Quantum Finance: The Finite Dimensional Case
Chen, Zeqian
2001-01-01
In this paper, we present a quantum version of some portions of Mathematical Finance, including theory of arbitrage, asset pricing, and optional decomposition in financial markets based on finite dimensional quantum probability spaces. As examples, the quantum model of binomial markets is studied. We show that this quantum model ceases to pose the paradox which appears in the classical model of the binomial market. Furthermore, we re-deduce the Cox-Ross-Rubinstein binomial option pricing form...
Irreducible quantum group modules with finite dimensional weight spaces
DEFF Research Database (Denmark)
Pedersen, Dennis Hasselstrøm
a finitely generated U q -module which has finite dimensional weight spaces and is a sum of those. Our approach follows the procedures used by S. Fernando and O. Mathieu to solve the corresponding problem for semisimple complex Lie algebra modules. To achieve this we have to overcome a number of obstacles...... not present in the classical case. In the process we also construct twisting functors rigerously for quantum group modules, study twisted Verma modules and show that these admit a Jantzen filtration with corresponding Jantzen sum formula....
Quantum key distribution for composite dimensional finite systems
Shalaby, Mohamed; Kamal, Yasser
2017-06-01
The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.
Finite-dimensional effects and critical indices of one-dimensional quantum models
International Nuclear Information System (INIS)
Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.
1986-01-01
Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
International Nuclear Information System (INIS)
Thapliyal, Kishore; Banerjee, Subhashish; Pathak, Anirban
2016-01-01
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
Energy Technology Data Exchange (ETDEWEB)
Thapliyal, Kishore, E-mail: tkishore36@yahoo.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India)
2016-03-15
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.
The structure of the Hamiltonian in a finite-dimensional formalism based on Weyl's quantum mechanics
International Nuclear Information System (INIS)
Santhanam, T.S.; Madivanane, S.
1982-01-01
Any discussion on finite-dimensional formulation of quantum mechanics involves the Sylvester matrix (finite Fourier transform). In the usual formulation, a remarkable relation exists that gives the Fourier transform as the exponential of the Hamiltonian of a simple harmonic oscillator. In this paper, assuming that such a relation holds also in the finite dimensional case, we extract the logarithm of the Sylvester matrix and in some cases this can be interpreted as the Hamiltonian of the truncated oscillator. We calculate the Hamiltonian matrix explicitly for some special cases of n = 3,4. (author)
Theory of finite-entanglement scaling at one-dimensional quantum critical points.
Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E
2009-06-26
Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.
A new (in)finite-dimensional algebra for quantum integrable models
International Nuclear Information System (INIS)
Baseilhac, Pascal; Koizumi, Kozo
2005-01-01
A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models
Quantum phase space points for Wigner functions in finite-dimensional spaces
Luis Aina, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.
Quantum phase space points for Wigner functions in finite-dimensional spaces
International Nuclear Information System (INIS)
Luis, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
International Nuclear Information System (INIS)
Nguyen Anh Ky.
1993-05-01
In the present paper we construct all typical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] at generic deformation parameter q. As in the non-deformed case the finite-dimensional U q [gl(2/2)]-module W q obtained is irreducible and can be decomposed into finite-dimensional irreducible U q [l(2)+gl(2)]submodules V i q . (authohor). 32 refs
Quantum limits to information about states for finite dimensional Hilbert space
International Nuclear Information System (INIS)
Jones, K.R.W.
1990-01-01
A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs
A complementarity-based approach to phase in finite-dimensional quantum systems
International Nuclear Information System (INIS)
Klimov, A B; Sanchez-Soto, L L; Guise, H de
2005-01-01
We develop a comprehensive theory of phase for finite-dimensional quantum systems. The only physical requirement we impose is that phase is complementary to amplitude. To implement this complementarity we use the notion of mutually unbiased bases, which exist for dimensions that are powers of a prime. For a d-dimensional system (qudit) we explicitly construct d+1 classes of maximally commuting operators, each one consisting of d-1 operators. One of these classes consists of diagonal operators that represent amplitudes (or inversions). By finite Fourier transformation, it is mapped onto ladder operators that can be appropriately interpreted as phase variables. We discuss examples of qubits and qutrits, and show how these results generalize previous approaches
Perfect 3-dimensional lattice actions for 4-dimensional quantum field theories at finite temperature
International Nuclear Information System (INIS)
Kerres, U.; Mack, G.; Palma, G.
1994-12-01
We propose a two-step procedure to study the order of phase transitions at finite temperature in electroweak theory and in simplified models thereof. In a first step a coarse grained free energy is computed by perturbative methods. It is obtained in the form of a 3-dimensional perfect lattice action by a block spin transformation. It has finite temperature dependent coefficients. In this way the UV-problem and the infrared problem is separated in a clean way. In the second step the effective 3-dimensional lattice theory is treated in a nonperturbative way, either by the Feynman-Bololiubov method (solution of a gap equation), by real space renormalization group methods, or by computer simulations. In this paper we outline the principles for φ 4 -theory and scalar electrodynamics. The Balaban-Jaffe block spin transformation for the gauge field is used. It is known how to extend this transformation to the nonabelian case, but this will not be discussed here. (orig.)
International Nuclear Information System (INIS)
Feinsilver, Philip; Schott, Rene
2009-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
International Nuclear Information System (INIS)
Ranade, Kedar S.
2009-01-01
This PhD thesis deals with quantum-cryptographic protocols which allow general finite-dimensional quantum systems (qudits) as carriers of information in contrast to the predominantly used two-dimensional quantum systems (qubits). The main focus of investigations is the maximum tolerable error rate of such protocols and its behaviour as a function of the dimension of the information carriers. For this purpose, several concepts are introduced which allow the treatment of this problem. In particular, protocols are presented which work up to a maximum tolerate error rate, and it is shown that a wide class of protocols cannot be used for higher error rates. Among other things, it turns out that the maximum tolerable error rate for two-basis protocols increases up to 50% for high dimensions. Apart from the above-mentioned main subjects of this thesis, some other results from the field of quantum information theory are given, which were achieved during this PhD project. (orig.)
International Nuclear Information System (INIS)
Nguyen Anh Ky; Stoilova, N.I.
1994-11-01
The construction approach proposed in the previous paper Ref.1 allows us there and in the present paper to construct at generic deformation parameter q all finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)]. The finite-dimensional U q [gl(2/2)]-modules W q constructed in Ref.1 are either irreducible or indecomposable. If a module W q is indecomposable, i.e. when the condition (4.41) in Ref.1 does not hold, there exists an invariant maximal submodule of W q , to say I q k , such that the factor-representation in the factor-module W q /I q k is irreducible and called nontypical. Here, in this paper, indecomposable representations and nontypical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] are considered and classified as their module structures are analyzed and the matrix elements of all nontypical representations are written down explicitly. (author). 23 refs
Two-dimensional quantum-corrected black hole in a finite size cavity
International Nuclear Information System (INIS)
Zaslavskii, O.B.
2004-01-01
We consider the gravitation-dilaton theory (not necessarily exactly solvable), whose potentials represent a generic linear combination of an exponential and linear functions of the dilaton. A black hole, arising in such theories, is supposed to be enclosed in a cavity, where it attains thermal equilibrium, whereas outside the cavity the field is in the Boulware state. We calculate quantum corrections to the Hawking temperature T H , with the contribution from the boundary taken into account. Vacuum polarization outside the shell tends to cool the system. We find that, for the shell to be in thermal equilibrium, it cannot be placed too close to the horizon. The quantum corrections to the mass due to vacuum polarization vanish in spite of nonzero quantum stresses. We discuss also the canonical boundary conditions and show that accounting for the finiteness of the system plays a crucial role in some theories (e.g., Callan-Giddings-Harvey-Strominger), where it enables us to define the stable canonical ensemble, whereas consideration in an infinite space would predict instability
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)
Features of finite quantum field theories
International Nuclear Information System (INIS)
Boehm, M.; Denner, A.
1987-01-01
We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others
2016-09-15
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
International Nuclear Information System (INIS)
Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal
2016-01-01
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
Numerical and algebraic studies for the control of finite-dimensional quantum systems
International Nuclear Information System (INIS)
Sander, Uwe
2010-01-01
In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)
Numerical and algebraic studies for the control of finite-dimensional quantum systems
Energy Technology Data Exchange (ETDEWEB)
Sander, Uwe
2010-11-18
In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)
Observations on finite quantum mechanics
International Nuclear Information System (INIS)
Balian, R.; Itzykson, C.
1986-01-01
We study the canonical transformations of the quantum mechanics on a finite phase space. For simplicity we assume that the configuration variable takes an odd prime number 4 K±1 of distinct values. We show that the canonical group is unitarily implemented. It admits a maximal abelian subgroup of order 4 K, commuting with the finite Fourier transform F, a finite analogue of the harmonic oscillator group. This provides a natural construction of F 1/K and of an orthogonal basis of eigenstates of F [fr
Finite groups and quantum physics
International Nuclear Information System (INIS)
Kornyak, V. V.
2013-01-01
Concepts of quantum theory are considered from the constructive “finite” point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution—only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers—a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories—in particular, within the Standard Model.
Quantum Chromodynamic at finite temperature
International Nuclear Information System (INIS)
Magalhaes, N.S.
1987-01-01
A formal expression to the Gibbs free energy of topological defects of quantum chromodynamics (QCD)by using the semiclassical approach in the context of field theory at finite temperature and in the high temperature limit is determined. This expression is used to calculate the free energy of magnetic monopoles. Applying the obtained results to a method in which the free energy of topological defects of a theory may indicate its different phases, its searched for informations about phases of QCD. (author) [pt
Field emission from finite barrier quantum structures
Energy Technology Data Exchange (ETDEWEB)
Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)
2014-10-01
We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.
Energy Technology Data Exchange (ETDEWEB)
Ranade, Kedar S.
2009-02-04
This PhD thesis deals with quantum-cryptographic protocols which allow general finite-dimensional quantum systems (qudits) as carriers of information in contrast to the predominantly used two-dimensional quantum systems (qubits). The main focus of investigations is the maximum tolerable error rate of such protocols and its behaviour as a function of the dimension of the information carriers. For this purpose, several concepts are introduced which allow the treatment of this problem. In particular, protocols are presented which work up to a maximum tolerate error rate, and it is shown that a wide class of protocols cannot be used for higher error rates. Among other things, it turns out that the maximum tolerable error rate for two-basis protocols increases up to 50% for high dimensions. Apart from the above-mentioned main subjects of this thesis, some other results from the field of quantum information theory are given, which were achieved during this PhD project. (orig.)
Finiteness of quantum field theories and supersymmetry
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)
Reyes, S. A.; Tsvelik, A. M.
2006-06-01
We rewrite the exact expression for the finite-temperature two-point correlation function for the magnetization as a partition function of some field theory. This removes singularities and provides a convenient form to develop a virial expansion (expansion in powers of the soliton density).
Entangling transformations in composite finite quantum systems
International Nuclear Information System (INIS)
Vourdas, A
2003-01-01
Phase space methods are applied in the context of finite quantum systems. 'Galois quantum systems' (with a dimension which is a power of a prime number) are considered, and symplectic Sp(2,Z(d)) transformations are studied. Composite systems comprising two finite quantum systems are also considered. Symplectic Sp(4,Z(d)) transformations are classified into local and entangling ones and the necessary matrices which perform such transformations are calculated numerically
Higher dimensional loop quantum cosmology
International Nuclear Information System (INIS)
Zhang, Xiangdong
2016-01-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)
Integrable finite-dimensional systems related to Lie algebras
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1979-01-01
Some solvable finite-dimensional classical and quantum systems related to the Lie algebras are considered. The dynamics of these systems is closely related to free motion on symmetric spaces. In specific cases the systems considered describe the one-dimensional n-body problem recently considered by many authors. The review represents from general and universal point of view the results obtained during the last few years. Besides, it contains some results both of physical and mathematical type
Measurement Uncertainty for Finite Quantum Observables
Directory of Open Access Journals (Sweden)
René Schwonnek
2016-06-01
Full Text Available Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefinite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result x rather than y, for any pair ( x , y . This induces a notion of optimal transport cost for a pair of probability distributions, and we include an Appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a “true value” is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally-entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Equilibration and thermalization in finite quantum systems
International Nuclear Information System (INIS)
Yukalov, V I
2011-01-01
Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned
On finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1984-01-01
The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)
Quantum coding with finite resources
Tomamichel, Marco; Berta, Mario; Renes, Joseph M.
2016-01-01
The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M
2016-11-18
The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.
Quantum channels with a finite memory
International Nuclear Information System (INIS)
Bowen, Garry; Mancini, Stefano
2004-01-01
In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless
Toward finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1986-01-01
The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)
Spotlighting quantum critical points via quantum correlations at finite temperatures
International Nuclear Information System (INIS)
Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo
2011-01-01
We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.
Smooth controllability of infinite-dimensional quantum-mechanical systems
International Nuclear Information System (INIS)
Wu, Re-Bing; Tarn, Tzyh-Jong; Li, Chun-Wen
2006-01-01
Manipulation of infinite-dimensional quantum systems is important to controlling complex quantum dynamics with many practical physical and chemical backgrounds. In this paper, a general investigation is casted to the controllability problem of quantum systems evolving on infinite-dimensional manifolds. Recognizing that such problems are related with infinite-dimensional controllability algebras, we introduce an algebraic mathematical framework to describe quantum control systems possessing such controllability algebras. Then we present the concept of smooth controllability on infinite-dimensional manifolds, and draw the main result on approximate strong smooth controllability. This is a nontrivial extension of the existing controllability results based on the analysis over finite-dimensional vector spaces to analysis over infinite-dimensional manifolds. It also opens up many interesting problems for future studies
Dimensional reduction in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Hooft, G [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica
1994-12-31
The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two- dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. (author). 13 refs, 2 figs.
Stark effect in finite-barrier quantum wells, wires, and dots
International Nuclear Information System (INIS)
Pedersen, Thomas Garm
2017-01-01
The properties of confined carriers in low-dimensional nanostructures can be controlled by external electric fields and an important manifestation is the Stark shift of quantized energy levels. Here, a unifying analytic theory for the Stark effect in arbitrary dimensional nanostructures is presented. The crucial role of finite potential barriers is stressed, in particular, for three-dimensional confinement. Applying the theory to CdSe quantum dots, finite barriers are shown to improve significantly the agreement with experiments. (paper)
Finite-size scaling for quantum chains with an oscillatory energy gap
International Nuclear Information System (INIS)
Hoeger, C.; Gehlen, G. von; Rittenberg, V.
1984-07-01
We show that the existence of zeroes of the energy gap for finite quantum chains is related to a nonvanishing wavevector. Finite-size scaling ansaetze are formulated for incommensurable and oscillatory structures. The ansaetze are verified in the one-dimensional XY model in a transverse field. (orig.)
Topics in quantum field theories at finite temperature
International Nuclear Information System (INIS)
Kao, Y.C.
1985-01-01
Studies on four topics in quantum field theories at finite temperature are presented in this thesis. In Chapter 1, it is shown that the chiral anomaly has no finite temperature corrections by Fujikawa's path integral approach. Chapter 2 deals with the chiral condensate in the finite temperature Schwinger model. The cluster decomposition property is employed to find . No finite critical temperature is found and the chiral condensate vanishes only at infinite temperature. In Chapter 3, the finite temperature behavior of the fermion-number breaking (Rubakov-Callan) condensate around a 't Hooft-Polyakov monopole is studied. It is found that the Rubakov-Callan condensate is suppressed exponentially from the monopole core at high temperature. The limitation of the techniques is understanding the behavior of the condensate for all temperature is also discussed. Chapter 4 is on the topological mass terms in (2 + 1)-dimensional gauge theories. The authors finds that if the gauge bosons have no topological mass at tree level, no topological mass induced radiatively up to two-loop order in either Abelian or non-Abelian theories with massive fermions. The Pauli-Villars regularization is used for fermion loops. The one-loop contributions to the topological mass terms at finite temperature are calculated and the quantization constraints in this case are discussed
Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols
Directory of Open Access Journals (Sweden)
Simon J. Gay
2014-07-01
Full Text Available We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding.
A finite Zitterbewegung model for relativistic quantum mechanics
International Nuclear Information System (INIS)
Noyes, H.P.
1990-01-01
Starting from steps of length h/mc and time intervals h/mc 2 , which imply a quasi-local Zitterbewegung with velocity steps ±c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig
A finite Zitterbewegung model for relativistic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1990-02-19
Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.
Quantum fields at finite temperature and density
International Nuclear Information System (INIS)
Blaizot, J.P.
1991-01-01
These lectures are an elementary introduction to standard many-body techniques applied to the study of quantum fields at finite temperature and density: perturbative expansion, linear response theory, quasiparticles and their interactions, etc... We emphasize the usefulness of the imaginary time formalism in a wide class of problems, as opposed to many recent approaches based on real time. Properties of elementary excitations in an ultrarelativistic plasma at high temperature or chemical potential are discussed, and recent progresses in the study of the quark-gluon plasma are briefly reviewed
Gauge theory for finite-dimensional dynamical systems
International Nuclear Information System (INIS)
Gurfil, Pini
2007-01-01
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory
Finite key analysis in quantum cryptography
International Nuclear Information System (INIS)
Meyer, T.
2007-01-01
finite number of input signals, without making any approximations. As an application, we investigate the so-called ''Tomographic Protocol'', which is based on the Six-State Protocol and where Alice and Bob can obtain the additional information which quantum state they share after the distribution step of the protocol. We calculate the obtainable secret key rate under the assumption that the eavesdropper only conducts collective attacks and give a detailed analysis of the dependence of the key rate on various parameters: The number of input signals (the block size), the error rate in the sifted key (the QBER), and the security parameter. Furthermore, we study the influence of multi-photon events which naturally occur in a realistic implementation (orig.)
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Finite quantum physics and noncommutative geometry
International Nuclear Information System (INIS)
Balachandran, A.P.; Ercolessi, E.; Landi, G.; Teotonio-Sobrinho, P.; Lizzi, F.; Sparano, G.
1994-04-01
Conventional discrete approximations of a manifold do not preserve its nontrivial topological features. In this article we describe an approximation scheme due to Sorkin which reproduces physically important aspects of manifold topology with striking fidelity. The approximating topological spaces in this scheme are partially ordered sets (posets). Now, in ordinary quantum physics on a manifold M, continuous probability densities generate the commutative C * -algebra C(M) of continuous functions on M. It has a fundamental physical significance, containing the information to reconstruct the topology of M, and serving to specify the domains of observables like the Hamiltonian. For a poset, the role of this algebra is assumed by a noncommutative C * -algebra A. As noncommutative geometries are based on noncommutative C * -algebra, we therefore have a remarkable connection between finite approximations to quantum physics and noncommutative geometries. Varies methods for doing quantum physics using A are explored. Particular attention is paid to developing numerically viable approximation schemes which at the same time preserve important topological features of continuum physics. (author). 21 refs, 13 figs
Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy
Directory of Open Access Journals (Sweden)
Kazuki Hasebe
2017-07-01
Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Finite key analysis in quantum cryptography
Energy Technology Data Exchange (ETDEWEB)
Meyer, T.
2007-10-31
the obtainable key rate for any finite number of input signals, without making any approximations. As an application, we investigate the so-called ''Tomographic Protocol'', which is based on the Six-State Protocol and where Alice and Bob can obtain the additional information which quantum state they share after the distribution step of the protocol. We calculate the obtainable secret key rate under the assumption that the eavesdropper only conducts collective attacks and give a detailed analysis of the dependence of the key rate on various parameters: The number of input signals (the block size), the error rate in the sifted key (the QBER), and the security parameter. Furthermore, we study the influence of multi-photon events which naturally occur in a realistic implementation (orig.)
