International Nuclear Information System (INIS)
Moeller, P.; Myers, W.D.
1984-01-01
The possibility of extending the model used by Moeller and Nix in 1980 to calculate nuclear masses and fission barriers for nuclei throughout the periodic system to include provision for the existence of a neutron skin is studied. The model gives excellent fit to masses and fission barriers and improves predictions of isotopic trends in charge radii
International Nuclear Information System (INIS)
Moeller, P.; Myers, W.D.
1984-03-01
We study the possibility of extending the model used by Moeller and Nix in 1980 to calculate nuclear masses and fission barriers for nuclei throughout the periodic system, to describe compressibility effects and the existence of a neutron skin. 9 references
Energy Technology Data Exchange (ETDEWEB)
Moeller, P.; Myers, W.D.
1984-03-01
We study the possibility of extending the model used by Moeller and Nix in 1980 to calculate nuclear masses and fission barriers for nuclei throughout the periodic system, to describe compressibility effects and the existence of a neutron skin. 9 references. (WHK)
Neutron-Proton Mass Difference in Nuclear Matter and in Finite Nuclei and the Nolen-Schiffer Anomaly
Directory of Open Access Journals (Sweden)
Yakhshiev U.T.
2010-04-01
Full Text Available The neutron-proton mass diﬀerence in (isospin asymmetric nuclear matter and ﬁnite nuclei is studied in the framework of a medium-modiﬁed Skyrme model. The proposed eﬀective Lagrangian incorporates both the medium inﬂuence of the surrounding nuclear environment on the single nucleon properties and an explicit isospin-breaking eﬀect in the mesonic sector. Energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels are included as well. The present approach predicts that the neutron-proton mass diﬀerence is mainly dictated by its strong part and that it markedly decreases in neutron matter. Furthermore, the possible interplay between the eﬀective nucleon mass in ﬁnite nuclei and the Nolen-Schiﬀer anomaly is discussed. In particular, we ﬁnd that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modiﬁcations of the nucleon’s eﬀective mass in nuclei.
Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik
2018-01-01
In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.
Induced Yukawa coupling and finite mass
International Nuclear Information System (INIS)
Fujimoto, Y.
1981-06-01
We propose that the Yukawa couplings in the unified theories could be of induced nature. The idea is implemented in the gauge theory with either weak or horizontal Susub(L)(2) x SUsub(R)(2) symmetry. A related subject of finite fermion mass is also discussed. (author)
Nuclear collective states at finite temperature
International Nuclear Information System (INIS)
Milian, A.; Barranco, M.; Mas, D.; Lombard, R.J.
1987-04-01
The Energy Density Method (EDM) has been used to study low-lying nuclear collective states as well as isoscalar giant resonances at finite temperature (T). Giant states have been studied by computing the corresponding strength function moments (sum rules) in the Random-Phase Approximation (RPA). For the description of the low lying states we have resorted to a variety of models from the rather sophisticated RPA method to liquid drop and schematic models. It has been found that low lying states are most affected by thermal effects, giant resonances being little affected in the range of temperatures here studied
Landau parameters for finite range density dependent nuclear interactions
International Nuclear Information System (INIS)
Farine, M.
1997-01-01
The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules
Finite element model for heat conduction in jointed rock masses
International Nuclear Information System (INIS)
Gartling, D.K.; Thomas, R.K.
1981-01-01
A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points
Application of Mass Lumped Higher Order Finite Elements
International Nuclear Information System (INIS)
J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau
2005-01-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied
Fluid-Structure Interaction Analysis of Parachute Finite Mass Inflation
Directory of Open Access Journals (Sweden)
Xinglong Gao
2016-01-01
Full Text Available Parachute inflation is coupled with sophisticated fluid-structure interaction (FSI and flight mechanic behaviors in a finite mass situation. During opening, the canopy often experiences the largest deformation and loading. To predict the opening phase of a parachute, a computational FSI model for the inflation of a parachute, with slots on its canopy fabric, is developed using the arbitrary Lagrangian-Euler coupling penalty method. In a finite mass situation, the fluid around the parachute typically has an unsteady flow; therefore, a more complex opening phase and FSI dynamics of a parachute are investigated. Navier-Stokes (N-S equations for uncompressible flow are solved using an explicit central difference method. The three-dimensional visualization of canopy deformation as well as the evolution of dropping velocity and overload is obtained and compared with the experimental results. This technique could be further applied in the airdrop test of a parachute for true prediction of the inflation characteristics.
Proton fragmentation functions considering finite-mass corrections
Energy Technology Data Exchange (ETDEWEB)
Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Soleymaninia, M. [Payame Noor Universtiy, Department of Physics, Tehran (Iran, Islamic Republic of); Maktoubian, A. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)
2016-10-15
We present new sets of proton fragmentation functions (FFs) describing the production of protons from the gluon and each of the quarks, obtained by the NLO QCD fits to all relevant data sets of single-inclusive electron-positron annihilation. Specifically, we determine their uncertainties using the Gaussian method for error estimation. Our analysis is in good agreement with the e{sup +}e{sup -} annihilation data. We also include finite-mass effects of the proton in our calculations, a topic to which very little attention is paid in the literature. Proton mass effects turn out to be appreciable for gluon and light quark FFs. The inclusion of finite-mass effects tends to improve the overall description of the data by reducing the minimized χ{sup 2} values significantly. As an application, we apply the extracted FFs to make predictions for the scaled-energy distribution of protons inclusively produced in top quark decays at next-to-leading order, relying on the universality and scaling violations of FFs. (orig.)
Non-perturbative Debye mass in finite-T QCD
Kajantie, Keijo; Peisa, J; Rajantie, A; Rummukainen, K; Shaposhnikov, Mikhail E
1997-01-01
Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.
Higgs, Top, and Bottom Mass Predictions in Finite Unified Theories
Heinemeyer, Sven; Zoupanos, George
2014-01-01
All-loop Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) based on the principle of reduction of couplings, which have a remarkable predictive power. The reduction of couplings implies the existence of renormalization group invariant relations among them, which guarantee the vanishing of the beta functions at all orders in perturbation theory in particular N = 1 GUTs. In the soft breaking sector these relations imply the existence of a sum rule among the soft scalar masses. The confrontation of the predictions of a SU(5) FUT model with the top and bottom quark masses and other low-energy experimental constraints leads to a prediction of the light Higgs-boson mass in the rangeMh ∼ 121−126 GeV, in remarkable agreement with the discovery of the Higgs boson with a mass around ∼ 125.7 GeV. Also a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV is predicted, consistent with the non-observation of those particles at the LHC.
Interquark potential with finite quark mass from lattice QCD.
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1 GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society
Position-dependent mass, finite-gap systems, and supersymmetry
Bravo, Rafael; Plyushchay, Mikhail S.
2016-05-01
The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.
Finite size effects in neutron star and nuclear matter simulations
Energy Technology Data Exchange (ETDEWEB)
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.
2015-01-15
In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a
Critical assessment of nuclear mass models
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.
1992-01-01
Some of the physical assumptions underlying various nuclear mass models are discussed. The ability of different mass models to predict new masses that were not taken into account when the models were formulated and their parameters determined is analyzed. The models are also compared with respect to their ability to describe nuclear-structure properties in general. The analysis suggests future directions for mass-model development
Finite element modeling of AP1000 nuclear island
International Nuclear Information System (INIS)
Tinic, S.; Orr, R.
2003-01-01
The AP1000 is a standard design developed by Westinghouse and its partners for an advanced nuclear power plant utilizing passive safety features. It is based on the certified design of the AP600 and has been uprated to 1000 MWe. The plant has five principal building structures; the nuclear island, the turbine building; the annex building; the diesel generator building and the radwaste building. The nuclear island consists of the containment building (the steel containment vessel and the containment internal structures), the shield building, and the auxiliary building. These structures are founded on a common basemat and are collectively known as the nuclear island. This paper describes use of the general purpose finite element program ANSYS [2] in structural analyses and qualification of the AP1000 nuclear island buildings. It describes the modeling of the shield building and the auxiliary building and the series of analyses and the flow of information from the global analyses to the detailed analyses and building qualification. (author)
The art of predicting nuclear masses
International Nuclear Information System (INIS)
Hirsch, J.G.; Morales, I.; Mendoza-Temis, J.; Frank, A.; Lopez-Vieyra, J.C.; Barea, J.; Pittel, S.; Van Isacker, P.; Velazquez, V.
2008-01-01
A review of recent advances in the theoretical analysis of nuclear mass models and their predictive power is presented. After introducing two tests which probe the ability of nuclear mass models to extrapolate, three models are analyzed in detail: the liquid drop model (LDM), the liquid drop model plus empirical shell corrections (LDMM) and the Duflo–Zuker mass formula (DZ). The DZ model is exhibited as the most predictive model. The Garvey–Kelson mass relations are also discussed. It is shown that their fulfillment probes the consistency of the most commonly used mass formulae, and that they can be used in an iterative process to predict nuclear masses in the neighborhood of nuclei with measured masses, offering a simple and reproducible procedure for short range mass predictions. (author)
Application of finite element numerical technique to nuclear reactor geometries
Energy Technology Data Exchange (ETDEWEB)
Rouai, N M [Nuclear engineering department faculty of engineering Al-fateh universty, Tripoli (Libyan Arab Jamahiriya)
1995-10-01
Determination of the temperature distribution in nuclear elements is of utmost importance to ensure that the temperature stays within safe limits during reactor operation. This paper discusses the use of Finite element numerical technique (FE) for the solution of the two dimensional heat conduction equation in geometries related to nuclear reactor cores. The FE solution stats with variational calculus which considers transforming the heat conduction equation into an integral equation I(O) and seeks a function that minimizes this integral and hence gives the solution to the heat conduction equation. In this paper FE theory as applied to heat conduction is briefly outlined and a 2-D program is used to apply the theory to simple shapes and to two gas cooled reactor fuel elements. Good results are obtained for both cases with reasonable number of elements. 7 figs.
Application of finite element numerical technique to nuclear reactor geometries
International Nuclear Information System (INIS)
Rouai, N. M.
1995-01-01
Determination of the temperature distribution in nuclear elements is of utmost importance to ensure that the temperature stays within safe limits during reactor operation. This paper discusses the use of Finite element numerical technique (FE) for the solution of the two dimensional heat conduction equation in geometries related to nuclear reactor cores. The FE solution stats with variational calculus which considers transforming the heat conduction equation into an integral equation I(O) and seeks a function that minimizes this integral and hence gives the solution to the heat conduction equation. In this paper FE theory as applied to heat conduction is briefly outlined and a 2-D program is used to apply the theory to simple shapes and to two gas cooled reactor fuel elements. Good results are obtained for both cases with reasonable number of elements. 7 figs
Nuclear incompressibility: from finite nuclei to nuclear matter
International Nuclear Information System (INIS)
Treiner, J.; Krivine, H.; Bohigas, O.
1981-01-01
The recent increase of experimental data concerning the Giant Monopole Resonance Energy Esub(M) gives information on the incompressibility modulus of nuclear matter, provided one can extrapolate the incompressibility of a nucleus Ksub(A) defined by Esub(M)=[h 2 /m KA/ 2 >]sup(1/2), to the infinite medium. We discuss the theoretical interpretation of the coefficients of an Asup(-1/3) - expansion of Ksub(A) by studying the asymptotic behaviour of two RPA sum rules (corresponding to the scaling and the constrained model), evaluated using self-consistent Thomas-Fermi calculations. We show that the scaling model is the most suitable one as it leads to a rapidly converging Asup(-1/3)-expansion of the corresponding incompressibility Ksub(A)sup(S), whereas this is not the case with the constrained model. Some semi-empirical relations between the coefficients of the expansion of Ksub(A)sup(S) are established, which reduce to one the number of free-parameters in a best fit analysis of the experimental data. This reduction is essential due to the still limited number and accuracy of experimental data. We then show the compatibility of the data given by the various experimental groups with this parametrization and obtain a value of Ksub(nm)=220+-20 MeV, in good agreement with more microscopic analysis
Nuclear dynamics with the (finite range) Gogny force: flow effects
International Nuclear Information System (INIS)
Sebille, F.; Royer, G.; Schuck, P.; Gregoire, C.
1988-01-01
We introduce for the first time the effective finite range interaction of Gogny in the semi-classical description of heavy ion reactions based on the Landau-Vlasov equation. The characteristics of the flow for heavy ion collisions are studied as functions of the incident energy, the impact parameter and the mass number. The momentum dependence in the mean field together with the non linearities in the collision kernel decrease the flow in contradiction with other calculations; the origins of this discrepancy are studied in details
Directory of Open Access Journals (Sweden)
Rui Wang
2017-10-01
Full Text Available We establish a relation between the equation of state of nuclear matter and the fourth-order symmetry energy asym,4(A of finite nuclei in a semi-empirical nuclear mass formula by self-consistently considering the bulk, surface and Coulomb contributions to the nuclear mass. Such a relation allows us to extract information on nuclear matter fourth-order symmetry energy Esym,4(ρ0 at normal nuclear density ρ0 from analyzing nuclear mass data. Based on the recent precise extraction of asym,4(A via the double difference of the “experimental” symmetry energy extracted from nuclear masses, for the first time, we estimate a value of Esym,4(ρ0=20.0±4.6 MeV. Such a value of Esym,4(ρ0 is significantly larger than the predictions from mean-field models and thus suggests the importance of considering the effects of beyond the mean-field approximation in nuclear matter calculations.
Quantum chaos and nuclear mass systematics
International Nuclear Information System (INIS)
Hirsch, Jorge G.; Velazquez, Victor; Frank, Alejandro
2004-01-01
The presence of quantum chaos in nuclear mass systematics is analyzed by considering the differences between measured and calculated nuclear masses as a time series described by the power law 1fα. While for the liquid droplet model plus shell corrections a quantum chaotic behavior α∼1 is found, errors in the microscopic mass formula have α∼0.5, closer to white noise. The chaotic behavior seems to arise from many body effects not included in the mass formula
Valuing modular nuclear power plants in finite time decision horizon
International Nuclear Information System (INIS)
Jain, Shashi; Roelofs, Ferry; Oosterlee, Cornelis W.
2013-01-01
Small and medium sized reactors, SMRs, (according to IAEA, ‘small’ refers to reactors with power less than 300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for investment in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront expenditure, enhanced safety, and easy integration with small sized grids. Large reactors on the other hand have been an attractive option due to the economy of scale. In this paper we focus on the economic impact of flexibility due to modular construction of SMRs. We demonstrate, using real option analysis, the value of sequential modular SMRs. Numerical results under different considerations of decision time, uncertainty in electricity prices, and constraints on the construction of units, are reported for a single large unit and for modular SMRs. - Highlights: ► Real option value of modular construction in finite time decision horizon. ► Stochastic grid method is used to value the real option. ► Decisions in finite time can differ significantly from infinite decision time. ► Decisions depend on length of decision horizon and price volatilities
Plasma Mass Filters For Nuclear Waste Reprocessing
International Nuclear Information System (INIS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-01-01
Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.
Neutron-proton mass difference in finite nuclei and the Nolen-Schiffer anomaly
International Nuclear Information System (INIS)
Meissner, U.G.; Rakhimov, A.M.; Wirzba, A.; Yakhshiev, U.T.
2008-01-01
The neutron-proton mass difference in finite nuclei is studied in the framework of a medium-modified Skyrme model. The possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon's effective mass in nuclei. (orig.)
SU(5) finite unified theories and the mass of the top quark
International Nuclear Information System (INIS)
Mondragon, M.; Zoupanos, G.
1994-01-01
We present results of a study of phenomenologically interesting SU(5) supersymmetric GUT's, which are finite to all-loops before spontaneous symmetry breaking. The finiteness conditions provide the spontaneously broken theory with relationships among the Yukawa and gauge couplings at the unification point. These in turn predict a heavy top quark mass (∼175-190 GeV). (orig.)
Properties of nuclear matter from macroscopic–microscopic mass formulas
Directory of Open Access Journals (Sweden)
Ning Wang
2015-12-01
Full Text Available Based on the standard Skyrme energy density functionals together with the extended Thomas–Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic–microscopic mass formulas: Lublin–Strasbourg nuclear drop energy (LSD formula and Weizsäcker–Skyrme (WS* formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞=230±11 MeV and 235±11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L=41.6±7.6 MeV for LSD and 51.5±9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron–proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree–Fock–Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.
Effective masses and the nuclear mean field
International Nuclear Information System (INIS)
Mahaux, C.; Sartor, R.
1985-01-01
The effective mass characterizes the energy dependence of the empirical average nuclear potential. This energy dependence has two different sources, namely the nonlocality in space of the microscopic mean field on the one hand, and its true energy dependence on the other hand. Correspondingly it is convenient to divide the effective mass into two components, the k-mass and the ω-mass. The latter is responsible for the existence of a peak in the energy dependence of the effective mass. This peak is located near the Fermi energy in nuclear matter and in nuclei, as well as in the electron gas, the hard sphere Fermi gas and liquid helium 3. A related phenomenon is the existence of a low energy anomaly in the energy dependence of the optical model potential between two heavy ions. (orig.)
FEHM, Finite Element Heat and Mass Transfer Code
International Nuclear Information System (INIS)
Zyvoloski, G.A.
2002-01-01
1 - Description of program or function: FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities. 2 - Methods: FEHM uses a preconditioned conjugate gradient solution of coupled linear equations and a fully implicit, fully coupled Newton Raphson solution of nonlinear equations. It has the capability of simulating transport using either a advection/diffusion solution or a particle tracking method. 3 - Restriction on the complexity of the problem: Disk space and machine memory are the only limitations
Finite-temperature behavior of mass hierarchies in supersymmetric theories
International Nuclear Information System (INIS)
Ginsparg, P.
1982-01-01
It is shown that Witten's mechanism for producing a large gauge hierarchy in supersymmetric theories leads to a novel symmetry behavior at finite temperature. The exponentially large expectation value in such models develops at a critical temperature of order of the small (supersymmetry-breaking) scale. The phase transition can proceed without need of vacuum tunnelling. Models based on Witten's mechanism thus require a reexamination of the standard cosmological treatment of grand unified theories. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
Mass Spectrometric Analysis for Nuclear Safeguards
International Nuclear Information System (INIS)
Boulyga, S.
2013-01-01
The release of man-made radionuclides into the environment results in contamination that carries specific isotopic signatures according to the release scenarios and the previous usage of materials and facilities. In order to trace the origin of such contamination and/or to assess the potential impact on the public and environmental health, it is necessary to determine the isotopic composition and activity concentrations of radionuclides in environmental samples in an accurate and timely fashion. Mass spectrometric techniques, such as thermal ionization mass spectrometry (TIMS), secondary ion mass spectrometry (SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) belong to the most powerful methods for analysis of nuclear and related samples in nuclear safeguards, forensics, and environmental monitoring. This presentation will address the potential of mass spectrometric analysis of actinides at ultra-trace concentration levels, isotopic analysis of micro-samples, age determination of nuclear materials as well as identification and quantification of elemental and isotopic signatures of nuclear samples in general. (author)
Mass spectrometry in nuclear science and technology
International Nuclear Information System (INIS)
Komori, Takuji
1985-01-01
Mass spectrometry has been widely used and playing a very important role in the field of nuclear science and technology. A major reason for this is that not only the types of element but also its isotopes have to be identified and measured in this field. Thus, some applications of this analytical method are reviewed and discussed in this article. Its application to analytical chemistry is described in the second section following an introductory section, which includes subsections for isotropic dilution mass spectrometry, resonance ionization mass spectrometry and isotopic correlation technique. The isotopic ratio measurement for hydrogen, uranium and plutonium as well as nuclear material control and safeguards are also reviewed in this section. In the third section, mass spectrometry is discussed in relation to nuclear reactors, with subsections on natural uranium reactor and neutron flux observation. Some techniques for measuring the burnup fraction, including the heavy isotopic ratio method and fission product monitoring, are also described. In the fourth section, application of mass spectrometry to measurement of nuclear constants, such as ratio of effective cross-sectional area for 235 U, half-life and fission yield is reviewed. (Nogami, K.)
Mass spectrometric analysis for nuclear safeguards
BOULYGA S.; KONEGGER-KAPPEL S.; RICHTER Stephan; SANGELY L.
2014-01-01
Mass spectrometry is currently being implemented in a wide spectrum of research and industrial areas, such as material sciences, cosmo- and geochemistry, biology and medicine, to name just a few. Research and development in nuclear safeguards is closely related to the general field of “Peace Research”; representing a specific application area for analytical sciences in general and for mass spectrometry in particular. According to Albert Einstein “peace cannot be kept by force. It only can be ...
Mass-spectrometric measurements for nuclear safeguards
International Nuclear Information System (INIS)
Carter, J.A.; Smith, D.H.; Walker, R.L.
1982-01-01
The need of an on-site inspection device to provide isotopic ratio measurements led to the development of a quadrupole mass spectrometer mounted in a van. This mobile laboratory has the ability, through the use of the resin bead technique, to acquire, prepare, and analyze samples of interest to nuclear safeguards. Precision of the measurements is about 1 to 2%
User's manual for the FEHM application - A finite-element heat- and mass-transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions
Nuclear matter kinetic coefficients and damping of finite nuclear collective modes
International Nuclear Information System (INIS)
Toledo Piza, A.F.R. de.
1986-06-01
By carrying the general description of one-body observables beyond the mean-field approximation, those correlation terms responsible for Kinetic phenomena and those involved in the renormalization of the G-matrix mean-field in finite nuclei are identified. A Kinetic equation for the one-body density is obtained. Estimates for transport coefficients and for the damping of zero sound are obtained which point to the inadequacy of hydrodynamical descriptions of collective nuclear modes and indicate that collisional damping in large nuclei may account for one or a few tenths of the observed widths. (S.D.) [pt
Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass
Pimenov, Dimitri; von Delft, Jan; Glazman, Leonid; Goldstein, Moshe
2017-10-01
The coupling between a 2D semiconductor quantum well and an optical cavity gives rise to combined light-matter excitations, the exciton-polaritons. These were usually measured when the conduction band is empty, making the single polariton physics a simple single-body problem. The situation is dramatically different in the presence of a finite conduction-band population, where the creation or annihilation of a single exciton involves a many-body shakeup of the Fermi sea. Recent experiments in this regime revealed a strong modification of the exciton-polariton spectrum. Previous theoretical studies concerned with nonzero Fermi energy mostly relied on the approximation of an immobile valence-band hole with infinite mass, which is appropriate for low-mobility samples only; for high-mobility samples, one needs to consider a mobile hole with large but finite mass. To bridge this gap, we present an analytical diagrammatic approach and tackle a model with short-ranged (screened) electron-hole interaction, studying it in two complementary regimes. We find that the finite hole mass has opposite effects on the exciton-polariton spectra in the two regimes: in the first, where the Fermi energy is much smaller than the exciton binding energy, excitonic features are enhanced by the finite mass. In the second regime, where the Fermi energy is much larger than the exciton binding energy, finite mass effects cut off the excitonic features in the polariton spectra, in qualitative agreement with recent experiments.
General theory for thermal pulses of finite amplitude in nuclear shell-burnings
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education; Fujimoto, M Y
1978-09-01
Theory for thermal pulses of nuclear shell-burning is advanced to include the case of finite amplitude. The aims are to predict the progress of thermal pulse quantitatively and to obtain the peak values of the temperature and nuclear energy generation rate without making detailed numerical computation of stellar structure. In order to attain them the physical processes involved in the progress of the pulse are clarified using the concepts of the flatness of the shell source, which destabilizes nuclear burning, and the effect of radiation pressure, which stabilizes it. It is shown that the progress of the pulse can be predicted quantitatively when the pressure and the gravitational potential of the burning shell are specified for the onset stage of the pulse. The pulse height is determined mainly by the initial pressure; the higher initial pressure results in the higher pulse. Mass dependence is also obtained by approximating the gravitational potential by that of white dwarfs. The initial pressure is the quantity which is determined in the course of evolution preceding the pulse. The theory is shown to give a satisfactory agreement with numerical computations for a wide variety of the preceding evolutions, i.e., both for the case of the core in red giant stars and of the accreting white dwarfs.
Nuclear molecular structure in heavy mass systems
International Nuclear Information System (INIS)
Arctaedius, T.; Bargholtz, C.
1989-04-01
A study is made of nuclear molecular configurations involving one heavy mass partner. The stability of these configurations to mass flow and to fission is investigated as well as their population in fusion reactions. It is concluded that shell effects in combination with the effects of angular momentum may be important in stabilizing certain configurations. A possible relation of these configurations to the so called superdeformed states is pointed out. The spectrum of rotational and vibrational trasitions within molecular configurations is investigated. For sufficiently mass-asymmetric systems the engergies of vibrational transitions are comparable to the neutron separation energy. Gamma radiation from such transitions may then be observable above the background of statistical transitions. The gamma spectrum and the directional distribution of the radioation following fusion reactions with 12 C and 16 O are calculated. (authors)
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.
New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars
Kumar, Bharat; Patra, S. K.; Agrawal, B. K.
2018-04-01
We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.
Nuclear masses, deformations and shell effects
International Nuclear Information System (INIS)
Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E
2011-01-01
We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
Mass and Inertia Parameters for Nuclear Fission
International Nuclear Information System (INIS)
Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.
1969-01-01
The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)
Polyakov loop and spin correlators on finite lattices. A study beyond the mass gap
International Nuclear Information System (INIS)
Engels, J.; Neuhaus, T.
1995-01-01
We derive an analytic expression for point-to-point correlation functions of the Polyakov loop based on the transfer matrix formalism. For the 2D Ising model we show that the results deduced from point-point spin correlators are coinciding with those from zero momentum correlators. We investigate the contributions from eigenvalues of the transfer matrix beyond the mass gap and discuss the limitations and possibilities of such an analysis. The finite size behaviour of the obtained 2D Ising model matrix elements is examined. The point-to-point correlator formula is then applied to Polyakov loop data in finite temperature SU(2) gauge theory. The leading matrix element shows all expected scaling properties. Just above the critical point we find a Debye screening mass μ D /T∼4, independent of the volume. ((orig.))
Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature
International Nuclear Information System (INIS)
Kestner, J. P.; Das Sarma, S.
2010-01-01
The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T F , exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.
International Nuclear Information System (INIS)
Schleif, M.; Wuensch, R.
1996-04-01
We consider the mass of the one-loop hedgehog soliton of the bosonized SU(2) Nambu and Jona-Lasinio model embedded in hot nuclear matter minimiced by a gas of constituent quarks. We prove that the proper-time regularized and self-consistently determined soliton in a heat bath obeys Poincare's invariance up order V 2 . At finite temperature and chemical potential, we show that the inertial mass obtained in the perturbative pushing approach coincides with the total internal energy of the soliton. (orig.)
International Nuclear Information System (INIS)
Gubler, Philipp; Ohtani, Keisuke
2015-01-01
The modification of the ϕ-meson at finite density is studied by using QCD sum rules in combination with the maximum entropy method. As a result, it is found that the mass shift of the ϕ-meson is strongly correlated to the strangeness content of the nucleon, , which governs the depletion of the strange quark condensate in nuclear matter. (author)
Finiteness preserving mass terms in N=4 super Yang-Mills theory
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.; Zaimi, M.
1983-01-01
It is shown using light cone gauge techniques that N = 4 super Yang-Mills theory is ultraviolet finite in the presence of a wide range of explicit symmetry breaking mass terms for (a) scalars and fermions (b) scalars alone. These mass terms satisfy sum rules that are part of the more general sum rule: μsub(s=0,) sub(1/2) (-1)sup(2S+1)(2s + 1)msub(S) 2 = 0, in which the mass of vector bosons is set to zero for reasons of gauge invariance. The resulting lagrangians offer the exciting possibility of realising explicit hierarchical descent of N = 4 super Yang-Mills through N = 2 and N = 1 supersymmetries. Tree level spontaneous symmetry breaking from the resulting scalar potentials are briefly discussed. (orig.)
A low-energy β-function in a finite super-Yang-Mills model with multiple mass scales
International Nuclear Information System (INIS)
Foda, O.; Helayel-Neto, J.A.
1985-01-01
We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the lagrangian, introduces an arbitrary subtraction mass μ. The requirement that the S-matrix elements be independent of μ leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing β-function. (orig.)
Low-energy. beta. -function in a finite super-Yang-Mills model with multiple mass scales
Energy Technology Data Exchange (ETDEWEB)
Foda, O.; Helayel-Neto, J.A. (International Centre for Theoretical Physics, Trieste (Italy))
1985-02-14
We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the lagrangian, introduces an arbitrary subtraction mass ..mu... The requirement that the S-matrix elements be independent of ..mu.. leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing ..beta..-function.
The nuclear flow and the mass number dependence of the balance point
International Nuclear Information System (INIS)
Sebille, F.; de la Mota, V.; Remaud, B.; Schuck, P.
1990-01-01
The nuclear flow is studied theoretically with the Landau Vlasov equation in the E/A = 50 to 150 MeV energy domain using the finite range Gogny force. For comparison also other equations of states based on velocity independent mean fields are used. In this paper the mass number dependence of the balance point is investigated. A sensitivity of the flow on the equation of state as a function of mass and energies around and above the balance point can tentatively be advanced
Finite element analysis of an inflatable torus considering air mass structural element
Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.
2014-01-01
Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.
Masses of the Goldstone modes in the CFL phase of QCD at finite density
Manuel, C; Manuel, Cristina; Tytgat, Michel H. G.
2000-01-01
We construct the U_L(3) x U_R(3) effective lagrangian which encodes the dynamics of the low energy pseudoscalar excitations in the Color-Flavor-Locking superconducting phase of QCD at finite quark density. We include the effects of instanton-induced interactions and study the mass pattern of the pseudoscalar mesons. A tentative comparison with the analytical estimate for the gap suggests that some of these low energy momentum modes are not stable for moderate values of the quark chemical potential.
Thermo field dynamics in the treatment of the nuclear pairing problem at finite temperature
International Nuclear Information System (INIS)
Civitarese, O.; DePaoli, A.L.
1993-01-01
The use of the thermo field dynamics, in dealing with the study of nuclear properties at finite temperature, is discussed for the case of a nuclear Hamiltonian which includes a single-particle term and a monopole pairing residual two-body interaction. The rules of the thermo fields dynamics are applied to double the Hilbert space, thus accounting for the thermal occupation of single-particle states, and to construct dual spaces, both for single-particle (BCS) and collective (RPA) degrees of freedom. It is shown that the rules of the thermo field dynamics yield to a temperature dependence of the equations describing quasiparticle and phonon excitations which is similar to the one found in the more conventional finite temperature Wick's theorem approach, namely: By dealing with thermal averages. (orig.)
Simulation of incompressible flows with heat and mass transfer using parallel finite element method
Directory of Open Access Journals (Sweden)
Jalal Abedi
2003-02-01
Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.
$J/\\Psi$ mass shift in nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Gastao Krein, Anthony Thomas, Kazuo Tsushima
2011-02-01
The $J/\\Psi$ mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating $D$ and $D^*$ meson loop contributions to the $J/\\Psi$ self-energy employing medium-modified meson masses. The modification of the $D$ and $D^*$ masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The $J/\\Psi$ mass shift arising from the modification of the $D$ and $D^*$ loops at normal nuclear matter density is found to range from $-16$~MeV to $-24$~MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of $J/\\Psi$ to a nucleus are investigated.
Testing the predictive power of nuclear mass models
International Nuclear Information System (INIS)
Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.
2008-01-01
A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool
International Nuclear Information System (INIS)
Xiong Guangming; Deng Xiaoyun; Jin Ting
2013-01-01
Many perforated structures are used for nuclear power plant primary equipment, and they are complex, and have various forms. In order to explore the analysis and evaluation method, this paper used finite element method and equivalent analytic method to do the comparative analysis of perforated structures. The paper considered the main influence factors (including perforated forms, arrangements, and etc.), obtaining the systematic analysis methods of perforated structures. (authors)
The low-energy effective theory of QCD at small quark masses in a finite volume
Energy Technology Data Exchange (ETDEWEB)
Lehner, Christoph
2010-01-15
At low energies the theory of quantum chromodynamics (QCD) can be described effectively in terms of the lightest particles of the theory, the pions. This approximation is valid for temperatures well below the mass difference of the pions to the next heavier particles. We study the low-energy effective theory at very small quark masses in a finite volume V. The corresponding perturbative expansion in 1/{radical}(V) is called {epsilon} expansion. At each order of this expansion a finite number of low-energy constants completely determine the effective theory. These low-energy constants are of great phenomenological importance. In the leading order of the {epsilon} expansion, called {epsilon} regime, the theory becomes zero-dimensional and is therefore described by random matrix theory (RMT). The dimensionless quantities of RMT are mapped to dimensionful quantities of the low-energy effective theory using the leading-order lowenergy constants {sigma} and F. In this way {sigma} and F can be obtained from lattice QCD simulations in the '' regime by a fit to RMT predictions. For typical volumes of state-of-the-art lattice QCD simulations, finite-volume corrections to the RMT prediction cannot be neglected. These corrections can be calculated in higher orders of the {epsilon} expansion. We calculate the finite-volume corrections to {sigma} and F at next-to-next-to-leading order in the {epsilon} expansion. We also discuss non-universal modifications of the theory due to the finite volume. These results are then applied to lattice QCD simulations, and we extract {sigma} and F from eigenvalue correlation functions of the Dirac operator. As a side result, we provide a proof of equivalence between the parametrization of the partially quenched low-energy effective theory without singlet particle and that of the super-Riemannian manifold used earlier in the literature. Furthermore, we calculate a special version of the massless sunset diagram at finite volume without
Impact of Precision Mass Measurements on Nuclear Physics and Astrophysics
Kreim, Susanne; Dilling, Jens; Litvinov, Yuri A
2013-01-01
Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of neutron and proton number, N and Z, respectively. The data obtained through mass measurements provide details of the nuclear interaction and thus apply to a variety of physics topics. Some of the most crucial questions to be addressed by mass spectrometry of unstable radionuclides are, on the one hand, nuclear forces and structure, describing phenomena such as the so-called neutron-halos or the evolution of magic numbers when moving towards the borders of nuclear existence. On the other hand, the understanding of the processes of element formation in the Universe poses a challenge and requires an accurate knowledge of nuclear astrophysics. Here, precision atomic mass values of a large number of exotic nuclei participating in nucleosynthesis processes are among the key input data in large-scale reaction network calculations.
User's Manual for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code
Energy Technology Data Exchange (ETDEWEB)
George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease
1997-07-07
This document is a manual for the use of the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. The code is also capable of incorporating the various adsorption mechanisms, ranging from simple linear relations to nonlinear isotherms, needed to describe the very complex transport processes at Yucca Mountain. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data
Bootstrap calculation of the dynamical quark mass in QCD4 at finite temperature
International Nuclear Information System (INIS)
Cabo, A.; Kalashnikov, O.K.; Veliev, E.Kh.
