergy between land use and climate change increases future fire risk in Amazon forests

    Science.gov (United States)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  20. Health Impacts of Climate Change-Induced Subzero Temperature Fires.

    Science.gov (United States)

    Metallinou, Maria-Monika; Log, Torgrim

    2017-07-20

    General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.

  1. Synergy between land use and climate change increases future fire risk in Amazon forests

    Directory of Open Access Journals (Sweden)

    Y. Le Page

    2017-12-01

    Full Text Available Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  2. Complex systems approach to fire dynamics and climate change impacts

    Science.gov (United States)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire

  3. Future fire probability modeling with climate change data and physical chemistry

    Science.gov (United States)

    Richard P. Guyette; Frank R. Thompson; Jodi Whittier; Michael C. Stambaugh; Daniel C. Dey

    2014-01-01

    Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States. We demonstrated a method for...

  4. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Science.gov (United States)

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of

  5. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    Science.gov (United States)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil

  6. Climate change impact on fire probability and severity in Mediterranean areas

    Science.gov (United States)

    Bachisio Arca; Grazia Pellizzaro; Pierpaolo Duce; Michele Salis; Valentina Bacciu; Donatella Spano; Alan Ager; Mark Finney

    2010-01-01

    Fire is one of the most significant threats for the Mediterranean forested areas. Global change may increase the wildland fire risk due to the combined effect of air temperature and humidity on fuel status, and the effect of wind speed on fire behaviour. This paper investigated the potential effect of the climate changes predicted for the Mediterranean basin by a...

  7. Fire behavior potential in central Saskatchewan under predicted climate change : summary document

    International Nuclear Information System (INIS)

    Parisien, M.; Hirsch, K.; Todd, B.; Flannigan, M.; Kafka, V.; Flynn, N.

    2005-01-01

    This study assesses fire danger and fire behaviour potential in central Saskatchewan using simulated climate scenarios produced by the Canadian Regional Climate Model (CRCM), including scenario analysis of base, double and triple level carbon dioxide in the atmosphere and uses available forest fuels to develop an absolute measure of fire behaviour. For each of these climate scenarios, the CRCM-generated weather was used as input variables into the Canadian Forest Fire Behavior Prediction (FBP) System. Fire behavior potential was quantified using head fire intensity, a measure of the fire's energy output because it can be related to fire behavior characteristics, suppression effectiveness, and fire effects. The report discusses the implications of fire behavior potential changes for fire and forest management. Preliminary results suggest a large increase in area burned in the study area by the end of the twenty-first century. Some of the possible fire management activities for long-term prediction include: pre-positioning of resources, preparedness planning, prioritization of fire and forest management activities and fire threat evaluation. 16 refs., 1 tab, 7 figs

  8. Climate change and fire management in the mid-Atlantic region

    Science.gov (United States)

    Kenneth L. Clark; Nicholas Skowronski; Heidi Renninger; Robert. Scheller

    2014-01-01

    In this review, we summarize the potential impacts of climate change on wildfire activity in the mid-Atlantic region, and then consider how the beneficial uses of prescribed fire could conflict with mitigation needs for climate change, focusing on patters of carbon (C) sequestration by forests in the region. We use a synthesis of field studies, eddy flux tower...

  9. Forests, fire, floods and fish: nonlinear biophysical responses to changing climate

    Science.gov (United States)

    Pierce, J. L.; Baxter, C.; Yager, E. M.; Fremier, A. K.; Crosby, B. T.; Smith, A. M.; Kennedy, B.; Hicke, J. A.; Feris, K.

    2009-12-01

    One goal of interdisciplinarity is to develop a more holistic understanding of a set of interlinked, complex system processes. Studies rarely couple both a mechanistic understanding of individual processes with their coupled influence on the entire system structure, yet the prospects for climate driven changes in western river systems provide justification for such an effort. We apply such a mechanistic and systems approach to understanding the effects of climate on fire frequency, plant-soil infiltration, sediment transport and stream community and ecosystem dynamics in a large wilderness setting that is likely to experience shifts in the timing or intensity of physical forces if projected climate change scenarios are realized. The Middle Fork Salmon River in central Idaho runs through the Frank Church Wilderness area and is the largest roadless area in the conterminous United States. The relatively southern continental position, complex mountain terrain and wealth of long-term landscape and ecological data in this region make it a tractable system to study the multifaceted and potentially non-linear processes of system change. This presents a unique opportunity to study the effects of climate change in the absence of substantial management effects in a system on the cusp of change. This collection of studies investigates the effects of climate-driven changes in hillslope processes on stream geomorphic and ecologic processes. We investigate 1) how wildfire alters the magnitude, timing and size of sediment delivered to stream channels, 2) how climate-driven changes in the proportion of rain vs. snow dominated basins alter stream hydrology, 3) how wildfire and insect disturbances modify aquatic ecosystems through inputs of nutrients and changes to habitat, 4) how paleo-records of drought, fire, and fire-related debris flows compare with recent data, 5) how fire-related inputs of sediment and wood influence the structure and dynamics of aquatic habitats, and their

  10. Quantifying the effects of climate and post-fire landscape change on hydrologic processes

    Science.gov (United States)

    Steimke, A.; Han, B.; Brandt, J.; Som Castellano, R.; Leonard, A.; Flores, A. N.

    2016-12-01

    Seasonally snow-dominated, forested mountain watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as the climate warms. Changes in vegetation also affect the runoff response of watersheds. The largest driver of vegetation change in many mountainous regions is wildfire, whose occurrence is affected by both climate and land management decisions. Here, we quantify how direct (i.e. changes in precipitation and temperature) and indirect (i.e. changing fire regimes) effects of climate change influence hydrologic parameters such as dates of peak streamflow, annual discharge, and snowpack levels. We used the Boise River Basin, ID as a model laboratory to calculate the relative magnitude of change stemming from direct and indirect effects of climate change. This basin is relevant to study as it is well-instrumented and major drainages have experienced burning at different spatial and temporal intervals, aiding in model calibration. We built a hydrology-based integrated model of the region using a multiagent simulation framework, Envision. We used a modified HBV (Hydrologiska Byråns Vattenbalansavdelning) rainfall-runoff model and calibrated it to historic streamflow and snowpack observations. We combined a diverse set of climate projections with wildfire scenarios (low vs. high) representing two distinct intervals in the regional historic fire record. In fire simulations, we altered land cover coefficients to reflect a burned state post-fire, which decreased overall evapotranspiration rates and increased water yields. However, direct climate effects had a larger signal on annual variations of hydrologic parameters. By comparing and analyzing scenario outputs, we identified links and sensitivities between land cover and regional hydrology in the context of a changing climate, with potential implications for local land and water managers. In future

  11. Climate change impact on landscape fire and forest biomass dynamics

    International Nuclear Information System (INIS)

    Li, C.

    2004-01-01

    The aim of this study was to improve current understandings of fire regimes. The estimation of biomass dynamics at the stand scale is essential for understanding landscape scale biomass dynamics, particularly in order to understand the potential effects of fire regimes. This study presented a synthesis of research results obtained from stand scale studies together with fire behaviour and weather variables. Landscape structure, topography and climate conditions were also considered. Integration of the data was conducted with the SEM-LAND model, a spatially explicit model for landscape dynamics. Equations for the model were presented, including fire initiation and spread, as well as a lightning fire process and simulated fire suppression. Results indicated that fire suppression could alter the distribution of fire sizes. The effect of tree and stand mortality on forest biomass estimates was also discussed along with the impact of climate change on fire regimes. Results indicate that fire activities are likely to increase. Results also demonstrate that fire frequency and size distribution are correlated without human intervention. Theoretical negative exponential forest age distribution is not always supported by empirical observations. Point-based fire frequency and fire cycle definitions are special cases from a computational perspective. Detection of quantitative interrelationships may simplify preconditions for estimating fire regimes, and serve as a means to address incomplete empirical observations. 12 refs., 3 figs

  12. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    Science.gov (United States)

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change

  13. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions

    Science.gov (United States)

    Yongqiang Liu; Scott Goodrick; Warren Heilman

    2014-01-01

    Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern over potential impacts of future climate change on fire activity has resulted in increased attention on fire–climate interactions. Findings from studies published in recent years have remarkably increased our understanding of fire–climate interactions and improved...

  14. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    International Nuclear Information System (INIS)

    Kang, Sinkyu; Kimball, John S.; Running, Steven W.

    2006-01-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km 2 portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO 2 , climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO 2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T a ), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 o C for T a and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO 2 , climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  15. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    Science.gov (United States)

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  16. Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology

    Science.gov (United States)

    Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.

    2009-12-01

    Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual

  17. Climate change and California: potential implications for vegetation, carbon, and fire.

    Science.gov (United States)

    Jonathan. Thompson

    2005-01-01

    Nineteen scientists from leading research institutes in the United States collaborated to estimate how California’s environment and economy would respond to global climate change. A scientist from the PNW Research Station led efforts to estimate effects on vegetation, carbon, and fire.To quantify the range of the possible effects of climate change over the...

  18. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sinkyu [Department of Environmental Science, Kangwon National University, Chunchon, Kangwon-do 200-701 (Korea, Republic of); Kimball, John S.; Running, Steven W. [Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation Sciences, The University of Montana, Missoula, MT 59812 (United States)

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km{sup 2} portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO{sub 2}, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO{sub 2} resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T{sub a}), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 {sup o}C for T{sub a} and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO{sub 2}, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  19. Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape.

    Science.gov (United States)

    Falke, Jeffrey A.; Flitcroft, Rebecca L; Dunham, Jason B.; McNyset, Kristina M.; Hessburg, Paul F.; Reeves, Gordon H.

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River basin, Washington, USA, under current and future climate and fire scenarios. The BN was based on modeled estimates of wildfire, water temperature, and physical habitat prior to, and following, simulated fires throughout the basin. We found that bull trout population vulnerability depended on the extent to which climate effects can be at least partially offset by managing factors such as habitat connectivity and fire size. Moreover, our analysis showed that local management can significantly reduce the vulnerability of bull trout to climate change given appropriate management actions. Tools such as our BN that explicitly integrate the linked nature of climate and wildfire, and incorporate uncertainty in both input data and vulnerability estimates, will be vital in effective future management to conserve native coldwater fishes.

  20. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    Science.gov (United States)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  1. Climate Change Transforms Fire Regimes but Does not Eliminate Forest Carbon Sequestration in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Henne, P. D.; Hawbaker, T. J.; Berryman, E.

    2017-12-01

    Annual area burned in the Rocky Mountains varies with climatic conditions. However, projecting long-term changes in wildfire presents an enduring challenge because climate also constrains vegetation and fuel availability. We combined an aridity-threshold fire model with the Landis-II dynamic landscape vegetation model (NECN extension) to project climate change impacts on vegetation, area burned, and ecosystem carbon balance in the Greater Yellowstone Ecosystem (GYE). We developed a fire model that relates drought stress to area burned by quantifying an aridity threshold separating large and small years in 15 ecoregions in the Intermountain West. A significant positive correlation (r2 = 0.97) exists between mean fire-season aridity and ecoregion-specific aridity thresholds. We simulated vegetation and fire dynamics in the GYE at 250 m spatial resolution with Landis-II, using projections from five climate models and two emissions scenarios for the period 1980-2100 AD. We determined if each simulation year exceeded the regional aridity threshold, then randomly drew the number of fires and size of individual fires from fire-size distributions from large or small fire years. Burned area increases dramatically in most climate scenarios, especially after 2060, when most years exceed the aridity threshold. Productivity gains due to rising temperatures partially offset biomass lost to fire, but C stocks plateau or decline after 2060 in most simulations as burned area increases, and drought stress causes post-fire regeneration to decline at low elevations. However, species level changes (e.g. expansion by drought-tolerant Pseuodotsuga menziesii) help maintain productivity in sites where water becomes limiting. Fire-adapted Pinus contorta occupies less total area, but a greater proportion of remaining forests, and Picea engelmannii and Abies lasiocarpa significantly decline. Although fire and climate change will alter species distributions and forest structure, our results

  2. Catastrophic fat tails and non-smooth damage functions-fire economics and climate change adaptation for public policy

    Science.gov (United States)

    Adriana Keeting; John Handmer

    2013-01-01

    South-eastern Australia is one of the most fire prone environments on earth. Devastating fires in February 2009 appear to have been off the charts climatically and economically, they led to a new category of fire danger aptly called 'catastrophic'. Almost all wildfire losses have been associated with these extreme conditions and climate change will see an...

  3. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    Science.gov (United States)

    Mann, Michael L; Batllori, Enric; Moritz, Max A; Waller, Eric K; Berck, Peter; Flint, Alan L; Flint, Lorraine E; Dolfi, Emmalee

    2016-01-01

    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.

  4. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California.

    Directory of Open Access Journals (Sweden)

    Michael L Mann

    Full Text Available The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively. Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change.

  5. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.

    Science.gov (United States)

    Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M

    2014-08-01

    Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional

  6. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi

    2017-01-01

    The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly

  7. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger

    Science.gov (United States)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify

  8. Synergistic impacts of deforestation, climate change and fire on the future biomes distribution in Amazonia

    Science.gov (United States)

    Sampaio, G.; Cardoso, M. F.; Nobre, C. A.; Salazar, L. F.

    2013-05-01

    Several studies indicate future increase of environmental risks for the ecosystems in the Amazon region as a result of climate and land-use change, and their synergistic interactions. Modeling studies (e.g. Oyama and Nobre 2004, Salazar et al. 2007, Malhi et al. 2008) project rapid and irreversible replacement of forests by savannas with large-scale losses of biodiversity and livelihoods for people in the region. This process is referred to as the Amazon Dieback, where accelerated plant mortality due to environmental changes lead to forest collapse and savannas expansion after "tipping points" in climate and land surface changes are achieved. In this study we performed new analyses to quantify how deforestation, climate change and fire may combine to affect the distribution of major biomes in Amazonia. Changes in land use consider deforestation scenarios of 0%, 20%, 40%, and 50% (Sampaio et al., 2007), with and without fires (Cardoso et al., 2008), under the two greenhouse gases scenarios B1 and A2 and three "representative concentration pathways" (RCPs): 2.6, 4.5 and 8.5, for years 2015-2034 and 2040-2059 ("2025" and "2050" time-slices), from IPCC AR4 and CMIP5. The results show that the area affected in scenarios A2 and RCP 8.5 is larger than in the climate scenario B1 and RCP 2.6, and in both cases the effect is progressively higher in time. Most important changes occur in the East and South of the Amazon, with replacement of tropical forest by seasonal forest and savanna. The effect of fire in this region is important in all scenarios. The Northwest Amazon presents the smallest changes in the area of tropical forest, indicating that even for substantial land-use modifications and global climate change, the resulting atmospheric conditions would still support tropical forest in the region. In summary, we conclude that the synergistic combination of deforestation, climate change resulting from global warming, and the potential for higher fire occurrence may lead

  9. Climate change and wildfires

    Science.gov (United States)

    William J. De Groot; Michael D. Flannigan; Brian J. Stocks

    2013-01-01

    Wildland fire regimes are primarily driven by climate/weather, fuels and people. All of these factors are dynamic and their variable interactions create a mosaic of fire regimes around the world. Climate change will have a substantial impact on future fire regimes in many global regions. Current research suggests a general increase in area burned and fire occurrence...

  10. Effects of climate change on fire and spruce budworm disturbance regimes and consequences on forest biomass production in eastern Canada

    International Nuclear Information System (INIS)

    Gauthier, S.

    2004-01-01

    The dynamics of spruce budworm (SBW) outbreaks and wildfires are expected to change as climatic change progresses. The effects of an altered, combined interaction between SBW and fire may be of greater importance than the individual effect of either on forest biomass production. The objectives of this study are to define current fire and SBW regimes in eastern Canada and relate the characteristics of each regime based upon climate model outputs for 2050 and 2100. The study also attempts to evaluate the impact of predicted changes in SBW and fire disturbance regimes on forest dynamics. The methodology used in the study included data from the Canadian Large Fire Database and historical records of SBW outbreaks. Spatial and environmental variables were presented along with climate models. The analysis was conducted using constrained ordination techniques, and canonical correspondence and redundancy analysis. Projected disturbance regimes were presented for both fire and SBW. The effects of the regimes on biomass productivity were also examined, using a Landscape Disturbance Simulator (LAD). It was concluded that this model will help evaluate the consequences of changes imposed by climatic change on both disturbances individually, as well as their interaction. 10 refs., 1 tab., 2 figs

  11. Fire, Climate, and Human Activity: A Combustive Combination

    Science.gov (United States)

    Kehrwald, N. M.; Battistel, D.; Argiriadis, E.; Barbante, C.; Barber, L. B.; Fortner, S. K.; Jasmann, J.; Kirchgeorg, T.; Zennaro, P.

    2017-12-01

    Ice and lake core records demonstrate that fires caused by human activity can dominate regional biomass burning records in the Common Era. These major increases in fires are often associated with extensive land use change such as an expansion in agriculture. Regions with few humans, relatively stable human populations and/or unvarying land use often have fire histories that are dominated by climate parameters such as temperature and precipitation. Here, we examine biomass burning recorded in ice cores from northern Greenland (NEEM, (77°27'N; 51°3.6'W), Alaska (Juneau Icefield, 58° 35' N; 134° 29'W) and East Antarctica (EPICA DOME C; 75°06'S; 123°21'E), along with New Zealand lake cores to investigate interactions between climate, fire and human activity. Biomarkers such as levoglucosan, and its isomers mannosan and galactosan, can only be produced by cellulose combustion and therefore are specific indicators of past fire activity archived in ice and lake cores. These fire histories add another factor to climate proxies from the same core, and provide a comparison to regional fire syntheses from charcoal records and climate models. For example, fire data from the JSBACH-Spitfire model for the past 2000 years demonstrates that a climate-only scenario would not increase biomass burning in high northern latitudes for the past 2000 years, while NEEM ice core and regional pollen records demonstrate both increased fire activity and land use change that may be ascribed to human activity. Additional biomarkers such as fecal sterols in lake sediments can determine when people were in an area, and can help establish if an increased human presence in an area corresponds with intensified fire activity. This combination of specific biomarkers, other proxy data, and model output can help determine the relative impact of humans versus climate factors on regional fire activity.

  12. Incorporating anthropogenic influences into fire probability models: Effects of development and climate change on fire activity in California

    Science.gov (United States)

    Mann, M.; Moritz, M.; Batllori, E.; Waller, E.; Krawchuk, M.; Berck, P.

    2014-12-01

    The costly interactions between humans and natural fire regimes throughout California demonstrate the need to understand the uncertainties surrounding wildfire, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires. Models estimate an increase in fire occurrence between nine and fifty-three percent by the end of the century. Our goal is to assess the role of uncertainty in climate and anthropogenic influences on the state's fire regime from 2000-2050. We develop an empirical model that integrates novel information about the distribution and characteristics of future plant communities without assuming a particular distribution, and improve on previous efforts by integrating dynamic estimates of population density at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of the total fire count, and that further housing development will incite or suppress additional fires according to their intensity. We also find that the total area burned is likely to increase but at a slower than historical rate. Previous findings of substantially increased numbers of fires may be tied to the assumption of static fuel loadings, and the use of proxy variables not relevant to plant community distributions. We also find considerable agreement between GFDL and PCM model A2 runs, with decreasing fire counts expected only in areas of coastal influence below San Francisco and above Los Angeles. Due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid deserts of the inland south. The broad shifts of wildfire between California's climatic regions forecast in this study point to dramatic shifts in the pressures plant and human communities will face by midcentury. The information provided by this study reduces the

  13. Watershed Response to Climate Change and Fire-Burns in the Upper Umatilla River Basin, USA

    Directory of Open Access Journals (Sweden)

    Kimberly Yazzie

    2017-02-01

    Full Text Available This study analyzed watershed response to climate change and forest fire impacts in the upper Umatilla River Basin (URB, Oregon, using the precipitation runoff modeling system. Ten global climate models using Coupled Intercomparison Project Phase 5 experiments with Representative Concentration Pathways (RCP 4.5 and 8.5 were used to simulate the effects of climate and fire-burns on runoff behavior throughout the 21st century. We observed the center timing (CT of flow, seasonal flows, snow water equivalent (SWE and basin recharge. In the upper URB, hydrologic regime shifts from a snow-rain-dominated to rain-dominated basin. Ensemble mean CT occurs 27 days earlier in RCP 4.5 and 33 days earlier in RCP 8.5, in comparison to historic conditions (1980s by the end of the 21st century. After forest cover reduction in the 2080s, CT occurs 35 days earlier in RCP 4.5 and 29 days earlier in RCP 8.5. The difference in mean CT after fire-burns may be due to projected changes in the individual climate model. Winter flow is projected to decline after forest cover reduction in the 2080s by 85% and 72% in RCP 4.5 and RCP 8.5, in comparison to 98% change in ensemble mean winter flows in the 2080s before forest cover reduction. The ratio of ensemble mean snow water equivalent to precipitation substantially decreases by 81% and 91% in the 2050s and 2080s before forest cover reduction and a decrease of 90% in RCP 4.5 and 99% in RCP 8.5 in the 2080s after fire-burns. Mean basin recharge is 10% and 14% lower in the 2080s before fire-burns and after fire-burns, and it decreases by 13% in RCP 4.5 and decreases 22% in RCP 8.5 in the 2080s in comparison to historical conditions. Mixed results for recharge after forest cover reduction suggest that an increase may be due to the size of burned areas, decreased canopy interception and less evaporation occurring at the watershed surface, increasing the potential for infiltration. The effects of fire on the watershed system are

  14. Fire and drought experiments in northern wetlands: A climate change analogue

    Energy Technology Data Exchange (ETDEWEB)

    Hogenbirk, J.C.; Wen, R.W. (Alberta Univ., Edmonton, AB (Canada))

    1991-09-01

    Drought and fire, which may increase in frequency and severity because of global warming, were simulated in mid-boreal wetlands by transplanting soil block upslope to a lower water table and by prescribed burns. In the 2 years after treatments were applied to seasonally flooded vegetation zones in the Peace-Athabasca Delta, Alberta, the drought treatment did not significantly change stem density and height of the dominant hygrophytes Calamagrostics canadensis and Carex atherodes. Dicotyledonous species' density and richness increased 3- to 36-fold on soil blocks moved upslope to the driest vegetation zone relative to unmoved soil blocks. The percent cover of native dicotyledonous species was unaffected but that of xerophytic Eurasian species, Sonchus arvensis and Cirsium arvense, increased 5- to 13-fold after dought treatment. Fire, particularly the deepest burn, reduced graminoid density and height up to 90%. Dicotyledon density, but not richness, was generally higher after fire. Plant cover was unaffected by fire but Eurasian species' cover was still 3- to 15-fold greater than that of native species. Seasonally flooded vegetation zones will likely be shifted from flood-driven dynamics with cool and moist environmental conditions towards drought- and fire-driven dynamics with warmer and drier conditions. It is hypothesized that, under these climate change conditions, Eurasian species might dominate early successional communities in mid-boreal wetlands. 37 refs., 1 fig., 4 tabs.

  15. San Diego Declaration on Climate Change and Fire Management: Ramifications for fuels management

    Science.gov (United States)

    Brian P. Oswald

    2007-01-01

    Climate plays a central role in shaping fire regimes over long time scales and in generating short-term weather that drives fire events. Recent research suggests that the increasing numbers of large and severe wildfires, lengthened wildfire seasons, and increased area burned are, in part, related to shifts in climate. The historical fire regimes in many ecosystems have...

  16. Climate controls on fire pattern in African and Australian continents

    Science.gov (United States)

    Zubkova, M.; Boschetti, L.; Abatzoglou, J. T.

    2017-12-01

    Studies have primarily attributed the recent decrease in global fire activity in many savanna and grassland regions as detected by the Global Fire Emission Database (GFEDv4s) to anthropogenic changes such as deforestation and cropland expansion (Andela et al. 2017, van der Werf et al. 2008). These changes have occurred despite increases in fire weather season length (Jolly et al. 2015). Efforts to better resolve retrospective and future changes in fire activity require refining the host of influences on societal and environmental factors on fire activity. In this study, we analyzed how climate variability influences interannual fire activity in Africa and Australia, the two continents most affected by fire and responsible for over half of the global pyrogenic emissions. We expand on the analysis presented in Andela et al. (2017) by using the most recent Collection 6 MODIS MCD64 Burned Area Product and exploring the explanatory power of a broader suite of climate variables that have been previously shown to explain fire variability (Bowman et al. 2017). We examined which climate metrics show a strong interannual relationship with the amount of burned area and fire size accounting for antecedent and in-season atmospheric conditions. Fire characteristics were calculated using the 500m resolution MCD64A1 product (2002-2016); the analysis was conducted at the ecoregion scale, and further stratified by landcover using a broad aggregation (forest, shrublands and grasslands) of the Landcover CCI maps (CCI-LC, 2014); all agricultural areas fires were excluded from the analysis. The results of the analysis improve our knowledge of climate controls on fire dynamics in the most fire-prone places in the world which is critical for statistical fire and vegetation models. Being able to predict the impact of climate on fire activity has a strategic importance in designing future fire management scenarios, help to avoid degradation of biodiversity and ecosystem services and improve

  17. Are post-fire silvicultural treatments a useful tool to fight the climate change threat in terms of plant diversity?

    Science.gov (United States)

    Hedo de Santiago, Javier; Esteban Lucasr Borja, Manuel; de las Heras, Jorge

    2016-04-01

    Adaptative forest management demands a huge scientific knowledge about post-fire vegetation dynamics, taking into account the current context of global change. We hypothesized that management practices should be carry out taking into account the climate change effect, to obtain better results in the biodiversity maintenance across time. All of this with respect to diversity and species composition of the post-fire naturally regenerated Aleppo pine forests understory. The study was carried out in two post-fire naturally regenerated Aleppo pine forests in the Southeastern of the Iberian Peninsula, under contrasting climatic conditions: Yeste (Albacete) shows a dry climate and Calasparra (Murcia) shows a semiarid climate. Thinning as post-fire silvicultural treatment was carried out five years after the wildfire event, in the year 1999. An experiment of artificial drought was designed to evacuate 15% of the natural rainfall in both sites, Yeste and Calasparra, to simulate climate change. Taking into account all the variables (site, silvicultural treatment and artificial drought), alpha diversity indices including species richness, Shannon and Simpson diversity indices, and plant cover, were analyzed as a measure of vegetation abundance. The results showed that plant species were affected by thinning, whereas induced drought affected total cover and species, with lower values at Yeste. Significant site variation was also observed in soil properties, species richness and total plant cover, conversely to the plant species diversity indices. We conclude that the plant community shows different responses to a simulated environment of climate change depending on the experimental site.

  18. Forest diversity, climate change and forest fires in the Mediterranean region of Turkey.

    Science.gov (United States)

    Ozturk, Munir; Gucel, Salih; Kucuk, Mahir; Sakcali, Serdal

    2010-01-01

    This paper reviews the forest resources in Turkey in the light of published literature and summarises extensive fieldwork undertaken in the Mediterranean phytogeograhical region of Turkey. The issues of landscape change and the associated drivers are addressed and the threats to the forest diversity are considered. It notes the impacts of climate change and forest fires and attemepts have been made to put forth future options for sustainable forest development.

  19. Impacts of fire and climate change on long-term nitrogen availability and forest productivity in the New Jersey Pine Barrens

    Science.gov (United States)

    Melissa S. Lucash; Robert M. Scheller; Alec M. Kretchun; Kenneth L. Clark; John. Hom

    2014-01-01

    Increased wildfires and temperatures due to climate change are expected to have profound effects on forest productivity and nitrogen (N) cycling. Forecasts about how wildfire and climate change will affect forests seldom consider N availability, which may limit forest response to climate change, particularly in fire-prone landscapes. The overall objective of this study...

  20. Understanding interaction effects of climate change and fire management on bird distributions through combined process and habitat models

    Science.gov (United States)

    White, Joseph D.; Gutzwiller, Kevin J.; Barrow, Wylie C.; Johnson-Randall, Lori; Zygo, Lisa; Swint, Pamela

    2011-01-01

    Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process-based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf-area index values were lower in shrubland. This high probability of occurrence likely is related to the species' use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.

  1. Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model

    Directory of Open Access Journals (Sweden)

    Patrícia Silva

    Full Text Available Abstract Fire has a fundamental role in the Earth system as it influences global and local ecosystem patterns and processes, such as vegetation distribution and structure, the carbon cycle and climate. Since, in the global context, Brazil is one of the regions with higher fire activity, an assessment is here performed of the sensitivity of the wildfire regime in Brazilian savanna and shrubland areas to changes in regional climate during the 21st Century, for an intermediate scenario (RCP4.5 of climate change. The assessment is based on a spatial and temporal analysis of a meteorological fire danger index specifically developed for Brazilian biomes, which was evaluated based on regional climate simulations of temperature, relative humidity and precipitation using the Rossby Centre Regional Climate Model (RCA4 forced by the EC-Earth earth system model. Results show a systematic increase in the extreme levels of fire danger throughout the 21st Century that mainly results from the increase in maximum daily temperature, which rises by about 2 °C between 2005 and 2100. This study provides new insights about projected fire activity in Brazilian woody savannas associated to climate change and is expected to benefit the user community, from governmental policies to land management and climate researches.

  2. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    Science.gov (United States)

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  3. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland

    NARCIS (Netherlands)

    Zumbrunnen, T.; Pezzatti, B.; Menendez, P.; Bugmann, H.; Brgi, M.; Conedera, M.

    2011-01-01

    Understanding the factors driving past fire regimes is crucial in the context of global change as a basis for predicting future changes. In this study, we aimed to identify the impact of climate and human activities on fire occurrence in the most fire-prone regions of Switzerland. We considered

  4. Fire and climate suitability for woody vegetation communities in the south central United States

    Science.gov (United States)

    Stroh, Esther; Struckhoff, Matthew; Stambaugh, Michael C.; Guyette, Richard P.

    2018-01-01

    Climate and fire are primary drivers of plant species distributions. Long-term management of south central United States woody vegetation communities can benefit from information on potential changes in climate and fire frequencies, and how these changes might affect plant communities. We used historical (1900 to 1929) and future (2040 to 2069 and 2070 to 2099) projected climate data for the conterminous US to estimate reference and future fire probabilities

  5. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    Science.gov (United States)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.

  6. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Luo, Xu; Wang, Yu Li; Zhang, Jin Quan

    2018-03-01

    Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus

  7. Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies

    DEFF Research Database (Denmark)

    Tague, Christina; Seaby, Lauren Paige; Hope, Allen

    2009-01-01

    Global Climate Models (GCMs) project moderate warming along with increases in atmospheric CO2 for California Mediterranean type ecosystems (MTEs). In water-limited ecosystems, vegetation acts as an important control on streamflow and responds to soil moisture availability. Fires are also key...... disturbances in semiarid environments, and few studies have explored the potential interactions among changes in climate, vegetation dynamics, hydrology, elevated atmospheric CO2 concentrations and fire. We model ecosystem productivity, evapotranspiration, and summer streamflow under a range of temperature...... climate scenarios, biomass in chaparral-dominated systems is likely to increase, leading to reductions in summer streamflow. However, within the range of GCM predictions, there are some scenarios in which vegetation may decrease, leading to higher summer streamflows. Changes due to increases in fire...