Quantum statistical metastability for a finite spin
Garanin, D. A.; Chudnovsky, E. M.
2001-01-01
We study quantum-classical escape-rate transitions for uniaxial and biaxial models with finite spins S=10 (such as Mn12Ac and Fe8) and S=100 by a direct numerical approach. At second-order transitions the level making a dominant contribution into thermally assisted tunneling changes gradually with temperature whereas at first-order transitions a group of levels is skipped. For finite spins, the quasiclassical boundaries between first- and second-order transitions are shifted, favoring a second-order transition: For Fe8 in zero field the transition should be first order according to a theory with S-->∞, but we show that there are no skipped levels at the transition. Applying a field along the hard axis in Fe8 makes transition the strongest first order. For the same model with S=100 we confirmed the existence of a region where a second-order transition is followed by a first-order transition [X. Martínes Hidalgo and E. M. Chudnovsky, J. Phys.: Condensed Matter 12, 4243 (2000)].
Geometry of quantum dynamics in infinite-dimensional Hilbert space
Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana
2018-04-01
We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.
Yanagisawa, Masahiro
2007-01-01
We provide a control theoretical method for a computational lower bound of quantum algorithms based on quantum walks of a finite time horizon. It is shown that given a quantum network, there exists a control theoretical expression of the quantum system and the transition probability of the quantum walk is related to a norm of the associated transfer function.
Approximate approaches to the one-dimensional finite potential well
International Nuclear Information System (INIS)
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m i ) is taken to be distinct from mass outside (m o ). A relevant parameter is the mass discontinuity ratio β = m i /m o . To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σ l = 2m o V 0 L 2 /ℎ 2 (or σ = β 2 σ l for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E∼1/L γ ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.
Ordering, symbols and finite-dimensional approximations of path integrals
International Nuclear Information System (INIS)
Kashiwa, Taro; Sakoda, Seiji; Zenkin, S.V.
1994-01-01
We derive general form of finite-dimensional approximations of path integrals for both bosonic and fermionic canonical systems in terms of symbols of operators determined by operator ordering. We argue that for a system with a given quantum Hamiltonian such approximations are independent of the type of symbols up to terms of O(ε), where ε of is infinitesimal time interval determining the accuracy of the approximations. A new class of such approximations is found for both c-number and Grassmannian dynamical variables. The actions determined by the approximations are non-local and have no classical continuum limit except the cases of pq- and qp-ordering. As an explicit example the fermionic oscillator is considered in detail. (author)
High-dimensional quantum cloning and applications to quantum hacking.
Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim
2017-02-01
Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.
Finite-size effects in the three-state quantum asymmetric clock model
International Nuclear Information System (INIS)
Gehlen, G. v.; Rittenberg, V.
1983-04-01
The one-dimensional quantum Hamiltonian of the asymmetric three-state clock model is studied using finite-size scaling. Various boundary conditions are considered on chains containing up to eight sites. We calculate the boundary of the commensurate phase and the mass gap index. The model shows an interesting finite-size dependence in connexion with the presence of the incommensurate phase indicating that for the infinite system there is no Lifshitz point. (orig.)
Computations in finite-dimensional Lie algebras
Directory of Open Access Journals (Sweden)
A. M. Cohen
1997-12-01
Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.
Quantum logic using correlated one-dimensional quantum walks
Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk
2018-01-01
Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
The finite-dimensional Freeman thesis.
Rudolph, Lee
2008-06-01
I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.
Quantum Phenomena in Low-Dimensional Systems
Geller, Michael R.
2001-01-01
A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Dimensional regularization and analytical continuation at finite temperature
International Nuclear Information System (INIS)
Chen Xiangjun; Liu Lianshou
1998-01-01
The relationship between dimensional regularization and analytical continuation of infrared divergent integrals at finite temperature is discussed and a method of regularization of infrared divergent integrals and infrared divergent sums is given
Electronic states in crystals of finite size quantum confinement of bloch waves
Ren, Shang Yuan
2017-01-01
This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...
Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction
Its, A. R.; Mezzadri, F.; Mo, M. Y.
2008-11-01
We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L → ∞ of the determinant of a block-Toeplitz matrix with symbol Φ(z) = left(begin{array}{cc} iλ & g(z) \\ g^{-1}(z) & i λ right), where g( z) is the square root of a rational function and g(1/ z) = g -1( z). The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve {mathcal{L}} of genus g ≥ 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for these systems are characterized by the branch points of {mathcal{L}} approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin [14] for the XX model and Its, Jin and Korepin [12, 13] for the XY model.
Approximate Approaches to the One-Dimensional Finite Potential Well
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
Biderivations of finite dimensional complex simple Lie algebras
Tang, Xiaomin
2016-01-01
In this paper, we prove that a biderivation of a finite dimensional complex simple Lie algebra without the restriction of skewsymmetric is inner. As an application, the biderivation of a general linear Lie algebra is presented. In particular, we find a class of a non-inner and non-skewsymmetric biderivations. Furthermore, we also get the forms of linear commuting maps on the finite dimensional complex simple Lie algebra or general linear Lie algebra.
Few quantum particles on one dimensional lattices
International Nuclear Information System (INIS)
Valiente Cifuentes, Manuel
2010-01-01
; it is found that the latter can show resonant scattering behavior. A new theorem, which characterizes all two-body bound states on a one-dimensional lattice with arbitrary finite range interactions, is proven here. The methods used for the simplest Hubbard models are then generalized to obtain exact results for arbitrary interactions and particle statistics. The problem of binding and scattering of three identical bosons is studied in detail, finding new types of bound states with no continuous space counterparts. The physics of these trimers is revealed by an effective model which is then applied to ''dimer''-''monomer'' scattering on the lattice. Stationary states of other lattice systems are also considered. First, the problems of binding and scattering of a single particle on a superlattice off a static impurity are analytically solved. Among the results obtained, the presence of a second bound state for any lattice and interaction strengths is highlighted. Second, a model of the harmonic oscillator on the lattice, preserving most of the properties of its continuous space analog, is presented and analytically solved. Two different models, being formally equivalent to the aforementioned lattice oscillator, are then constructed and solved exactly. Quantum transport of a a single particle and a bound particle pair on a onedimensional lattice superimposed with a weak trap is investigated. Based on the knowledge of the results obtained for stationary states, coherent, non-dispersive transport of one and two particles can be achieved. A surprising fact - repulsively bound pairs are tighter bound than those with attractive interaction - is found and physically explained in a simple way. (orig.)
Few quantum particles on one dimensional lattices
Energy Technology Data Exchange (ETDEWEB)
Valiente Cifuentes, Manuel
2010-06-18
extended Hubbard models; it is found that the latter can show resonant scattering behavior. A new theorem, which characterizes all two-body bound states on a one-dimensional lattice with arbitrary finite range interactions, is proven here. The methods used for the simplest Hubbard models are then generalized to obtain exact results for arbitrary interactions and particle statistics. The problem of binding and scattering of three identical bosons is studied in detail, finding new types of bound states with no continuous space counterparts. The physics of these trimers is revealed by an effective model which is then applied to ''dimer''-''monomer'' scattering on the lattice. Stationary states of other lattice systems are also considered. First, the problems of binding and scattering of a single particle on a superlattice off a static impurity are analytically solved. Among the results obtained, the presence of a second bound state for any lattice and interaction strengths is highlighted. Second, a model of the harmonic oscillator on the lattice, preserving most of the properties of its continuous space analog, is presented and analytically solved. Two different models, being formally equivalent to the aforementioned lattice oscillator, are then constructed and solved exactly. Quantum transport of a a single particle and a bound particle pair on a onedimensional lattice superimposed with a weak trap is investigated. Based on the knowledge of the results obtained for stationary states, coherent, non-dispersive transport of one and two particles can be achieved. A surprising fact - repulsively bound pairs are tighter bound than those with attractive interaction - is found and physically explained in a simple way. (orig.)
Finite field-dependent symmetries in perturbative quantum gravity
International Nuclear Information System (INIS)
Upadhyay, Sudhaker
2014-01-01
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also
Solution of 3-dimensional diffusion equation by finite Fourier transformation
International Nuclear Information System (INIS)
Krishnani, P.D.
1978-01-01
Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)
Quantum gases finite temperature and non-equilibrium dynamics
Szymanska, Marzena; Davis, Matthew; Gardiner, Simon
2013-01-01
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...
Quantum number theoretic transforms on multipartite finite systems.
Vourdas, A; Zhang, S
2009-06-01
A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.
Mechanical and chemical spinodal instabilities in finite quantum systems
International Nuclear Information System (INIS)
Colonna, M.; Chomaz, Ph.; Ayik, S.
2001-01-01
Self consistent quantum approaches are used to study the instabilities of finite nuclear systems. The frequencies of multipole density fluctuations are determined as a function of dilution and temperature, for several isotopes. The spinodal region of the phase diagrams is determined and it appears reduced by finite size effects. The role of surface and volume instabilities is discussed. Important chemical effects are associated with mechanical disruption and may lead to isospin fractionation. (authors)
Metric dimensional reduction at singularities with implications to Quantum Gravity
International Nuclear Information System (INIS)
Stoica, Ovidiu Cristinel
2014-01-01
A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained
Chiral symmetry breaking in finite quantum electrodynamics
International Nuclear Information System (INIS)
Montero, J.C.; Pleitez, V.
1987-01-01
The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt
Finite entanglement entropy and spectral dimension in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Arzano, Michele [Rome Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Calcagni, Gianluca [CSIC, Madrid (Spain). Inst. de Estructura de la Materia
2017-12-15
What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)
Finite entanglement entropy and spectral dimension in quantum gravity
International Nuclear Information System (INIS)
Arzano, Michele; Calcagni, Gianluca
2017-01-01
What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)
Finite entanglement entropy and spectral dimension in quantum gravity
Arzano, Michele; Calcagni, Gianluca
2017-12-01
What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.
Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.
2000-03-01
The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.
Faraday effect in hollow quantum cylinder of finite thickness
International Nuclear Information System (INIS)
Ismailov, T.G.; Jabrailova, G.G.
2009-01-01
The interband Faraday rotation in hollow quantum cylinder of finite thickness is theoretically investigated. Faraday rotation in the dependence on incident light energy for different values of cylinder thickness. It is seen that the resonance peaks appear on Faraday rotation curve. The roles of selection are obtained
Results in finite temperature quantum electrodynamics
International Nuclear Information System (INIS)
Down, D.M.
1985-01-01
First, three quantities of physical interest are calculated. The first two quantities are the self energy of the electron at order α and the self mass of the electron at order α 2 due to its interaction with a thermal bath of photons. The third quantity of physical interest is the thermal contribution to the self mass of the axion. Second, some formal developments are presented. First among these is the proof of an extension to the familiar optical theorem to cover processes taking place at finite temperature. Then an example of the application of the theorem is given for a simple field theory involving two types of scalar particles. The example illustrates that the relationship between the forward scattering amplitude and the total cross section is more complex at finite temperature than at zero temperature. Third, a method for calculating the wave function renormalization constant at finite temperature for an electron in a thermal bath of photons is presented. This method is compared with methods invented by other authors
Finite-Dimensional Representations for Controlled Diffusions with Delay
Energy Technology Data Exchange (ETDEWEB)
Federico, Salvatore, E-mail: salvatore.federico@unimi.it [Università di Milano, Dipartimento di Economia, Management e Metodi Quantitativi (Italy); Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr [Université Paris Diderot, Laboratoire de Probabilités et Modèles Aléatoires (France)
2015-02-15
We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Form factors of the finite quantum XY-chain
International Nuclear Information System (INIS)
Iorgov, Nikolai
2011-01-01
Explicit factorized formulas for the matrix elements (form factors) of the spin operators σ x and σ y between the eigenvectors of the Hamiltonian of the finite quantum periodic XY-chain in a transverse field were derived. The derivation is based on the relations between three models: the model of quantum XY-chain, Ising model on 2D lattice and N = 2 Baxter-Bazhanov-Stroganov τ (2) -model. Due to these relations we transfer the formulas for the form factors of the latter model recently obtained by the use of separation of variables method to the model of quantum XY-chain. Hopefully, the formulas for the form factors will help in analysis of multipoint dynamic correlation functions at a finite temperature. As an example, we re-derive the asymptotics of the two-point correlation function in the disordered phase without the use of the Toeplitz determinants and the Wiener-Hopf factorization method.
n-dimensional FLRW quantum cosmology
International Nuclear Information System (INIS)
Letelier, Patricio S.; Pitelli, Joao Paulo M.
2010-01-01
We introduce the formalism of quantum cosmology in a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe of arbitrary dimension filled with a perfect fluid with p=αρ equation of state. First we show that the Schutz formalism, developed in four dimensions, can be extended to a n-dimensional universe. We compute the quantum representant of the scale factor a(t), in the Many-Worlds, as well as, in the de Broglie-Bohm interpretation of quantum mechanics. We show that the singularities, which are still present in the n-dimensional generalization of FLRW universe, are excluded with the introduction of quantum theory. We quantize, via the de Broglie-Bohm interpretation of quantum mechanics, the components of the Riemann curvature tensor in a tetrad basis in a n-dimensional FLRW universe filled with radiation (p=(1/n-1)ρ). We show that the quantized version of the Ricci scalar are perfectly regular for all time t. We also study the behavior of the energy density and pressure and show that the ratio L / L tends to the classical value 1/(n-1) only for n=4, showing that n=4 is somewhat privileged among the other dimensions. Besides that, as n→∞, L / L →1.
Feynman diagrams coupled to three-dimensional quantum gravity
International Nuclear Information System (INIS)
Barrett, John W
2006-01-01
A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero
Higher dimensional supersymmetric quantum mechanics and Dirac ...
Indian Academy of Sciences (India)
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
International Nuclear Information System (INIS)
Marchiolli, M.A.; Ruzzi, M.
2012-01-01
We propose a self-consistent theoretical framework for a wide class of physical systems characterized by a finite space of states which allows us, within several mathematical virtues, to construct a discrete version of the Weyl–Wigner–Moyal (WWM) formalism for finite-dimensional discrete phase spaces with toroidal topology. As a first and important application from this ab initio approach, we initially investigate the Robertson–Schrödinger (RS) uncertainty principle related to the discrete coordinate and momentum operators, as well as its implications for physical systems with periodic boundary conditions. The second interesting application is associated with a particular uncertainty principle inherent to the unitary operators, which is based on the Wiener–Khinchin theorem for signal processing. Furthermore, we also establish a modified discrete version for the well-known Heisenberg–Kennard–Robertson (HKR) uncertainty principle, which exhibits additional terms (or corrections) that resemble the generalized uncertainty principle (GUP) into the context of quantum gravity. The results obtained from this new algebraic approach touch on some fundamental questions inherent to quantum mechanics and certainly represent an object of future investigations in physics. - Highlights: ► We construct a discrete version of the Weyl–Wigner–Moyal formalism. ► Coherent states for finite-dimensional discrete phase spaces are established. ► Discrete coordinate and momentum operators are properly defined. ► Uncertainty principles depend on the topology of finite physical systems. ► Corrections for the discrete Heisenberg uncertainty relation are also obtained.
Finite-dimensional approximation for operator equations of Hammerstein type
International Nuclear Information System (INIS)
Buong, N.
1992-11-01
The purpose of this paper is to establish convergence rate for a method of finite-dimensional approximation to solve operator equation of Hammerstein type in real reflexive Banach space. In order to consider a numerical example an iteration method is proposed in Hilbert space. (author). 25 refs
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
Distribution of quantum states in enclosures of finite size I
International Nuclear Information System (INIS)
Souto, J.H.; Chaba, A.N.
1989-01-01
The expression for the density of states of a particle in a three-dimensional rectangular box of finite size can be obtained directly by Poissons's Summation formula. The expression for the case of an enclosure in the form of an infinite rectangular slab is derived. (A.C.A.S.) [pt
Exotic quantum states for charmed baryons at finite temperature
Directory of Open Access Journals (Sweden)
Jiaxing Zhao
2017-12-01
Full Text Available The significantly screened heavy-quark potential in hot medium provides the possibility to study exotic quantum states of three-heavy-quark systems. By solving the Schrödinger equation for a three-charm-quark system at finite temperature, we found that, there exist Borromean states which might be realized in high energy nuclear collisions, and the binding energies of the system satisfy precisely the scaling law for Efimov states in the resonance limit.
Quantum vacuum energy in two dimensional space-times
International Nuclear Information System (INIS)
Davies, P.C.W.; Fulling, S.A.
1977-01-01
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)
Quantum vacuum energy in two dimensional space-times
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics
1977-04-21
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.
Perturbative algebraic quantum field theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Topological order, entanglement, and quantum memory at finite temperature
International Nuclear Information System (INIS)
Mazáč, Dalimil; Hamma, Alioscia
2012-01-01
We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement–deconfinement transitions in the corresponding Z 2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed. - Highlights: ► We calculate the topological entropy of a general toric code in any dimension. ► We find phase transitions in the topological entropy. ► The phase transitions coincide with the appearance of quantum/classical memory.
Perturbative algebraic quantum field theory at finite temperature
International Nuclear Information System (INIS)
Lindner, Falk
2013-08-01
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Stochastic quantum gravity-(2+1)-dimensional case
International Nuclear Information System (INIS)
Hosoya, Akio
1991-01-01
At first the amazing coincidences are pointed out in quantum field theory in curved space-time and quantum gravity, when they exhibit stochasticity. To explore the origin of them, the (2+1)-dimensional quantum gravity is considered as a toy model. It is shown that the torus universe in the (2+1)-dimensional quantum gravity is a quantum chaos in a rigorous sense. (author). 15 refs
Dynamic localization in finite quantum dot superlattices
International Nuclear Information System (INIS)
Madureira, Justino R.; Schulz, Peter A.; Maialle, Marcelo Z.
2004-01-01
Full text: The dynamic properties of electrons and holes in low dimensional systems, driven by ac fields, reveal exciting emergent phenomena in the time span around the turn of the century. Such a rich scenario has been established by the concurrent development of powerful theoretical analysis tools, design and realization of high quality nano structured devices, as well as of tunable microwave and T Hz ac field sources. These striking developments made possible the exploration of the interaction of T Hz fields with condensed matter, leading even to biological tissue imaging. Therefore, a microscopic understanding of the T Hz field effects on designed nano structures constitute an important framework for further developments. A very interesting example in this context is the prediction of dynamic localization, which has been a subject of intense research in the past few years, from both theoretical and experimental point of views. The initial prediction states that, within a single band tight-binding approximation, an initially localized particle will return to its initial state following the periodical evolution of a driving pure sinusoidal field. This phenomenon can be simply visualized by the related collapse of the quasi energy mini bands, i.e., the localization of electronic states of a periodic unidimensional structure in real space driven by a field periodic in time. Such collapses occur whenever the field intensity/frequency ratio, eaF/(h/2π)ω, is a root of the zero-order Bessel function of the first kind. The quest for experimental signatures of dynamic localization is an involved task, since a variety of perturbations to an ideal situation is always present in real systems. The question that has to be answered is how the dynamic localization, related to the quasi-energy mini band collapses, may be identified in a context where concurring effects also tend to modify the quasi-energy spectra. For semiconductor superlattices, dynamic localization has been
Low-dimensional filiform Lie algebras over finite fields
Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)
2011-01-01
In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...