1988-01-01
Nonperturbative calculations of the dynamical quark mass m(T) are given in QCD 4 , based on the bootstrap solution of the Schwinger-Dyson equation for the quark Green function at finite temperatures. A closed nonlinear equation is obtained for m(T) whose solution is found under some simplifying assumptions. We used a particular approximation for the effective charge and the nonperturbative expressions of the gluon magnetic and electric masses. The singular behavior of m(T) is established and its parameters are determined numerically. The singularity found is shown to correctly reproduce the chiral phase transition and the temperature limits obtained for m(T) are qualitatively correct. The complete phase diagram of QCD 4 in the (μ,T) plane is briefly discussed. (orig.)
User`s manual for the FEHM application -- A finite-element heat- and mass-transfer code
Energy Technology Data Exchange (ETDEWEB)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions.
International Nuclear Information System (INIS)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The mathematical models and numerical methods employed by the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multi-component flow in porous media, are described. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The component models of FEHM are discussed. The first major component, Flow- and Energy-Transport Equations, deals with heat conduction; heat and mass transfer with pressure- and temperature-dependent properties, relative permeabilities and capillary pressures; isothermal air-water transport; and heat and mass transfer with noncondensible gas. The second component, Dual-Porosity and Double-Porosity/Double-Permeability Formulation, is designed for problems dominated by fracture flow. Another component, The Solute-Transport Models, includes both a reactive-transport model that simulates transport of multiple solutes with chemical reaction and a particle-tracking model. Finally, the component, Constitutive Relationships, deals with pressure- and temperature-dependent fluid/air/gas properties, relative permeabilities and capillary pressures, stress dependencies, and reactive and sorbing solutes. Each of these components is discussed in detail, including purpose, assumptions and limitations, derivation, applications, numerical method type, derivation of numerical model, location in the FEHM code flow, numerical stability and accuracy, and alternative approaches to modeling the component
Burnup determination of mass spectrometry for nuclear fuels
International Nuclear Information System (INIS)
Zhang Chunhua.
1987-01-01
The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented
On finite volume effects in the chiral extrapolation of baryon masses
Lutz, M F M; Kobdaj, C; Schwarz, K
2014-01-01
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self energies are computed in a finite volume at next-to-next-to-next-to leading order (N^3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-N_c sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Precise values for all counter terms relevant at N^3LO are predicted. In particular we extract a pion-nucleon sigma term of (39 +- 1) MeV and a strangeness sigma term of the nucleon of sigma_{sN} simeq (4 +- 1) MeV. The flavour SU(3) chiral limit of the baryon octet and decuplet masses is determined with ( 802 +- 4 ) MeV and (1103 +- 6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.
The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model
Energy Technology Data Exchange (ETDEWEB)
Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)
2016-07-15
We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)
Finite temperature corrections to tachyon mass in intersecting D-branes
International Nuclear Information System (INIS)
Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu
2017-01-01
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Finite temperature corrections to tachyon mass in intersecting D-branes
Energy Technology Data Exchange (ETDEWEB)
Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)
2017-04-19
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
International Nuclear Information System (INIS)
Viswanathan, H.S.
1995-01-01
The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies
International Nuclear Information System (INIS)
Solov'ev, V.G.
1989-01-01
Basic equations are derived for the quasiparticle-phonon nuclear model for the finite-rank separable isoscalar and isovector multipole and spin-multipole and isovector tensor particle-hole and particle-particle interactions between quasiparticles. For even-even spherical nuclei it is shown that in the calculation of single-phonon states in the random phase approximation a significant complication arises due to the finite rank n max >1 of separable interactions. Taking into account separable interactions with n max >1 does not lead to significant difficulties in the calculation of fragmentation of quasiparticle and collective states. It is asserted that the model can be used as a basis for calculations of many characteristics of complex nuclei
Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram
International Nuclear Information System (INIS)
Moretto, L.G.; Elliott, J.B.; Phair, L.
2003-01-01
In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)
Applications of accelerator mass spectrometry to nuclear physics and astrophysics
International Nuclear Information System (INIS)
Guo Zhiyu; Zhang Chuan
2002-01-01
As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples
Mass media and nuclear energy - IAEA's role
International Nuclear Information System (INIS)
Kyd, D.R.
1993-11-01
The presentation covers the following areas: the wide spectrum of media outlets that the IAEA seeks to serve and their differing needs; the resources available to the IAEA for that purpose; the way in which IAEA endeavours to disseminate authoritative, reliable nuclear-related information to media; the exceptional role the IAEA may be called on to play in emergency situations
Mass Producing Targets for Nuclear Fusion
Wang, T. G.; Elleman, D. D.; Kendall, J. M.
1983-01-01
Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.
Systematics of nuclear mass and level density formulas
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Hisashi [Fuji Electric Co. Ltd., Kawasaki, Kanagawa (Japan)
1998-03-01
The phenomenological models of the nuclear mass and level density are close related to each other, the nuclear ground and excited state properties are described by using the parameter systematics on the mass and level density formulas. The main aim of this work is to provide in an analytical framework the improved energy dependent shell, pairing and deformation corrections generalized to the collective enhancement factors, which offer a systematic prescription over a great number of nuclear reaction cross sections. The new formulas are shown to be in close agreement with not only the empirical nuclear mass data but the measured slow neutron resonance spacings, and experimental systematics observed in the excitation energy dependent properties. (author)
Liquid-gas phase transition in asymmetric nuclear matter at finite temperature
International Nuclear Information System (INIS)
Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi
2010-01-01
Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.
Liquid-gas phase transition in asymmetric nuclear matter at finite temperature
Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi
2010-03-01
Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.
Energy Technology Data Exchange (ETDEWEB)
Kim, Wan Jae; Lee, Kyoung Soo; Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Univ., Seoul (Korea, Republic of)
2008-07-01
Distribution of welding residual stresses are mainly characterized by degrees and frequencies of thermal loads applied to materials. However, other effects as component size and clamping condition can also affect stress distributions to a certain extent thus careful manipulation of these parameters based on clear understanding of how they affect residual stresses distributions and why can be additional measure to mitigate residual stresses. This paper discusses aforementioned issues for the case of safety and relief nozzle in nuclear power plant through finite element analysis.
Finite element method used in strength calculations of nuclear power plant pressure vessels
International Nuclear Information System (INIS)
Hanulak, E.
1987-01-01
A software system based on the use of the finite element method in linear and nonlinear elastomechanics was developed for assessing the strength and service life of steam generators and pressurizers for WWER type nuclear power plants. The individual programs are briefly described. They are written in FORTRAN IV, some modules are in ASSEMBLER. Programs EGUSAP, NEANKO, ROSYNA are designed for the calculation of stress and deformation, programs ROSYNA, NEANKO and NTEPLO are used for the calculation of temperature fields. Programs SPOJ and STATES are used for assessing the strength and service life of screw joints and other nodes of the WWER-440 type steam generators and pressurizers. (Z.M.)
Meson dynamics and the nuclear many-body problem. II. Finite density Hartree-Fock
International Nuclear Information System (INIS)
Wilets, L.; Puff, R.D.; Chiang, D.; Nutt, W.T.
1976-01-01
The field-theoretic many-nucleon problem is formulated, and an analysis which sums all ''uncrossed meson line'' diagrams is investigated in detail. The calculation of energy per nucleon, after proper identification of infinite mass renormalization terms, exhibits effects of nuclear recoil, relativistic kinematics, and retardation. Numerical results are presented for π and ω mesons, and the nucleon interaction energies obtained are compared with the traditional static limit of infinite nucleon mass
Hartree-Fock calculations of nuclear masses
International Nuclear Information System (INIS)
Quentin, P.
1976-01-01
Hartree-Fock calculations pertaining to the determination of nuclear binding energies throughout the whole chart of nuclides are reviewed. Such an approach is compared with other methods. Main techniques in use are shortly presented. Advantages and drawbacks of these calculations are also discussed with a special emphasis on the extrapolation towards nuclei far from the stability valley. Finally, a discussion of some selected results from light to superheavy nuclei, is given [fr
FEHMN 1.0: Finite element heat and mass transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1991-04-01
A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user's guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs
Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments
International Nuclear Information System (INIS)
Balomenos, Georgios P.; Pandey, Mahesh D.
2017-01-01
Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.
Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments
Energy Technology Data Exchange (ETDEWEB)
Balomenos, Georgios P., E-mail: gbalomen@uwaterloo.ca; Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca
2017-01-15
Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.
Application of accelerator mass spectrometry in nuclear science
International Nuclear Information System (INIS)
Wang Xiaobo; Hu Jinjun; Wang Huijuan; Guan Yongjing; Wang Wei
2013-01-01
Accelerator mass spectrometry (AMS) is a promising method to provide extreme sensitivity measurements of the production yields of long-lived radioisotopes, which cannot be detected by other methods. AMS technique plays an important role in the research of nuclear physics, as well as the application field of AMS covered nuclear science and technology, life science, earth science, environmental science, archaeology etc. The newest AMS field is that of actinide, particularly U and Pu, isotopic assay with expanding applications in nuclear safeguards and monitoring, and as a modern bomb-fallout tracer for atmospheric transport and surface sediment movement. This paper reviews the applications of AMS in the research of nuclear energy and nuclear security including the research of half life of radionuclides, cross section of nuclear reaction. (authors)
International Nuclear Information System (INIS)
Viswanathan, H.S.
1996-08-01
The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies
Energy Technology Data Exchange (ETDEWEB)
Lee, Hong Pyo, E-mail: hplee@kepri.re.k [Nuclear Power Laboratory, Korea Electric Power Research Institute, 103-16 Munji-Dong, Yuseong-Gu, Daejeon 305-380 (Korea, Republic of)
2011-02-15
Research highlights: Finite element program with 9-node degenerated shell element was developed. The developed program was mainly forced to analyze nuclear containment building. Concrete material model is adapted Niwa and Yamada failure criteria. The performance of program developed is verified through various numerical examples. The numerical analysis results similar to the experimental data. - Abstract: This paper describes a 9-node degenerated shell finite element (FE), an analysis program developed for ultimate pressure capacity evaluation and nonlinear analysis of a nuclear containment building. The shell FE developed adopts the Reissner-Mindlin (RM) assumptions to consider the degenerated shell solidification technique and the degree of transverse shear strain occurring in the structure. The material model of the concrete determines the level of the concrete stress and strain by using the equivalent stress-equivalent strain relationship. When a crack occurs in the concrete, the material behavior is expressed through the tension stiffening model that takes adhesive stress into account and through the shear transfer mechanism and compressive strength reduction model of the crack plane. In addition, the failure envelope proposed by Niwa is adopted as the crack occurrence criteria for the compression-tension region, and the failure envelope proposed by Yamada is used for the tension-tension region. The performance of the program developed is verified through various numerical examples. The analysis based on the application of the shell FE developed from the results of verified examples produced results similar to the experiment or other analysis results.
International Nuclear Information System (INIS)
Lee, Hong Pyo
2011-01-01
Research highlights: → Finite element program with 9-node degenerated shell element was developed. → The developed program was mainly forced to analyze nuclear containment building. → Concrete material model is adapted Niwa and Yamada failure criteria. → The performance of program developed is verified through various numerical examples. → The numerical analysis results similar to the experimental data. - Abstract: This paper describes a 9-node degenerated shell finite element (FE), an analysis program developed for ultimate pressure capacity evaluation and nonlinear analysis of a nuclear containment building. The shell FE developed adopts the Reissner-Mindlin (RM) assumptions to consider the degenerated shell solidification technique and the degree of transverse shear strain occurring in the structure. The material model of the concrete determines the level of the concrete stress and strain by using the equivalent stress-equivalent strain relationship. When a crack occurs in the concrete, the material behavior is expressed through the tension stiffening model that takes adhesive stress into account and through the shear transfer mechanism and compressive strength reduction model of the crack plane. In addition, the failure envelope proposed by Niwa is adopted as the crack occurrence criteria for the compression-tension region, and the failure envelope proposed by Yamada is used for the tension-tension region. The performance of the program developed is verified through various numerical examples. The analysis based on the application of the shell FE developed from the results of verified examples produced results similar to the experiment or other analysis results.
Finite difference applied to the reconstruction method of the nuclear power density distribution
International Nuclear Information System (INIS)
Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.
2016-01-01
Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.
Analysis of diffractive pd to Xd and pp to Xp interactions and test of the finite-mass sum rule
Akimov, Y; Golovanov, L B; Goulianos, K; Gross, D; Malamud, E; Melissinos, A C; Mukhin, S; Nitz, D; Olsen, S; Sticker, H; Tsarev, V A; Yamada, R; Zimmerman, P
1976-01-01
The first moment finite mass sum rule is tested by utilising cross- sections for pp to Xp extracted from recent Fermilab data on pd to Xd and also comparing with CERN ISR data. The dependences on M/sub x//sup 2/, t and s are also discussed. (11 refs).
Infinite nuclear matter model and mass formulae for nuclei
International Nuclear Information System (INIS)
Satpathy, L.
2016-01-01
The matter composed of the nucleus is a quantum-mechanical interacting many-fermionic system. However, the shell and classical liquid drop have been taken as the two main features of nuclear dynamics, which have guided the evolution of nuclear physics. These two features can be considered as the macroscopic manifestation of the microscopic dynamics of the nucleons at fundamental level. Various mass formulae have been developed based on either of these features over the years, resulting in many ambiguities and uncertainties posing many challenges in this field. Keeping this in view, Infinite Nuclear Matter (INM) model has been developed during last couple of decades with a many-body theoretical foundation employing the celebrated Hugenholtz-Van Hove theorem, quite appropriate for the interacting quantum-mechanical nuclear system. A mass formula called INM mass formula based on this model yields rms deviation of 342 keV being the lowest in literature. Some of the highlights of its result includes its determination of INM density in agreement with the electron scattering data leading to the resolution of the long standing 'r 0 -paradox' it predicts new magic numbers giving rise to new island of stability in the drip-line regions. This is the manifestation of a new phenomenon where shell-effect over comes the repulsive component of nucleon-nucleon force resulting in the broadening of the stability peninsula. Shell quenching in N= 82,and N= 126 shells, and several islands of inversion have been predicted. The model determines the empirical value of the nuclear compression modulus, using high precission 4500 data comprising nuclear masses, neutron and proton separation energies. The talk will give a critical review of the field of mass formula and our understanding of nuclear dynamics as a whole
Validating neural-network refinements of nuclear mass models
Utama, R.; Piekarewicz, J.
2018-01-01
Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.
A low-energy β-function in a finite super-Yang-Mills model with multiple mass scales
International Nuclear Information System (INIS)
Foda, O.; Helayel-Neto, J.A.
1984-08-01
We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that the coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the Lagrangian, introduces an arbitrary subtraction mass μ. The requirement that the S-matrix elements be independent of μ leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing β-function. (author)
Estimation of unknown nuclear masses by means of the generalized mass relations. Pt. 3
International Nuclear Information System (INIS)
Popa, S.M.
1980-01-01
A survey of the estimations of the unknown nuclear masses by means of the generalized mass relations is presented. One discusses the new hypotheses supplementing the original general Garvey-Kelson scheme, reviewing the generalized mass relations and formulae, according to the present status of this new formalism. A critical discussions is given of the reliability of these new Garvey-Kelson type extrapolation procedures. (author)
Facing the challenge of nuclear mass tort processing
International Nuclear Information System (INIS)
Pelzer, Norbert
2017-01-01
A great majority of states do not issue any specific legislation on nuclear mass tort litigations. They apparently build on general traditional practice as most probably already tried and tested in other areas. Some states defer the decision on the way to deal with mass tort claims to the time of the nuclear incident. They insert into their nuclear liability laws respective 'reminders' that contain an invitation or a demand to the legislator to take appropriate steps if and when necessary. Finally, there are a number of states that enacted elaborate regimes on how to react to, and organise, compensation of mass damages after a catastrophic nuclear incident. Among those states are in particular major nuclear states like Canada, India, Japan and the US. They developed compensation schemes where claims for compensation of nuclear damage shall be dealt with by fora that are not regular courts. In some of those states, the fora are exclusively competent without a right to appeal their decisions, while in other states the fora act in parallel or in complement to courts. So the international scenario appears to be somewhat confusing. Of course, sovereign states are free to organise claims processing, including nuclear mass claims processing, as they deem fit. The discretion of states is, however, limited by obligations under public international law. With regard to the victims of nuclear incidents, states are particularly bound by obligations under the 1948 Universal Declaration of Human Rights and other relevant instruments they may be a party to. National nuclear mass claim processing has in particular to comply with the obligation to guarantee 'a fair and public hearing by an independent and impartial tribunal'. With regard to possible international obligations vis-a-vis other states, it has to be taken into account that major nuclear incidents, as a rule, have transboundary detrimental effects. There is always a potential impact on territories
Masses of exotic calcium isotopes pin down nuclear forces
Wienholtz, F; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K
2013-01-01
The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes $^{40}$Ca and $^{48}$Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of $^{51}$Ca and $^{52}$Ca have been validated by direct measurements$^4$, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes $^{53}$Ca and $^{54}$Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our t...
Finite size effects in liquid-gas phase transition of asymmetric nuclear matter
International Nuclear Information System (INIS)
Pawlowski, P.
2001-01-01
Full text: Since the nuclear equation of state has been studied in astrophysical context as an element of neutron star or super-nova theories - a call for an evidence was produced in experimental nuclear physics. Heavy-ion collisions became a tool of study on thermodynamic properties of nuclear matter. A particular interest has been inspired here by critical behavior of nuclear systems, as a phase transition of liquid-gas type. A lot of efforts was put to obtain an experimental evidence of such a phenomenon in heavy-ion collisions. With the use of radioactive beams and high performance identification systems in a near future it will be possible to extend experimental investigation to asymmetric nuclear systems, where neutron-to-proton ratio is far from the stability line. This experimental development needs a corresponding extension of theoretical studies. To obtain a complete theory of the liquid-gas phase transition in small nuclear systems, produced in violent heavy-ion collisions, one should take into account two facts. First, that the nuclear matter forming nuclei is composed of protons and neutrons; this complicates the formalism of phase transitions because one has to deal with two separate, proton and neutron, densities and chemical potentials. The second and more important is that the surface effects are very strong in a system composed of a few hundreds of nucleons. This point is especially difficult to hold, because surface becomes an additional, independent state parameter, depending strongly on the geometrical configuration of the system, and introducing a non-local term in the equation of state. In this presentation we follow the recent calculation by Lee and Mekjian on the finite-size effects in small (A = 10 2 -10 3 ) asymmetric nuclear systems. A zero-range isospin-dependent Skyrme force is used to obtain a density and isospin dependent potential. The potential is then completed by additional terms giving contributions from surface and Coulomb
Dependence of X-Ray Burst Models on Nuclear Masses
Energy Technology Data Exchange (ETDEWEB)
Schatz, H.; Ong, W.-J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)
2017-08-01
X-ray burst model predictions of light curves and the final composition of the nuclear ashes are affected by uncertain nuclear masses. However, not all of these masses are determined experimentally with sufficient accuracy. Here we identify the remaining nuclear mass uncertainties in X-ray burst models using a one-zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated—a typical mixed H/He burst with a limited rapid proton capture process (rp-process) and an extreme mixed H/He burst with an extended rp-process. When allowing for a 3 σ variation, only three remaining nuclear mass uncertainties affect the light-curve predictions of a typical H/He burst ({sup 27}P, {sup 61}Ga, and {sup 65}As), and only three additional masses affect the composition strongly ({sup 80}Zr, {sup 81}Zr, and {sup 82}Nb). A larger number of mass uncertainties remain to be addressed for the extreme H/He burst, with the most important being {sup 58}Zn, {sup 61}Ga, {sup 62}Ge, {sup 65}As, {sup 66}Se, {sup 78}Y, {sup 79}Y, {sup 79}Zr, {sup 80}Zr, {sup 81}Zr, {sup 82}Zr, {sup 82}Nb, {sup 83}Nb, {sup 86}Tc, {sup 91}Rh, {sup 95}Ag, {sup 98}Cd, {sup 99}In, {sup 100}In, and {sup 101}In. The smallest mass uncertainty that still impacts composition significantly when varied by 3 σ is {sup 85}Mo with 16 keV uncertainty. For one of the identified masses, {sup 27}P, we use the isobaric mass multiplet equation to improve the mass uncertainty, obtaining an atomic mass excess of −716(7) keV. The results provide a roadmap for future experiments at advanced rare isotope beam facilities, where all the identified nuclides are expected to be within reach for precision mass measurements.
The Newtonian force experienced by a point mass near a finite cylindrical source
International Nuclear Information System (INIS)
Selvaggi, Jerry P; Salon, Sheppard; Chari, M V K
2008-01-01
The Newtonian gravitational force experienced by a point mass located at some external point from a thick-walled, hollow and uniform finite circular cylindrical body was recently solved by Lockerbie, Veryaskin and Xu (1993 Class. Quantum Grav. 10 2419). Their method of attack relied on the introduction of the circular cylindrical free-space Green function representation for the inverse distance which appears in the formulation of the Newtonian potential function. This ultimately leads Lockerbie et al to a final expression for the Newtonian potential function which is expressed as a double summation of even-ordered Legendre polynomials. However, the kernel of the cylindrical free-space Green function which is represented by an infinite integral of the product of two Bessel functions and a decaying exponential can be analytically evaluated in terms of a toroidal function. This leads to a simplification in the mathematical analysis developed by Lockerbie et al. Also, each term in the infinite series solution for the Newtonian potential function can be expressed in closed form in terms of elementary functions. The authors develop the Newtonian potential function by employing toroidal functions of zeroth order or Legendre functions of half-integral degree, Q m-1/2 (β)(Bouwkamp and de Bruijn 1947 J. Appl. Phys.18 562, Cohl et al 2001 Phys. Rev.A 64 052509-1, Selvaggi et al 2004 IEEE Trans. Magn.40 3278). These functions are monotonically decreasing and converge rapidly (Moon and Spencer 1961 Field Theory for Engineers (New Jersey: Van Nostrand Company) pp 368-76, Cohl and Tohline 1999 Astrophys. J.527 86). The introduction of the toroidal harmonic expansion leads to an infinite series solution for which each term can be expressed as an elementary function. This enables one to easily compute the axial and radial forces experienced by an internal or an external point mass
Theories of Variable Mass Particles and Low Energy Nuclear Phenomena
Davidson, Mark
2014-02-01
Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.
Effects of Brown-Rho scalings in nuclear matter, neutron stars and finite nuclei
Kuo, T. T. S.; Dong, Huan
2011-01-01
We have carried out calculations for nuclear matter, neutron stars and finite nuclei using NN potentials with and without the medium-dependent modifications based on the Brown-Rho (BR) scalings. Using the Vlow-k low-momentum interactions derived from such potentials, the equations of state (EOS) for symmetric and asymmetric nuclear matter, for densities up to ~ 5ρ0, are calculated using a RPA method where the particle-particle hole-hole ring diagrams are summed to all orders. The medium effects from both a linear BR scaling (BR1) and a non-linear one (BR2) are considered, and they both are essential for our EOSs to reproduce the nuclear matter saturation properties. For densities ρ below ρ0, results from BR1 and BR2 are close to each other. For higher densities, the EOS given by BR2 is more desirable and is well reproduced by that given by the interaction (Vlow-k+TBF) where Vlow-k is the unsealed low-momentum interaction and TBF is an empirical Skyrme three-body force. The moment of inertia of neutron stars is ~ 60 and ~ 25Modotkm2 respectively with and without the inclusion of the above BR2 medium effects. Effects from the BR scaling are important for the long half-life, ~ 5000yrs, of the 14C - 14N β-decay.
Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond
Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.
2018-05-01
The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.
Chatterjee, D.; Gulminelli, F.; Raduta, Ad. R.; Margueron, J.
2017-12-01
The question of correlations among empirical equation of state (EoS) parameters constrained by nuclear observables is addressed in a Thomas-Fermi meta-modeling approach. A recently proposed meta-modeling for the nuclear EoS in nuclear matter is augmented with a single finite size term to produce a minimal unified EoS functional able to describe the smooth part of the nuclear ground state properties. This meta-model can reproduce the predictions of a large variety of models, and interpolate continuously between them. An analytical approximation to the full Thomas-Fermi integrals is further proposed giving a fully analytical meta-model for nuclear masses. The parameter space is sampled and filtered through the constraint of nuclear mass reproduction with Bayesian statistical tools. We show that this simple analytical meta-modeling has a predictive power on masses, radii, and skins comparable to full Hartree-Fock or extended Thomas-Fermi calculations with realistic energy functionals. The covariance analysis on the posterior distribution shows that no physical correlation is present between the different EoS parameters. Concerning nuclear observables, a strong correlation between the slope of the symmetry energy and the neutron skin is observed, in agreement with previous studies.
Equidistant structure and effective nucleon mass in nuclear matter
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1981-11-01
The effective nucleon mass of the Equidistant Multi-Layer Structure (EMULS) is discussed self-consistently. In the density region where the Fermi gas state in nuclear matter is unstable against the density fluctuation, the EMULS gives lower binding energy. It is, however, shown that such a structure with an ordinary nucleon mass collapses due to too strong attraction. We point out that such a collapse can be avoided by taking account of an effective nucleon mass affected by the localization of nucleons. (author)
Nuclear reactions of high energy deuterons with medium mass targets
International Nuclear Information System (INIS)
Numajiri, Masaharu; Miura, Taichi; Oki, Yuichi
1994-01-01
Formation cross sections of product nuclides in the nuclear reactions of medium mass targets by 10 GeV deuterons were measured with a gamma-ray spectroscopy. The measured data were compared with the cross sections of 12 GeV protons. (author)
Role of mass spectrometry in nuclear forensic science
International Nuclear Information System (INIS)
Joseph, M.; Sivaraman, N.
2016-01-01
The present talk will focus on the role of mass spectrometry in NFS in general; besides that, the various chromatographic methods developed towards separation of actinides and lanthanide fission products and characterization of dissolver solutions of nuclear reactor fuels using TIMS and some applications of using ICP-MS as well
Extrapolations of nuclear binding energies from new linear mass relations
DEFF Research Database (Denmark)
Hove, D.; Jensen, A. S.; Riisager, K.
2013-01-01
We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...
The nuclear waste issue in Swedish mass media
International Nuclear Information System (INIS)
Hedberg, P.
1991-04-01
This is an investigation of the representation given in the Swedish mass media of questions concerning the nuclear waste. The investigation covers the period from 1979 to 1989 of 8 newspapers of different political colours and the Swedish radio and television. (KAE)
The delay function in finite difference models for nuclear channels thermo-hydraulic transients
International Nuclear Information System (INIS)
Agazzi, A.
1977-01-01
The study of the thermo-hydraulic transients in a nuclear reactor core often requires a bi- or tri-dimensional mathematical simulation of a reactor channel. The equations involved are generally solved by means of finite-difference methods. The determination of the spatial mesh-width and the time interval is strongly conditioned by the necessity of a good accuracy in the description of the delay function which defines the transfer of thermal perturbations along the cooling channel. In this paper the effects of both space and time discretization on the delay function are considered and for the classical cases of inlet temperature step and ramp universal functions and diagrams are given in order to make possible the determination of optimal spatial mesh-width and time interval, once the requested accuracy of the model is fixed in advance
International Nuclear Information System (INIS)
Gupta, A.; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.
1996-01-01
For safety evaluation of nuclear structures a finite element code ULCA (Ultimate Load Capacity Assessment) has been developed. Eight/nine noded isoparametric quadrilateral plate/shell element with reinforcement as a through thickness discrete but integral smeared layer of the element is presented to analyze reinforced and prestressed concrete structures. Various constitutive models such as crushing, cracking in tension, tension stiffening and rebar yielding are studied and effect of these parameters on the reserve strength of structures is brought out through a number of benchmark tests. A global model is used to analyze the prestressed concrete containment wall of a typical 220 MWe Pressurized Heavy Water Reactor (PHWR) up to its ultimate capacity. This demonstrates the adequacy of Indian PHWR containment design to withstand severe accident loads
Improved Nuclear Reactor and Shield Mass Model for Space Applications
Robb, Kevin
2004-01-01
New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.
Finite nuclear size and Lamb shift of p-wave atomic states
International Nuclear Information System (INIS)
Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.
2003-01-01
We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p 1/2 state starts with a α ln(1/Zα) term, while for the s 1/2 states it starts with a Zα 2 term. Here, α is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the α terms for that 2p states, the result for the 2p 1/2 state reads (8α/9π){ln[1/(Zα) 2 ]+0.710}. Even more interesting are the p 3/2 states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small
Infinite nuclear matter based for mass of atomic nuclei
International Nuclear Information System (INIS)
Satpathy, L.
1987-01-01
The ground-state energy of an atomic nucleus with asymmetry β is considered to be equivalent to the energy of a perfect sphere made up of infinite nuclear matter of the same asymmetry plus a residual energy eta, called the local energy. Eta represents the energy due to shell, deformation, diffuseness and exchange Coulomb effects, etc. Using this picture and the generalised Hugenholtz-Van Hove theorem of many-body theory, the previously proposed mass relation is derived in a transport way in which eta drops away in a very natural manner. The validity of this mass relation is studied globally using the latest mass table. The model is suitable for the extraction of the saturation properties of nuclear matter. The binding energy per nucleon and the saturation Fermi momentum of nuclear matter obtained through this model are 18.33 MeV and 1.48 fm -1 respectively. It is shown in several representative cases in the Periodic Table that the masses of nuclei in the far unknown region can be reliably predicted. (author)
Nuclear mass formulas and its application for astrophysics
International Nuclear Information System (INIS)
Koura, Hiroyuki
2003-01-01
Some nuclear mass formulae are reviewed and applied for the calculation of the rapid neutron-capture-process (r-process) nucleosynthesis. A new mass formula composed of the gross term, the even-odd term, and the shell term is also presented. The new mass formula is a revised version of the spherical basis mass formula published in 2001, that is, the even-odd term is treated more carefully, and a considerable improvement is brought about. The root-mean-square deviation of the new formula from experimental masses is 641 keV for Z ≥ 8 and N ≥ 8. Properties on systematic of the neutron-separation energy is compared with some mass formulas. The calculated abundances of the r-process from different mass formulae are compared with use of a simple reaction model, and the relation between the calculated abundances and the corresponding masses are discussed. Furthermore, fission barriers for the superheavy and neutron-rich nuclei are also applied for the endpoint of the r-process. (author)
Mass shift of σ-meson in nuclear matter
International Nuclear Information System (INIS)
Morones-Ibarra, J.R.; Maciel, Mónica Menchaca; Padilla, Felipe Robledo; Santos-Guevara, Ayax
2013-01-01
The propagation of σ-meson in nuclear matter is studied in the Walecka model, by assuming that sigma couples to a pair of nucleon-antinucleon states to particle-hole states. The in-medium effect of σ-ω mixing is also studied. For completeness, the coupling of sigma to two virtual pions was also considered. It is found that the σ-meson mass decreases with respect to its value in vacuum and that the contribution of the σ-ω mixing effect on the mass shift is relatively small. (author)
Unified model of nuclear mass and level density formulas
International Nuclear Information System (INIS)
Nakamura, Hisashi
2001-01-01
The objective of present work is to obtain a unified description of nuclear shell, pairing and deformation effects for both ground state masses and level densities, and to find a new set of parameter systematics for both the mass and the level density formulas on the basis of a model for new single-particle state densities. In this model, an analytical expression is adopted for the anisotropic harmonic oscillator spectra, but the shell-pairing correlation are introduced in a new way. (author)
Litman, Yair; Donadio, Davide; Ceriotti, Michele; Rossi, Mariana
2018-03-01
Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water
Thomas-Fermi approach to nuclear mass formula. Pt. 1
International Nuclear Information System (INIS)
Dutta, A.K.; Arcoragi, J.P.; Pearson, J.M.; Tondeur, F.
1986-01-01
With a view to having a more secure basis for the nuclear mass formula than is provided by the drop(let) model, we make a preliminary study of the possibilities offered by the Skyrme-ETF method. Two ways of incorporating shell effects are considered: the ''Strutinsky-integral'' method of Chu et al., and the ''expectation-value'' method of Brack et al. Each of these methods is compared with the HF method in an attempt to see how reliably they extrapolate from the known region of the nuclear chart out to the neutron-drip line. The Strutinsky-integral method is shown to perform particularly well, and to offer a promising approach to a more reliable mass formula. (orig.)
Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method
International Nuclear Information System (INIS)
Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.
2014-01-01
Highlights: • An hp finite element method is proposed for the Lambda modes problem of a nuclear reactor. • Different strategies can be implemented for increasing the accuracy of the solutions. • 2D and 3D benchmarks have been studied obtaining accurate results. - Abstract: Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h–p-Adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor
Mass shift of σ-meson in nuclear matter
Indian Academy of Sciences (India)
Mass shift of σ-meson in nuclear matter. J R MORONES-IBARRA1, MÓNICA MENCHACA MACIEL1,∗. ,. AYAX SANTOS-GUEVARA2 and FELIPE ROBLEDO PADILLA1. 1Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, UANL,. Av. Universidad S/N Ciudad Universitaria, San Nicolás de los ...
A quadrupole mass spectrometer system for nuclear safeguards applications
International Nuclear Information System (INIS)
Evans, P.J.
1987-12-01
An on-line enrichment monitor for nuclear safeguards-related surveillance of a pilot-scale gas centrifuge plant is described. This monitor utilises a quadrupole mass spectrometer to measure the isotopic composition of UF 6 in the feed and product gas streams. Details of the design and construction are given, and several difficulties are identified and discussed. Finally, the performance of this system is illustrated with typical results
The dynamics of the nuclear disassembly in a field-theoretical model at finite entropies
International Nuclear Information System (INIS)
Knoll, J.; Strack, B.
1984-10-01
The expansion phase of a hot nuclear system as created in an energetic heavy-ion collision is calculated and discussed by a selfconsistent field-theoretical model. Dynamical instabilities arising during the expansion from strong fluctuations of the one-body density are included explicitely. First multiplicity distributions and mass spectra resulting from a series of numerical runs in a 2+1 dimensional model world are presented. The dependence of break-up dynamics both on the properties of the binding force and possible correlations in the initially compressed hot state are discussed. (orig.)
Deformation and shell effects in nuclear mass formulas
International Nuclear Information System (INIS)
Barbero, César; Hirsch, Jorge G.; Mariano, Alejandro E.
2012-01-01
We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo–Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.
Deformation and shell effects in nuclear mass formulas
Energy Technology Data Exchange (ETDEWEB)
Barbero, Cesar [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina); Hirsch, Jorge G., E-mail: hirsch@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Mariano, Alejandro E. [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina)
2012-01-15
We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo-Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.
Finite element analysis of ion transport in solid state nuclear waste form materials
Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.
2017-09-01
Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.
International Nuclear Information System (INIS)
Yeh, G.T.