  8. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  9. Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model

    Science.gov (United States)

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-01-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions

  10. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model.

    Science.gov (United States)

    King, David A; Bachelet, Dominique M; Symstad, Amy J

    2013-12-01

    Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and

  11. Impact of anthropogenic climate change on wildfire across western US forests.

    Science.gov (United States)

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  12. Climate-Driven Risk of Large Fire Occurrence in the Western United States, 1500 to 2003

    Science.gov (United States)

    Crockett, J.; Westerling, A. L.

    2017-12-01

    Spatially comprehensive fire climatology has provided managers with tools to understand thecauses and consequences of large forest wildfires, but a paleoclimate context is necessary foranticipating the trajectory of future climate-fire relationships. Although accumulated charcoalrecords and tree scars have been utilized in high resolution, regional fire reconstructions, there isuncertainty as to how current climate-fire relationships of the western United States (WUS) fitwithin the natural long-term variability. While contemporary PDSI falls within the naturalvariability of the past, contemporary temperatures skew higher. Here, we develop a WUSfire reconstruction by applying climate-fire-topography model built on the 1972 to 2003 periodto the past 500 years, validated by recently updated fire-scar histories from WUS forests. Theresultant narrative provides insight into changing climate-fire relationships during extendedperiods of high aridity and temperature, providing land managers with historical precedent toeffectively anticipate disturbances during future climate change.

  13. Future southcentral US wildfire probability due to climate change

    Science.gov (United States)

    Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.

    2018-01-01

    Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.

  14. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    Science.gov (United States)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that

  15. Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Reverchon, Frederique; Xu, Zhihong; Blumfield, Timothy J.; Chen, Chengrong; Abdullah, Kadum M. [Griffith Univ., Nathan, QLD (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2012-02-15

    The objective of this review was to provide a better understanding of how global climate change and fire influence the occurrence of understorey legumes and thereby biological nitrogen (N) fixation rates in forest ecosystems. Legumes are interesting models since they represent an interface between the soil, plant, and microbial compartments, and are directly linked to nutrient cycles through their ability to fix N. As such, they are likely to be affected by environmental changes. Biological N fixation has been shown to increase under enriched CO{sub 2} conditions, but is constrained by the availability of phosphorus and water. Climate change can also influence the species composition of legumes and their symbionts through warming, altered rainfall patterns, or changes in soil physicochemistry, which could modify the effectiveness of the symbiosis. Additionally, global climate change may increase the occurrence and intensity of forest wildfires thereby further influencing the distribution of legumes. The establishment of leguminous species is generally favored by fire, as is N{sub 2} fixation. This fixed N could therefore replenish the N lost through volatilization during the fire. However, fire may also generate shifts in the associated microbial community which could affect the outcome of the symbiosis. Understorey legumes are important functional species, and even when they cannot reasonably be expected to reestablish the nutrient balance in forest soils, they may be used as indicators to monitor nutrient fluxes and the response of forest ecosystems to changing environmental conditions. This would be helpful to accurately model ecosystem N budgets, and since N is often a limiting factor to plant growth and a major constraint on C storage in ecosystems, would allow us to assess more precisely the potential of these forests for C sequestration. (orig.)

  16. Landscape fires dominate terrestrial natural aerosol - climate feedbacks

    Science.gov (United States)

    Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2017-12-01

    The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to

  17. Global vegetation-fire pattern under different land use and climate conditions

    Science.gov (United States)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from

  18. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    Science.gov (United States)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.

    2012-01-01

    Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse

  19. Cold Climate Structural Fire Danger Rating System?

    Directory of Open Access Journals (Sweden)

    Maria-Monika Metallinou

    2018-03-01

    Full Text Available Worldwide, fires kill 300,000 people every year. The fire season is usually recognized to be in the warmer periods of the year. Recent research has, however, demonstrated that the colder season also has major challenges regarding severe fires, especially in inhabited (heated wood-based structures in cold-climate areas. Knowledge about the effect of dry cellulose-based materials on fire development, indoor and outdoor, is a motivation for monitoring possible changes in potential fire behavior and associated fire risk. The effect of wind in spreading fires to neighboring structures points towards using weather forecasts as information on potential fire spread behavior. As modern weather forecasts include temperature and relative humidity predictions, there may already be sufficient information available to develop a structural fire danger rating system. Such a system may include the following steps: (1 Record weather forecasts and actual temperature and relative humidity inside and outside selected structures; (2 Develop a meteorology-data-based model to predict indoor relative humidity levels; (3 Perform controlled drying chamber experiments involving typical hygroscopic fire fuel; (4 Compare the results to the recorded values in selected structures; and (5 Develop the risk model involving the results from drying chamber experiments, weather forecasts, and separation between structures. Knowledge about the structures at risk and their use is also important. The benefits of an automated fire danger rating system would be that the society can better plan for potentially severe cold-climate fires and thereby limit the negative impacts of such fires.

  20. Evaluating the impact of climate on forest vulnerability to fires

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2015-01-01

    Full Text Available The assessment of the threat of forest fires usually includes identification of factors and quantification of risk levels. This work presents an approach to modeling the risk of forest fires caused by climate impacts. Climate Impact Assessment is based on the significance of air temperature, rainfall and relative air humidity. The analysis is based on the meteorological data obtained from 26 meteorological stations in Serbia for the period from 1981 to 2010. The analysis is used to predict the areas where the expected rate of fire is high. The method is simple; it describes the key variables for the risk under climate impacts and the spatial pattern of risk. It is suitable for operational use by authorized services. The risk of forest fire is classified as negligible, small, medium and large. The database and analysis results were used to build the matrix of risk assessment of forest fires in Serbia. A great part of the territory of Serbia is relatively highly sensitive to forest fires. The lowest consequences of climate impacts are visible in the areas of Kopaonik and Zlatibor. In Serbia, there is no place where there is a negligible risk of fire. Further research, especially in terms of the relationship between climate change and the adaptive capacity of existing forest ecosystems, species and existing genotypes, is urgently needed in Serbia.

  1. Exploring the Future of Fuel Loads in Tasmania, Australia: Shifts in Vegetation in Response to Changing Fire Weather, Productivity, and Fire Frequency

    Directory of Open Access Journals (Sweden)

    Rebecca Mary Bernadette Harris

    2018-04-01

    Full Text Available Changes to the frequency of fire due to management decisions and climate change have the potential to affect the flammability of vegetation, with long-term effects on the vegetation structure and composition. Frequent fire in some vegetation types can lead to transformational change beyond which the vegetation type is radically altered. Such feedbacks limit our ability to project fuel loads under future climatic conditions or to consider the ecological tradeoffs associated with management burns. We present a “pathway modelling” approach to consider multiple transitional pathways that may occur under different fire frequencies. The model combines spatial layers representing current and future fire danger, biomass, flammability, and sensitivity to fire to assess potential future fire activity. The layers are derived from a dynamically downscaled regional climate model, attributes from a regional vegetation map, and information about fuel characteristics. Fire frequency is demonstrated to be an important factor influencing flammability and availability to burn and therefore an important determinant of future fire activity. Regional shifts in vegetation type occur in response to frequent fire, as the rate of change differs across vegetation type. Fire-sensitive vegetation types move towards drier, more fire-adapted vegetation quickly, as they may be irreversibly impacted by even a single fire, and require very long recovery times. Understanding the interaction between climate change and fire is important to identify appropriate management regimes to sustain fire-sensitive communities and maintain the distribution of broad vegetation types across the landscape.

  2. Post-Fire Recovery of Eco-Hydrologic Behavior Given Historic and Projected Climate Variability in California Mediterranean Type Environments

    Science.gov (United States)

    Seaby, L. P.; Tague, C. L.; Hope, A. S.

    2006-12-01

    The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.

  3. Climate effect on forest fire static risk assessment

    Science.gov (United States)

    Bodini, Antonella; Cossu, Antonello; Entrade, Erika; Fiorucci, Paolo; Gaetani, Francesco; Parodi, Ulderica

    2010-05-01

    . The analysis has been carried out at 20 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime in the considered regions contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extendable to other geographical areas. This research is part of the project PROTERINA C, funded by the EU under the Italy-France Maritime Programme, aiming at investigating the effects that climate change could have on the environment (fuels).

  4. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    Science.gov (United States)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience

  5. Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada

    Science.gov (United States)

    Camill, Philip; Barry, Ann; Williams, Evie; Andreassi, Christian; Limmer, Jacob; Solick, Donald

    2009-12-01

    Climate warming may increase the size and frequency of fires in the boreal biome, possibly causing greater carbon release that amplifies warming. However, in peatlands, vegetation change may also control long-term fire and carbon accumulation, confounding simple relationships between climate, fire, and carbon accumulation. Using 17 peat cores dating to 8000 cal years B.P. from northern Manitoba, Canada, we addressed the following questions: (1) Do past climate changes correlate with shifts in peatland vegetation? (2) What is the relationship between peatland vegetation and fire severity? (3) What is the mean return interval for boreal peat fires, and how does it change across fires of different severities? (4) How does fire severity affect carbon accumulation rates? (5) Do fire and long-term carbon accumulation change directly in response to climate or indirectly though climate-driven changes in vegetation? We measured carbon accumulation rates, fire severity, and return intervals using macroscopic charcoal and changes in vegetation using macrofossils. Climate and vegetation changes covaried, with shifts from wetter fen to drier, forested bog communities during the Holocene Thermal Maximum (HTM). Fires became more severe following the shift to forested bogs, with fire severity peaking after 4000 cal years B.P. rather than during the HTM. Rising fire severity, in turn, was correlated with a significant decrease in carbon accumulation from ˜6000 to 2000 cal years B.P. The Medieval Warm Period and Little Ice Age affected vegetation composition and permafrost, further impacting fire and carbon accumulation. Our results indicate that long-term changes in fire and carbon dynamics are mediated by climate-driven changes in vegetation.

  6. Land Cover Change in Northern Botswana: The Influence of Climate, Fire, and Elephants on Semi-Arid Savanna Woodlands

    Directory of Open Access Journals (Sweden)

    John Tyler Fox

    2017-10-01

    Full Text Available Complex couplings and feedback among climate, fire, and herbivory drive short- and long-term patterns of land cover change (LCC in savanna ecosystems. However, understanding of spatial and temporal LCC patterns in these environments is limited, particularly for semi-arid regions transitional between arid and more mesic climates. Here, we use post-classification analysis of Landsat TM (1990, ETM+ (2003, and OLI (2013 satellite imagery to classify and assess net and gross LCC for the Chobe District, a 21,000 km2 area encompassing urban, peri-urban, rural, communally-managed (Chobe Enclave, and protected land (Chobe National Park, CNP, and six protected forest reserves. We then evaluate spatiotemporal patterns of LCC in relation to precipitation, fire detections (MCD14M, 2001–2013 from the Moderate Resolution Imaging Spectroradiometer (MODIS, and dry season elephant (Loxodonta africana aerial survey data (2003, 2006, 2012, 2013. Woodland cover declined over the study period by 1514 km2 (16.2% of initial class total, accompanied by expansion of shrubland (1305 km2, 15.7% and grassland (265 km2, 20.3%. Net LCC differed importantly in protected areas, with higher woodland losses observed in forest reserves compared to the CNP. Loss of woodland was also higher in communally-managed land for the study period, despite gains from 2003–2013. Gross (class changes were characterized by extensive exchange between woodland and shrubland during both time steps, and a large expansion of shrubland into grassland and bare ground from 2003–2013. MODIS active fire detections were highly variable from year to year and among the different protected areas, ranging from 1.8 fires*year−1/km2 in the Chobe Forest Reserve to 7.1 fires*year−1/km2 in the Kasane Forest Reserve Extension. Clustering and timing of dry season fires suggests that ignitions were predominately from anthropogenic sources. Annual fire count was significantly related to total annual rainfall

  7. The roles of fire in Holocene ecosystem changes of West Africa

    Science.gov (United States)

    Dupont, L. M.; Schefuß, E.

    2018-01-01

    The climate changes associated with the Holocene wet phase in the Sahara, the African Humid Period, are subject to ongoing debate discussing interactions between climate and vegetation and possible feedbacks between vegetation, albedo, desertification, and dust. However, very little attention has been given to the role of fire in shaping the land cover, although it is known that fires are important in the formation and consolidation of the African savanna. To fill this gap, we investigated the interaction between precipitation changes, vegetation shifts, and fire occurrence in West Africa by combining stable isotope measurements on plant waxes with pollen and micro-charcoal counts of marine sediments retrieved offshore of Cape Blanc. Our study focuses on the roles of fire at the dry limit of savanna during the Holocene evolution of precipitation changes indicating that the impact of fire during a relative wet climate differs from that during aridification. During the humid early Holocene, increased savanna extension and diversification ran parallel to increased fire occurrence. In contrast, after aridification of northern Africa started at the end of the African Humid Period, a maximum in fire occurrence correlated with a deterioration of the vegetation promoting desertification.

  8. Climatic and socio-economic fire drivers in the Mediterranean basin at a century scale: Analysis and modelling based on historical fire statistics and dynamic global vegetation models (DGVMs)

    Science.gov (United States)

    Mouillot, F.; Koutsias, N.; Conedera, M.; Pezzatti, B.; Madoui, A.; Belhadj Kheder, C.

    2017-12-01

    Wildfire is the main disturbance affecting Mediterranean ecosystems, with implications on biogeochemical cycles, biosphere/atmosphere interactions, air quality, biodiversity, and socio-ecosystems sustainability. The fire/climate relationship is time-scale dependent and may additionally vary according to concurrent changes climatic, environmental (e.g. land use), and fire management processes (e.g. fire prevention and control strategies). To date, however, most studies focus on a decadal scale only, being fire statistics ore remote sensing data usually available for a few decades only. Long-term fire data may allow for a better caption of the slow-varying human and climate constrains and for testing the consistency of the fire/climate relationship on the mid-time to better apprehend global change effects on fire risks. Dynamic Global Vegetation Models (DGVMs) associated with process-based fire models have been recently developed to capture both the direct role of climate on fire hazard and the indirect role of changes in vegetation and human population, to simulate biosphere/atmosphere interactions including fire emissions. Their ability to accurately reproduce observed fire patterns is still under investigation regarding seasonality, extreme events or temporal trend to identify potential misrepresentations of processes. We used a unique long-term fire reconstruction (from 1880 to 2016) of yearly burned area along a North/South and East/West environmental gradient across the Mediterranean Basin (southern Switzerland, Greece, Algeria, Tunisia) to capture the climatic and socio economic drivers of extreme fire years by linking yearly burned area with selected climate indices derived from historical climate databases and socio-economic variables. We additionally compared the actual historical reconstructed fire history with the yearly burned area simulated by a panel of DGVMS (FIREMIP initiative) driven by daily CRU climate data at 0.5° resolution across the

  9. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    NARCIS (Netherlands)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest

  10. Interactions between Climate, Land Use and Vegetation Fire Occurrences in El Salvador

    Directory of Open Access Journals (Sweden)

    Dolors Armenteras

    2016-02-01

    Full Text Available Vegetation burning is a global environmental threat that results in local ecological, economic and social impacts but also has large-scale implications for global change. The burning is usually a result of interacting factors such as climate, land use and vegetation type. Despite its importance as a factor shaping ecological, economic and social processes, countries highly vulnerable to climate change in Central America, such as El Salvador, lack an assessment of this complex relationship. In this study we rely on remotely sensed measures of the Normalized Vegetation Difference Index (NDVI and thermal anomaly detections by the Moderate Resolution Imaging Spectroradiometer (MODIS sensor to identify vegetation cover changes and fire occurrences. We also use land use data and rainfall observations derived from the Tropical Rainfall Measuring Mission (TRMM data to determine the spatial and temporal variability and interactions of these factors. Our results indicate a highly marked seasonality of fire occurrence linked to the climatic variability with a peak of fire occurrences in 2004 and 2013. Low vegetation indices occurred in March–April, around two months after the driest period of the year (December–February, corresponding to months with high detection of fires. Spatially, 65.6% of the fires were recurrent and clustered in agriculture/cropland areas and within 1 km of roads (70% and only a 4.7% of fires detected were associated with forests. Remaining forests in El Salvador deserve more attention due to underestimated consequences of forest fires. The identification of these clear patterns can be used as a baseline to better shape management of fire regimes and support decision making in this country. Recommendations resulting from this work include focusing on fire risk models and agriculture fires and long-term ecological and economic consequences of those. Furthermore, El Salvador will need to include agricultural fires in the

  11. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    Science.gov (United States)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  12. Human presence diminishes the importance of climate in driving fire activity across the United States

    Science.gov (United States)

    Syphard, Alexandra D.; Keeley, Jon E.; Pfaff, Anne Hopkins; Ferschweiler, Ken

    2017-01-01

    Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.

  13. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    Science.gov (United States)

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  14. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A. David; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.

    2009-01-01

    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.

  15. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    Science.gov (United States)

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  16. Climatic and weather factors affecting fire occurrence and behavior

    Science.gov (United States)

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  17. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Science.gov (United States)

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  18. The impact of boreal forest fire on climate warming

    Science.gov (United States)

    Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  19. The impact of boreal forest fire on climate warming.

    Science.gov (United States)

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  20. Climate Change and Forest Disturbances

    Science.gov (United States)

    V. H. Dale; L. A. Joyce; S. McNulty; R. P. Neilson; M. P. Ayres; M. D. Flannigan; P. J. Hanson; L. C. Irland; A. E. Lugo; C. J. Peterson; D. Simberloff; F. J. Swanson; B. J. Stocks; B. M. Wotton

    2001-01-01

    CLIMATE CHANGE CAN AFFECT FORESTS BY ALTERING THE FREQUENCY, INTENSITY, DURATION, AND TIMING OF FIRE, DROUGHT, INTRODUCED SPECIES, INSECT AND PATHOGEN OUTBREAKS, HURRICANES, WINDSTORMS, ICE STORMS, OR LANDSLIDES

  1. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003-2100

    Science.gov (United States)

    E.S. Euskirchen; A.D. McGuire; T.S. Rupp; F.S. Chapin; J.E. Walsh

    2009-01-01

    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003-2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1)...

  2. Little evidence for fire-adapted plant traits in Mediterranean climate regions.

    Science.gov (United States)

    Bradshaw, S Don; Dixon, Kingsley W; Hopper, Stephen D; Lambers, Hans; Turner, Shane R

    2011-02-01

    As climate change increases vegetation combustibility, humans are impacted by wildfires through loss of lives and property, leading to an increased emphasis on prescribed burning practices to reduce hazards. A key and pervading concept accepted by most environmental managers is that combustible ecosystems have traditionally burnt because plants are fire adapted. In this opinion article, we explore the concept of plant traits adapted to fire in Mediterranean climates. In the light of major threats to biodiversity conservation, we recommend caution in deliberately increasing fire frequencies if ecosystem degradation and plant extinctions are to be averted as a result of the practice. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  3. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  4. Effects of climate change on Forest Service strategic goals

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2010-01-01

    Climate change affects forests and grasslands in many ways. Changes in temperature and precipitation affect plant productivity as well as some species' habitat. Changes in key climate variables affect the length of the fire season and the seasonality of National Forest hydrological regimes. Also, invasive species tend to adapt to climate change more easily and...

  5. Disentangling Modern Fire-Climate-Vegetation Relationships across the Boreal Forest Biome

    Science.gov (United States)

    Young, A. M.; Boschetti, L.; Duffy, P.; Hu, F.; Higuera, P.

    2015-12-01

    Fire regimes differ between Eurasian and North American boreal forests, due in part to differences in climate and the dominant forest types. While North American boreal forests are dominated by stand-replacing fires, much of the Eurasian boreal forest is characterized by lower intensity surface fires. These different fire regimes have important consequences for continental-scale biogeochemical cycling and surface-energy fluxes1. Here, we use generalized linear models (GLM) and boosted regression trees (BRT) to explore the relative importance of vegetation, annual climatic factors, and their interactions in determining annual fire occurrence across Eurasian and North American boreal forests. We use remotely sensed burned area (MCD64A1), land cover (MCD12Q1), and observed climate data (CRU) from 2002-2012 at 0.25° spatial resolution to quantify these relationships at annual temporal scales and continental spatial scales. The spatial distribution of boreal fire occurrence was well explained with climate and vegetation variables, with similarities and differences in fire-climate-vegetation relationships between Eurasia and North America. For example, while GLMs indicate vegetation is a significant factor determining fire occurrence in both continents, the effect of climate differed. Spring temperature and precipitation are significant factors explaining fire occurrence in Eurasia, but no climate variables were significant for explaining fire occurrence in North America. BRTs complement this analysis, highlighting climatic thresholds to fire occurrence in both continents. The nature of these thresholds can vary among vegetation types, even within each continent, further implying regional sensitivity to climate-induced shifts in wildfire activity. To build on these results and better understand regional sensitivity of northern-high latitude fire regimes, future work will explore these relationships in forest-tundra and arctic tundra ecosystems, and apply historical

  6. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    International Nuclear Information System (INIS)

    Jafarov, E E; Romanovsky, V E; Marchenko, S S; Genet, H; McGuire, A D

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ∼80 cm) and upland (with thin organic layers, ∼30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming. (letter)

  7. Boreal Forest Fire Cools Climate

    Science.gov (United States)

    Randerson, J. T.; Liu, H.; Flanner, M.; Chambers, S. D.; Harden, J. W.; Hess, P. G.; Jin, Y.; Mack, M. C.; Pfister, G.; Schuur, E. A.; Treseder, K. K.; Welp, L. R.; Zender, C. S.

    2005-12-01

    We report measurements, modeling, and analysis of carbon and energy fluxes from a boreal forest fire that occurred in interior Alaska during 1999. In the first year after the fire, ozone production, atmospheric aerosol loading, greenhouse gas emissions, soot deposition, and decreases in summer albedo contributed to a positive annual radiative forcing (RF). These effects were partly offset by an increase in fall, winter, and spring albedo from reduced canopy cover and increased exposure of snow-covered surfaces. The atmospheric lifetime of aerosols and ozone and are relatively short (days to months). The radiative effects of soot on snow are also attenuated rapidly from the deposition of fresh snow. As a result, a year after the fire, only two classes of RF mechanisms remained: greenhouse gas emissions and post-fire changes in surface albedo. Summer albedo increased rapidly in subsequent years and was substantially higher than unburned control areas (by more than 0.03) after 4 years as a result of grass and shrub establishment. Satellite measurements from MODIS of other interior Alaska burn scars provided evidence that elevated levels of spring and summer albedo (relative to unburned control areas) persisted for at least 4 decades after fire. In parallel, our chamber, eddy covariance, and biomass measurements indicated that the post-fire ecosystems switch from a source to a sink within the first decade. Taken together, the extended period of increased spring and summer albedo and carbon uptake of intermediate-aged stands appears to more than offset the initial warming pulse caused by fire emissions, when compared using the RF concept. This result suggests that management of forests in northern countries to suppress fire and preserve carbon sinks may have the opposite effect on climate as that intended.

  8. Climate-Soil-Vegetation Interactions: A Case-Study from the Forest Fire Phenomenon in Southern Switzerland

    Science.gov (United States)

    Reinhard, M.; Alexakis, E.; Rebetez, M.; Schlaepfer, R.

    2003-04-01

    In Southern Switzerland, we have observed increasing trends in extreme drought and precipitation events, probably linked to global climatic change. These modifications are more important than changes in annual precipitation sums. On the one hand, an increase in extreme drought implies a higher risk for forest fires, impeding the fulfilment of the various forest functions, on the other hand, extreme precipitation events, developing over a short time span, could simultaneously damage the forest ecosystems or destabilise the soil of burned areas, triggering debris flows. Climatic changes might additionally lead to modifications of the current species composition in the forests. Changes are currently observed at lower elevations (laurophiliation), but are still largely unknown at higher elevations. For the time being, forest fires cannot be regarded as natural phenomena in the South of Switzerland because they are mostly anthropogenically triggered. However, the changing climatic patterns, which set new conditions for the forests, may become a new ecological regulator for the forests as well as the forest fires. The social and environmental consequences are important for these issues. The implications for forest planning and management must be further studied and taken into account. Despite uncertainty about the response of forest ecosystems to climate change, planning and management can no longer rely on decadal to century climatic patterns. The increasing importance of changing environmental conditions within the framework of prevention will have to be reconsidered.

  9. Wildland fire emissions, carbon, and climate: Science overview and knowledge needs

    Science.gov (United States)

    William T. Sommers; Rachel A. Loehman; Colin C. Hardy

    2014-01-01

    Wildland fires have influenced the global carbon cycle for 420 million years of Earth history, interacting with climate to define vegetation characteristics and distributions, trigger abrupt ecosystem shifts, and move carbon among terrestrial and atmospheric pools. Carbon dioxide (CO2) is the dominant driver of ongoing climate change and the principal emissions...

  10. Hard choices : climate change in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Coward, H.; Weaver, A.J. (eds.)

    2004-07-01

    This book explains the nature of climate change, the options to respond to it and the virtues of Canada's commitment to the Kyoto Protocol. It includes a collection of essays by prominent Canadian scientists and scholars who discuss the impacts of climate change on Canada from physical, social, technological, economic and political perspectives. Climate change assessments have been made possible by monitoring and recording changes in atmospheric concentrations of greenhouse gases. As a result of these assessments, climate change has become an issue on policy agendas. Advanced computer models have convinced much of the scientific community that climate change will bring with it droughts, floods, hurricanes, forest fires, ice storms, blackouts, and increased warming in countries in high latitudes, including Canada, despite remaining uncertainties about how human activities will affect the climate. The authors cautioned that climate change response strategies can only be refined once these uncertainties are significantly reduced. refs., tabs., figs.

  11. Fire Scenarios in Spain: A Territorial Approach to Proactive Fire Management in the Context of Global Change

    OpenAIRE

    Cristina Montiel Molina; Luis Galiana-Martín

    2016-01-01

    Humans and fire form a coupled and co-evolving natural-human system in Mediterranean-climate ecosystems. In this context, recent trends in landscape change, such as urban sprawl or the abandoning of agricultural and forest land management in line with new models of economic development and lifestyles, are leading to new fire scenarios. A fire scenario refers to the contextual factors of a fire regime, i.e., the environmental, socio-economic and policy drivers of wildfire initiation and propag...

  12. Exploring the future change space for fire weather in southeast Australia

    Science.gov (United States)

    Clarke, Hamish; Evans, Jason P.

    2018-05-01

    High-resolution projections of climate change impacts on fire weather conditions in southeast Australia out to 2080 are presented. Fire weather is represented by the McArthur Forest Fire Danger Index (FFDI), calculated from an objectively designed regional climate model ensemble. Changes in annual cumulative FFDI vary widely, from - 337 (- 21%) to + 657 (+ 24%) in coastal areas and - 237 (- 12%) to + 1143 (+ 26%) in inland areas. A similar spread is projected in extreme FFDI values. In coastal regions, the number of prescribed burning days is projected to change from - 11 to + 10 in autumn and - 10 to + 3 in spring. Across the ensemble, the most significant increases in fire weather and decreases in prescribed burn windows are projected to take place in spring. Partial bias correction of FFDI leads to similar projections but with a greater spread, particularly in extreme values. The partially bias-corrected FFDI performs similarly to uncorrected FFDI compared to the observed annual cumulative FFDI (ensemble root mean square error spans 540 to 1583 for uncorrected output and 695 to 1398 for corrected) but is generally worse for FFDI values above 50. This emphasizes the need to consider inter-variable relationships when bias-correcting for complex phenomena such as fire weather. There is considerable uncertainty in the future trajectory of fire weather in southeast Australia, including the potential for less prescribed burning days and substantially greater fire danger in spring. Selecting climate models on the basis of multiple criteria can lead to more informative projections and allow an explicit exploration of uncertainty.

  13. How Does The Climate Change?

    Science.gov (United States)

    Jones, R. N.

    2011-12-01

    In 1997, maximum temperature in SE Australia shifted up by 0.8°C at pH0impact indicators: baumé levels in winegrapes shift >21 days earlier from 1998, streamflow records decrease by 30-70% from 1997 and annual mean forest fire danger index increased by 38% from 1997. Despite catastrophic fires killing 178 people in early 2009, the public remains unaware of this large change in their exposure. When regional temperature was separated into internally and externally forced components, the latter component was found to warm in two steps, in 1968-73 and 1997. These dates coincide with shifts in zonal mean temperature (24-44S; Figure 1). Climate model output shows similar step and trend behavior. Tests run on zonal, hemispheric and global mean temperature observations found shifts in all regions. 1997 marks a shift in global temperature of 0.3°C at pH0ocean heat content. The prevailing paradigm for how climate variables change is signal-noise construct combining a smooth signal with variations caused by internal climate variability. There seems to be no sound theoretical basis for this assumption. On the contrary, complex system behavior would suggest non-linear responses to externally forced change, especially at the regional scale. Some of our most basic assumptions about how climate changes may need to be re-examined.

  14. Fire regimes and vegetation responses in two Mediterranean-climate regions

    Science.gov (United States)

    Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M.

    2004-01-01

    Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral) and the southern area of California in United States (chaparral). In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from other environmental

  15. Tools for Assessing the Impacts of Climate Variability and Change on Wildfire Regimes in Forests

    Directory of Open Access Journals (Sweden)

    Hety Herawati

    2015-04-01

    Full Text Available Fire is an intrinsic element of many forest ecosystems; it shapes their ecological processes, determines species composition and influences landscape structure. However, wildfires may: have undesirable effects on biodiversity and vegetation coverage; produce carbon emissions to the atmosphere; release smoke affecting human health; and cause loss of lives and property. There have been increasing concerns about the potential impacts of climate variability and change on forest fires. Climate change can alter factors that influence the occurrence of fire ignitions, fuel availability and fuel flammability. This review paper aims to identify tools and methods used for gathering information about the impacts of climate variability and change on forest fires, forest fuels and the probability of fires. Tools to assess the impacts of climate variability and change on forest fires include: remote sensing, dynamic global vegetation and landscape models, integrated fire-vegetation models, fire danger rating systems, empirical models and fire behavior models. This review outlines each tool in terms of its characteristics, spatial and temporal resolution, limitations and applicability of the results. To enhance and improve tool performance, each must be continuously tested in all types of forest ecosystems.

  16. A decadal glimpse on climate and burn severity influences on ponderosa pine post-fire recovery

    Science.gov (United States)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.; Smith, A.; Khalyani, A. H.