Mappings with closed range and finite dimensional linear spaces
International Nuclear Information System (INIS)
Iyahen, S.O.
1984-09-01
This paper looks at two settings, each of continuous linear mappings of linear topological spaces. In one setting, the domain space is fixed while the range space varies over a class of linear topological spaces. In the second setting, the range space is fixed while the domain space similarly varies. The interest is in when the requirement that the mappings have a closed range implies that the domain or range space is finite dimensional. Positive results are obtained for metrizable spaces. (author)
Energy Technology Data Exchange (ETDEWEB)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)
2016-04-19
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
Controlled teleportation of a 3-dimensional bipartite quantum state
International Nuclear Information System (INIS)
Cao Haijing; Chen Zhonghua; Song Heshan
2008-01-01
A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state
Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States
Brandão, Fernando G. S. L.; Kastoryano, Michael J.
2018-05-01
Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.
Quantum interest in (3+1)-dimensional Minkowski space
International Nuclear Information System (INIS)
Abreu, Gabriel; Visser, Matt
2009-01-01
The so-called 'quantum inequalities', and the 'quantum interest conjecture', use quantum field theory to impose significant restrictions on the temporal distribution of the energy density measured by a timelike observer, potentially preventing the existence of exotic phenomena such as 'Alcubierre warp drives' or 'traversable wormholes'. Both the quantum inequalities and the quantum interest conjecture can be reduced to statements concerning the existence or nonexistence of bound states for a certain one-dimensional quantum mechanical pseudo-Hamiltonian. Using this approach, we shall provide a simple variational proof of one version of the quantum interest conjecture in (3+1)-dimensional Minkowski space.
Quantum entanglement of localized excited states at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)
2015-01-20
In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.
Structure of the vertex function in finite quantum electrodynamics
International Nuclear Information System (INIS)
Mannheim, P.D.
1975-01-01
We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap
A quantum Otto engine with finite heat baths
DEFF Research Database (Denmark)
Pozas-Kerstjens, Alejandro; Brown, Eric G.; Hovhannisyan, Karen V.
2018-01-01
We study a driven harmonic oscillator operating an Otto cycle by strongly interacting with two thermal baths of finite size. Using the tools of Gaussian quantum mechanics, we directly simulate the dynamics of the engine as a whole, without the need to make any approximations. This allows us...... to understand the non-equilibrium thermodynamics of the engine not only from the perspective of the working medium, but also as it is seen from the thermal baths' standpoint. For sufficiently large baths, our engine is capable of running a number of perfect cycles, delivering finite power while operating very...... close to maximal efficiency. Thereafter, having traversed the baths, the perturbations created by the interaction abruptly deteriorate the engine's performance. Weadditionally study the correlations generated in the system, and, in particular, we find a direct connection between the build up of bath...
Quantum finite-depth memory channels: Case study
International Nuclear Information System (INIS)
Rybar, Tomas; Ziman, Mario
2009-01-01
We analyze the depth of the memory of quantum memory channels generated by a fixed unitary transformation describing the interaction between the principal system and internal degrees of freedom of the process device. We investigate the simplest case of a qubit memory channel with a two-level memory system. In particular, we explicitly characterize all interactions for which the memory depth is finite. We show that the memory effects are either infinite, or they disappear after at most two uses of the channel. Memory channels of finite depth can be to some extent controlled and manipulated by so-called reset sequences. We show that actions separated by the sequences of inputs of the length of the memory depth are independent and constitute memoryless channels.
Quantum and classical vacuum forces at zero and finite temperature
International Nuclear Information System (INIS)
Niekerken, Ole
2009-06-01
In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of ℎ. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)
Finite difference evolution equations and quantum dynamical semigroups
International Nuclear Information System (INIS)
Ghirardi, G.C.; Weber, T.
1983-12-01
We consider the recently proposed [Bonifacio, Lett. Nuovo Cimento, 37, 481 (1983)] coarse grained description of time evolution for the density operator rho(t) through a finite difference equation with steps tau, and we prove that there exists a generator of the quantum dynamical semigroup type yielding an equation giving a continuous evolution coinciding at all time steps with the one induced by the coarse grained description. The map rho(0)→rho(t) derived in this way takes the standard form originally proposed by Lindblad [Comm. Math. Phys., 48, 119 (1976)], even when the map itself (and, therefore, the corresponding generator) is not bounded. (author)
Exact vacuum polarization in 1 + 1 dimensional finite nuclei
International Nuclear Information System (INIS)
Ferree, T.C.
1992-01-01
There is considerable interest in the use of renormalizable quantum field theories to describe nuclear structure. In particular, theories which employ hadronic degrees of freedom are used widely and lead to efficient models which allow self-consistent solutions of the many-body problem. An interesting feature inherent to relativistic field theories (like QHD) is the presence of an infinite sea of negative energy fermion (nucleon) states, which interact dynamically with positive energy fermions via other fields. Such interactions give rise to, for example, vacuum polarization effects, in which virtual particle-antiparticle pairs interact with positive energy valence nucleons as well as with each other, and can significantly influence the ground and excited states of nuclear systems. Several authors have addressed this question in various approximations for finite nuclei, mostly based on extensions of results derived for a uniform system of nucleons. Some attempts have also been made to include vacuum effects in finite systems exactly, but the presence of a vector potential can be problematic when working in a spectral representation. In this paper, the author presents a computational method by which vacuum polarization effects in finite nuclei can be calculated exactly in the RHA by employing matrix diagonalization methods in a discrete Fourier representation of the Dirac equation, and an approximate method for including deep negative energy states based on a derivative expansion of the effective action. This efficient approach is shown to provide well-behaved vacuum polarization densities which remain so even in the presence of strong vector potential
Discussion of the duality in three dimensional quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Ma, Chen-Te, E-mail: yefgst@gmail.com
2017-05-10
We discuss the duality in three dimensional quantum field theory at infrared limit. The starting point is to use a conjecture of a duality between the free fermion and the interacting scalar field theories at the Wilson–Fisher fixed point. The conjecture is useful for deriving various dualities in three dimensions to obtain a duality web. The study is also interesting for understanding the dualities, or equivalence of different theories from the perspective of the renormalization group flow. We first discuss the “derivation” without losing the holonomy. Furthermore, we also derive these dualities from the mean-field study, and consider the extension of the conjecture or dualities at finite temperature.
Electronic states of on- and off-center donors in quantum rings of finite width
International Nuclear Information System (INIS)
Lima, R.P.A.; Amado, M.
2008-01-01
The electronic states of a hydrogenic donor in two-dimensional quantum rings are calculated by taking into account the finite width of the potential well in the ring. In addition, a strong magnetic field is applied perpendicular to the quantum ring. Using the effective-mass approximation at the Γ valley, the radial Hamiltonian for the envelope-function is exactly diagonalized in the case of on-center donors. The corresponding energy levels for different angular momenta are studied as a function of the applied magnetic field. In the case of off-center donors, a perturbation approach is considered and its limitations are discussed. Finally, we calculate the absorption spectra and oscillator strength for different intraband transitions, specifically for on-center donors
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Tracking an open quantum system using a finite state machine: Stability analysis
International Nuclear Information System (INIS)
Karasik, R. I.; Wiseman, H. M.
2011-01-01
A finite-dimensional Markovian open quantum system will undergo quantum jumps between pure states, if we can monitor the bath to which it is coupled with sufficient precision. In general these jumps, plus the between-jump evolution, create a trajectory which passes through infinitely many different pure states, even for ergodic systems. However, as shown recently by us [Phys. Rev. Lett. 106, 020406 (2011)], it is possible to construct adaptive monitorings which restrict the system to jumping between a finite number of states. That is, it is possible to track the system using a finite state machine as the apparatus. In this paper we consider the question of the stability of these monitoring schemes. Restricting to cyclic jumps for a qubit, we give a strong analytical argument that these schemes are always stable and supporting analytical and numerical evidence for the example of resonance fluorescence. This example also enables us to explore a range of behaviors in the evolution of individual trajectories, for several different monitoring schemes.
Three dimensional finite element linear analysis of reinforced concrete structures
International Nuclear Information System (INIS)
Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.
1979-01-01
A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)
Super-renormalizable or finite Lee–Wick quantum gravity
Directory of Open Access Journals (Sweden)
Leonardo Modesto
2016-08-01
Full Text Available We propose a class of multidimensional higher derivative theories of gravity without extra real degrees of freedom besides the graviton field. The propagator shows up the usual real graviton pole in k2=0 and extra complex conjugates poles that do not contribute to the absorptive part of the physical scattering amplitudes. Indeed, they may consistently be excluded from the asymptotic observable states of the theory making use of the Lee–Wick and Cutkosky, Landshoff, Olive and Polkinghorne prescription for the construction of a unitary S-matrix. Therefore, the spectrum consists of the graviton and short lived elementary unstable particles that we named “anti-gravitons” because of their repulsive contribution to the gravitational potential at short distance. However, another interpretation of the complex conjugate pairs is proposed based on the Calmet's suggestion, i.e. they could be understood as black hole precursors long established in the classical theory. Since the theory is CPT invariant, the conjugate complex of the micro black hole precursor can be interpreted as a white hole precursor consistently with the 't Hooft complementarity principle. It is proved that the quantum theory is super-renormalizable in even dimension, i.e. only a finite number of divergent diagrams survive, and finite in odd dimension. Furthermore, turning on a local potential of the Riemann tensor we can make the theory finite in any dimension. The singularity-free Newtonian gravitational potential is explicitly computed for a range of higher derivative theories. Finally, we propose a new super-renormalizable or finite Lee–Wick standard model of particle physics.
Hole subbands in quantum wells: exact solution for six-dimensional Luttinger–Kohn Hamiltonian
International Nuclear Information System (INIS)
Belykh, V G; Tulupenko, V N
2009-01-01
The exact solution for wavefunctions of six-dimensional Luttinger–Kohn Hamiltonian, describing the valence band of cubic semiconductors in the effective mass approximation, is derived. The problem of space quantization for a rectangular quantum well with finite depth is solved. The wavefunctions of carriers in the quantum well are built up of a complete set of exact wavefunctions for the bulk materials constituting the heterojunction. Obtained formulae for wavefunctions permit one to derive the analytical expression for a determinant, which nulls give the allowed energy values. Comparison of the energy spectra for the Si/Si 0.88 Ge 0.12 quantum well obtained in the framework of the developed technique, and using four-dimensional Luttinger–Kohn Hamiltonian allows us to trace clearly the impact of the spin–orbit interaction on the formation of the energy spectrum for the quantum well
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
International Nuclear Information System (INIS)
Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.
2005-01-01
A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process
(2+1)-dimensional quantum gravity
International Nuclear Information System (INIS)
Hosoya, Akio; Nakao, Ken-ichi.
1989-05-01
The (2+1)-dimensional pure Einstein gravity is studied in the canonical ADM formalism, assuming that the spatial surface is closed and compact. Owing to the constraints, the dynamical variables are reduced to the moduli parameters of the 2-surface. Upon quantization, the system becomes a quantum mechanics of moduli parameters in a curved space endowed with the Weil-Petersson metric. In the case of torus in particular, the superspace, on which the wave function of universe is defined, turns out to be the fundamental region is the moduli space. The solution of the Wheeler-DeWitt equation is explicitly given as the Maass form which is perfectly regular in the superspace. (author)
Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)
2016-05-03
This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.
Holographic relaxation of finite size isolated quantum systems
International Nuclear Information System (INIS)
Abajo-Arrastia, Javier; Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS_4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically, an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the travelling shell is brought in correspondence with the evolution of the pattern of entanglement in the dual field theory. We propose, thereafter, that the observed oscillations are the dual counterpart of the quantum revivals studied in the literature. The entanglement entropy is not only able to portrait the streaming of entangled excitations, but it is also a useful probe of interaction effects
Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals
Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael
2009-11-01
The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)
Primary decomposition of zero-dimensional ideals over finite fields
Gao, Shuhong; Wan, Daqing; Wang, Mingsheng
2009-03-01
A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.
Finite volume model for two-dimensional shallow environmental flow
Simoes, F.J.M.
2011-01-01
This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.
International Nuclear Information System (INIS)
Lal, Siddhartha; Laad, Mukul S.
2007-08-01
The dynamics of the charge sector of a one-dimensional quarter-filled electronic system with extended Hubbard interactions were recently mapped onto that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. Motivated by studying the effects of inter-chain couplings, we investigate the phase diagram for the case of a system of many coupled effective (TFIM) chains. A random phase approximation analysis reveals a phase diagram with an ordered phase existing at finite temperatures. The phase boundary ends at a zero temperature quantum critical point. Critical quantum fluctuations are found to drive a zero temperature deconfinement transition, as well as enhance the dispersion of excitations in the transverse directions, leading to a dimensional crossover at finite temperatures. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (author)
Finite-size scaling in two-dimensional superfluids
International Nuclear Information System (INIS)
Schultka, N.; Manousakis, E.
1994-01-01
Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Finite element and boundary element applications in quantum mechanics
International Nuclear Information System (INIS)
Ueta, Tsuyoshi
2003-01-01
Although this book is one of the Oxford Texts in Applied and Engineering Mathematics, we may think of it as a physics book. It explains how to solve the problem of quantum mechanics using the finite element method (FEM) and the boundary element method (BEM). Many examples analysing actual problems are also shown. As for the ratio of the number of pages of FEM and BEM, the former occupies about 80%. This is, however, reasonable reflecting the flexibility of FEM. Although many explanations of FEM and BEM exist, most are written using special mathematical expressions and numerical computation fields. However, this book is written in the 'language of physicists' throughout. I think that it is very readable and easy to understand for physicists. In the derivation of FEM and the argument on calculation accuracy, the action integral and a variation principle are used consistently. In the numerical computation of matrices, such as simultaneous equations and eigen value problems, a description of important points is also fully given. Moreover, the practical problems which become important in the electron device design field and the condensed matter physics field are dealt with as example computations, so that this book is very practical and applicable. It is characteristic and interesting that FEM is applied to solve the Schroedinger and Poisson equations consistently, and to the solution of the Ginzburg--Landau equation in superconductivity. BEM is applied to treat electric field enhancements due to surface plasmon excitations at metallic surfaces. A number of references are cited at the end of all the chapters, and this is very helpful. The description of quantum mechanics is also made appropriately and the actual application of quantum mechanics in condensed matter physics can also be surveyed. In the appendices, the mathematical foundation, such as numerical quadrature formulae and Green's functions, is conveniently described. I recommend this book to those who need to
Infinite dimensional groups and algebras in quantum physics
International Nuclear Information System (INIS)
Ottesen, J.T.
1995-01-01
This book is an introduction to the application of infite-dimensional groups and algebras in quantum physics. Especially considered are the spin representation of the infinite-dimensional orthogonal group, the metaplectic representation of the infinite-dimensional symplectic groups, and Loop and Virasoro algebras. (HSI)
Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.
2017-07-01
The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.
Wu, Jianda; Kormos, Márton; Si, Qimiao
2014-12-12
A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.
Quantum key distribution session with 16-dimensional photonic states
Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.
2013-01-01
The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033
Quantum Fluctuations of Low Dimensional Bose-Einstein ...
African Journals Online (AJOL)
Tadesse
that low dimensional quantum gases exhibit not only highly fascinating .... 2009; Marquardt and Girvin, 2009; Law, 1995; Vitali et al., 2007). ... ideal playground to test correlations between light and mesoscopic objects, to understand the.
Dimensional renormalization and comparison of renormalization schemes in quantum electrodynamics
International Nuclear Information System (INIS)
Coquereaux, R.
1979-02-01
The method of dimensional renormalization as applied to quantum electrodynamics is discussed. A general method is given which allows one to compare the various quantities like coupling constants and masses that appear in different renormalization schemes
Quantum theory of two-dimensional generalized Toda lattice on bounded spatial interval
International Nuclear Information System (INIS)
Leznov, A.N.
1982-01-01
The quantization method of exactly solvable dynamical systems worked out in another paper is applied to a two-dimensional model described by the equations of generalized Toda lattice with a periodicity condition over spatial variable. The Heisenberg operators of the model are finite polynomials over the coupling constant g 2 , whose coefficients functionally depend on operators of noninteracting fields. The model has a direct relation with the string theories and reduces formally when L→infinity to two-dimensional quantum field theory described by the equations of generalized Toda lattice the formal solution of which has been found in Refs
Quantum quenches to the attractive one-dimensional Bose gas: exact results
Directory of Open Access Journals (Sweden)
Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler
2016-09-01
Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.
Causal approach to (2+1)-dimensional Quantum Electrodynamics
International Nuclear Information System (INIS)
Scharf, G.; Wreszinski, W.F.; Pimentel, B.M.; Tomazelli, J.L.
1993-05-01
It is shown that the causal approach to (2+1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (author). 12 refs
Quantum transport in strongly interacting one-dimensional nanostructures
Agundez, R.R.
2015-01-01
In this thesis we study quantum transport in several one-dimensional systems with strong electronic interactions. The first chapter contains an introduction to the concepts treated throughout this thesis, such as the Aharonov-Bohm effect, the Kondo effect, the Fano effect and quantum state transfer.
Quantum confinement effects in low-dimensional systems
Indian Academy of Sciences (India)
2015-06-03
Jun 3, 2015 ... Quantum confinement effects in low-dimensional systems. Figure 5. (a) Various cuts of the three-dimensional data showing energy vs. momen- tum dispersion relations for Ag film of 17 ML thickness on Ge(111). (b) Photo- emission intensity maps along ¯M– ¯ – ¯K direction. (c) Substrate bands replotted ...
Quantum field between moving mirrors: A three dimensional example
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
Quantum Fluctuations of Low Dimensional Bose-Einstein ...
African Journals Online (AJOL)
A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...
Quantum Communication Through a Two-Dimensional Spin Network
International Nuclear Information System (INIS)
Wang Zhaoming; Gu Yongjian
2012-01-01
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.
Multi-dimensional photonic states from a quantum dot
Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2018-04-01
Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.
Anonymous voting for multi-dimensional CV quantum system
International Nuclear Information System (INIS)
Shi Rong-Hua; Xiao Yi; Shi Jin-Jing; Guo Ying; Lee, Moon-Ho
2016-01-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. (paper)
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br
2008-04-14
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.
2008-01-01
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them
Quasi-one-dimensional density of states in a single quantum ring.
Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A; Nogues, Gilles; Dang, Le Si; Song, Jin Dong
2017-01-05
Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.
The finite - dimensional star and grade star irreducible representation of SU(n/1)
International Nuclear Information System (INIS)
Han Qi-zhi.
1981-01-01
We derive the conditions of star and grade star representations of SU(n/1) and give some examples of them. We also give a brief review of the finite - dimensional irreducible representations of SU(n/1). (author)
Renner, R; Cirac, J I
2009-03-20
We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.
High-Dimensional Quantum Information Processing with Linear Optics
Fitzpatrick, Casey A.
Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for
Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case
Institute of Scientific and Technical Information of China (English)
BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun
2003-01-01
In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.
Ultraviolet finiteness of N = 8 supergravity, spontaneously broken by dimensional reduction
International Nuclear Information System (INIS)
Sezgin, E.; Nieuwenhuizen, P. van
1982-06-01
The one-loop corrections to scalar-scalar scattering in N = 8 supergravity with 4 masses from dimensional reduction, are finite. We discuss various mechanisms that cancel the cosmological constant and infra-red divergences due to finite but non-vanishing tadpoles. (author)
International Nuclear Information System (INIS)
Shtromberger, N.L.