1980-01-01
Darcian velocity has been conventionally calculated in the finite-element modeling of groundwater flow by taking the derivatives of the computed pressure field. This results in discontinuities in the velocity field at nodal points and element boundaries. Discontinuities become enormous when the computed pressure field is far from a linear distribution. It is proposed in this paper that the finite element procedure that is used to simulate the pressure field or the moisture content field also be applied to Darcy's law with the derivatives of the computed pressure field as the load function. The problem of discontinuity is then eliminated, and the error of mass balance over the region of interest is much reduced. The reduction is from 23.8 to 2.2% by one numerical scheme and from 29.7 to -3.6% by another for a transient problem
Sensitivity studies for the main r process: nuclear masses
Directory of Open Access Journals (Sweden)
A. Aprahamian
2014-02-01
Full Text Available The site of the rapid neutron capture process (r process is one of the open challenges in all of physics today. The r process is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an r process to occur and a vast lack of knowledge about the properties of nuclei far from stability. One way is to disentangle the nuclear and astrophysical components of the question. On the nuclear physics side, there is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. On the astrophysics side, various astrophysical scenarios for the production of the heaviest elements have been proposed but open questions remain. This paper reports on a sensitivity study of the r process to determine the most crucial nuclear masses to measure using an r-process simulation code, several mass models (FRDM, Duflo-Zuker, and HFB-21, and three potential astrophysical scenarios.
International Nuclear Information System (INIS)
Dai, Yang; Borisov, Alexey B.; Boyer, Keith; Rhodes, Charles K.
2000-01-01
The construction of inverse states in a finite field F P α enables the organization of the mass scale with fundamental octets in an eight-dimensional index space that identifies particle states with residue class designations. Conformance with both CPT invariance and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two parameters (P α and g α ) that are anchored on a concordance of physical data, this treatment leads to (1) a prospective mass for the muon neutrino of approximately27.68 meV, (2) a value of the unified strong-electroweak coupling constant α* = (34.26) -1 that is physically defined by the ratio of the electron neutrino and muon neutrino masses, and (3) a see-saw congruence connecting the Higgs, the electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding supersymmetric Higgs pair reveals that both particles are superheavy (> 10 18 GeV). No renormalization of the Higgs masses is introduced, since the calculational procedure yielding their magnitudes is intrinsically divergence-free. Further, the Higgs fulfills its conjectured role through the see-saw relation as the particle defining the origin of all particle masses, since the electron and muon neutrino systems, together with their supersymmetric partners, are the generators of the mass scale and establish the corresponding index space. Finally, since the computation of the Higgs masses is entirely determined by the modulus of the field P α , which is fully defined by the large-scale parameters of the universe through the value of the universal gravitational constant G and the requirement for perfect flatness (Omega = 1.0), the see-saw congruence fuses the concepts of mass and space and creates a new unified archetype
International Nuclear Information System (INIS)
Noy, D.J.
1984-11-01
A group of finite element programs are described which may be used for the analysis of complex single borehole hydraulic and tracer experiments in porous media. An outline is given of the theoretical development of the model and the computational procedures used. The equations are solved with the aid of routines specifically designed for efficient operation on vector processing machines. Finally, two simple examples of output generated by the programs are given. (author)
International Nuclear Information System (INIS)
Yamada, Tomonori
2010-01-01
The safety requirement of nuclear power plant attracts much attention nowadays. With the growing computing power, numerical simulation is one of key technologies to meet this safety requirement. Center for Computational Science and e-Systems of Japan Atomic Energy Agency has been developing a finite element analysis code for assembled structure to accurately evaluate the structural integrity of nuclear power plant in its entirety under seismic events. Because nuclear power plant is very huge assembled structure with tens of millions of mechanical components, the finite element model of each component is assembled into one structure and non-conforming meshes of mechanical components are bonded together inside the code. The main technique to bond these mechanical components is triple sparse matrix multiplication with multiple point constrains and global stiffness matrix. In our code, this procedure is conducted in a component by component manner, so that the working memory size and computing time for this multiplication are available on the current computing environment. As an illustrative example, seismic simulation of a real nuclear reactor of High Temperature engineering Test Reactor, which is located at the O-arai research and development center of JAEA, with 80 major mechanical components was conducted. Consequently, our code successfully simulated detailed elasto-plastic deformation of nuclear reactor and its computational performance was investigated. (author)
Analysis on one underground nuclear waste repository rock mass in USA
International Nuclear Information System (INIS)
Ha Qiuling; Zhang Tiantian
2012-01-01
When analyzing the rock mass of a underground nuclear waste repository, the current studies are all based on the loading mechanical condition, and the unloading damage of rock mass is unconsidered. According to the different mechanical condition of actual engineering rock mass of loading and unloading, this paper implements a comprehensive analysis on the rock mass deformation of underground nuclear waste repository through the combination of present loading and unloading rock mass mechanics. It is found that the results of comprehensive analysis and actual measured data on the rock mass deformation of underground nuclear waste repository are basically the same, which provide supporting data for the underground nuclear waste repository. (authors)
New discovery: Quantization of atomic and nuclear rest mass differences
International Nuclear Information System (INIS)
Gareev, F. A.; Zhidkova, I. E.
2007-01-01
We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize [1] phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔ M = n 1 /n 2 x 0.0076294 (in MeV/c 2 ), n i =1,2,3,... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research fields can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste. References [1] F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0610002 2006
Directory of Open Access Journals (Sweden)
Yuan Zhang
2016-01-01
Full Text Available Based on finite difference method, a mathematical model and a numerical model written by Fortran language were established in the paper. Then a series of experiments were conducted to figure out the evolution law of temperature field in high geothermal roadway. Research results indicate that temperature disturbance range increases gradually as the unsteady heat conduction goes on and it presents power function relationship with dimensionless time. Based on the case analysis, there is no distinct expansion of temperature disturbance range after four years of ventilation, when the temperature disturbance range R=13.6.
Investigation of an orbital mass - the role of nuclear medicine
International Nuclear Information System (INIS)
Dunlop, R. V.
2009-01-01
Full text:A 35 year old male presented, suffering from night sweats, occipital and frontal headaches, blurred vision, nausea and a decrease in appetite. He underwent a CT and MRI scan, which identified a 2.2cm lesion in the left orbit in an intra-conal position. This was suspected to be a cavernous haemangioma, although other tumours, such as Schwannoma could not be ruled out. A nuclear medicine labelled red blood cell study was performed which included initial dynamic images and early statics and 120min delayed images. SPECT/CT was also performed at the later time. The characteristic blood pool mismatch of low early and high delayed concentration of red blood cells confirmed suspicions of a cavernous haemangioma, which, although comprised mainly of blood vessels, has slow flow. Hence there is considerable delay before maximum activity is reached. The lesion was surgically removed. Histology reports confirmed the nuclear medicine results. Nuclear Medicine has the potential to play a significant role in the preoperative diagnosis of an orbital mass.
Effective mass of omega meson and NNω interaction at finite temperature and density
International Nuclear Information System (INIS)
Gao, S.; Su, R.; Yu, P.K.N.
1994-01-01
By means of the thermofield dynamical theory, the effective mass of omega meson is calculated by summing the bubble diagrams. It is found that the formula for the effective mass of the ρ meson can also be used to describe the ω meson in the low density region, but the parameter n and the critical temperature T c depend on the density. The temperature and density dependence of one omega exchage potential of nucleon-nucleon interaction are given. The conjecture of Brown and Rho about the effective masses of mesons is discussed
Wave Propagation in Finite Element and Mass-Spring-Dashpot Lattice Models
National Research Council Canada - National Science Library
Holt-Phoenix, Marianne S
2006-01-01
...), and a mass-spring-dashpot lattice model (MSDLM) are investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson's ratio and angle of incidence is evaluated in each model of an isotropic elastic solid...
Some error estimates for the lumped mass finite element method for a parabolic problem
Chatzipantelidis, P.; Lazarov, R. D.; Thomé e, V.
2012-01-01
for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods
The Higgs transverse momentum spectrum with finite quark masses beyond leading order
Caola, Fabrizio; Marzani, Simone; Muselli, Claudio; Vita, Gherardo
2016-01-01
We apply the leading-log high-energy resummation technique recently derived by some of us to the transverse momentum (pt) distribution for production of a Higgs boson in gluon fusion. We use our results to obtain information on mass-dependent corrections to this observable, which is only known at leading order when exact mass dependence is included. In the low pt region we discuss the all-order exponentiation of collinear bottom mass logarithms. In the high pt region we show that the infinite top mass approximation loses accuracy as a power of pt, while the accuracy of the high-energy approximation is approximately constant as pt grows. We argue that a good approximation to the NLO result for pt >~200 GeV can be obtained by combining the full LO result with a K-factor computed using the high-energy approximation.
Finite-lattice-spacing corrections to masses and g factors on a lattice
International Nuclear Information System (INIS)
Roskies, R.; Wu, J.C.
1986-01-01
We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice
FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media
Diersch, Hans-Jörg G
2013-01-01
Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.
Some error estimates for the lumped mass finite element method for a parabolic problem
Chatzipantelidis, P.
2012-01-01
We study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods. © 2011 American Mathematical Society.
International Nuclear Information System (INIS)
Dang, N.D.
1986-01-01
The discovery of giant resonances in reactions of nuclei with heavy ions and in deep inelastic processes has stimulated interest in the study of the properties of highly excited nuclei. By taking into account exactly the population numbers of the single-phonon levels, the authors obtain a system of equations describing the interaction with the configurations in even-even spherical nuclei at a finite temperature. The Pauli principle is taken into account for the two-phonon components of the wave function of the excited states in accordance with an approximate procedure. The new diagrams associated with the introduction of the temperature are analyzed, and a comparison is made with the diagrams of nuclear field theory and the results of the theory of finite Fermi systems
A Simple Correlation for Neutron Capture Rates from Nuclear Masses
Energy Technology Data Exchange (ETDEWEB)
Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-30
Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In an astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.
Prediction of heat and mass transfer in innovative nuclear reactors
International Nuclear Information System (INIS)
Ambrosini, W.; Forgione, N.; Manfredini, A.; Oriolo, F.
2000-01-01
This paper proposes a short review of the different forms adopted to express the analogy between heat and mass transfer for application in correlating data from condensation and evaporation experiments. In particular, the assumptions at the basis of the various forms presented by classical textbooks as well as recent research work are qualitatively discussed, proposing a unified treatment of the different models. On this background, the results of the application of one of the considered forms of the analogy to a problem having relevance for nuclear reactor safety are then discussed. The work performed in this frame is related to condensation on finned tube heat exchangers, proposed as key components in passive containment cooling systems adopted in some innovative reactor concepts. The application of the model to the experimental dana also allowed to obtain interesting information about the effect of different parameters on the cooling capabilities of this compact heat exchangers. (author)
Nuclear technology: katulong sa pag-unlad ng masa [support for the progress of the masses
International Nuclear Information System (INIS)
1999-01-01
The topics discussed during the convention is the usefulness of nuclear science and technology in national development and to promote the beneficial uses of nuclear science and technology to support for the progress of the masses
Accelerator Mass Spectrometry with 15 UD pelletron at the Nuclear Science Centre, New Delhi
International Nuclear Information System (INIS)
Datta, S.K.
1997-01-01
The 15 UD Pelletron machine is widely used to carry on investigations in a variety of disciplines like nuclear physics, materials science, radiobiology etc. Accelerator Mass Spectrometry studies with 15 UD pelletron machine at Nuclear Science Centre are elaborated
Radiocarbon mass balance for a Magnox nuclear power station
International Nuclear Information System (INIS)
Metcalfe, M.P.; Mills, R.W.
2015-01-01
Highlights: • First comprehensive assessment of C-14 arisings in a Magnox nuclear power station. • C-14 production in graphite and coolant gas quantified by activation modelling. • Principal C-14 production pathway is via C-13 with a small contribution from N-14. • C-14 mass balance model provides a basis for analyses on other reactors. - Abstract: Nuclear power generation in the United Kingdom is based principally on graphite-moderated gas-cooled reactors. The mass of irradiated graphite associated with these reactors, including material from associated experimental, prototype and plutonium production reactors, exceeds 96,000 tonnes. One of the principal long-lived radionuclides produced during graphite irradiation is radiocarbon (C-14). Its potential as a hazard must be taken into account in decommissioning and graphite waste management strategies. While C-14 production processes are well-understood, radionuclide distributions and concentrations need to be characterised. A common misconception is that generic statements can be made about C-14 precursors and their location. In fact, the composition of the original manufactured material, the chemical environment of the graphite during service and its irradiation history will all influence C-14 levels. The analysis presented here provides the first assessment of the principal C-14 activation pathways for a UK Magnox reactor. Activation modelling has been used to predict C-14 production rates in both the graphite core and the carbon dioxide coolant over a selected period of operation and the results compared with monitored site C-14 discharges. Principal activation routes have been identified, which should inform future graphite waste management strategies relating to radiocarbon
Mass of the Stabilized Radion in the Limit of Finite Quartic Coupling
Directory of Open Access Journals (Sweden)
Ali Tofighi
2017-01-01
Full Text Available We present an exact treatment of the modulus stabilization condition with the general boundary conditions of the bulk scalar field in the Randall-Sundrum model. We find analytical expressions for the value of the modulus and the mass of the radion.
Maasha, Rumaasha; Towner, Robert L.
2012-01-01
High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons
Energy Technology Data Exchange (ETDEWEB)
Singla, M., E-mail: M.Singla@gsi.de [Goethe University, Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Chatterji, S.; Müller, W.F.J.; Kleipa, V.; Heuser, J.M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)
2014-01-21
The first three-dimensional simulation study of thin multi-line readout cables using finite element simulation tool RAPHAEL is being reported. The application is the Silicon Tracking System (STS) of the fixed-target heavy-ion experiment Compressed Baryonic Matter (CBM), under design at the forthcoming accelerator center FAIR in Germany. RAPHAEL has been used to design low-mass analog readout cables with minimum possible Equivalent Noise Charge (ENC). Various trace geometries and trace materials have been explored in detail for this optimization study. These cables will bridge the distance between the microstrip detectors and the signal processing electronics placed at the periphery of the silicon tracking stations. SPICE modeling has been implemented in Sentaurus Device to study the transmission loss (dB loss) in cables and simulation has been validated with measurements. An optimized design having minimum possible ENC, material budget and transmission loss for the readout cables has been proposed.
Measuring the Higgs Boson Self Coupling at the LHC and Finite Top Mass Matrix Elements
Baur, Ulrich; Rainwater, D L; Baur, Uli; Plehn, Tilman; Rainwater, David
2002-01-01
Inclusive Standard Model Higgs boson pair production and subsequent decay to same-sign dileptons via weak gauge W bosons at the CERN Large Hadron Collider has the capability to determine the Higgs boson self-coupling, lambda. The large top quark mass limit is found not to be a good approximation for the signal if one wishes to utilize differential distributions in the analysis. We find that it should be possible at the LHC with design luminosity to establish that the Standard Model Higgs boson has a non-zero self-coupling and that lambda/lambda(SM) can be restricted to a range of 0--3.7 at 95% confidence level if its mass is between 150 and 200 GeV.
Radiocarbon Mass Balance for a Magnox Nuclear Power Station
International Nuclear Information System (INIS)
Metcalfe, M.P.; Mills, R.W.
2016-01-01
Nuclear power generation in the United Kingdom is based principally on graphite-moderated gas-cooled reactors. The mass of irradiated graphite associated with these reactors, including material from associated experimental, prototype and production reactors, exceeds 96,000 tonnes. One of the principal long-lived radionuclides produced during graphite irradiation is radiocarbon (C-14), which has a half-life of 5730 ± 40 years. Decommissioning and graphite waste management strategies must take account of this radionuclide. In order to identify appropriate options for addressing the potential hazard of C-14, it is important that the production processes are understood and the distributions and concentrations of C-14 are characterised. In fact, C-14 precursors and their activation processes are well-known. However, there is ongoing debate over the relative importance of different C-14 precursors, which will determine the location of C-14 within graphite components and hence its mobility/response to treatment. A generally held misconception concerning C-14 in irradiated graphite is that generic statements can be made about its precursors and their location. C-14 location and activities will depend upon the composition of the original manufactured graphite (raw materials, impurities), the chemical environment of the graphite during service and the irradiation history of the graphite. So, while there may be some similarities across, for example, carbon dioxide cooled graphite moderated designs (Magnox, AGR, UNGG), any informed assessment of a core’s C-14 inventory would require more-precise characterisation. The analysis presented here focuses on a UK Magnox reactor core, Reactor 1 at Wylfa Nuclear Power Station. The objective of the analysis is to present a full C-14 mass balance over a selected period of operation for which there are accurate C-14 discharge records. The analysis presented here provides the first assessment of the principal C-14 activation pathways
Roh, Hwasung; Lee, Huseok; Lee, Jong Seh
2013-06-01
In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of fl oor response spectra at certain elevations are also in good agreement.
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-12-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.
Nuclear effects in the F3 structure function for finite and asymptotic Q2
International Nuclear Information System (INIS)
Kulagin, S.A.
1998-01-01
We study nuclear effects in the structure function F 3 which describes the parity violating part of the charged-current neutrino nucleon deep inelastic scattering. Starting from a covariant approach we derive a factorized expression for the nuclear structure function in terms of the nuclear spectral function and off-shell nucleon structure functions valid for arbitrary momentum transfer Q and in the limit of weak nuclear binding, i.e. when a nucleus can be treated as a non-relativistic system. We develop a systematic expansion of nuclear structure functions in terms of a Q -2 series caused by nuclear effects (''nuclear twist'' series). Basing ourselves on this expansion we calculate nuclear corrections to the Gross-Llewellyn-Smith sum rule as well as to higher moments of F 3 . We show that corrections to the GLS sum rule due to nuclear effects cancel out in the Bjorken limit and calculate the corresponding Q -2 correction. Special attention is paid to the discussion of the off-shell effects in the structure functions. A sizable impact of these effects both on the Q 2 and x dependence of nuclear structure functions is found. (orig.)
Preequilibrium decay in the exciton model for nuclear potential with a finite depth
International Nuclear Information System (INIS)
Bogila, Ye.A.; Kolomiets, V.M.; Sanzhur, A.I.; Shlomo, S.
1995-01-01
The spectra of preequilibrium particles, taking into account the energy dependence of the single-particle level density, are calculated using the particle-hole (exciton) level density. We demonstrate the significant effect of the finite depth of the potential well (continuum effect) on partial emission spectra for configurations with a small exciton number
Energy Technology Data Exchange (ETDEWEB)
Kneesch, Torben
2010-12-15
We have calculated the single-inclusive production cross section of massive quarks in electron-positron-annihilation with next-to-leading order QCD corrections. With these results we have extracted fragmentation functions for the fragmentation from partons into D{sup 0}, D{sup +} and D{sup *} mesons, where we have used experimental data from the B factories Belle and CLEO and from the ALEPH and OPAL experiments at the LEP collider. In our analysis we have included the masses of c and b quarks and of the D mesons and tested the evolution of fragmentation functions with a global fit spanning the B factories' center-of-mass energy of {radical}(s)=10.5 GeV to LEP's run at the Z boson resonance at M{sub Z}. We have applied this fragmentation functions in deep inelastic scattering for comparisons with HERA data using parton cross sections from the literature available in program form. We have then modified this cross section to calculate predictions for deep inelastic two-photon-scattering. By applying the Weizsaecker-Williams spectrum on the real photon we have calculated predictions for LEP1, LEP2 and the future ILC experiments. For ILC we have also included a beamstrahlung spectrum. Finally we have calculated production cross sections for the planned e{gamma} mode of the ILC with the help of a Compton spectrum. (orig.)
Collon, P.; Bauder, W.; Bowers, M.; Lu, W.; Ostdiek, K.; Robertson, D.
The Accelerator Mass Spectrometry (AMS) program at the Nuclear Science Laboratory of the University of Notre Dame is focused on measurements related to galactic radioactivity and to nucleosynthesis of main stellar burning as well as the production of so called Short-Lived Radionuclides (SLRs) in the Early Solar System (ESS). The research program is based around the 11MV FN tandem accelerator and the use of the gas-filled magnet technique for isobar separation. Using a technique that evolved from radiocarbon dating, this paper presents a number of research programs that rely on the use of an 11MV tandem accelerator at the center of the AMS program.
Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO
Energy Technology Data Exchange (ETDEWEB)
Neumann, Tobias [Universitaet Wuppertal (Germany); Wiesemann, Marius [Universitaet Zuerich (Switzerland)
2015-07-01
Effects from a finite top quark mass on the H+n-jet cross section through gluon fusion are studied for n = 0/n ≥ 1 at NNLO/NLO QCD. For this purpose, sub-leading terms in 1/m{sub t} are calculated. We show that the asymptotic expansion of the jet-vetoed cross section at NNLO is very well behaved and that the heavy-top approximation is valid at the five permille level up to jet-veto cuts of 300 GeV. For the inclusive Higgs+jet rate, we introduce a matching procedure that allows for a reliable prediction of the top-mass effects using the expansion in 1/m{sub t}. The quality of the effective field theory to evaluate differential K-factors for the distribution of the hardest jet is found to be better than 1-2% as long as the transverse momentum of the jet is integrated out or remains below about 150 GeV.
Characteristic relation for the mass and energy distribution of the nuclear fission products
International Nuclear Information System (INIS)
Alexandru, G.
1977-01-01
The dispersion relation for nuclear fission is written in the two part fragmentation approach which allows to obtain the characteristic relation for the mass and energy distribution of the nuclear fission products. One explains the resonance approximation in the mass distribution of the fission products taking into account the high order resonances too. (author)
Mankoč Borštnik, N. S.; Nielsen, H. B.
2006-12-01
The genuine Kaluza-Klein-like theories--with no fields in addition to gravity--have difficulties with the existence of massless spinors after the compactification of some space dimensions \\cite{witten}. We proposed (Phys. Lett. B 633 (2006)771) such a boundary condition for spinors in 1+5 compactified on a flat disk that ensures masslessness of spinors in d=1+3 as well as their chiral coupling to the corresponding background gauge field (which solves equations of motion for a free field linear in the Riemann curvature). In this paper we study the same toy model: M^{(1+3)} x M^{(2)}, looking this time for an involution which transforms a space of solutions of Weyl equations in d=1+5 from the outside of the flat disk in x^5 and x^6 into its inside, allowing massless spinor of only one handedness--and accordingly assures mass protection--and of one charge--1/2--and infinitely many massive spinors of the same charge, chirally coupled to the corresponding background gauge field. We reformulate the operator of momentum so that it is Hermitean on the vector space of spinor states obeying the involution boundary condition.
The effects of finite mass, adiabaticity, and isothermality in nonlinear plasma wave studies
Hellberg, Manfred A.; Verheest, Frank; Mace, Richard L.
2018-03-01
The propagation of arbitrary amplitude ion-acoustic solitons is investigated in a plasma containing cool adiabatic positive ions and hot electrons or negative ions. The latter can be described by polytropic pressure-density relations, both with or without the retention of inertial effects. For analytical tractability, the resulting Sagdeev pseudopotential needs to be expressed in terms of the hot negative species density, rather than the electrostatic potential. The inclusion of inertia is found to have no qualitative effect, but yields quantitative differences that vary monotonically with the mass ratio and the polytropic index. This result contrasts with results for analogous problems involving three species, where it was found that inertia could yield significant qualitative differences. Attention is also drawn to the fact that in the literature there are numerous papers in which species are assumed to behave adiabatically, where the isothermal assumption would be more appropriate. Such an assumption leads to quantitative errors and, in some instances, even qualitative gaps for "reverse polarity" solitons.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Jin; Lee, Hong Pyo; Seo, Jeong Moon [Korea Atomic Energy Research Institute, Taejeon (Korea)
2002-03-01
The maim goal of this research is to develop a nonlinear finite element analysis program NUCAS to accurately predict global and local failure modes of containment building subjected to internal pressure. In this report, we describe the techniques we developed throught this research. An adequate model to the analysis of containment building such as microscopic material model is adopted and it applied into the development Reissner-Mindlin degenerated shell element. To avoid finite element deficiencies, the substitute strains based on the assumed strain method is used in the shell formulation. Arc-length control method is also adopted to fully trace the peak load-displacement path due to crack formation. In addition, a benchmark test suite is developed to investigate the performance of NUCAS and proposed as the future benchmark tests for nonlinear analysis of reinforced concrete. Finally, the input format of NUCAS and the examples of input/output file are described. 39 refs., 65 figs., 8 tabs. (Author)
Three-dimensional finite element impact analysis of a nuclear waste truck cask
International Nuclear Information System (INIS)
Miller, J.D.
1985-01-01
This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures
Application of finite-element method to three-dimensional nuclear reactor analysis
International Nuclear Information System (INIS)
Cheung, K.Y.
1985-01-01
The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired
Nuclear fuel, mass balances, conversion ratio, doubling time, and uncertainty
International Nuclear Information System (INIS)
Vondy, D.R.
1976-11-01
Information on the performance aspects of nuclear power plants is presented concerning conversion ratio, criticality, primitive economic analysis, stable breeder-converter industry, doubling time, breeder industry economic benefit, defining nuclear fuel, recommendations, and uncertainty
ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations
Directory of Open Access Journals (Sweden)
Bijnens Johan
2018-01-01
Full Text Available I present higher loop order results for several calculations in Chiral perturbation Theory. 1 Two-loop results at finite volume for hadronic vacuum polarization. 2 A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3 Chiral corrections to neutron-anti-neutron oscillations.
International Nuclear Information System (INIS)
Dash, Z.V.; Robinson, B.A.; Zyvoloski, G.A.
1997-07-01
The requirements, design, and verification and validation of the software used in the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media, are described. The test of the DOE Code Comparison Project, Problem Five, Case A, which verifies that FEHM has correctly implemented heat and mass transfer and phase partitioning, is also covered
ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations
Bijnens, Johan
2018-03-01
I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.
Zhebel, E.; Minisini, S.; Mulder, W.A.
2012-01-01
We solve the three-dimensional acoustic wave equation, discretized on tetrahedral meshes. Two methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial discretization with the leap-frog
International Nuclear Information System (INIS)
Xiao Xuejian; Chen Ruxin
1995-02-01
Based on the R. Hills incremental virtual power principle and the elasto-plastic constitution equation for large deformation and by considering physical nonlinear, geometric nonlinear and thermal effects, a plane and axisymmetric finite element equation for thermal large elasto-plastic deformation has been established in the Euler description. The corresponding analysis program ATLEPD has been also complied for thermal large elasto-plastic deformation process of O-ring in RPV. The variations of stress, strain, contact specific pressure, mesh deformation and the aspects of spring back in upsetting and spring back process have been also investigated. Numerical results are fairly consistent with experimental ones. (5 figs., 4 tabs.)
Recent status of the studies of nuclear masses and {beta}-decay
Energy Technology Data Exchange (ETDEWEB)
Yamada, Masami [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering
1996-05-01
The recent status of the above studies was explained, especially, nuclear masses were described from the aspect of probability theory and that of {beta}-decay suggested that the first forbidden transition was hindered between the ground states. We have to study various systematics in order to know the mass surface, Way-Yamada-Matumoto type systematics is better to check the experimental nuclear masses. The gross theory is very useful to understand the general aspect of {beta}-decay. The understanding method of mass surface, systematic check of mass and hindrance of the first forbidden transition at rank 1 were explained. (S.Y.)
Recent status of the studies of nuclear masses and β-decay
International Nuclear Information System (INIS)
Yamada, Masami
1996-01-01
The recent status of the above studies was explained, especially, nuclear masses were described from the aspect of probability theory and that of β-decay suggested that the first forbidden transition was hindered between the ground states. We have to study various systematics in order to know the mass surface, Way-Yamada-Matumoto type systematics is better to check the experimental nuclear masses. The gross theory is very useful to understand the general aspect of β-decay. The understanding method of mass surface, systematic check of mass and hindrance of the first forbidden transition at rank 1 were explained. (S.Y.)
Directory of Open Access Journals (Sweden)
Zohreh Hedayati
2016-10-01
Full Text Available Abstract Background Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. Methods A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Results Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. Conclusions According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.
International Nuclear Information System (INIS)
An, Yonghao; Jiang, Hanqing
2013-01-01
Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity–plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform. (paper)
Extending and refining the nuclear mass surface with ISOLTRAP and MISTRAL
Lunney, M D
2000-01-01
Through the nuclear binding energy the atomic mass gives us important information about nuclear structure. Viewing the ensemble of mass data over the nuclear chart, we can examine the hills and valleys that form this surface and make hypotheses about the effects of certain nuclear configurations. To unveil these effects, mass measurements of very high precision (10$^{-6}$) are required. Two experiments at ISOLDE pursue this effort of nuclear cartography the tandem Penning trap spectrometer ISOLTRAP and the radiofrequency transmission spectrometer MISTRAL. Between them, the masses of almost 150 nuclides have been measured from stable isotopes to those with half-lives as short as 30 ms. Both experiments rely on good optical properties of a low energy ion beam and are thus well suited to the ISOLDE facility. (30 refs).
The mass media and nuclear energy in the US
International Nuclear Information System (INIS)
Roche, C.
1994-01-01
The role of the US media in informing the public about benefits of nuclear industry is discussed. Usually the media in USA is biased against nuclear energy and works on the side of anti-nuclear groups. The tendency of reporters to mistrust government and industry experts, and to trust 'environmental groups' poses a particular problem for the US nuclear industry. One of the challenges of nuclear industry is to convince the media that anti-nuclear groups are not acting in the public interest, but in self-interest too. The scientists who communicate with the media must help reporters to understand technology, but to do that, they must understand reporter's needs. Those include a quick response to requests for information, spokespersons who speak clearly and understandably, in human terms, and candor and honesty in all of the information they provide. (I.P.)
International Nuclear Information System (INIS)
Yannouleas, C.; Jang, S.
1986-01-01
The zero-temperature second RPA is generalized to finite temperatures through the use of the method of linearization of the equations of motion. After elimination of the quadruples, for low enough temperatures and within the subspace spanned by the doubles, a proper symmetrization yields an eigenvalue equation which exhibits formal properties like the simple RPA. From this second RPA eigenvalue equation, a closed formula for the spreading width of an isolated collective state is extracted. The second RPA can be recast in the form of a generalized collision term and be compared with the method of the Bethe-Salpeter equation for the two-body Green function. However, the second RPA method (and results) contrasts with the approach (and corresponding results) of the Boltzmann collision term, which is usually viewed as the appropriate agent for nuclear dissipation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kays, W M; Hossaini-Hashemi, F [Stanford Univ., Palo Alto, CA (USA). Dept. of Mechanical Engineering; Busch, J S [Kaiser Engineers, Oakland, CA (USA)
1982-02-01
A linearized transient thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high-level waste or spent fuel assemblies are represented as finite-length line sources in a continuous medium. The combined effects of multiple canisters in a representative storage pattern can be established in the medium at selected point of interest by superposition of the temperature rises calculated for each canister. A mathematical solution of the calculation for each separate source is given in this article, permitting a slow hand calculation. The full report, ONWI-94, contains the details of the computer code FLLSSM and its use, yielding the total solution in one computer output.
Symmetric and asymmetric nuclear matter in the Thomas-Fermi model at finite temperatures
International Nuclear Information System (INIS)
Strobel, K.; Weber, F.; Weigel, M.K.
1999-01-01
The properties of warm symmetric and asymmetric nuclear matter are investigated in the frame of the Thomas-Fermi approximation using a recent modern parameterization of the effective nucleon-nucleon interaction of Myers and Swiatecki. Special attention is paid to the liquid-gas phase transition, which is of special interest in modern nuclear physics. We have determined the critical temperature, critical density and the so-called flash temperature. Furthermore, the equation of state for cold neutron star matter is calculated. (orig.)
International Nuclear Information System (INIS)
Anon.
1981-01-01
The standard covers analytical procedures to determine compliance of nuclear-grade uranyl nitrate solution to specifications. The following methods are described in detail: uranium by ferrous sulfate reduction-potassium dichromate titrimetry and by ignition gravimetry; specific gravity by pycnometry; free acid by oxalate complexation; thorium by the Arsenazo(III) (photometric) method; chromium by the diphenylcarbazide (photometric) method; molybdenum by the thiocyanate (photometric) method; halogens separation by steam distillation; fluorine by specific ion electrode; halogen distillate analysis: chloride, bromide and iodide by amperometric microtitrimetry; bromine by the fluorescein (photometric) method; sulfate sulfur by (photometric) turbidimetry; phosphorus by the molybdenum blue (photometric) method; silicon by the molybdenum blue (photometric) method; carbon by persulfate oxidation-acid titrimetry; nonvolatile impurities by spectrography; volatile impurities by rotating-disk spark spectrography; boron by emission spectrography; impurity elements by spark source mass spectrography; isotopic composition by multiple filament surface-ionization mass spectrometry; uranium-232 by alpha spectrometry; total alpha activity by direct alpha counting; fission product activity by beta and gamma counting; entrained organic matter by infrared spectrophotometry
A simple method for improving predictions of nuclear masses
International Nuclear Information System (INIS)
Yamada, Masami; Tsuchiya, Susumu; Tachibana, Takahiro
1991-01-01
The formula for atomic masses which exactly conforms to all nuclides does not exist in reality and cannot be anticipated for the time being hereafter. At present the masses of many nuclides are known experimentally with good accuracy, but the values of whichever mass formulas are more or less different from those experimental values except small number of accidental coincidence. Under such situation, for forecasting the mass of an unknown nuclide, how is it cleverly done ? Generally speaking, to take the value itself of a mass formula seems not the best means. It may be better to take the difference of the values of a mass formula and experiment for the nuclide close to that to be forecast in consideration and to correct the forecast value of the mass formula. In this report, the simple method for this correction is proposed. The formula which connects between two extreme cases, the difference between a true mass and the value of a mass formula is the sum of proton part and neutron part, and the difference distributes randomly around zero, was proposed. The procedure for its concrete application is explained. This method can be applied to other physical quantities than mass, for example the half life of beta decay. (K.I.)
International Nuclear Information System (INIS)
Scott, Nicholas; Graham, Alister W.
2013-01-01
We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M NC , correlates most tightly with the host galaxy's velocity dispersion: log M NC = (2.11 ± 0.31)log (σ/54) + (6.63 ± 0.09), but has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M NC ∝M 0.55±0.15 Gal,dyn ; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.
Investigation of the proton-neutron interaction by high-precision nuclear mass measurements
Savreux, R P; Akkus, B
2007-01-01
We propose to measure the atomic masses of a series of short-lived nuclides, including $^{70}$Ni, $^{122-130}$Cd, $^{134}$Sn, $^{138,140}$Xe, $^{207-210}$Hg, and $^{223-225}$Rn, that contribute to the investigation of the proton-neutron interaction and its role in nuclear structure. The high-precision mass measurements are planned for the Penning trap mass spectrometer ISOLTRAP that reaches the required precision of 10 keV in the nuclear mass determination.