    2016-12-01

    Climate change is predicted to affect plants at the margins of their distribution. Thus, ecosystem recovery after fire is likely to vary with climate and may be slowest in drier and hotter areas. However, fire regime characteristics, including burn severity, may also affect vegetation recovery. We assessed vegetation recovery one and 9-15 years post-fire in North American ponderosa pine ecosystems distributed across climate and burn severity gradients. Using climate predictors derived from downscaled 1993-2011 climate normals, we predicted vegetation recovery as indicated by Normalized Burn Ratio derived from 1984-2012 Landsat time series imagery. Additionally, we collected field vegetation measurements to examine local topographic controls on burn severity and post-fire vegetation recovery. At a regional scale, we hypothesized a positive relationship between precipitation and recovery time and a negative relationship between temperature and recovery time. At the local scale, we hypothesized southern aspects to recovery slower than northern aspects. We also predicted higher burn severity to slow recovery. Field data found attenuated ponderosa pine recovery in hotter and drier regions across all burn severity classes. We concluded that downscaled climate data and Landsat imagery collected at commensurate scales may provide insight into climate effects on post-fire vegetation recovery relevant to ponderosa pine forest managers.

  17. Fire-climate-human interactions during the postglacial period at Sunrise Ridge, Mount Rainier National Park, Washington (USA)

    Science.gov (United States)

    Walsh, Megan K.; Lukens, Michael L.; McCutcheon, Patrick T.; Burtchard, Greg C.

    2017-12-01

    With the creation of Mount Rainier National Park (MORA) in 1899 came the active management of the park's landscapes and a heavy emphasis on fire suppression. Today, managers at MORA seek to better manage current fire activity; however, this requires an improved understanding of past fire activity on the mountain. In this study high-resolution macroscopic charcoal analysis and pollen analysis of lake sediment records was used to reconstruct the postglacial fire and vegetation history for the Sunrise Ridge area of MORA. Fire activity was lowest during the Late Glacial when vegetation was sparse and climate was cool and dry. Fire activity increased during the early Holocene as the regional climate warmed and dried, and burnable biomass became more abundant. Fire activity continued to increase into the middle Holocene (until ca. 6600 cal yr BP) even as the regional climate became wetter and eventually cooler; the modern-day mesic forest and subalpine meadow landscapes of the park established at this time. Fire activity was generally highest and mean fire return intervals were lowest on Sunrise Ridge during the late Holocene, and are consistent with tree-ring based estimates of fire frequency. The similarity between the Sunrise Ridge and other paleofire records in the Pacific Northwest suggests that broad-scale climatic shifts, such as the retreat of the Cordilleran ice sheet and changes in annual insolation, as well as increased interannual climate variability (i.e., drought) particularly in the middle to late Holocene, were responsible for changes in fire activity during the postglacial period. However, abundant and increasing archaeological evidence from Sunrise Ridge during the middle to late Holocene suggests that humans may have also influenced the landscape at this time. It is likely that fires will continue to increase at MORA as drought becomes a more frequent occurrence in the Pacific Northwest.

  18. 2009 Climate Change Research Strategy: Rocky Mountain Research Station

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2010-01-01

    Climate change and shifting demographics influence the landscape and the social and economic systems of the Interior West. Climate change impacts are already evident, as seen in declining snowpacks, changes in runoff timing and intensity, increasing fire frequency and severity, increasing drought frequency and severity, and rising temperatures.

  19. Climatic stress increases forest fire severity across the western United States

    Science.gov (United States)

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorriane

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).

  20. National parks, ecological integrity and climatic change

    International Nuclear Information System (INIS)

    Lopoukhine, N.

    1990-01-01

    The potential impacts of climate change on the national parks of Canada are discussed. There is a requirement to protect and manage national parks to maintain a functioning ecosystem with all its parts and processes. An active management regime is necessary, with objectives of ecological diversity/integrity clearly stated. The national parks located in the Canadian Prairie provinces are on or near transitions from forest to tundra and grasslands, and are likely to exhibit the most dramatic changes. The change in vegetation of such parks and in others will not manifest itself simply as a shift of zones but will be accompanied by a flora with new dominants. The boreal forest within the Prairie provinces is fire dependent and has the potential of being transformed into remnant units should post-fire germination be hampered by climatic change. A rapid change in climate would render national parks unable to provide protection of representative elements of Canada's landscapes as presently known. A threefold increase in the area dedicated to protection is a basic component of the sustainable development prescription. All government and private lands dedicated to protection should be forged into a network, to provide core protection for immigrating and emigrating communities and individual species displaced by a changing climate. 20 refs., 2 figs

  1. Wildfire Suppression Costs for Canada under a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Emily S Hope

    Full Text Available Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980-2009 fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC climate projections. Area burned was modelled as a function of a climate moisture index (CMI, and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs; these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980-2009 period under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years are projected to become commonplace (i.e., occur once every two years or more often as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses.

  2. Future climate change drives increases in forest fires and summertime OC concentrations in the Western U.S.

    Science.gov (United States)

    Spracklen, D. V.; Logan, J. A.; Mickley, L. J.; Park, R. J.; Flannigan, M. D.; Westerling, A. L.

    2006-12-01

    Increased forest fire activity in the Western United States appears to be driven by increasing spring and summer temperatures. Here we make a first estimate of how climate-driven changes in fire activity will influence summertime organic carbon (OC) concentrations in the Western US. We use output from a general circulation model (GCM) combined with area burned regressions to predict how area burned will change between present day and 2050. Calculated area burned is used to create future emission estimates for the Western U.S. and we use a global chemical transport model (CTM) to predict future changes in OC concentrations. Stepwise linear regression is used to determine the best relationships between observed area burned for 1980- 2004 and variables chosen from temperature, relative humidity, wind speed, rainfall and drought indices from the Candaian Fire Weather Index Model. Best predictors are ecosytem dependent but typically include mean summer temperature and mean drought code. In forest ecosystems of the Western U.S. our regressions explain 50-60% of the variance in annual area burned. Between 2000 and 2050 increases in temperature and reductions in precipitation, as predicted by the GISS GCM, cause mean area burned in the western U.S. to increase by 30-55%. We use the GEOS-Chem CTM to show that these increased emissions result in an increase in summertime western U.S. OC concentrations by 55% over current concentrations. Our results show that the predicted increase in future wild fires will have important consequences for western US air quality and visibility.

  3. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    Science.gov (United States)

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  4. How do climate and human impact affect Sphagnum peatlands under oceanic-continental climatic conditions? 2000 years of fire and hydrological history of a bog in Northern Poland

    Science.gov (United States)

    Marcisz, Katarzyna; Tinner, Willy; Colombaroli, Daniele; Kołaczek, Piotr; Słowiński, Michał; Fiałkiewicz-Kozieł, Barbara; Lamentowicz, Mariusz

    2014-05-01

    Climate change affects many natural processes and the same applies to human impact For instance climate change and anthropogenic activities may cause increased fire activity or change peatland dynamics. Currently it is still unknown how Sphagnum peatlands in the oceanic-continental transition zone of Poland may respond to combined effects of heat waves, drought and fire. The aim of the study was to reconstruct the last 2000 years palaeohydrology and fire history at Linje bog in Northern Poland. The main task was to determine the drivers of fire episodes, particularly to identify climatic and anthropogenic forcing. A two-meter peat core was extracted and subsampled with a high resolution. Micro- and macroscopic charcoal analyses were applied to determine past fire activity and the results compared with palaeohydrological reconstructions based on testate amoeba analysis. Palynological human indicators were used to reconstruct human activity. A depth-age model including 20 14C dates was constructed to calculate peat accumulation rates and charcoal influx. We hypothesised that: 1) fire frequency in Northern Poland was determined by climatic conditions (combination of low precipitation and heat waves), as reflected in peatland water table, and that 2) past fire episodes in the last millennium were intensified by human activity. Furthermore climate may have influenced human activity over harvest success and the carrying capacity. Our study shows that fire was important for the studied ecosystem, however, its frequency has increased in the last millennium in concomitance with land use activities. Landscape humanization and vegetation opening were followed by a peatland drying during the Little Ice Age (from ca. AD 1380). Similarly to other palaeoecological studies from Poland, Linje peatland possessed an unstable hydrology during the Little Ice Age. Increased fire episodes appeared shortly before the Little Ice Age and most severe fires were present in the time when

  5. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    Science.gov (United States)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  6. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    Science.gov (United States)

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  7. Linking tree demography to climate change feedbacks: fire, larch forests, and carbon pools of the Siberian Arctic

    Science.gov (United States)

    Alexander, H. D.; Loranty, M. M.; Natali, S.; Pena, H., III; Ludwig, S.; Spektor, V.; Davydov, S. P.; Zimov, N.; Mack, M. C.

    2017-12-01

    Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that (1) larch forest regrowth post-fire is largely determined by residual soil organic layer (SOL) depth because of the SOL's role as a seedbed and thermal regulator, and (2) changes in post-fire larch recruitment impact C accumulation through stand density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by (1) experimentally creating a soil burn severity gradient in a Cajander larch (Larix cajanderi Mayr.) forest near Cherskiy, Russia and (2) quantifying C pools across a stand density gradient within a 75-year old fire scar. From 2012-2015, we added larch seeds to plots burned at different severities and monitored recruitment along with permafrost and active layer (i.e., subject to annual freeze-thaw) conditions (SOL depth, temperature, moisture, and thaw depth). Across the density gradient, we inventoried larch trees and harvested ground-layer vegetation to estimate aboveground contribution to C pools. We quantified woody debris C pools and sampled belowground C pools (soil, fine roots, and coarse roots) in the organic + upper (0-10 cm) mineral soil. Larch recruits were rare in unburned and low severity plots, but a total of 6 new germinants m-2 were tallied in moderate and high severity plots during the study. Seedling survival for > 1 year was only 40 and 25% on moderate and high severity treatments, respectively, but yielded net larch recruitment of 2 seedlings m-2, compared to 0.3 seedlings m-2 on low severity plots. Density of both total and established recruits increased with decreasing residual SOL depth, which correlated with increased soil temperature, moisture, and thaw depth. At 75-year post-fire, total C pools increased with increased larch density, largely due to

  8. Fire activity increasing as climate changes

    Science.gov (United States)

    Balcerak, Ernie; Showstack, Randy

    2013-01-01

    Analysis of images from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellites shows that more than 2.5 million hectares were burned in 2012 from January through August in the United States. The amount is less than a record 3.2 million hectares in 2011 but greater than the area burned in 12 of 15 years since satellite monitoring began, scientists reported at the AGU Fall Meeting. With satellites "we can detect fires as they're actively burning," said Louis Giglio of the University of Maryland, College Park, at a press conference on 4 December. "We can also map the cumulative area burned on the landscape after the fire's over." He noted that "2012 has been a particularly big fire year" in the United States.

  9. Climatic stress increases forest fire severity across the western United States

    Science.gov (United States)

    Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...

  10. Wildland fire emissions, carbon, and climate: Emission factors

    Science.gov (United States)

    Shawn Urbanski

    2014-01-01

    While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include significant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate forcers. In addition to CO2 and short-lived climate forcers,...

  11. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2017-03-01

    Full Text Available Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra and MYD14A1 (Aqua and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578, which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly

  12. Predicting the effect of climate change on wildfire behavior and initial attack success

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William; Fried, Jeremy S.; Gilless, J. Keith; Riley, William J.; Moody, Tadashi J.; Simon de Blas, Clara; Hayhoe, Katharine; Moritz, Max; Stephens, Scott; Torn, Margaret

    2007-12-01

    This study focused on how climate change-induced effects on weather will translate into changes in wildland fire severity and outcomes in California, particularly on the effectiveness of initial attack at limiting the number of fires that escape initial attack. The results indicate that subtle shifts in fire behavior of the sort that might be induced by the climate changes anticipated for the next century are of sufficient magnitude to generate an appreciable increase in the number of fires that escape initial attack. Such escapes are of considerable importance in wildland fire protection planning, given the high cost to society of a catastrophic escape like those experienced in recent decades in the Berkeley-Oakland, Santa Barbara, San Diego, or Los Angeles areas. However, at least for the three study areas considered, it would appear that relatively modest augmentations to existing firefighting resources might be sufficient to compensate for change-induced changes in wildland fire outcomes.

  13. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Science.gov (United States)

    Sánchez Goñi, María Fernanda; Desprat, Stéphanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martínez, Josué M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrión, José S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; González, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jiménez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lézine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; Merna McKenzie, G.; Moss, Patrick; Müller, Stefanie; Müller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Pérez-Obiol, Ramón; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, Masanobu

    2017-09-01

    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at PANGAEA.870867" target="_blank">https://doi.org/10.1594/PANGAEA.870867.

  14. Simulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia

    Directory of Open Access Journals (Sweden)

    Ksenia Brazhnik

    2017-02-01

    Full Text Available Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire in tandem with a spatially-explicit, individually-based gap dynamics model SIBBORK (SIBerian BOReal forest simulator calibrated to Krasnoyarsk Region. DISTURB-F simulates the effect of forest fire on the boreal ecosystem, namely the mortality of all or only the susceptible trees (loss of biomass, i.e., carbon within the forested landscape. The fire module captures some important feedbacks between climate, fire and vegetation structure. We investigated the potential climate-driven changes in the fire regime and vegetation in middle and south taiga in central Siberia, a region with extensive boreal forest and rapidly changing climate. The output from this coupled simulation can be used to estimate carbon losses from the ecosystem as a result of fires of different sizes and intensities over the course of secondary succession (decades to centuries. Furthermore, it may be used to assess the post-fire carbon storage capacity of potential future forests, the structure and composition of which may differ significantly from current Eurasian boreal forests due to regeneration under a different climate.

  15. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    Science.gov (United States)

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  16. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Directory of Open Access Journals (Sweden)

    Adrián Regos

    Full Text Available Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain, we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050. An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire

  17. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Science.gov (United States)

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be

  18. Global simulations of smoke from Kuwaiti oil fires and possible effects on climate

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.A.; Malone, R.C.; Kao, C.Y.J.

    1991-01-01

    The Los Alamos Global Climate Model has bee used to simulate the global evolution of the Kuwaiti oil fire smoke and its potential effects on the climate. The initial simulations were done shortly before the fires were lit in January 1991. They indicated that such an event would not result in a Mini Nuclear Winter'' as some people were suggesting. Further simulations during the year suggested that the smoke could be responsible for subtle regional climate changes in the spring such as a 5 degree centigrade decrease in the surface temperature in Kuwait, a 10% decrease in precipitation in Saudi Arabia and a 10% increase in precipitation in the Tibetan Plateau region. These results are in qualitative agreement with the observations this year.

  19. Global simulations of smoke from Kuwaiti oil fires and possible effects on climate

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.A.; Malone, R.C.; Kao, C.Y.J.

    1991-12-31

    The Los Alamos Global Climate Model has bee used to simulate the global evolution of the Kuwaiti oil fire smoke and its potential effects on the climate. The initial simulations were done shortly before the fires were lit in January 1991. They indicated that such an event would not result in a ``Mini Nuclear Winter`` as some people were suggesting. Further simulations during the year suggested that the smoke could be responsible for subtle regional climate changes in the spring such as a 5 degree centigrade decrease in the surface temperature in Kuwait, a 10% decrease in precipitation in Saudi Arabia and a 10% increase in precipitation in the Tibetan Plateau region. These results are in qualitative agreement with the observations this year.

  20. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  1. Firing Range Contaminants and Climate Change Tool: Spreadsheet User Instructions

    Science.gov (United States)

    2017-09-18

    Chief, CEERD-EPR; Mr. Warren Lorenz was Branch Chief, CEERD-EP; and Dr. Elizabeth Ferguson, CEERD- EM -J was the Technical Director for Environmental...changes. 15. SUBJECT TERMS Bombing and gunnery ranges, Rifle-ranges, Pollutants, Soil pollution-- Climatic factors, Climatic changes 16. SECURITY

  2. Regional Highlights of Climate Change

    Science.gov (United States)

    David L. Peterson; J.M. Wolken; Teresa Hollingsworth; Christian Giardina; J.S. Littell; Linda Joyce; Chris Swanston; Stephen Handler; Lindsey Rustad; Steve McNulty

    2014-01-01

    Climatic extremes, ecological disturbance, and their interactions are expected to have major effects on ecosystems and social systems in most regions of the United States in the coming decades. In Alaska, where the largest temperature increases have occurred, permafrost is melting, carbon is being released, and fire regimes are changing, leading to a...

  3. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic-continental climatic gradient in northern Poland

    Science.gov (United States)

    Marcisz, Katarzyna; Gałka, Mariusz; Pietrala, Patryk; Miotk-Szpiganowicz, Grażyna; Obremska, Milena; Tobolski, Kazimierz; Lamentowicz, Mariusz

    2017-12-01

    Fire is a critical component of many ecosystems and, as predicted by various climate models, fire activity may increase significantly in the following years due to climate change. Therefore, knowledge about the past fire activity of various ecosystems is highly important for future nature conservation purposes. We present results of high-resolution investigation of fire activity and hydrological changes in northern Poland. We analyzed microscopic charcoal from three Sphagnum-dominated peatlands located on the south of Baltic, on the oceanic-continental (west-east) climatic gradient, and reconstructed the history of fire in the last 5700 years. We hypothesize that air circulation patterns are highly important for local fire activity, and that fire activity is more intensive in peatlands influenced by continental air masses. We have found out that forest fires have been occurring regularly since the past millennia and were linked to climatic conditions. We show that fire activity (related to climate and fuel availability) was significantly higher in sites dominated by continental climate (northeastern Poland) than in the site located under oceanic conditions (northwestern Poland)-microscopic charcoal influx was 13.3 times higher in the eastern study site of the gradient, compared to the western study site. Recorded fire activity patterns were different between the sites in a long timescale. Moreover, most of the recorded charcoal peaks occurred during high water tables. Rising human pressure has caused droughts and water table instability, and substantial increase in fire activity in the last 400 years.

  4. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet.

    Science.gov (United States)

    Keegan, Kaitlin M; Albert, Mary R; McConnell, Joseph R; Baker, Ian

    2014-06-03

    In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the frequency of widespread melt into the year 2100. Since Arctic temperatures and the frequency of forest fires are both expected to rise with climate change, our results suggest that widespread melt events on the Greenland Ice Sheet may begin to occur almost annually by the end of century. These events are likely to alter the surface mass balance of the ice sheet, leaving the surface susceptible to further melting.

  5. Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    Monica T. Rother

    2017-05-01

    Full Text Available In recent years, warming climate and increased fire activity have raised concern about post-fire recovery of western U.S. forests. We assessed relationships between climate variability and tree establishment after fire in dry ponderosa pine forests of the Colorado Front Range. We harvested and aged over 400 post-fire juvenile ponderosa pine (Pinus ponderosa and Douglas-fir (Pseudotsuga menziesii trees using an improved tree-ring based approach that yielded annually-resolved dates and then assessed relationships between climate variability and pulses of tree establishment. We found that tree establishment was largely concentrated in years of above-average moisture availability in the growing season, including higher amounts of precipitation and more positive values of the Palmer Drought Severity Index. Under continued climate change, drier conditions associated with warming temperatures may limit forest recovery after fire, which could result in lower stand densities or shifts to non-forested vegetation in some areas.

  6. Potential for Extensive Forest Loss in the Klamath Mountains due to Increased Fire Activity and Altered Post-Fire Forest Recovery Dynamics in a Warming Climate

    Science.gov (United States)

    Tepley, A. J.; Thompson, J. R.; Epstein, H. E.; Anderson-Teixeira, K. J.

    2016-12-01

    In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or post-fire forest recovery dynamics could bring about extensive conversion of forests to shorter-statured, more fire-prone vegetation, with associated changes in biodiversity, carbon dynamics, and climate feedbacks. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where montane landscapes support conifer forests, but severe fire converts them to systems dominated by broadleaf trees and shrubs that rapidly resprout or germinate from a dormant seedbank. Conifers eventually overtop the competing vegetation, but until they do, these systems are highly fire prone and susceptible to perpetuation through a cycle of reburning. To assess the vulnerability to fire-driven loss of conifer forests in a warming climate, we characterized the trajectories of post-fire forest recovery in 57 sites that burned severely within the last three decades and span the aridity gradient of montane conifer forests. Post-fire conifer regeneration was limited to a surprisingly narrow window, with 89% of all seedlings established in the first four years after fire. Early establishment conferred a competitive growth advantage such that the longer the lag between the fire year and the year of seedling establishment, the slower its height growth. A substantial portion of variation in post-fire conifer seedling density was driven by an interaction between propagule pressure and site moisture status (climatic water deficit). Mesic sites had abundant regeneration except where seed sources were nearly absent across large (ca. 50 ha) high-severity patches. Toward the dry end of the moisture gradient, much higher propagule pressure was required to support even moderate levels of conifer regeneration. The present distribution of conifer forests falls largely within the portion of the moisture gradient

  7. Climate change issues of Nepal: challenges and perspectives for future generations

    International Nuclear Information System (INIS)

    Regmi, M.R.; Khanal, H.S.

    2009-01-01

    In Nepal Climate change has implications on reduction of snow pack on the mountains, water supply shortages, increase forest fires, increase in extreme weather, increase demand for irrigation, decreases power generation; wells dry up due to lower water table. Climate change seeks the two actions on the mitigation of greenhouse gases and adaptation to the climate change. This paper also describes the climate change issues of Nepal. In addition it deals with the potential threats of climate change to water Supply, agriculture and food security, temperature increase, run-off patterns, glacial melt and floods. (author)

  8. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Directory of Open Access Journals (Sweden)

    M. F. Sánchez Goñi

    2017-09-01

    Full Text Available Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses global database, which includes 93 pollen records from the last glacial period (73–15 ka with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL, 40Ar∕39Ar-dated tephra layers has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.

  9. Climatic change in Germany. Development, consequences, risks and perspectives

    International Nuclear Information System (INIS)

    Brasseur, Guy; Jacob, Daniela; Schuck-Zoeller, Susanne

    2017-01-01

    The book on the climatic change in Germany includes contributions to the following issues: global climate projections and regional projections in Germany and Europe: observation of the climatic change in Central Europe, regional climate modeling, limits and challenges of the regional climate modeling; climatic change in Germany - regional features and extremes: temperature and heat waves, precipitation, wind and cyclones, sea-level increase, tides, storm floods and sea state, floods, definition uncertainties, draughts, forest fires, natural risks; consequences of the climatic change in Germany: air quality, health, biodiversity, water resources, biochemical cycles, agriculture, forestry, soils, personal and commercial transport, cities and urban regions, tourism, infrastructure, energy and water supplies, cost of the climatic change and economic consequences; overall risks and uncertainties: assessment of vulnerabilities, literature review, climatic change as risk enhancement in complex systems, overall risks and uncertainties, decision making under uncertainties in complex systems; integrated strategies for the adaptation to the climatic change: the climate resilient society - transformations and system changes, adaptation to the climatic change as new political field, options for adaptation strategies.

  10. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing

    NARCIS (Netherlands)

    Roman-Cuesta, R.M.; Carmona-Moreno, C.; Lizcano, G.; New, M.; Silman, M.R.; Knoke, T.; Malhi, Y.; Oliveras Menor, I.; Asbjornsen, H.; Vuille, M.

    2014-01-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in

  11. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    Science.gov (United States)

    Hurteau, Matthew D

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  12. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    Directory of Open Access Journals (Sweden)

    Matthew D Hurteau

    Full Text Available Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC, but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019, mid (2050-2059, and late (2090-2099 century climate projections for a ponderosa pine (Pinus ponderosa dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  13. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    Agnew, T.A.; Headley, A.

    1994-01-01

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO 2 ; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  14. Impacts of climate change on Ontario's forests. Forest research information paper number 143

    International Nuclear Information System (INIS)

    Buse, L.J.; Colombo, S.J.

    1998-01-01

    Reviews literature concerning the effects of global climate change on forest plants and communities, and provides opinions on the potential impacts that climate change may have on Ontario forests. Sections of the review discuss the following: The climate of Ontario in the 21st century as predicted by climate models; forest hydrology in relation to climate change; insects and climate change; impacts on fungi in the forest ecosystem; impacts on forest fires and their management; plant physiological responses; genetic implications of climate change; forest vegetation dynamics; the use of models in global climate change studies; and forest management responses to climate change

  15. Climate data system supports FIRE

    Science.gov (United States)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  16. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  17. Synergy between land use and climate change increases future risk in Amazon forests

    OpenAIRE

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Pereira, José Miguel Cardoso; Hurtt, George; Asrar, Ghassem

    2017-01-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest’s future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climatedriven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and ...

  18. Estimating future burned areas under changing climate in the EU-Mediterranean countries.

    Science.gov (United States)

    Amatulli, Giuseppe; Camia, Andrea; San-Miguel-Ayanz, Jesús

    2013-04-15

    The impacts of climate change on forest fires have received increased attention in recent years at both continental and local scales. It is widely recognized that weather plays a key role in extreme fire situations. It is therefore of great interest to analyze projected changes in fire danger under climate change scenarios and to assess the consequent impacts of forest fires. In this study we estimated burned areas in the European Mediterranean (EU-Med) countries under past and future climate conditions. Historical (1985-2004) monthly burned areas in EU-Med countries were modeled by using the Canadian Fire Weather Index (CFWI). Monthly averages of the CFWI sub-indices were used as explanatory variables to estimate the monthly burned areas in each of the five most affected countries in Europe using three different modeling approaches (Multiple Linear Regression - MLR, Random Forest - RF, Multivariate Adaptive Regression Splines - MARS). MARS outperformed the other methods. Regression equations and significant coefficients of determination were obtained, although there were noticeable differences from country to country. Climatic conditions at the end of the 21st Century were simulated using results from the runs of the regional climate model HIRHAM in the European project PRUDENCE, considering two IPCC SRES scenarios (A2-B2). The MARS models were applied to both scenarios resulting in projected burned areas in each country and in the EU-Med region. Results showed that significant increases, 66% and 140% of the total burned area, can be expected in the EU-Med region under the A2 and B2 scenarios, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Perils in the adaptation of fire management to a changing world

    Science.gov (United States)

    Armando González-Cabán; M.M. Fernández-Ramiro; Claudio Conese; Francesco Bosello; Jorge Núñez; Victor Otrachshenko; B.J. Orr

    2014-01-01

    Increased fire load and costs are anticipated under future scenarios of climate and other global changes. This requires increased efficiency in investments in wildfire management operations, and resolving the disconnect problem between science, policy and management.

  20. Effects of climate change on timber supply and possible management responses

    International Nuclear Information System (INIS)

    Comeau, P.G.

    1991-01-01

    Potential effects of climate change on Pacific Northwest forests include increases in net primary production of some high-elevation or high-latitude forests due to temperature increases; reduced net primary production or tree mortality due to increased water stress or failure to meet chilling requirements; and increased risk of damage from insects and fires. The net effects of climate change will vary depending on the species involved, current environmental conditions, and the nature, magnitude, and rate of climate change. Risks are likely to differ substantially for regeneration, young established forests, and mature established forests. Decisions about responses have to be made in the face of considerable uncertainty about future climate, resources, and market conditions. A proactive option involves developing flexible, adaptive approaches to forest management that serve to reduce future risk. Strategic decisions could include decisions about land purchases or sales based on assessments of risk of impact from climate change. Selection of species least vulnerable to potential climate change, increased investment in fire control and pest management in vulnerable areas, and other operational decisions can be made. Timing of actions will be important, and a substantial body of information is required as a basis for making informed decisions, some of which is already available. 8 refs

  1. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China

    Science.gov (United States)

    Xiao, Xiayun; Haberle, Simon G.; Shen, Ji; Xue, Bin; Burrows, Mark; Wang, Sumin

    2017-06-01

    A high-resolution, continuous 18.5 kyr (1 kyr = 1000 cal yr BP) macroscopic charcoal record from Qinghai Lake in southwestern Yunnan Province, China, reveals postglacial fire frequency and variability history. The results show that three periods with high-frequency and high-severity fires occurred during the periods 18.5-15.0, 13.0-11.5, and 4.3-0.8 ka, respectively. This record was compared with major pollen taxa and pollen diversity indices from the same core, and tentatively related to the regional climate proxy records with the aim to separate climate- from human-induced fire activity, and discuss vegetation-fire-climate interactions. The results suggest that fire was mainly controlled by climate before 4.3 ka and by the combined actions of climate and humans after 4.3 ka. Before 4.3 ka, high fire activity corresponded to cold and dry climatic conditions, while warm and humid climatic conditions brought infrequent and weak fires. Fire was an important disturbance factor and played an important role in forest dynamics around the study area. Vegetation responses to fire after 4.3 ka are not consistent with those before 4.3 ka, suggesting that human influence on vegetation and fire regimes may have become more prevalent after 4.3 ka. The comparisons between fire activity and vegetation reveal that evergreen oaks are flammable plants and fire-tolerant taxa. Alnus is a fire-adapted taxon and a nonflammable plant, but density of Alnus forest is a key factor to decide its fire resistance. The forests dominated by Lithocarpus/Castanopsis and/or tropical trees and shrubs are not easy to ignite, but Lithocarpus/Castanopsis and tropical trees and shrubs are fire-sensitive taxa. Fire appears to be unfavourable to plant diversity in the study area.

  2. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    Science.gov (United States)

    Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei

    2016-01-01

    ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.

  3. A model of the responses of ecotones to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Noble, I.R. (Australian National University, Canberra, ACT (Australia). Research School of Biological Sciences, Ecosystem Dynamics Group)

    1993-08-01

    It has been suggested that global climatic change may be detected by monitoring the positions of ecotones. The author built a model of the dynamics of ecotones similar to those found in altitudinal or latitudinal treelines, where a slow tendency for the ecotone to advance is counterbalanced by disturbances such as fire or landslides. The model showed that the response of such ecotones to a wide range of simulated climate changes was slow and that the ecotone front was dissected. It would appear that such ecotones would not make suitable sites for monitoring climate change.

  4. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Science.gov (United States)

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  5. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.

    Science.gov (United States)

    Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I

    2009-06-01

    Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial

  6. Comparison of post-fire seedling establishment between scrub communities in mediterranean and non-mediterranean climate ecosystems

    Science.gov (United States)

    Carrington, M.E.; Keeley, J.E.

    1999-01-01

    I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.

  7. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    Science.gov (United States)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  8. The nature of the beast: examining climate adaptation options in forests with stand-replacing fire regimes

    Science.gov (United States)

    Joshua S. Halofsky; Daniel C. Donato; Jerry F. Franklin; Jessica E. Halofsky; David L. Peterson; Brian J. Harvey

    2018-01-01

    Building resilience to natural disturbances is a key to managing forests for adaptation to climate change. To date, most climate adaptation guidance has focused on recommendations for frequent-fire forests, leaving few published guidelines for forests that naturally experience infrequent, stand-replacing wildfires. Because most such forests are inherently resilient to...