1989-01-01
To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs
An exactly solvable three-dimensional nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A.; Morris, J. R.
2013-01-01
Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states
An exactly solvable three-dimensional nonlinear quantum oscillator
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, A. [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Morris, J. R. [Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2013-11-15
Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.
Three-dimensional quantum electrodynamics as an effective interaction
International Nuclear Information System (INIS)
Abdalla, E.; Carvalho Filho, F.M. de
1995-10-01
We obtain a Quantum Electrodynamics in 2 + 1 dimensions by applying a Kaluza-Klein type method of dimensional reduction to Quantum Electrodynamics in 3 + 1 dimensions rendering the model more realistic to application in solid-state systems, invariant under translations in one direction. We show that the model obtained leads to an effective action exhibiting an interesting phase structure and that the generated Chern-Simons term survives only in the broken phase. (author). 20 refs
Dimensional regularization and infrared divergences in quantum electrodynamics
International Nuclear Information System (INIS)
Marculescu, S.
1979-01-01
Dimensional continuation was devised as a powerful regularization method for ultraviolet divergences in quantum field theories. Recently it was clear, at least for quantum electrodynamics, that such a method could be employed for factorizing out infrared divergences from the on-shell S-matrix elements. This provides a renormalization scheme on the electron mass-shell without using a gauge violating ''photon mass''. (author)
Quantum Statistical Entropy of Five-Dimensional Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li
2006-01-01
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
Quantum Statistical Entropy of Five-Dimensional Black Hole
International Nuclear Information System (INIS)
Zhao Ren; Zhang Shengli; Wu Yueqin
2006-01-01
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Quantum walk with a four-dimensional coin
International Nuclear Information System (INIS)
Hamilton, Craig S; Gabris, Aurel; Jex, Igor; Barnett, Stephen M
2011-01-01
We examine the physical implementation of a discrete time quantum walk with a four-dimensional coin. Our quantum walker is a photon moving repeatedly through a time delay loop, with time being our position space. The quantum coin is implemented using the internal states of the photon: the polarization and two of the orbital angular momentum states. We demonstrate how to implement this physically and what components would be needed. We then illustrate some of the results that could be obtained by performing the experiment.
Fiore, A.; Rossetti, M.; Alloing, B.; Paranthoën, C.; Chen, J.X.; Geelhaar, L.; Riechert, H.
2004-01-01
We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we
Supersymmetric quantum mechanics in three-dimensional space, 1
International Nuclear Information System (INIS)
Ui, Haruo
1984-01-01
As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)
Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model
International Nuclear Information System (INIS)
Hamer, C.J.; Barber, M.N.
1979-01-01
Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
Novel phenomena in one-dimensional non-linear transport in long quantum wires
International Nuclear Information System (INIS)
Morimoto, T; Hemmi, M; Naito, R; Tsubaki, K; Park, J-S; Aoki, N; Bird, J P; Ochiai, Y
2006-01-01
We have investigated the non-linear transport properties of split-gate quantum wires of various channel lengths. In this report, we present results on a resonant enhancement of the non-linear conductance that is observed near pinch-off under a finite source-drain bias voltage. The resonant phenomenon exhibits a strong dependence on temperature and in-plane magnetic field. We discuss the possible relationship of this phenomenon to the spin-polarized manybody state that has recently been suggested to occur in quasi-one dimensional systems
Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System
International Nuclear Information System (INIS)
Wang Bo; Kou Su-Peng; Huang Hai-Lin; Sun Zhao-Yu
2012-01-01
We investigate the ability of quantum fidelity in detecting the classical phase transitions (CPTs) in a two-dimensional Heisenberg—Ising mixed spin model, which has a very rich phase diagram and is exactly soluble. For a two-site subsystem of the model, the reduced fidelity (including the operator fidelity and the fidelity susceptibility) at finite temperatures is calculated, and it is found that an extreme value presents at the critical temperature, thus shows a signal for the CPTs. In some parameter region, the signal becomes blurred. We propose to use the 'normalized fidelity susceptibility' to solve this problem
Gauge dependence and new kind of two-dimensional gravity theory with trivial quantum corrections
International Nuclear Information System (INIS)
Banin, A.T.; Shapiro, I.L.
1993-12-01
We search for the new kinds of classical potentials in two-dimensional induced gravity, which provide the triviality of the one-loop quantum corrections. First of all the gauge dependence of the effective potential is studied. The unique effective potential, introduced by Vilkovisly in 1984 is found to manifest the gauge dependence due to some unusual properties of the theory under consideration. Then we take the gauge of harmonical type, which provides the one-loop finiteness off shell, and then the solution for the required classical potential is found. (author). 35 refs
Universal conditions for finite renormalizable quantum field theories
International Nuclear Information System (INIS)
Kranner, G.
1990-10-01
Analyzing general renormalization constants in covariant gauge and minimal subtraction, we consider universal conditions for cancelling UV-divergences in renormalizable field theories with simple gauge groups, and give constructive methods for finding nonsupersymmetric finite models. The divergent parts of the renormalization constants for fields explicitly depend on the gauge parameter ξ. Finite theories simply need finite couplings. We show that respective FinitenessConditions imply a hierarchy, the center of which are the FCs for the gauge coupling g and the Yukawa couplings of the massless theory. To gain more information about F we analyze the Yukawa-FC in greater detail. Doing so algebraically, we find out and fix all inner symmetries. Additionally, Yuakawa-couplings must be invariant under gauge transformation. Then it becomes extremely difficult to obey a FC, yield rational numbers for F ∼ 1, and satisfy the factorization-condition, unless F = 1. The particular structure of the F = 1-system allows for a most general ansatz. We figure out the simplest case, getting precisely just couplings and particle content of a general N=1-supersymmetric theory. We list a class of roughly 4000 types of theories, containing all supersymmetric, completely finite, and many more finite theories as well. (Author, shortened by Quittner) 11 figs., 54 refs
International Nuclear Information System (INIS)
Xi Li-Ying; Chen Huan-Ming; Zheng Fu; Gao Hua; Tong Yang; Ma Zhi
2015-01-01
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. (paper)
Mixed finite element simulations in two-dimensional groundwater flow problems
International Nuclear Information System (INIS)
Kimura, Hideo
1989-01-01
A computer code of groundwater flow in two-dimensional porous media based on the mixed finite element method was developed for accurate approximations of Darcy velocities in safety evaluation of radioactive waste disposal. The mixed finite element procedure solves for both the Darcy velocities and pressure heads simultaneously in the Darcy equation and continuity equation. Numerical results of a single well pumping at a constant rate in a uniform flow field showed that the mixed finite element method gives more accurate Darcy velocities nearly 50 % on average error than standard finite element method. (author)
Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces
International Nuclear Information System (INIS)
Robinson, James C
2009-01-01
This paper treats the embedding of finite-dimensional subsets of a Banach space B into finite-dimensional Euclidean spaces. When the Hausdorff dimension of X − X is finite, d H (X − X) k are injective on X. The proof motivates the definition of the 'dual thickness exponent', which is the key to proving that a prevalent set of such linear maps have Hölder continuous inverse when the box-counting dimension of X is finite and k > 2d B (X). A related argument shows that if the Assouad dimension of X − X is finite and k > d A (X − X), a prevalent set of such maps are bi-Lipschitz with logarithmic corrections. This provides a new result for compact homogeneous metric spaces via the Kuratowksi embedding of (X, d) into L ∞ (X)
Energy Technology Data Exchange (ETDEWEB)
Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)
2015-05-15
This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.
Approximation of the Frame Coefficients using Finite Dimensional Methods
DEFF Research Database (Denmark)
Christensen, Ole; Casazza, P.
1997-01-01
_i \\}_{i=1}^{n}$ of the frame and theorthogonal projection $P_n$ onto its span. For $f \\in \\h ,P_nf$ has a representation as a linear combination of $f_i , i=1,2,..n,$and the corresponding coefficients can be calculated using finite dimensionalmethods. We find conditions implying that those coefficients...
International Nuclear Information System (INIS)
Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.
2000-01-01
The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively
Wave packet construction in three-dimensional quantum billiards ...
Indian Academy of Sciences (India)
E-mail: mannu_711@yahoo.co.in. MS received 14 ... The motivation to extend the study to a three-dimensional (3D) system is .... with a GWP centred around the central value of the principle quantum number n0 instead of a GWP ...... Cubical and parallelepiped billiards are the potential candidates for the creation of arti-.
Wigner distributions for finite dimensional quantum systems: An ...
Indian Academy of Sciences (India)
2005-07-11
Jul 11, 2005 ... 5Centre for High Energy Physics, Indian Institute of Science, Bangalore ... one has to take the Cartesian product of the elementary solutions. ... tor of translations in configuration space, with mass not playing an explicit role. .... with a distinguished 'origin' corresponding to the identity element e ∈ G. In turn,.
International Nuclear Information System (INIS)
Pal, Karoly F.; Vertesi, Tamas
2010-01-01
The I 3322 inequality is the simplest bipartite two-outcome Bell inequality beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three two-outcome measurements per party. In the case of the CHSH inequality the maximal quantum violation can already be attained with local two-dimensional quantum systems; however, there is no such evidence for the I 3322 inequality. In this paper a family of measurement operators and states is given which enables us to attain the maximum quantum value in an infinite-dimensional Hilbert space. Further, it is conjectured that our construction is optimal in the sense that measuring finite-dimensional quantum systems is not enough to achieve the true quantum maximum. We also describe an efficient iterative algorithm for computing quantum maximum of an arbitrary two-outcome Bell inequality in any given Hilbert space dimension. This algorithm played a key role in obtaining our results for the I 3322 inequality, and we also applied it to improve on our previous results concerning the maximum quantum violation of several bipartite two-outcome Bell inequalities with up to five settings per party.
Chiral symmetry and finite temperature effects in quantum theories
International Nuclear Information System (INIS)
Larsen, Aa.
1987-01-01
A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model
Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement
International Nuclear Information System (INIS)
Shi Jin; Gong Yanxiao; Xu Ping; Zhu Shining; Zhan Youbang
2011-01-01
We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former QSDC protocols. (general)
Quantum correlation of high dimensional system in a dephasing environment
Ji, Yinghua; Ke, Qiang; Hu, Juju
2018-05-01
For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.
Three-dimensional modeling with finite element codes
Energy Technology Data Exchange (ETDEWEB)
Druce, R.L.
1986-01-17
This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.
Two-dimensional isostatic meshes in the finite element method
Martínez Marín, Rubén; Samartín, Avelino
2002-01-01
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Quantum fluctuations and spontaneous compactification of eleven-dimensional gravity
International Nuclear Information System (INIS)
Nguen Van Hieu.
1985-01-01
The reduction of the eleven-dimensional pure gravity to the field theory in the four-dimensional Minkowski space-time by means of the spontaneous compactification of the extra dimensions is investigated. The contribution of the quantum fluctuations of the eleven-dimen-- sonal second rank symmetric tensor field to the curvatures of the space-time and the compactified space of the extra dimensions are calculated in the one-loop approximation. It is shown that there exist the values of the cosmological constant for which tachions are absent. As a result, self-consistent quantum field theory is obtained in spontaneous compactified Minkowski space M 4 xS 7 ,is where M 4 is Minkowski space-time, and S 7 is seven-dimensional sphere
Theory of critical phenomena in finite-size systems scaling and quantum effects
Brankov, Jordan G; Tonchev, Nicholai S
2000-01-01
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals
Nonlinear quantum fluid equations for a finite temperature Fermi plasma
International Nuclear Information System (INIS)
Eliasson, Bengt; Shukla, Padma K
2008-01-01
Nonlinear quantum electron fluid equations are derived, taking into account the moments of the Wigner equation and by using the Fermi-Dirac equilibrium distribution for electrons with an arbitrary temperature. A simplified formalism with the assumptions of incompressibility of the distribution function is used to close the moments in velocity space. The nonlinear quantum diffraction effects into the fluid equations are incorporated. In the high-temperature limit, we retain the nonlinear fluid equations for a dense hot plasma and in the low-temperature limit, we retain the correct fluid equations for a fully degenerate plasma
Chiral phase transitions in quantum chromodynamics at finite ...
Indian Academy of Sciences (India)
at finite temperature: Hard-thermal-loop resummed ... (ii) To closely estimate the dominant temperature effects, we focus on studying the DS equation being .... method is useful so long as the convergence of the iteration is guaranteed. At each ...
Stochastic formulation of quantum field at finite temperature
International Nuclear Information System (INIS)
Lim, S.C.
1989-01-01
This paper reports that, based on an extension of the stochastic quantization method of Nelson, it is possible to obtain finite temperature fields in both the imaginary and real time formalisms which are usually quantized by using the functional integral technique
Quantum transport in d -dimensional lattices
International Nuclear Information System (INIS)
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-01-01
We show that both fermionic and bosonic uniform d -dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations. (paper)
Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution
Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong
2017-10-01
We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.
Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases
International Nuclear Information System (INIS)
Brandino, G. P.; Caux, J.-S.; Konik, R. M.
2015-01-01
Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking, we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.
Scattering Theory for Open Quantum Systems with Finite Rank Coupling
International Nuclear Information System (INIS)
Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen
2007-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space is used to describe an open quantum system. In this case the minimal self-adjoint dilation of A D can be regarded as the Hamiltonian of a closed system which contains the open system, but since K-tilde is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems
Localized polarons and doorway vibrons in finite quantum structures
Czech Academy of Sciences Publication Activity Database
Fehske, H.; Wellein, G.; Loos, Jan; Bishop, A. R.
2008-01-01
Roč. 77, č. 8 (2008), 085117/1-085117/6 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent
Stopping time of a one-dimensional bounded quantum walk
International Nuclear Information System (INIS)
Luo Hao; Zhang Peng; Zhan Xiang; Xue Peng
2016-01-01
The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. (paper)
Quantum localization in the three-dimensional kicked Rydberg atom
International Nuclear Information System (INIS)
Persson, Emil; Yoshida, Shuhei; Burgdoerfer, Joachim; Tong, X.-M.; Reinhold, Carlos O.
2003-01-01
We study the three-dimensional (3D) unidirectionally kicked Rydberg atom. For parabolic initial states elongated in the direction of the kicks we show that the ionization of the quantum system is suppressed as compared to the classical counterpart and that the quantum wave function is localized along all degrees of freedom, whereas the classical system is globally diffusive. We discuss the connection to the previously studied one-dimensional (1D) model of the kicked Rydberg atom and verify that the 1D model is a good approximation to the 3D quantum case in the limiting case of the most elongated initial states. We further study the quantum phase-space distribution (Husimi distribution) of the eigenstates of the period-one time-evolution (Floquet) operator and show that the eigenstates are localized in phase space. For the most elongated parabolic initial state, we are able to identify the unstable periodic orbits around which Floquet states localize. We discuss the possibility of observing quantum localization in high Rydberg states in n>100
Finite element method for radiation heat transfer in multi-dimensional graded index medium
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium
Finite-time quantum-to-classical transition for a Schroedinger-cat state
International Nuclear Information System (INIS)
Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.; Maniscalco, Sabrina
2011-01-01
The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.
High-dimensional quantum key distribution with the entangled single-photon-added coherent state
Energy Technology Data Exchange (ETDEWEB)
Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2017-04-25
High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.
High-dimensional quantum key distribution with the entangled single-photon-added coherent state
International Nuclear Information System (INIS)
Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei
2017-01-01
High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.
Symmetry and Degeneracy in Quantum Mechanics. Self-Duality in Finite Spin Systems
Osacar, C.; Pacheco, A. F.
2009-01-01
The symmetry of self-duality (Savit 1980 "Rev. Mod. Phys. 52" 453) of some models of statistical mechanics and quantum field theory is discussed for finite spin blocks of the Ising chain in a transverse magnetic field. The existence of this symmetry in a specific type of these blocks, and not in others, is manifest by the degeneracy of their…
Fourier transform and the Verlinde formula for the quantum double of a finite group
Koornwinder, T.H.; Schroers, B.J.; Slingerland, J.K.; Bais, F.A.
1999-01-01
We define a Fourier transform $S$ for the quantum double $D(G)$ of a finite group $G$. Acting on characters of $D(G)$, $S$ and the central ribbon element of $D(G)$ generate a unitary matrix representation of the group $SL(2,Z)$. The characters form a ring over the integers under both the algebra
Spontaneous magnetization of quantum XY-chain from finite chain form-factor
International Nuclear Information System (INIS)
Iorgov, N.Z.
2010-01-01
Using the explicit factorized formulas for matrix elements (form-factors) of the spin operators between vectors of the Hamiltonian of a finite quantum XY-chain in a transverse field, the spontaneous magnetization for σ x and σ y is re-derived in a simple way.
On quantum statistics for ensembles with a finite number of particles
International Nuclear Information System (INIS)
Trifonov, Evgenii D
2011-01-01
The well-known Bose-Einstein and Fermi-Dirac quantum distributions can be considered as stationary solutions of kinetic equations for the mean occupation numbers in an ideal gas of an arbitrary finite number of identical particles. (methodological notes)
Hidden symmetries in one-dimensional quantum Hamiltonians
International Nuclear Information System (INIS)
Curado, E.M.F.; Rego-Monteiro, M.A.; Nazareno, H.N.
2000-11-01
We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The number-type and ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This square-well algebra is an example of an algebra in large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains q-oscillators as a particular case. We also show here how this general algebra can address hidden symmetries present in several quantum systems. (author)
Quantum tunneling from three-dimensional black holes
International Nuclear Information System (INIS)
Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung
2013-01-01
We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry
International Nuclear Information System (INIS)
Takeshi, Y.; Keisuke, K.
1983-01-01
The multigroup neutron diffusion equation for two-dimensional triangular geometry is solved by the finite Fourier transformation method. Using the zero-th-order equation of the integral equation derived by this method, simple algebraic expressions for the flux are derived and solved by the alternating direction implicit method. In sample calculations for a benchmark problem of a fast breeder reactor, it is shown that the present method gives good results with fewer mesh points than the usual finite difference method
Signal detection without finite-energy limits to quantum resolution
Luis Aina, Alfredo
2013-01-01
We show that there are extremely simple signal detection schemes where the finiteness of energy resources places no limit on the resolution. On the contrary, larger resolution can be obtained with lower energy. To this end the generator of the signal-dependent transformation encoding the signal information on the probe state must be different from the energy. We show that the larger the deviation of the probe state from being the minimum-uncertainty state, the better the resolution.
Selective correlations in finite quantum systems and the Desargues property
Lei, C.; Vourdas, A.
2018-06-01
The Desargues property is well known in the context of projective geometry. An analogous property is presented in the context of both classical and Quantum Physics. In a classical context, the Desargues property implies that two logical circuits with the same input show in their outputs selective correlations. In general their outputs are uncorrelated, but if the output of one has a particular value, then the output of the other has another particular value. In a quantum context, the Desargues property implies that two experiments each of which involves two successive projective measurements have selective correlations. For a particular set of projectors, if in one experiment the second measurement does not change the output of the first measurement, then the same is true in the other experiment.
Infra-red finiteness in quantum electro-dynamics
International Nuclear Information System (INIS)
Kawai, Takahiro
1984-01-01
The authors report some mathematical aspects of a recent solution of the infra-red catastrophe in quantum electro-dynamics. A principal result is that the coordinate space Feynman function can be separated into two factors the first of which is a unitary operator in photon space representing the classical electro-magnetic contribution to the amplitude, and the second of which is a residual factor representing the quantum fluctuation about the classical contribution. The main objectives were to verify: (i) the residual factor is free of infra-red divergences, and (ii) the dominant part of the singularity of the residual factor on the positive-α Landau surface has the same analytic form as it would have if the photons were massive. (Auth.)