International Nuclear Information System (INIS)
Shafii, M. Ali; Su'ud, Zaki; Waris, Abdul; Kurniasih, Neny; Ariani, Menik; Yulianti, Yanti
2010-01-01
Nuclear reactor design and analysis of next-generation reactors require a comprehensive computing which is better to be executed in a high performance computing. Flat flux (FF) approach is a common approach in solving an integral transport equation with collision probability (CP) method. In fact, the neutron flux distribution is not flat, even though the neutron cross section is assumed to be equal in all regions and the neutron source is uniform throughout the nuclear fuel cell. In non-flat flux (NFF) approach, the distribution of neutrons in each region will be different depending on the desired interpolation model selection. In this study, the linear interpolation using Finite Element Method (FEM) has been carried out to be treated the neutron distribution. The CP method is compatible to solve the neutron transport equation for cylindrical geometry, because the angle integration can be done analytically. Distribution of neutrons in each region of can be explained by the NFF approach with FEM and the calculation results are in a good agreement with the result from the SRAC code. In this study, the effects of the mesh on the k eff and other parameters are investigated.
Software in windows for staple compounding system of microcomputer nuclear mass scale
International Nuclear Information System (INIS)
Wang Yanting; Zhang Yongming; Wang Yu; Jin Dongping
1998-01-01
The software exploited in windows for staple compounding system of microcomputer nuclear mass scale is described. The staple compounding system is briefly narrated. The software structure and its realizing method are given
The mass media and nuclear energy in the U.S
International Nuclear Information System (INIS)
Roche, C.
1994-01-01
The author discusses some problems of mass media of the United States connected with covering issues of nuclear power development, and makes some recommendations to improve the situation in this field
Energy Technology Data Exchange (ETDEWEB)
Randrup, J.
1979-07-01
This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.
Nuclear mass formula with the shell energies obtained by a new method
International Nuclear Information System (INIS)
Koura, H.; Tachibana, T.; Yamada, M.; Uno, M.
1998-01-01
Nuclear shapes and masses are estimated by a new method. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies by mixing them with appropriate weights. The spherical shell energies are calculated from single-particle potentials, and, till now, two mass formulas have been constructed from two different sets of potential parameters. The standard deviation of the calculated masses from all the experimental masses of the 1995 Mass Evaluation is about 760 keV. Contrary to the mass formula by Tachibana, Uno, Yamada and Yamada in the 1987-1988 Atomic Mass Predictions, the present formulas can give nuclear shapes and predict on super-heavy elements
Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions
International Nuclear Information System (INIS)
Zhang Guoqiang; Cao Xiguang; Fu Yao
2012-01-01
The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)
Evolution of a 30 solar mass star: the interplay of nuclear burning and mass loss
International Nuclear Information System (INIS)
Falk, H.J.; Mitalas, R.
1981-01-01
Evolutionary tracks for a 30 solar mass star with various mass loss rates (MLR) were evolved to core He exhaustion. The 'overluminosity' of mass losing (ML) stars is explained in terms of the well known mass-luminosity (M-L) law. A critical ZAMS MLR above which mass loss leads to evolution to fainter luminosities is derived. Two tracks showed reversals in their direction of evolution across the HR diagram. These have been shown to be a consequence of mass loss dominating over the effects of the shell source. An analytic criterion for this condition has been derived. (Auth.)
Erratum to: Nuclear triaxiality in the A ∼ 160–170 mass region: the ...
Indian Academy of Sciences (India)
Erratum to: Nuclear triaxiality in the A ∼ 160–170 mass region: the story so far. S MUKHOPADHYAY1,∗ and W C MA2. 1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. 2Department of Physics, Mississippi State University, Mississippi State, Mississippi 39762, USA. ∗. Corresponding ...
Analyzing mass perceptions of nuclear politics: Puzzling over trust
International Nuclear Information System (INIS)
Jenkins-Smith, H.C.; Pratt, D.A.; Bassett, G.W. Jr.
1994-01-01
The juxtaposition of public values, trust, and beliefs is at the core of policy-making in democratic political systems, and an accurate understanding of nuclear politics requires that researchers untangle and carefully think about the web of psychological and social influences that shape citizens' preferences. In this paper, we offer some tentative answers about several pieces of the trust open-quotes puzzleclose quotes. First, we reconsider what is meant by open-quotes trustclose quotes and how it is to be measured. We then use telephone survey data to explore the relationship between trust and citizens' nuclear policy preferences. The data lend support to the conclusion that trust is more mutable than previous research has shown, and besides the traditional measure of competence includes aspects of believability and fiduciary competence. The data further indicate that it is a mistake to think in terms of a single open-quotes publicclose quotes when exploring the link between trust and nuclear policies. A number of dissimilar open-quotes publicsclose quotes based on shared open-quotes worldviewsclose quotes or political cultures are apparent in the data analyzed here. These open-quotes publicsclose quotes appear to think about trust differently from one another and rely on different dimensions of trust when determining nuclear policy preferences. Policy-makers must recognize the different open-quotes publicsclose quotes coexisting within the U.S. nuclear policy arena, and the relative import that these publics place on different dimensions of trust
Nuclear power debate - scientists, mass media and the public
International Nuclear Information System (INIS)
Rothman, S.; Lichter, S.R.
1983-01-01
A poll among the members of the American Men and Women of Science has shown that the majority of scientists are for nuclear energy. The controversial results of polls in the general public are believed to be due to the distortion effects of the press and media. The biased information role of the communication media might be the result of the prejudiced publicity behavior of antinuclear scientists. A more significant role, however, has been played by the science journalists whose scepticism toward nuclear power is reflected in the public opinion. There seems to be a lack in the communication chain connecting the layman public with the science community. (R.P.)
Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel
Energy Technology Data Exchange (ETDEWEB)
Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.
2011-01-14
The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size
Heat and mass transfer and hydrodynamics in two-phase flows in nuclear power plants
International Nuclear Information System (INIS)
Styrikovich, M.A.; Polonskii, V.S.; Tsiklauri, G.V.
1986-01-01
This book examines nuclear power plant equipment from the point of view of heat and mass transfer and the behavior of impurities contained in water and in steam, with reference to real water regimes of nuclear power plants. The transfer processes of equipment are considered. Heat and mass transfer are analyzed in the pre-crisis regions of steam-generating passages with non-permeable surfaces, and in capillary-porous structures. Attention is given to forced convection boiling crises and top post-DNB heat transfer. Data on two-phase hydrodynamics in straight and curved channels are correlated and safety aspects of nuclear power plants are discussed
Mass Media and the Debate about Nuclear Power.
Sawyer, Thomas M.
Many factors contribute to the difficulties the media have in dealing with science, engineering, and technology. These difficulties were pointed up in the media coverage of the March 1979 accident at the Three Mile Island nuclear plant, which reflected confusion and lack of understanding and which combined with other factors (including the movie…
International Nuclear Information System (INIS)
Dusi, A.; Forni, M.; Martelli, A.
1998-01-01
This paper presents a summary of the results of nonlinear Finite Element (FE) analyses carried out by ENEL-Ricerca, Hydraulic and Structural Centre and ENEA-ERG-SIEC-SISM, on Lead Rubber Bearings (LRBs). Activities were carried out in the framework of the four years' Coordinated Research Programme (CRP) of the International Atomic Energy Agency (IAEA) on I ntercomparison of Analysis Methods for Seismically Isolated Nuclear Structures . The bearing Finite Element Models (FEMs) are validated through comparisons of the numerical results with experimental test data. The reliability of FEMs for simulating the behaviour of rubber bearings is presented and discussed. (author)
Determination of B and Li in nuclear materials by secondary-ion mass spectrometry
International Nuclear Information System (INIS)
Eby, R.E.; Christie, W.H.
1981-01-01
Secondary ion mass spectrometry (SIMS) was used to perform mass and isotopic analysis for B and Li in samples that are not readily amenable to more conventional mass spectrometric techniques (e.g., surface ionization, electron impact, etc.). In this paper three specific applications of SIMS analysis to nuclear materials are discussed: first, the quantitative determination of B and its isotopic composition in borosilicate glasses; second, the determination of the isotopic composition of B and Li in irradiated nuclear-grade aluminum oxide/boron carbide composite pellets, and, lastly, the quantitative and isotopic determination of B and Li in highly radioactive solutions of unknown composition
Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach
International Nuclear Information System (INIS)
Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K
2016-01-01
We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1].The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter.The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature.In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter. (paper)
Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2016-01-01
We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.
Validation of TEMP: A finite line heat transfer code for geologic repositories for nuclear waste
International Nuclear Information System (INIS)
Atterbury, W.G.; Hetteburg, J.R.; Wurm, K.J.
1987-09-01
TEMP is a FORTRAN computer code for calculating temperatures in a geologic repository for nuclear waste. A previous report discusses the structure, usage, verification, and benchmarking of TEMP V1.0 (Wurm et al., 1987). This report discusses modifications to the program in the development of TEMP V1.1 and documents the validation of TEMP. The development of TEMP V1.1 from TEMP V1.0 consisted of two major efforts. The first was to recode several of the subroutines to improve logic flow and to allow for geometry-independent temperature calculation routines which, in turn, allowed for the addition of the geometry-independent validation option. The validation option provides TEMP with the ability to model any geometry of temperature sources with any step-wise heat release rate. This capability allows TEMP to model the geometry and heat release characteristics of the validation problems. The validation of TEMP V1.1 consists of the comparison of TEMP to three in-ground heater tests. The three tests chosen were Avery Island, Louisiana, Site A; Avery Island, Louisiana, Site C; and Asse Mine, Federal Republic of Germany, Site 2. TEMP shows marginal comparison with the two Avery Island sites and good comparison with the Asse Mine Site. 8 refs., 25 figs., 14 tabs
A density variational approach to nuclear giant resonances at zero and finite temperature
International Nuclear Information System (INIS)
Gleissl, P.; Brack, M.; Quentin, P.; Meyer, J.
1989-02-01
We present a density functional approach to the description of nuclear giant resonances (GR), using Skyrme type effective interactions. We exploit hereby the theorems of Thouless and others, relating RPA sum rules to static (constrained) Hartree-Fock expectation values. The latter are calculated both microscopically and, where shell effects are small enough to allow it, semiclassically by a density variational method employing the gradient-expanded density functionals of the extended Thomas-Fermi model. We obtain an excellent overall description of both systematics and detailed isotopic dependence of GR energies, in particular with the Skyrme force SkM. For the breathing modes (isoscalar and isovector giant monopole modes), and to some extent also for the isovector dipole mode, the A-dependence of the experimental peak energies is better described by coupling two different modes (corresponding to two different excitation operators) of the same spin and parity and evaluating the eigenmodes of the coupled system. Our calculations are also extended to highly excited nuclei (without angular momentum) and the temperature dependence of the various GR energies is discussed
Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes
International Nuclear Information System (INIS)
Panebianco, Stefano; Sida, Jean-Luc; Goutte, Heloise; Lemaitre, Jean-Francois; Dubray, Noel; Hilaire, Stephane
2012-01-01
Until now, the mass asymmetry in the nuclear fission process has been understood in terms of the strong influence of the nuclear structure of the nascent fragments. Recently, a surprising asymmetric fission has been discovered in the light mercury region and has been interpreted as the result of the influence of the nuclear structure of the parent nucleus, totally discarding the influence of the fragments' structure. To assess the role of the fragment shell effects in the mass asymmetry in this particular region, a scission-point model, based on a full energy balance between the two nascent fragments, has been developed using one of the best theoretical descriptions of microscopic nuclear structure. As for actinides, this approach shows that the asymmetric splitting of the Hg-180 nucleus and the symmetric one of Hg-198 can be understood on the basis of only the microscopic nuclear structure of the fragments at scission. (authors)
Nuclear masses and the number of valence nucleons
International Nuclear Information System (INIS)
Mendoza-Temis, J.; Frank, A.; Hirsch, J.G.; Lopez Vieyra, J.C.; Morales, I.; Barea, J.; Van Isacker, P.; Velazquez, V.
2008-01-01
An improved version of the liquid drop model is presented. The addition of two terms, linear and quadratic in the total number of valence nucleons (particles or holes), improves the description of atomic masses, which can be fitted with an r.m.s. error of 1.2 MeV. Predictions are analysed an compared with those of established models
International Nuclear Information System (INIS)
Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang
2003-01-01
The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)
Detailed study of nuclear charge and mass densities. Pt. 1
International Nuclear Information System (INIS)
Berdichevsky, D.; Mosel, U.
1982-01-01
Theoretical and experimental densities are analyzed and compared in detail, in particular in the surface region. For this purpose nuclear size parameters are discussed and new sets of surface parameters are proposed. It is shown that the densities are very close to the error function in the external part of the surface and can be characterized there by two new parameters. For very large r the densities show an exponential behaviour which is analyzed in terms of single-particle density distributions. Furthermore, the effects of the asymmetry, spin-orbit and Coulomb forces on the density distributions are discussed. (orig.)
Nuclear equipment to determine soil and water mass attenuation coefficients
International Nuclear Information System (INIS)
Zucchi, O.L.A.D.; Nascimento Filho, V.F. do
1984-01-01
The feasibility of substituting the monochannel gamma spectrometer, traditionally used in the gamma ray attenuation technique, for a less sophisticated and less expensive system of integral counting is studied. The proposed system can be operated by a non-specialized person. Three detection systems were used in the determination of the mass attenuation coefficients for different types of soil and for water. (M.A.C.) [pt
Mass and charge distributions in chlorine-induced nuclear reactions
International Nuclear Information System (INIS)
Marchetti, A.A.
1991-01-01
Projectile-like fragments were detected and characterized in terms of A, Z, and energy for the reactions 37 Cl on 40 Ca and 209 Bi at E/A = 7.3 MeV, and 35 Cl, on 209 Bi at E/A = 15 MeV, at angles close to the grazing angle. Mass and charge distributions were generated in the N-Z plane as a function of energy loss, and have been parameterized in terms of their centroids, variances, and coefficients of correlation. Due to experimental problems, the mass resolution corresponding to the 31 Cl on 209 Bi reaction was very poor. This prompted the study and application of a deconvolution technique for peak enhancement. The drifts of the charge and mass centroids for the system 37 Cl on 40 Ca are consistent with a process of mass and charge equilibration mediated by nucleon exchange between the two partners, followed by evaporation. The asymmetric systems show a strong drift towards larger asymmetry, with the production of neutron-rich nuclei. It was concluded that this is indicative of a net transfer of protons from the light to the heavy partner, and a net flow of neutrons in the opposite direction. The variances for all systems increase with energy loss, as it would be expected from a nucleon exchange mechanism; however, the variances for the reaction 37 Cl on 40 Ca are higher than those expected from that mechanism. The coefficients of correlation indicate that the transfer of nucleons between projectile and target is correlated. The results were compared to the predictions of two current models based on a stochastic nucleon exchange mechanism. In general, the comparisons between experimental and predicted variances support this mechanism; however, the need for more realistic driving forces in the model calculations is indicated by the disagreement between predicted and experimental centroids
Steam Generator control in Nuclear Power Plants by water mass inventory
Energy Technology Data Exchange (ETDEWEB)
Dong Wei [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States); Doster, J. Michael [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)], E-mail: doster@eos.ncsu.edu; Mayo, Charles W. [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)
2008-04-15
Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators.
Steam Generator control in Nuclear Power Plants by water mass inventory
International Nuclear Information System (INIS)
Dong Wei; Doster, J. Michael; Mayo, Charles W.
2008-01-01
Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order Î±(ZÎ±)5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude...
Khoma, Mykhaylo; Jaquet, Ralph
2017-09-21
The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .
Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states
International Nuclear Information System (INIS)
Wundt, B J; Jentschura, U D
2010-01-01
The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l +- 1/2).
Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states
Energy Technology Data Exchange (ETDEWEB)
Wundt, B J; Jentschura, U D [Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409-0640 (United States)
2010-06-14
The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum l = n - 1 and l = n - 2 are described (j = l {+-} 1/2).
Mass casualties of radiation injuries after nuclear weapon explosion
International Nuclear Information System (INIS)
Messerschmidt, O.
1980-01-01
Burns, mechanical lesions, radiation injuries as well as combinations of these types of injuries as a consequence of a nuclear explosion demand different basic lines of triage. The lack of a suitable physical dosimetry is a special problem for the evaluation of radiation injuries. While in cases of wounds and burns treatment, like surgery, is recommended to take place early, for example, within hours or days after those injuries, treatment of radiation victims is necessary only in the stage of severe haematologic changes including disturbances of coagulation and occurrence of high fever which appears after one or two weeks subsequent to exposure. The lack of medical personnel and medical equipment result in even a worse prognosis for the various injuries than in peace time accidents. (orig.) [de
Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer
International Nuclear Information System (INIS)
Naimi, S.
2010-10-01
Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer Isoltrap at CERN-Isolde. High-precision mass measurements of neutron-rich manganese ( 58 - 66 Mn) and krypton isotopes ( 96, 97 Kr) are presented, of which the 66 Mn and 96, 97 Kr masses are measured for the first time. In particular, the mass of 97 Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N=40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N=40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclear quantum shape/phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy. Another part of this work was the design of new decay spectroscopy system behind the Isoltrap mass spectrometer. The beam purity achievable with Isoltrap will allow decay studies with γ and β detection coupled to a tape-station. This system has been mounted and commissioned with the radioactive beam 80 Rb. (author)
Rock mass characterization for storage of nuclear waste in granite
International Nuclear Information System (INIS)
Witherspoon, P.A.; Nelson, P.; Doe, T.; Thorpe, R.; Paulsson, B.; Gale, J.; Forster, C.
1979-02-01
The rock mass characterization in granite adjacent to an iron mine at Stripa, Sweden is being carried out by four different methods. The mechanical characterization includes monitoring the responses to thermal loading of jointed rock in situ, and mechanical tests on cores from 25 mm to 1 m in diameter. Geological characterization includes detailed surface mapping, subsurface mapping, and core mapping. Geophysical characterization uses a variety of borehole techniques, with emphasis on sonic methods. The hydrologic characterization is done through injection tests, pump tests, water pressure measurements, and controlled inflow tests to tunnels. Since the data are not yet complete, only tentative conclusions can be drawn regarding the best combinations of techniques for rock-mass characterization. Mapping studies are useful in defining continuity and fracture-system geometry. They do not give aperture, a factor significant in terms of both water flow and the displacements due to heating. Of the geophysical techniques, sonic methods appear most effective in fracture definition; other methods, gamma and neutron particularly, give data on radionuclide and water content and need further analysis with geologic and hydrologic data to determine their significance. Hydrologic work yields primarily aperture data, which with fracture geometry can be used to calculate directional permeabilities. Pressure measurements may provide one means of assessing fracture continuity. Finally, laboratory tests on large cores suggest considerable refinement in testing techniques may be needed before stress-aperture data can be extrapolated from laboratory to field
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
International Nuclear Information System (INIS)
J.W. Davis
1999-01-01
The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR. Estimates of volumes, masses, and surface areas are needed as input to structural, thermal, geochemical, nuclear criticality, and radiation shielding calculations to ensure the viability of the proposed disposal configuration
International Nuclear Information System (INIS)
Williams, A.; Williams, J.
1975-01-01
The technical and political issues of diversion safeguards are at best confusing to the general public, who derive most of their information about nuclear science from the mass media. This investigation compared ''nuclear news'' of all kinds in three national mass media for thirty-three months of 1972-1974 to examine the quantity and quality of atom-related news they provide. Findings from The New York Times, U. S. News and World Report, and the ABC, CBS, and NBC evening news indicate grounds for low public familiarity with essential concepts of safeguards, and consequently, for consumer value conflicts and weak popular supports for safeguards-related policy
International Nuclear Information System (INIS)
Kadri, M.
1983-01-01
The time dependent heat conduction equation in the x-y Cartesian geometry is formulated in terms of a nine-point finite difference relation using a Taylor series expansion technique. The accuracy of the nine-point formulation over the five-point formulation has been tested and evaluated for various reactor fuel-cladding plate configurations using a computer program. The results have been checked against analytical solutions for various model problems. The following cases were considered in the steady-state condition: (a) The thermal conductivity and the heat generation were uniform. (b) The thermal conductivity was constant, the heat generation variable. (c) The thermal conductivity varied linearly with the temperature, the heat generation was uniform. (d) Both thermal conductivity and heat generation vary. In case (a), approximately, for the same accuracy, 85% fewer grid points were needed for the nine-point relation which has a 14% higher convergence rate as compared to the five-point relation. In case (b), on the average, 84% fewer grid points were needed for the nine-point relation which has a 65% higher convergence rate as compared to the five-point relation. In case (c) and (d), there is significant accuracy (91% higher than the five-point relation) for the nine-point relation when a worse grid was used. The numerical solution of the nine-point formula in the time dependent case was also more accurate and converges faster than the numerical solution of the five-point formula for all comparative tests related to heat conduction problems in a nuclear fuel element
Mass estimation of loose parts in nuclear power plant based on multiple regression
International Nuclear Information System (INIS)
He, Yuanfeng; Cao, Yanlong; Yang, Jiangxin; Gan, Chunbiao
2012-01-01
According to the application of the Hilbert–Huang transform to the non-stationary signal and the relation between the mass of loose parts in nuclear power plant and corresponding frequency content, a new method for loose part mass estimation based on the marginal Hilbert–Huang spectrum (MHS) and multiple regression is proposed in this paper. The frequency spectrum of a loose part in a nuclear power plant can be expressed by the MHS. The multiple regression model that is constructed by the MHS feature of the impact signals for mass estimation is used to predict the unknown masses of a loose part. A simulated experiment verified that the method is feasible and the errors of the results are acceptable. (paper)
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...
International Nuclear Information System (INIS)
Burger, Florian
2012-01-01
In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of N τ and the tree-level correction technique.
Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes
International Nuclear Information System (INIS)
Park, C.; Bowen, S.W.
1981-01-01
The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen
International Nuclear Information System (INIS)
Wernli, Beath; Guenther-Leopold, Ines; Kobler Waldis, Judith; Kopajtic, Zlatan
2003-01-01
The characterisation of nuclear fuel cycle materials for trace and minor metallic constituents is of great interest for the nuclear industry and safeguard officials. The main objective of various international programmes dealing with postirradiation examinations is to improve the knowledge of the inventories of actinides, fission and spallation products in spent nuclear fuels. The low detection limits for a large number of elements combined with the ability to analyse the isotopic composition of the elements have established inductively coupled plasma mass spectrometry (ICP-MS) as a powerful multi-element technique in diverse analytical applications for the characterisation of nuclear materials. Because numerous isobaric overlaps restrict the direct determination of many fission products by mass spectrometry, extensive chemical separations are required for these elements. In order to simplify this sample preparation procedure, a high performance liquid chromatography system (HPLC) was online coupled to the mass spectrometer. Since about 10 years a quadrupole based ICP-MS (Q-ICP-MS) combined with an HPLC is used within the Hot Laboratory of the Paul Scherrer Institut for different applications on nuclear fuel samples. Since May 2003 also a new multi-collector ICP-MS (MC-ICP-MS) is used for the mass spectrometric characterisation of nuclear fuel samples, especially for the precise determination of the isotopic vectors of fission products and actinides. Therefore, two complementary analytical systems are now available in the group of 'Isotope and Wet Analytical Chemistry'. A comparison of the analytical performance of both systems (with and without an online coupled HPLC system) for the determination of the isotopic composition and the elemental concentration of different nuclides in nuclear fuel samples, the advantages and limitations of both techniques, the accuracy and precision of the results and typical applications for both methods will be discussed in the
International Nuclear Information System (INIS)
2003-01-01
The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1985-1986-1987 years: 1 - Teams presentation; 2 - Abstracts: On the borderline of spectroscopy; Atomic spectroscopy and low-energy low-spin nuclear structure; high-energy high-spin nuclear structure; Theories and models; Nuclear astrophysics; Accelerator-based mass spectroscopy; Solid State Physics; Study of charged particles irradiation effects in astrophysics, geophysics and material sciences; Technical developments for the RF mass spectrometer and for Obelix; Technical developments for ion beams; Technical developments in electronics and their applications; CNSM's Computer Department; Developments in cryogenics; 3 - Staff and publications
International Nuclear Information System (INIS)
Dakshinamoorthy, A.
2007-01-01
Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods
Administrative Procedure Act and mass procedures (illustrated by the nuclear licensing procedure)
International Nuclear Information System (INIS)
Naumann, R.
1977-01-01
The report deals with the administrative procedure law of 25.5.76 of the Fed. Government, esp. with its meaning for the administrative procedures for the permission for nuclear power plants, as fas ar so-called mass procedures are concerned. (UN) [de
Uniformity measure for power-law mass spectrum in nuclear fragmentation
International Nuclear Information System (INIS)
Wislicki, W.
1992-11-01
Description is given in terms of the Renyi entropy and the uniformity for the canonical ensemble, the grand canonical ensemble and the power-law probability measures. The study is presented of the power-law spectra of cluster masses observed in nuclear interactions in the vicinity of the liquid-gas transition point. 6 figs., 1 tab., 15 refs. (author)
Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer
Naimi, Sarah
Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer ISOLTRAP at CERN-ISOLDE. High-precision mass measurements of neutron-rich manganese ($^{58−66}$Mn) and krypton isotopes ($^{96,97}$Kr) are presented, of which the $^{66}$Mn and $^{96,97}$Kr masses are measured for the first time. In particular, the mass of $^{97}$Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N = 40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N = 40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclea...
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)
Nuclear assay of coal. Volume 6. Mass flow devices for coal handling
International Nuclear Information System (INIS)
Anon.
1979-01-01
The mass of coal entering the boiler per unit time is an essential parameter for determinig the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system
Nuclear assay of coal. Volume 6. Mass flow devices for coal handling. Final report
International Nuclear Information System (INIS)
Gozani, T.; Elias, E.; Bevan, R.
1980-04-01
The mass of coal entering the boiler per unit time is an essential parameter for determining the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system
Consequences of the center-of-mass correction in nuclear mean-field models
International Nuclear Information System (INIS)
Bender, M.; Rutz, K.; Reinhard, P.G.; Maruhn, J.A.
2000-01-01
We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei. (orig.)
Atomic mass and characteristic constant of nuclear ground state (CENPL.MCC). Pt. 1
International Nuclear Information System (INIS)
Su Zongdi; Ma Lizhen; Zhou Chunmei; Ge Zhigang
1994-01-01
Atomic mass and characteristic constants for nuclear ground states are basic data for nuclear physics, and necessary ones for basic researches, theoretical calculations, as well as many applied researches. The atomic mass of exotic nuclei quite far from the valley stability are also very important for astrophysics researches. The above-requirement is paid attention to in our setting up this file. The recent and as many as possible data (such as the half-lives of the new nuclides 202 Pt, 208 Hg and 185 Hf and the mass excess of 199 Ir, which were produced and distinguished by Chinese scientists) have been collected, and put into the computer-based data file in brief table format. (1 fig.)
The impact of global nuclear mass model uncertainties on r-process abundance predictions
Directory of Open Access Journals (Sweden)
Mumpower M.
2015-01-01
Full Text Available Rapid neutron capture or ‘r-process’ nucleosynthesis may be responsible for half the production of heavy elements above iron on the periodic table. Masses are one of the most important nuclear physics ingredients that go into calculations of r-process nucleosynthesis as they enter into the calculations of reaction rates, decay rates, branching ratios and Q-values. We explore the impact of uncertainties in three nuclear mass models on r-process abundances by performing global monte carlo simulations. We show that root-mean-square (rms errors of current mass models are large so that current r-process predictions are insufficient in predicting features found in solar residuals and in r-process enhanced metal poor stars. We conclude that the reduction of global rms errors below 100 keV will allow for more robust r-process predictions.
International Nuclear Information System (INIS)
2005-01-01
The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2002-2004 years: 1 - Foreword; 2 - Nuclear structure; 3 - EFIX: study of exotic nuclei-induced fission; 4 - Nuclear Astrophysics; 5 - Atomic mass; 6 - Solid state astrophysics; 7 - Accelerator-based mass spectroscopy; 8 - Solid State Physics; 9 - Physics and Chemistry of Irradiation; 10 - Activities of general interest; 11 - SEMIRAMIS (ion source and ion beam handling); 12 - Computer Department; 13 - Electronics Group; 14 - Mechanics Department; 15 - Health and safety; 16 - Permanent training; 17 - Seminars; 18 - PhDs; 19 - Staff
RSMASS-D nuclear thermal propulsion and bimodal system mass models
King, Donald B.; Marshall, Albert C.
1997-01-01
Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.
International Nuclear Information System (INIS)
Su Zongdi; Ma Lizhen
1994-01-01
The management code of the sub-library of atomic mass and characteristic constants for nuclear ground state (MCC) is used for displaying the basic information on the MCC sub-library on the screen, and retrieving the required data. The MCC data file contains the data of 4800 nuclides ranging from Z 0, A = 1 to Z = 122, A = 318. The MCC sub-library has been set up at Chinese Nuclear Data Center (CNDC), and has been used to provide the atomic masses and characteristic constants of nuclear ground states for the nuclear model calculation, nuclear data evaluations and other fields
International Nuclear Information System (INIS)
Jeon, Young Sin; Pyo, Hyeong Yeol; Park, Yong Joon; Song, Kyu Seok; Kim, Won Ho; Jee, Kwang Yong
2007-05-01
It is very important to develope the technology for the determination of isotopic ratios of hot particles( 234 U, 235 U, 236 U etc.) detected from swipe samples of various nuclear facilities. This technology is highly competitive internationally and has to be established independently as long as our government maintains atomic energy and treats nuclear materials. In this text, sample pretreatment procedure, gamma-ray counting, alpha or fission track techniques, isotopic analysis of U and Pu, background problems and detection limits for mass determination, and their application to the real swipe sample were described with detailed procedure. This technology would contribute to the Korean economy's high growth rate as well as to superiority of government's leading research and development programs if successfully established
American Society for Testing and Materials. Philadelphia
1999-01-01
1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solution to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Determination of Uranium 7 Specific Gravity by Pycnometry 15-20 Free Acid by Oxalate Complexation 21-27 Determination of Thorium 28 Determination of Chromium 29 Determination of Molybdenum 30 Halogens Separation by Steam Distillation 31-35 Fluoride by Specific Ion Electrode 36-42 Halogen Distillate Analysis: Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 43 Determination of Chloride and Bromide 44 Determination of Sulfur by X-Ray Fluorescence 45 Sulfate Sulfur by (Photometric) Turbidimetry 46 Phosphorus by the Molybdenum Blue (Photometric) Method 54-61 Silicon by the Molybdenum Blue (Photometric) Method 62-69 Carbon by Persulfate Oxidation-Acid Titrimetry 70 Conversion to U3O8 71-74 Boron by ...
International Nuclear Information System (INIS)
Suzuki, Ken; Itahashi, Kenta; Hirenzaki, Satoru
2005-01-01
Spontaneous breaking of chiral symmetry is believed to be the mechanism which endows nucleus their large masses. The order parameter of the symmetry breaking is the chiral condensate, whose magnitude is predicted to decrease linearly as the nuclear density is increased. The reduction of quark condensate was quantitatively studied from recent precise measurement of deeply bound pionic 1s states on three tin (Sn) isotopes. We made use of the Gell-Mann-Oakes-Renner relation which connects the magnitude of quark-codensate to a pion decay constant, and then used the Tomozawa-Weinberg relation which relates the pion decay constant to an isovector strength of the pion-nucleus potential. The potential strength was determined by fitting the measured pionic 1s-state binding energies. The result shows that the quark-condensate strength is reduced by about 35% at normal nuclear density, compared with the ''vacuum'' value obtained from pionic hydrogen X-ray measurements. This is the first quantitative deduction of the quark condensate modification at finite nuclear density, and is an important step towards understanding the origin of hadron masses. (author)
Importance of banked tissues in the management of mass nuclear casualties
International Nuclear Information System (INIS)
Singh, Rita; Bhatnagar, P.K.
2009-01-01
Nuclear detonations are the most devastating of the weapons of mass destruction. There will be large number of casualties on detonation of nuclear weapon. Biological tissues like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Radiation technology is used to sterilize the tissues to make them safe for clinical use. This paper highlights the importance of such banked tissues in the management of the casualties. (author)
Effective mass of a #betta#-particle in nuclear matter and OBE #betta#-n interactions
International Nuclear Information System (INIS)
Bando, Hiroharu; Nagata, Sinobu.
1982-01-01
The effective mass of a lambda particle (M sub( lambda )*) in nuclear matter is investigated within the framework of the lowest-order Brueckner theory by employing the Nijmegen OBE lambda -N interaction model D and F. The non-locality mass (M tilde sub( lamda )) and the energy mass (anti M sub( lambda )) are evaluated and discussed in the light of the characteristics of the two models. In comparison with the model D, the model F yields smaller anti M sub( lambda ) and larger anti M sub( lamb da ) reflecting the stronger Majorana exchange force and the stronger lambda N- sigma N coupling tensor force. Final results of M sub( lambda )*/M sub( lambda ) are 0.85 for D and 0.79 for F. In view of the effective lambda mass inferred from observed properties of the single particle potential for lambda , the model D interaction seems to be more adequate. (author)
Energy Technology Data Exchange (ETDEWEB)
Faustov, R.N. [Dorodnicyn Computing Centre, Russian Academy of Science, Vavilov Str. 40, 119991 Moscow (Russian Federation); Martynenko, A.P. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086 Samara (Russian Federation); Martynenko, G.A.; Sorokin, V.V. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation)
2014-06-02
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα){sup 5} to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
International Nuclear Information System (INIS)
Faustov, R.N.; Martynenko, A.P.; Martynenko, G.A.; Sorokin, V.V.
2014-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
Energy Technology Data Exchange (ETDEWEB)
Song, Tae Kwang; Bae, Hong Yeol; Kim, Yun Jae [Korea Unviersity, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)
2008-09-15
In nuclear power plants, ferritic low alloy steel components were connected with austenitic stainless steel piping system through alloy 82/182 butt weld. There have been incidents recently where cracking has been observed in the dissimilar metal weld. Alloy 82/182 is susceptible to primary water stress corrosion cracking. Weld-induced residual stress is main factor for crack growth. Therefore exact estimation of residual stress is important for reliable operating. This paper presents residual stress computation performed by 6'' safety and relief nozzle. Based on 2 dimensional and 3 dimensional finite element analyses, effect of welding variables on residual stress variation is estimated for sensitivity analysis.
Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.
2018-05-01
The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.
Mass and Elite Views on Nuclear Security: US National Security Surveys 1993-1999
Energy Technology Data Exchange (ETDEWEB)
HERRON,KERRY G.; JENKINS-SMITH,HANK C.; HUGHES,SCOTT D.
2000-06-01
This is the fourth report in an ongoing series of studies examining how US perspectives about nuclear security are evolving in the post-Cold War era. In Volume 1 the authors present findings from a nationwide telephone survey of randomly selected members of the US general public conducted from 13 September to 14 October 1999. Results are compared to findings from previous surveys in this series conducted in 1993, 1995, and 1997, and trends are analyzed. Key areas of investigation reported in Volume 1 include evolving perceptions of nuclear weapons risks and benefits, preferences for related policy and spending issues, and views about three emerging issue areas: deterrent utility of precision guided munitions; response options to attacks in which mass casualty weapons are used; and expectations about national missile defenses. In this volume they relate respondent beliefs about nuclear security to perceptions of nuclear risks and benefits and to policy preferences. They develop causal models to partially explain key preferences, and they employ cluster analysis to group respondents into four policy relevant clusters characterized by similar views and preferences about nuclear security within each cluster. Systematic links are found among respondent demographic characteristics, perceptions of nuclear risks and benefits, policy beliefs, and security policy and spending preferences. In Volume 2 they provide analysis of in-depth interviews with fifty members of the US security policy community.