  9. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    combined in various ways to comprise focused, lively, accurate primers to what we all need to know about climate change. With college classrooms as our intended venue, we are looking at such topics as why the weather in your backyard tells you nothing about global climate change-but a good deal about climate; how tiny molecules warm the planet; how snowpack, drought, bark beetles, fire suppression, and wildfire interact as stress complexes; why (and where) women, children, and the poor are especially vulnerable to harm from climate change; what international policy negotiators argue about; what poets and artists can contribute to understanding and solving the climate problem; and why ecologists are worried about changes in the seasonal timing of natural events. We will describe what we have done and how we did it; offer a few tips to others who might wish to do something similar; and introduce our website.

  10. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  11. Climate change scenario data for the national parks

    International Nuclear Information System (INIS)

    Scott, D.

    2003-01-01

    This report presents daily scenario data obtained from monthly time scale climate change scenarios. The scenarios were applied to a stochastic weather generator, a statistical tool that simulates daily weather data for a range of climates at a particular location. The weather generators simulate weather that is statistically similar to observed climate data from climate stations. They can also generate daily scenario data for monthly time scales. This low cost computational method offers site-specific, multi-year climate change scenarios at a daily temporal level. The data is useful for situations that rely on climate thresholds such as forest fire season, drought conditions, or recreational season length. Data sets for temperature, precipitation and frost days was provided for 3 national parks for comparative evaluations. Daily scenarios for other parks can be derived using global climate model (GCM) output data through the Long Ashton Research Station (LARS) weather generator program. tabs

  12. Impacts and adaptation for climate change in urban forests

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    Changes to urban trees as a result of climate change were reviewed in order to aid urban forest managers in the development of adaptive climate change strategies. Various climate change models have predicted that winter and spring temperatures will increase. Higher amounts of precipitation are also anticipated. Higher temperatures will results in evapotranspiration, which will cause soil moisture levels to decline. Climatologists have also suggested that very hot days, winter storms and high rainfall events will increase in frequency. In addition, higher levels of atmospheric carbon dioxide (CO{sub 2}) will affect photosynthesis, with associated impacts on urban tree growth. Higher temperatures and longer growing seasons will allow insect populations to build up to higher levels, and warmer and dryer summers are likely to bring longer fire seasons and more severe fires. Urban trees under stress from drought and higher temperatures will be increasingly vulnerable to existing urban stressors such as air pollution and soil compaction. However, the ecological services provided by trees will become more valuable under future climate change regimes, particularly for shading and space cooling, as well as soil aeration and stabilization and the uptake of storm water. It was suggested that future tree growth may be enhanced on sites with adequate water and nutrients, but will probably decline in areas that are already marginal. It was recommended that urban forest managers assess the present vulnerability of trees to climate-related events in order to prepare for future change. Managers should also assess their capacity to implement various strategies through municipal and provincial partnerships. It was observed that decisions taken now about forest management will play out over several decades. It was concluded that maintaining a flexible and resilient urban forest management system is the best defence, as specific climate change impacts cannot be predicted. 18 refs., 4

  13. Pollen and phytoliths from fired ancient potsherds as potential indicators for deciphering past vegetation and climate in Turpan, Xinjiang, NW China.

    Science.gov (United States)

    Yao, Yi-Feng; Li, Xiao; Jiang, Hong-En; Ferguson, David K; Hueber, Francis; Ghosh, Ruby; Bera, Subir; Li, Cheng-Sen

    2012-01-01

    It is demonstrated that palynomorphs can occur in fired ancient potsherds when the firing temperature was under 350°C. Pollen and phytoliths recovered from incompletely fired and fully fired potsherds (ca. 2700 yrs BP) from the Yanghai Tombs, Turpan, Xinjiang, NW China can be used as potential indicators for reconstructing past vegetation and corresponding climate in the area. The results show a higher rate of recovery of pollen and phytoliths from incompletely fired potsherds than from fully fired ones. Charred phytoliths recovered from both fully fired and incompletely fired potsherds prove that degree and condition of firing result in a permanent change in phytolith color. The palynological data, together with previous data of macrobotanical remains from the Yanghai Tombs, suggest that temperate vegetation and arid climatic conditions dominated in the area ca. 2700 yrs BP.

  14. Life in Europe under climate change

    DEFF Research Database (Denmark)

    Alcamo, J.; Olesen, Jørgen E

    Life in Europe will indeed go on as the climate changes, but not in the same way as before. The air will be warmer, winds will change, patterns of rainfall and snowfall will alter, and sea level is likely to rise. These phenomena are already being seen. Europe will in the future experience marked...... changes in vegetation cover, increased floods along rivers and coastlines as well as more frequent droughts and forest fires, often leading to large societal costs. The changes will be minor in some cases, profound in others, but in any case, pervasive.......Life in Europe will indeed go on as the climate changes, but not in the same way as before. The air will be warmer, winds will change, patterns of rainfall and snowfall will alter, and sea level is likely to rise. These phenomena are already being seen. Europe will in the future experience marked...

  15. Australian climate change impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    Hennessy, K.; Fitzharris, B.

    2007-01-01

    Full text: Full text: The IPCC Fourth Assessment Report on impacts, adaptation and vulnerability made the following conclusions about Australia (Hennessy et al., 2007): Regional climate change has occurred. Since 1950, there has been 0.7 0 C warming, with more heat waves, fewer frosts, more rain in north-west Australia, less rain in southern and eastern Australia, an increase in the intensity of Australian droughts and a rise in sea level of about 70 mm. Australia is already experiencing impacts from recent climate change. These are now evident in increasing stresses on water supply and agriculture, changed natural ecosystems, and reduced seasonal snow cover. Some adaptation has already occurred in response to observed climate change. Examples come from sectors such as water, natural ecosystems, agriculture, horticulture and coasts. However, ongoing vulnerability to extreme events is demonstrated by substantial economic losses caused by droughts, floods, fire, tropical cyclones and hail. The climate of the 21st century is virtually certain to be warmer, with changes in extreme events. Heat waves and fires are virtually certain to increase in intensity and frequency. Floods, landslides, droughts and storm surges are very likely to become more frequent and intense, and snow and frost are very likely to become less frequent. Large areas of mainland Australia are likely to have less soil moisture. Potential impacts of climate change are likely to be substantial without further adaptation; As a result of reduced precipitation and increased evaporation, water security problems are projected to intensify by 2030 in southern and eastern Australia; Ongoing coastal development and population growth, in areas such as Cairns and south-east Queensland, are projected to exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding by 2050. Significant loss of biodiversity is projected to occur by 2020 in some ecologically rich

  16. Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon-Cerrado border

    Science.gov (United States)

    Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.

    2018-02-01

    Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.

  17. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    Directory of Open Access Journals (Sweden)

    Danny L Fry

    Full Text Available In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1, and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56% in large patches (≥ 10 trees, and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  18. Tailored stakeholder products help provide a vulnerability and adaptation assessment of Greek forests due to climate change

    Science.gov (United States)

    Giannakopoulos, Christos; Karali, Anna; Roussos, Anargyros

    2014-05-01

    Greece, being part of the eastern Mediterranean basin, is an area particularly vulnerable to climate change and associated forest fire risk. The aim of this study is to assess the vulnerability of Greek forests to fire risk occurrence and identify potential adaptation options within the context of climate change through continuous interaction with local stakeholders. To address their needs, the following tools for the provision of climate information services were developed: 1. An application providing fire risk forecasts for the following 3 days (http://cirrus.meteo.noa.gr/forecast/bolam/index.htm) was developed from NOA to address the needs of short term fire planners. 2. A web-based application providing long term fire risk and other fire related indices changes due to climate change (time horizon up to 2050 and 2100) was developed in collaboration with the WWF Greece office to address the needs of long term fire policy makers (http://www.oikoskopio.gr/map/). 3. An educational tool was built in order to complement the two web-based tools and to further expand knowledge in fire risk modeling to address the needs for in-depth training. In particular, the second product provided the necessary information to assess the exposure to forest fires. To this aim, maps depicting the days with elevated fire risk (FWI>30) both for the control (1961-1990) and the near future period (2021-2050) were created by the web-application. FWI is a daily index that provides numerical ratings of relative fire potential based solely on weather observations. The meteorological inputs to the FWI System are daily noon values of temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. It was found that eastern lowlands are more exposed to fire risk followed by eastern high elevation areas, for both the control and near future period. The next step towards vulnerability assessment was to address sensitivity, ie the human-environmental conditions that

  19. Climate change : we are at risk : final report

    International Nuclear Information System (INIS)

    Oliver, D.; Wiebe, J.

    2003-11-01

    During the period November 2002 to May 2003, the effects of climate change on Canada's agricultural and forestry sectors and rural communities were investigated by the Senate Standing Committee on Agriculture and Forestry. The Saguenay flood of 1996, the Red River flood of 1997, and the 1998 ice storm were reviewed, along with the forest fires in Western Canada during the summer of 2003 and the unusual succession of dry years. This paper includes a discussion on climate change, agriculture, forests, water, rural communities, Aboriginal people, and potential adaptation options. Seven recommendations were made: (1) climate change impacts and adaptation efforts should be coordinated by the Government of Canada, (2) substantial increase in funding and allocation of resources for climate change impacts and adaptation research is required, (3) make water research a national priority, with emphasis on water supply and demand, (4) expand and increase the role and resources of the Canadian Climate Impacts and Adaptation Research Network (C-CIARN), (5) develop and quickly implement an education and communication strategy concerning risks and challenges associated with climate change and its impacts on agriculture and forests, (6) develop a long term safety net to allow farmers the opportunity to take advantage of possible opportunities resulting from climate change, and (7) implement a systematic review of existing and new programs and policies to assess climate change risks and opportunities. refs., figs

  20. Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

    Directory of Open Access Journals (Sweden)

    J. Bakker

    2013-01-01

    land use during Ottoman times. The pollen data reveal that a fast rise in Pinus pollen after the end of the Beyşehir Occupation Phase need not always occur. The notion of high Pinus pollen percentages indicating an open landscape incapable of countering the influx of pine pollen is also deemed unrealistic. While multiple fires occurred in the region through time, extended fire periods, as had occurred during the Bronze Age and Beyşehir Occupation Phase, did not occur, and no signs of local fire activity were observed. Fires were never a major influence on vegetation dynamics. While no complete overview of post-BO Phase fire events can be presented, the available data indicates that fires in the vicinity of Gravgaz may have been linked to anthropogenic activity in the wider surroundings of the marsh. Fires in the vicinity of Bereket appeared to be linked to increased abundance of pine forests. There was no link with specifically wet or dry environmental conditions at either site. While this study reveals much new information concerning the impact of climate change and human occupation on the environment, more studies from SW Turkey are required in order to properly quantify the range of the observed phenomena and the magnitude of their impacts.

  1. Fire Scenarios in Spain: A Territorial Approach to Proactive Fire Management in the Context of Global Change

    Directory of Open Access Journals (Sweden)

    Cristina Montiel Molina

    2016-11-01

    Full Text Available Humans and fire form a coupled and co-evolving natural-human system in Mediterranean-climate ecosystems. In this context, recent trends in landscape change, such as urban sprawl or the abandoning of agricultural and forest land management in line with new models of economic development and lifestyles, are leading to new fire scenarios. A fire scenario refers to the contextual factors of a fire regime, i.e., the environmental, socio-economic and policy drivers of wildfire initiation and propagation on different spatial and temporal scales. This is basically a landscape concept linking territorial dynamics (related to ecosystem evolution and settlement patterns with a fire regime (ignition causes; spread patterns; fire frequency, severity, extent and seasonality. The aim of this article is to identify and characterize these land-based fire scenarios in Spain on a national and regional scale, using a GIS-based methodology to perform a spatial analysis of the area attributes of homogenous fire spread patterns. To do this, the main variables considered are: land use/land cover, fuel load and recent fire history. The final objective is to reduce territorial vulnerability to forest wildfires and facilitate the adaptation of fire policies and land management systems to current challenges of preparedness and uncertainty management.

  2. Fire in Mediterranean climate ecosystems: a comparative overview

    Science.gov (United States)

    Keeley, Jon E.

    2012-01-01

    Four regions of the world share a similar climate and structurally similar plant communities with the Mediterranean Basin. These five areas, known collectively as "mediterranean-type climate (MTC) regions", are dominated by evergreen sclerophyllous-leaved shrublands, semi-deciduous scrub, and woodlands, all of which are prone to widespread crown fires. Summer droughts produce an annual fire hazard that contributes to a highly predictable fire regime. Fire has been an important factor driving the convergence of these systems and is reflected in plant traits such as lignotubers in resprouting shrubs and delayed reproduction that restricts recruitment to a postfire pulse of seedlings. On fertile soils where postfire resprouting is very rapid, opportunities for postfire seedling recruitment are limited and thus these woody taxa have not opted for delaying reproduction. Such fire-independent recruitment is widespread in the floras of MTC regions of the Mediterranean Basin and California and postfire seeding tends to dominate at the more arid end of the gradient. Due to very different geological histories in South Africa and Western Australia, substrates are nutrient poor and thus postfire resprouters do not pose a similar competitive challenge to seedlings and thus postfire seeding is very widespread in these floras. Although circumstantial evidence suggests that the MTC region of Chile had fire-prone landscapes in the Tertiary, these were lost with the late Miocene completion of the Andean uplift, which now blocks summer lightning storms from moving into the region. Today these five regions pose a significant fire management challenge due to the annual fire hazard and metropolitan centers juxtaposed with highly flammable vegetation. This challenge varies across the five MTC landscapes as a function of differences in regional fuel loads and population density.

  3. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    International Nuclear Information System (INIS)

    Barbero, R; Abatzoglou, J T; Steel, E A; K Larkin, Narasimhan

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ∼60 km spatial and weekly temporal resolutions using solely atmospheric predictors. Climate−fire relationships on interannual timescales were evident, with wetter conditions than normal in the previous growing season enhancing VLFs probability in rangeland systems and with concurrent long-term drought enhancing VLFs probability in forested systems. Information at sub-seasonal timescales further refined these relationships, with short-term fire weather being a significant predictor in rangelands and fire danger indices linked to dead fuel moisture being a significant predictor in forested lands. Models demonstrated agreement in capturing the observed spatial and temporal variability including the interannual variability of VLF occurrences within most ecoregions. Furthermore the model captured the observed increase in VLF occurrences across parts of the southwestern and southeastern US from 1984 to 2010 suggesting that, irrespective of changes in fuels and land management, climatic factors have become more favorable for VLF occurrence over the past three decades in some regions. Our modeling framework provides a basis for simulations of future VLF occurrences from climate projections. (letter)

  4. Changes in fire weather distributions: effects on predicted fire behavior

    Science.gov (United States)

    Lucy A. Salazar; Larry S. Bradshaw

    1984-01-01

    Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...

  5. Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin

    Science.gov (United States)

    Morales-Molino, César; García-Antón, Mercedes; Postigo-Mijarra, José M.; Morla, Carlos

    2013-01-01

    A new palaeoecological sequence from the western Iberian Central Range significantly contributes to the knowledge on the Holocene vegetation dynamics in central Iberia. This sequence supports the existence of time-transgressive changes in the vegetation cover during the beginning of the Holocene over these central Iberian mountains, specifically the replacement of boreal birch-pine forests with Mediterranean communities. Anthracological analyses also indicate the replacement of boreal pines (Pinus sylvestris) with Mediterranean ones (Pinus pinaster) during the early Holocene. The observed vegetation changes were generally synchronous with climatic phases previously reconstructed for the western Mediterranean region, and they suggest that the climatic trends were most similar to those recorded in the northern Mediterranean region and central Europe. Several cycles of secondary succession after fire ending with the recovery of mature forest have been identified, which demonstrates that the vegetation of western Iberia was highly resilient to fire disturbance. However, when the recurrence of fire crossed a certain threshold, the original forests were not able to completely recover and shrublands and grasslands became dominant; this occurred approximately 5800-5400 cal yr BP. Afterwards, heathlands established as the dominant vegetation, which were maintained by frequent and severe wildfires most likely associated with human activities in a climatic framework that was less suitable for temperate trees. Finally, our palaeoecological record provides guidelines on how to manage protected areas in Mediterranean mountains of southwestern Europe, especially regarding the conservation and restoration of temperate communities that are threatened there such as birch stands.

  6. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests

    Science.gov (United States)

    Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu

    2009-01-01

    Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...

  7. Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada

    Science.gov (United States)

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...

  8. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.

    Science.gov (United States)

    Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine

    Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover

  9. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest.

    Science.gov (United States)

    Malhi, Yadvinder; Aragão, Luiz E O C; Galbraith, David; Huntingford, Chris; Fisher, Rosie; Zelazowski, Przemyslaw; Sitch, Stephen; McSweeney, Carol; Meir, Patrick

    2009-12-08

    We examine the evidence for the possibility that 21st-century climate change may cause a large-scale "dieback" or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible "tipping point," beyond which extensive rainforest would become unsustainable.

  10. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  11. Simulation of landscape disturbances and the effect of climatic change

    International Nuclear Information System (INIS)

    Baker, W.L.

    1993-01-01

    The purpose of this research is to understand how changes in climate may affect the structure of landscapes that are subject to periodic disturbances. A general model useful for examining the linkage between climatic change and landscape change has been developed. The model makes use of synoptic climatic data, a geographical information system (GRASS), field data on the location of disturbance patches, simulation code written in the SIMSCRIPT language, and a set of landscape structure analysis programs written specifically for this research project. A simplified version of the model, lacking the climatic driver, has been used to analyze how changes in disturbance regimes (in this case settlement and fire suppression) affect landscape change. Landscape change lagged in its response to changes in the disturbance regime, but the lags differed depending upon the character of the change and the particular measure considered. The model will now be modified for use in a specific setting to analyze the effects of changes in climate on the structure of flood-disturbed patches along the Animas River, Colorado

  12. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  13. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  14. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  15. Big data integration shows Australian bush-fire frequency is increasing significantly.

    Science.gov (United States)

    Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath

    2016-02-01

    Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift.

  16. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    Science.gov (United States)

    James A. Lutz; Jan W. van Wagtendonk; Andrea E. Thode; Jay D. Miller; Jerry F. Franklin

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focused on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread,...

  17. Climate drivers of regionally synchronous fires in the inland northwest (1651-1900)

    Science.gov (United States)

    Emily K. Heyerdahl; Donald McKenzie; Lori D. Daniels; Amy E. Hessl; Jeremy S. Littell; Nathan J. Mantua

    2008-01-01

    We inferred climate drivers of regionally synchronous surface fires from 1651 to 1900 at 15 sites with existing annually accurate fire-scar chronologies from forests dominated by ponderosa pine or Douglas-fir in the inland Northwest (interior Oregon,Washington and southern British Columbia).Years with widespread fires (35 years with fire at 7 to 11 sites) had warm...

  18. High-latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers

    2013-02-01

    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would cool the surface by 0.23 ± 0.09 °C across boreal North America during winter and spring months (December through May. This could provide a negative feedback to winter warming on the order of 3–5% for a doubling, and 14–23% for a quadrupling, of burn area. Maximum cooling occurs in the areas of greatest burning, and between February and April when albedo changes are largest and solar insolation is moderate. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  19. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-11-01

    Full Text Available Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fire rates of vegetation regeneration between ecoregions. We then related precipitation, temperature, and elevation records at four temporal scales to rates of post-fire vegetation regeneration to ascertain the influence of climate on post-fire vegetation dynamics. We found that broad-scale climate factors are an important influence on post-fire vegetation regeneration. Most notably, higher rates of post-fire regeneration occurred with warmer minimum temperatures. Increases in precipitation also resulted in higher rates of post-fire vegetation growth. While explanatory power was slight, multiple statistical approaches provided evidence for real ecological drivers of post-fire regeneration that should be investigated further at finer scales. The sensitivity of post-disturbance vegetation dynamics to climatic drivers has important ramifications for the management of ecosystems under changing climatic conditions. Shifts in temperature and precipitation regimes are likely to result in changes in post-disturbance dynamics, which could represent important feedbacks into the global climate system.

  20. 350 Years of Fire-Climate-Human Interactions in a Great Lakes Sandy Outwash Plain

    Directory of Open Access Journals (Sweden)

    Richard P. Guyette

    2016-08-01

    Full Text Available Throughout much of eastern North America, quantitative records of historical fire regimes and interactions with humans are absent. Annual resolution fire scar histories provide data on fire frequency, extent, and severity, but also can be used to understand fire-climate-human interactions. This study used tree-ring dated fire scars from red pines (Pinus resinosa at four sites in the Northern Sands Ecological Landscapes of Wisconsin to quantify the interactions among fire occurrence and seasonality, drought, and humans. New methods for assessing the influence of human ignitions on fire regimes were developed. A temporal and spatial index of wildland fire was significantly correlated (r = 0.48 with drought indices (Palmer Drought Severity Index, PDSI. Fire intervals varied through time with human activities that included early French Jesuit missions, European trade (fur, diseases, war, and land use. Comparisons of historical fire records suggest that annual climate in this region has a broad influence on the occurrence of fire years in the Great Lakes region.

  1. The climatic change

    International Nuclear Information System (INIS)

    Calvo Redondo, A.; Rodriguez Eustaquio, A.; Sanchez y Llorente, J.M.; Luis y Hernandez, S.; Panero Santos, C.; Gomez Cubero, J.A.; Arias-Camison Hernandez, J.C.

    1994-01-01

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  2. Forest fires may cause cooling in boreal Canada

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    As climate in North America continues to become warmer and drier through the 21st century, a new study finds that fire may be playing an increasingly important role in shaping the climate of the boreal regions of Canada. Forest fires change the amount of shortwave radiation absorbed by Earth's surface by reducing vegetation cover and changing the composition of plant species, thereby changing the reflectivity of the surface (albedo). Fires also affect other ecosystem processes and increase aerosol (particularly soot) emission and deposition, all of which alter regional climate through a series of feedbacks mechanisms. Jin et al. used satellite observations of surface albedo from 2000 to 2011 and fire perimeter data since 1970 to study how forest fires affect surface albedo and associated shortwave radiation at the surface, across forests in boreal Canada.

  3. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    Science.gov (United States)

    Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.

  4. Effects of climate change on ecological disturbances [Chapter 8

    Science.gov (United States)

    Danielle M. Malesky; Barbara J. Bentz; Gary R. Brown; Andrea R. Brunelle; John M. Buffington; Linda M. Chappell; R. Justin DeRose; John C. Guyon; Carl L. Jorgensen; Rachel A. Loehman; Laura L. Lowrey; Ann M. Lynch; Marek Matyjasik; Joel D. McMillin; Javier E. Mercado; Jesse L. Morris; Jose F. Negron; Wayne G. Padgett; Robert A. Progar; Carol B. Randall

    2018-01-01

    This chapter describes disturbance regimes in the Intermountain Adaptation Partnership (IAP) region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term "disturbance regime" describes the general temporal and spatial characteristics of a disturbance agent (e.g., insects, disease, fire, weather, human...

  5. Forest fires are changing: let’s change the fire management strategy

    Directory of Open Access Journals (Sweden)

    Bovio G

    2017-08-01

    Full Text Available Forest fires in Italy are changing. More frequent heatwaves and drought increase the flammability of the vegetation; the abandonment of rural land produces 30.000 ha of newly afforested areas each year; and the wildland-urban interface is expanding with the sprawl of urbanized areas. However, forest fires are rarely understood and managed in their complexity. The public opinion is often misinformed on the causes and consequences of fires in the forest. Moreover, fire management relies almost exclusively on extinction and emergency response, resulting in high costs and limited efficacy versus extreme fire seasons. We advocate to increase the role and investments in wildfire prevention, which can be carried out by fuel-oriented silviculture, such as facilitating less flammable species or prescribed burning, in order to reduce the flammability of the vegetation and mitigate fire intensity in high-leverage areas. A centralized structure is necessary to implement such a strategy and coordinate the competences and actions of all local administrations and actors involved.

  6. Particulate Air Pollution from Wildfires in the Western US under Climate Change.

    Science.gov (United States)

    Liu, Jia Coco; Mickley, Loretta J; Sulprizio, Melissa P; Dominici, Francesca; Yue, Xu; Ebisu, Keita; Anderson, Georgiana Brooke; Khan, Rafi F A; Bravo, Mercedes A; Bell, Michelle L

    2016-10-01

    Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM 2.5 ) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term "Smoke Wave," defined as ≥2 consecutive days with high wildfire-specific PM 2.5 , to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM 2.5 standards, wildfires contributed an average of 71.3% of total PM 2.5 . Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health.

  7. Fire in Fennoscandia: A palaeo-perspective of spatial and temporal variability in fire frequency and vegetation dynamics

    Science.gov (United States)

    Clear, Jennifer; Bradshaw, Richard; Seppä, Heikki

    2014-05-01

    Active fire suppression in Fennoscandia has created a boreal forest ecosystem that is almost free of fire. Absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce), though the character and structure of spruce forests operates as a positive feedback retarding fire frequency. This lack of fire and dominance by Picea abies may have assisted declines in deciduous tree species, with a concomitant loss of floristic diversity. Forest fires are driven by a complex interplay between natural (climate, vegetation and topography) and anthropogenic disturbance and through palaeoecology we are able to explore spatio-temporal variability in the drivers of fire, changing fire dynamics and the subsequent consequences for forest succession, development and floristic diversity over long timescales. High resolution analysis of palaeoenvironmental proxies (pollen and macroscopic charcoal) allows Holocene vegetation and fire dynamics to be reconstructed at the local forest-stand scale. Comparisons of fire histories with pollen-derived quantitative reconstruction of vegetation at local- and regional-scales identify large-scale ecosystem responses and local-scale disturbance. Spatio-temporal heterogeneity and variability in biomass burning is explored to identify the drivers of fire and palaeovegetation reconstructions are compared to process-based, climate-driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Fire was not always so infrequent in the northern European forest with early-Holocene fire regimes driven by natural climate variations and fuel availability. The establishment and spread of Picea abies was probably driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. Picea expansion led to a step-wise reduction in regional biomass burning and here we show the now

  8. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data

    Energy Technology Data Exchange (ETDEWEB)

    Power, M.J. [University of Edinburgh, Institute of Geography, School of Geosciences, Edinburgh (United Kingdom); Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P.I.; Prentice, I.C.; Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A.A.; Anderson, R.S.; Beer, R.; Behling, H.; Briles, C.; Brown, K.J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G.Q.; Clark, J.; Colombaroli, D.; Connor, S.; Daniau, A.L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M.J.; Gavin, D.G.; Gobet, E.; Haberle, S.; Hallett, D.J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.C.; Larsen, C.; Long, C.J.; Lynch, J.; Lynch, E.A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer, G.; Minckley, T.; Mohr, J.; Nelson, D.M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce, J.; Richard, P.J.H.; Rowe, C.; Sanchez Goni, M.F.; Shuman, B.N.; Takahara, H.; Toney, J.; Turney, C.; Urrego-Sanchez, D.H.; Umbanhowar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh, M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J.H.

    2008-06-15

    Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to {proportional_to}11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from {proportional_to}19,000 to {proportional_to}17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to {proportional_to}13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to {proportional_to}3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load. (orig.)

  9. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  10. The Net Climate Impact of Coal-Fired Power Plant Emissions

    Science.gov (United States)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  11. Increase in quantity and quality of suitable areas for invasive species as climate changes.

    Science.gov (United States)

    Bertelsmeier, Cleo; Luque, Gloria M; Courchamp, Franck

    2013-12-01

    As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species' establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima.

  12. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  13. Long-term temporal changes in the occurrence of a high forest fire danger in Finland

    Directory of Open Access Journals (Sweden)

    H. M. Mäkelä

    2012-08-01

    Full Text Available Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June–August, the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908–2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.

  14. Fire weather and large fire potential in the northern Sierra Nevada

    Science.gov (United States)

    Brandon M. Collins

    2014-01-01

    Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...

  15. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire

    Science.gov (United States)

    Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.

    2017-12-01

    Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.

  16. Resilience of Athabascan subsistence systems to interior Alaska's changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Kofinas, G.P. [Alaska Univ., Fairbanks, AK (United States). School of Natural Resources and Agricultural Sciences; Alaska Univ., Fairbanks, AK (United States). Inst. of Arctic Biology; Chapin, F.S. III; Schmidt, J.I.; Kielland, K. [Alaska Univ., Fairbanks, AK (United States). Inst. of Arctic Biology; BurnSilver, S. [Alaska Univ., Fairbanks, AK (United States). School of Natural Resources and Agricultural Sciences; Fresco, N.L.; Springsteen, A.; Rupp, T.S. [Alaska Univ., Fairbanks, AK (United States). Scenarios Network for Alaska Planning; Martin, S. [Alaska Univ., Fairbanks, AK (United States). Inst. of Social and Economic Research

    2010-07-15

    Indigenous peoples have occupied interior Alaska for 6000 to 9000 years. The arrival of different cultural groups, or Athabascan Peoples, preceded or coincided with the arrival of black spruce dominated fire-prone vegetation that developed in interior Alaska about 6000 years ago. The Athabascan subsistence hunting system of interior Alaska is a tightly integrated social-ecological system in which people depend on nature for a wide range of ecosystem services such as subsistence resources, protection from fire risk, and cultural ties to their traditional lands. This paper described the effects of recent trends and future climate change projections on the boreal ecosystem of the region and depicted the changes in ecosystem services to Athabascan subsistence. The study focused primarily on moose because of the high dependence on moose by village households. The vulnerability of Athabascan subsistence systems to climatic change has increased in some respects, but has also improved aspects of village resilience. Communities facing future climate and socioeconomic changes, have limited but potentially effective mitigation and adaptation opportunities, but the extent to which they can be realized depends on the responsiveness of institutions to meet local needs through effective management strategies. 1 tab., 6 figs.

  17. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  18. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    Science.gov (United States)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating

  19. Climate change and disturbance interactions: Workshop on climate change and disturbance interactions in western North America, Tucson, Ariz., 12-15 February 2007

    Science.gov (United States)

    McKenzie, Don; Allen, Craig D.

    2007-01-01

    Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?Researchers in climatology, ecosystem science, fire and insect ecology, and landscape modeling from across western North America convened in Tucson, Ariz., for a 2 and a half day intensive workshop to identify new research directions in climate change and disturbance ecology. Four work groups focused on different aspects of the response of disturbance regimes to climate change: (1) extreme events and climatic variability (2) the effects of changing disturbance regimes on ecosystems, (3) disturbance interactions and cumulative effects, and (4) developing new landscape disturbance models. The workshop was structured with the analytic hierarchy process, a decision support method for achieving consensus from diverse groups of experts without sacrificing individual contributions.

  20. Systems thinking and wildland fire management

    Science.gov (United States)

    Matthew P. Thompson; Christopher J. Dunn; David E. Calkin

    2017-01-01

    A changing climate, changing development and land use patterns, and increasing pressures on ecosystem services raise global concerns over growing losses associated with wildland fires. New management paradigms acknowledge that fire is inevitable and often uncontrollable, and focus on living with fire rather than attempting to eliminate it from the landscape. A notable...

  1. Projections of 21st Century African Climate: Implications for African Savanna Fire Dynamics, Human Health and Food Security

    Science.gov (United States)

    Adegoke, J. O.