Tight finite-key analysis for quantum cryptography.
Tomamichel, Marco; Lim, Charles Ci Wen; Gisin, Nicolas; Renner, Renato
2012-01-17
Despite enormous theoretical and experimental progress in quantum cryptography, the security of most current implementations of quantum key distribution is still not rigorously established. One significant problem is that the security of the final key strongly depends on the number, M, of signals exchanged between the legitimate parties. Yet, existing security proofs are often only valid asymptotically, for unrealistically large values of M. Another challenge is that most security proofs are very sensitive to small differences between the physical devices used by the protocol and the theoretical model used to describe them. Here we show that these gaps between theory and experiment can be simultaneously overcome by using a recently developed proof technique based on the uncertainty relation for smooth entropies.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
International Nuclear Information System (INIS)
Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo
2015-01-01
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method
International Nuclear Information System (INIS)
Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr
2008-01-01
Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
Energy Technology Data Exchange (ETDEWEB)
Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)
2015-02-15
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
One-dimensional quantum walk with a moving boundary
International Nuclear Information System (INIS)
Kwek, Leong Chuan; Setiawan
2011-01-01
Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.
Finite size effects and chiral symmetry breaking in quenched three-dimensional QED
International Nuclear Information System (INIS)
Hands, S.; Kogut, J.B.
1990-01-01
Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)
Quantum phase crossovers with finite atom number in the Dicke model
International Nuclear Information System (INIS)
Hirsch, J G; Castaños, O; Nahmad-Achar, E; López-Peña, R
2013-01-01
Two-level atoms interacting with a one-mode cavity field at zero temperature have order parameters which reflect the presence of a quantum phase transition at a critical value of the atom–cavity coupling strength. Two popular examples are the number of photons inside the cavity and the number of excited atoms. Coherent states provide a mean field description, which becomes exact in the thermodynamic limit. Employing symmetry-adapted (SA) SU(2) coherent states the quantum crossover, precursor of the critical behavior, can be described for a finite number of atoms. A variation after projection treatment, involving a numerical minimization of the SA energy surface, associates the quantum crossover with a discontinuity in the order parameters, which originates from competition between two local minima in the SA energy surface. Although this discontinuity is not present in finite systems, it provides a good description of 1/N effects in the observables. (paper)
International Nuclear Information System (INIS)
Sedrakian, D.M.; Badalyan, D.H.; Sedrakian, L.R.
2015-01-01
Quasi-one-dimensional quantum particle scattering on two-dimensional δ-potential is considered. Analytical expressions for the amplitudes of the multi-channel transmission and reflection are given. The problem for the case when the number of channels is finite and equal N, and the particle falls on the potential moving through the channel l is solved. The case of a three channel scattering is studied in details. It is shown that under conditions k 2 → 0 and k 3 → 0 'overpopulation' of particles on the second and third channels occurs. The points of δ-potential location which provide a full 'overpopulation' of particles is also found
Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures
International Nuclear Information System (INIS)
Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A
2008-01-01
Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals
Green functions and dimensional reduction of quantum fields on product manifolds
International Nuclear Information System (INIS)
Haba, Z
2008-01-01
We discuss Euclidean Green functions on product manifolds P=N x M. We show that if M is compact and N is not compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R D-1 x S β , where S β is a circle of radius β, then the result reduces to the well-known approximation of the D-dimensional finite temperature quantum field theory by (D - 1)-dimensional one in the high-temperature limit. Analytic continuation of Euclidean fields is discussed briefly
A finite-dimensional reduction method for slightly supercritical elliptic problems
Directory of Open Access Journals (Sweden)
Riccardo Molle
2004-01-01
Full Text Available We describe a finite-dimensional reduction method to find solutions for a class of slightly supercritical elliptic problems. A suitable truncation argument allows us to work in the usual Sobolev space even in the presence of supercritical nonlinearities: we modify the supercritical term in such a way to have subcritical approximating problems; for these problems, the finite-dimensional reduction can be obtained applying the methods already developed in the subcritical case; finally, we show that, if the truncation is realized at a sufficiently large level, then the solutions of the approximating problems, given by these methods, also solve the supercritical problems when the parameter is small enough.
Alfven-wave particle interaction in finite-dimensional self-consistent field model
International Nuclear Information System (INIS)
Padhye, N.; Horton, W.
1998-01-01
A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons
A finite area scheme for shallow granular flows on three-dimensional surfaces
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
Energy Technology Data Exchange (ETDEWEB)
Weber, Carsten
2008-07-01
This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and
Entanglement evolution after connecting finite to infinite quantum chains
International Nuclear Information System (INIS)
Eisler, V; Peschel, I; Karevski, D; Platini, T
2008-01-01
We study zero-temperature XX chains and transverse Ising chains and join an initially separate finite piece on one or on both sides to an infinite remainder. In both critical and non-critical systems we find a typical increase of the entanglement entropy after the quench, followed by a slow decay towards the value of the homogeneous chain. In the critical case, the predictions of conformal field theory are verified for the first phase of the evolution, while at late times a step structure can be observed
Dimensional expansion for the Ising limit of quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Boettcher, S.
1993-01-01
A recently proposed technique, called dimensional expansion, uses the space-time dimension D as an expansion parameter to extract nonperturbative results in quantum field theory. Here we apply dimensional-expansion methods to examine the Ising limit of a self-interacting scalar field theory. We compute the first few coefficients in the dimensional expansion of γ 2n , the renormalized 2n-point Green's function at zero momentum, for n=2, 3, 4, and 5. Because the exact results for γ 2n are known at D=1 we can compare the predictions of the dimensional expansion at this value of D. We find typical accuracies of less than 5%. The radius of convergence of the dimensional expansion for γ 2n appears to be 2n/(n-1). As a function of the space-time dimension D, γ 2n appears to rise monotonically with increasing D and we conjecture that it becomes infinite at D=2n/(n-1). We presume that for values of D greater than this critical value γ 2n vanishes identically because the corresponding φ 2n scalar quantum field theory is free for D>2n/(n-1)
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.; Fratalocchi, Andrea
2013-01-01
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
Unruly topologies in two-dimensional quantum gravity
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.
2013-08-05
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
Ising critical behaviour in the one-dimensional frustrated quantum XY model
International Nuclear Information System (INIS)
Granato, E.
1993-06-01
A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs
Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics
International Nuclear Information System (INIS)
Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa
2002-01-01
This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing
Two-dimensional color-code quantum computation
International Nuclear Information System (INIS)
Fowler, Austin G.
2011-01-01
We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.
Rare event simulation in finite-infinite dimensional space
International Nuclear Information System (INIS)
Au, Siu-Kui; Patelli, Edoardo
2016-01-01
Modern engineering systems are becoming increasingly complex. Assessing their risk by simulation is intimately related to the efficient generation of rare failure events. Subset Simulation is an advanced Monte Carlo method for risk assessment and it has been applied in different disciplines. Pivotal to its success is the efficient generation of conditional failure samples, which is generally non-trivial. Conventionally an independent-component Markov Chain Monte Carlo (MCMC) algorithm is used, which is applicable to high dimensional problems (i.e., a large number of random variables) without suffering from ‘curse of dimension’. Experience suggests that the algorithm may perform even better for high dimensional problems. Motivated by this, for any given problem we construct an equivalent problem where each random variable is represented by an arbitrary (hence possibly infinite) number of ‘hidden’ variables. We study analytically the limiting behavior of the algorithm as the number of hidden variables increases indefinitely. This leads to a new algorithm that is more generic and offers greater flexibility and control. It coincides with an algorithm recently suggested by independent researchers, where a joint Gaussian distribution is imposed between the current sample and the candidate. The present work provides theoretical reasoning and insights into the algorithm.
Calculation of two-dimensional thermal transients by the finite element method
International Nuclear Information System (INIS)
Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de
1981-01-01
The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt
Three-dimensional finite amplitude electroconvection in dielectric liquids
Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping
2018-02-01
Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.
Two-dimensional quantum electrodynamics as a model in the constructive quantum field theory
International Nuclear Information System (INIS)
Ito, K.R.
1976-01-01
We investigate two-dimensional quantum electrodynamics((QED) 2 ) type models on the basis of the Hamiltonian formalism of a vector field. The transformation into a sine-Gordon equation is clarified as a generalized mass-shift transformation through canonical linear transformations. (auth.)
Two aspects of the quantum chromodynamics' transition at finite temperature
International Nuclear Information System (INIS)
Zhang, Bo
2011-01-01
This thesis concerns two aspects of the relation between chiral symmetry breaking and confinement. The first aspect is the relations between different topological objects. The relation between monopoles and center vortices and the relation between instantons and monopoles are well established, in this thesis, we explore the relation between instantons (of finite temperature, called calorons) and center vortices in SU(2) and SU(3) gauge theory in Chapter 3 and Chapter 4, respectively. The second aspect is about the order parameters. The dual condensate introduced by E. Bilgici et al. is a novel observable that relates the order parameter of chiral symmetry breaking (chiral condensate) and confinement (Polyakov loop). In this thesis, we investigate the dual condensate on dynamical staggered fermions and explore a new dual operator: the dual quark density in Chapter 5.
Coupled Langmuir oscillations in 2-dimensional quantum plasmas
International Nuclear Information System (INIS)
Akbari-Moghanjoughi, M.
2014-01-01
In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits
International Nuclear Information System (INIS)
Luo, Da-Wei; Xu, Jing-Bo
2014-01-01
We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)
Solvable model of spin-dependent transport through a finite array of quantum dots
International Nuclear Information System (INIS)
Avdonin, S A; Dmitrieva, L A; Kuperin, Yu A; Sartan, V V
2005-01-01
The problem of spin-dependent transport of electrons through a finite array of quantum dots attached to a 1D quantum wire (spin gun) for various semiconductor materials is studied. The Breit-Fermi term for spin-spin interaction in the effective Hamiltonian of the device is shown to result in a dependence of transmission coefficient on the spin orientation. The difference of transmission probabilities for singlet and triplet channels can reach a few per cent for a single quantum dot. For several quantum dots in the array due to interference effects it can reach approximately 100% for some energy intervals. For the same energy intervals the conductance of the device reaches the value ∼1 in [e 2 /πℎ] units. As a result a model of the spin gun which transforms the spin-unpolarized electron beam into a completely polarized one is suggested
Quantum correlation properties in Matrix Product States of finite-number spin rings
Zhu, Jing-Min; He, Qi-Kai
2018-02-01
The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.
Finite-temperature effects in helical quantum turbulence
Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.
2018-04-01
We perform a study of the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the stochastic Ginzburg-Landau equations, using up to 40963 grid points with a pseudospectral method. We show that for temperatures close to the critical one, the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide Ansätze for the effective viscosity and friction as a function of the temperature.
Reparametrization in the path integral over finite dimensional manifold with a time-dependent metric
International Nuclear Information System (INIS)
Storchak, S.N.
1988-01-01
The path reparametrization procedure in the path integral is considered using the methods of stochastic processes for diffusion on finite dimensional manifold with a time-dependent metric. the reparametrization Jacobian has been obtained. The formulas of reparametrization for a symbolic presentation of the path integral have been derived
Generalized results on the role of new-time transformations in finite-dimensional Poisson systems
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito, E-mail: benito.hernandez@urjc.e [Departamento de Fisica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 Mostoles, Madrid (Spain)
2010-01-25
The problem of characterizing all new-time transformations preserving the Poisson structure of a finite-dimensional Poisson system is completely solved in a constructive way. As a corollary, this leads to a broad generalization of previously known results. Examples are given.
Large parallel volumes of finite and compact sets in d-dimensional Euclidean space
DEFF Research Database (Denmark)
Kampf, Jürgen; Kiderlen, Markus
The r-parallel volume V (Cr) of a compact subset C in d-dimensional Euclidean space is the volume of the set Cr of all points of Euclidean distance at most r > 0 from C. According to Steiner’s formula, V (Cr) is a polynomial in r when C is convex. For finite sets C satisfying a certain geometric...
A new look at the harmonic oscillator problem in a finite-dimensional Hilbert space
International Nuclear Information System (INIS)
Bagchi, B.
1995-01-01
In this Letter some basic properties of a truncated oscillator are studied. By using finite-dimensional representation matrices of the truncated oscillator we construct new parasupersymmetric schemes and remark on their relevance to the transition operators of the non-interacting N-level system endowed with bosonic modes. ((orig.))
A finite element method for calculating the 3-dimensional magnetic fields of cyclotron
International Nuclear Information System (INIS)
Zhao Xiaofeng
1986-01-01
A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given
Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F
2016-01-11
Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.
Experiments on melting in classical and quantum two dimensional electron systems
International Nuclear Information System (INIS)
Williams, F.I.B.
1991-01-01
''Two dimensional electron system'' (2DES) here refers to electrons whose dynamics is free in 2 dimensions but blocked in the third. Experiments have been performed in two limiting situations: the classical, low density, limit realised by electrons deposited on a liquid helium surface and the quantum, high density, limit realised by electrons at an interface between two epitaxially matched semiconductors. In the classical system, where T Q c so that the thermodynamic state is determined by the competition between the temperature and the Coulomb interaction, melting is induced either by raising the temperature at constant density or by lowering the density at finite temperature. In the quantum system, it is not possible to lower the density below about 100n W without the Coulomb interaction losing out to the random field representing the extrinsic disorder imposed by the semiconductor host. Instead one has to induce crystallisation with the help of the Lorentz force, by applying a perpendicular magnetic field B [2] . As the quantum magnetic length l c = (Planck constant c/eB) 1/2 is reduced with respect to the interelectronic spacing a, expressed by the filling factor ν 2l c 2 /a 2 , the system exhibits the quantum Hall effect (QHE), first for integer then for fractional values of ν. The fractional quantum Hall effect (FQHE) is a result of Coulomb induced correlation in the quantum liquid, but as ν is decreased still further the correlations are expected to take on long-range crystal-like periodicity accompanied by elastic shear rigidity. Such a state can nonetheless be destroyed by the disordering effect of temperature, giving rise to a phase boundary in a (T, B) plane. The aim of experiment is first to determine the phase diagram and then to help elucidate the mechanism of the melting. (author)
International Nuclear Information System (INIS)
Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.
2015-01-01
The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability
Finite speed heat transport in a quantum spin chain after quenched local cooling
Fries, Pascal; Hinrichsen, Haye
2017-04-01
We study the dynamics of an initially thermalized spin chain in the quantum XY-model, after sudden coupling to a heat bath of lower temperature at one end of the chain. In the semi-classical limit we see an exponential decay of the system-bath heatflux by exact solution of the reduced dynamics. In the full quantum description however, we numerically find the heatflux to reach intermediate plateaus where it is approximately constant—a phenomenon that we attribute to the finite speed of heat transport via spin waves.
Subsystems of a finite quantum system and Bell-like inequalities
International Nuclear Information System (INIS)
Vourdas, A
2014-01-01
The set of subsystems Σ(m) of a finite quantum system Σ(n) with variables in Z(n), together with logical connectives, is a Heyting algebra. The probabilities τ(m|ρ_n)=Tr[ B(m)ρ_n] (where B(m) is the projector to Σ(m)) are compatible with associativity of the join in the Heyting algebra, only if the variables belong to the same chain. Consequently, contextuality in the present formalism, has the chains as contexts. Various Bell-like inequalities are discussed. They are violated, and this proves that quantum mechanics is a contextual theory.
Siudzińska, Katarzyna; Chruściński, Dariusz
2018-03-01
In matrix algebras, we introduce a class of linear maps that are irreducibly covariant with respect to the finite group generated by the Weyl operators. In particular, we analyze the irreducibly covariant quantum channels, that is, the completely positive and trace-preserving linear maps. Interestingly, imposing additional symmetries leads to the so-called generalized Pauli channels, which were recently considered in the context of the non-Markovian quantum evolution. Finally, we provide examples of irreducibly covariant positive but not necessarily completely positive maps.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
Quantum phases of dipolar rotors on two-dimensional lattices.
Abolins, B P; Zillich, R E; Whaley, K B
2018-03-14
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Quantum phases of dipolar rotors on two-dimensional lattices
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
Grunspan, C.
2003-01-01
This text gives some results about quantum torsors. Our starting point is an old reformulation of torsors recalled recently by Kontsevich. We propose an unification of the definitions of torsors in algebraic geometry and in Poisson geometry. Any quantum torsor is equipped with two comodule-algebra structures over Hopf algebras and these structures commute with each other. In the finite dimensional case, these two Hopf algebras share the same finite dimension. We show that any Galois extension...
Quantum key distribution with finite resources: Secret key rates via Renyi entropies
Energy Technology Data Exchange (ETDEWEB)
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bruss, Dagmar [Institute for Theoretical Physics III, Heinrich-Heine-universitaet Duesseldorf, D-40225 Duesseldorf (Germany)
2011-09-15
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
Quantum key distribution with finite resources: Secret key rates via Renyi entropies
International Nuclear Information System (INIS)
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bruss, Dagmar
2011-01-01
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Mixing times in quantum walks on two-dimensional grids
International Nuclear Information System (INIS)
Marquezino, F. L.; Portugal, R.; Abal, G.
2010-01-01
Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.
The quantum open system theory for quarkonium during finite temperature medium
International Nuclear Information System (INIS)
Akamatsu, Yukinao
2015-01-01
This paper explains theoretical studies on the dynamics of heavy quarkonium in a finite temperature medium. As a first step of understanding the dynamics of heavy quarkonium in a medium, it explains firstly the definition of potential acting between heavy quarks in a finite temperature medium, and next the stochastic potential and decoherence. While the conventional definition based on thermodynamics lacks theoretical validity, theoretically reasonable definition can be obtained by the spectral decomposition of Wilson loop in the medium. When calculating the potential with this definition, the imaginary part appears, leading to the lacking of theoretical integrity when used in the potential terms of Schroedinger equation, but it is eliminated by the concept of stochastic potential. Decoherence given by thermal fluctuation to wave function is an important physical process of the dynamics of heavy quarkonium in a finite temperature medium. There is a limit of stochastic potential that cannot describe the irreversible process, and this limitation can be overcome by a more comprehensive system based on the theory of quantum open system. By dealing with the heavy quarkonium as quantum open system, phenomena such as color shielding, thermal fluctuation, and dissipation in the quark-gluon plasma, become describable in the way of quantum theory. (A.O.)
Stress-intensity factor equations for cracks in three-dimensional finite bodies
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method
International Nuclear Information System (INIS)
Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.
1981-01-01
A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1975-01-01
A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de
Simple one-dimensional finite element algorithm with multi-dimensional capabilities
International Nuclear Information System (INIS)
Pepper, D.W.; Baker, A.J.
1978-01-01
The application of the finite element procedure for the solution of partial differential equations is gaining widespread acceptance. The ability of the finite element procedure to solve problems which are arbitrarily shaped as well as the alleviation of boundary condition problems is well known. By using local interpolation functionals over each subdomain, or element, a set of linearized algebraic equations are obtained which can be solved using any direct, iterative, or inverse numerical technique. Subsequent use of an explicit or implicit integration procedure permits closure of the solution over the global domain
Infinite-dimensional Lie algebras in 4D conformal quantum field theory
International Nuclear Information System (INIS)
Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan
2008-01-01
The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively
Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces
Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele
2017-12-01
Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.