Mass and Elite Views on Nuclear Security: US National Security Surveys 1993-1999
International Nuclear Information System (INIS)
Herron, Kerry G.; Jenkins-Smith, Hank C.; Hughes, Scott D.
2000-01-01
This is the fourth report in an ongoing series of studies examining how US perspectives about nuclear security are evolving in the post-Cold War era. In Volume 1 the authors present findings from a nationwide telephone survey of randomly selected members of the US general public conducted from 13 September to 14 October 1999. Results are compared to findings from previous surveys in this series conducted in 1993, 1995, and 1997, and trends are analyzed. Key areas of investigation reported in Volume 1 include evolving perceptions of nuclear weapons risks and benefits, preferences for related policy and spending issues, and views about three emerging issue areas: deterrent utility of precision guided munitions; response options to attacks in which mass casualty weapons are used; and expectations about national missile defenses. In this volume they relate respondent beliefs about nuclear security to perceptions of nuclear risks and benefits and to policy preferences. They develop causal models to partially explain key preferences, and they employ cluster analysis to group respondents into four policy relevant clusters characterized by similar views and preferences about nuclear security within each cluster. Systematic links are found among respondent demographic characteristics, perceptions of nuclear risks and benefits, policy beliefs, and security policy and spending preferences. In Volume 2 they provide analysis of in-depth interviews with fifty members of the US security policy community
Double-arm time-of-flight mass-spectrometer of nuclear fragments
International Nuclear Information System (INIS)
Ajvazian, G.M.; Astabatyan, R.A.
1995-01-01
A double-arm time-of-flight spectrometer of nuclear fragments for the investigation of heavy nuclei photofission in the intermediate energy range is described. The calibration results and working characteristics of the spectrometer, obtained using 252 Cf as a source of spontaneous fission, are presented. A mass resolution of σ m ∼2-3 a.m.u. was obtained within the registered fragments mass range of 80-160 a.m.u. The spectrometer was tested in the experiment on the investigation of 238 U nuclei fission by Bremsstahlung photons with Eγ max=1.75 GeV
2010-03-01
Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS
Coupling of mass and charge distributions for low excited nuclear fission
International Nuclear Information System (INIS)
Salamatin, V.S.; )
2000-01-01
The simple model for calculation of charge distributions of fission fragments for low exited nuclear fission from experimental mass distributions is offered. The model contains two parameters, determining amplitude of even-odd effect of charge distributions and its dependence on excitation energy. Results for reactions 233 U(n th ,f), 235 U(n th ,f), 229 Th(n th ,f), 249 Cf(n th ,f) are spent [ru
International Nuclear Information System (INIS)
Kurosaki, K.
2015-01-01
The effects of the shape and distribution state of voids on the thermal conductivity of UO 2 , and the temperature distribution and heat flow within the irradiated MOX fuel were evaluated by finite element analysis. Although the work is still in progress, some preliminary results are presented. (author)
Combating the terrorist use of mass destruction weapons, particularly nuclear weapons
International Nuclear Information System (INIS)
Barakat, M.
2008-01-01
The risks of mass destruction weapons vary and also forms of damages resulting therefrom. While the effects of nuclear weapons are focused, sudden and comprehensive, the chemical weapons have limited impacts relatively unless used intensively severe prejudice to the element of surprise, and thus impaired the efficacy of their influences,especially that they affect exceptionally the individuals in the area of injury and biological weapons do not announce themselves except through their effect that appears later than the time of use as they affect exceptionally the organisms in the area of injury.The mass destruction weapons have turned from being a purely military means in the early twentieth century and have now become the means of violence against governments and countries that they should prepare themselves for and respond in ways of successful and effective countermeasures. Despite the fact that the acquisition of mass destruction weapons can be considered as a priority objective, which terrorist groups and organizations steadily seek but their accessibility is flanked by a lot of difficulties. Addressing the risk of further spread of nuclear weapons, and especially after doubling the power of those high-risk weapons, the international community has an approach to take a number of arrangements that complement each other to control and resist nuclear proliferation, either for the states or for terrorist groups.
: Nuclear Spirals and Mass Accretion to Supermassive Black Holes in Weakly-Barred Galaxies
Kim, Woong-Tae; Elmegreen, Bruce
2018-01-01
Disk galaxies, especially barred-spiral galaxies, abound with rings and spirals in their nuclear regions. Nuclear spirals existing even in weakly barred galaxies are thought to channel gas inflows to supermassive black holes residing at the centers. We use high-resolution hydrodynamic simulations to study the properties of nuclear gas spirals driven by weak bar-like or oval potentials. The amplitude of the spirals increases toward the center by a geometric effect, readily developing into shocks at small radii even for very weak potentials. The shape of the spirals and shocks depends rather sensitively on the background shear. When shear is low, the nuclear spirals are loosely wound and the shocks are almost straight, resulting in large mass inflows toward the center. When shear is high, on the other hand, the spirals are tightly wound and the shocks are oblique, forming a circumnuclear disk through which gas flows inward at a relatively lower rate. The induced mass inflow rates are enough to power black hole accretion in various types of Seyfert galaxies.
International Nuclear Information System (INIS)
Kang, Chang-Hak; Lee, Sung-Uk; Yang, Dong-Yol; Kim, Hyo-Chan; Yang, Yong-Sik
2016-01-01
Nuclear fuel rods which comprises an important component of a nuclear power plant are composed of nuclear fuel and cladding. Simulating the nuclear fuel rod using a computer program is the universal method to verify its safety. The computer program used for this is called the fuel performance code. The main objective of this study is to simulate the nuclear fuel rod behavior considering the gap conductance using three-dimensional gap elements. Gap elements are used because, unlike other methods, this approach does not require special methods or other variables such as the Lagrange multiplier. In this work, a nuclear fuel rod has been simulated and the results are compared with the experimental results. (author)
International Nuclear Information System (INIS)
2003-01-01
The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2001-2002 years: 1 - Foreword; 2 - Research topics: Nuclear structure; EFIX: study of exotic nuclei-induced fission; Nuclear Astrophysics; Accelerator-based mass spectroscopy; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics; SEMIRAMIS (ion source and ion beam handling); Digest science; 3 - Publications; 4 - Dissertations; 5 - Seminars; 6 - Technical services: Computer Department; Electronics Group; Mechanics Department; Permanent training; Health and safety; 7 - Staff
International Nuclear Information System (INIS)
2003-01-01
The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1995-1997 years: 1 - Nuclear structure: structure of first well states, superdeformation, high-spin state populations of stable or neutron-rich nuclei, high-k isomers physics, theoretical works, technical developments; 2 - Nuclear astrophysics; 3 - Basic symmetries; 4 - Accelerator-based mass spectroscopy; 5 - Solid State Astrophysics; 6 - Physics and Chemistry of Irradiation; 7 - Solid State Physics; 8 - SEMIRAMIS (ion source and ion beam handling); 9 - Computer Department; 10 - Electronics Group; 11 - Mechanics Department; 12 - Permanent training; 13 - Health and safety; 14 - Seminars and communications; 15 - Dissertations; 16 - Publications; 17 - Staff
International Nuclear Information System (INIS)
2003-01-01
The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1992-1994 years: 1 - Nuclear structure; 2 - Nuclear astrophysics; 3 - Basic symmetries; 4 - Accelerator-based mass spectroscopy; 5 - Solid State Astrophysics; 6 - Physics and Chemistry of Irradiation; 7 - Solid State Physics; 8 - SEMIRAMIS (ion source and ion beam handling); 9 - Computer Department; 10 - Electronics Group; 11 - Mechanics Department; 12 - Permanent training; 13 - Health and safety; 14 - Seminars; 15 - Dissertations; 16 - Publications; 17 - Staff
Energy Technology Data Exchange (ETDEWEB)
Rosenbusch, Marco [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, 17487 Greifswald (Germany); Collaboration: ISOLTRAP-Collaboration
2013-07-01
The mass is a unique property of an atomic nucleus reflecting its binding energy and thus the sum of all interactions at work. Precise measurements of nuclear masses especially of short-lived exotic nuclides provide important input for nuclear structure, nuclear astrophysics, tests of the Standard Model, and weak interaction studies. The Penning-trap mass spectrometer ISOLTRAP at the on-line isotope separator ISOLDE/CERN has been set up for precision mass measurements and continuously improved for accessing more exotic nuclides. The mass uncertainty is typically δm / m=10{sup -8} and the accessible half-life has been reduced to about 50 ms. In this contribution, the results of a measurement campaign of neutron-rich francium and radium isotopes will be presented, i.e. the masses of the isotopic chain of {sup 224-233}Fr and {sup 233,234}Ra, one of the most neutron-rich ensemble obtainable at ISOL facilities. The mass {sup 234}Ra denotes the heaviest mass ever measured with ISOLTRAP. Experimental data in the neutron-rich, heavy mass region is of great interest for studies of structural evolution far from stability, especially because the knowledge from nuclear mass models is scarce. The impact of the new data on the physics in this mass region as well as recent technical developments of ISOLTRAP are discussed.
International Nuclear Information System (INIS)
Anon.
1981-01-01
These analytical procedures are designed to show whether a given material meets the purchaser's specifications as to plutonium content, effective fissile content, and impurity content. The following procedures are described in detail: plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron(II); free acid by titration in an oxalate solution; free acid by iodate precipitation-potentiometric titration method; uranium by Arsenazo I spectrophotometric method; thorium by thorin spectrophotometric method; iron by 1,10-phenanthroline spectrophotometric method; chloride by thiocyanate spectrophotometric method; fluoride by distillation-spectrophotometric method; sulfate by barium sulfate turbidimetric method; isotopic composition by mass spectrometry; americium-241 by extraction and gamma counting; americium-241 by gamma counting; gamma-emitting fission products, uranium, and thorium by gamma-ray spectroscopy; rare earths by copper spark spectrochemical method; tungsten, niobium (columbium), and tantalum by spectrochemical method; simple preparation by spectrographic analysis for general impurities
Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry
International Nuclear Information System (INIS)
Betti, M.; Rasmussen, G.; Koch, L.
1996-01-01
A double-focusing glow discharge mass spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from thermal ionization mass spectrometry (TIMS). For boron and lithium at μg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques. (orig.). With 2 figs., 4 tabs
Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation
O. Silva, Hector; Berti, Emanuele; Sotani, Hajime
2016-03-01
Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.
International Nuclear Information System (INIS)
Popov, Pavel P.; Pope, Stephen B.
2014-01-01
This work addresses the issue of particle mass consistency in Large Eddy Simulation/Probability Density Function (LES/PDF) methods for turbulent reactive flows. Numerical schemes for the implicit and explicit enforcement of particle mass consistency (PMC) are introduced, and their performance is examined in a representative LES/PDF application, namely the Sandia–Sydney Bluff-Body flame HM1. A new combination of interpolation schemes for velocity and scalar fields is found to better satisfy PMC than multilinear and fourth-order Lagrangian interpolation. A second-order accurate time-stepping scheme for stochastic differential equations (SDE) is found to improve PMC relative to Euler time stepping, which is the first time that a second-order scheme is found to be beneficial, when compared to a first-order scheme, in an LES/PDF application. An explicit corrective velocity scheme for PMC enforcement is introduced, and its parameters optimized to enforce a specified PMC criterion with minimal corrective velocity magnitudes
Advertising campaigns on the necessity of nuclear energy through mass-media in Japan
International Nuclear Information System (INIS)
Niwano, Sadaji
1998-01-01
provide the public with materials and elements to think and decide with as information. In the background of those circumstances, the attitudes of PA activities toward the public-has changed recently to draw public attention to the wide range of issues from current severe energy conditions in Japan to global environmental problems connecting to the role and the position of nuclear power among overall national energy policies in Japan and let have urgent feelings among the public. Followings are the examples that we are taking up in promotion of advertising campaigns through mass media, including inter- net and other information tools. (1) To show concrete measures to be taken to meet national long- term energy supply/demand outlook for the year to 2030 that encourage energy- saving efforts, increased use of new energy sources and further development of nuclear power generation. (2) In this December, the 3rd Conference of the Parties to United Nations Framework Convention on Climate Change will be held at Kyoto, Japan. At this very moment that national attentions are increasingly concentrating toward the energy and environment issues, we will intend to hold advertising campaigns widely through mass media to heighten public awareness on the necessity of nuclear power promotion, as well as conservation and energy efficiency measures, introduction of alternative energy sources, such as solar, wind etc. in connection with the necessity of tackling the environmental problems, especially global warming phenomenon due to the greenhouse gas emissions. At this occasion, taking up some topics of specifically rapid energy demand which will obviously continue well into the next century and will very likely cause impending energy situations in Asian countries, expectations of serious environmental problems particularly in those of Asian countries, and among that appealing the role of nuclear energy as a clean energy source
International Nuclear Information System (INIS)
1983-04-01
VISCOT is a non-linear, transient, thermal-stress finite-element code designed to determine the viscoelastic, fiscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. The numerical solution of the nonlinear incremental equilibrium equations within VISCOT is performed by using an explicit Euler time-stepping scheme. The rock mass may be modeled as a viscoplastic or viscoelastic material. The viscoplastic material model can be described by a Tresca, von Mises, Drucker-Prager or Mohr-Coulomb yield criteria (with or without strain hardening) with an associated flow rule which can be a power or an exponential law. The viscoelastic material model within VISCOT is a temperature- and stress-dependent law which has been developed specifically for salt rock masses by Pfeifle, Mellegard and Senseny in ONWI-314 topical report (1981). Site specific parameters for this creep law at the Richton, Permian, Paradox and Vacherie salt sites have been calculated and are given in ONWI-314 topical report (1981). A major application of VISCOT (in conjunction with a SCEPTER heat transfer code such as DOT) is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent nonlinear deformations are expected to occur. Such problems include room- and canister-scale studies during the excavation, operation, and long-term post-closure stages in a salt repository. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report
Low mass dilepton production at the SPS probing hot and dense nuclear matter
Pérez de los Heros, C; Baur, R; Breskin, Amos; Chechik, R; Drees, A; Jacob, C; Faschingbauer, U; Fisher, P H; Fraenkel, Zeev; Fuchs, C; Gatti, E; Glässel, P; Günzel, T F; Hess, F; Irmscher, D; Lenkeit, B C; Olsen, L H; Panebratsev, Yu A; Pfeiffer, A; Ravinovich, I; Rehak, P; Schön, A; Schükraft, Jürgen; Sampietro, M; Shimansky, S S; Shor, A; Specht, H J; Steiner, V; Tapprogge, Stefan; Tel-Zur, G; Tserruya, Itzhak; Ullrich, T S; Wurm, J P; Yurevich, V I
1996-01-01
CERES and HELIOS-3 have detected a significant enhancement of low--mass dileptons in nuclear collisions at 200 GeV/nucleon with respect to the expected ``conventional'' sources. The onset of the excess, starting at a mass of $\\sim2m_{\\pi}$, and the possibility of a quadratic dependence on the event multiplicity suggest the opening of the $\\pi^+\\pi^-\\rightarrow e^+e^-(\\mu^+\\mu^-)$ annihilation channel. This would be the first observation of thermal radiation from dense hadronic matter. Possible interpretations of these results are presented, including the reduction of the $\\rho$ mass due to partial restoration of chiral symmetry in the dense fireball formed in the collision.
International Nuclear Information System (INIS)
Ami, I.; Fellah, M.; Allal, N.H.; Benhamouda, N.; Oudih, M.R.; Belabbas, M.
2011-01-01
Expressions of temperature-dependent perpendicular (ℑ⊥) and parallel (ℑ‖) moments of inertia, including isovector pairing effects, have been established using the cranking method. They are derived from recently proposed temperature-dependent gap equations. The obtained expressions generalize the conventional finite-temperature BCS (FTBCS) ones. Numerical calculations have been carried out within the framework of the schematic Richardson model as well as for nuclei such as N = Z, using the single-particle energies and eigenstates of a deformed Woods–Saxon mean-field. ℑ⊥ and ℑ‖ have been studied as a function of the temperature. It has been shown that the isovector pairing effect on both the perpendicular and parallel moments of inertia is non-negligible at finite temperature. These correlations must thus be taking into account in studies of warm rotating nuclei in the N ≃ Z region. (author)
International Nuclear Information System (INIS)
Kim, Jae-Yong; Yoon, Kyung-Ho
2007-01-01
The primary role of the grid springs in spacer grid is to hold the fuel rods in an appropriate position using friction force and to prevent the fuel rods dropping during reactor operation. The spring force decreases as the fuel burn-up increases since the spring stiffness is degraded due to the high temperature and the irradiation effect in the reactor core. So this phenomenon has to be considered when the initial spring force of grid spring is designed. To check whether the spring have suitable spring force, the characterization test of spring is conducted. In this paper, finite element analysis using contact definition is established for prediction the spring stiffness without test. The test and analysis results are compared to check the availability of finite element model for investing the spring characteristics in assembly condition. (author)
EFFECT OF CENTRAL MASS CONCENTRATION ON THE FORMATION OF NUCLEAR SPIRALS IN BARRED GALAXIES
International Nuclear Information System (INIS)
Thakur, Parijat; Jiang, I.-G.; Ann, H. B.
2009-01-01
We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.
Rock mass modification around a nuclear waste repository in welded tuff
International Nuclear Information System (INIS)
Mack, M.G.; Brandshaug, T.; Brady, B.H.
1989-08-01
This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab
International Nuclear Information System (INIS)
Sagar, Anil; Kademani, B.S.; Vijai Kumar
2007-01-01
This paper attempts to analyse quantitatively the growth and development of Mass Spectrometry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005, a total of 10913 papers were published in various domains: Chemistry, Materials and Earth Sciences (5286) (48.44%), Physical Sciences (2367) (21.69%), Engineering and Technology (1434) (13.14), Life and Environmental Sciences (1212) (11.11), other aspects of Nuclear and Non Nuclear Energy (492) (4.51%) and Isotopes, Isotope and Radiation Applications (122) (1.12%). There were only three papers published in 1970. The highest number of papers (816) were published in 2004. The average number of publications published per year was 303.13. United States topped the list with 2247 publications followed by Germany with 1333 publications, Japan with 820 publications, France with 525 publications, and India with 460 publications. Authorship and collaboration trend was towards multi-authored papers as 81.83 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: S.K. Aggarwal, Bhabha Atomic Research Centre, Mumbai, India with 113 publications, W. Kutschera, University of Vienna, Austria with 85 publications, and H.C. Jain, Bhabha Atomic Research Centre, Mumbai, India with 70 publications. The highly productive institutions were: Bhabha Atomic Research Centre, Mumbai (India) with 233 publications, Argonne National Laboratory (USA) with 150 publications, Oak Ridge National Laboratory (USA) with 146 publications, University of California (USA) with 118 publications, Los Alamos National Laboratory (USA) with 104 publications and Japan Atomic Energy Research Institute (Japan) with 91 publications. The journals most preferred by the scientists for publication of papers were: Nuclear Instruments and Methods in Physics Research
Prockop, Leon D
2006-11-01
The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.
International Nuclear Information System (INIS)
Ross, G.G.
1994-01-01
Only two techniques are really appropriate for the depth profiling of hydrogen isotopes: nuclear microanalysis (NMA) and secondary ion mass spectrometry (SIMS). The intent of this paper is to give an up to date review of both techniques and to show how they can be used in conjunction. Both techniques (SIMS and NMA) will be described briefly. NMA will divided into two different categories: nuclear reaction analysis (NRA) and elastic recoil detection (ERD). Both techniques (SIMS and NMA) will be discussed in terms of sensitivity, resolution, probing depth, quantitative measurement, generality and selectivity, beam induced effects and surface roughness effects. The principal advantages and disadvantages of each of these techniques will be specified, supporting the contention that SIMS and NMA are complementary and should be used in conjunction. Finally, some examples of, and perspectives for, the complementary use of both techniques will be presented. (Author)
International Nuclear Information System (INIS)
Blix, H.; Journe, V.
2010-01-01
This book approaches in 8 chapters the ambitious challenge of ridding the world of all mass destruction weapons: 1 - re-launching disarmament; 2 - terror weapons: nature of threats and answers (weakness of traditional answers, counter-proliferation); 3 - nuclear weapons: preventing proliferation and terrorism, reducing threat and nuclear weapons number, from regulation to banning); 4 - biological or toxin weapons; 5 - chemical weapons; 6 - vectors, anti-missile defenses and space weapons; 7 - exports control, international assistance and non-governmental actors; 8 - respect, verification, enforcement and role of the United Nations. The recommendations and works of the Commission are presented in appendix together with the declaration adopted on April 30, 2009. (J.S.)
Simple, empirical approach to predict neutron capture cross sections from nuclear masses
Couture, A.; Casten, R. F.; Cakirli, R. B.
2017-12-01
Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of
International Nuclear Information System (INIS)
Helberg, P.M.L.; Wallenius, M.; Vincent, C.; Albert, N.; Peres, P.; Truyens, J.
2013-01-01
A new LG-SIMS (Large Geometry Secondary Ion Mass Spectrometry) laboratory is currently being established at the Joint Research Centre, the Institute of Transuranium Elements for the purpose of improving the analytical capabilities within the European Commission. The laboratory will mainly be used for analysing uranium bearing aerosol particles collected on cotton swipes from nuclear Safeguards inspections but it will also be used for Nuclear Forensics and other Safeguards related applications. Until recently, this type of analysis has predominantly been performed using the small geometry CAMECA IMS 3F-7F instrument series. These instruments provide both particle screening and isotope ratio capabilities. The performance of these instruments was however limited by the occurrence of isobaric interferences, in particular for the minor isotopes ( 234 U, 236 U), that could not be resolved without compromising the transmission of the instrument. A recent breakthrough to solve this problem has been the implementation of Large Geometry SIMS, the CAMECA 1270 / 1280 / 1280-HR models, for this type of analysis. This instrument has originally been developed for geosciences applications requiring both high transmission and high mass resolution capabilities. This came out to be a key instrumental advantage also for uranium particle analyses, as it allows efficient removal of common molecular interferences with minimum loss in transmission. Furthermore an electrostatic ion optical device has been added for increasing the mass dispersion which allows the simultaneous detection of all uranium isotopes. The Automated Particle Measurement (APM) software has been developed to perform screening measurement in an automated mode. Combined with the APM screening software, LG-SIMS instruments greatly improve the overall performance and throughput of isotopic analyses of U particles for nuclear Safeguards purposes. The paper is followed by the slides of the presentation. (A.C.)
International Nuclear Information System (INIS)
Stan-Sion, C.; Catana, D.; Plostinaru, D.; Radulescu, M.; Enachescu, M.; Ivascu, M.; Marinescu, L.; Dima, R.
2000-01-01
The Accelerator Mass Spectrometry (AMS) is today the experimental physical method capable to measure the lowest concentration of a particular nuclide in a sample material. Ratios of radionuclides in the range 10 -13 - 10 -15 are normally measured with this technique, corresponding to a sensitivity which makes possible the detection of only 1 Atom in a surrounding material of about 1 Million of Billions of other Atoms. Thus, the AMS has advanced the art of Classical Mass Spectrometry (sensitivity 10 -11 ) to a sensitivity which allows for the first time the performance of special applications in environmental physics, medicine, pharmacology, geology, archaeology, measurements of radio nuclides in the Earth's atmosphere produced by cosmic-rays or by nuclear power plants, applications in astrophysics and in nuclear physics.An Accelerator Mass Spectrometry facility was constructed at the FN - 8 MV tandem accelerator of the National Institute of Physics and Nuclear Engineering . The construction was possible in the frame of a co-operation with the Technical University Munich and with financial support from IAEA-Vienna. It represents the first experimental set-up of this type in the large geographical area of Eastern Europe. The main components of the facility are: the ion injector deck, the AMS beam line and the detector systems. The injector deck is polarized at 50 kV and contains the high current sputtering ion source (spherical ionizer) followed, for beam transport, by electrostatic devices (single lenses, steerers, quadrupole lenses) a double focussing, 90 angle analyzing magnet (Danfysik), a pre-acceleration tube (NEC) and several diagnose and defining elements. The AMS samples are placed in an eight-stack magazine attached to the ion source. On the exit side of the tandem accelerator tank, a velocity filter and the particle detection system are mounted. The beam line, on the high-energy side, is optically achromatic and contains two 90 angle analyzing magnets of
Ftreign system studieo of hydrodynamics and heat-mass transfer at nuclear power plants
International Nuclear Information System (INIS)
Saltanov, G.A.
1981-01-01
Status and the main problems of system studies on hydrodynamics and heat-and-mass transfer at nuclear power plant transients and accidents are considered. Experimental benchmarks used for studying the loss of coolant accidents are described. The conclusion is made that contemporary level of measuring apparatus development and a large number of fast-response monitors of temperature, pressure and coolant level at most of described benchmarks permit to obtain sufficiently complete information of the behaviour of most important parts of a reactor unit during transients and accidents of different type [ru
Precision Mass Measurements of Cr-6358 : Nuclear Collectivity Towards the N =40 Island of Inversion
Mougeot, M.; Atanasov, D.; Blaum, K.; Chrysalidis, K.; Goodacre, T. Day; Fedorov, D.; Fedosseev, V.; George, S.; Herfurth, F.; Holt, J. D.; Lunney, D.; Manea, V.; Marsh, B.; Neidherr, D.; Rosenbusch, M.; Rothe, S.; Schweikhard, L.; Schwenk, A.; Seiffert, C.; Simonis, J.; Stroberg, S. R.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.
2018-06-01
The neutron-rich isotopes Cr 58 - 63 were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron midshell region, which is a gateway to the second island of inversion around N =40 . In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the ab initio in-medium similarity renormalization group, the first such results for open-shell chromium isotopes.
American Society for Testing and Materials. Philadelphia
2011-01-01
1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...
Measurement of particle size distribution and mass concentration of nuclear fuel aerosols
International Nuclear Information System (INIS)
Pickering, S.
1982-01-01
The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)
American Society for Testing and Materials. Philadelphia
2004-01-01
1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114
Nuclear quantum shape-phase transitions in odd-mass systems
Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.
2018-03-01
Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.
International Nuclear Information System (INIS)
Quigg, Chris
2007-01-01
In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.
Directory of Open Access Journals (Sweden)
R.N. Faustov
2017-12-01
Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order Î±(ZÎ±5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei. Keywords: Lamb shift, Muonic atoms, Quantum electrodynamics
International Nuclear Information System (INIS)
Adamik, V.; Matejovic, P.
1989-01-01
The problems are discussed of nonstationary, nonlinear dynamics of the continuum. A survey is presented of calculation methods in the given area with emphasis on the area of impact problems. A description is presented of the explicit finite elements method and its application to two-dimensional Cartesian and cylindrical configurations. Using the method the explicit calculation code FINEDAN was written which was tested in a series of verification calculations for different configurations and different types of continuum. The main characteristics are presented of the code and of some, of its practical applications. Envisaged trends of the development of the code and its possible applications in the technology of nuclear reactors are given. (author). 9 figs., 4 tabs., 10 refs
International Nuclear Information System (INIS)
Meyer, J.
1976-01-01
Some simplifications given by the nonlocal separable interactions (NLSI) allowed an exhaustive study of the three body problem to be performed. This work is intended to show that NLSI are also useful in studying the properties of nuclei. Some satisfactory results obtained in the infinite nuclear matter and also in the Hartree-Fock study of some 3s-1d nuclei are then given. A coupled reaction formalism has been developed for the analysis of heavy ion induced reactions. The recoil and finite range effects, which are necessary tools in heavy-ion induced reactions, have been introduced from the work of Coker et al. for the ( 3 He,t) reaction [fr
Secondary-ion mass spectrometry: some applications in the analysis of nuclear material
International Nuclear Information System (INIS)
Christie, W.H.; Eby, R.E.; Warmack, R.J.; Landau, L.
1981-01-01
Secondary ion mass spectrometry (SIMS) has been shown to offer some significant advantages over conventional mass spectrometry for the analysis of radioactive samples. We have used SIMS for the rapid, accurate analysis of B, Li, Cs, U and Pu in various nuclear materials. In many instances, SIMS allows one to perform mass and isotopic analysis on samples that are not amenable to other mass spectrometric techniques (e.g., surface ionization, electron impact, etc.). The significant advantage that accrues from the use of SIMS for isotopic analysis of these materials is the cmplete elimination of any chemical sample preparation steps, and only sample dissolution is necessary for the application of isotope dilution methods for quantitative analysis. The high sensitivity of SIMS for B, Li, U and Pu makes it possible to analyze sufficiently small radioactive samples so that radiation is reduced to acceptable levels for safe handling. The precision of SIMS isotopic analysis for natural B samples is about 0.5% and is about 1% for natural Li samples
Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions
Guo, Ya-Fei; Chen, Peng-Hui; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing
2017-10-01
Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of and (). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ s=0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions. Supported by Major State Basic Research Development Program in China (2014CB845405, 2015CB856903), National Natural Science Foundation of China (11722546, 11675226, 11675066, U1332207) and Youth Innovation Promotion Association of Chinese Academy of Sciences
International Nuclear Information System (INIS)
Warters, R.L.; Brizgys, L.M.; Lyons, B.W.
1987-01-01
The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)
International Nuclear Information System (INIS)
Guenther-Leopold, Ines; Wernli, Beat; Kopajtic, Zlatko
2003-01-01
The determination of the burn-up is one of the essential parts in post-irradiation examinations on nuclear fuel samples. In the frame of national and international research programs the analysis of the isotopic vectors of uranium, plutonium, neodymium and some other fission products and actinides was carried out in the Hot lab of the Paul Scherrer Institute in the last years by using high-performance liquid chromatography coupled online with an inductively coupled plasma quadrupole mass spectrometer. In the meantime a multicollector ICP-MS, suitable for high precision isotope ratio measurements, was installed within the Hot lab and has been used now in combination with a chromatographic separation system for the first time for burn-up determinations of nuclear fuel samples. The results of these investigations, a comparison of both methods with the classical technique for burn-up analyses (thermal ionization mass spectrometry), the advantages and limitations of the methods and the accuracy and precision of this type of analyses are presented in the paper. (author)
Double Beta Decay and Neutrino Masses Accuracy of the Nuclear Matrix Elements
International Nuclear Information System (INIS)
Faessler, Amand
2005-01-01
The neutrinoless double beta decay is forbidden in the standard model of the electroweak and strong interaction but allowed in most Grand Unified Theories (GUT's). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass, the neutrinoless double beta decay is allowed. Apart of one claim that the neutrinoless double beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUT's and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUT's. For that one has to assume that the specific mechanism is the leading one for the neutrinoless double beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUT's and supersymmetric parameters
International Nuclear Information System (INIS)
Bulyha, S.; Cunningham, A.; Koepf, A.; Macsik, Z.; Poths, J.
2015-01-01
In the frame of the ECAS project (Enhancing Capabilities of Safeguards Analytical Services) the IAEA Office of Safeguards Analytical Services has implemented the latest-generation inductively coupled plasma mass spectrometers, or ICP-MS, for (i) bulk analysis of uranium and plutonium isotopes in environmental inspection samples and (ii) impurity analyzes in uranium samples. The measurement accuracy for n(U-235)/ n(U-238) ratios has been improved by approximately five times with the new multi-collector ICP-MS equipment. Use of modern ICP-MS enabled also an improvement of instrumental detection limits for U-233 and U-236 and Pu isotopes by at least one order of magnitude in comparison to the values, which had been achieved with the previously used methods. The improved accuracy and precision for isotope ratio measurements is mainly due to the higher sensitivity and the possibility to simultaneously detect several U isotopes with a multi-collector detector block. Implementation of the ICP-MS has also demonstrated a possibility for an increased sample throughput. In parallel to the implementation of the ICP-MS, a new version of the ''modified total evaporation'' (MTE) method has been developed for isotopic analysis of uranium samples by multi-collector thermal ionization mass spectrometry (TIMS). The MTE method provides a measurement performance which is, in particular for minor uranium isotopes, by several orders of magnitude superior compared to the commonly used ''total evaporation'' method. The new mass spectrometric techniques significantly improve the capability of the IAEA safeguards laboratories to detect the presence of non-natural uranium and plutonium isotopes in environmental swipe samples and to identify previously imperceptible differences in nuclear ''signatures''. Thus, they enhance the IAEA's ability to obtain independent, timely and quality-assured safeguards-relevant data and ensure
Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.
2017-12-01
High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.
International Nuclear Information System (INIS)
2010-01-01
The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2007-2009 years: Nuclear Astrophysics; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics and cryogenic detectors; Solid State Physics, Condensed Matter and Irradiation; Structure of the Atomic Nucleus; Teaching and training activities; Spreading scientific culture; Administrative services; Electronics Group; Computer Department; Mechanics Department; RESET Service (Radiation-Environment-Safety- Maintenance-Work); SEMIRAMIS (ion source and ion beam handling)
International Nuclear Information System (INIS)
2013-07-01
The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2010-2012 years: Nuclear Astrophysics; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics Group; Condensed Matter and Irradiation: from fundamental to functional; Structure of the Atomic Nucleus; Teaching activities; Spreading scientific culture; Administrative services; Electronics Group; Computer Department; Mechanics Department; RESET Service (Radiation-Environment-Safety- Maintenance-Work); SEMIRAMIS (ion source and ion beam handling)
International Nuclear Information System (INIS)
Billet, L.
1994-01-01
The Research and Development Division of Electricite de France is developing a surveillance method of cooling towers involving on-site wind-induced measurements. The method is supposed to detect structural damage in the tower. The damage is identified by tuning a finite element model of the tower on experimental mode shapes and eigenfrequencies. The sensitivity of the method was evaluated through numerical tests. First, the dynamic response of a damaged tower was simulated by varying the stiffness of some area of the model shell (from 1 % to 24 % of the total shell area). Second, the structural parameters of the undamaged cooling tower model were updated in order to make the output of the undamaged model as close as possible to the synthetic experimental data. The updating method, based on the minimization of the differences between experimental modal energies and modal energies calculated by the model, did not detect a stiffness change over less than 3 % of the shell area. Such a sensitivity is thought to be insufficient to detect tower cracks which behave like highly localized defaults. (author). 8 refs., 9 figs., 6 tabs
Diffusion of heat from a finite, rectangular, plane heat source
International Nuclear Information System (INIS)
Ferreri, J.C.; Caballero, C.H.
1985-01-01
Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)
1993-09-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
International Nuclear Information System (INIS)
Kapetanakis, D.; Mondragon, M.; Zoupanos, G.
1993-01-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
International Nuclear Information System (INIS)
Kapetanakis, D.; Mondragon, M.