    2015-12-01

    Fire is a key agent of change in the African savannas, which are shaped through the complex interactions between trees, C4 grasses, rainfall, temperature, CO2 and fire. These fires and their emitted smoke can have numerous direct and indirect effects on the environment, water resources, air quality, and climate. For instance, veld fires in southern Africa cause large financial losses to agriculture, livestock production and forestry on an annual basis. This study contributes to our understanding of the implications of projected surface temperature evolution in Africa for fire risk, human health and agriculture over the coming decades. We use an ensemble of high-resolution regional climate model simulations of African climate for the 21st century. Regional dowscalings and recent global circulation model projections obtained for Africa indicate that African temperatures are likely to rise at 1.5 times the global rate of temperature increase in the tropics, and at almost twice the global rate of increase in the subtropics. Warming is projected to occur during the 21st century, with increases of 4-6 °C over the subtropics and 3-5 °C over the tropics plausible by the end of the century relative to present-day climate under the A2 (low mitigation) scenario. We explore the significance of the projected warming by documenting increases in projected high fire danger days and heat-wave days. General drying is projected across the continent, even for areas (e.g. tropical Africa) where an increase in rainfall is plausible. This is due to the drastic increases in temperature that are projected, which leads to drier soils (through enhanced evaporation) despite the rainfall increases. This will likely impact negatively on crop yield, particularly on the maize crop that is of crucial importance in terms of African food security.

  2. An Assessment of the Impact of Climate Change on Plant Species ...

    African Journals Online (AJOL)

    Lazie

    Abstract. This study assesses the effects of climate change on vegetative species diversity ... and mitigation strategies that are ecosystem and species specific. .... seasonality and values below detection limit. ... Pre-whitening is the process of removing undesirable autocorrelations ..... vegetation, carbon and fire in California.

  3. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Science.gov (United States)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1

  4. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    Science.gov (United States)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  5. Fire in Australian savannas: from leaf to landscape

    Science.gov (United States)

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767

  6. Interactive effects of climate and wildland fires on forests and other ecosystems—section III synthesis

    Science.gov (United States)

    Nancy E. Grulke

    2009-01-01

    The chapters in Section III of this book provide an overview of how components of climate change, including air pollution, are likely to interact with fire in modifying key ecosystem processes, whether those processes were demographic, successional, or elemental cycling. These chapters primarily  discuss increased temperature, reduced available soil moisture, and...

  7. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    Science.gov (United States)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  8. Climate change moisture stresses on northern coniferous forests

    International Nuclear Information System (INIS)

    Wein, R.W.; Hogg, E.H.

    1990-01-01

    The predictions of general circulation models suggest major climatic changes for high latitude tundra ecosystems and lower latitude forested ecosystems. Of particular interest to Canadians is the predicted shift in the boreal forest climate northward, with a considerable northern expansion of the grasslands of western Canada. Reductions in soil moisture would have both direct and indirect effects on forest composition and productivity. The most important likely physical factors subject to alteration are permafrost, hydrological regimes and fire. Under warmer and drier conditions, potential fire burn frequency will increase, and might lead to greater proportions of jack pine than previously present. It is anticipated that permafrost will disappear from the extensive discontinuous permafrost zone where soil permafrost temperatures are presently -3 degree C or higher. In wet sites, melting of the permafrost could lead to drowning of forests as soils subside and become temporarily waterlogged. In more northerly areas, forest growth may increase in drier areas as the depth of the active layer increases. Fire may be a significant feed-back mechanism that could enhance the greenhouse effect. The estimated proportion of carbon in Canadian peatlands is in the order of 170 gigatonnes, whereas one-tenth of a gigatonne of carbon is released annually by fossil fuel combustion in Canada. 11 refs

  9. Quantification of regional radiative impacts and climate effects of tropical fire aerosols

    Science.gov (United States)

    Tosca, M. G.; Zender, C. S.; Randerson, J. T.

    2011-12-01

    Regionally expansive smoke clouds originating from deforestation fires in Indonesia can modify local precipitation patterns via direct aerosol scattering and absorption of solar radiation (Tosca et al., 2010). Here we quantify the regional climate impacts of fire aerosols for three tropical burning regions that together account for about 70% of global annual fire emissions. We use the Community Atmosphere Model, version 5 (CAM5) coupled to a slab ocean model (SOM) embedded within the Community Earth System Model (CESM). In addition to direct aerosol radiative effects, CAM5 also quantifies indirect, semi-direct and cloud microphysical aerosol effects. Climate impacts are determined using regionally adjusted emissions data that produce realistic aerosol optical depths in CAM5. We first analyzed a single 12-year transient simulation (1996-2007) forced with unadjusted emissions estimates from the Global Fire Emissions Database, version 3 (GFEDv3) and compared the resulting aerosol optical depths (AODs) for 4 different burning regions (equatorial Asia, southern Africa, South America and boreal North America) to observed MISR and MODIS AODs for the same period. Based on this analysis we adjusted emissions for each burning region between 150 and 300% and forced a second simulation with the regionally adjusted emissions. Improved AODs from this simulation are compared to AERONET observations available at 15 stations throughout the tropics. We present here two transient simulations--one with the adjusted fire emissions and one without fires--to quantify the cumulative fire aerosol climate impact for three major tropical burning regions (equatorial Asia, southern Africa and South America). Specifically, we quantify smoke effects on radiation, precipitation, and temperature. References Tosca, M.G., J.T. Randerson, C.S. Zender, M.G. Flanner and P.J. Rasch (2010), Do biomass burning aerosols intensify drought in equatorial Asia during El Nino?, Atmos. Chem. Phys., 10, 3515

  10. Experimental drought induces short-term changes in soil functionality and microbial community structure after fire in a Mediterranean shrubland

    Science.gov (United States)

    Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.

    2014-10-01

    Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.

  11. Fire Regime Characteristics along Environmental Gradients in Spain

    Directory of Open Access Journals (Sweden)

    María Vanesa Moreno

    2016-11-01

    Full Text Available Concern regarding global change has increased the need to understand the relationship between fire regime characteristics and the environment. Pyrogeographical theory suggests that fire regimes are constrained by climate, vegetation and fire ignition processes, but it is not obvious how fire regime characteristics are related to those factors. We used a three-matrix approach with a multivariate statistical methodology that combined an ordination method and fourth-corner analysis for hypothesis testing to investigate the relationship between fire regime characteristics and environmental gradients across Spain. Our results suggest that fire regime characteristics (i.e., density and seasonality of fire activity are constrained primarily by direct gradients based on climate, population, and resource gradients based on forest potential productivity. Our results can be used to establish a predictive model for how fire regimes emerge in order to support fire management, particularly as global environmental changes impact fire regime characteristics.

  12. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

    Science.gov (United States)

    Midgley, Guy F.; Bond, William J.

    2015-09-01

    Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

  13. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  14. Climate change and water availability for vulnerable agriculture

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  15. Linkages Among Climate, Fire, and Thermoerosion in Alaskan Tundra Over the Past Three Millennia

    Science.gov (United States)

    Chipman, M. L.; Hu, F. S.

    2017-12-01

    Amplified Arctic warming may facilitate novel tundra disturbance regimes, as suggested by recent increases in the rate and extent of thermoerosion and fires in some tundra areas. Thermoerosion and wildfire can exacerbate warming by releasing large permafrost carbon stocks, and interactions between disturbance regimes can lead to complex ecosystem feedbacks. We conducted geochemical and charcoal analyses of lake sediments from an Alaskan lake to identify thermoerosion and fire events over the past 3,000 years. Thermoerosion was inferred from lake sediments in the context of modern soil data from retrogressive thaw slumps (RTS). Magnetic susceptibility (MS), Ca:K, and Ca:Sr increased with depth in modern RTS soils and were higher on recently exposed than older slump surfaces. Peaks in bulk density, % CaCO3, Ca:K, Ca:Sr, and MS values in the sediments suggest at least 18 thermoerosion events in the Loon Lake watershed over the past 3,000 years. Charcoal analysis identifies 22 fires over the same period at this site. Temporal variability in these records suggests climate-driven responses of both thermoerosion and fire disturbance regimes, with fewer RTS episodes and fire events during the Little Ice Age than the Medieval Climate Anomaly. Moreover, RTS activity lagged behind catchment fires by 20-30 years (>90% confidence interval), implying that fires facilitated thermoerosion on decadal time scales, possibly because of prolonged active-layer deepening following fire and postfire proliferation of insulative shrub cover. These results highlight the potential for complex interactions between climate, vegetation, and tundra disturbance in response to ongoing warming.

  16. Landscape and climate change in the central Canadian Rockies during the 20. century

    Energy Technology Data Exchange (ETDEWEB)

    Luckman, B. H. [Western Ontario Univ., Dept. of Geography, London, ON (Canada)

    1998-12-31

    Selected evidence of environmental changes in the central Canadian Rocky Mountains region during the 20. century are reviewed. Climatic records show an annual mean temperature rise of 1.4 degrees C over the last 100 years. Greatest increases have been in winter temperatures (3.2 degrees C/century). Precipitation changes also varied considerably with generally highest flows in the mid-20. century. A tree-ring based temperature reconstruction indicates summer and spring temperatures in the last half of the 20. century higher than any equivalent period over the last 900 years. Glaciers are estimated to have lost 25 per cent of their area in the last 100 years. It is believed that they are smaller now than at any time in the last 3000 years. These two lines of evidence indicate that the climate of the late 20. century is exceptional when viewed in the context of the last one to three millenia. Changes in vegetation also have been observed at the upper treeline ecotone in response to climate changes over the last century, but the most significant change in the last 100 years is the transformation of the character of the montane forest due to reduction in forest fire frequency, resulting from an active policy of fire suppression. 81 refs., 4 tabs., 7 figs.

  17. Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future

    Science.gov (United States)

    Miller, D.; Bradley, R. S.

    2017-12-01

    One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.

  18. Medium-long term soil resilience against different disturbances: wildfires, silvicultural treatments and climate change

    Science.gov (United States)

    Hedo de Santiago, Javier; Borja, Manuel Esteban Lucas; de las Heras, Jorge

    2016-04-01

    Soils of semiarid Mediterranean forest ecosystems are very fragile and sensitive to changes due to different anthropogenic and natural disturbances. The increasing vulnerability of semiarid lands within this world framework has generated growing awareness in the field of research, with highly intensified study into soils properties. One of the main problems of Mediterranean forests is wildfire disturbance. Fire should be considered more an ecological factor but, in contrast to the role of fire, it is now a closely related factor to human action. On the other hand, to improve the recovery of forest communities after fire, silvicultural treatments are needed and, for that matter, another disturbance is added to the ecosystem. By last, climate change is also affecting the fire regime increasing fire frequency and burned area, enhancing the destructiveness to Mediterranean ecosystems. After all of these three disturbances, changes in vegetation dynamics and soil properties are expected to occur due to the plant-soil feedback. Soil plays an essential role in the forest ecosystem's fertility and stability and specifically soil microorganisms, which accomplish reactions to release soil nutrients for vegetation development, for that is essential to enlarge knowledge about soil properties resilience in semiarid forest ecosystems. Physico-chemical and microbiological soil properties, and enzyme activities have been studied in two Aleppo pine forest stands that have suffered three disturbances: 1) a wildfire event, 2) silvicultural treatments (thinning) and 3) an artificial drought (simulating climate change) and results showed that soil recovered after 15 years. Final results showed that soils have been recovered from the three disturbances at the medium-long term.

  19. Climatic and ecological future of the Amazon: likelihood and causes of change

    Science.gov (United States)

    Cook, B.; Zeng, N.; Yoon, J.-H.

    2010-05-01

    Some recent climate modeling results suggested a possible dieback of the Amazon rainforest under future climate change, a prediction that raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable as rainfall is projected to increase in nearly all models. However, the periphery, notably the southern edge of the Amazon and further south in central Brazil, are in danger of drying out, driven by two main processes. Firstly, a decline in precipitation of 22% in the southern Amazon's dry season (May-September) reduces soil moisture, despite an increase in precipitation during the wet season, due to nonlinear responses in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season rainfall: (1) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure; (2) a stronger north-south tropical Atlantic sea surface temperature gradient, and to lesser degree a warmer eastern equatorial Pacific. Secondly, evaporation demand will increase due to the general warming, further reducing soil moisture. In terms of ecosystem response, higher maintenance cost and reduced productivity under warming may also have additional adverse impact. The drying corresponds to a lengthening of the dry season by 11 days. As a consequence, the median of the models projects a reduction of 20% in vegetation carbon stock in the southern Amazon, central Brazil, and parts of the Andean Mountains. Further, VEGAS predicts enhancement of fire risk by 10-15%. The increase in fire is primarily due to the reduction in soil moisture, and the decrease in dry season rainfall, which

  20. Assessing the likely impacts of climate change on infrastructure

    International Nuclear Information System (INIS)

    Holper, Paul; Nolan, Michael

    2007-01-01

    Full text: In 2005, the Victorian Government contracted CSIRO, Maunsell Australia and Phillips Fox to undertake an overview assessment of the likely impacts of climate change on the State's infrastructure, establish the categories of infrastructure most at risk and outline opportunities for adaptation responses. The Government released the assessment in May 2007. Climate change poses a significant risk to infrastructure and its owners, managers and long-term operators. The work was undertaken on the basis that it should not be assumed that future climate and its impacts will simply be an extension of what has been experienced in the past. Major infrastructure items have long useful life spans (20-100 years). A bridge built today is expected to still be in use in tens, if not hundreds, of years. This means that recognition of likely climate change impacts and appropriate adaptation measures should occur now. Recognition of the risks associated with climate change is a valuable first step towards better planning of new infrastructure investments and reducing potential damage to existing infrastructure.lnfrastructure types examined were water, power, telecommunications, transport and buildings. The climate change projections used in this report are based on CSIRO climate modelling, supported by findings from the Intergovernmental Panel on Climate Change. Climatic and other variables considered were temperature, rainfall, available moisture, humidity, winds, fire-weather frequency and intensity, solar radiation levels and sea-level rise. For each climate change variable identified, we described a worst-case impact for low and high climate change projections for the years 2030 and 2070. The assessment was made on the basis of 'business as usual' with no adaptation responses to climate change. The report also details the current governance structures associated with each infrastructure type. Overall, the report assessed the likely impact of climate change on

  1. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Hirschi

    2012-02-01

    Full Text Available As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella and fire blight (Erwinia amylovora are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern

  2. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  3. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  4. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    Science.gov (United States)

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  5. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  6. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  7. Gathering storm. The human cost of climate change

    International Nuclear Information System (INIS)

    Cowell, O.; Chang, I.

    2000-09-01

    Friends of the Earth International demonstrates the urgency of action needed to halt climate change (Part 1). Personal testimonies from survivors of Hurricane Mitch, the Mozambique floods and other events give a chilling insight of what may lie ahead for more of us in the future (Part 2). Extreme high-temperature events, droughts, floods, cyclones and storm surges with knock-on effects for ecosystems, fires, pest outbreaks, human health, our settlements and food security (Part 3). Part 4 looks at which countries are blocking action on climate change and proposes solutions for the way forward. Much deeper cuts in greenhouse gas emissions, based on an equitable sharing of the atmosphere, are needed if dangerous climate change is to be averted. Global protection will only happen when all parties at the climate summit acknowledge the real risks of climate change and their own responsibilities in improving the situation through emissions reductions. Industrialised countries must make much deeper cuts in their greenhouse gas emissions of as much as 80-90% to keep climate change within acceptable limits while allowing developing countries space to develop, Friends of the Earth International calls on governments to ensure that decisions taken at the CoP-6 in The Hague, Netherlands (1) Ensure that the Kyoto Protocol results in real and permanent emissions reductions through the development of renewable energy sources and energy efficiency measures; (2) Commit industrialised countries to achieving 80% of their Kyoto objective through emissions reductions at home; and (3) Enshrine principles of equity in the framework for emission reductions in the next and future commitment periods based on an equal per capita approach and ecological limits [nl

  8. Carbon sequestration in managed temperate coniferous forests under climate change

    Science.gov (United States)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  9. Living with climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Beltzner, K [ed.

    1976-03-01

    The effects of global warming on economies and societies are discussed. The history of past climate changes in North America is summarized, ranging from short period variations to changes over centuries and millenia. To aid in forecasting the effects of future climatic variation, historical episodes that have had well documented socio-economic effects are examined. These episodes include: the variability period of 1895-1905 characterized by cool climate, wet periods in the northwestern great plains, sustained drought in the Pacific northwest, extreme cold in the gulf states, and the Galveston flood; the midwestern drought of 1933-1937, characterized by drought on the great plains, very cold snowy winters, hot summers, and massive soil erosion; 1935-36, characterized by a very cold winter and a very hot summer; the Mexican drought of 1937-45, characterized by recurrent drought in Mexico; the variable period of 1950-1958, characterized by Pacific coast drought, drought and flood on the great plains, cold and warm winters and summers, wheat rust, coastal storms and forest fires; the Eastern urban drought of 1961-66 characterized by sustained cold drought in eastern North America; the sea ice period of 1964-65 and 1971-72, characterized by heavy sea ice; snowfall period of 1970-74 characterized by heavy winter snowfalls and a late, wet spring; and the global interdependence period of 1972 characterized by cold winters in Canada and USSR, drought in Asia, the Sahel, Australia, central America, floods in North Africa, high ocean surface temperatures off Peru, and unusually cold weather in the corn belt. 33 refs., 15 figs., 7 tabs.

  10. Climatic change in Germany. Development, consequences, risks and perspectives; Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, Guy [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Jacob, Daniela; Schuck-Zoeller, Susanne (eds.) [Helmholtz-Zentrum Geesthacht, Hamburg (Germany). Climate Service Center Germany

    2017-06-01

    The book on the climatic change in Germany includes contributions to the following issues: global climate projections and regional projections in Germany and Europe: observation of the climatic change in Central Europe, regional climate modeling, limits and challenges of the regional climate modeling; climatic change in Germany - regional features and extremes: temperature and heat waves, precipitation, wind and cyclones, sea-level increase, tides, storm floods and sea state, floods, definition uncertainties, draughts, forest fires, natural risks; consequences of the climatic change in Germany: air quality, health, biodiversity, water resources, biochemical cycles, agriculture, forestry, soils, personal and commercial transport, cities and urban regions, tourism, infrastructure, energy and water supplies, cost of the climatic change and economic consequences; overall risks and uncertainties: assessment of vulnerabilities, literature review, climatic change as risk enhancement in complex systems, overall risks and uncertainties, decision making under uncertainties in complex systems; integrated strategies for the adaptation to the climatic change: the climate resilient society - transformations and system changes, adaptation to the climatic change as new political field, options for adaptation strategies.

  11. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  12. Interactions of Climate Change, Air Pollution, and Human Health.

    Science.gov (United States)

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  13. Climate change and the future of natural disturbances in the central hardwood region

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Virginia H [ORNL; Hughes, M. Joseph [University of Tennessee (UT); Hayes, Daniel J [ORNL

    2015-01-01

    The spatial patterns and ecological processes of the southeastern upland hardwood forests have evolved to reflect past climatic conditions and natural disturbance regimes. Changes in climate can lead to disturbances that exceed their natural range of variation, and the impacts of these changes will depend on the vulnerability or resiliency of these ecosystems. Global Circulation Models generally project annual increases in temperature across the southeastern United States over the coming decades, but changes in precipitation are less consistent. Even more unclear is how climate change might affect future trends in the severity and frequency of natural disturbances, such as severe storms, fires, droughts, floods, and insect outbreaks. Here, we use a time-series satellite data record to map the spatial pattern and severity of broad classes of natural disturbances the southeast region. The data derived from this map allow analysis of regional-scale trends in natural and anthropogenic disturbances in the region over the last three decades. Throughout the region, between 5% and 25% of forest land is affected by some sort of disturbance each year since 1985. The time series reveals periodic droughts that themselves are widespread and of low severity but are associated with more localized, high-severity disturbances such as fire and insect outbreaks. The map also reveals extensive anthropogenic disturbance across the region in the form of forest conversion related to resource extraction and urban and residential development. We discuss how changes in climate and disturbance regimes might affect southeastern forests in the future via altering the exposure, sensitivity and adaptive capacity of these ecosystems. Changes in climate are highly likely to expose southeastern forests to more frequent and severe disturbances, but ultimately how vulnerable or resilient southeastern forests are to these changes will depend on their sensitivity and capacity to adapt to these novel

  14. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  15. Clean coal technologies and global climate change

    International Nuclear Information System (INIS)

    Long, R.S.

    1993-01-01

    The role for Clean Coal Technologies is discussed in the context of the global climate change debate. Global climate change is, of course as the name implies, a global issue. This clearly distinguishes this issue from acid rain or ozone non-attainment, which are regional in nature. Therefore, the issue requires a global perspective, one that looks at the issue not just from a US policy standpoint but from an international policy view. This includes the positions of other individual nations, trading blocks, common interest groups, and the evolving United Nations bureaucracy. It is assumed that as the global economy continues to grow, energy demand will also grow. With growth in economic activity and energy use, will come growth in worldwide greenhouse gas emissions, including growth in carbon dioxide (CO 2 ) emissions. Much of this growth will occur in developing economies which intend to fuel their growth with coal-fired power, especially China and India. Two basic premises which set out the boundaries of this topic are presented. First, there is the premise that global climate change is occurring, or is about to occur, and that governments must do something to mitigate the causes of climate change. Although this premise is highly rebuttable, and not based on scientific certainty, political science has driven it to the forefront of the debate. Second is the premise that advanced combustion CCTs, with their higher efficiencies, will result in lower CO 2 emissions, and hence lessen any contribution of greater coal use to potential global climate change. This promise is demonstrably true. This discussion focuses on recent and emerging public sector policy actions, which may in large part establish a new framework in which the private sector will find new challenges and new opportunities

  16. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  17. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    Science.gov (United States)

    Anthony L. Westerling; Monica G. Turner; Erica A. H. Smithwick; William H. Romme; Michael G. Ryan

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated...

  18. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement.

    Science.gov (United States)

    Tambo, Ernest; Duo-Quan, Wang; Zhou, Xiao-Nong

    2016-10-01

    China still depends on coal for more than 60% of its power despite big investments in the process of shifting to nuclear, solar and wind power renewable energy resources alignment with Paris climate change agreement (Paris CCA). Chinese government through the Communist Party Central Committee (CPCC) ascribes great importance and commitment to Paris CCA legacy and history landmark implementation at all levels. As the world's biggest carbon dioxide emitter, China has embarked on "SMART" pollution and climate changes programs and measures to reduce coal-fired power plants to less than 50% in the next five years include: new China model of energy policies commitment on CO2 and greenhouse gas emissions reductions to less than 20% non-fossil energy use by 2030 without undermining their economic growth, newly introduced electric vehicles transportation benefits, interactive and sustained air quality index (AQI) monitoring systems, decreasing reliance on fossil fuel economic activities, revision of energy price reforms and renewable energy to less energy efficient technologies development. Furthermore, ongoing CPCC improved environmental initiatives, implemented strict regulations and penalties on local companies and firms' pollution production management, massive infrastructures such as highways to reduce CO2 expansion of seven regional emissions trading markets and programs for CO2 emissions and other pollutants are being documented. Maximizing on the centralized nature of the China's government, implemented Chinese pollution, climate changes mitigation and adaptation initiatives, "SMART" strategies and credible measures are promising. A good and practical example is the interactive and dynamic website and database covering 367 Chinese cities and providing real time information on environmental and pollution emissions AQI. Also, water quality index (WQI), radiation and nuclear safety monitoring and management systems over time and space. These are ongoing Chinese

  19. MODIS NDVI Response Following Fires in Siberia

    Science.gov (United States)

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  20. The impacts of past climate change on terrestrial and aquatic ecosystems

    International Nuclear Information System (INIS)

    Bradshaw, R.H.W.; Anderson, N.J.

    2001-01-01

    The last two million years of global history have been dominated by the impacts of rapid climate change. This influence is not immediately obvious to most biologists whose observations rarely extend beyond a period of a few years, but becomes apparent when interpreting long-term data sets whether they be population studies or palaeoecological data. It is appropriate therefore to consider how terrestrial and aquatic ecosystems have responded to climate change during the Quaternary when speculating about response to future climatic developments. In this chapter we discuss and illustrate the complex interactions between climate and anthropogenic influence on terrestrial and aquatic ecosystems during the Holocene. Climate influences ecosystems both directly (e.g. physiological responses or lake thermal stratification) and indirectly (e.g. via fire frequency or catchment hydrology). Lake sediments can be used to study both past climatic change directly and the effects of past climatic variability. In this chapter we present summary examples of the influence of past climate change on terrestrial and aquatic ecosystems as well showing how lake sediment records can provide proxy records of past climate change. The geological record from the last 18 000 years documents large changes in terrestrial and aquatic ecosystems that are primarily driven by climatic change, but are modified by internal ecosystem processes. These changes are comparable in magnitude and rapidity to those predicted for the near future. Species at their distributional limits are particularly sensitive to climate change and contractions of range can be sudden in response to extreme climatic events such as the storm of December 1999 that damaged Picea trees far more than tree species that lay within their natural range limits. Palaeoecological records provide compelling evidence for direct climate forcing of aquatic and terrestrial ecosystems but importantly also permit comparative analyses of impacts

  1. Managing the unexpected in prescribed fire and fire use operations: a workshop on the High Reliability Organization

    Science.gov (United States)

    Paul (tech. ed.) Keller

    2004-01-01

    Fire management, and forest and rangeland fuels management, over the past century have altered the wildland fire situation dramatically, thus also altering the institutional approach to how to deal with the changing landscape. Also, climate change, extended drought, increased insect and disease outbreaks, and invasions of exotic plant species have added complications...

  2. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  3. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    OpenAIRE

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Climate change alone is unlikely to drive severe tropical forest degradation in the next few decades, but an alternative process associated with severe weather and forest fires is already operating in southeastern Amazonia. Recent droughts caused greatly elevated fire-induced tree mortality in a fire experiment and widespread regional forest fires that burned 5–12% of southeastern Amazon forests. These results suggest that feedbacks between fires and extreme climatic conditions could increase...

  4. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  5. Climate change and vulnerability of bull trout (Salvelinus confluentus ) in a fire-prone landscape

    Science.gov (United States)

    Jeffrey A. Falke; Rebecca L. Flitcroft; Jason B. Dunham; Kristina M. McNyset; Paul F. Hessburg; Gordon H. Reeves; C. Tara Marshall

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River...

  6. Temperate and boreal forest mega-fires: characteristics and challenges

    Science.gov (United States)

    Scott L. Stephens; Neil Burrows; Alexander Buyantuyev; Robert W. Gray; Robert E. Keane; Rick Kubian; Shirong Liu; Francisco Seijo; Lifu Shu; Kevin G. Tolhurst; Jan W. van Wagtendonk

    2014-01-01

    Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors - climate change, fire exclusion, and antecedent disturbance, collectively referred to as the "mega-fire triangle" - likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate...

  7. Adapt to more wildfire in western North American forests as climate changes.

    Science.gov (United States)

    Schoennagel, Tania; Balch, Jennifer K; Brenkert-Smith, Hannah; Dennison, Philip E; Harvey, Brian J; Krawchuk, Meg A; Mietkiewicz, Nathan; Morgan, Penelope; Moritz, Max A; Rasker, Ray; Turner, Monica G; Whitlock, Cathy

    2017-05-02

    Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland-urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are ( i ) recognizing that fuels reduction cannot alter regional wildfire trends; ( ii ) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; ( iii ) actively managing more wild and prescribed fires with a range of severities; and ( iv ) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland-urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.

  8. A hydroclimatic model of global fire patterns

    Science.gov (United States)

    Boer, Matthias

    2015-04-01

    (i.e. F_0.99 ) was explained by two terms of the climatic water balance: i) mean annual actual evapotranspiration (AET), which is a proxy for fuel productivity, and ii) mean annual water deficit (D=PET-AET, where PET is mean annual potential evapotranspiration), which is a measure of fuel drying potential. As expected, F_0.99 was close to zero in environments of low AET (e.g. deserts) or low D (e.g. wet forests), due to strong fuel productivity or fuel dryness constraints, and maximum for environments of intermediate AET and D (e.g. tropical savannas). The topography of the F_0.99 response surface was analysed to explore how the relative importance of fuel productivity and fuel dryness constraints varied with the climatic water balance, and geographically across the continents. Consistent with current understanding of global pyrogeography, the hydroclimatic fire model predicted that fire activity is mostly constrained by fuel productivity in arid environments with grassy fuels and by fuel dryness in humid environments with litter fuels derived from woody shrubs and trees. The model provides a simple, yet biophysically-based, approach to evaluating potential for incremental change in fire activity or transformational change in fire types under future climate conditions.

  9. Climate change and the Lower Fraser Valley. rev. ed.

    International Nuclear Information System (INIS)

    Taylor, E.; Langlois, D.

    2000-01-01

    The climatic changes that are expected to occur in British Columbia's Lower Fraser Valley over the next century were described in this report which included information about the science of climate change and the development of global climate models that provide estimates of global climate for the coming century. The confidence that scientists have in these models was reflected in the fact that most can simulate the important seasonal and geographical large scale features of the global climate, and that many of the large scale changes that are effected by greenhouse gas concentrations can be explained in terms of physical processes which operate around the world. The models also reproduce with reasonable accuracy the variations of climate such as the El Nino phenomena., the cooling due to the Mount Pinatubo eruption in 1991 and the global warming that occurred over the past 100 years. Three climate stations were analyzed in this study to assess the climate change of the Valley. Climatic change is influenced by increased concentrations of greenhouse gases in the atmosphere which in turn cause accelerated global warming. Scientists generally believe that the combustion of fossil fuels and other human activities are a major reason for the increased concentration of carbon dioxide. Plant respiration and the decomposition of organic matter releases 10 times more CO 2 than that released anthropogenically, but these releases are in balance with plant photosynthesis. The rate of warming in the Lower Fraser Valley is uncertain, but climate models suggest it could be about 3 to 4 degrees warming with wetter winters and drier summers by the end of the century. The Valley currently has mild temperatures and high precipitation because of its proximity to the Pacific Oceans and the surrounding mountains. Global warming can have an impact on sea levels along the coast, spring flooding, summer drought, coastal ecosystems, air quality, occurrences of forest fires, and recreation

  10. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  11. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  12. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model

    Directory of Open Access Journals (Sweden)

    John B. Kim

    2018-04-01

    Full Text Available Warming temperatures are projected to greatly alter many forests in the Pacific Northwest. MC2 is a dynamic global vegetation model, a climate-aware, process-based, and gridded vegetation model. We calibrated and ran MC2 simulations for the Blue Mountains Ecoregion, Oregon, USA, at 30 arc-second spatial resolution. We calibrated MC2 using the best available spatial datasets from land managers. We ran future simulations using climate projections from four global circulation models (GCM under representative concentration pathway 8.5. Under this scenario, forest productivity is projected to increase as the growing season lengthens, and fire occurrence is projected to increase steeply throughout the century, with burned area peaking early- to mid-century. Subalpine forests are projected to disappear, and the coniferous forests to contract by 32.8%. Large portions of the dry and mesic forests are projected to convert to woodlands, unless precipitation were to increase. Low levels of change are projected for the Umatilla National Forest consistently across the four GCM’s. For the Wallowa-Whitman and the Malheur National Forest, forest conversions are projected to vary more across the four GCM-based simulations, reflecting high levels of uncertainty arising from climate. For simulations based on three of the four GCMs, sharply increased fire activity results in decreases in forest carbon stocks by the mid-century, and the fire activity catalyzes widespread biome shift across the study area. We document the full cycle of a structured approach to calibrating and running MC2 for transparency and to serve as a template for applications of MC2. Keywords: Climate change, Regional change, Simulation, Calibration, Forests, Fire, Dynamic global vegetation model

  13. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China.