An introduction to integrable techniques in one-dimensional quantum systems
Franchini, Fabio
2017-01-01
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and t...
High-dimensional quantum channel estimation using classical light
CSIR Research Space (South Africa)
Mabena, Chemist M
2017-11-01
Full Text Available stream_source_info Mabena_20007_2017.pdf.txt stream_content_type text/plain stream_size 960 Content-Encoding UTF-8 stream_name Mabena_20007_2017.pdf.txt Content-Type text/plain; charset=UTF-8 PHYSICAL REVIEW A 96, 053860... (2017) High-dimensional quantum channel estimation using classical light Chemist M. Mabena CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa and School of Physics, University of the Witwatersrand, Johannesburg 2000, South...
Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics
International Nuclear Information System (INIS)
Heckathorn, D.
1979-01-01
Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)
Variational model for one-dimensional quantum magnets
Kudasov, Yu. B.; Kozabaranov, R. V.
2018-04-01
A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.
Decay of homogeneous two-dimensional quantum turbulence
Baggaley, Andrew W.; Barenghi, Carlo F.
2018-03-01
We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.
Quantum quench in an atomic one-dimensional Ising chain.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C
2013-08-02
We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.
Tavakoli, Armin; Cabello, Adán
2018-03-01
We consider an ideal experiment in which unlimited nonprojective quantum measurements are sequentially performed on a system that is initially entangled with a distant one. At each step of the sequence, the measurements are randomly chosen between two. However, regardless of which measurement is chosen or which outcome is obtained, the quantum state of the pair always remains entangled. We show that the classical simulation of the reduced state of the distant system requires not only unlimited rounds of communication, but also that the distant system has infinite memory. Otherwise, a thermodynamical argument predicts heating at a distance. Our proposal can be used for experimentally ruling out nonlocal finite-memory classical models of quantum theory.
International Nuclear Information System (INIS)
Gvozdikov, V M; Taut, M
2009-01-01
We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
Itinerant quantum multicriticality of two-dimensional Dirac fermions
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2018-05-01
We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.
Three-dimensional theory of quantum memories based on Λ-type atomic ensembles
International Nuclear Information System (INIS)
Zeuthen, Emil; Grodecka-Grad, Anna; Soerensen, Anders S.
2011-01-01
We develop a three-dimensional theory for quantum memories based on light storage in ensembles of Λ-type atoms, where two long-lived atomic ground states are employed. We consider light storage in an ensemble of finite spatial extent and we show that within the paraxial approximation the Fresnel number of the atomic ensemble and the optical depth are the only important physical parameters determining the quality of the quantum memory. We analyze the influence of these parameters on the storage of light followed by either forward or backward read-out from the quantum memory. We show that for small Fresnel numbers the forward memory provides higher efficiencies, whereas for large Fresnel numbers the backward memory is advantageous. The optimal light modes to store in the memory are presented together with the corresponding spin waves and outcoming light modes. We show that for high optical depths such Λ-type atomic ensembles allow for highly efficient backward and forward memories even for small Fresnel numbers F(greater-or-similar sign)0.1.
Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.
Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2014-04-29
Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.
Two dimensional electron systems for solid state quantum computation
Mondal, Sumit
Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional
International Nuclear Information System (INIS)
Maciel, Soraya G.; Perez, Silvana
2008-01-01
In this paper we study the effects of a nonzero chemical potential in (1+1)-dimensional quantum field models at finite temperature. We particularly consider massless fermions in an Abelian gauge field background and calculate the effective action by evaluating the n-point functions. We find that the structure of the amplitudes corresponds to a generalization of the structure noted earlier in a calculation without a chemical potential (the associated integrals carry the dependence on the chemical potential). Our calculation shows that the chiral anomaly is unaffected by the presence of a chemical potential at finite temperature. However, unlike in the absence of a chemical potential, odd point functions do not vanish. We trace this to the fact that in the presence of a chemical potential the generalized charge conjugation symmetry of the theory allows for such amplitudes. In fact, we find that all the even point functions are even functions of μ, while the odd point functions are odd functions of μ which is consistent with this generalized charge conjugation symmetry. We show that the origin of the structure of the amplitudes is best seen from a formulation of the theory in terms of left- and right-handed spinors. The calculations are also much simpler in this formulation and it clarifies many other aspects of the theory.
Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory
International Nuclear Information System (INIS)
Noui, Karim
2007-01-01
In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function
Finite element method for one-dimensional rill erosion simulation on a curved slope
Directory of Open Access Journals (Sweden)
Lijuan Yan
2015-03-01
Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.
A classical-quantum coupling strategy for a hierarchy of one dimensional models for semiconductors
Jourdana, Clément; Pietra, Paola; Vauchelet, Nicolas
2014-01-01
We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable : the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. This leads to a hierarchy of classical model. The qu...
International Nuclear Information System (INIS)
Kobayashi, Keisuke
1977-01-01
A method of solution of a monoenergetic neutron transport equation in P sub(L) approximation is presented for x-y and x-y-z geometries using the finite Fourier transformation. A reactor system is assumed to consist of multiregions in each of which the nuclear cross sections are spatially constant. Since the unknown functions of this method are the spherical harmonics components of the neutron angular flux at the material boundaries alone, the three- and two-dimensional equations are reduced to two- and one-dimensional equations, respectively. The present approach therefore gives fewer unknowns than in the usual series expansion method or in the finite difference method. Some numerical examples are shown for the criticality problem. (auth.)
International Nuclear Information System (INIS)
Xia Tiecheng; Chen Xiaohong; Chen Dengyuan
2004-01-01
An eigenvalue problem and the associated new Lax integrable hierarchy of nonlinear evolution equations are presented in this paper. As two reductions, the generalized nonlinear Schroedinger equations and the generalized mKdV equations are obtained. Zero curvature representation and bi-Hamiltonian structure are established for the whole hierarchy based on a pair of Hamiltonian operators (Lenard's operators), and it is shown that the hierarchy of nonlinear evolution equations is integrable in Liouville's sense. Thus the hierarchy of nonlinear evolution equations has infinitely many commuting symmetries and conservation laws. Moreover the eigenvalue problem is nonlinearized as a finite-dimensional completely integrable system under the Bargmann constraint between the potentials and the eigenvalue functions. Finally finite-dimensional Liouville integrable system are found, and the involutive solutions of the hierarchy of equations are given. In particular, the involutive solutions are developed for the system of generalized nonlinear Schroedinger equations
Calculation of two-dimensional thermal transients by the method of finite elements
International Nuclear Information System (INIS)
Fontoura Rodrigues, J.L.A. da.
1980-08-01
The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt
Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton
2014-07-30
Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.
Fu, Yuchen; Shelley-Abrahamson, Seth
2016-06-01
We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.
Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects
Hongmei Gu; John F. Hunt
2006-01-01
A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples âcutâ from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...
Energy Technology Data Exchange (ETDEWEB)
Petukhov, B. V., E-mail: petukhov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)
2017-01-15
The state switching in an extended quasi-one-dimensional material is modeled by the stochastic formation of local new-state nuclei and their subsequent growth along the system axis. An analytical approach is developed to describe the influence of defects, dividing a sample into an ensemble of finite-length segments, on its state switching kinetics. As applied to magnetic systems, the method makes it possible to calculate magnetization curves for different defect concentrations and parameters of material.
Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q
2017-06-06
Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.
Development of three-dimensional transport code by the double finite element method
International Nuclear Information System (INIS)
Fujimura, Toichiro
1985-01-01
Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)
Absolute continuity of autophage measures on finite-dimensional vector spaces
Energy Technology Data Exchange (ETDEWEB)
Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in
2002-06-01
We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)
International Nuclear Information System (INIS)
Mori, N.; Kobayashi, K.
1996-01-01
A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)
Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics
Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.
2018-05-01
We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.
Classical and quantum phases of low-dimensional dipolar systems
Energy Technology Data Exchange (ETDEWEB)
Cartarius, Florian
2016-09-22
In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.
Quantum interference of ballistic carriers in one-dimensional semiconductor rings
International Nuclear Information System (INIS)
Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.
2000-01-01
Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru
Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami
2018-04-01
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.
Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami
2018-04-01
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.
Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems
Energy Technology Data Exchange (ETDEWEB)
Ali, Mazhar
2009-07-13
This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference
Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems
International Nuclear Information System (INIS)
Ali, Mazhar
2009-01-01
This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference
International Nuclear Information System (INIS)
Iglói, Ferenc; Lin, Yu-Cheng
2008-01-01
Using free-fermionic techniques we study the entanglement entropy of a block of contiguous spins in a large finite quantum Ising chain in a transverse field, with couplings of different types: homogeneous, periodically modulated and random. We carry out a systematic study of finite-size effects at the quantum critical point, and evaluate subleading corrections both for open and for periodic boundary conditions. For a block corresponding to a half of a finite chain, the position of the maximum of the entropy as a function of the control parameter (e.g. the transverse field) can define the effective critical point in the finite sample. On the basis of homogeneous chains, we demonstrate that the scaling behavior of the entropy near the quantum phase transition is in agreement with the universality hypothesis, and calculate the shift of the effective critical point, which has different scaling behaviors for open and for periodic boundary conditions
Matrix product state calculations for one-dimensional quantum chains and quantum impurity models
International Nuclear Information System (INIS)
Muender, Wolfgang
2011-01-01
This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption
Matrix product state calculations for one-dimensional quantum chains and quantum impurity models
Energy Technology Data Exchange (ETDEWEB)
Muender, Wolfgang
2011-09-28
This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption
Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.
Liu, Jingfeng; Zhou, Ming; Yu, Zongfu
2016-09-15
A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.
One-Dimensional Finite Elements An Introduction to the FE Method
Öchsner, Andreas
2013-01-01
This textbook presents finite element methods using exclusively one-dimensional elements. The aim is to present the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader easily understands the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. But although the description is easy it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics like plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics.
Controlling the sign problem in finite-density quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Garron, Nicolas; Langfeld, Kurt [University of Liverpool, Theoretical Physics Division, Department of Mathematical Sciences, Liverpool (United Kingdom)
2017-07-15
Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the ''telegraphic'' approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close - if not identical - to the full answer in the strong sign-problem regime. (orig.)
Controlling the sign problem in finite-density quantum field theory
Garron, Nicolas; Langfeld, Kurt
2017-07-01
Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the "telegraphic" approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close—if not identical—to the full answer in the strong sign-problem regime.
Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.
Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua
2016-09-05
In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.
International Nuclear Information System (INIS)
Boche, H.; Nötzel, J.
2014-01-01
This work is motivated by a quite general question: Under which circumstances are the capacities of information transmission systems continuous? The research is explicitly carried out on finite arbitrarily varying quantum channels (AVQCs). We give an explicit example that answers the recent question whether the transmission of messages over AVQCs can benefit from assistance by distribution of randomness between the legitimate sender and receiver in the affirmative. The specific class of channels introduced in that example is then extended to show that the unassisted capacity does have discontinuity points, while it is known that the randomness-assisted capacity is always continuous in the channel. We characterize the discontinuity points and prove that the unassisted capacity is always continuous around its positivity points. After having established shared randomness as an important resource, we quantify the interplay between the distribution of finite amounts of randomness between the legitimate sender and receiver, the (nonzero) probability of a decoding error with respect to the average error criterion and the number of messages that can be sent over a finite number of channel uses. We relate our results to the entanglement transmission capacities of finite AVQCs, where the role of shared randomness is not yet well understood, and give a new sufficient criterion for the entanglement transmission capacity with randomness assistance to vanish
Arkhipov, S M; Odesskii, A V; Feigin, B; Vassiliev, V
1998-01-01
This volume presents the first collection of articles consisting entirely of work by faculty and students of the Higher Mathematics College of the Independent University of Moscow (IUM). This unique institution was established to train elite students to become research scientists. Covered in the book are two main topics: quantum groups and low-dimensional topology. The articles were written by participants of the Feigin and Vassiliev seminars, two of the most active seminars at the IUM.
Holographic geometry of cMERA for quantum quenches and finite temperature
International Nuclear Information System (INIS)
Mollabashi, Ali; Naozaki, Masahiro; Ryu, Shinsei; Takayanagi, Tadashi
2014-01-01
We study the time evolution of cMERA (continuous MERA) under quantum quenches in free field theories. We calculate the corresponding holographic metric using the proposal in http://arxiv.org/abs/1208.3469 and confirm that it qualitatively agrees with its gravity dual given by a half of the AdS black hole spacetime, argued by Hartman and Maldacena in http://arxiv.org/abs/1303.1080. By doubling the cMERA for the quantum quench, we give an explicit construction of finite temperature cMERA. We also study cMERA in the presence of chemical potential and show that there is an enhancement of metric in the infrared region corresponding to the Fermi energy
New way for determining electron energy levels in quantum dots arrays using finite difference method
Dujardin, F.; Assaid, E.; Feddi, E.
2018-06-01
Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.
Calculating modes of quantum wire systems using a finite difference technique
Directory of Open Access Journals (Sweden)
T Mardani
2013-03-01
Full Text Available In this paper, the Schrodinger equation for a quantum wire is solved using a finite difference approach. A new aspect in this work is plotting wave function on cross section of rectangular cross-sectional wire in two dimensions, periodically. It is found that the correct eigen energies occur when wave functions have a complete symmetry. If the value of eigen energy has a small increase or decrease in neighborhood of the correct energy the symmetry will be destroyed and aperturbation value at the first of wave function will be observed. In addition, the demand on computer memory varies linearly with the size of the system under investigation.
Identification of dynamical Lie algebras for finite-level quantum control systems
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S.G.; Pullen, I.C.H.; Solomon, A.I. [Quantum Processes Group and Department of Applied Maths, Open University, Milton Keynes (United Kingdom)]. E-mails: S.G.Schirmer@open.ac.uk; I.C.H.Pullen@open.ac.uk; A.I.Solomon@open.ac.uk
2002-03-08
The problem of identifying the dynamical Lie algebras of finite-level quantum systems subject to external control is considered, with special emphasis on systems that are not completely controllable. In particular, it is shown that the dynamical Lie algebra for an N-level system with symmetrically coupled transitions, such as a system with equally spaced energy levels and uniform transition dipole moments, is a subalgebra of so(N) if N=2l+1, and a subalgebra of sp(l) if N=2l. General criteria for obtaining either so(2l+1) or sp(l) are established. (author)
International Nuclear Information System (INIS)
Kudo, Kazue; Nakamura, Katsuhiro
2009-01-01
We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.
Exotic quantum order in low-dimensional systems
Girvin, S. M.
1998-08-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
Workshop on low-dimensional quantum field theory and its applications
International Nuclear Information System (INIS)
Yamamoto, Hisashi
1990-02-01
The workshop on 'Low-Dimensional Quantum Field Theory and its Applications' was held at INS on December 18 - 20, 1989 with about seventy participants. Some pedagogical reviews and the latest results were delivered on the recent topics related to both solid-state and particle physics. Among them are quantum Hall effect, high T c superconductivity and related topics in low-dimensional quantum field theory. Many active discussions were made on these issues. (J.P.N.)
Inhomogeneous Quantum Invariance Group of Multi-Dimensional Multi-parameter Deformed Boson Algebra
International Nuclear Information System (INIS)
Altintas Azmi Ali; Arik Metin; Arikan Ali Serdar; Dil Emre
2012-01-01
We investigate the inhomogeneous invariance quantum group of the d-dimensional d-parameter deformed boson algebra. It is found that the homogeneous part of this quantum group is given by the d-parameter deformed general linear group. We construct the R-matrix which collects all information about the non-commuting structure of the quantum group for the two-dimensional case. (general)
Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model
International Nuclear Information System (INIS)
Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.
1975-01-01
This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent
Three-dimensional finite element impact analysis of a nuclear waste truck cask
International Nuclear Information System (INIS)
Miller, J.D.
1985-01-01
This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures
Finite-size scaling of clique percolation on two-dimensional Moore lattices
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
A cascadic monotonic time-discretized algorithm for finite-level quantum control computation
Ditz, P.; Borzi`, A.
2008-03-01
A computer package (CNMS) is presented aimed at the solution of finite-level quantum optimal control problems. This package is based on a recently developed computational strategy known as monotonic schemes. Quantum optimal control problems arise in particular in quantum optics where the optimization of a control representing laser pulses is required. The purpose of the external control field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources, are accommodated through appropriately chosen cost functionals. Program summaryProgram title: CNMS Catalogue identifier: ADEB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 770 No. of bytes in distributed program, including test data, etc.: 7098 Distribution format: tar.gz Programming language: MATLAB 6 Computer: AMD Athlon 64 × 2 Dual, 2:21 GHz, 1:5 GB RAM Operating system: Microsoft Windows XP Word size: 32 Classification: 4.9 Nature of problem: Quantum control Solution method: Iterative Running time: 60-600 sec
Integrable models in 1+1 dimensional quantum field theory
International Nuclear Information System (INIS)
Faddeev, Ludvig.
1982-09-01
The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR
Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures
Directory of Open Access Journals (Sweden)
O. Kohnehpooshi
Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory
Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Two dimensional kicked quantum Ising model: dynamical phase transitions
International Nuclear Information System (INIS)
Pineda, C; Prosen, T; Villaseñor, E
2014-01-01
Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)
International Nuclear Information System (INIS)
Tao Ganqiang; Yu Qing; Xiao Xiao
2011-01-01
Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)
FEAST: a two-dimensional non-linear finite element code for calculating stresses
International Nuclear Information System (INIS)
Tayal, M.
1986-06-01
The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%
Three-dimensional finite element analysis of implant-assisted removable partial dentures.
Eom, Ju-Won; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom
2017-06-01
Whether the implant abutment in implant-assisted removable partial dentures (IARPDs) functions as a natural removable partial denture (RPD) tooth abutment is unknown. The purpose of this 3-dimensional finite element study was to analyze the biomechanical behavior of implant crown, bone, RPD, and IARPD. Finite element models of the partial maxilla, teeth, and prostheses were generated on the basis of a patient's computed tomographic data. The teeth, surveyed crowns, and RPDs were created in the model. With the generated components, four 3-dimensional finite element models of the partial maxilla were constructed: tooth-supported RPD (TB), implant-supported RPD (IB), tooth-tissue-supported RPD (TT), and implant-tissue-supported RPD (IT) models. Oblique loading of 300 N was applied on the crowns and denture teeth. The von Mises stress and displacement of the denture abutment tooth and implant system were identified. The highest von Mises stress values of both IARPDs occurred on the implants, while those of both natural tooth RPDs occurred on the frameworks of the RPDs. The highest von Mises stress of model IT was about twice that of model IB, while the value of model TT was similar to that of model TB. The maximum displacement was greater in models TB and TT than in models IB and IT. Among the 4 models, the highest maximum displacement value was observed in the model TT and the lowest value was in the model IB. Finite element analysis revealed that the stress distribution pattern of the IARPDs was different from that of the natural tooth RPDs and the stress distribution of implant-supported RPD was different from that of implant-tissue-supported RPD. When implants are used for RPD abutments, more consideration concerning the RPD design and the number or location of the implant is necessary. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Nonstandard approximation schemes for lower dimensional quantum field theories
International Nuclear Information System (INIS)
Fitzpatrick, D.A.
1981-01-01
The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results
High-dimensional quantum cryptography with twisted light
International Nuclear Information System (INIS)
Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; O’Sullivan, Malcolm N; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W; Lavery, Martin P J; Padgett, Miles J; Gauthier, Daniel J
2015-01-01
Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks. (paper)
Equilibrium charge distribution on a finite straight one-dimensional wire
Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed
2017-09-01
The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.