1993-01-01
It is shown how to obtain phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. A very interesting feature of the models with three families is that they predict the top quark mass to be around 178 GeV. 16 refs
Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam
2004-11-15
The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.
Bao, X.; Shen, Y.; Wang, N.
2017-12-01
Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.
International Nuclear Information System (INIS)
Gorbunova, A.; Kramchaninov, A.
2015-01-01
Information and Analytical Centre for nuclear materials investigations was established in Russian Federation in the February 2 of 2009 by ROSATOM State Atomic Energy Corporation (the order #80). Its purpose is in preventing unauthorized access to nuclear materials and excluding their illicit traffic. Information and Analytical Centre includes analytical laboratory to provide composition and properties of nuclear materials of unknown origin for their identification. According to Regulation the Centre deals with: · identification of nuclear materials of unknown origin to provide information about their composition and properties; · arbitration analyzes of nuclear materials; · comprehensive research of nuclear and radioactive materials for developing techniques characterization of materials; · interlaboratory measurements; · measurements for control and accounting; · confirmatory measurements. Complex of non-destructive and mass-spectroscopy techniques was developed for the measurements. The complex consists of: · gamma-ray techniques on the base of MGAU, MGA and FRAM codes for uranium and plutonium isotopic composition; · gravimetrical technique with gamma-spectroscopy in addition for uranium content; · calorimetric technique for plutonium mass; · neutron multiplicity technique for plutonium mass; · measurement technique on the base of mass-spectroscopy for uranium isotopic composition; · measurement technique on the base of mass-spectroscopy for metallic impurities. Complex satisfies the state regulation requirements of ensuring the uniformity of measurements including the Russian Federation Federal Law on Ensuring the Uniformity of Measurements #102-FZ, Interstate Standard GOST R ISO/IEC 17025-2006, National Standards of Russian Federation GOST R 8.563-2009, GOST R 8.703-2010, Federal Regulations NRB-99/2009, OSPORB 99/2010. Created complex is provided in reference materials, equipment end certificated techniques. The complex is included in accredited
Estimation of the Waste Mass from a Pyro-Process of Spent Nuclear Fuel
Energy Technology Data Exchange (ETDEWEB)
Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo (and others)
2008-04-15
Pyro-Process is now developing to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a nuclear power plant. In this situation, it is strongly required for the estimation of expected masses and their physical properties of the wastes. In this report, the amount of wastes and their physical properties are presupposed through some assumptions in regard to 10MTHM of Oxide Fuel with 4.5wt% U-235, 45,000 MWD/MTU, and 5yrs cooling. The produced wastes can be divided into three categories such as metal, CWF(Ceramic Waste Form), and VWF(Vitrified Waste Form). The 42 nuclrides in a spent nuclear fuel are distributed into the waste categories on the their physical and thermodynamic properties when they exist in metal, oxide, or chloride forms. The treated atomic groups are Uranium, TRU, Noble metal, Rare earth, Alkali metal, Halogens, and others. The mass of each waste is estimated by the distribution results. The off-gas waste is included into a CWF. The heat generations by the wastes in this Pyro-Process are calculated using a ORIGEN-ARP program. It is possible to estimate the amounts of wastes and their heat generation rates in this Pyro-Process analysis. These information are very helpful to design a waste container and its quantity also can be determined. The number of container and its heat generation rate will be key factor for the construction of interim storage facilities including a underground disposal site.
Jain, Anupriya; Kumar, Suneel
2014-10-01
We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon-nucleon collisions and symmetry potential clearly indicates the dominance of nucleon-nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified.
International Nuclear Information System (INIS)
Jain, Anupriya; Kumar, Suneel
2014-01-01
We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon–nucleon collisions and symmetry potential clearly indicates the dominance of nucleon–nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified. (paper)
International Nuclear Information System (INIS)
Boulyga, S.F.; Becker, J.S.
2000-01-01
As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236 U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on inductively coupled plasma quadrupole mass spectrometry with a hexapole collision cell (HEX-ICP-QMS). The figures of merit of the HEX-ICP-QMS were studied with a plasma-shielded torch using different nebulizers (such as an ultrasonic nebulizer (USN) and Meinhard nebulizer) for solution introduction. A 238 U + ion intensity of up to 27000 MHz/ppm in HEX-ICP-QMS with USN was observed by introducing helium into the hexapole collision cell as the collision gas at a flow rate of 10 ml min -1 . The formation rate of uranium hydride ions UH + /U + of 2 x 10 -6 was obtained by using USN with a membrane desolvator. The limit of 236 U/ 238 U ratio determination in 10 μg 1 -1 uranium solution was 3 x 10 -7 corresponding to the detection limit for 236 U of 3 pg 1 -1 . The precision of uranium isotopic ratio measurements in 10 μg 1 -1 laboratory uranium isotopic standard solution was 0.13% ( 235 U/ 238 U) and 0.33% ( 236 U/ 238 U) using a Meinhard nebulizer and 0.45% ( 235 U/ 238 U) and 0.88% ( 236 U/ 238 U) using a USN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236 U/ 238 U ratio ranged from 10 -5 to 10 -3 . (orig.)
International Nuclear Information System (INIS)
Airapetian, A.; Akopov, Z.
2009-11-01
The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studied for hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found. (orig.)
American Society for Testing and Materials. Philadelphia
2006-01-01
1.1 These test methods cover procedures for the chemical and mass spectrometric analysis of nuclear-grade gadolinium oxide powders to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Carbon by Direct CombustionThermal Conductivity C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Total Chlorine and Fluorine by Pyrohydrolysis Ion Selective Electrode C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Loss of Weight on Ignition 7-13 Sulfur by CombustionIodometric Titration Impurity Elements by a Spark-Source Mass Spectrographic C761 Test Methods for Chemical, Mass Spectrometric, Spectrochemical,Nuclear, and Radiochemical Analysis of Uranium Hexafluoride C1287 Test Method for Determination of Impurities In Uranium Dioxide By Inductively Coupled Plasma Mass Spectrometry Gadolinium Content in Gadolinium Oxid...
International Nuclear Information System (INIS)
Sterbentz, J.W.
1997-03-01
Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups
International Nuclear Information System (INIS)
Marguet, S.D.
1993-01-01
Owing to the prevalence in France of nuclear generated electricity, the french utility, EDF focuses much research on fuel cycle strategy. In this context, analysis of scenarios combining problems related to planning and economics, but also reactor physics, necessitate a relatively thorough understanding of fuel response to irradiation. The main purpose of the fuel strategy program codes is to predict mass balance modifications with time for the main actinides involved in the cycle, including the minor actinides associated with the current back end fuel cycle key issues. Considering the large number of calculations performed by a strategy code in an iterative process covering a range of about a hundred years, it was important to develop basic computation modules for both the ''reactor'' and ''fabrication'' items. These had to be high speed routines, but on an accuracy level compatible with the strategy code efficiency. At the end of 1992, the EDF Research and Development Division (EDF/DER) developed a very simple, extremely fast method of calculating transuranian isotope masses. This approach, which resulted in the STRAPONTIN software, considerably increased the scope of the EDF/DER fuel strategy code TIRELIRE without undue impairment of machine time requirements for a scenario. (author). 2 figs., 2 tabs., 3 refs
Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?
Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.
2004-01-01
It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.
Nuclear structure studies in A∼100 and A∼130 mass regions
International Nuclear Information System (INIS)
Sihotra, S.
2012-01-01
This paper reports the nuclear structure studies in the mass A∼ 100 and A∼130 regions. The investigations were performed in 98,99 Rh, 99 Pd, 96 Tc, 106,107 In, and 129,131 Cs nuclei near the proton (Z = 50) and neutron (N = 50, 64) shell closures with a view to understand the structural features that result from interplay between single particle and collective degrees of freedom. The nuclei in these regions are characterized by a small quadrupole deformation and soft to gamma deformation at low spins. In order to compare experimental results directly with the theoretical calculations, the experimental spins and level energies have been transformed into the rotating (intrinsic) frame of nucleus. The level schemes have been interpreted in the framework of theoretical model calculations. Configurations assigned to various bands are discussed in the framework of Principal/Tilted Axis Cranking (PAC/TAC) model and the deformed Hartree-Fock and angular momentum projection (PHF) calculations. Level energies and B(M1)/B(E2) ratios have, on the whole, been reproduced for the assigned configurations. Triaxial deformation in these mass regions has been inferred from the observed rotational-alignment frequencies, staggering behavior, M1 reduced transition probabilities and chiral-twin bands. Another important feature observed in these isotopes is the magnetic dipole bands generated through the shears mechanism. Observation of new E1 transitions linking the opposite-parity bands based on the proton/neutron h 11/2 and d 5/2 orbitals (Δl = 3, Δj = 1, Δπ = -1) in 131 Cs and 99 Pd provide fingerprints of possible octupole correlations in these mass-regions. (author)
International Nuclear Information System (INIS)
2002-01-01
Nuclear plants contain a variety of concrete structures whose structural performance is essential to the safety of the plant. There is a requirement to demonstrate the robustness of these structures during normal operating and extreme accident conditions, throughout their life. During this time, the concrete may degrade due to the effects of ageing. This degradation must be accounted for during the assessment of their performance. Finite Element Analysis (FEA) techniques have tremendous potential for providing valuable insight into the behaviour of these aged concrete structures under a range of different loading conditions. Advanced FEA techniques currently enjoy widespread use within the nuclear industry for the non-linear analysis of concrete. Many practitioners within the nuclear industry are at the forefront of the industrial application of these methods. However, in some areas, the programs that are commercially available lag behind the best information available from research. This document is an international review of current capabilities and priorities for future development relating to non-linear finite element analysis of reinforced and prestressed concrete in the nuclear industry in the various member states. Particular attention is paid to the analysis of degraded or ageing structures. This report: 1. Summarises the needs for FEA of aged concrete nuclear structures; 2. Details the existing capabilities, not just in terms of what the software is capable of, but also in terms of the current practices employed by those in industry; 3. Looks at how engineers, within the nuclear industry, working in this field would like to see methods improved, and identifies the factors that are limiting current practice; 4. Summarises ongoing research that may provide beneficial technological advances; 5. Assigns priorities to the different development requests; 6. Selects those developments that are felt to be of greatest benefit to industry and provides a qualitative
Mapping the N-Z plane: residual mass regularities
International Nuclear Information System (INIS)
Hirsch, J.G.; Frank, A.; Velazquez, V.
2004-01-01
A new development in the study of the deviations between experimental nuclear masses and those calculated in the framework of the Finite Range Droplet Model is introduced. Some frequencies are isolated and used in a simple fit to reduce significantly the error width. The presence of this regular residual correlations suggests that the Strutinsky method of including microscopic fluctuations in nuclear masses could be improved. (Author)
International Nuclear Information System (INIS)
Haffner, D.R.
1976-01-01
1 - Description of problem or function: PACTOLUS is a code for computing nuclear power costs using the discounted cash flow method. The cash flows are generated from input unit costs, time schedules and burnup data. CLOTHO calculates and communicates to PACTOLUS mass flow data to match a specified load factor history. 2 - Method of solution: Plant lifetime power costs are calculated using the discounted cash flow method. 3 - Restrictions on the complexity of the problem - Maxima of: 40 annual time periods into which all costs and mass flows are accumulated, 20 isotopic mass flows charged into and discharged from the reactor model
2017-12-01
9 2. The Time -Dependent Schrödinger Equation ............................12 3. Stimulated Excitation to Bound States...response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and...SNM Special Nuclear Material TDC Time to Digital Converter Ti:Saph Titanium Sapphire TOF-MS Time -of-Flight Mass Spectrometry xvi THIS
International Nuclear Information System (INIS)
Bhatia, R.K.; Yadav, V.K.; Ravisankar, E.; Nataraju, V.; Gadkari, S.C.
2017-01-01
High precision isotope ratio analysis of materials of interest in nuclear and geological applications is carried out by thermal ionization mass spectrometry (TIMS) technique. One of the important mandates of Bhabha Atomic Research Centre (BARC) has been developing these instruments and several TIMS instruments have been developed and deployed at user sites covering a wide range material of interest relevant to various stages of the nuclear power cycle. The instrument designs for above applications are based on two geometries of magnetic sector ie., 15 cm sector radius and 30 cm sector radius with resolutions as 200 and 400 respectively. There has been a conscious effort to improve the the sensitivity and precision of these models by modifying the designs of the sub-systems. In the recent past, a new ion optical element viz., variable dispersion zoom optics (VDZO) was introduced in the collector system of the standard model with 30cm radius magnet, to increase the dispersion of the ion beams which enabled to fix the locations of the Faraday cups (upto 6 nos.) instead of the conventional movable ones. After establishing the usefulness of VDZO, an attempt is being made to design and develop a 20 cm magnet based TIMS which will have a much smaller foot print compared to the standard 30 cm model and also covers the usual range of elements (viz. Li - U). The ion optical design was optimized using computer simulations with SIMION 7.0 software and subsequently the mechanical design was carried out using Autocad computer software. Some of the details of this new design are presented in this abstract
Energy Technology Data Exchange (ETDEWEB)
Boulyga, S.F. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen]|[Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen
2000-11-01
As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The {sup 236}U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on inductively coupled plasma quadrupole mass spectrometry with a hexapole collision cell (HEX-ICP-QMS). The figures of merit of the HEX-ICP-QMS were studied with a plasma-shielded torch using different nebulizers (such as an ultrasonic nebulizer (USN) and Meinhard nebulizer) for solution introduction. A {sup 238}U{sup +} ion intensity of up to 27000 MHz/ppm in HEX-ICP-QMS with USN was observed by introducing helium into the hexapole collision cell as the collision gas at a flow rate of 10 ml min{sup -1}. The formation rate of uranium hydride ions UH{sup +}/U{sup +} of 2 x 10{sup -6} was obtained by using USN with a membrane desolvator. The limit of {sup 236}U/{sup 238}U ratio determination in 10 {mu}g 1{sup -1} uranium solution was 3 x 10{sup -7} corresponding to the detection limit for {sup 236}U of 3 pg 1{sup -1}. The precision of uranium isotopic ratio measurements in 10 {mu}g 1{sup -1} laboratory uranium isotopic standard solution was 0.13% ({sup 235}U/{sup 238}U) and 0.33% ({sup 236}U/{sup 238}U) using a Meinhard nebulizer and 0.45% ({sup 235}U/{sup 238}U) and 0.88% ({sup 236}U/{sup 238}U) using a USN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the {sup 236}U/{sup 238}U ratio ranged from 10{sup -5} to 10{sup -3}. (orig.)
Methodology for nuclear magnetic resonance and ion cyclotron resonance mass spectrometry
International Nuclear Information System (INIS)
Sehgal, Akansha
2014-01-01
This thesis encompasses methodological developments in both nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. The NMR section explores the effects of scalar relaxation on a coupled nucleus to measure fast exchange rates. In order to quantify these rates accurately, a precise knowledge of the chemical shifts of the labile protons and of the scalar couplings is normally required. We applied the method to histidine where no such information was available a priori, neither about the proton chemical shifts nor about the one-bond scalar coupling constants J( 1 H 15 N), since the protons were invisible due to fast exchange. We have measured the exchange rates of the protons of the imidazole ring and of amino protons in histidine by indirect detection via 15 N. Not only the exchange rate constants, but also the elusive chemical shifts of the protons and the coupling constants could be determined. For the mass spectrometry section, the ion isolation project was initiated to study the effect of phase change of radiofrequency pulses. Excitation of ions in the ICR cell is a linear process, so that the pulse voltage required for ejecting ions must be inversely proportional to the pulse duration. A continuous sweep pulse propels the ion to a higher radius, whereas a phase reversal causes the ion to come to the centre. This represents the principle of 'notch ejection', wherein the ion for which the phase is reversed is retained in the ICR cell, while the remaining ions are ejected. The manuscript also contains a theoretical chapter, wherein the ion trajectories are plotted by solving the Lorentzian equation for the three-pulse scheme used for two-dimensional ICR. Through our simulations we mapped the ion trajectories for different pulse durations and for different phase relations. (author)
Farag, Mohamed A
2014-01-01
The number of botanical dietary supplements in the market has recently increased primarily due to increased health awareness. Standardization and quality control of the constituents of these plant extracts is an important topic, particularly when such ingredients are used long term as dietary supplements, or in cases where higher doses are marketed as drugs. The development of fast, comprehensive, and effective untargeted analytical methods for plant extracts is of high interest. Nuclear magnetic resonance spectroscopy and mass spectrometry are the most informative tools, each of which enables high-throughput and global analysis of hundreds of metabolites in a single step. Although only one of the two techniques is utilized in the majority of plant metabolomics applications, there is a growing interest in combining the data from both platforms to effectively unravel the complexity of plant samples. The application of combined MS and NMR in the quality control of nutraceuticals forms the major part of this review. Finally I will look at the future developments and perspectives of these two technologies for the quality control of herbal materials.
Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.
2012-07-01
Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.
International Nuclear Information System (INIS)
Pond, R.B.; Matos, J.E.
1996-05-01
As part of the Department of Energy's spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report
$\\delta$-Expansion at Finite Temperature
Ramos, Rudnei O.
1996-01-01
We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.
« Culture populaire », « culture de masse » : une définition ou un préalable ?
Ory, Pascal
2017-01-01
Parmi les notions en usage dans le champ historien, celles de « culture populaire » et de « culture de masse » se caractérisent par une définition des plus incertaines – incertitude encore aggravée par la tendance de certains à les confondre l’une avec l’autre. Je voudrais ici restreindre cette incertitude en proposant, en effet, une telle définition. Mais comme – je l’annonce d’emblée – je rapprocherai l’une de l’autre plus que je ne les distinguerai, j’espère ne pas ajouter à la confusion… ...
International Nuclear Information System (INIS)
Tsuchida, Tatsuro; Kimura, Hiroshi
2011-01-01
The mass media has the potential to effect the utilization of nuclear power in Japan. In most cases journalists contact PR staff of the nuclear energy industry (hereinafter called 'the industry') to collect information about various events of nuclear energy. The industry is always ready to distribute related information and hold a press conference timely when necessary. In terms of the organizational structure for the PR activities each electric power company organizes the PR section in-house. The PR staff provides journalists with information on a daily basis. For the purpose of grasping the mass media's awareness, the author conducted interviews with 22 journalists who had experience in reporting news on nuclear energy subjects. The result showed that the journalists recognized the necessity of nuclear energy. The interviewees suggested that a proper press launch should be needed at just the right time especially in emergency situations and a press release should be more easily understandable. This interview showed that journalists considered the media reports as reflection of citizens' opinion. Most of the journalists realize that the influence of the media coverage should not be negligible and they acknowledge commutation between the two sides is gradually improved compared to before. (author)
International Nuclear Information System (INIS)
Anon.
1977-01-01
This guide describes the type of information needed to evaluate an application for a specific license for receipt, possession, use, and transfer of special nuclear material. It is intended for applicants requesting authorization to possess and use up to 2000 grams of plutonium, total, in the form of sealed plutonium-beryllium neutron sources, and any special nuclear material in quantities and forms not sufficient to form a critical mass. The latter quantities are considered to be 350 grams of contained uranium-235, 200 grams of uranium-233, 200 grams of plutonium (in any form other than plutonium-beryllium neutron sources) or any combination of them
Finite energy electroweak dyon
Energy Technology Data Exchange (ETDEWEB)
Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)
2015-02-01
The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Boatto, Gianpiero [Department of Toxicological Chemistry, University of Sassari, Sassari (Italy); Culeddu, Nicola [CNR Biomolecular Chemistry Institute, Sassari (Italy); Testa, Cecilia [IZS della Sardegna, Sassari (Italy); Neri, Bruno [IZS delle Regioni Lazio e Toscana, Rome (Italy); Brambilla, Gianfranco [Istituto Superiore di Sanita, Environment Department, Toxicological Chemistry Unit, Rome (Italy)]. E-mail: g.brambi@iss.it; Barbosa, Jorge [LNIV, Lisbon (Portugal); Cruz, Clara [LNIV, Lisbon (Portugal)
2007-03-14
In animal production, it is consolidated the synthesis and the illegal use of growth promoters of new generation, able to skip routine screening and confirmatory analysis. In this work it is reported the nuclear magnetic resonance (NMR) and the mass spectrometry identification of a probable new adrenergic drug found in a feed premix. The substance was selectively purified on alpha 1 acid glycoprotein affinity columns; then its structure was first achieved by recording the {sup 13}C NMR spectrum that gave the total number of carbons of the molecule, successively sorted by DEPT experiments into quaternary, CH, CH{sub 2}, and CH{sub 3} groups. However, the complete assignments of all resonances were derived from the bi-dimensional analysis and the crucial indications from the {sup 1}H-{sup 13}C reverse experiments. Further characterisation was performed by atmospheric pressure chemical ionisation both in positive and negative ion mode, matching the molecular ion and the fragmentation pattern with those of most recently described new adrenergic agonists. After the loss of a ter-butylic group, the structure shows an internal symmetry along with the presence of Chlorine clusters. The proposed formula of the compound, the 8,8'-diamino-9,9'-dichloro-1-terbutyl-1,1',4,4-tetrahydro-5H,5'H-2,2'-bi -1-benzazepine-5,5'-dione, partially resembles that of Zilpaterol for the presence of a heterocyclic ring; Further work is in progress to characterise the structure-activity relationship.
Role of cytogenetic biodosimetry in meeting the needs of a mass casualty radiological/nuclear event
International Nuclear Information System (INIS)
Balajee, A.S.; Dainiak, N.
2016-01-01
Radiological/nuclear (R/N) terrorism constitutes a potential threat to all nations that can result in significant morbidity and mortality among hundreds of thousands individuals. In addition to the timing and severity of clinical signs and symptoms, individual radiation dose informs risk assessment and mitigation of radiation-associated injuries. The 'gold standard' for individual whole-body radiation dosimetry is the dicentric chromosome assay. The Cytogenetics Biodosimetry Laboratory at REAC/TS is a WHO Collaborating Centre and member of IAEA's RANET that employs DCA, as well as fluorescence in situ hybridization, premature chromosome condensation, and micronuclei assays to assess radiation dose. The quality of dose estimates and standard operating procedures for DCA at REAC/TS have been validated in multiple inter-comparison studies involving CBLs in Asia, Europe, North America and South America. DCA is scalable to meet the needs of a mass casualty R/N incident. The CBL at REAC/TS has made seminal contributions to augment surge capacity for DCA and develop CBLs worldwide through initiatives such as modification of 'Share Point' in 2010 to transmit images of metaphases for simultaneous telescoring; (2) development of an on-line training program for metaphase scoring; (3) proactive participation as a WCC to create ISO standards; and (4) guidance of regulatory agencies to monitor quality of results and SOPs. The precision of dose estimates by DCA can be vastly improved by using a universal calibration curve. With this view, REAC/TS has organized a collaboration with CBLs at Health Canada and Yale University to construct and validate a common calibration curve for gamma rays
International Nuclear Information System (INIS)
Persaud, K.
1965-01-01
We have carried out the synthesis of: - phenanthrene - its five monomethyl derivatives - three dimethyl derivatives - two trimethyl derivatives. We have then purified these products as well as a certain number of others obtained from various sources. We have been able to obtain in the majority of cases, a purity of 99.5 per cent or over, these figures being obtained by low voltage mass spectrometry. Finally we have recorded the infrared, ultraviolet, nuclear magnetic resonance and mass spectra of these products for which an atlas has been drawn up. (author) [fr
International Nuclear Information System (INIS)
Gallego, Eduardo; Cantone, Marie Claire; Oughton, Deborah H.; Tomkiv, Yevgeniya; Perko, Tanja; Prezelj, Iztok
2017-01-01
This paper presents the results of a large study of 1340 articles published by two major newspapers in six European countries (Belgium, Italy, Norway, Slovenia, Spain and Russia) in the first 2 months after the Fukushima Daiichi nuclear disaster. The focus of the analysis is on the application and overall impact of protective actions, both during the emergency phase and later, how the newspapers describe those actions, which differences were apparent between countries and what recommendations can be extracted in order to improve general communication about these issues. A clear lesson is that, even under uncertainty and recognising limitations, responsible authorities need to provide transparent, clear and understandable information to the public and the mass media right from the beginning of the early phase of any nuclear emergency. Clear, concise messages should be given. Mass media could play a key role in reassuring the public if the countermeasures are clearly explained. (authors)
Photon propagators at finite temperature
International Nuclear Information System (INIS)
Yee, J.H.
1982-07-01
We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)
Energy Technology Data Exchange (ETDEWEB)
Grant, C R [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Reactores y Centrales Nucleares
1997-12-31
The reactor code PUMA, developed in CNEA, simulates nuclear reactors discretizing space in finite difference elements. Core representation is performed by means a cylindrical mesh, but the reactor channels are arranged in an hexagonal lattice. That is why a mapping using volume intersections must be used. This spatial treatment is the reason of an overestimation of the control rod reactivity values, which must be adjusted modifying the incremental cross sections. Also, a not very good treatment of the continuity conditions between core and reflector leads to an overestimation of channel power of the peripherical fuel elements between 5 to 8 per cent. Another code, DELFIN, developed also in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and current among elements and a more realistic representation of the hexagonal lattice of the reactor. A comparison between results obtained using both methods in done in this paper. (author). 4 refs., 3 figs.
2016-12-01
masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52
Finite element simulations of two rock mechanics tests
International Nuclear Information System (INIS)
Dahlke, H.J.; Lott, S.A.
1986-04-01
Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature
Chakrabarti, Suman; Schmidt, George R.; Thio, Y. C.; Hurst, Chantelle M.
1999-01-01
A preliminary model for spacecraft propulsion performance analysis based on nuclear gain and subsystem mass-power balances are presented in viewgraph form. For very fast missions with straight-line trajectories, it has been shown that mission trip time is proportional to the cube root of alpha. Analysis of spacecraft power systems via a power balance and examination of gain vs. mass-power ratio has shown: 1) A minimum gain is needed to have enough power for thruster and driver operation; and 2) Increases in gain result in decreases in overall mass-power ratio, which in turn leads to greater achievable accelerations. However, subsystem mass-power ratios and efficiencies are crucial: less efficient values for these can partially offset the effect of nuclear gain. Therefore, it is of interest to monitor the progress of gain-limited subsystem technologies and it is also possible that power-limited systems with sufficiently low alpha may be competitive for such ambitious missions. Topics include Space flight requirements; Spacecraft energy gain; Control theory for performance; Mission assumptions; Round trips: Time and distance; Trip times; Vehicle acceleration; and Minimizing trip times.
On-line nuclear half life and spectroscopic measurements on mass-separated fission product nuclei
International Nuclear Information System (INIS)
McDonald, J.; Fogelberg, B.; Baecklin, A.
1979-01-01
A description is given of the methods and equipment employed for nuclear spectroscopy studies of short lived fission product nuclei at the OSIRIS ISOL facility in Studsvik, Sweden. Furthermore a table of new nuclear half-lives measured with this equipment is presented. (author)
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade plutonium dioxide powders and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium Sample Handling 8 to 10 Plutonium by Controlled-Potential Coulometry Plutonium by Ceric Sulfate Titration Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Nitrogen by Distillation Spectrophotometry Using Nessler Reagent 11 to 18 Carbon (Total) by Direct Combustion–Thermal Conductivity 19 to 30 Total Chlorine and Fluorine by Pyrohydrolysis 31 to 38 Sulfur by Distillation Spectrophotometry 39 to 47 Plutonium Isotopic Analysis by Mass Spectrometry Rare Earth Elements by Spectroscopy 48 to 55 Trace Elements by Carrier–Distillation Spectroscopy 56 to 63 Impurities by ICP-AES Impurity Elements by Spark-Source Mass Spectrography 64 to 70 Moisture by the Coulomet...
Thomas-Fermi treatment of nuclear masses, deformations and density distributions
International Nuclear Information System (INIS)
Myers, W.D.; Swiatecki, W.J.
1994-08-01
A recently completed Thomas-Fermi model of nuclei is described. Six adjustable parameters of the effective nucleon-nucleon interaction were fitted to the shell-corrected binding energies of 1654 nuclei and to the diffuseness of the nuclear surface. The model is then successful in reproducing nuclear sizes, and only small deviations are found between calculated and measured fission barriers of 36 nuclei. The model is applied to the prediction of fission barriers of light elements, to drip-line nuclei like 82 Sn and 170 Sn, to the properties of nuclear and neutron matter and to nuclear bubble configurations with Z 2 /A ∼ 100. The relation of a Thomas-Fermi theory to the Droplet and Liquid Drop models is illustrated
Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells
Energy Technology Data Exchange (ETDEWEB)
Saad, Fawzy A. [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Torres, Marie [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Wang, Hao [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Graham, Lila, E-mail: lilagraham@cs.com [Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopedics, Children' s Hospital Boston, 300 Longwood Avenue EN926, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)
2010-06-11
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.
Finite size and dynamical effects in pair production by an external field
International Nuclear Information System (INIS)
Martin, C.; Vautherin, D.
1988-12-01
We evaluate the rate of pair production in a uniform electric field confined into a bounded region in space. Using the Balian-Bloch expansion of Green's functions we obtain explicit expressions for finite size corrections to Schwinger's formula. The case of a time-dependent boundary, relevant to describe energy deposition by quark-antiquark pair production in ultrarelativistic collisions, is also investigated. We find that finite size effects are important in nuclear collisions. They decrease when the strength of the chromo-electric field between the nuclei is large. As a result, the rate of energy deposition increases sharply with the mass number A of the colliding nuclei
AUTHOR|(CDS)2067087
In one of its acceptation, the word quench is synonym of destruction. And this is even more consistent with reality in the case of the Large Hadron Collider dipole magnets, whose magnetic field and stored energy are unprecedented: the uncontrolled transition from the superconducting to the resistive state can be the origin of dramatic events. This is why the protection of magnets is so important, and why so many studies and investigations have been carried out on quench origin. The production, cold testing and installation of the 1232 arc dipole magnets is completed. They have fulfilled all the requirements and the operation reliability of these magnets has already been partially confirmed. From an academic standpoint, nevertheless, the anomalous mechanical behaviour, which was sometimes observed during power tests, has not yet been given a clear explanation. The work presented in this thesis aims at providing an instrument to better understand the reasons for such anomalies, by means of finite element modell...
Energy Technology Data Exchange (ETDEWEB)
Giordanengo, Remi [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Viel, Stephane [Aix-Marseille Universite - CNRS, UMR 6263: Institut des Sciences Moleculaires de Marseille, Chimiometrie et Spectrometries, F-13397 Marseille (France); Hidalgo, Manuel; Allard-Breton, Beatrice [ARKEMA, Centre de Recherche Rhone Alpes, Rue Henri Moissan, F-69493 Pierre-Benite (France); Thevand, Andre [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France); Charles, Laurence, E-mail: laurence.charles@univ-provence.fr [Universites Aix-Marseille I, II et III - CNRS, UMR 6264: Laboratoire Chimie Provence, Spectrometries Appliquees a la Chimie Structurale, F-13397 Marseille (France)
2009-11-03
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. {sup 1}H and {sup 13}C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.
Thomas Fermi model of finite nuclei
International Nuclear Information System (INIS)
Boguta, J.; Rafelski, J.
1977-01-01
A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)
Chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides [(U,Pu)O2
International Nuclear Information System (INIS)
Anon.
1981-01-01
Mixed oxide, a mixture of uranium and plutonium oxides, is used as a nuclear-reactor fuel in the form of pellets. The plutonium content may be up to 10 wt %, and the diluent uranium may be of any U-235 enrichment. In order to be suitable for use as a nuclear fuel, the material must meet certain criteria for combined uranium and plutonium content, effective fissile content, and impurity content. Analytical procedures used to determine if mixed oxides comply with specifications are: uranium by controlled-potential coulometry; plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron (II); nitrogen by distillation spectrophotometry using Nessler reagent; carbon (total) by direct combustion-thermal-conductivity; total chlorine and fluorine by pyrohydrolysis; sulfur by distillation-spectrophotometry; moisture by the coulometric, electrolytic moisture analyzer; isotopic composition by mass spectrometry; rare earths by copper spark spectroscopy; trace impurities by carrier distillation spectroscopy; impurities by spark-source mass spectrography; total gas in reactor-grade mixed dioxide pellets; tungsten by dithiol-spectrophotometry; rare earth elements by spectroscopy; plutonium-238 isotopic abundance by alpha spectrometry; uranium and plutonium isotopic analysis by mass spectrometry; oxygen-to-metal atom ratio by gravimetry
Realistic effective interactions for nuclear systems
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.
1994-09-01
A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs
American Society for Testing and Materials. Philadelphia
1999-01-01
1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade uranium dioxide powders and pellets to determine compliance with specifications. 1.2 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear-grade uranium dioxide powder and pellets. 1.4 This test method covers the determination of chlorine and fluorine in nuclear-grade uranium dioxide. With a 1 to 10-g sample, concentrations of 5 to 200 g/g of chlorine and 1 to 200 μg/g of fluorine are determined without interference. 1.5 This test method covers the determination of moisture in uranium dioxide samples. Detection limits are as low as 10 μg. 1.6 This test method covers the determination of nitride nitrogen in uranium dioxide in the range from 10 to 250 μg. 1.7 This test method covers the spectrographic analysis of nuclear-grade UO2 for the 26 elements in the ranges indicated in Table 2. 1.8 For simultaneous determination of trace ele...
Gareev, F. A.; Zhidkova, I. E.
2007-03-01
We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.
International Nuclear Information System (INIS)
Tarantin, N.I.
2001-01-01
Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system of FLNR comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass-spectrometric ion trap of an 'in-flight capture' type is considered as a possible complex for producing of the short-lived nuclei in fragmentation reactions by heavy ions and for precise mass measurement of these nuclei. The plan of scientific and technical FLNR research includes a project DRIBs for producing beams of accelerated radioactive nuclear reaction products and photofission fragments. This project proposes also precise mass measurements of the fission fragment with the help of the ion trap. The in-flight entrance of the ions and their capture in the mass-spectrometric ion trap using the monochromatizing degrader, the static electric and magnetic fields and a new invention, a magnetic unidirectional transporting ventil, is considered
International Nuclear Information System (INIS)
1994-12-01
The design process for determining the mass increase for the substitution of low-enriched uranium (LEU) for high-enriched uranium (HEU) in space nuclear reactor systems is an optimization process which must simultaneously consider several variables. This process becomes more complex whenever the reactor core operates on an in-core thermionic power conversion, in which the fissioning of the nuclear fuel is used to directly heat thermionic emitters, with the subsequent elimination of external power conversion equipment. The increased complexity of the optimization process for this type of system is reflected in the work reported herein, where considerably more information has been developed for the moderated in-core thermionic reactors
International Nuclear Information System (INIS)
Betti, M.; Rasmussen, G.; Hiernaut, T.; Koch, L.