    Science.gov (United States)

    Zhang, Yuzhen; Liang, Shunlin

    2014-08-01

    The forests of northeastern China store nearly half of the country's total biomass carbon stocks. In this study, we investigated the changes in forest biomass by using satellite observations and found that a significant increase in forest biomass took place between 2001 and 2010. To determine the possible reasons for this change, several statistical methods were used to analyze the correlations between forest biomass dynamics and forest disturbances (i.e. fires, insect damage, logging, and afforestation and reforestation), climatic factors, and forest development. Results showed that forest development was the most important contributor to the increasing trend of forest biomass from 2001 to 2010, and climate controls were the secondary important factor. Among the four types of forest disturbance considered in this study, forest recovery from fires, and afforestation and reforestation during the past few decades played an important role in short-term biomass dynamics. This study provided observational evidence and valuable information for the relationships between forest biomass and climate as well as forest disturbances. © 2014 John Wiley & Sons Ltd.

  14. A project in two parts: Developing fire histories for the eastern U.S. and creating a climate-based continental fire frequency model to fill data gaps

    Science.gov (United States)

    Richard Guyette; Michael Stambaugh; Daniel. Dey

    2011-01-01

    Tree-ring dated fire scars provide long-term records of fire frequency, giving land managers valuable baseline information about the fire regimes that existed prior to Euro-American settlement. However, for the East, fire history data prove difficult to acquire because the generally moister climate of the region causes rapid decay of wood. In an endeavor to fill data...

  15. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  16. Permafrost Meta-Omics and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-29

    Permafrost (i.e., soil that has been frozen for at least 2 consecutive years) represents a habitat for microbial life at subzero temperatures (Gilichinsky et al. 2008). Approximately one quarter of the Earth’s surface is underlain by permafrost, which contains 25-50% of the total global soil carbon pool (Schuur et al. 2008, Tarnocai et al. 2009). This carbon is largely protected from microbial decomposition by reduced microbial activity in frozen conditions, but climate change is threatening to induce large-scale permafrost thaw thus exposing it to degradation. The resulting emissions of greenhouse gasses (GHGs) can produce a positive feedback loop and significantly amplify the effects of global warming. Increasing temperatures at high latitudes, changes in precipitation patterns, and frequent fire events have already initiated a widespread degradation of permafrost (Schuur et al. 2015).

  17. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA.

    Science.gov (United States)

    Swetnam, Thomas W; Farella, Joshua; Roos, Christopher I; Liebmann, Matthew J; Falk, Donald A; Allen, Craig D

    2016-06-05

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Authors.

  18. Holocene fire dynamics in Fennoscandia

    Science.gov (United States)

    Clear, Jennifer; Seppa, Heikki; Kuosmanen, Niina; Molinari, Chiara; Lehsten, Veiko; Allen, Katherine; Bradshaw, Richard

    2015-04-01

    Prescribed burning is advocated in Fennoscandia to promote regeneration and to encourage biodiversity. This method of forest management is based on the perception that fire was much more frequent in the recent past and over a century of active fire suppression has created a boreal forest ecosystem almost free of natural fire. The absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce) with the successive spruce dominated forest further reducing fire ignition potential. However, humans have altered the natural fire dynamics of Fennoscandia since the early- to mid-Holocene and disentangling the anthropogenic driven fire dynamics from the natural fire dynamics is challenging. Through palaeoecology and sedimentary charcoal deposits we are able to explore the Holocene spatial and temporal variability and changing drivers of fire and vegetation dynamics in Fennoscandia. At the local-scale, two forest hollow environments (history are compared to identify unique and mutual changes in disturbance history. Pollen derived quantitative reconstruction of vegetation at both the local- and regional-scale identifies local-scale disturbance dynamics and large-scale ecosystem response. Spatio-temporal heterogeneity and variability in biomass burning is explored throughout Fennoscandia and Denmark to identify the changing drives of fire dynamics throughout the Holocene. Palaeo-vegetation reconstructions are compared to process-based, climate driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Early-Holocene fire regimes in Fennoscandia are driven by natural climate variations and fuel availability. The establishment and spread of Norway spruce is driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. The expansion of spruce led to a step-wise reduction in regional biomass

  19. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    Science.gov (United States)

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  20. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  1. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  2. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  3. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  4. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  5. Transient ecotone response to climatic change - some conceptual and modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, R.P. (Pacific Northwest Research Station, Corvallis, OR (United States))

    1993-08-01

    Accurate prediction of the ecological impacts of climatic change is a pressing challenge to the science of ecology. The current state of the art for broad-scale estimates of change in biomes and ecotones between biomes is limited to equilibrium estimates of ecological change under some future equilibrium climate. Uncertainties in these estimates abound Ecotones between biomes have been suggested as sensitive areas of change that could be effectively modelled and monitored for future change. Ecotones are also important in influencing local and regional biodiversity patterns and ecological flows. The ecological processes that could affect change at ecotones and within biomes are discussed; they include internal ecosystem processes, and external abiotic processes. Drought followed by infestations and fire appears to be the most likely process that could mediate ecological change under a rapidly changing climate. The impacts would be apparent across all biomes. Specific predictions about the dynamics of ecotones can be made qualitatively. Under current conditions, the size of homogeneous patches is expected to be small at ecotones, but to enlarge with distance from the ecotone. Directional climatic change should promote a coalescence of patches on one side of the ecotone and increased fragmentation on the other side. Ecotones should begin to blur as viewed from a satellite only to re-form at some later date in a new location.

  6. Fire risk and adaptation strategies in Northern Eurasian forests

    Science.gov (United States)

    Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-04-01

    On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the

  7. The qualitative effects of climate change on health in France

    International Nuclear Information System (INIS)

    2008-04-01

    This report aims at giving a general basis for the possible effects of climate change within a context defined by data on possible climate change defined in collaboration with Meteo France. After a brief description of climate change in France, the authors describe the health consequences of different phenomena like: more frequent hotter days and nights and a lesser number of cold days and nights, heat waves and dryness, heavy precipitation events, increase of storm and hurricane activity, more frequent sea level rise. For each of these classes of consequences, they consider different more particular consequences, i.e. the increase of river and lake temperature and of sea surface temperature, increase of summer hours of sunshine, decrease of snow coverage duration, soft winters and early spring, decrease of frost, weak winds over longer periods, forest fire, decrease of river water level, decrease of ground waters, effects on microbial activities, floods, and so on. Then the author reports some observations made during the heat wave in France in 2003 (mortality, risk factors, interactions between temperature and air pollution, national planning) and in 2006

  8. Dynamics, patterns and causes of fires in Northwestern Amazonia.

    Science.gov (United States)

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.

  9. Climate change and fire regimes in the Sierra de Manantlan, Mexico

    Science.gov (United States)

    Brooke A. Cassell; Ernesto Alvarado; Emily Heyerdahl; Diego Perez-Salicrup; Enrique Jardel-Pelaez

    2010-01-01

    Fire has been attributed as one of the most influential factors in vegetation community and succession in the Sierra de Manantlán Biosphere Reserve in Jalisco and Colima, México. A mosaic of low, mixed and high severity fire regimes characterizes the landscape with ecosystems ranging from mesophyllous mountain forest to higher elevation pine and oak forest. Research...

  10. The effects of wildfire on mortality and resources for an arboreal marsupial: resilience to fire events but susceptibility to fire regime change.

    Directory of Open Access Journals (Sweden)

    Sam C Banks

    Full Text Available BACKGROUND: Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. METHODOLOGY/PRINCIPAL FINDINGS: We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. CONCLUSIONS/SIGNIFICANCE: Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological

  11. The Effects of Wildfire on Mortality and Resources for an Arboreal Marsupial: Resilience to Fire Events but Susceptibility to Fire Regime Change

    Science.gov (United States)

    Banks, Sam C.; Knight, Emma J.; McBurney, Lachlan; Blair, David; Lindenmayer, David B.

    2011-01-01

    Background Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. Methodology/Principal Findings We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. Conclusions/Significance Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous

  12. A Governing Framework for Climate Change Adaptation in the Built Environment

    Directory of Open Access Journals (Sweden)

    Daniel A. Mazmanian

    2013-12-01

    Full Text Available Developing an approach to governing adaptation to climate change is severely hampered by the dictatorship of the present when the needs of future generations are inadequately represented in current policy making. We posit this problem as a function of the attributes of adaptation policy making, including deep uncertainty and nonstationarity, where past observations are not reliable predictors of future outcomes. Our research links organizational decision-making attributes with adaptation decision making and identifies cases in which adaptation actions cause spillovers, free riding, and distributional impacts. We develop a governing framework for adaptation that we believe will enable policy, planning, and major long-term development decisions to be made appropriately at all levels of government in the face of the deep uncertainty and nonstationarity caused by climate change. Our framework requires that approval of projects with an expected life span of 30 years or more in the built environment include minimum building standards that integrate forecasted climate change impacts from the Intergovernmental Panel on Climate Change (IPCC intermediate scenario. The intermediate IPCC scenario must be downscaled to include local or regional temperature, water availability, sea level rise, susceptibility to forest fires, and human habitation impacts to minimize climate-change risks to the built environment. The minimum standard is systematically updated every six years to facilitate learning by formal and informal organizations. As a minimum standard, the governance framework allows jurisdictions to take stronger actions to increase their climate resilience and thus maintain system flexibility.

  13. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  14. Impending sources of energy to replace fire wood in semi arid climatic zones: A case study in Ethiopia

    Directory of Open Access Journals (Sweden)

    Mihret Dananto Ulsido

    2013-06-01

    Full Text Available The present study paper shows an alternative source of energy that can decrease the extensive use of fire wood in Ethiopia. The country’s entire rural area and significant part of urban population is completely dependent on fire wood as a source of energy. This practice takes its own toll, the forest is on the verge of being wiped out and as a result a clear change of climate and loss of natural biodiversity resources is visible. Fire wood is not the only source of energy available in the country. In this paper, based on their low cost, construction material availability and the required unskilled labor it is shown that biogas and solar energy are potentially feasible source of energy to replace firewood for cooking.

  15. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  16. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    Science.gov (United States)

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  17. Bird communities following high-severity fire: Response to single and repeat fires in a mixed-evergreen forest, Oregon, USA

    Science.gov (United States)

    Joseph B. Fontaine; Daniel C. Donato; W. Douglas Robinson; Beverly E. Law; J. Boone Kauffman

    2009-01-01

    Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in...

  18. An analysis of wildfire frequency and burned area relationships with human pressure and climate gradients in the context of fire regime

    Science.gov (United States)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    Understanding fire regime is a crucial step towards achieving a better knowledge of the wildfire phenomenon. This study proposes a method for the analysis of fire regime based on multidimensional scatterplots (MDS). MDS are a visual approach that allows direct comparison among several variables and fire regime features so that we are able to unravel spatial patterns and relationships within the region of analysis. Our analysis is conducted in Spain, one of the most fire-affected areas within the Mediterranean region. Specifically, the Spanish territory has been split into three regions - Northwest, Hinterland and Mediterranean - considered as representative fire regime zones according to MAGRAMA (Spanish Ministry of Agriculture, Environment and Food). The main goal is to identify key relationships between fire frequency and burnt area, two of the most common fire regime features, with socioeconomic activity and climate. In this way we will be able to better characterize fire activity within each fire region. Fire data along the period 1974-2010 was retrieved from the General Statistics Forest Fires database (EGIF). Specifically, fire frequency and burnt area size was examined for each region and fire season (summer and winter). Socioeconomic activity was defined in terms of human pressure on wildlands, i.e. the presence and intensity of anthropogenic activity near wildland or forest areas. Human pressure was built from GIS spatial information about land use (wildland-agriculture and wildland-urban interface) and demographic potential. Climate variables (average maximum temperature and annual precipitation) were extracted from MOTEDAS (Monthly Temperature Dataset of Spain) and MOPREDAS (Monthly Precipitation Dataset of Spain) datasets and later reclassified into ten categories. All these data were resampled to fit the 10x10 Km grid used as spatial reference for fire data. Climate and socioeconomic variables were then explored by means of MDS to find the extent to

  19. Wildland fire emissions, carbon, and climate: U.S. emissions inventories

    Science.gov (United States)

    Narasimhan K. Larkin; Sean M. Raffuse; Tara M. Strand

    2014-01-01

    Emissions from wildland fire are both highly variable and highly uncertain over a wide range of temporal and spatial scales. Wildland fire emissions change considerably due to fluctuations from year to year with overall fire season severity, from season to season as different regions pass in and out of wildfire and prescribed fire periods, and from day to day as...

  20. The climatic change. El cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Redondo, A; Rodriguez Eustaquio, A; Sanchez y Llorente, J M; Luis y Hernandez, S; Panero Santos, C; Gomez Cubero, J A; Arias-Camison Hernandez, J C

    1994-01-01

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  1. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    Science.gov (United States)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire

  2. Exploring eco-hydrological consequences of the Amazonian ecosystems under climate and land-use changes in the 21st century

    Science.gov (United States)

    Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.

    2012-12-01

    Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.

  3. A framework for developing safe and effective large-fire response in a new fire management paradigm

    Science.gov (United States)

    Christopher J. Dunn; Matthew P. Thompson; David E. Calkin

    2017-01-01

    The impacts of wildfires have increased in recent decades because of historical forest and fire management, a rapidly changing climate, and an increasingly populated wildland urban interface. This increasingly complex fire environment highlights the importance of developing robust tools to support risk-informed decision making. While tools have been developed to aid...

  4. Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA

    Directory of Open Access Journals (Sweden)

    Becky K. Kerns

    2018-04-01

    Full Text Available We used autecological, paleoecological, and modeling information to explore the potential effects of climate change on vegetation in the Blue Mountains ecoregion, Oregon (USA. Although uncertainty exists about the exact nature of future vegetation change, we infer that the following are likely to occur by the end of the century: (1 dominance of ponderosa pine and sagebrush will increase in many locations, (2 the forest-steppe ecotone will move upward in latitude and elevation, (3 ponderosa pine will be distributed at higher elevations, (4 subalpine and alpine systems will be replaced by grass species, pine, and Douglas-fir, (5 moist forest types may increase under wetter scenarios, (6 the distribution and abundance of juniper woodlands may decrease if the frequency and extent of wildfire increase, and (7 grasslands and shrublands will increase at lower elevations. Tree growth in energy-limited landscapes (high elevations, north aspects will increase as the climate warms and snowpack decreases, whereas tree growth in water-limited landscapes (low elevations, south aspects will decrease. Ecological disturbances, including wildfire, insect outbreaks, and non-native species, which are expected to increase in a warmer climate, will affect species distribution, tree age, and vegetation structure, facilitating transitions to new combinations of species and vegetation patterns. In dry forests where fire has not occurred for several decades, crown fires may result in high tree mortality, and the interaction of multiple disturbances and stressors will probably exacerbate stress complexes. Increased disturbance will favor species with physiological and phenological traits that allow them to tolerate frequent disturbance. Keywords: Climate change, Disturbance, Vegetation, Wildfire

  5. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  6. A review of the relationships between drought and forest fire in the United States.

    Science.gov (United States)

    Littell, Jeremy S; Peterson, David L; Riley, Karin L; Liu, Yongquiang; Luce, Charles H

    2016-07-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate - including short- and long-term droughts - are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Climate change and wildfire effects in aridland riparian ecosystems: An examination of current and future conditions

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch

    2017-01-01

    Aridland riparian ecosystems are limited, the climate is changing, and further hydrological change is likely in the American Southwest. To protect riparian ecosystems and organisms, we need to understand how they are affected by disturbance processes and stressors such as fire, drought, and non-native plant invasions. Riparian vegetation is critically important as...

  8. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  9. Fire in the Earth System: Bridging data and modeling research

    Science.gov (United States)

    Hantson, Srijn; Kloster, Silvia; Coughlan, Michael; Daniau, Anne-Laure; Vanniere, Boris; Bruecher, Tim; Kehrwald, Natalie; Magi, Brian I.

    2016-01-01

    Significant changes in wildfire occurrence, extent, and severity in areas such as western North America and Indonesia in 2015 have made the issue of fire increasingly salient in both the public and scientific spheres. Biomass combustion rapidly transforms land cover, smoke pours into the atmosphere, radiative heat from fires initiates dramatic pyrocumulus clouds, and the repeated ecological and atmospheric effects of fire can even impact regional and global climate. Furthermore, fires have a significant impact on human health, livelihoods, and social and economic systems.Modeling and databased methods to understand fire have rapidly coevolved over the past decade. Satellite and ground-based data about present-day fire are widely available for applications in research and fire management. Fire modeling has developed in part because of the evolution in vegetation and Earth system modeling efforts, but parameterizations and validation are largely focused on the present day because of the availability of satellite data. Charcoal deposits in sediment cores have emerged as a powerful method to evaluate trends in biomass burning extending back to the Last Glacial Maximum and beyond, and these records provide a context for present-day fire. The Global Charcoal Database version 3 compiled about 700 charcoal records and more than 1,000 records are expected for the future version 4. Together, these advances offer a pathway to explore how the strengths of fire data and fire modeling could address the weaknesses in the overall understanding of human-climate–fire linkages.A community of researchers studying fire in the Earth system with individual expertise that included paleoecology, paleoclimatology, modern ecology, archaeology, climate, and Earth system modeling, statistics, geography, biogeochemistry, and atmospheric science met at an intensive workshop in Massachusetts to explore new research directions and initiate new collaborations. Research themes, which emerged from

  10. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  11. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  12. The role of Canada's national parks in a changed climate

    International Nuclear Information System (INIS)

    Lopoukhine, N.

    1991-01-01

    There is a requirement to manage national parks for completeness or wholeness, to maintain a functional ecosystem with all its parts, including processes, and to maintain biological diversity. Climate change has the potential to affect vegetation distribution, and will not merely manifest itself as a change in zones, but will be characterized by a flora with new dominants. Canadian national parks within the Prairie provinces are on or near ecotones, the transition from forest to tundra and grasslands. Forest fire frequency and severity is likely to increase, with the potential of transforming the boreal forest into remnant units. A flexible national system of designating areas must be devised to provide protection for the ephemeral biological systems which will be transformed and moved in response to climatic change. The adoption of adaptive management is critical, and should include monitoring, communication, protection through networks, and park service leadership. Benign neglect management must be replaced with management for wilderness. 15 refs

  13. Differential Responses of Neotropical Mountain Forests to Climate Change during the Last Millenium

    Science.gov (United States)

    Figueroa-Rangel, B. L.; Olvera Vargas, M.

    2013-05-01

    The long-term perspective in the conservation of mountain ecosystems using palaeoecological and paleoclimatological techniques are providing with crucial information for the understanding of the temporal range and variability of ecological pattern and processes. This perception is contributing with means to anticipate future conditions of these ecosystems, especially their response to climate change. Neotropical mountain forests, created by a particular geological and climatic history in the Americas, represent one of the most distinctive ecosystems in the tropics which are constantly subject to disturbances included climate change. Mexico due to its geographical location between the convergence of temperate and tropical elements, its diverse physiography and climatic heterogeneity, contains neotropical ecosystems with high biodiversity and endemicity whose structure and taxonomical composition have changed along centurial to millennial scales. Different neotropical forests expand along the mountain chains of Mexico with particular responses along spatial and temporal scales. Therefore in order to capture these scales at fine resolution, sedimentary sequences from forest hollows were retrieved from three forest at different altitudes within 10 km; Pine forest (PF), Transitional forest (TF) and Cloud forest (CF). Ordination techniques were used to relate changes in vegetation with the environment every ~60 years. The three forests experience the effect of the dry stage ~AD 800-1200 related to the Medieval Warm Period reported for several regions of the world. CF contracted, PF expanded while the TF evolved from CF to a community dominated by dry-resistant epiphytes. Dry periods in PF and TF overlapped with the increase in fire occurrences while a dissimilar pattern took place in CF. Maize, Asteraceae and Poaceae were higher during dry intervals while epiphytes decreased. A humid period ~1200-1450 AD was associated with an expansion and a high taxa turnover in CF

  14. Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance

    Science.gov (United States)

    Dintwe, Kebonye; Okin, Gregory S.; Xue, Yongkang

    2017-06-01

    Surface albedo is a critical parameter that controls surface energy balance. In dryland ecosystems, fires play a significant role in decreasing surface albedo, resulting in positive radiative forcing. Here we investigate the long-term effect of fire on surface albedo. We devised a method to calculate short-, medium-, and long-term effect of fire-induced radiative forcing and their relative effects on energy balance. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data in our analysis, covering different vegetation classes in sub-Saharan Africa (SSA). Our analysis indicated that mean short-term fire-induced albedo change in SSA was -0.022, -0.035, and -0.041 for savannas, shrubland, and grasslands, respectively. At regional scale, mean fire-induced albedo change in savannas was -0.018 and -0.024 for northern sub-Saharan of Africa and the southern hemisphere Africa, respectively. The short-term mean fire-induced radiative forcing in burned areas in sub-Saharan Africa (SSA) was 5.41 W m-2, which contributed continental and global radiative forcings of 0.25 and 0.058 W m-2, respectively. The impact of fire in surface albedo has long-lasting effects that varies with vegetation type. The long-term energetic effects of fire-induced albedo change and associated radiative forcing were, on average, more than 19 times greater across SSA than the short-term effects, suggesting that fires exerted far more radiative forcing than previously thought. Taking into account the actual duration of fire's effect on surface albedo, we conclude that the contribution of SSA fires, globally and throughout the year, is 0.12 W m-2. These findings provide crucial information on possible impact of fire on regional climate variability.

  15. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    Science.gov (United States)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    example, in certain arid ecosystems of southern California, elevated nitrogen has promoted invasions of annual non-native grasses. At the same time, a period of above-normal precipitation years has exacerbated the grass invasions. Increased grass cover has altered the hydrologic cycle of these areas and increased fire risk, ultimately leading to conversion of the ecosystem from diverse shrublands to less diverse grasslands. In addition to empirical studies, modeling can be used to simulate climate change and nitrogen interactions. The ForSAFE-VEG model, for example, has been used to examine climate change and nitrogen interactions in Rocky Mountain alpine vegetation communities. Results from both empirical studies and modeling indicate that nitrogen and climate change interact to drive losses in biodiversity greater than those caused by either stressor alone. Reducing inputs of anthropogenic reactive nitrogen may be an effective mitigation strategy for protecting biodiversity in the face of climate change.

  16. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  17. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  18. Smouldering Fires in the Earth System

    Science.gov (United States)

    Rein, G.

    2012-04-01

    Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and

  19. The effects of past climate variability on fire and vegetation in the cerrãdo savanna ecosystem of the Huanchaca Mesetta, Noel Kempff Mercado National Park, NE Bolivia

    Science.gov (United States)

    Maezumi, S. Y.; Power, M. J.; Mayle, F. E.; McLauchlan, K.; Iriarte, J.

    2015-01-01

    Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are predicted to increase by ~ 3 °C coupled with a precipitation decrease of ~ 20%. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500 year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed for phytoliths, stable isotopes and charcoal. A non-analogue, cold-adapted vegetation community dominated the Late Glacial-Early Holocene period (14 500-9000 ka), that included trees and C3 Pooideae and C4 Panicoideae grasses. The Late Glacial vegetation was fire sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the Early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly fire-dependent during the Middle Holocene with the expansion of C4 fire adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels, and (2) decreased frequency and duration of surazos leading to increased temperature minima. Natural (soil, climate, fire) drivers rather

  20. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  1. Reconstruction of fire history of the Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Sae-lim, J.; Mann, P. J.; Russell, J. M.; Natali, S.; Vachula, R. S.; Schade, J. D.; Holmes, R. M.

    2017-12-01

    Wildfire is an important disturbance in Arctic ecosystems and can cause abrupt perturbations in global carbon cycling and atmospheric chemistry. Over the next few decades, arctic fire frequency, intensity and extent is projected to increase due to anthropogenic climate change, as regional air temperatures are increasing at more than twice the global average. In order to more accurately predict the anthropogenic impacts of climate change on tundra fire regimes, it is critical to have detailed knowledge of the natural frequency and extent of past wildfires. However, reliable historical records only extend back a few hundred years, whereas climatic shifts have affected fire regimes for thousands of years. In this work we analyzed a lake sediment core collected from the Yukon-Kuskokwim (YK) Delta, Alaska, a region that has recently experienced fire and is predicted to see increasing fire frequency in the near future. Our primary lake site is situated adjacent to recent burned areas, providing a `calibration' point and also attesting to the sensitivity of the sites. We used charcoal counts alongside geochemical measurements (C:N, 13C, 15N, 210Pb, X-ray fluorescence analyses of elemental chemistry) to reconstruct past fire history and ecosystem responses during the late Holocene. Average C (%C) and N concentrations (%N) in the core were 8.10 ±0.74% and 0.48 ±0.05%, resulting in C:N ratios of 16.80 ±0.74. The values are generally stable, with no obvious trend in C, N or C:N with depth; however, fluctuations in sediment composition in other nearby lake sediment cores possibly suggests shifts in lake conditions (oxic, anoxic) over time that might result from paleofires. This study provides a baseline for estimated fire return intervals in the YK Delta that will support more accurate projections of tundra fire frequencies under a changing climate.

  2. Modeling dynamics of western juniper under climate change in a semiarid ecosystem

    Science.gov (United States)

    Shrestha, R.; Glenn, N. F.; Flores, A. N.

    2013-12-01

    Modeling future vegetation dynamics in response to climate change and disturbances such as fire relies heavily on model parameterization. Fine-scale field-based measurements can provide the necessary parameters for constraining models at a larger scale. But the time- and labor-intensive nature of field-based data collection leads to sparse sampling and significant spatial uncertainties in retrieved parameters. In this study we quantify the fine-scale carbon dynamics and uncertainty of juniper woodland in the Reynolds Creek Experimental Watershed (RCEW) in southern Idaho, which is a proposed critical zone observatory (CZO) site for soil carbon processes. We leverage field-measured vegetation data along with airborne lidar and timeseries Landsat imagery to initialize a state-and-transition model (VDDT) and a process-based fire-model (FlamMap) to examine the vegetation dynamics in response to stochastic fire events and climate change. We utilize recently developed and novel techniques to measure biomass and canopy characteristics of western juniper at the individual tree scale using terrestrial and airborne laser scanning techniques in RCEW. These fine-scale data are upscaled across the watershed for the VDDT and FlamMap models. The results will immediately improve our understanding of fine-scale dynamics and carbon stocks and fluxes of woody vegetation in a semi-arid ecosystem. Moreover, quantification of uncertainty will also provide a basis for generating ensembles of spatially-explicit alternative scenarios to guide future land management decisions in the region.

  3. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    Science.gov (United States)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  4. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  5. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  6. Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6

    Science.gov (United States)

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.

    2018-01-01

    The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.

  7. Integrating Fire, Climate, and Societal Factors into Decision Support for Strategic Planning in Wildland Fire Management

    Science.gov (United States)

    Barbara J. Morehouse; Gregg Garfin; Timothy Brown; Thomas W. Swetnam

    2006-01-01

    An El Niño winter in 1998-99, followed by a strong La Niña winter in 1999- 2000, set the stage for potentially large wildfires in the southwestern, southeastern, and northwestern forests of the United States. Researchers at the University of Arizona organized a three-day workshop to discuss the relationship between synoptic scale climate conditions and wildland fire...

  8. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    second cross-cutting topic is the rapidly advancing field of climate adaptation, where there has been significant progress in developing the conceptual framework, planning approaches, and strategies for safeguarding biodiversity and other ecological resources. At the same time, ecosystem-based adaptation is becoming more prominent as a way to utilize ecosystem services to help human systems adapt to climate change. In this summary, we present key findings of the technical input, focusing on themes that can be found throughout the report. Thus, this summary takes a more integrated look at the question of how climate change is affecting our ecological resources, the implications for humans, and possible response strategies. This integrated approach better reflects the impacts of climate in the real world, where changes in ecosystem structure or function will alter the viability of different species and the efficacy of ecosystem services. Likewise, adaptation to climate change will simultaneously address a range of conservation goals. Case studies are used to illustrate this complete picture throughout the report; a snapshot of one case study, 2011 Las Conchas, New Mexico Fire, is included in this summary.

  9. Are erosion regimes in SE Australian forests responding to anthropogenic climate change?

    Science.gov (United States)

    Nyman, P.; Rutherfurd, I.; Lane, P. N. J.; Sheridan, G. J.

    2017-12-01

    In southeast Australia a series of exceptional climate events over the last decade have resulted in widespread debris flow activity across the region. The Millennium Drought (1996-2010), extreme fire-weather and record breaking rainfall in the La Nina year of 2011 have all contributed to an intensification of processes such as runoff production and mass failures that lead to debris flows. Debris flows in landmark locations such as the Grampians and Wilsons Promontory National Parks in 2011 were triggered by mass failure as a result of large volumes of intense summer rainfall. Runoff generated debris flows in burned areas have been occurring regularly and in large numbers along the East Coast Dividing Range from the Warrumbungle Mountains (New South Wales) in the north to Kinglake (Victoria) in the south. In northeast Victoria debris flows have been delivering sediment to the Ovens River following wildfires in 2003, 2007, 2009 and in 2013. The impact of these erosion events on infrastructure, water quality and aquatic ecosystems are considerable and important questions are emerging around i) how frequently events have occurred in the past, ii) the importance of fire as a geomorphic agent, and iii) the effects of climate change on erosion regimes. In this paper we investigate the conditions under which these debris flows occurred, and examine the underlying climatic events in context of historical records. Using data on rainfall distributions and fire history dating back to the 1960s we quantify the frequency with which catchments are primed for extreme erosion events. With these data we begin to speculate on whether or not current catchment conditions (e.g. soil depths, colluvial storage and accumulation rate) is consistent with the erosion regimes we observe. The broader aim of our research is to quantify debris flow thresholds using geophysical response models and use these models to determine the sensitivity of debris flow frequency to climatic forcing. In the

  10. Climate and human influences on historical fire regimes (AD 1400-1900) in the eastern Great Basin (USA)

    Science.gov (United States)

    Stanley G. Kitchen

    2015-01-01

    High fire activity in western North America is associated with drought. Drought and fire prevail under negative El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) phases in the Southwest and with positive phases in the Northwest. Here, I infer climate effects on historic fire patterns in the geographically intermediate, eastern Great...