Equilibrium charge distribution on a finite straight one-dimensional wire
International Nuclear Information System (INIS)
Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Farouk, Ahmed; Alkhambashi, Majid
2017-01-01
The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges. (paper)
Mokhtari, P.; Rezaei, G.; Zamani, A.
2017-06-01
In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.
International Nuclear Information System (INIS)
Kobayashi, Keisuke; Ishibashi, Hideo
1978-01-01
A two-dimensional neutron diffusion equation for a triangular region is shown to be solved by the finite Fourier transformation. An application of the Fourier transformation to the diffusion equation for triangular region yields equations whose unknowns are the expansion coefficients of the neutron flux and current in Fourier series or Legendre polynomials expansions only at the region boundary. Some numerical calculations have revealed that the present technique gives accurate results. It is shown also that the solution using the expansion in Legendre polynomials converges with relatively few terms even if the solution in Fourier series exhibits the Gibbs' phenomenon. (auth.)
Energy Technology Data Exchange (ETDEWEB)
Castellani, Marco; Giuli, Massimiliano, E-mail: massimiliano.giuli@univaq.it [University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics (Italy)
2016-02-15
We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered.
International Nuclear Information System (INIS)
Castellani, Marco; Giuli, Massimiliano
2016-01-01
We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered
International Nuclear Information System (INIS)
Barrios, Dolores; Lopez, Guillermo L; Martinez-Finkelshtein, A; Torrano, Emilio
1999-01-01
The approximability of the resolvent of an operator induced by a band matrix by the resolvents of its finite-dimensional sections is studied. For bounded perturbations of self-adjoint matrices a positive result is obtained. The convergence domain of the sequence of resolvents can be described in this case in terms of matrices involved in the representation. This result is applied to tridiagonal complex matrices to establish conditions for the convergence of Chebyshev continued fractions on sets in the complex domain. In the particular case of compact perturbations this result is improved and a connection between the poles of the limit function and the eigenvalues of the tridiagonal matrix is established
Fermi surface of the one-dimensional Hubbard model. Finite-size effects
Energy Technology Data Exchange (ETDEWEB)
Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))
1989-12-01
The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).
Finite-temperature symmetry restoration in the four-dimensional Φ4 model with four components
International Nuclear Information System (INIS)
Jansen, K.
1990-01-01
The finite-temperature symmetry restoration in the four-dimensional φ 4 theory with four components and with an infinite self-coupling is studied by means of Monte Carlo simulations on lattices with time extensions L t =4,5,6 and space extensions 12 3 -28 3 . The numerical calculations are done by means of the Wolff cluster algorithm which is very efficient for simulations near a phase transition. The numerical results are in good agreement with an improved one-loop expansion and with the 1/N-expansion, indicating that in the electroweak theory the symmetry restoration temperature T sr is about 350 GeV. (orig.)
International Nuclear Information System (INIS)
Mordant, Maurice.
1981-04-01
To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals
Three-dimensional analysis of eddy current with the finite element method
International Nuclear Information System (INIS)
Takano, Ichiro; Suzuki, Yasuo
1977-05-01
The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)
Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming
2018-03-01
Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.
International Nuclear Information System (INIS)
Iengo, R.; Jug, G.
1995-01-01
We investigate the phenomenon of the decay of a supercurrent through homogeneous nucleation of vortex-antivortex pairs in a two-dimensional (2D) like superconductor or superfluid by means of a quantum electrodynamic formulation for the decay of the 2D vacuum. The case in which both externally driven current and Magnus force are present is treated exactly, taking the vortex activation energy and its inertial mass as independent parameters. Quantum dissipation is included through the formulation introduced by Caldeira and Leggett. The most relevant consequence of quantum dissipation is the elimination of the threshold for vortex production due to the Magnus force. In the dissipation-dominated case, corresponding formally to the limit of zero intertial mass, an exact formula for the pair production rate is given. If however the inertial mass is strictly zero we find that vortex production is inhibited by a quantum effect related to the Magnus force. The possibility of including vortex pinning is investigated by means of an effective harmonic potential. While an additional term in the vortex activation energy can account for the effect of a finite barrier in the direction perpendicular to the current, pinning along the current depresses the role of the Magnus force in the dissipation-dominated dynamics, except for the above-mentioned quantum effect. A possible description of vortex nucleation due to the combined effects of temperature and externally driven currents is also presented along with an evaluation of the resulting voltage drop
International Nuclear Information System (INIS)
Li Dejun; Mi Xianwu; Deng Ke; Tang Yi
2006-01-01
In the classical lattice theory, solitons and localized modes can exist in many one-dimensional nonlinear lattice chains, however, in the quantum lattice theory, whether quantum solitons and localized modes can exist or not in the one-dimensional lattice chains is an interesting problem. By using the number state method and the Hartree approximation combined with the method of multiple scales, we investigate quantum solitons and localized modes in a one-dimensional lattice chain with the nonlinear substrate potential. It is shown that quantum solitons do exist in this nonlinear lattice chain, and at the boundary of the phonon Brillouin zone, quantum solitons become quantum localized modes, phonons are pinned to the lattice of the vicinity at the central position j = j 0 .
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato
2017-07-01
An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.
Finite-temperature orbital-free DFT molecular dynamics: Coupling PROFESS and QUANTUM ESPRESSO
Karasiev, Valentin V.; Sjostrom, Travis; Trickey, S. B.
2014-12-01
Implementation of orbital-free free-energy functionals in the PROFESS code and the coupling of PROFESS with the QUANTUM ESPRESSO code are described. The combination enables orbital-free DFT to drive ab initio molecular dynamics simulations on the same footing (algorithms, thermostats, convergence parameters, etc.) as for Kohn-Sham (KS) DFT. All the non-interacting free-energy functionals implemented are single-point: the local density approximation (LDA; also known as finite-T Thomas-Fermi, ftTF), the second-order gradient approximation (SGA or finite-T gradient-corrected TF), and our recently introduced finite-T generalized gradient approximations (ftGGA). Elimination of the KS orbital bottleneck via orbital-free methodology enables high-T simulations on ordinary computers, whereas those simulations would be costly or even prohibitively time-consuming for KS molecular dynamics (MD) on very high-performance computer systems. Example MD simulations on H over a temperature range 2000 K ≤ T ≤4,000,000 K are reported, with timings on small clusters (16-128 cores) and even laptops. With respect to KS-driven calculations, the orbital-free calculations are between a few times through a few hundreds of times faster.
Numerical simulation of potato slices drying using a two-dimensional finite element model
Directory of Open Access Journals (Sweden)
Beigi Mohsen
2017-01-01
Full Text Available An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick’s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y. Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.
Finite Element Analysis of Three-Dimensional (3D Auxetic Textile Composite under Compression
Directory of Open Access Journals (Sweden)
Jifang Zeng
2018-03-01
Full Text Available This paper reports a finite element (FE analysis of three-dimensional (3D auxetic textile composite by using commercial software ANSYS 15 under compression. The two-dimensional (2D FE model was first developed and validated by experiment. Then, the validated model was used to evaluate effects of structural parameters and constituent material properties. For the comparison, 3D non-auxetic composite that was made with the same constituent materials and structural parameters, but with different yarn arrangement in the textile structure was also analyzed at the same time. The analysis results showed that the auxetic and non-auxetic composites have different compression behaviors and the auxetic composite has better the energy absorption capacity than the non-auxetic composite under the same compression stress. The study has provided us a guidance to design and fabricate auxetic composites with the required mechanical behavior by appropriately selecting structural parameters and constituent materials.
Litman, Yair; Donadio, Davide; Ceriotti, Michele; Rossi, Mariana
2018-03-01
Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water
Xu, Cenke
Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the
Application of finite-element method to three-dimensional nuclear reactor analysis
International Nuclear Information System (INIS)
Cheung, K.Y.
1985-01-01
The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired
Directory of Open Access Journals (Sweden)
Jiang-Jun Zhou
2017-01-01
Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.
An efficicient data structure for three-dimensional vertex based finite volume method
Akkurt, Semih; Sahin, Mehmet
2017-11-01
A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.
hree-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
Directory of Open Access Journals (Sweden)
Mohammed Yousif Fattah
2016-05-01
Full Text Available Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures. This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results of vertical crown deflection for the model without geogrid obtained from PLAXIS-3D are higher than those obtained by two-dimensional plane strain by about 21.4% while this percent becomes 12.1 for the model with geogrid, but in general, both have the same trend. The two dimensional finite elements analysis predictions of pipe-soil system behavior indicate an almost linear displacement of pipe deflection with applied pressure while 3-D analysis exhibited non-linear behavior especially at higher loads.
On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra
Energy Technology Data Exchange (ETDEWEB)
Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)
2017-10-15
A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra G is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where n is the rank of G. It is governed by a set of n moduli functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials - the so-called fluxbrane polynomials. These polynomials depend upon integration constants q{sub s}, s = 1,.., n. In the case when the conjecture on the polynomial structure for the Lie algebra G is satisfied, it is proved that 2-form flux integrals Φ{sup s} over a proper 2d submanifold are finite and obey the relations q{sub s} Φ{sup s} = 4πn{sub s}h{sub s}, where the h{sub s} > 0 are certain constants (related to dilatonic coupling vectors) and the n{sub s} are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, s = 1,.., n. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra G. Examples of polynomials and fluxes for the Lie algebras A{sub 1}, A{sub 2}, A{sub 3}, C{sub 2}, G{sub 2} and A{sub 1} + A{sub 1} are presented. (orig.)
Directory of Open Access Journals (Sweden)
J. H. Pixley
2016-06-01
Full Text Available We numerically study the effect of short-ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively theoretically studied quantum critical point separating semimetal and diffusive-metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H and exactly calculate the density of states (DOS near zero energy, using a combination of Lanczos on H^{2} and the kernel polynomial method on H. We establish the existence of two distinct types of low-energy eigenstates contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and (ii nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space regions with the largest (and rarest local random potential. Using twisted boundary conditions, we are able to systematically find and study these two (essentially independent types of eigenstates. We find that the Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal quantum critical point is converted to an avoided quantum criticality that is “rounded out” by nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean Dirac point. However, the crossover effects of the avoided (or hidden criticality manifest themselves in a so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results for
Energy Technology Data Exchange (ETDEWEB)
Warehime, Mick [Chemical Physics Program, University of Maryland, College Park, Maryland 20742-2021 (United States); Kłos, Jacek; Alexander, Millard H., E-mail: mha@umd.edu [Department of Chemistry and Biochemistry and Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2021 (United States)
2015-01-21
This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F({sup 2}P) + HCl and F({sup 2}P) + H{sub 2} reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.
Engineering two-photon high-dimensional states through quantum interference
Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew
2016-01-01
Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685
Tian, Heng; Chen, GuanHua
2013-10-01
Going beyond the limitations of our earlier works [X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G.H. Chen, Phys. Rev. B 75, 195127 (2007); X. Zheng, G.H. Chen, Y. Mo, S.K. Koo, H. Tian, C.Y. Yam, Y.J. Yan, J. Chem. Phys. 133, 114101 (2010)], we propose, in this manuscript, a new alternative approach to simulate time-dependent quantum transport phenomenon from first-principles. This new practical approach, still retaining the formal exactness of HEOM framework, does not rely on any intractable parametrization scheme and the pole structure of Fermi distribution function, thus, can seamlessly incorporated into first-principles simulation and treat transient response of an open electronic systems to an external bias voltage at both zero and finite temperatures on the equal footing. The salient feature of this approach is surveyed, and its time complexity is analysed. As a proof-of-principle of this approach, simulation of the transient current of one dimensional tight-binding chain, driven by some direct external voltages, is demonstrated.
Bethe ansatz approach to quantum sine Gordon thermodynamics and finite temperature excitations
International Nuclear Information System (INIS)
Zotos, X.
1982-01-01
Takahashi and Suzuki (TS) using the Bethe ansatz method developed a formalism for the thermodynamics of the XYZ spin chain. Translating their formalism to the quantum sine-Gordon system, the thermodynamics and finite temperature elementary excitations are analyzed. Criteria imposed by TS on the allowed states simply correspond to the condition of normalizability of the wave functions. A set of coupled nonlinear integral equations for the thermodynamic equilibrium densities for particular values of the coupling constant in the attractive regime is derived. Solving numerically these Bethe ansatz equations, curves of the specific heat as a function of temperature are obtained. The soliton contribution peaks at a temperature of about 0.4 soliton masses shifting downward as the classical limit is approached. The weak coupling regime is analyzed by deriving the Bethe ansatz equations including the charged vacuum excitations. It is shown that they are necessary for a consistent presentation of the thermodynamics
Quantum Kronecker sum-product low-density parity-check codes with finite rate
Kovalev, Alexey A.; Pryadko, Leonid P.
2013-07-01
We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.
CSIR Research Space (South Africa)
Mafu, M
2013-09-01
Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...
Generation and confirmation of a (100 × 100)-dimensional entangled quantum system
Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2014-01-01
Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902
Application of three dimensional finite element modeling for the simulation of machining processes
International Nuclear Information System (INIS)
Fischer, C.E.; Wu, W.T.; Chigurupati, P.; Jinn, J.T.
2004-01-01
For many years, metal cutting simulations have been performed using two dimensional approximations of the actual process. Factors such as chip morphology, cutting force, temperature, and tool wear can all be predicted on the computer. However, two dimensional simulation is limited to processes which are orthogonal, or which can be closely approximated as orthogonal.Advances in finite element technology, coupled with continuing improvement in the availability of low cost, high performance computer hardware, have made the three dimensional simulation of a large variety of metal cutting processes practical. Specific improvements include efficient FEM solvers, and robust adaptive remeshing. As researchers continue to gain an improved understanding of wear, material representation, tool coatings, fracture, and other such phenomena, the machining simulation system also must adapt to incorporate these evolving models.To demonstrate the capabilities of the 3D simulation system, a variety of drilling, milling, and turning processes have been simulated and will be presented in this paper. Issues related to computation time and simulation accuracy will also be addressed
International Nuclear Information System (INIS)
Park, Jai Hak
2009-01-01
SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook
Quantum trajectories in complex space: One-dimensional stationary scattering problems
International Nuclear Information System (INIS)
Chou, C.-C.; Wyatt, Robert E.
2008-01-01
One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems
Efficient construction of two-dimensional cluster states with probabilistic quantum gates
International Nuclear Information System (INIS)
Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng
2006-01-01
We propose an efficient scheme for constructing arbitrary two-dimensional (2D) cluster states using probabilistic entangling quantum gates. In our scheme, the 2D cluster state is constructed with starlike basic units generated from 1D cluster chains. By applying parallel operations, the process of generating 2D (or higher-dimensional) cluster states is significantly accelerated, which provides an efficient way to implement realistic one-way quantum computers
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
In search of fundamental discreteness in (2 + 1)-dimensional quantum gravity
Budd, T.G.; Loll, R.
2009-01-01
Inspired by previous work in (2 + 1)-dimensional quantum gravity, which found evidence for a discretization of time in the quantum theory, we reexamine the issue for the case of pure Lorentzian gravity with vanishing cosmological constant and spatially compact universes of genus g ≥ 2. Taking the
Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity
Westra, W.
2007-01-01
Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang
2012-06-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
International Nuclear Information System (INIS)
Kulak, R.F.; Belytschko, T.B.
1975-09-01
The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used
Energy Technology Data Exchange (ETDEWEB)
Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)
2014-06-15
Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.
Finite-dimensional attractor for a composite system of wave/plate equations with localized damping
International Nuclear Information System (INIS)
Bucci, Francesca; Toundykov, Daniel
2010-01-01
The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
Three-dimensional simulation of diamagnetic cavity formation by a finite-sized plasma beam
International Nuclear Information System (INIS)
Thomas, V.A.
1989-01-01
The problem of collisionless coupling between a plasma beam and a background plasma is examined using a three-dimensional hybrid code. The beam is assumed to be moving parallel to an ambient magnetic field at a speed greater than the local Alfven speed. In addition, the beam has a finite spatial extent in the directions perpendicular to the magnetic field and is uniform and infinite in the direction parallel to the ambient magnetic field. Such a system is susceptible to coupling of the beam ions with the background ions via an electromagnetic ion beam instability. This instability isotropizes the beam and energizes the background plasma. A large-amplitude Alfven wave traveling radially away from the interaction region is associated with the energized background plasma. The process described here is one which may be responsible for the formation of diamagnetic cavities observed in the solar wind. copyright American Geophysical Union 1989
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
International Nuclear Information System (INIS)
Hutchinson, S.; Costillo, S.; Dalton, K.; Hensel, E.
1990-01-01
A study is conducted of the finite element solution of the partial differential equations governing two-dimensional electromagnetic field scattering problems on a SIMD computer. A nodal assembly technique is introduced which maps a single node to a single processor. The physical domain is first discretized in parallel to yield the node locations of an O-grid mesh. Next, the system of equations is assembled and then solved in parallel using a conjugate gradient algorithm for complex-valued, non-symmetric, non-positive definite systems. Using this technique and Thinking Machines Corporation's Connection Machine-2 (CM-2), problems with more than 250k nodes are solved. Results of electromagnetic scattering, governed by the 2-d scalar Hemoholtz wave equations are presented in this paper. Solutions are demonstrated for a wide range of objects. A summary of performance data is given for the set of test problems
Three-dimensional finite element modelling of the uniaxial tension test
DEFF Research Database (Denmark)
Østergaard, Lennart; Stang, Henrik
2002-01-01
. One of the most direct methods for determination of the σ-w relationship is the uniaxial tension test, where a notched specimen is pulled apart while the tensile load and the crack opening displacement is observed. This method is appealing since the interpretation is straightforward. The method......Experimental determination of the stress-crack opening relationship (σ-w) for concrete as defined in the fictitious crack model has proven to be difficult. This is due to the problems that may arise from application of the inverse analysis method necessary for the derivation of the relationship...... is examined in this paper through three dimensional finite element analyses. It is concluded that the interpretation of the uniaxial tension test is indeed straightforward, if the testing machine stiffness is sufficiently high....
FINITE VOLUME METHOD FOR SOLVING THREE-DIMENSIONAL ELECTRIC FIELD DISTRIBUTION
Directory of Open Access Journals (Sweden)
Paţiuc V.I.
2011-04-01
Full Text Available The paper examines a new approach to finite volume method which is used to calculate the electric field spatially homogeneous three-dimensional environment. It is formulated the problem Dirihle with building of the computational grid on base of space partition, which is known as Delone triangulation with the use of Voronoi cells. It is proposed numerical algorithm for calculating the potential and electric field strength in the space formed by a cylinder placed in the air. It is developed algorithm and software which were for the case, when the potential on the inner surface of the cylinder has been assigned and on the outer surface and the bottom of cylinder it was assigned zero potential. There are presented results of calculations of distribution in the potential space and electric field strength.
Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.
Liang, Zhichun; Crepeau, Richard H; Freed, Jack H
2005-12-01
Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
A three-dimensional finite element model for biomechanical analysis of the hip.
Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe
2013-11-01
The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.