1994-01-01
A VG9000 glow discharge mass spectrometer has been modified for the direct analysis of solid nuclear samples within a glove-box environment. Because containment is needed for the analysis of this kind of material, the glove-box encloses all parts of the instrument that come into contact with the sample, namely the ion source chamber, sample interlock and associated pumping system. External modifications eliminate outside contamination by the fitting of absolute filters on all source supplies. Internally the design of the ion source has been altered to minimize the number of operations performed inside the glove-box thereby simplifying operation and routine maintenance. These modifications retain the ion extraction and focusing properties of the instrument. The data presented show that there is no compromise in the analytical performance of the instrument when placed in the glove-box. Data representative of nuclear materials is also shown. (Author)
Instanton vacuum at finite density of quark matter
International Nuclear Information System (INIS)
Molodtsov, S.V.; Zinovjev, G.M.
2002-01-01
We study light quark interactions in the instanton liquid at finite quark/baryon number density analyzing chiral and diquark condensates and investigate the behaviors of quark dynamical mass and both condensates together with instanton liquid density as a function of quark chemical potential. We conclude the quark impact (estimated in the tadpole approximation) on the instanton liquid could shift color superconducting phase transition to higher values of the chemical potential bringing critical quark matter density to the values essentially higher than conventional nuclear one
International Nuclear Information System (INIS)
Bloom, S.G.; Hulbert, L.E.
1979-10-01
A review of existing models identified several effects that may need consideration in further model development. Most of these effects involved coupling equations through variable property values rather than through omission of any significant mechanism. However, it was also shown that more than one mechanism may adequately simulate a given set of experimental data and additional experimental data are needed to establish which (if any) of the possible mechanisms would actually control conditions in a nuclear waste repository. In particular, it is believed that mathematical modeling of major thermomechanical effects can be accomplished with finite element analysis computer programs, provided that adequate thermomechanical property data of salt and overburden are attained. An attempt was made to develop a general set of differential equations for simulating momentum, mass, and energy flows in geologic formations in order to illustrate the possible mechanisms and point out those included and not included in existing models. Most of the mechanisms are included in some manner in existing models although some approximations may not be adequate. More experimental data are required to assess the importance of most omitted mechanisms. Analysis of some data on brine migration in salt indicated that two mechanisms, acting simultaneously, could adequately explain the flow. These are Darcy flow and a combination of ordinary and thermal diffusion enhanced by temperature-dependent solubility. Equations based on this simultaneous action correlated the data very well and indicated the possible need to include both (and, maybe other) mechanisms in future models. A program is recommended for further study of brine mobility. An expected result of this program includes recommendations for further experimental work
Energy Technology Data Exchange (ETDEWEB)
Bloom, S.G.; Hulbert, L.E.
1979-10-01
A review of existing models identified several effects that may need consideration in further model development. Most of these effects involved coupling equations through variable property values rather than through omission of any significant mechanism. However, it was also shown that more than one mechanism may adequately simulate a given set of experimental data and additional experimental data are needed to establish which (if any) of the possible mechanisms would actually control conditions in a nuclear waste repository. In particular, it is believed that mathematical modeling of major thermomechanical effects can be accomplished with finite element analysis computer programs, provided that adequate thermomechanical property data of salt and overburden are attained. An attempt was made to develop a general set of differential equations for simulating momentum, mass, and energy flows in geologic formations in order to illustrate the possible mechanisms and point out those included and not included in existing models. Most of the mechanisms are included in some manner in existing models although some approximations may not be adequate. More experimental data are required to assess the importance of most omitted mechanisms. Analysis of some data on brine migration in salt indicated that two mechanisms, acting simultaneously, could adequately explain the flow. These are Darcy flow and a combination of ordinary and thermal diffusion enhanced by temperature-dependent solubility. Equations based on this simultaneous action correlated the data very well and indicated the possible need to include both (and, maybe other) mechanisms in future models. A program is recommended for further study of brine mobility. An expected result of this program includes recommendations for further experimental work.
Up-down quark mass difference effect in nuclear many-body systems
International Nuclear Information System (INIS)
Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.
1995-01-01
A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing matrix elements in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect is large and agrees with experiment. This contribution may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. (author)
Up-down quark mass difference effect in nuclear many-body systems
International Nuclear Information System (INIS)
Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.
1996-01-01
A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect explains the systematic behavior of experiment. This contribution is large and may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. copyright 1996 The American Physical Society
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2016-05-01
Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms
International Nuclear Information System (INIS)
Silva Neto, A.J. da; Alvim, A.C.M.
1989-01-01
This work describes the thermalhydraulics code CROSS, designed for micro-computer calculation of heat and mass flow distributions in LWR nuclear reactor cores using the Hardy Cross method. Equations to calculate the pressure variations in the coolant channels are presented, along with derivation of a linear system of equations to calculate the energy balance. This system is solved through the Benachievicz method. A case study is presented, showing that the methodology developed in this work can be used in place of the forward marching multi-channel codes. (author) [pt
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
International Nuclear Information System (INIS)
Queipo-Ruiz, J.; Guzman-Martinez, F.; Rodriguez-Hoyos, O.
2011-01-01
The level density parameter is a very important ingredient in statistic study of nuclear reaction, it has been studied to low energies excitation E < 2MeV where it values is approximately constant, experimental results to energies of excitation more than 2 MeV has been obtained of evaporation spectrum, to nuclei with A=160. In this work we present a calculation of densities level parameter, for a wide range of mass and temperature, taking in accounts the shell effects and the mass effective interaction. The result has been carried out within the semi classical approximation, for the single particle level densities. We results have a reasonable agreement with the experimental data available. (Author)
Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass Project
National Aeronautics and Space Administration — Low specific mass (< 3 kg/kW) in-space electric power and propulsion can drastically alter the paradigm for exploration of the Solar System, changing human...
Mass extraction rates of radionuclides in fallout material from a 170-kt nuclear crater
Energy Technology Data Exchange (ETDEWEB)
Fleming, E H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)
1969-07-01
The quantity k is defined as the fraction of a nuclide in the environment which must be ingested each day over a given time period to receive a maximum allowable dose, in accordance with the International Commission on Radiological Protection guidelines. Values of k were computed for radionuclides produced in a single cratering detonation using current design technology. A new concept, called the 'Mass Extraction Rate,' is presented. This concept is defined as the mass of earth material from which the entire quantity of the radionuclide must be extracted and ingested each day by some natural process over a given time interval, which results in a permissible dose. Mass Extraction Rate values are tabulated. A comparison is made between the Mass Extraction Rate and the specific activity methods. (author)
Mass extraction rates of radionuclides in fallout material from a 170-kt nuclear crater
International Nuclear Information System (INIS)
Fleming, E.H.
1969-01-01
The quantity k is defined as the fraction of a nuclide in the environment which must be ingested each day over a given time period to receive a maximum allowable dose, in accordance with the International Commission on Radiological Protection guidelines. Values of k were computed for radionuclides produced in a single cratering detonation using current design technology. A new concept, called the 'Mass Extraction Rate,' is presented. This concept is defined as the mass of earth material from which the entire quantity of the radionuclide must be extracted and ingested each day by some natural process over a given time interval, which results in a permissible dose. Mass Extraction Rate values are tabulated. A comparison is made between the Mass Extraction Rate and the specific activity methods. (author)
The origin of nuclear mass number dependence in EMC-effect
International Nuclear Information System (INIS)
Kurihara, Y.; Date, S.; Nakamura, A.; Sato, H.; Sumiyoshi, H.; Yoshinada, K.
1985-03-01
The origin of the mass number dependence of the nucleon structure functions extracted from the deep inelastic lepton-nucleus scattering is investigated by factorizing the structure function into A and x dependent parts. It is found that the mass number dependence is determined by the probability of exotic components in multi-nucleon overlap. This suggests that the deformation of the nucleon structure function is caused by the interaction among nucleons during their overlap. (author)
Perturbative QCD at finite temperature
International Nuclear Information System (INIS)
Altherr, T.
1989-03-01
We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
The effect of nuclear gas distribution on the mass determination of supermassive black holes
Mejía-Restrepo, J. E.; Lira, P.; Netzer, H.; Trakhtenbrot, B.; Capellupo, D. M.
2018-01-01
Supermassive black holes reside in the nuclei of most galaxies. During their active episodes, black holes are powered by accretion discs where gravitational energy is converted into radiation1. Accurately determining black hole masses is key to understand how the population evolves over time and how the black holes relate to their host galaxies2-4. Beyond the local universe, z ≳ 0.2, the mass is commonly estimated assuming a virialized motion of gas in the close vicinity of the active black holes, traced through broad emission lines5,6. However, this procedure has uncertainties associated with the unknown distribution of the gas clouds. Here, we show that the black hole masses derived from the properties of the accretion disk and virial mass estimates differ by a factor that is inversely proportional to the width of the broad emission lines. This leads to virial mass misestimations up to a factor of six. Our results suggest that a planar gas distribution that is inclined with respect to the line of sight may account for this effect. However, radiation pressure effects on the distribution of gas can also reproduce our results. Regardless of the physical origin, our findings contribute to mitigating the uncertainties in current black hole mass estimations and, in turn, will help us to better understand the evolution of distant supermassive black holes and their host galaxies.
International Nuclear Information System (INIS)
Gareev, F.A.; Zhidkova, I.E.; )
2007-01-01
Full text: We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schroedinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principles which are not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔM = n 1 /n 2 ·0.0076294 (in MeV/ ), n i =1,.2,3... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research field can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste
International Nuclear Information System (INIS)
Guigues, E.; Janulyte, A.; Zerega, Y.; Pontillon, Y.
2013-06-01
The work presented in this paper has been performed in the framework of a joint research program between Aix-Marseille University and CEA Cadarache. The aim is to develop a mass spectrometer (MS) device for the MERARG facility. MERARG is devoted to the study of fission gas release measurement, from nuclear fuels submitted to annealing tests in high activity laboratory such as LECA-STAR, thanks to gamma spectrometry. The mass spectrometer will then extend the measurement capability from the γ-emitters gases to all the gases involved in the release in order to have a better understanding of the fission gas release dynamics from fuel during thermal transients. Furthermore, the mass spectrometer instrument combines the capabilities and performances of both on-line (for release kinetic) and off-line implementations (for delayed accurate analysis of capacities containing total release gas). The paper deals with two main axes: (1) the modelling of gas sampling inlet device and its performance and (2) the first MS qualification/calibration results. The inlet device samples the gas and also adapts the pressure between MERARG sweeping line at 1.2 bar and mass spectrometer chamber at high vacuum. It is a two-stage device comprising a capillary at inlet, an intermediate vacuum chamber, a molecular leak inlet and a two-stage pumping device. Pressure drops, conductance and throughputs are estimated both for mass spectrometer operation and for exhaust gas recovery. Possible gas segregation is also estimated and device modification is proposed to attain a more accurate calibration. First experimental results obtained from a standard gas bottle show that the quantitative analysis at a few ppm level can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)
Nuclear triaxiality in the A ∼ 160–170 mass region: the story so far
Indian Academy of Sciences (India)
2014-11-01
Nov 1, 2014 ... 1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India ... According to the calculated shell gaps, among Lu isotopes, 165Lu94 and 168Lu97 .... Based on a systematic investigation of the .... A brief review of recent discoveries and ongoing experimental and theoretical investi-.
The mass media role in acceptance activities of Slovak Republic's Nuclear Regulatory Authority
International Nuclear Information System (INIS)
Seliga, Mojmir
1998-01-01
Communication is the vital link between Nuclear Regulatory Authority and the public. If people do not know and understand the facts on which optimal a safety energy choice decisions should be based they cannot make informed decisions on how their own objectives can be met. The following ten commandments of communications are pointed out: be yourself; be comfortable and confident; be honest; be brief; be human; be personal; be positive and consistent; be attentive; be energetic; be committed and sincere. The important aspect is to test whether the nuclear energy in the Slovak Republic is acceptable according to mandatory rules and if its operation is regulated by the state through the independent institution - the Nuclear Regulatory Authority of the Slovak Republic (UJD). The media in Slovakia has on important power. Many organizations are therefore apprehensive when dealing with the press, radio and television. Many people would simply prefer not to get panicked when the dreaded microphones and cameras do appear. UJD considers the whole area of public relations as an essential component of its activity. UJD intends to offer the public true, systematic, qualified, understandable and independent information, regarding the safety of nuclear power plants, as well as regarding the methods and results of UJD work. Generally, public information is considered a significant contribution to the creation of confidence into the regulatory work. The paper presents the UJD communication program and relations with media as well as the preparedness of public information in case of emergency
Phase transitions in nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1984-11-01
The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Locally Finite Root Supersystems
Yousofzadeh, Malihe
2013-01-01
We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.
Determination of burn-up of irradiated nuclear fuels using mass spectrometry
International Nuclear Information System (INIS)
Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.
2017-01-01
Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor
Gallego, Eduardo; Cantone, Marie Claire; Oughton, Deborah H; Perko, Tanja; Prezelj, Iztok; Tomkiv, Yevgeniya
2017-04-01
This paper presents the results of a large study of 1340 articles published by two major newspapers in six European countries (Belgium, Italy, Norway, Slovenia, Spain and Russia) in the first 2 months after the Fukushima Daiichi nuclear disaster. The focus of the analysis is on the application and overall impact of protective actions, both during the emergency phase and later, how the newspapers describe those actions, which differences were apparent between countries and what recommendations can be extracted in order to improve general communication about these issues. A clear lesson is that, even under uncertainty and recognising limitations, responsible authorities need to provide transparent, clear and understandable information to the public and the mass media right from the beginning of the early phase of any nuclear emergency. Clear, concise messages should be given. Mass media could play a key role in reassuring the public if the countermeasures are clearly explained. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M
2017-10-01
The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength
Toward finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1986-01-01
The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)
Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte
2017-02-15
High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be
Energy Technology Data Exchange (ETDEWEB)
Gourgiotis, Alkiviadis, E-mail: alkiviadis.gourgiotis@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Ducasse, Thomas [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Barker, Evelyne [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France); Jollivet, Patrick; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze (France); Bassot, Sylvain; Cazala, Charlotte [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-DGE/SRTG/LT2S, Fontenay-aux-Roses (France)
2017-02-15
High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of {sup 29}Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O{sub 2} as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO{sup +} and SiO{sub 2}{sup +} ion species was performed, and we found that SiO{sup +} ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO{sub 3}). For SiO{sub 2}{sup +}, no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. {sup 28}Si{sup 16}O{sup 18}O{sup +}, {sup 30}Si{sup 16}O{sup 16}O{sup +}). The developed method was validated by measuring a series of reference solutions with different {sup 29}Si
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.
2015-06-01
woman I know. She is the true cornerstone of my career. Through the tribulations of deployments and long hours in port, she steadily provided me...right diagram (b), shows an odd isotope with the nuclear spin angular momenta of I = 3/2. In contrast with the even isotope, there is two states, F...The electron spin angular momentum is not affected by the dipole operator. The even isotopes have equal squares of their Clebsch-Gordan
New measurement capabilities of mass spectrometry in the nuclear fuel cycle
International Nuclear Information System (INIS)
Perrin, R.E.
1979-01-01
Three recent developments, when combined, have the potential for greatly improving accountability measurements in the nuclear fuel cycle. The techniques are particularly valuable when measuring the contents of vessels which are difficult to calibrate by weight or volume. Input dissolver accountability measurements, inparticular, benefit from the application of these techniques. Los Alamos Scientific Laboratory has developed the capability for isotopic analysis of U and Pu samples at the nanogram level with an accuracy of 0.1 relative %. The Central Bureau for Nuclear Materials Measurement in Geel, Belgium has developed the capability of preparing mixed, solid metal U and Pu spikes with an accuracy of better than 0.1 relative %. Idaho Nuclear Energy Laboratory and C.K. Mathews at Bhabha Atomic Research have demonstrated a technique for determining the ratio of sample size to total solution measured which is independent of both the weight and the volume of the solution being measured. The advantages and limitations of these techniques are discussed. An analytical scheme which takes advantage of the special features of these techniques is proposed. 4 refs
Ordenes-Briceño, Yasna; Puzia, Thomas H.; Eigenthaler, Paul; Taylor, Matthew A.; Muñoz, Roberto P.; Zhang, Hongxin; Alamo-Martínez, Karla; Ribbeck, Karen X.; Grebel, Eva K.; Ángel, Simón; Côté, Patrick; Ferrarese, Laura; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan W.; Rong, Yu; Sánchez-Janssen, Ruben
2018-06-01
We present the analysis of 61 nucleated dwarf galaxies in the central regions (≲R vir/4) of the Fornax galaxy cluster. The galaxies and their nuclei are studied as part of the Next Generation Fornax Survey using optical imaging obtained with the Dark Energy Camera mounted at Blanco/Cerro Tololo Inter-American Observatory and near-infrared data obtained with VIRCam at VISTA/ESO. We decompose the nucleated dwarfs in nucleus and spheroid, after subtracting the surface brightness profile of the spheroid component and studying the nucleus using point source photometry. In general, nuclei are consistent with colors of confirmed metal-poor globular clusters, but with significantly smaller dispersion than other confirmed compact stellar systems in Fornax. We find a bimodal nucleus mass distribution with peaks located at {log}({{ \\mathcal M }}* /{M}ȯ )≃ 5.4 and ∼6.3. These two nucleus subpopulations have different stellar population properties: the more massive nuclei are older than ∼2 Gyr and have metal-poor stellar populations (Z ≤ 0.02 Z ⊙), while the less massive nuclei are younger than ∼2 Gyr with metallicities in the range 0.02 < Z/Z ⊙ ≤ 1. We find that the nucleus mass ({{ \\mathcal M }}nuc}) versus galaxy mass ({{ \\mathcal M }}gal}) relation becomes shallower for less massive galaxies starting around 108 M ⊙, and the mass ratio {η }n={{ \\mathcal M }}nuc}/{{ \\mathcal M }}gal} shows a clear anticorrelation with {{ \\mathcal M }}gal} for the lowest masses, reaching 10%. We test current theoretical models of nuclear cluster formation and find that they cannot fully reproduce the observed trends. A likely mixture of in situ star formation and star cluster mergers seems to be acting during nucleus growth over cosmic time.
International Nuclear Information System (INIS)
Deron, S.; )
1996-01-01
Gravimetry, titration, coulometry and isotope dilution mass spectrometry are alternative techniques which can be used to obtain elemental assays of the desirable accuracy. The communication briefly describes the characteristics of the procedure and summarizes a wealth of experience accumulated during actual accountability verification activities
International Nuclear Information System (INIS)
KLEM, M.J.
2000-01-01
The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869
International Nuclear Information System (INIS)
KLEM, M.J.
2000-01-01
The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference
Determination of nuclear fuel burn-up using mass spectrometric techniques
International Nuclear Information System (INIS)
Saha, B.; Bagyalakshmi, R.; Periaswami, G.; Kavimandan, V.D.; Chitambar, S.A.; Jain, H.C.; Mathews, C.K.
1977-01-01
Determination of burn-up using a stable fission product monitor such as 148 Nd and heavy elements, determined by isotope dilution mass spectrometry gives the most accurate data. This report describes the work carried out to standardise the conditions for burn-up determination. Some typical results are given. (author)
Energy Technology Data Exchange (ETDEWEB)
Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Nakasato, Naohito, E-mail: tanikawa@ea.c.u-tokyo.ac.jp [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)
2017-04-20
We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.
International Nuclear Information System (INIS)
Fifield, L.K.; Hausladen, P.A.; Cresswell, R.G.; Di Tada, M.L.; Day, J.P.; Carling, R.S.; Oughton, D.H.
1999-01-01
Historical discharges of plutonium from the Russian nuclear processing plant at Mayak in the Urals have been traced in sediments, soils and river water using ultra-sensitive detection of plutonium isotopes by accelerator mass spectrometry (AMS). Significant advantages of AMS over other techniques are its very high sensitivity. which is presently ∼10 6 atoms (1 μBq), and its ability to determine the 240 Pu/ 239 Pu ratio. The latter is a sensitive indicator of the source of the plutonium, being very low (1-2%) for weapons grade plutonium, and higher (∼ 20%) for plutonium from civil reactors or fallout from nuclear weapons testing. Since this ratio has changed significantly over the years of discharges from Mayak, a measurement can provide important information about the source of plutonium at a particular location. Similar measurements have been performed on samples from the Kara Sea which contains a graveyard of nuclear submarines from the former Soviet Union. AMS techniques have also been developed for detection of 99 Tc down to levels of a few femtograms. This isotope is one of the most prolific fission products and has a very long half-life of 220 ka. Hundreds of kg have been discharged from the nuclear reprocessing plant at Sellafield in the UK. While there may be public health issues associated with these discharges which can be addressed with AMS, these discharges may also constitute a valuable oceanographic tracer experiment in this climatically-important region of the world's oceans. Applications to date have included a human uptake study to assess long-term retention of 99 Tc in the body, and a survey of seaweeds from northern Europe to establish a baseline for a future oceanographic study
International Nuclear Information System (INIS)
Tonks, M.R.; Williamson, R.; Masson, R.
2015-01-01
The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)
International Nuclear Information System (INIS)
Prasad, Mahendra; Gaikwad, Avinash J.; Sridharan, Arunkumar; Parida, Smrutiranjan
2015-01-01
The flow of fluid in pipes cause corrosion wherein the inner surface of pipe becomes progressively thinner and susceptible to failure. This form of corrosion dependent on flow dynamics is called Flow Accelerated Corrosion (FAC) and has been observed in Nuclear Power Plants (NPPs). Mass transfer coefficient (MTC) is related to extent of wall thinning and it changes from its value in a straight pipe (with same fluid parameters) for flow in orifices, bends, junctions etc. due to gross disturbance of the velocity profile. This paper presents two-dimensional computational fluid dynamics (CFD) simulations for an orifice configuration in a straight pipe. Turbulent model K- ω with shear stress transport and transition flow was the model used for simulation studies. The mass transfer boundary layer (MTBL) thickness δ mtbl is related to the Schmidt number (Sc) and hydrodynamic boundary layer thickness δ h , as δ mtbl ~ δh/(Sc 1/3 ). MTBL is significantly smaller than δ h and hence boundary layer meshing was carried out deep into δ mtbl . Uniform velocity profile was applied at the inlet. Post orifice fluid shows large recirculating flows on the upper and lower wall. At various locations after orifice, mass transfer coefficient is calculated and compared with the value in straight pipe with fully developed turbulent flow. The MTC due to the orifice increases and it is correlated with enhanced FAC in region after orifice. (author)
International Nuclear Information System (INIS)
Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité
2013-01-01
The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long‐Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low 41 Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). 41 Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF 2 precipitations. Measured 41 Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The 41 Ca/ 60 Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. - Highlights: • In the context of radioactive waste management, this study aimed at measuring 41 Ca in spent resins using Accelerator Mass Spectrometry. • A chemical treatment procedure was developed to quantitatively recover calcium in solution and selectively extract it. • Developed firstly on synthetic matrices, the chemical treatment procedure was then successfully applied to real resin samples. • Accelerator mass spectrometry allowed measuring concentrations of 41 Ca in spent resins as low as 0.02 ng/g of dry resin. • Final results are in agreement with current data used for spent resins management
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.
Analysis of heat and mass transport processes near an emplaced nuclear waste canister
International Nuclear Information System (INIS)
Keller, C.
1990-01-01
A review has been performed of the models and experimental plans for evaluation of the spent fuel canister environment in a nuclear repository, e.g., the planned Yucca Mountain facilities. Special emphasis was placed on the relevance of the models and experiments to the 100 to 10,000 year prediction. The question was addressed whether one could justify testing in materials other than Yucca Mountain rock and obtain results in a relatively short time which would be relevant to the long time in Yucca Mountain. The paper discusses steam evolution in calculations and experiments, fracture models, possible measurements of relative permeability, and long time scale effects. 5 figs. (MB)
Carena, M S; Herfurth, F; Ames, F; Audi, G; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Kuckein, M; Lunney, M D; Moore, R B; Oinonen, M; Rodríguez, D; Sauvan, E; Scheidenberger, C
2003-01-01
Precision electroweak data presently-favors a weakly-coupled Higgs sector as the mechanism responsible for electroweak symmetry breaking. Low-energy supersymmetry provides a natural framework for weakly-coupled elementary scalars. In this review, we summarize the theoretical properties of the Standard Model (SM) Higgs boson and the Higgs sector of the minimal super-symmetric extension of the Standard Model (MSSM). We then survey the phenomenology of the SM and MSSM Higgs bosons at the Tevatron, LHC and a future e**+e**- linear collider. We focus on the Higgs discovery potential of present and future colliders and stress the importance of precision measurements of Higgs boson properties. 459 Refs.31 The Penning trap mass spectrometer ISOLTRAP is a facility for high- precision mass measurements of short-lived radioactive nuclei installed at ISOLDE/CERN in Geneva. More than 200 masses have been measured with relative uncertainties of 1 multiplied by 10**-**7 or even close to 1 multiplied by 10**-**8 in special c...
On-line mass spectometry of nuclear reactions induced by heavy ions
International Nuclear Information System (INIS)
Saint Simon, M. de.
1977-01-01
The adaptation of the on-line mass-spectrometric technique to the special conditions of heavy ion induced reactions is described. The method is very selective about A and Z, even for the very heavy reaction products in counterpart of the limitation of its applications to the alkaline elements only. This method is used in order to study the effects of angular momentum brought by the projectile in the complete fusion process and in the following neutron evaporation. The analysis of excitation functions shows that the increase in mass of the projectile has not always the effect of increasing the rotation energy of the compound nucleus. The on-line mass spectrometry has allowed to study heavy ion induced fission. Measurements of complementary isotopic distributions of fission products make it possible to explain that the total number of neutrons emitted per fission can be always deduced from the fragment excitation energy. The study of the isotope distribution variance shows that the statistical model for fission is in good agreement with experimental results after taking into account the non-fusion processes [fr
Carter, Holly; Amlôt, Richard; Williams, Richard; Rubin, G. James; Drury, John
2016-01-01
This short report presents a response to an article written by Cibulsky et al. (2016). The paper by Cibulsky et al. presents a useful and timely overview of the evidence surrounding the technical and operational aspects of mass casualty decontamination. It identifies three priority targets for future research, the third of which is how casualties' needs can be met in ways that best support compliance with and effectiveness of casualty decontamination. While further investigation into behavioural, communication and privacy issues during mass decontamination is warranted, there is now a substantial body of research in this area which is not considered in detail in the succinct summary provided by Cibulsky et al. (2016). In this short report, we summarise the available evidence around likely public behaviour during mass decontamination, effective communication strategies, and potential issues resulting from a lack of privacy. Our intention is to help further focus the research needs in this area and highlight topics on which more research is needed. PMID:27790381
Low mass dielectrons radiated off cold nuclear matter measured with HADES
Directory of Open Access Journals (Sweden)
Lorenz M.
2014-03-01
Full Text Available The High Acceptance DiElectron Spectrometer HADES [1] is installed at the Helmholtzzentrum für Schwerionenforschung (GSI accelerator facility in Darmstadt. It investigates dielectron emission and strangeness production in the 1-3 AGeV regime. A recent experiment series focusses on medium-modifications of light vector mesons in cold nuclear matter. In two runs, p+p and p+Nb reactions were investigated at 3.5 GeV beam energy; about 9·109 events have been registered. In contrast to other experiments the high acceptance of the HADES allows for a detailed analysis of electron pairs with low momenta relative to nuclear matter, where modifications of the spectral functions of vector mesons are predicted to be most prominent. Comparing these low momentum electron pairs to the reference measurement in the elementary p+p reaction, we find in fact a strong modification of the spectral distribution in the whole vector meson region.
Characterization of resonances using finite size effects
International Nuclear Information System (INIS)
Pozsgay, B.; Takacs, G.
2006-01-01
We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra
International Nuclear Information System (INIS)
Grant, C.R.
1996-01-01
Code DELFIN, developed in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and currents among elements and a more realistic representation of the hexagonal lattice of the reactor. It can be used for fuel management calculation, Xenon oscillation and spatial kinetics. Using the HUEMUL code for cell calculation (which uses a generalized two dimensional collision probability theory and has the WIMS library incorporated in a data base), the zero power experiences performed in 1974 were calculated. (author). 8 refs., 9 figs., 3 tabs
Directory of Open Access Journals (Sweden)
Tongchun Li
2015-01-01
element is proposed to solve the safety factor of local discontinuous rock mass. Slope system is divided into several continuous bodies and local discontinuous interface boundaries. Each block is treated as a partition of the system and contacted by discontinuous joints. The displacements of blocks are chosen as basic variables and the rigid displacements in the centroid of blocks are chosen as motion variables. The contact forces on interface boundaries and the rigid displacements to the centroid of each body are chosen as mixed variables and solved iteratively using the interface boundary equations. Flexibility matrix is formed through PFE according to the contact states of nodal pairs and spring flexibility is used to reflect the influence of weak structural plane so that nonlinear iteration is only limited to the possible contact region. With cohesion and friction coefficient reduced gradually, the states of all nodal pairs at the open or slip state for the first time are regarded as failure criterion, which can decrease the effect of subjectivity in determining safety factor. Examples are used to verify the validity of the proposed method.
Microscopically Based Nuclear Energy Functionals
International Nuclear Information System (INIS)
Bogner, S. K.
2009-01-01
A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.
International Nuclear Information System (INIS)
Chanfray, G.
1996-07-01
We discuss various aspects of pion physics in the nuclear medium. We first study s-wave pion-nucleus interaction in connection with chiral symmetry restoration and quark condensate in the nuclear medium. We then address the question of p-wave pion-nucleus interaction and collective pionic modes in nuclei and draw the consequences for in medium ππ correlations especially in the scalar-isoscalar channel. We finally discuss the modification of the rho meson mass spectrum at finite density and/or temperature in connection with relativistic heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Yadav, Vikas; Sil, Karunava [Indian Institute of Technology, Department of Physics, Roorkee, Uttarakhand (India); Misra, Aalok [Indian Institute of Technology, Department of Physics, Roorkee, Uttarakhand (India); McGill University, Physics Department, Montreal, QC (Canada)
2017-10-15
Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large-N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N{sub c} = number of D5(D5)-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi:10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi:10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large-N suppressed decrease in vector meson mass with increase of temperature. (orig.)
Yadav, Vikas; Misra, Aalok; Sil, Karunava
2017-10-01
Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large- N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N_c = number of D5(\\overline{D5})-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi: 10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi: 10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large- N suppressed decrease in vector meson mass with increase of temperature.
International Nuclear Information System (INIS)
Yadav, Vikas; Sil, Karunava; Misra, Aalok
2017-01-01
Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large-N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N c = number of D5(D5)-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi:10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi:10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large-N suppressed decrease in vector meson mass with increase of temperature. (orig.)
International Nuclear Information System (INIS)
Travis, J.R.
1985-01-01
It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs
Squeeze-out of nuclear matter as a function of projectile energy and mass
International Nuclear Information System (INIS)
Gutbrod, H.H.; Kampert, K.H.; Kolb, B.; Poskanzer, A.M.; Ritter, H.G.; Schicker, R.; Schmidt, H.R.
1990-01-01
Squeeze-out, a component of the collective flow of nuclear matter, is the preferential emission of particles out of the reaction plane. Using the sphericity method the out-of-plane/in-plane ratio of the kinetic energy flow has been analyzed as a function of multiplicity and beam energy for Ca+Ca, Nb+Nb, and Au+Au collisions measured with the Plastic Ball detector at the Bevalac. Also, azimuthal distribution of the particles around the flow axis are presented together with the extracted out-of-plane/in-plane ratios. Finally, the rapidity dependence of the out-of-plane/in-plane ratio has been investigated with a new method using the transverse momentum components of the particles
Analysis of heat and mass transfer in sub-seabed disposal of nuclear waste
International Nuclear Information System (INIS)
Hickox, C.E.; Gartling, D.K.; McVey, D.F.; Russo, A.J.; Nuttall, H.E.
1980-01-01
A mathematical basis is developed for the prediction of thermal and radionuclide transport in marine sediments. The theory is applied to the study of radioactive waste disposal by emplacement, in specially designed containers, well below the sediment/water interface. Numerical results are obtained for a specified model problem through use of two computer programs designed primarily for the analysis of waste disposal problems. One program (MARIAH) provides descriptions of the temperature and velocity fields induced by the presence of a container of thermally active nuclear waste. A second program (IONMIG), which utilizes the results of the thermal analysis, is used to provide predictions for the migration of four representative radionuclides: 239 Pu, 137 Cs, 129 I, and 99 Tc
International Nuclear Information System (INIS)
Hermanns, H.J.
1977-04-01
By the example of light-water cooled nuclear reactors, the state of the calculation methods at disposal for calculating mass flow and steam quality distribution (sub-channel analysis) is indicated. Particular regard was paid to the transport phenomena occurring in reactor fuel elements in the range of two phase flow. Experimentally determined values were compared with recalculations of these experiments with the sub-channel code COBRA; from the results of these comparing calculations, conclusions could be drawn on the suitability of this code for defined applications. Limits of reliability could be determined to some extent. Based on the experience gained and the study of individual physical model concepts, recognized as being important, a sub-channel model was drawn up and the corresponding numerical computer code (SIEWAS) worked out. Experiments made at GE could be reproduced with the code SIEWAS with sufficient accuracy. (orig.) [de
International Nuclear Information System (INIS)
Malinowski, E.R.
1978-01-01
Based on the theory of error for abstract factor analysis described earlier, a theory of error for target factor analysis is developed. The theory shows how the error in the data matrix mixes with the error in the target test vector. The apparent error in a target test is found to be a vector sum of the real error in the target vector and the real error in the predicted vector. The theory predicts the magnitudes of these errors without requiring any a priori knowledge of the error in the data matrix or the target vector. A reliability function and a spoil function are developed for the purpose of assessing the validity and the worthiness of a target vector. Examples from model data, mass spectrometry and nuclear magnetic resonance spectrometry are presented. (Auth.)
International Nuclear Information System (INIS)
Anon.
1975-01-01
All methods described for subsampling and analysis of UF 6 are in routine use at United States Atomic Energy Commission installations. A gravimetric method is included for U and titrimetric methods, for Cl 2 and U. Mass spectrometric methods are given for both double and single standard procedures for U-isotopic content and for semiquantitative determination of hydrocarbons, chlorocarbons, and partially substituted halohydrocarbons. Spectroscopic methods are described for 232 U, fission products, Pu, and Np. In some instances an ion exchange- or extraction-separation is specified prior to the spectroscopic determination. Mass spectroscopic procedures for 31 trace elements are included, as are spectrophotometric methods for Br 2 , Si, P, Ti, V, W, Th, and Mo. Following a preliminary separation for some elements, emission spectroscopic procedures are described for B, Si, Ru, Hf, Mo, Nb, Ta, Ti, W, Zr, V, Th, rare earths, and other elements. Procedures for the determination of Sb, Ru, Al, Cd, Co, Ca, Cr, Fe, Pb, Mg, Mn, Ni, K, Na, and Zn by atomic absorption methods are included. The preparation of high-purity U 3 O 8 by the hydrolysis of UF 6 to UO 2 F 2 which upon drying and pyrohydrolysis yields U 3 O 8 is described
Energy Technology Data Exchange (ETDEWEB)
Mamyrin, B.A.; Aruev, N.N.; Alekseenko, S.A.