  11. Overview of different aspects of climate change effects on soils

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  12. A geochemical record of polycyclic aromatic hydrocarbons (PAHs) during the late Paleozoic Ice Age: The relationship between atmospheric pCO2, climate and fire.

    Science.gov (United States)

    Hren, M. T.; Harris, G.; Montanez, I. P.; DiMichele, W.; Eley, Y.; White, J. D.; Wilson, J. P.; McElwain, J.; Poulsen, C. J.

    2017-12-01

    The late Paleozoic Ice Age (LPIA) represents a dynamic period of widespread glacial/interglacial cycling as the earth underwent a major transition from an icehouse to greenhouse climate. During this transition period, pCO2 is shown to have varied by several hundred ppm and within the predicted range for anthropogenic change. Glacial/interglacial changes in atmospheric pCO2 during this time are associated with restructuring of tropical forests and carbon cycle dynamics. At present however, there is considerable debate over the potential hydrologic and fire-frequency feedbacks associated with this climatic variability. Polycyclic aromatic hydrocarbons (PAHs) are produced from the incomplete combustion of organic matter and are shown to be preserved over hundreds of millions of years. Thus, these organic compounds provide a potential record of the feedbacks between global biogeochemical systems and fire. We analyzed sedimentary organic matter from the Illinois Basin spanning the late Carboniferous glacial-interglacial cycles to assess the evolution of fire during this period. Our data show a decrease in the overall abundance of high molecular weight PAHs (HMW) from 312 to 304 Myr with significant variability that is coincident with the general timing of pCO2 cycling. Decreasing PAH abundance is also coincident with a proposed long-term change in pO2 and may reflect the influence of atmospheric oxygen in regulating fire occurrence and hydrologic cycling in tropical ecosystems in the late Carboniferous.

  13. The human dimension of fire regimes on Earth.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-12-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  14. The human dimension of fire regimes on Earth

    Science.gov (United States)

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  15. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography

    DEFF Research Database (Denmark)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten

    2015-01-01

    model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models...

  16. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  17. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    OpenAIRE

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbanc...

  18. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1

    Directory of Open Access Journals (Sweden)

    M. Forkel

    2017-12-01

    Full Text Available Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1. SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with

  19. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    Science.gov (United States)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data

  20. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  1. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  2. Current and future fire regimes and their influence on natural vegetation in Ethiopia

    DEFF Research Database (Denmark)

    van Breugel, Paulo; Friis, Ib; Demissew, Sebsebe

    2016-01-01

    vegetation types. The effect of climate change varies considerably between climate change models and scenarios, but as general trend expansions of moist Afromontane forest and Combretum–Terminalia woodlands were predicted. Fire-prone areas were also predicted to increase, and including this factor...... in vegetation distribution models resulted in stronger expansion of Combretum–Terminalia woodlands and a more limited increase of moist Afromontane forests. These results underline the importance of fire as a regulating factor of vegetation distribution patterns, and how fire needs to be factored into predict......Fire is a major factor shaping the distribution of vegetation types. In this study, we used a recent high resolution map of potential natural vegetation (PNV) types and MODIS fire products to model and investigate the importance of fire as driver of vegetation distribution patterns in Ethiopia. We...

  3. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  4. EDITORIAL: Ongoing climatic change in Northern Eurasia: justification for expedient research

    Science.gov (United States)

    Groisman, Pavel; Soja, Amber J.

    2009-12-01

    A brief overview of the ongoing climatic and environmental changes in Northern Eurasia serves as an editorial introduction to this, the second, special Northern Eurasia Earth Science Partnership Initiative (NEESPI) focus issue of Environmental Research Letters. Climatic changes in Northern Eurasia over the last hundred years are reflected in numerous atmospheric and terrestrial variables. Many of these are noticeably significant above the confidence level for 'weather' or other (fire regime, ecosystem change) noise and thus should be further investigated in order to adapt to their impacts. In this focus issue, we introduce assorted studies of different aspects of contemporary change in Northern Eurasia. Most of these have been presented at one of the NEESPI workshops (for more information see neespi.org) and/or American Geophysical Union and European Geosciences Union NEESPI open sessions during the past year. These studies are diverse, representing the diversity of climates and ecosystems across Northern Eurasia. Some of these are focused on smaller spatial scales and/or address only specific aspects of the global change implications across the subcontinent. But the feeling (and observational evidence) that these changes have already been quite rapid and can have global implications inspires us to bring this suite of papers to the readers' attention. See the PDF for the full text of the editorial. Focus on Climatic and Environmental Change in Northern Eurasia Contents Preface Northern Eurasia Earth Science Partnership Initiative Pavel Groisman and Amber J Soja Editorial Siberia integrated regional study: Multidisciplinary investigations of interrelation between Siberia environment dynamics and global climate change E P Gordov and E A Vaganov Studies of the energy and water cycles in Northern Eurasia Comparison and evaluation of gridded radiation products across northern Eurasia T J Troy and E F Wood Reanalysis data underestimate significant changes in growing

  5. Grand challenges in developing a predictive understanding of global fire dynamics

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Wiggins, E. B.; Andela, N.; Morton, D. C.; Veraverbeke, S.; van der Werf, G.

    2017-12-01

    High quality satellite observations of burned area and fire thermal anomalies over the past two decades have transformed our understanding of climate, ecosystem, and human controls on the spatial and temporal distribution of landscape fires. The satellite observations provide evidence for a rapid and widespread loss of fire from grassland and savanna ecosystems worldwide. Continued expansion of industrial agriculture suggests that observed declines in global burned area are likely to continue in future decades, with profound consequences for ecosystem function and the habitat of many endangered species. Satellite time series also highlight the importance of El Niño-Southern Oscillation and other climate modes as drivers of interannual variability. In many regions, lead times between climate indices and fire activity are considerable, enabling the development of early warning prediction systems for fire season severity. With the recent availability of high-resolution observations from Suomi NPP, Landsat 8, and Sentinel 2, the field of global fire ecology is poised to make even more significant breakthroughs over the next decade. With these new observations, it may be possible to reduce uncertainties in the spatial pattern of burned area by several fold. It is difficult to overstate the importance of these new data constraints for improving our understanding of fire impacts on human health and radiative forcing of climate change. A key research challenge in this context is to understand how the loss of global burned area will affect magnitude of the terrestrial carbon sink and trends in atmospheric composition. Advances in prognostic fire modeling will require new approaches linking agriculture with landscape fire dynamics. A critical need in this context is the development of predictive models of road networks and other drivers of land fragmentation, and a closer integration of fragmentation information with algorithms predicting fire spread. Concurrently, a better

  6. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada

    Science.gov (United States)

    Euskirchen, Eugénie S.; Bennett, A. P.; Breen, Amy L.; Genet, Helene; Lindgren, Michael A.; Kurkowski, Tom; McGuire, A. David; Rupp, T. Scott

    2016-01-01

    Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m−2 decade−1regionally) compared to the CCCMA (+1.3 W m−2 decade−1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (−0.2 to −0.3 W m−2 decade−1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m−2decade regionally in the ECHAM scenario compared to +0.76 W

  7. Modeling fire occurrence as a function of landscape

    Science.gov (United States)

    Loboda, T. V.; Carroll, M.; DiMiceli, C.

    2011-12-01

    area impacted by fire from the total available area within a given value of the Fire Occurrence Index (FOI) increased from 9.e-06 at FOI < 3 to 28.e-06 at 25 < FOI <= 28. Additionally, the model has revealed a new important relationship between fire occurrence, anthropogenic activity, and fire weather. Data analysis has demonstrated that human activity can alter the expected weather/fire occurrence relationships and result in considerable modifications of fire regimes contrary to the assumed ecological parameters. Specifically, between 2001 and 2009 over 50% of total fire impacted area burned during the low fire danger conditions (Canadian Fire Weather Index < 5). These findings and the FOM capabilities offer a new theoretical construct and an advanced tool for assessing the potential impacts of climate changes on fire regimes, particularly within landscapes which are impacted strongly by human activities. Future development of the FOM will focus on ingesting and internal downscaling of climate variables produced by General or Regional Circulation Models to develop scenarios of potential future change in fire occurrence under the influence of projected climate change at the appropriate regional or landscape scales.

  8. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    Science.gov (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  9. Multiplatform inversion of the 2013 Rim Fire smoke emissions using regional-scale modeling: important nocturnal fire activity, air quality, and climate impacts

    Science.gov (United States)

    Saide, P. E.; Peterson, D. A.; da Silva, A. M., Jr.; Ziemba, L. D.; Anderson, B.; Diskin, G. S.; Sachse, G. W.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Yokelson, R. J.; Toon, B.; Carmichael, G. R.

    2014-12-01

    Large wildfire events are increasingly recognized for their adverse effects on air quality and visibility, thus providing motivation for improving smoke emission estimates. The Rim Fire, one of the largest events in California's history, produced a large smoke plume that was sampled by the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) DC-8 aircraft with a full suite of in-situ and remote sensing measurements on 26-27 August 2013. We developed an inversion methodology which uses the WRF-Chem modeling system to constrain hourly fire emissions, using as initial estimates the NASA Quick Fire Emissions Dataset (QFED). This method differs from the commonly performed top-down estimates that constrain daily (or longer time scale) emissions. The inversion method is able to simultaneously improve the model fit to various SEAC4RS airborne measurements (e.g., organic aerosol, carbon monoxide (CO), aerosol extinction), ground based measurements (e.g., AERONET aerosol optical depth (AOD), CO), and satellite data (MODIS AOD) by modifying fire emissions and utilizing the information content of all these measurements. Preliminary results show that constrained emissions for a 6 day period following the largest fire growth are a factor 2-4 higher than the initial top-down estimates. Moreover, there is a tendency to increase nocturnal emissions by factors sometimes larger than 20, indicating that vigorous fire activity continued during the night. This deviation from a typical diurnal cycle is confirmed using geostationary satellite data. The constrained emissions also have a larger day-to-day variability than the initial emissions and correlate better to daily area burned estimates as observed by airborne infrared measurements (NIROPS). Experiments with the assimilation system show that performing the inversion using only satellite AOD data produces much smaller correction factors than when using all available data

  10. Relative effects of climate change and wildfires on stream temperatures: A simulation modeling approach in a Rocky Mountain watershed

    Science.gov (United States)

    Lisa Holsinger; Robert E. Keane; Daniel J. Isaak; Lisa Eby; Michael K. Young

    2014-01-01

    Freshwater ecosystems are warming globally from the direct effects of climate change on air temperature and hydrology and the indirect effects on near-stream vegetation. In fire-prone landscapes, vegetative change may be especially rapid and cause significant local stream temperature increases but the importance of these increases relative to broader changes associated...

  11. The effects of climate stability on northern temperate forests

    DEFF Research Database (Denmark)

    Ma, Ziyu

    2016-01-01

    a small subset of phylogenetic lineages. For current climate change, I examined the broad-scale dynamics of climate-sensitive boreal forest on a decadal time scale. Using global remote sensing data and machine learning, I tested for associations between spatial patterns of tree cover change with possible...... drivers, i.e., climate anomalies, permafrost, fire, and human activities from years 2000 to 2010. The results showed tree cover change links to fire prevalence and rising temperature in permafrost zones, suggesting impacts of permafrost thawing on large-scale tree cover dynamics in the boreal zone...

  12. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  13. Climate change and skin disease.

    Science.gov (United States)

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  14. The determinants of the cost of natural disasters: the role of climate change in France

    International Nuclear Information System (INIS)

    Peinturier, Cedric; Bonnet, Xavier; Nicklaus, Doris

    2014-05-01

    After having recalled the scientific context and some definitions, this report aims at proposing an overview of the state-of-the-art in the field of economy of natural risks and climate change in order to allow a better understanding of past events and of critical points for the next decades. It is in fact a synthesis of works performed by technical and economic experts. A first part, based on scientific works, explains the increase of costs of natural risks which has been noticed in the 21. century. It discusses the influence of climate change on this increase (modelling studies on clay movements, coastal risks, flooding, forest fires, wind effects, landslides and avalanches). It examines the possible consequences of climate change on natural hazards in France during the century. The last part examines the possibility to economically assess these potential future impacts

  15. The Empowerment Strategy for The Food Crop Farmers in Anticipating The Climate Change

    Directory of Open Access Journals (Sweden)

    Efriyani Sumastuti

    2015-12-01

    Full Text Available In Indonesia, the climate change and the global warming like changes in the pattern and distribution of the rainfall give impacts on agricultural production at large, especially in the food crops. These also cause droughts, floods, landslides, forest fires, rising temperatures in urban areas, and rising sea levels. The above impacts are felt by the farmers because those can lead to a decrease in production even the crop failure. This research aims to develop an empowerment strategy of the food crop farmers in anticipating the climate change in Central Java. The data used is the primary data obtained through in-depth interviews with key-person and the Focus Group Discussion (FGD. The Analysis Hierarchy Process (AHP is conducted to determine the program priorities and strate gies. The result of research shows that anticipating the climate change should be synergistically conducted in four aspects: human resources, technology, institutional and production, by involving various groups in the society. Various groups can be grouped into academics, businessmen / private sectors, government and community of food crop farmers / society.

  16. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    Perhaps one of the reasons we have so many climate change deniers in the United States is that to them climate change is not occurring. This is a valid claim about climate change deniers considering that the effects of climate change in the mid-latitudes are quite subtle as compared to those found in low-latitude and high-latitude regions. A mid-latitude classroom teacher is saddled with the challenge of enlightening students about our changing climate and empowering students to assist in making necessary lifestyle changes, all the while the students don't understand the urgency in doing so. Quality climate change data and resources from the Polar Regions and low latitudes, as well as connections to researchers from these regions help to bridge the understanding of our changing climate from the extreme latitudes to the mid-latitudes. Connecting science teachers with data, resources, and researchers is one way of ensuring our mid-latitude students understand the urgency in taking appropriate actions to adapt, mitigate, and show resilience. This presentation will highlight a few of the many impacts of an authentic research experience for teachers that not only provides teachers with data, resources, and researchers, but changes the way a science teacher teaches where the methods they use mirror the methods used by scientists. National projects like PolarTREC connect educators with the science of climate change as well as the reality of impacts of climate change. For example, research expeditions in the Arctic and in Antarctica connect teachers with the content and practices of climate change science preparing them to replicate their experiences with their students. A PolarTREC experience does not end with the close of the expedition. Teachers continue their connections with the program through their educator network, the integration of PolarTREC resources into their curriculums, and communications with their principal investigators either virtually or with school

  17. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  18. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change

    Science.gov (United States)

    Jin, Yufang; Goulden, Michael L.; Faivre, Nicolas; Veraverbeke, Sander; Sun, Fengpeng; Hall, Alex; Hand, Michael S.; Hook, Simon; Randerson, James T.

    2015-09-01

    The area burned by Southern California wildfires has increased in recent decades, with implications for human health, infrastructure, and ecosystem management. Meteorology and fuel structure are universally recognized controllers of wildfire, but their relative importance, and hence the efficacy of abatement and suppression efforts, remains controversial. Southern California’s wildfires can be partitioned by meteorology: fires typically occur either during Santa Ana winds (SA fires) in October through April, or warm and dry periods in June through September (non-SA fires). Previous work has not quantitatively distinguished between these fire regimes when assessing economic impacts or climate change influence. Here we separate five decades of fire perimeters into those coinciding with and without SA winds. The two fire types contributed almost equally to burned area, yet SA fires were responsible for 80% of cumulative 1990-2009 economic losses (3.1 Billion). The damage disparity was driven by fire characteristics: SA fires spread three times faster, occurred closer to urban areas, and burned into areas with greater housing values. Non-SA fires were comparatively more sensitive to age-dependent fuels, often occurred in higher elevation forests, lasted for extended periods, and accounted for 70% of total suppression costs. An improved distinction of fire type has implications for future projections and management. The area burned in non-SA fires is projected to increase 77% (±43%) by the mid-21st century with warmer and drier summers, and the SA area burned is projected to increase 64% (±76%), underscoring the need to evaluate the allocation and effectiveness of suppression investments.

  19. The climate is changing

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has finalized its Third Assessment Report. Among its conclusions is that we must expect continued changes in our climate, despite our efforts to reduce greenhouse gas emissions. Planning for and adapting to climate change are therefore necessary. As a starting point, CICERO has written this short note on expected impacts in Norway. The main conclusions are that (1) Adaptation to climate change is necessary (2) Substantial impacts are expected for several important sectors in Norway (3) The local and central authorities should now consider and start planning for adaptation measures. (4) There is still a need for more knowledge about potential impacts of climate change in Norway. (author)

  20. Climate Change Portal - Home Page

    Science.gov (United States)

    Science Partnerships Contact Us Take Action Climate change is already having significant and widespread of climate change. Business Businesses throughout California are taking action to address climate climate change impacts and informing policies to reduce greenhouse gases, adapt to changing environments

  1. Tree mortality based fire severity classification for forest inventories: A Pacific Northwest national forests example

    Science.gov (United States)

    Thomas R. Whittier; Andrew N. Gray

    2016-01-01

    Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image changedetection to produce maps for large (>400 ha) fires, and is...

  2. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  3. Drought effects on large fire activity in Canadian and Alaskan forests

    International Nuclear Information System (INIS)

    Xiao Jingfeng; Zhuang Qianlai

    2007-01-01

    Fire is the dominant disturbance in forest ecosystems across Canada and Alaska, and has important implications for forest ecosystems, terrestrial carbon dioxide emissions and the forestry industry. Large fire activity had increased in Canadian and Alaskan forests during the last four decades of the 20th century. Here we combined the Palmer Drought Severity Index and historical large fire databases to demonstrate that Canada and Alaska forest regions experienced summer drying over this time period, and drought during the fire season significantly affected forest fire activity in these regions. Climatic warming, positive geopotential height anomalies and ocean circulation patterns were spatially and temporally convolved in causing drought conditions, which in turn enhanced fuel flammability and thereby indirectly affected fire activity. Future fire regimes will likely depend on drought patterns under global climate change scenarios

  4. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  5. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  6. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  7. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  8. Influences of climate on fire regimes in montane forests of north-western Mexico

    Science.gov (United States)

    Carl N. Skinner; Jack H. Burk; Michael G. Barbour; Ernesto Franco-Vizcaino; Scott L. Stephens

    2008-01-01

    Aim To identify the influence of interannual and interdecadal climate variation on the occurrence and extent of fires in montane conifer forests of north-western Mexico. Location This study was conducted in Jeffrey pine (Pinus jeffreyi Grev. & Balf.)- dominated mixed-conifer...

  9. The frequency of forest fires in Scots pine stands of Tuva, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, G A; Kukavskaya, E A [Russian Academy of Sciences, Siberian Branch, V N Sukachev Institute of Forest, Akademgorodok, Krasnoyarsk, 660036 (Russian Federation); Ivanov, V A [Siberian State Technological University, Krasnoyarsk, 660049 (Russian Federation); Soja, A J, E-mail: GAIvanova@ksc.krasn.r [National Institute of Aerospace, Resident at NASA Langley Research Center, MS 420, Hampton, VA 23681-2199 (United States)

    2010-01-15

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  10. The frequency of forest fires in Scots pine stands of Tuva, Russia

    International Nuclear Information System (INIS)

    Ivanova, G A; Kukavskaya, E A; Ivanov, V A; Soja, A J

    2010-01-01

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  11. Climate Change and Malaria

    OpenAIRE

    Goklany;, I. M.

    2004-01-01

    Sir David A. King's claim that "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" ("Climate change

  12. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Anthropogenic impacts on the Earth`s atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  13. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    1996-01-01

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  14. Principles of effective USA federal fire management plans

    Science.gov (United States)

    Meyer, Marc D.; Roberts, Susan L.; Wills, Robin; Brooks, Matthew L.; Winford, Eric M.

    2015-01-01

    Federal fire management plans are essential implementation guides for the management of wildland fire on federal lands. Recent changes in federal fire policy implementation guidance and fire science information suggest the need for substantial changes in federal fire management plans of the United States. Federal land management agencies are also undergoing land management planning efforts that will initiate revision of fire management plans across the country. Using the southern Sierra Nevada as a case study, we briefly describe the underlying framework of fire management plans, assess their consistency with guiding principles based on current science information and federal policy guidance, and provide recommendations for the development of future fire management plans. Based on our review, we recommend that future fire management plans be: (1) consistent and compatible, (2) collaborative, (3) clear and comprehensive, (4) spatially and temporally scalable, (5) informed by the best available science, and (6) flexible and adaptive. In addition, we identify and describe several strategic guides or “tools” that can enhance these core principles and benefit future fire management plans in the following areas: planning and prioritization, science integration, climate change adaptation, partnerships, monitoring, education and communication, and applied fire management. These principles and tools are essential to successfully realize fire management goals and objectives in a rapidly changing world.

  15. Chatham Islands Climate Change

    International Nuclear Information System (INIS)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-01

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  16. A review of the relationships between drought and forest fire in the United States

    Science.gov (United States)

    Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.

    2016-01-01

    The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.

  17. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  18. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    Science.gov (United States)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  19. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and the number and types of interviews conducted are, for example, not always clear. Information on crucial aspects of qualitative research like researcher positionality, social positions of key informants, the use of field assistants, language issues and post-fieldwork treatment of data is also lacking in many...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork......There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...

  20. Evaluating the coupled vegetation-fire model, LPJ-GUESS-SPITFIRE, against observed tropical forest biomass

    Science.gov (United States)

    Spessa, Allan; Forrest, Matthew; Werner, Christian; Steinkamp, Joerg; Hickler, Thomas

    2013-04-01

    Wildfire is a fundamental Earth System process. It is the most important disturbance worldwide in terms of area and variety of biomes affected; a major mechanism by which carbon is transferred from the land to the atmosphere (2-4 Pg per annum, equiv. 20-30% of global fossil fuel emissions over the last decade); and globally a significant source of particulate aerosols and trace greenhouse gases. Fire is also potentially important as a feedback in the climate system. If climate change favours more intense fire regimes, this would result in a net transfer of carbon from ecosystems to the atmosphere, as well as higher emissions, and under certain circumstances, increased troposphere ozone production- all contributing to positive climate-land surface feedbacks. Quantitative analysis of fire-vegetation-climate interactions has been held back until recently by a lack of consistent global data sets on fire, and by the underdeveloped state of dynamic vegetation-fire modelling. Dynamic vegetation-fire modelling is an essential part of our forecasting armory for examining the possible impacts of climate, fire regimes and land-use on ecosystems and emissions from biomass burning beyond the observation period, as part of future climate or paleo-climate studies. LPJ-GUESS is a process-based model of vegetation dynamics designed for regional to global applications. It combines features of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) with those of the General Ecosystem Simulator (GUESS) in a single, flexible modelling framework. The models have identical representations of eco-physiological and biogeochemical processes, including the hydrological cycle. However, they differ in the detail with which vegetation dynamics and canopy structure are simulated. Simplified, computationally efficient representations are used in the LPJ-DGVM, while LPJ-GUESS employs a gap-model approach, which better captures ecological succession and hence ecosystem changes due to

  1. The influence of climate changes on carbon cycle in the russian forests. Data inventory and long-scale model prognoses

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, A.O.; Nazarov, I.M.; Lelakin, A.L. [Inst. Global Climate and Ecology, Moscow (Russian Federation)

    1995-12-31

    The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation

  2. The influence of climate changes on carbon cycle in the russian forests. Data inventory and long-scale model prognoses

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, A O; Nazarov, I M; Lelakin, A L [Inst. Global Climate and Ecology, Moscow (Russian Federation)

    1996-12-31

    The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation

  3. Climate and hydrological changes in the northeastern United States : recent trends and implications for forested and aquatic ecosystems

    International Nuclear Information System (INIS)

    Huntington, T.G.; Richardson, A.D.; McGuire, K.J.

    2009-01-01

    This study reviewed previous and projected changes in climatic and hydrologic conditions in the northeastern United States. While climatic warming and increases in precipitation, snow, and hydrologic regimes have been observed over the last 100 years, the most pronounced changes have occurred since 1970. However, trends in climatic and hydrological variables have differed both spatially and temporally in different regions. Decadal-scale climatic variations have also altered long-term trends. Climate models predict continued increases in both temperature and precipitation over the next century. Increases in growing season length are expected to increase evapotranspiration and the frequency of droughts. An increase in the frequency of droughts is also expected to increase the risk of fires and other disturbances. Forest productivity and maple syrup production will be impacted, and the intensity of autumn foliage coloration will be diminished. It was concluded that climate and hydrological changes will have a profound impact on forest structure, composition and ecological functioning. 131 refs., 5 figs

  4. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  5. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    Science.gov (United States)

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  6. Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II

    Science.gov (United States)

    Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard

    2009-01-01

    Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...

  7. Uncertainty and Climate Change

    OpenAIRE

    Berliner, L. Mark

    2003-01-01

    Anthropogenic, or human-induced, climate change is a critical issue in science and in the affairs of humankind. Though the target of substantial research, the conclusions of climate change studies remain subject to numerous uncertainties. This article presents a very brief review of the basic arguments regarding anthropogenic climate change with particular emphasis on uncertainty.

  8. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  9. Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015

    Science.gov (United States)

    McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.

    2016-12-01

    In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.

  10. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  11. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  12. Predicting the effect of fire on large-scale vegetation patterns in North America.

    Science.gov (United States)

    Donald McKenzie; David L. Peterson; Ernesto. Alvarado

    1996-01-01

    Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...

  13. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    Science.gov (United States)

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937

  14. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  15. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  16. Merging Methods to Manage Uncertainty: Combining Simulation Modeling and Scenario Planning to Inform Resource Management Under Climate Change

    Science.gov (United States)

    Miller, B. W.; Schuurman, G. W.; Symstad, A.; Fisichelli, N. A.; Frid, L.

    2017-12-01

    Managing natural resources in this era of anthropogenic climate change is fraught with uncertainties around how ecosystems will respond to management actions and a changing climate. Scenario planning (oftentimes implemented as a qualitative, participatory exercise for exploring multiple possible futures) is a valuable tool for addressing this challenge. However, this approach may face limits in resolving responses of complex systems to altered climate and management conditions, and may not provide the scientific credibility that managers often require to support actions that depart from current practice. Quantitative information on projected climate changes and ecological responses is rapidly growing and evolving, but this information is often not at a scale or in a form that is `actionable' for resource managers. We describe a project that sought to create usable information for resource managers in the northern Great Plains by combining qualitative and quantitative methods. In particular, researchers, resource managers, and climate adaptation specialists co-produced a simulation model in conjunction with scenario planning workshops to inform natural resource management in southwest South Dakota. Scenario planning for a wide range of resources facilitated open-minded thinking about a set of divergent and challenging, yet relevant and plausible, climate scenarios and management alternatives that could be implemented in the simulation. With stakeholder input throughout the process, we built a simulation of key vegetation types, grazing, exotic plants, fire, and the effects of climate and management on rangeland productivity and composition. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between herd sizes and vegetation composition, and between the short- versus long-term costs of invasive species management. It also identified impactful uncertainties related to the

  17. Climate change research in Canada

    International Nuclear Information System (INIS)

    Dawson, K.

    1994-01-01

    The current consensus on climatic change in Canada is briefly summarized, noting the results of modelling of the effects of a doubling of atmospheric CO 2 , the nonuniformity of climate change across the country, the uncertainties in local responses to change, and the general agreement that 2-4 degrees of warming will occur for each doubling of CO 2 . Canadian government response includes programs aimed at reducing the uncertainties in the scientific understanding of climate change and in the socio-economic response to such change. Canadian climate change programs include participation in large-scale experiments on such topics as heat transport in the ocean, and sources and sinks of greenhouse gases; development of next-generation climate models; studying the social and economic effects of climate change in the Great Lakes Basin and Mackenzie River Basin; investigation of paleoclimates; and analysis of climate data for long-term trends

  18. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  19. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  20. Vulnerability of the boreal forest to climate change: are managed forests more susceptible?

    International Nuclear Information System (INIS)

    Leduc, A.; Gauthier, S.

    2004-01-01

    This paper postulates that forests dominated by younger seral stages are less vulnerable to climate change that those composed of mature and overmature stands. To support this analysis, an overview of expected changes in climate conditions was provided. Expected changes include higher maximum temperatures, higher minimum temperatures and a decrease in periods of intense cold and fewer frost days; reduction in the diurnal temperature range; an increase in the apparent heat index; greater numbers of intense precipitation; and, increased risk of drought associated with air mass movements. A comparison between conditions in a managed forest mosaic and natural forests was made, with managed forests differing due to efforts to regulate the age structure. The inversion in the age structure of forest mosaics creates significant changes in structural characteristics and composition, including greater hardwood components and more even-aged stands. It was concluded that in Canada, managed boreal forests are younger and have less black spruce and more hardwoods and fir, making younger forests less vulnerable to fire and more amenable to fire control due to increased accessibility. It was also noted that because of their relative youth, managed forests are more vulnerable to regeneration failure and that managed forests with more balsam fir and trembling aspen are at greater risk for insect outbreaks. In addition, wind throw, a threat to older forests, is not significant in managed forests. 15 refs., 1 tab., 2 figs

  1. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  2. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Stehr, N.

    1994-01-01

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  3. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  4. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  5. Evaluating fire danger in Brazilian biomes: present and future patterns

    Science.gov (United States)

    Silva, Patrícia; Bastos, Ana; DaCamara, Carlos; Libonati, Renata

    2017-04-01

    Climate change is expected to have a significant impact on fire occurrence and activity, particularly in Brazil, a region known to be fire-prone [1]. The Brazilian savanna, commonly referred to as cerrado, is a fire-adapted biome covering more than 20% of the country's total area. It presents the highest numbers of fire events, making it particularly susceptible to changes in climate. It is thus essential to understand the present fire regimes in Brazilian biomes, in order to better evaluate future patterns. The CPTEC/INPE, the Brazilian Center for Weather Forecasting and Climate Research at the Brazilian National Institute of Space Research developed a fire danger index based on the occurrence of hundreds of thousands of fire events in the main Brazilian biomes [2]: the Meteorological Fire Danger Index (MFDI). This index indicates the predisposition of vegetation to be burned on a given day, for given climate conditions preceding that day. It relies on daily values of air temperature, relative humidity, accumulated precipitation and vegetation cover. In this study we aim to access the capability of the MFDI to accurately replicate present fire conditions for different biomes, with a special focus on cerrado. To this end, we assess the link between the MFDI as calculated by three different reanalysis (ERA-Interim, NCEP/DOE Reanalysis 2 and MERRA-2) and the observed burned area. We further calculate the validated MFDI using a regional climate model, the RCA4 as forced by EC-Earth from CORDEX, to understand the ability of the model to characterize present fire danger. Finally, the need to calibrate the model to better characterize future fire danger was also evaluated. This work was developed within the framework of the Brazilian Fire-Land-Atmosphere System (BrFLAS) Project financed by the Portuguese and Brazilian science foundations, FCT and FAPESP (project references FAPESP/1389/2014 and 2014/20042-2). [1] KRAWCHUK, M.A.; MORITZ, M.A.; PARISIEN, M.A.; VAN DORN, J

  6. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  7. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    Science.gov (United States)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  8. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  9. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  10. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  11. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  12. Climate change effects on regions of Canada

    International Nuclear Information System (INIS)

    Bruce, J.P.