1983-06-01
In connection with the revision of the table values of the atomic masses and the forthcoming coordination of the values of the fundamental physical constants, the result of measurement of the proton magnetic moment in nuclear Magnetons obtained in 1971 is re-examined by taking into account recent data. With the atomic masses recognized in 1982 the proton magnetic moment expressed in nuclear magnetons without a correction for diamagnetic screening of the proton in a water molecule is found to be ..mu..sub(p)'/..mu..sub(n)=2.7927729+-0.0000012 (4.3x10/sup -5/%).
Hydrogeological evidence of low rock mass permeabilities in ordovician strata: Bruce nuclear site
International Nuclear Information System (INIS)
Beauheim, R.L.; Roberts, R.M.; Avis, J.D.; Heagle, D.
2011-01-01
One of the key attributes contributing to the suitability of the Bruce nuclear site to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Waste (L&ILW) is the low permeability of the Ordovician host rock and of the overlying and underlying strata. The permeability of these rocks is so low that diffusion is a much more significant transport mechanism than advection. Hydrogeological evidence for the low permeability of the Ordovician strata comes from two principal sources, direct and indirect. Direct evidence of low permeability is provided by the hydraulic testing performed in deep boreholes, DGR-2 through DGR-6. Straddle-packer hydraulic testing was performed in 57 Ordovician intervals in these five holes. The testing provided continuous coverage using ~30-m straddle intervals of the Ordovician strata exposed in boreholes DGR-2, DGR-3, DGR-4, and DGR-5, while testing was targeted on discontinuous 10.2-m intervals in DGR-6. The average horizontal hydraulic conductivities of these intervals determined from the tests ranged from 2E-16 to 2E-10 m/s. The Lower Member of the Cobourg Formation, which is the proposed host formation for the DGR, was found to have a horizontal hydraulic conductivity of 4E-15 to 3E-14 m/s. The only horizontal hydraulic conductivity values measured that were greater than 2E-12 m/s are from the Black River Group, located at the base of the Ordovician sedimentary sequence. Indirect evidence of low permeability is provided by the observed distribution of hydraulic heads through the Ordovician sequence. Hydraulic head profiles, defined by hydraulic testing and confirmed by Westbay multilevel monitoring systems, show significant underpressures relative to a density-compensated hydrostatic condition throughout most of the Ordovician strata above the Black River Group, whereas the Black River Group is overpressured. Pressure differences of 1 MPa or more are observed between adjacent intervals in the boreholes. The observed
Baryon interactions from lattice QCD with physical quark masses - Nuclear forces and ΞΞ forces -
Doi, Takumi; Iritani, Takumi; Aoki, Sinya; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji
2018-03-01
We present the latest lattice QCD results for baryon interactions obtained at nearly physical quark masses. Nf = 2 + 1 nonperturbatively O(a)-improved Wilson quark action with stout smearing and Iwasaki gauge action are employed on the lattice of (96a)4 ≃(8.1fm)4 with a-1 ≃2.3 GeV, where mπ ≃146 MeV and mK ≃525 MeV. In this report, we study the two-nucleon systems and two-Ξ systems in 1S0 channel and 3S1-3D1 coupled channel, and extract central and tensor interactions by the HAL QCD method. We also present the results for the NΩ interaction in 5S2 channel which is relevant to the NΩ pair-momentum correlation in heavy-ion collision experiments.
Fission product nuclear data obtained by use of an on-line mass spectrometer
International Nuclear Information System (INIS)
Reeder, P.L.; Wright, J.F.; Anderl, R.A.
1975-01-01
A Spectrometer for On-Line Analysis of Radionuclides (SOLAR) has been installed at a 1 MW TRIGA reactor at Washington State University. Fission product ions from a combination target/ion source located within the thermal column are brought out to a 60 0 magnetic sector mass spectrometer. Surface ionization provides copious beams of Rb + and Cs + ions and less intense beams of Br - and I - ions with negligible contamination by other elements. About 40 fission product nuclides can thus be chemically and physically separated in times of less than 1 second. Past results on independent and cumulative fission yields along with measurements of half-lives of some very neutron-rich nuclides are presented. Current work on delayed-neutron emission probabilities and energy spectra of delayed neutrons from individual nuclides is described. (7 tables, 2 figures) (U.S.)
International Nuclear Information System (INIS)
2014-01-01
This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)
Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C
2016-06-28
Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.
Directory of Open Access Journals (Sweden)
Charles W. Ross
2016-06-01
Full Text Available Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI, sheath flow electrospray ionization (ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS and high-field nuclear magnetic resonance (NMR analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.
International Nuclear Information System (INIS)
Nottoli, Emmanuelle; Bienvenu, Philippe; Labet, Alexandre; Bourlès, Didier; Arnold, Maurice; Bertaux, Maité
2014-01-01
Determining long-lived radionuclide concentrations in radioactive waste has fundamental implications for the long-term management of storage sites. This paper focuses on the measurement of low 129 I contents in ion exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). Iodine-129 concentrations were successfully determined using Accelerator Mass Spectrometry (AMS) following a chemical procedure which included (1) acid digestion of resin samples in HNO 3 /HClO 4 , (2) radioactive decontamination by selective iodine extraction using a new chromatographic resin (CL Resin), and (3) AgI precipitation. Measured 129 I concentrations ranged from 4 to 12 ng/g, i.e. from 0.03 to 0.08 Bq/g. The calculation of 129 I/ 137 Cs activity ratios used for routine waste management produced values in agreement with the few available data for PWR resin samples. - Highlights: • In the context of radioactive waste management, this study aimed at measuring 129 I in spent resins using accelerator mass spectrometry. • The treatment procedure included microwave acid digestion of samples, iodine extraction by CL resins and AgI precipitation. • Developed first on synthetic matrices, the chemical treatment procedure was then successfully applied to real resin samples. • 129 I concentrations ranged from 4 to 12 ng/g of dry resin. • Results are in agreement with previous measurements and support reference values currently used for nuclear resin management
International Nuclear Information System (INIS)
GRASHER, A.A.
2001-01-01
The purpose of this report is to provide a discussion of the accountable inventory of Hanford Site nuclear material (NM) over the operating period. This report does not provide judgments on impacts to the Hanford Site environs by the reported waste streams or inventory. The focus of this report is on the processes, facilities, and process streams that constituted the flow primarily of plutonium and uranium through the Hanford Site. The material balance reports (MBRS) are the basis of the NM accountable inventory maintained by each of the various contractors used by the U.S. Department of Energy (DOE) and its predecessors to operate the Hanford Site. The inventory was tracked in terms of a starting inventory, receipts, transfers, and ending inventory. The various components of the inventory are discussed as well as the uncertainty in the measurement values used to establish plant inventory and material transfers. The accountable NM inventory does not report all the NM on the Hanford Site and this difference is discussed relative to some representative nuclides. The composition and location of the current accountable inventory are provided, as well as the latest approved set (2000) of flow diagrams of the proposed disposition of the excess accountable NM inventory listed on the Idaho National Engineering and Environmental Laboratory (INEEL) web page
International Nuclear Information System (INIS)
Nottoli, Emmanuelle; Bienvenu, Philippe; Labet, Alexandre; Bertaux, Maite; Bourles, Didier; Arnold, Maurice
2013-01-01
Radiological characterization of nuclear waste is essential for storage sites management. However, most of Long-Lived Radionuclides (LLRN), important for long-term management, are difficult to measure since concentration levels are very low and waste matrices generally complex. In an industrial approach, LLRN concentrations are not directly measured in waste samples but assessed from scaling factors with respect to easily measured gamma emitters. Ideally, the key nuclide chosen ( 60 Co, 137 Cs) should be produced by a similar mechanism (fission or activation) as the LLRN of interest and should have similar physicochemical properties. However, the uncertainty on the scaling factors, determined from experimental and/or calculation data, can be quite important. Consequently, studies are performed to develop analytical procedures which would lead to determine precisely the concentration of LLRN in nuclear waste. In this context, the aim of this study was to determine the concentrations of three LLRN: 129 I (T 1/2 = 15.7*10 6 a), 41 Ca (T 1/2 = 9.94*10 4 a) and 10 Be (T 1/2 = 1.387*10 6 a) in spent resins used for primary fluid purification in Pressurized Water Reactors using Accelerator Mass Spectrometry (AMS) for measurement. The AMS technique combined mass spectrometry and nuclear physics to achieve highly efficient molecular and elemental isobars separation. Energies of several Million Electron-Volt transferred to the ions in the first accelerating part of specifically developed tandem accelerators lead to molecular isobars destruction through interaction with the argon gas used to strip the injected negative ions to positive ones. At the exit of the tandem accelerator, the energy acquired in both accelerating parts allows an elemental isobars separation based on their significantly different energy loss (dE) while passing through a thickness of matter dx that is proportional to their atomic number (Z) and inversely proportional to ions velocity (v) according to the
Bibliography for finite elements. [2200 references
Energy Technology Data Exchange (ETDEWEB)
Whiteman, J R [comp.
1975-01-01
This bibliography cites almost all of the significant papers on advances in the mathematical theory of finite elements. Reported are applications in aeronautical, civil, mechanical, nautical and nuclear engineering. Such topics as classical analysis, functional analysis, approximation theory, fluids, and diffusion are covered. Over 2200 references to publications up to the end of 1974 are included. Publications are listed alphabetically by author and also by keywords. In addition, finite element packages are listed.
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
Nolen-Schiffer anomaly and atomic masses
International Nuclear Information System (INIS)
Fayans, S. A.
1998-01-01
A new form of the nuclear energy-density functional for describing the ground state properties of finite nuclei up to the drip lines and beyond is proposed. The surface energy-density term has a fractional form containing (∇ρ) 2 both in the numerator and in the denominator. An effective ρ-dependent Coulomb-nuclear correlation term is added. A fit to the nuclear masses and radii shows that the latter term gives contribution of the same order of magnitude as the Nolen-Schiffer anomaly in Coulomb displacement energy. The self-consistent run with the suggested functional, performed for about 100 spherical nuclei, has given the rms deviations from the experiment of ≅1.2 Mev in masses and ≅0.01 fm in radii. The extrapolation to the drip lines goes in between the ETFSI and the macroscopic-microscopic model predictions
International Nuclear Information System (INIS)
Avrigeanu, M.
1982-01-01
A detailed analysis is presented, based on Hauser-Feshbach statistical model calculations of the γ-ray excitation functions measured in the sup(74,76)Ge ( 12 C, xn) and sup(72,73)Ge ( 16 O,xnyp) reactions. The most usual quantities provided by the in beam γ-ray measurements such as the cross sections for the population of the final states as well as the decay scheme and the degree of alignment of these states mainly offer the means of testing models of both the reaction mechanism and nuclear properties of high excitation energies, since they concentrate information on the whole reaction process. Experimental information on sup(85,86)Sr and sup(85,86)Y, γ-decay scheme and the excitation functions for the population of the final states were obtained by sub(74,76)Ge ( 12 C,αn), n = 2-4, sup(74,76)Ge ( 14 N,xn) n = 3-5, sup(72,73)Ge ( 16 O,xnyp), x = 1-3, y=1 reactions at incident energies between 35 and 60 MW. Statistical model calculations in the Hauser-Feshbach formalism have been compared with the experimental γ-ray excitation functions. The competitive emission of neutrons, protons, alpha particles and gamma rays from the compound nucleus has been considered in the calculations. The calculations describe satisfactorily the total cross sections for the population of the 2n, 3n and 4n channels for 12 C + sup(74,76)Ge and 2n, np, 3n and 2np channels for 16 O + 72 Ge. The calculations are sensitive to the characteristics of the excited levels (such as spin values) but htis this sensitivity could be exploited with some reliability only if one makes use of a rather complete level scheme in the calculations. In the case of 2n, np, 3n and 2 np channels for 16 O+ 73 Ge one concludes on the reliability of consideration some structural aspects in the calculations
Nuclear analysis of the Chornobyl fuel containing masses with heterogeneous fuel distribution
International Nuclear Information System (INIS)
Turski, R. B.
1998-01-01
Although significant data has been obtained on the condition and composition of the fuel containing masses (FCM) located in the concrete chambers under the Chernobyl Unit 4 reactor cavity, there is still uncertainty regarding the possible recriticality of this material. The high radiation levels make access extremely difficult, and most of the samples are from the FCM surface regions. There is little information on the interior regions of the FCM, and one cannot assume with confidence that the surface measurements are representative of the interior regions. Therefore, reasonable assumptions on the key parameters such as fuel concentration, the concentrations of impurities and neutron poisons (especially boron), the void fraction of the FCM due to its known porosity, and the degrees of fuel heterogeneity, are necessary to evaluate the possibility of recriticality. The void fraction is important since it introduces the possibility of water moderator being distributed throughout the FCM. Calculations indicate that the addition of 10 to 30 volume percent (v/o) water to the FCM has a significant impact on the calculated reactivity of the FCM. Therefore, water addition must be considered carefully. The other possible moderators are graphite and silicone dioxide. As discussed later in this paper, silicone dioxide moderation does not represent a criticality threat. For graphite, both heterogeneous fuel arrangements and very large volume fractions of graphite are necessary for a graphite moderated system to go critical. Based on the observations and measurements of the FCM compositions, these conditions do not appear creditable for the Chernobyl FCM. Therefore, the focus of the analysis reported in this paper will be on reasonable heterogeneous fuel arrangements and water moderation. The analysis will evaluate a range of fuel and diluent compositions
International Nuclear Information System (INIS)
Anand Rao, J.; Prabhakar Reddy, B.
2010-01-01
The numerical solution of unsteady hydro-magnetic natural convection heat and mass transfer flow of a rotating, incompressible, viscous Boussinesq fluid is presented in this study in the presence of radiative heat transfer and a first order chemical reaction between the fluid and diffusing species. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. The solutions for velocity, temperature and concentration fields have been obtained by using Ritz finite element method. The results obtained are discussed for Grashof number(G r > 0) corresponding to cooling of the plate and (G r r , Sc, M, N, K, G r , G c and t with the help of graphs and tables. The numerical values of skin-friction coefficient entered in the tables. Results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t, is increased. These findings are in quantitative agreement with earlier reported studies. (author)
International Nuclear Information System (INIS)
Acharya, B.S.; Douglas, M.R.
2006-06-01
We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)
Nilpotent -local finite groups
Cantarero, José; Scherer, Jérôme; Viruel, Antonio
2014-10-01
We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
Moco, S.I.A.; Forshed, J.; Vos, de C.H.; Bino, R.J.; Vervoort, J.J.M.
2008-01-01
Nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LCMS) are frequently used as technological platforms for metabolomics applications. In this study, the metabolic profiles of ripe fruits from 50 different tomato cultivars, including beef, cherry and round types, were
International Nuclear Information System (INIS)
Cheng Lan; Huang Weizhi; Zhou Baosen
1996-01-01
Using the matrix elements of M-3Y force as the equivalent G-matrix elements, the spectra of 210 Pb, 206 Pb, 206 Hg and 210 Po are calculated in the framework of the Folded Diagram Method. The results show that such equivalent matrix elements are suitable for microscopic calculations of the nuclear structure in heavy mass region
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
du Bois de Maquillé, Laurence; Renaudin, Laetitia; Goutelard, Florence; Jardy, Alain; Vial, Jérôme; Thiébaut, Didier
2013-02-08
EDTA is a chelating agent that has been used in decontamination processes. Its quantification is required for nuclear waste management because it affects the mobility of radionuclides and metals in environment and, thus, can harm the safety of the storage. Ion-pair chromatography coupled with electrospray mass spectrometry detection is a convenient method for quantitative analysis of EDTA but EDTA should be present as a single anionic chelate form. However, radioactive liquid wastes contain high concentrations of heavy metals and salts and consequently, EDTA is present as several chelates. Speciation studies were carried out to choose a metal cation to be added in excess to the solution to obtain a major chelate form. Fe is the predominant cation and Fe(III)-EDTA is thermodynamically favored but these speciation studies showed that ferric hydroxide precipitated above pH 2. Consequently, it was not possible to quantify EDTA as Fe(III)-EDTA complex. Therefore, Ni(2+) was chosen but its use implied pretreatment with a base of the solution to eliminate Fe. Deuterated EDTA was used as tracer in order to validate the whole procedure, from the treatment with a base to the final analysis by HPLC-ESI-MS. This analytical method was successfully applied for EDTA quantification in two real effluents resulting from a nuclear liquid waste process. A recovery rate between 60 and 80% was obtained. The limit of detection of this method was determined at 34×10(-9)mol L(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
Approximate Approaches to the One-Dimensional Finite Potential Well
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
International Nuclear Information System (INIS)
Sanzi, H.C.
1987-01-01
This paper presents the results obtained from the tensions state and the displacements field of thermal origin, generated by a caloric source during the welding process. All the surfaces in contact with heavy water in a PHWR plant (Reactor of Pressurized Heavy Water) must be of austenitic stainless steel according to standard DIN 1.4550 or must be internally covered with this material. In the case of the primary loop components, -as the steam generator-, the walls of ferritic steel are covered with an austenitic stainless steel cladding. This cladding is applied by the welding process of immersed arc. Special attention is given during calculation, on the deformation produced in the holes of the bolts that link the entrance with the external lead. The distribution of nodal temperatures, as a function of time, is determined by a two-dimensional finite elements model during the welding process and the tension state and the displacement, by means of computational programs, were afterwards calculated. (Author)
International Nuclear Information System (INIS)
Pereira de Oliveira, O. Jr.; Sarkis, J.E.S.; Ponzevera, E.; Alonso, A.; De Bolle, W.; Quetel, C.
2008-01-01
The n(U 235 )/n(U 238 ) isotope amount ratio in a set of samples was measured using two modern analytical techniques: quadrupole inductively coupled plasma mass spectrometry (ICP-QMS) and multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-ICPMS). The measured ratios were compared to the certified ratios provided by the high accuracy gas source mass spectrometry (GSMS). The components of the uncertainty were identified and their contribution to the combined standard uncertainty was estimated using the recommendations of the ISO-GUM guide. The values of the measurement uncertainty and bias were determined and then compared to the International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials. It appears that only the measurements performed by MC-ICPMS can meet the stringent requirements of international nuclear safeguards. (authors)
Energy Technology Data Exchange (ETDEWEB)
Nadykto, B.A. [RFNC-VNIIEF, Nizhni Novgorod Region (Russian Federation)
2001-07-01
The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)
International Nuclear Information System (INIS)
Nadykto, B.A.
2001-01-01
The nuclear weapons production has resulted in accumulation of a large quantity of plutonium and uranium highly enriched with uranium-235 isotope (many tons). The work under ISTC Project 332B-97 treated the issues of safe plutonium storage through making critical-mass-free plutonium oxide compositions with neutron poisons. This completely excludes immediate utilization (without chemical reprocessing) of retained plutonium in nuclear devices. It is therewith possible to locate plutonium most compactly in the storage facility, which would allow reduction in required storage areas and costs. The issues of the surplus weapon-grade plutonium management and utilization have been comprehensively studied in the recent decade. The issues are treated in multiple scientific publications, conferences, and seminars. At the same time, issues of nuclear power engineering actinide waste storage are studied no less extensively. The general issues are material radioactivity and energy release and nuclear accident hazards due to critical mass generation. Plutonium accumulated in nuclear power plant spent fuel is more accessible than weapon-grade plutonium and can become of higher and higher interest with time as its activity reduces, including as material for nuclear devices. The urgency of plutonium management is presently related not only to accumulation of surplus weapon-grade plutonium, but also to the fact that it is high time to decide what has to be done regarding reactor plutonium. Presently, the possibility of actinide separation from NPP spent nuclear fuel and compact underground burial separately from other (mainly fragment) activity is being considered. Actinide and neutron poison base critical-mass-free ceramic materials (similar to plutonium ceramics) may be useful for this burial method. (author)
Yamamoto, Naoki; Kanazawa, Takuya
2009-01-01
We study the properties of QCD at high baryon density in a finite volume where color superconductivity occurs. We derive exact sum rules for complex eigenvalues of the Dirac operator at finite chemical potential, and show that the Dirac spectrum is directly related to the color superconducting gap $\\Delta$. Also, we find a characteristic signature of color superconductivity: an X-shaped spectrum of partition function zeros in the complex quark mass plane near the origin, reflecting the $Z(2)_...
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...
Nuclear-moment studies in the odd-mass In isotopes up to N=82 using the Tilted Foils technique
We propose to study the magnetic moments of the neutron-rich odd-even In isotopes up to N=82 using the Tilted Foils technique and the recently installed $\\beta$-NMR setup at REX -ISOLDE. With only one proton hole in Z=50 and a neutron number approaching N=82, the indium isotopes should be a very good test ground for the extreme single-particle approximation and could provide essential data for tuning the nuclear interaction in the vicinity of the doubly-magic $^{132}$ Sn. Moments of single-particle states adjacent to closed shells are also crucial to determine the corrections to the M1 operator from core polarization and meson exchange effects. In addition to the 9/2$^{+}$, presumed to be of pure single proton hole configuration, the ½$^{-}$ isomeric states should shed light on a recent hypothesis of low-energy vibration/collectivity in the region. The detailed study of the Tilted Foils technique at higher masses is of crucial importance for its application for further g-factor studies and for the production...
International Nuclear Information System (INIS)
McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.
1983-01-01
In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments
Energy Technology Data Exchange (ETDEWEB)
Grant, C R [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Reactores y Centrales Nucleares
1997-12-31
Code DELFIN, developed in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and currents among elements and a more realistic representation of the hexagonal lattice of the reactor. It can be used for fuel management calculation, Xenon oscillation and spatial kinetics. Using the HUEMUL code for cell calculation (which uses a generalized two dimensional collision probability theory and has the WIMS library incorporated in a data base), the zero power experiences performed in 1974 were calculated. (author). 8 refs., 9 figs., 3 tabs.
Manea, V.; Ascher, P.; Atanasov, D.; Barzakh, A. E.; Beck, D.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Cakirli, R. B.; Cocolios, T. E.; Day Goodacre, T.; Fedorov, D. V.; Fedosseev, V. N.; George, S.; Herfurth, F.; Kowalska, M.; Kreim, S.; Litvinov, Yu. A.; Lunney, D.; Marsh, B.; Neidherr, D.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.
2017-05-01
We present a study of nuclear shape coexistence in the region of neutron-deficient lead isotopes. The midshell gold isotopes 180,185,188,190Au (Z =79 ), the two long-lived nuclear states in 197At (Z =85 ), and the neutron-rich nuclide 219At were produced by the ISOLDE facility at CERN and their masses were determined with the high-precision Penning-trap mass spectrometer ISOLTRAP. The studied gold isotopes address the trend of binding energies in a region of the nuclear chart where the nuclear charge radii show pronounced discontinuities. Significant deviations from the atomic-mass evaluation were found for Au,190188. The new trend of two-neutron separation energies is smoother, although it does reveal the onset of deformation. The origin of this effect is interpreted in connection to the odd-even staggering of binding energies, as well as theoretically by Hartree-Fock-Bogoliubov calculations including quasiparticle blocking. The role of blocking for reproducing the large odd-even staggering of charge radii in the mercury isotopic chain is illustrated.
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Finite Volumes for Complex Applications VII
Ohlberger, Mario; Rohde, Christian
2014-01-01
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative propert...
Activities report in nuclear physics
Jansen, J. F. W.; Scholten, O.
1987-01-01
Experimental studies of giant resonances, nuclear structure, light mass systems, and heavy mass systems are summarized. Theoretical studies of nuclear structure, and dynamics are described. Electroweak interactions; atomic and surface physics; applied nuclear physics; and nuclear medicine are
Measures with locally finite support and spectrum.
Meyer, Yves F
2016-03-22
The goal of this paper is the construction of measures μ on R(n)enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ f μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.
Finite-element analysis of dynamic fracture
Aberson, J. A.; Anderson, J. M.; King, W. W.
1976-01-01
Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
International Nuclear Information System (INIS)
Poinssot, Ch.; Ecole Normale Superieure, 92 - Fontenay-aux-Roses
1998-01-01
The initial stage of a high level nuclear waste disposal will be characterised by a large heat release within the near-field environment of the canisters. This heat flux caused by radioactive decay will lead to an increase of temperature and a subsequent thermal gradient between the 'hot' canisters and the 'cold'geological medium. In addition, this thermal gradient will decrease with time due to the heat decay although it could last hundred years. What will be the consequences of such a thermal field varying both on space and time for the alteration of the different constituents of the near field environment. In particular, what could be the effects on the radionuclides migration in the accidental case of an early breach of a canister during the thermal stage? This study brings significant answers to these questions in the light of a performance assessment study. This work is supported by a triple methodological approach involving experimental studies, modelling calculations and a natural analogues study. This complete work demonstrates that a thermal gradient leads to a large re-distribution of elements within the system: some elements are incorporated in the solid phases of the hot end (Si, Zr, Ca) whereas some others are in those of the cold end (Fe, Al, Zn). The confrontation of the results of very simple experiments with the results of a model built on equilibrium thermodynamics allow us to evidence the probable mechanisms causing this mass transport: out-of-equilibrium thermodiffusion processes coupled to irreversible precipitation. Moreover, the effects of the variation of temperatures with time is studied by the way of a natural system which underwent a similar temperature evolution as a disposal and which was initially rich in uranium: the Jurassic Alpine bauxites. In addition, part of the initial bauxite escaped this temperature transformations due to their incorporation in outer thrusting nappes. They are used as a reference. (author)
International Nuclear Information System (INIS)
Anon.
2000-01-01
The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)
Charm mass corrections to the bottomonium mass spectrum
International Nuclear Information System (INIS)
Ebert, D.; Faustov, R. N.; Galkin, V. O.
2002-01-01
The one-loop corrections to the bottomonium mass spectrum due to the finite charm mass are evaluated in the framework of the relativistic quark model. The obtained corrections are compared with the results of perturbative QCD
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Supersymmetric theories and finiteness
International Nuclear Information System (INIS)
Helayel-Neto, J.A.
1989-01-01
We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)
Alabdulmohsin, Ibrahim M.
2018-03-07
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
Alabdulmohsin, Ibrahim M.
2018-01-01
We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
Finite fields and applications
Mullen, Gary L
2007-01-01
This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...
International Nuclear Information System (INIS)
Yukhnovs'kij, Yi.R.; Kobrin, O.Je.; Tokarchuk, M.V.; Tokarevs'kij, V.V.
1997-01-01
The main forms of the existence of nuclear fuel and major concomitant factors of nuclear and ecological danger of the object 'Shelter' are presented. The processes of interaction between water and fuel containing materials have been analysed on the basis of experimental data
Directory of Open Access Journals (Sweden)
Hojae Lee
2016-04-01
Full Text Available Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core–concrete interaction analysis.
Energy Technology Data Exchange (ETDEWEB)
Lee, Ho Jae; Kim, Do Gyeum [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Cho, Jae Leon [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of); Yoon, Eui Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Myung Suk [Korea Hydro and Nuclear Power Co., Central Research Institute, Daejeon (Korea, Republic of)
2016-04-15
Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade mixed oxides, (U, Pu)O2, powders and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Uranium in the Presence of Pu by Potentiometric Titration Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron (II) Nitrogen by Distillation Spectrophotometry Using Nessler Reagent 7 to 14 Carbon (Total) by Direct Combustion-Thermal Conductivity 15 to 26 Total Chlorine and Fluorine by Pyrohydrolysis 27 to 34 Sulfur by Distillation-Spectrophotometry 35 to 43 Moisture by the Coulometric, Electrolytic Moisture Analyzer 44 to 51 Isotopic Composition by Mass Spectrometry Rare Earths by Copper Spark Spectroscopy 52 to 59 Trace Impurities by Carrier Distillation Spectroscopy 60 to 69 Impurities by Spark-Source Mass Spectrography 70 to 76 Total Gas in Reactor-Grade Mixed Dioxide P...
Description of nuclear properties
International Nuclear Information System (INIS)
Faessler, A.
1991-01-01
The lectures want to give a survey about new developments in the description of nuclei. In a first chapter we try to derive nuclear properties from the basis theory of quantum chromodynamics. This is not rigorously possible. There are still many cracks in the bridge between QCD and nuclear structure. The basic ingredient for nuclear structure calculations is the nucleon-nucleon interaction. We shall discuss the nucleon-nucleon interaction in a quark model. In a further chapter we discuss the way to come from a bare nucleon-nucleon interaction in free space to an effective nucleon-nucleon interaction in a limited model space for nuclear structure calculations. Such nuclear structure calculations can be done as shell model calculations. But they are due to the large number of configurations limited to light nuclei. We discuss possibilities (MONSTER and VAMPIR) to enlarge the model space for medium heavy and heavy nuclei. As the example of the low lying isovector 1 + states we discuss collective models (Bohr - Mottelson Model, interacting Boson Model) with proton and neutron degrees of freedom. The same states can also be described microscopically with the Quasi-Particle Random Phase Approximation (QRPA). We discuss the removal of spurious states in RPA. We also discuss the calculation of form factors and compare with inelastic electron scattering data. Finally we apply QRPA to the double-beta decay. Grand unified models predict, that the neutrino is identical with his antiparticle, that it has a finite mass and a weak right-handed interaction. If these properties are found the standard model of the strong and the electro-weak interaction can not be correct. Presently we can only derive from lower limits of the half lives of neutrinoless double-beta decays upper limits of the neutrino mass and of the right-handedness of the weak interaction and lower limits of the mass of the right handed heavy vector boson, if a specific grand unified model is given. (author)
Finite size effects of a pion matrix element
International Nuclear Information System (INIS)
Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.
2004-01-01
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation
Chiral symmetry breaking in finite quantum electrodynamics
International Nuclear Information System (INIS)
Montero, J.C.; Pleitez, V.
1987-01-01
The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt
Self consitent description of nuclear level densitities
International Nuclear Information System (INIS)
Barranco, M.; Treiner, J.
1980-03-01
We present a self consistent calculation of the nuclear level density based on a generalization to finite temperature of a modified Thomas-Fermi method. A simple expression is derived for the so-called level density parameter a entering the expression of the density of states Xi(E)=Esup(-5/4)e 2 √aE and relating the excitation energy to the temperature E=a T 2 , in terms of nucleons equilibrium densities at T=0 only. One thus avoids the difficulty of adding external constraints to calculate isolated nuclei at finite temperature which are shown to be unstable against particle emission. The role of the nuclear surface is discussed. It is shown that the effective mass of the interaction plays a crucial role in determining the value of a and comparison with experiment confirms the value m*/m > = 1 near the Fermi level obtained through more microscopic analysis
International Nuclear Information System (INIS)
Seiwert, M.
1985-01-01
In the present thesis different potential models were extended up to deformed nuclei. The influence of the deformations, orientations, and the nuclear atmosphere on the nuclear potential were analyzed. The double-folding integral was also solved for adiabatic nuclear shapes. The unrealistic binding-energy contributions occurring in the double-folding model were replaced by realistic binding energies by a renormalization procedure. The extended proximity potential, the renormalized double-folding model, and the Yukawa-plus-exponential model were applied to the calculation of the potential of supercritical systems. The resulting potentials of the different models are nonuniform. (orig./HSI) [de
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Indian Academy of Sciences (India)
IAS Admin
wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...
Finite Discrete Gabor Analysis
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...
International Nuclear Information System (INIS)
Rittenberg, V.
1983-01-01
Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given
International Nuclear Information System (INIS)
Yoo, Jae Hyung; Lee, Byung Jik; Shim, Joon Bo; Kim, Eung Ho
2007-01-01
It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipment. as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the back mixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface. and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate
Supersymmetry at finite temperature
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1983-01-01
Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2013-01-01
With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements
Finiteness of broken N=4 super Yang-Mills theory
International Nuclear Information System (INIS)
Namazie, M.A.; Salam, A.; Strathdee, J.
1982-11-01
Using a light cone gauge formulation for N=4 extended supersymmetry, it is shown that an explicit breaking of the supersymmetry by addition of mass terms does not disturb off-shell finiteness to any order provided the sum of fermion masses equals the sum of scalar masses and appropriate cubic interactions between scalars are included. (author)
Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar
2018-03-01
The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.
Parquet theory of finite temperature boson systems
International Nuclear Information System (INIS)
He, H.W.
1992-01-01
In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed
Phase transitions in finite systems
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire
2002-07-01
In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)
Phase transitions in finite systems
International Nuclear Information System (INIS)
Chomaz, Ph.; Gulminelli, F.
2002-01-01
In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)
Assessment of soil/structure interaction analysis procedures for nuclear power plant structures
International Nuclear Information System (INIS)
Young, G.A.; Wei, B.C.
1977-01-01
The paper presents an assessment of two state-of-the-art soil/structure interaction analysis procedures that are frequently used to provide seismic analyses of nuclear power plant structures. The advantages of large three-dimensional, elastic, discrete mass models and two-dimensional finite element models are compared. The discrete mass models can provide three-dimensional response capability with economical computer costs but only fair soil/structure interaction representation. The two-dimensional finite element models provide good soil/structure interaction representation, but cannot provide out-of-plane response. Three-dimensional finite element models would provide the most informative and complete analyses. For this model, computer costs would be much greater, but modeling costs would be approximately the same as those required for three-dimensional discrete mass models
Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A
2010-07-01
A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.
DEFF Research Database (Denmark)
Scharff, A.M.; Egsgaard, H.; Hansen, P.E.
2003-01-01
Nitrogen (N) fixation and assimilation in pea (Pisum sativum) root nodules were studied by in vivo N-15 nuclear magnetic resonance (NMR) by exposing detached nodules to N-15, via a perfusion medium, while recording a time course of spectra. In vivo P-31 NMR spectroscopy was used to monitor...... the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and N-15 labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by N-15 NMR...... labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn N-15 amino signal was absent in in vivo N-15 NMR spectra, which could be because...
International Nuclear Information System (INIS)
Tsuchida, Tatsuro; Kimura, Hiroshi
2011-01-01
Media coverage plays an important role in delivering information to the public in a rapid and easy-to-understand manner in terms of the subjects of nuclear energy. The mass media has so far covered nuclear accidents that occurred in nuclear facilities. The media coverage usually gains the attention of the public through the news media, such as TV and newspapers. In this study, three main cases of nuclear accidents were quantitatively examined by using the database of a newspaper. In addition, various comments of journalists whom the author interviewed were added for the evaluation of the three cases. As a result, it was revealed that the amount of media reporting commonly reached a maximum just after the nuclear accidents occurred. It became also clear that the smoothness of the information flow from the nuclear industry to the mass media affected the trend of the media coverage from the viewpoints of the duration and number of news reports. Most of the journalists considered that it was significant for the nuclear industry to strengthen the initial reaction on the occasion of nuclear accidents. The nuclear industry should understand the characteristics that are typical of the media coverage on nuclear accidents in the future. (author)