    2002-01-01

    This report describes the major effects of climatic change being experienced in different parts of Canada, and emphasizes those that they are likely to become so severe that they may disrupt social, ecological and economic systems. The report notes that the driving force behind these impacts is change in temperature, precipitation, and in extreme weather events. The report strongly suggests that greenhouse gas emissions, particularly carbon dioxide, methane and nitrous oxide will likely continue to increase due to human activities such as burning of fossil fuels for heating, cooling and transportation. Loss of tropical forests is also listed as a cause for increased greenhouse gases. In order to reduce greenhouse gas emissions into the atmosphere, Canada must use energy much more efficiently, use more alternative renewable energy source and substitute natural gas for coal and oil whenever possible. It was emphasized that the ratification of the Kyoto Protocol would slow down the rate of increase of the world's greenhouse gas emissions, which in turn affect atmospheric concentrations. The author states that Canada's ratification of the Kyoto Protocol is key to global success, particularly since some countries have backed away from it and some are wavering. The report outlined the following major impacts of climate change in various parts of Canada: sea ice, permafrost, forest fires, transportation, toxic contaminants, storminess, precipitation, water supply, water quality, fisheries, hydropower, agriculture and human adaptation. refs., tabs

  13. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  14. Deriving forest fire ignition risk with biogeochemical process modelling.

    Science.gov (United States)

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  15. Deriving forest fire ignition risk with biogeochemical process modelling☆

    Science.gov (United States)

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  16. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  17. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    Directory of Open Access Journals (Sweden)

    Elena Paoletti

    2007-01-01

    Full Text Available Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3 is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits.

  18. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  19. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    OpenAIRE

    Casady, Grant M.; Marsh, Stuart E.

    2010-01-01

    Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI) derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fi...

  20. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia.

    Science.gov (United States)

    Aragão, Luiz Eduardo O C; Malhi, Yadvinder; Barbier, Nicolas; Lima, Andre; Shimabukuro, Yosio; Anderson, Liana; Saatchi, Sassan

    2008-05-27

    Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.

  1. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  2. Applying information network analysis to fire-prone landscapes: implications for community resilience

    Directory of Open Access Journals (Sweden)

    Derric B. Jacobs

    2017-03-01

    Full Text Available Resilient communities promote trust, have well-developed networks, and can adapt to change. For rural communities in fire-prone landscapes, current resilience strategies may prove insufficient in light of increasing wildfire risks due to climate change. It is argued that, given the complexity of climate change, adaptations are best addressed at local levels where specific social, cultural, political, and economic conditions are matched with local risks and opportunities. Despite the importance of social networks as key attributes of community resilience, research using social network analysis on coupled human and natural systems is scarce. Furthermore, the extent to which local communities in fire-prone areas understand climate change risks, accept the likelihood of potential changes, and have the capacity to develop collaborative mitigation strategies is underexamined, yet these factors are imperative to community resiliency. We apply a social network framework to examine information networks that affect perceptions of wildfire and climate change in Central Oregon. Data were collected using a mailed questionnaire. Analysis focused on the residents' information networks that are used to gain awareness of governmental activities and measures of community social capital. A two-mode network analysis was used to uncover information exchanges. Results suggest that the general public develops perceptions about climate change based on complex social and cultural systems rather than as patrons of scientific inquiry and understanding. It appears that perceptions about climate change itself may not be the limiting factor in these communities' adaptive capacity, but rather how they perceive local risks. We provide a novel methodological approach in understanding rural community adaptation and resilience in fire-prone landscapes and offer a framework for future studies.

  3. The suitability of Finnish climate for fire blight (Erwinia amylovora epidemics on apple

    Directory of Open Access Journals (Sweden)

    Mariela Marinova-Todorova

    2015-03-01

    Full Text Available Fire blight, which is an important disease of apples and pears, has never been detected in continental Finland. In this study the suitability of the Finnish climate for apple blossom blight infections by Erwinia amylovora was evaluated with the epidemiological model MaryblytTM. This was done in fourteen locations, and for two apple cultivars differing in flowering times. Climatic conditions were predicted to be suitable for blossom infections in 18 - 51% of the years, and the annual period of suitable conditions was predicted to last up to two to five days, depending on the location and apple cultivar. The suitable period was predicted to be longer in some locations in central Finland than in those in the southernmost parts of the country. Based on these results the official surveys that are carried out to confirm the absence of fire blight in Finland cannot be targeted only to some parts of the country.

  4. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  5. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  6. Yukon Government climate change action plan

    International Nuclear Information System (INIS)

    2009-02-01

    This Climate Change Action Plan described the measures that are being taken by the Yukon Government to adapt to, understand, and reduce contributions to climate change. The action plan is the result of input received from more than 100 individuals and organizations and provides clear direction for a strategy that will minimize the negative impacts of climate change and provide economic, social and other environmental benefits through climate change mitigation. The Yukon government has already taken many actions that respond to climate change, such as: developing the Yukon Cold Climate Innovation Centre; supporting the Northern Climate Exchange for public education and outreach; funding community recycling depots and other groups that reduce waste generation, promote public awareness and divert solid waste; and working with provincial and territorial counterparts to enhance national building standards. The main objectives of the climate change actions are to enhance knowledge and understanding of climate change; adapt to climate change; reduce greenhouse gas emissions; and lead Yukon action in response to climate change. tabs., figs.

  7. Fire history in the Ohio River Valley and its relation to climate

    Science.gov (United States)

    Daniel A. Yaussy; Elaine Kennedy. Sutherland

    1994-01-01

    Annual wildfire records (1926-77) from the national forests in states bordering the Ohio River (lllinois, Indiana, Kentucky, Missouri, Ohio, and West Virginia) were compared to climate records to assess relationships. Summaries of spring and fall fire seasons obtained for the Daniel Boone National Forest in Kentucky (1970-92) and for the State of Ohio (1969-84,...

  8. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  9. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  10. Future fire emissions associated with projected land use change in Indonesia

    Science.gov (United States)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  11. Multi-scalar influence of weather and climate on very large-fires in the Eastern United States

    Science.gov (United States)

    John T. Abatzoglou; Renaud Barbero; Crystal A. Kolden; Katherine C. Hegewisch; Narasimhan K. Larkin; Harry Podschwit

    2014-01-01

    A majority of area burned in the Eastern United States (EUS) results from a limited number of exceptionally large wildfires. Relationships between climatic conditions and the occurrence of very large-fires (VLF) in the EUS were examined using composite and climate-niche analyses that consider atmospheric factors across inter-annual, sub-seasonal and synoptic temporal...

  12. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  13. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe.

    Science.gov (United States)

    Turco, Marco; von Hardenberg, Jost; AghaKouchak, Amir; Llasat, Maria Carmen; Provenzale, Antonello; Trigo, Ricardo M

    2017-03-06

    Summer fires frequently rage across Mediterranean Europe, often intensified by high temperatures and droughts. According to the state-of-the-art regional fire risk projections, in forthcoming decades climate effects are expected to become stronger and possibly overcome fire prevention efforts. However, significant uncertainties exist and the direct effect of climate change in regulating fuel moisture (e.g. warmer conditions increasing fuel dryness) could be counterbalanced by the indirect effects on fuel structure (e.g. warmer conditions limiting fuel amount), affecting the transition between climate-driven and fuel-limited fire regimes as temperatures increase. Here we analyse and model the impact of coincident drought and antecedent wet conditions (proxy for the climatic factor influencing total fuel and fine fuel structure) on the summer Burned Area (BA) across all eco-regions in Mediterranean Europe. This approach allows BA to be linked to the key drivers of fire in the region. We show a statistically significant relationship between fire and same-summer droughts in most regions, while antecedent climate conditions play a relatively minor role, except in few specific eco-regions. The presented models for individual eco-regions provide insights on the impacts of climate variability on BA, and appear to be promising for developing a seasonal forecast system supporting fire management strategies.

  14. The interaction of fire and mankind: Introduction†

    Science.gov (United States)

    Chaloner, William G.

    2016-01-01

    Fire has been an important part of the Earth system for over 350 Myr. Humans evolved in this fiery world and are the only animals to have used and controlled fire. The interaction of mankind with fire is a complex one, with both positive and negative aspects. Humans have long used fire for heating, cooking, landscape management and agriculture, as well as for pyrotechnologies and in industrial processes over more recent centuries. Many landscapes need fire but population expansion into wildland areas creates a tension between different interest groups. Extinguishing wildfires may not always be the correct solution. A combination of factors, including the problem of invasive plants, landscape change, climate change, population growth, human health, economic, social and cultural attitudes that may be transnational make a re-evaluation of fire and mankind necessary. The Royal Society meeting on Fire and mankind was held to address these issues and the results of these deliberations are published in this volume. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216519

  15. Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance

    Science.gov (United States)

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.

    2014-01-01

    Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.

  16. Analysis of causal factors of fire regimes in Sub-Saharan Africa

    Science.gov (United States)

    Palumbo, I.; Lehsten, V.; Balzter, H.

    2009-04-01

    Wildfires are a wide spread global phenomenon. Their activity peaks in the tropical savannas, especially in the African continent, where fires are a key component of ecosystem dynamics. Fires affect the ecological balance between trees and grasses in savannas with concomitant effects on biodiversity, soil fertility and biogeochemical cycles. Large amounts of trace greenhouse gases and aerosols from wildfires are emitted each year in Africa, but the underlying dynamics of such wildfires and what drives them remain poorly understood. In general terms, the magnitude and the inter-annual variability of fire activity depend on fire frequency and its spatial distribution, also referred to as fire regimes. These are, in turn, determined by the environmental conditions at the time of burning, ignition sources, fuel type, fuel availability, and its moisture content. This study analysed the driving factors of fire regimes at continental level for a period of 5 years (2002-2007). We considered the following variables: climate (rainfall, temperature, humidity), population density, land cover and the burned areas derived from the MODIS MCD45A1 product at 500m resolution. GIS and multi-variate regression techniques were used to analyse the data. Understanding fire driving factors is fundamentally important for developing process-based simulation models of fire occurrence under future climate and environmental change scenarios. This is particularly relevant if we consider that the IPCC 4th Assessment report indicates that a change in the rainfall patterns has been observed in the last 40 years over most of Africa with a decrease of precipitation around 20-40% in West Africa and more intense and widespread droughts in Southern Africa. The simultaneous increase of temperatures can potentially lead to higher fire occurrence and modify the current fire regimes. This work contributes to climate change research with new insights and understanding about how fires are controlled by

  17. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in

  18. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  19. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    Science.gov (United States)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  20. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  1. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  2. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    Science.gov (United States)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land

  4. Using management to address vegetation stress related to land-use and climate change

    Science.gov (United States)

    Middleton, Beth A.; Boudell, Jere; Fisichelli, Nicholas

    2017-01-01

    While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life-history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land-use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.

  5. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  6. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  7. Climate change impacts on urban wildfire and flooding policy in Idaho: a comparative policy network perspective

    Science.gov (United States)

    Lindquist, E.; Pierce, J. L.

    2013-12-01

    Numerous frameworks and models exist for understanding the dynamics of the public policy process. A policy network approach considers how and why stakeholders and interests pay attention to and engage in policy problems, such as flood control or developing resilient and fire resistant landscapes. Variables considered in this approach include what the relationships are between these stakeholders, how they influence the process and outcomes, communication patterns within and between policy networks, and how networks change as a result of new information, science, or public interest and involvement with the problem. This approach is useful in understanding the creation of natural hazards policy as new information or situations, such as projected climate change impacts, influence and disrupt the policy process and networks. Two significant natural hazard policy networks exist in the semi-arid Treasure Valley region of Southwest Idaho, which includes the capitol city of Boise and the surrounding metropolitan area. Boise is situated along the Boise River and adjacent to steep foothills; this physiographic setting makes Boise vulnerable to both wildfires at the wildland-urban interface (WUI) and flooding. Both of these natural hazards have devastated the community in the past and floods and fires are projected to occur with more frequency in the future as a result of projected climate change impacts in the region. While both hazards are fairly well defined problems, there are stark differences lending themselves to comparisons across their respective networks. The WUI wildfire network is large and well developed, includes stakeholders from all levels of government, the private sector and property owner organizations, has well defined objectives, and conducts promotional and educational activities as part of its interaction with the public in order to increase awareness and garner support for its policies. The flood control policy network, however, is less defined

  8. Climate Change and Climate Variability in the Latin American Region

    Science.gov (United States)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  9. Climate change research - Danish contributions

    International Nuclear Information System (INIS)

    Joergensen, A.M.K.; Fenger, J.; Halsnaes, K.

    2001-01-01

    The book describes a series of Danish scientific and technical studies. They broadly reflect the fields and disciplines embraced by assessments of the Intergovernmental Panel on Climate Change (IPCC), but with an emphasis on natural sciences (i.e. climate investigations and impact studies). After the general introduction, that presents the issue and gives a summary of the content of the book, the chapters are organised in four parts: 1. The Climate System and Climate Variations. 2. Climate Change Scenarios. 3. Impacts of Climate Change. 4. Policy Aspects. Each chapter is indexed separately. (LN)

  10. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  11. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  12. The changing effects of Alaska's boreal forests on the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Euskirchen, E.S.; Chapin, F.S. III [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Rupp, T.S. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences

    2010-07-15

    The boreal forest is the northernmost forested biome and is expected to be sensitive to global warming. Recent climate warming in the boreal forests of Alaska has influenced the exchange of trace gases, water, and energy between the forests and the atmosphere. In turn, these changes in the structure and function of boreal forests can influence regional and global climates. This study examined the type and magnitude of the climate feedbacks from boreal forests in Alaska. Biogeophysical and biogeochemical feedbacks were examined with particular reference to surface energy balance across boreal ecosystems and over the full annual cycle. The impact of ground heat exchange on permafrost was studied in terms of vegetation dynamics and disturbance regimes such as fires and insect outbreaks. In general, research has indicated that the net effect of a warming climate is a positive regional feedback to warming. The main positive climate feedbacks are currently related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most dominant at the regional scale and reduce the resilience of the boreal vegetation by amplifying the rate of regional warming. This paper also described carbon and methane release from permafrost degradation, changes in lake area, changes in land use and snow season changes. The role of earth system models in representing climate feedbacks from Alaskan boreal forests was discussed. It was concluded that although the boreal forest provides climate regulation as an ecosystem service, the net effect of the climate feedbacks to climate warming are not fully understood. As such, there is a need to continue to evaluate feedback pathways, given the recent warming in Alaska and the large variety of associated mechanisms that can change terrestrial ecosystems and affect the climate system. 59 refs

  13. Assessing the outstanding 2003 fire events in Portugal with a Regional Climate Model

    Science.gov (United States)

    Trigo, Ricardo; Jerez, Sonia; Camara, Carlos; Montávez, Juan Pedro

    2013-04-01

    The heatwave that struck western Iberia in the early days of August 2003 was characterized by record high values of both maximum (47.3°C) and minimum (30.6°c) temperatures in Portugal, associated with extremely low humidity levels and relatively intense wind speed (Trigo et al., 2006). These conditions triggered the most devastating sequence of large fires ever registered in Portugal. The estimated total burnt area was about 450.000 ha, including 280.000 ha of forest (Pereira et al., 2011). The outstanding total burnt area value corresponds to roughly 5% of the Portuguese territory, and represents approximately twice the previous maximum observed in 1998 (~220.000 ha), and about four times the long-term average observed between 1980 and 2004. Here we characterise this unusual episode using meteorological fields obtained from both observations and a regional climate model. In this work we use the longest (49-years) high-resolution regional climate simulation available driven by reanalysis data spanning from 1959 to 2007 and covering the entire Iberian Peninsula. This long run was obtained using the MM5 model with a spatial resolution of 10 km. Using this high spatial and temporal resolution we have computed the Canadian Fire Weather Index (FWI) System to produce hourly values of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behaviour (van Wagner, 1987). We show the temporal evolution of high resolution patterns for several fire related variables during the most important days for triggering new fires (the first week of August 2003). Besides the absolute value of Tmax, Tmin, wind (speed and direction), relative humidity and FWI we also evaluate the corresponding anomalies of these fields, obtained after removing the long-term smoothed daily climatology. Pereira M.G., Malamude B.D., Trigo R.M., Alves P.I. (2011) "The History and Characteristics of the 1980-2005 Portuguese Rural Fire Database

  14. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    Science.gov (United States)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  15. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    Hall, J.P.; Carlson, L.W.

    1990-01-01

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  16. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  17. Smouldering Subsurface Fires in the Earth System

    Science.gov (United States)

    Rein, Guillermo

    2010-05-01

    Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently

  18. Future projections of fire danger in Brazilian biomes in the 21st century

    Science.gov (United States)

    Libonati, Renata; Silva, Patrícia; DaCamara, Carlos; Bastos, Ana

    2016-04-01

    In the global context, Brazil is one of the regions more severely affected by fire occurrences, with important consequences in the global CO2 balance, the state of the Amazon forest and the ecological diversity of the region. Brazil is also one of the few regions experiencing a raise in annual mean temperature above 2.5o during the 20th century, which may further increase between 2o and 7o until 2100 and, likely, be accompanied by a decrease in precipitation [1]. As the fire occurrence and severity largely depends on these two variables, it is worth assessing the evolution of fire danger for the coming decades. In order to obtain a detailed characterization of the future fire patterns in the different biomes of Brazil, we use outputs from a regional-downscaling of the EC-Earth climate model at 0.44 degrees spatial resolution for two future scenarios, an intermediate (RCP4.5) and a more severe (RCP8.5) one. We use a fire danger index specifically developed for the Brazilian climate and biome characteristics, the IFR from INPE. This index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We find a systematic increase of the days with critical fire risk, which is more pronounced in RCP8.5 and mostly affects months when fire activity takes place. Temperature increase is the most determinant factor for the increase in fire danger in the dry regions of savannah and shrubland, a result to be expected as fuel is already very dry. [1] Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on

  19. The Role of Temporal Evolution in Modeling Atmospheric Emissions from Tropical Fires

    Science.gov (United States)

    Marlier, Miriam E.; Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Gregory S.; Henry, Candise L.; Randerson, James T.

    2014-01-01

    Fire emissions associated with tropical land use change and maintenance influence atmospheric composition, air quality, and climate. In this study, we explore the effects of representing fire emissions at daily versus monthly resolution in a global composition-climate model. We find that simulations of aerosols are impacted more by the temporal resolution of fire emissions than trace gases such as carbon monoxide or ozone. Daily-resolved datasets concentrate emissions from fire events over shorter time periods and allow them to more realistically interact with model meteorology, reducing how often emissions are concurrently released with precipitation events and in turn increasing peak aerosol concentrations. The magnitude of this effect varies across tropical ecosystem types, ranging from smaller changes in modeling the low intensity, frequent burning typical of savanna ecosystems to larger differences when modeling the short-term, intense fires that characterize deforestation events. The utility of modeling fire emissions at a daily resolution also depends on the application, such as modeling exceedances of particulate matter concentrations over air quality guidelines or simulating regional atmospheric heating patterns.

  20. A risk-based approach to wildland fire budgetary planning

    Science.gov (United States)

    Matthew P. Thompson; David E. Calkin; Mark A. Finney; Krista M. Gebert; Michael S. Hand

    2013-01-01

    The financial impact of wildfire management within the USDA Forest Service challenges the ability of the agency to meet societal demands and maintain forest health. The extent of this financial crisis has been attributed to historical and continuing fire management practices, changing climatic conditions, and increasing human development in fire-prone areas, as well as...

  1. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  2. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    Science.gov (United States)

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  3. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea

    2010-10-01

    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  4. Our knowledge on climate change

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Van Wijk, A.J.M.

    1991-01-01

    A workshop was organised to evaluate and discuss the report 'Scientific Assessment of Climate Change (1990)' of the Intergovernmental Panel on Climate Change (IPCC). Thirty prominent Dutch experts in the field attended the workshop. The introductions and discussions held on our knowledge of climatic change as a result of the growth of the greenhouse effect caused by the emission of greenhouse gases from human actions are presented. It is concluded that the IPCC-report shows in a clear and balanced way the certainties and uncertainties in our knowledge of climate change. There is a large chance that the earth's climate will change considerably, if the policy remains unamended. 15 figs., 2 apps

  5. Climate change: biological and human aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cowie

    2007-07-15

    The textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. Contents are: 1. An introduction to climate change; 2. Principal indicators of past climates; 3. Past climate change; 4. The Oligocene to the Quaternary: climate and biology; 5. Present climate and biological change; 6. Current warming and likely future impacts; 7. Human ecology of climate change; 8. Sustainability and policy; Appendix 1. Glossary and acronyms; Appendix 2. Bio-geological timescale; Appendix 3. Calculations of energy demand/supply, and orders of magnitude; Index. 69 figs.

  6. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  7. Climate change and One Health.

    Science.gov (United States)

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  8. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    Science.gov (United States)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; hide

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  9. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  10. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    2009-07-01

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  11. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  12. Climate change: against despair

    OpenAIRE

    McKinnon, Catriona

    2014-01-01

    In the face of accelerating climate change and the parlous state of its politics, despair is tempting. This paper analyses two manifestations of despair about climate change related to (1) the inefficacy of personal emissions reductions, and (2) the inability to make a difference to climate change through personal emissions reductions. On the back of an analysis of despair as a loss of hope, the paper argues that the judgements grounding each form of despair are unsound. The paper concludes w...

  13. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  14. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  15. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    International Nuclear Information System (INIS)

    Genet, H; Euskirchen, E S; McGuire, A D; Barrett, K; Breen, A; Bennett, A; Rupp, T S; Johnstone, J F; Kasischke, E S; Melvin, A M; Mack, M C; Schuur, A E G; Turetsky, M R; Yuan, F

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  16. Simulating the influences of various fire regimes on caribou winter habitat

    Science.gov (United States)

    Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.

    2006-01-01

    Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  17. Repeated fires trap Amazonian blackwater floodplains in an open vegetation state

    NARCIS (Netherlands)

    Flores, Bernardo M.; Fagoaga, Raquel; Nelson, Bruce W.; Holmgren, Milena

    2016-01-01

    Climate change may increase the occurrence of droughts and fires in the Amazon. Most of our understanding on how fire affects tropical ecosystems is based on studies of non-flooded forest–savanna ecotones. Nonetheless, tropical floodplain forests in the Amazon can burn severely during extreme

  18. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come

  19. Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands

    Science.gov (United States)

    E. A. H. Smithwick; M. G. Ryan; D. M. Kashian; W. H. Romme; D. B. Tinker; M. G. Turner

    2009-01-01

    The interaction between disturbance and climate change and resultant effects on ecosystem carbon (C) and nitrogen (N) fluxes are poorly understood. Here, we model (using CENTURY version 4.5) how climate change may affect C and N fluxes among mature and regenerating lodgepole pine (Pinus contorta var. latifolia Engelm. ex S.Wats.)...

  20. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  1. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  2. Using climate information for fuels management

    Science.gov (United States)

    Kolden, Crystal A.; Brown, Timothy J.

    2008-01-01

    Climate has come to the forefront of wildfire discussions in recent years as research contributes to the general understanding of how climate influences fuels availability to burn, the occurrence of severe fire weather conditions and other wildfire parameters. This understanding has crossed over into wildfire management applications through the creation of tools like climate forecasts for wildfire and drought indices, which are now widely used in wildfire suppression and mitigation planning. The overall question is how can climate information help fire managers meet management objectives? Climate underlies weather. For example, a number of days could be generally wet, but that may occur in the context of a two-year overall drought. Knowing the baseline climate is not only critical to preventing escaped prescribed fires, but also how it may affect fire behavior, fire effects and whether or not fire managers will meet their fuels management objectives. Thus, for fire managers to use prescribed and WFU fire safely and effectively, and to minimize the number of escaped fires and conversions to suppression, they need to understand how current climate conditions will impact the use of fire. One example is the need to use prescribed fire under set “burn windows”. Since meteorological conditions vary considerably from year to year for a given day, fire managers will be more successful in utilizing burn windows effectively if they understand those climate thresholds conducive to an increased number of safe burn windows, and are able to predict and take advantage of those burn windows. While climate and wildfire has been studied extensively, climate and fire use has not. The initial goal of this project was to assess how climate impacts prescribed fire use in a more general sense. After a preliminary informal survey in the spring of 2003, we determined that 1) there is insufficient data (less than 10 years) to conduct empirical correlative studies similar to those of

  3. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    cycles of the cloud forest and are especially sensitive to atmospheric climate change, especially humidity, as the epiphytes can occupy incredibly small eco-niches from the canopy to crooks to trunks. Even slight shifts in climate can cause wilting or death to the epiphyte community. Similarly, recent cloud forest animal redistributions, notably frog and lizard disappearances, may be driven by climate changes. Death of animals or epiphytes may have cascading effects on the cloud forest web of life. Aside from changes in temperature, precipitation, and cloudiness, other climate changes may include increasing dry seasons, droughts, hurricanes and intense rain storms, all of which might increase damage to the cloud forest. Because cloud forest species occupy such small areas and tight ecological niches, they are not likely to colonize damaged regions. Fire, drought and plant invasions (especially non-native plants) are likely to increase the effects of any climate change damage in the cloud forest. As has frequently been suggested in the literature, all of the above factors combine to make the cloud forest a likely site for observing climate change effects in the near future.

  4. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  5. An integrated assessment of climate change impacts for Athens- relevance to stakeholders and policy makers

    Science.gov (United States)

    Giannakopoulos, C.; Hatzaki, M.; Kostopoulou, E.; Varotsos, K.

    2010-09-01

    Analysing climate change and its impact needs a production of relevant elements for policy making that can be very different from the parameters considered by climate experts. In the framework of EU project CIRCE, a more realistic approach to match stakeholders and policy-makers demands is attempted. For this reason, within CIRCE selected case studies have been chosen that will provide assessments that can be integrated in practical decision making. In this work, an integrated assessment of climate change impacts on several sectors for the urban site of Athens in Greece is presented. The Athens urban case study has been chosen since it provides excellent opportunities for using an integrated approach across multiple temporal and spatial scales and sectors. In the spatial dimension, work extends from the inner city boundaries to the surrounding mountains and forests. In the temporal dimension, research ranges from the current observed time period (using available meteorological and sector data) to future time periods using data from several climate change projections. In addition, a multi-sector approach to climate change impacts is adopted. Impacts sectors covered range from direct climate impacts on natural ecosystems (such as flash floods, air pollution and forest fire risk) to indirect impacts resulting from combined climate-social-economic linkages (such as energy demand, tourism and health). Discussion of impact sector risks and adaptation measures are also exploited. Case-study work on impact sector risk to climate change is of particular interest to relevant policy makers and stakeholders, communication with who is ensured through a series of briefing notes and information sheets and through regional workshops.

  6. Climate and Global Change

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Pons, A.; Fantechi, R.

    1991-01-01

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  7. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  8. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  9. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  10. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  11. Climate changes over the past millennium: Relationships with Mediterranean climates

    International Nuclear Information System (INIS)

    Mann, M.E.

    2006-01-01

    Evidence is reviewed for climate change and its causes over the interval spanning roughly the past millennium. Particular emphasis is placed on patterns of climate change influencing Mediterranean climates of the Northern Hemisphere. The evidence is taken from studies using high-resolution climate proxy data sources, and climate modeling simulations. The available evidence suggests that forced changes in dynamical modes of variability including the North Atlantic Oscillation (NAO) and El Nino/Southern Oscillation (ENSO) have played a key role in the patterns of climate variability in Mediterranean regions over the past millennium

  12. Climate Change and Health

    Science.gov (United States)

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  13. Adaptability and climate change

    International Nuclear Information System (INIS)

    Sprague, M.W.

    1991-01-01

    The potential social, economic and environmental impacts of climate change are reviewed, with emphasis on agricultural implications. Impact analyses must be done on the scale of watersheds or river basins. For agriculture, climate change effects on water resources are likely to be more important than temperature changes, and climatic variability is also equally important. Another set of critical climatic variables are the frequencies, magnitudes and timing of extreme events such as floods, droughts, etc. A carbon dioxide enriched atmosphere will increase water use efficiency and confer increased tolerance to drought, salinity and air pollution. Better understanding and accounting is required for the effects of increased carbon dioxide on all plant life, including crops. Adaptability of agriculture to change must be taken into account in predicting impacts of climate change, with technological innovation and infrastructure giving agriculture a dynamic nature. Limitations and adaptations must be considered when formulating public policy, to ensure that marginal costs do not exceed marginal benefits. Monoculture plantation forests may be the most efficient sinks of atmospheric carbon dioxide, yet widespread reliance on them may harm biological diversity. Actions the U.S. is currently taking under a no-regrets policy are summarized

  14. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  15. The Impact of Boreal Forest Fire on Climate Warming

    OpenAIRE

    Randerson, J. T.; Liu, H.; Flanner, M. G.; Chambers, S. D.; Jin, Y.; Hess, P. G.; Pfister, G.; Mack, M. C.; Treseder, K. K.; Welp, L. R.; Chapin, F. S.; Harden, J. W.; Goulden, M. L.; Lyons, E.; Neff, J. C.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ± 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (–2.3 ± 2.2 Watts per square meter) because multidecadal increases in surface albedo ha...

  16. Struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  17. Climate change issues in China

    Energy Technology Data Exchange (ETDEWEB)

    Ye Ruqiu (China National Environmental Protection Agency, Beijing (China))

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. 8 refs., 3 tabs.

  18. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  19. Climate change: Recent findings

    International Nuclear Information System (INIS)

    Hesselmans, G.H.F.M.

    1993-08-01

    In the late eighties several reports have been published on climate change and sea level rise. In the meantime insights may have changed due to the availability of better and more observations and/or more advanced climate models. The aim of this report is to present the most recent findings with respect to climate change, in particular of sea level rise, storm surges and river peak flows. These climate factors are important for the safety of low-lying areas with respect to coastal erosion and flooding. In the first chapters a short review is presented of a few of the eighties reports. Furthermore, the predictions by state of the art climate models at that time are given. The reports from the eighties should be considered as 'old' information, whereas the IPCC supplement and work, for example, by Wigley should be considered as new information. To assess the latest findings two experts in this field were interviewed: dr J. Oerlemans and dr C.J.E. Schuurmans, a climate expert from the Royal Netherlands Meteorological Institute (KNMI). Their views are presented together with results published in recent papers on the subject. On the basis of this assessment, the report presents current knowledge regarding predictions of climate change (including sea-level rise) over the next century, together with an assessment of the uncertainties associated with these predictions. 14 figs., 11 tabs., 24 refs

  20. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.