International Nuclear Information System (INIS)
Yao, Kai; Shen, Kai; Wang, Zheng-Dao; Wang, Yue-Sheng
2014-01-01
In this study, 3D finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. The contour maps of tangential and normal RMF gradients are given, and the 3D effect is discussed. The results show that the tangential peak–peak amplitude and normal peak–vale amplitude are remarkably different in 2D and 3D simulations, but the tangential peak–peak width and normal peak–vale width are similar. Moreover, some key points are capable of capturing the plastic-zone shape, especially when the lift-off is small enough. The present study suggests an effective defect identification method with Metal magnetic memory (MMM) technique. - Highlights: • Three-dimensional (3D) finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. • The contour maps of gradients of the tangential and normal residual magnetic fields are given, and the 3D effect is discussed. • The present study suggests an effective defect identification method with metal magnetic memory technique
Current singularities at finitely compressible three-dimensional magnetic null points
International Nuclear Information System (INIS)
Pontin, D.I.; Craig, I.J.D.
2005-01-01
The formation of current singularities at line-tied two- and three-dimensional (2D and 3D, respectively) magnetic null points in a nonresistive magnetohydrodynamic environment is explored. It is shown that, despite the different separatrix structures of 2D and 3D null points, current singularities may be initiated in a formally equivalent manner. This is true no matter whether the collapse is triggered by flux imbalance within closed, line-tied null points or driven by externally imposed velocity fields in open, incompressible geometries. A Lagrangian numerical code is used to investigate the finite amplitude perturbations that lead to singular current sheets in collapsing 2D and 3D null points. The form of the singular current distribution is analyzed as a function of the spatial anisotropy of the null point, and the effects of finite gas pressure are quantified. It is pointed out that the pressure force, while never stopping the formation of the singularity, significantly alters the morphology of the current distribution as well as dramatically weakening its strength. The impact of these findings on 2D and 3D magnetic reconnection models is discussed
Steady finite-Reynolds-number flows in three-dimensional collapsible tubes
Hazel, Andrew L.; Heil, Matthias
2003-07-01
A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.
Creating cat states in one-dimensional quantum walks using delocalized initial states
International Nuclear Information System (INIS)
Zhang, Wei-Wei; Gao, Fei; Goyal, Sandeep K; Sanders, Barry C; Simon, Christoph
2016-01-01
Cat states are coherent quantum superpositions of macroscopically distinct states and are useful for understanding the boundary between the classical and the quantum world. Due to their macroscopic nature, cat states are difficult to prepare in physical systems. We propose a method to create cat states in one-dimensional quantum walks using delocalized initial states of the walker. Since the quantum walks can be performed on any quantum system, our proposal enables a platform-independent realization of the cat states. We further show that the linear dispersion relation of the effective quantum walk Hamiltonian, which governs the dynamics of the delocalized states, is responsible for the formation of the cat states. We analyze the robustness of these states against environmental interactions and present methods to control and manipulate the cat states in the photonic implementation of quantum walks. (paper)
Two-dimensional simulation of GaAsSb/GaAs quantum dot solar cells
Kunrugsa, Maetee
2018-06-01
Two-dimensional (2D) simulation of GaAsSb/GaAs quantum dot (QD) solar cells is presented. The effects of As mole fraction in GaAsSb QDs on the performance of the solar cell are investigated. The solar cell is designed as a p-i-n GaAs structure where a single layer of GaAsSb QDs is introduced into the intrinsic region. The current density–voltage characteristics of QD solar cells are derived from Poisson’s equation, continuity equations, and the drift-diffusion transport equations, which are numerically solved by a finite element method. Furthermore, the transition energy of a single GaAsSb QD and its corresponding wavelength for each As mole fraction are calculated by a six-band k · p model to validate the position of the absorption edge in the external quantum efficiency curve. A GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4 provides the best power conversion efficiency. The overlap between electron and hole wave functions becomes larger as the As mole fraction increases, leading to a higher optical absorption probability which is confirmed by the enhanced photogeneration rates within and around the QDs. However, further increasing the As mole fraction results in a reduction in the efficiency because the absorption edge moves towards shorter wavelengths, lowering the short-circuit current density. The influences of the QD size and density on the efficiency are also examined. For the GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4, the efficiency can be improved to 26.2% by utilizing the optimum QD size and density. A decrease in the efficiency is observed at high QD densities, which is attributed to the increased carrier recombination and strain-modified band structures affecting the absorption edges.
Extensions of conformal symmetry in two-dimensional quantum field theory
International Nuclear Information System (INIS)
Schoutens, C.J.M.
1989-01-01
Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs
Localizing quantum phase slips in one-dimensional Josephson junction chains
International Nuclear Information System (INIS)
Ergül, Adem; Azizoğlu, Yağız; Schaeffer, David; Haviland, David B; Lidmar, Jack; Johansson, Jan
2013-01-01
We studied quantum phase-slip (QPS) phenomena in long one-dimensional Josephson junction series arrays with tunable Josephson coupling. These chains were fabricated with as many as 2888 junctions, where one sample had a separately tunable link in the middle of the chain. Measurements were made of the zero-bias resistance, R 0 , as well as current–voltage characteristics (IVC). The finite R 0 is explained by QPS and shows an exponential dependence on √(E J /E C ) with a distinct change in the exponent at R 0 = R Q = h/4e 2 . When R 0 > R Q , the IVC clearly shows a remnant of the Coulomb blockade, which evolves to a zero-current state with a sharp critical voltage as E J is tuned to a smaller value. The zero-current state below the critical voltage is due to coherent QPSs and we show that these are enhanced when the central link is weaker than all other links. Above the critical voltage, a negative, differential resistance is observed, which nearly restores the zero-current state. (paper)
Interaction quantum quenches in the one-dimensional Fermi-Hubbard model
Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano
2016-05-01
We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.
DEFF Research Database (Denmark)
Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld
2017-01-01
is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...
Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.
2014-07-01
The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.
Supersymmetric quantum mechanics on n-dimensional manifolds
International Nuclear Information System (INIS)
O'Connor, M.
1990-01-01
In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics
On-chip generation of high-dimensional entangled quantum states and their coherent control.
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-28
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Ellison, Mark D.
2008-01-01
The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…
International Nuclear Information System (INIS)
Altherr, T.
1989-12-01
The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr
To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space
International Nuclear Information System (INIS)
Khrennikov, Andrei
2007-01-01
We study asymptotic expansions of Gaussian integrals of analytic functionals on infinite-dimensional spaces (Hilbert and nuclear Frechet). We obtain an asymptotic equality coupling the Gaussian integral and the trace of the composition of scaling of the covariation operator of a Gaussian measure and the second (Frechet) derivative of a functional. In this way we couple classical average (given by an infinite-dimensional Gaussian integral) and quantum average (given by the von Neumann trace formula). We can interpret this mathematical construction as a procedure of 'dequantization' of quantum mechanics. We represent quantum mechanics as an asymptotic projection of classical statistical mechanics with infinite-dimensional phase space. This space can be represented as the space of classical fields, so quantum mechanics is represented as a projection of 'prequantum classical statistical field theory'
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R.; Mitchell, Kevin A.
2015-08-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."
Evaluating the effects of modeling errors for isolated finite three-dimensional targets
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui
2017-10-01
Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.
High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.
Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton
2017-11-03
Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.
Three-dimensional quantum algebras: a Cartan-like point of view
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2004-01-01
A perturbative quantization procedure for Lie bialgebras is introduced. The relevance of the choice of a completely symmetrized basis of the quantum universal enveloping algebra is stressed. Sets of elements of the quantum algebra that play a role similar to generators in the case of Lie algebras are considered and a Cartan-like procedure applied to find a representative for each class of quantum algebras. The method is used to construct and classify all three-dimensional complex quantum algebras that are compatible with a given type of coproduct. The quantization of all Lie algebras that, in the classical limit, belong to the most relevant sector in the classification for three-dimensional Lie bialgebras is thus performed. New quantizations of solvable algebras, whose simplicity makes them suitable for possible physical applications, are obtained and already known related quantum algebras recovered
Activation of zero-error classical capacity in low-dimensional quantum systems
Park, Jeonghoon; Heo, Jun
2018-06-01
Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.
Survival probability in a one-dimensional quantum walk on a trapped lattice
International Nuclear Information System (INIS)
Goenuelol, Meltem; Aydiner, Ekrem; Shikano, Yutaka; Muestecaplioglu, Oezguer E
2011-01-01
The dynamics of the survival probability of quantum walkers on a one-dimensional lattice with random distribution of absorbing immobile traps is investigated. The survival probability of quantum walkers is compared with that of classical walkers. It is shown that the time dependence of the survival probability of quantum walkers has a piecewise stretched exponential character depending on the density of traps in numerical and analytical observations. The crossover between the quantum analogues of the Rosenstock and Donsker-Varadhan behavior is identified.
International Nuclear Information System (INIS)
Horing, N.J.M.; Yildiz, M.M.
1976-01-01
An analysis of dynamic and nonlocal longitudinal dielectric response properties of a two-dimensional Landau-quantized plasma is carried out, using a thermodynamic Green's function formulation of the RPA with a two-dimensional thermal Green's function for electron propagation in a magnetic field developed in closed form. The longitudinal-electrostatic plasmon dispersion relation is discussed in the low wave-number regime with nonlocal corrections, and Bernstein mode structure is studied for arbitrary wavenumber. All regimes of magnetic field strength and statistics are investigated. The class of integrals treated here should have broad applicability in other two-dimensional and finite slab plasma studies.The two-dimensional static shielding law in a magnetic field is analyzed for low wavenumber, and for large distances we find V (r) approx. = Q/k 2 2 r 3 . The inverse screening length k 0 =2πe 2 partial rho/ partialxi (rho= density, xi= chemical potential) is evaluated in all regimes of magnetic field strength and all statistical regimes. k 0 exhibits violent DHVA oscillatory behavior in the degenerate zero-temperature case at higher field strengths, and the shielding is complete when xi =r'hω/subc/ but there is no shielding when xi does not = r'hω/subc/. A careful analysis confirms that there is no shielding at large distances in the degenerate quantum strong field limit h3π/subc/>xi. Since shielding does persist in the nondegenerate quantum strong field limit hω/subc/>KT, there should be a pronounced change in physical properties that depend on shielding if the system is driven through a high field statistical transition. Finally, we find that the zero field two-dimensional Friedel--Kohn ''wiggle'' static shielding phenomenon is destroyed by the dispersal of the zero field continuum of electron states into the discrete set of Landau-quantized orbitals due to the imposition of the magnetic field
International Nuclear Information System (INIS)
Tseytlin, A.A.
1993-01-01
We consider a two-dimensional sigma model with a (2+N)-dimensional Minkowski signature target space metric having a covariantly constant null Killing vector. We study solutions of the conformal invariance conditions in 2+N dimensions and find that generic solutions can be represented in terms of the RG flow in N-dimensional 'transverse space' theory. The resulting conformal invariant sigma model is interpreted as a quantum action of the two-dimensional scalar ('dilaton') quantum gravity model coupled to a (non-conformal) 'transverse' sigma model. The conformal factor of the two-dimensional metric is identified with a light-cone coordinate of the (2+N)-dimensional sigma model. We also discuss the case when the transverse theory is conformal (with or without the antisymmetric tensor background) and reproduce in a systematic way the solutions with flat transverse space known before. (orig.)
(3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces
Energy Technology Data Exchange (ETDEWEB)
Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-05-22
We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.
We live in the quantum 4-dimensional Minkowski space-time
Hwang, W-Y. Pauchy
2015-01-01
We try to define "our world" by stating that "we live in the quantum 4-dimensional Minkowski space-time with the force-fields gauge group $SU_c(3) \\times SU_L(2) \\times U(1) \\times SU_f(3)$ built-in from the outset". We begin by explaining what "space" and "time" are meaning for us - the 4-dimensional Minkowski space-time, then proceeding to the quantum 4-dimensional Minkowski space-time. In our world, there are fields, or, point-like particles. Particle physics is described by the so-called ...
Laterally coupled jellium-like two-dimensional quantum dots
Markvoort, Albert. J.; Hilbers, P.A.J.; Pino, R.
2003-01-01
Many studies have been performed to describe quantum dots using a parabolic confining potential. However, infinite potentials are unphysical and lead to problems when describing laterally coupled quantum dots. We propose the use of the parabolic potential of a homogeneous density distribution within
Dimensional discontinuity in quantum communication complexity at dimension seven
Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed
2017-02-01
Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.
Is there a delocalization transition in a two-dimensional model for quantum percolation
International Nuclear Information System (INIS)
Dasgupta, I.; Saha, T.; Mookerjee, A.; Chakrabarti, B.K.
1992-01-01
In this paper, the authors estimate the transmittance of the quantum percolation model of Eggarter and Kirkpatrick on the square lattice of various sizes using the vector recursion method. The authors note from finite size scaling that there is no delocalization transition for any degree of disorder in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Weitzman, Morley
1992-07-15
A three-dimensional finite-element code was developed and used to simulate the flow of groundwater towards an excavation in a saturated porous medium, allowing for seepage faces. An iterative procedure was used to predict the movement of the water table and the seepage flux. The numerical solution agreed well with experimental results from a sandbox experiment. (auth)
International Nuclear Information System (INIS)
Nguyen Buong.
1992-11-01
The purpose of this paper is to investigate convergence rates for an operator version of Tikhonov regularization constructed by dual mapping for nonlinear ill-posed problems involving monotone operators in real reflective Banach spaces. The obtained results are considered in combination with finite-dimensional approximations for the space. An example is considered for illustration. (author). 15 refs
Anomalous effective dimensionality of quantum gas adsorption near nanopores.
Full, Steven J; McNutt, Jessica P; Cole, Milton W; Mbaye, Mamadou T; Gatica, Silvina M
2010-08-25
Three problems involving quasi-one-dimensional (1D) ideal gases are discussed. The simplest problem involves quantum particles localized within the 'groove', a quasi-1D region created by two adjacent, identical and parallel nanotubes. At low temperature (T), the transverse motion of the adsorbed gas, in the plane perpendicular to the axes of the tubes, is frozen out. Then, the low T heat capacity C(T) of N particles is that of a 1D classical gas: C(*)(T) = C(T)/(Nk(B)) --> 1/2. The dimensionless heat capacity C(*) increases when T ≥ 0.1T(x, y) (transverse excitation temperatures), asymptoting at C(*) = 2.5. The second problem involves a gas localized between two nearly parallel, co-planar nanotubes, with small divergence half-angle γ. In this case, too, the transverse motion does not contribute to C(T) at low T, leaving a problem of a gas of particles in a 1D harmonic potential (along the z axis, midway between the tubes). Setting ω(z) as the angular frequency of this motion, for T ≥ τ(z) ≡ ω(z)ħ/k(B), the behavior approaches that of a 2D classical gas, C(*) = 1; one might have expected instead C(*) = 1/2, as in the groove problem, since the limit γ ≡ 0 is 1D. For T τ(z)), motion is excited in the y direction, perpendicular to the plane of nanotubes, resulting in thermal behavior (C(*) = 7/4) corresponding to a gas in 7/2 dimensions, while at very high T (T > ħω(x)/k(B) ≡ τ(x) > τ(y)), the behavior becomes that of a D = 11/2 system. The third problem is that of a gas of particles, e.g. (4)He, confined in the interstitial region between four square parallel pores. The low T behavior found in this case is again surprising--that of a 5D gas.
The quantum spectral analysis of the two-dimensional annular billiard system
International Nuclear Information System (INIS)
Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin
2009-01-01
Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)
Analysis of distances between inclusions in finite one-dimensional binary stochastic materials
International Nuclear Information System (INIS)
Griesheimer, D. P.; Millman, D. L.
2009-01-01
In this paper we develop a statistical distribution for the number of inclusions present in a one-dimensional binary stochastic material of a finite length. From this distribution, an analytic solution for the expected number of inclusions present in a given problem is derived. For cases where the analytical solution for the expected number of inclusions is prohibitively expensive to compute, a simple, empirically-derived, approximation for the expected value is presented. A series of numerical experiments are used to bound the error of this approximation over the domain of interest. Finally, the above approximations are used to develop a methodology for determining the distribution of distances between adjacent inclusions in the material, subject to known problem conditions including: the total length of the problem, the length of each inclusion, and the expected volume fraction of inclusions in the problem. The new method is shown to be equivalent to the use of the infinite medium nearest neighbor distribution with an effective volume fraction to account for the finite nature of the material. Numerical results are presented for a wide range of problem parameters, in order to demonstrate the accuracy of this method and identify conditions where the method breaks down. In general, the technique is observed to produce excellent results (absolute error less than 1 10-6) for problems with inclusion volume fractions less than 0.8 and a ratio of problem length to inclusion length greater than 25. For problems that do not fall into this category, the accuracy of the method is shown to be dependent on the particular combination of these parameters. A brief discussion of the relevance of this method for Monte Carlo chord length sampling algorithms is also provided. (authors)
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
International Nuclear Information System (INIS)
Carpenter, D.C.
1997-01-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions
Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto
2011-01-01
The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.
Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi
2018-04-01
This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.
International Nuclear Information System (INIS)
Zhukovskii, K.V.; Eminov, P.A.
1995-01-01
The one-loop approximation is used to calculate the effects of finite temperature and nonzero chemical potential on the electron energy shift in a (2 + 1)-quantum electrodynamic system containing a Churn-Simon term. The induced electron mass is derived with a massless (2 + 1)-quantum electrodynamic system together with the exchange correction to the thermodynamic potential for a completely degenerate electron gas. It is shown that in the last case, incorporating the Churn-Simon term leads to loss of the gap in the direction law
International Nuclear Information System (INIS)
Cohendet, O.
1989-01-01
We consider a quantum system with a finite number N of states and we show that a Markov process evolving in an 'extended' discrete phase can be associated with the discrete Wigner function of the system. This Wigner function is built using the Weyl quantization procedure on the group Z N xZ N . Moreover we can use this process to compute the quantum mean values as probabilistic expectations of functions of this process. This probabilistic formulation can be seen as a stochastic mechanics in phase space. (orig.)
DEFF Research Database (Denmark)
Chen, Yuntian; Nielsen, Torben Roland; Gregersen, Niels
2010-01-01
of the plasmonic waveguide can be arbitrary. The fraction of the energy coupled to the plasmonic mode can be calculated exactly, which can be used to determine the efficiency with which single optical plasmons are generated. We apply our numerical method to calculate the coupling of a quantum emitter......We develop a self-consistent finite-element method to quantitatively study spontaneous emission from emitters in nanoscale proximity of plasmonic waveguides. In the model, it is assumed that only one guided mode is dominatingly excited by the quantum emitter, while the cross section...
Quantum restoration of broken symmetry in one- dimensional loop ...
Indian Academy of Sciences (India)
Though quantum theory and classical theory are completely different from ... authors) that the classical property of a system and the classical limit of the ..... pactly supported function (for example, the alternate deposition of thin layers of GaAs.
Three-dimensional simplicial quantum gravity and generalized matrix models
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1990-11-01
We consider a discrete model of Euclidean quantum gravity in three dimensions based on a summation over random simplicial manifolds. We derive some elementary properties of the model and discuss possible 'matrix' models for 3d gravity. (orig.)
Brane dynamics and four-dimensional quantum field theory
International Nuclear Information System (INIS)
Lambert, N.D.; West, P.C.
1999-01-01
We review the relation between the classical dynamics of the M-fivebrane and the quantum low energy effective action for N = 2 Yang-Mills theories. We also discuss some outstanding issues in this correspondence. (author)
Attractive and repulsive quantum forces from dimensionality of space
DEFF Research Database (Denmark)
Bialynicki-Birula, I.; Cirone, M.A.; Dahl, Jens Peder
2002-01-01
Two particles of identical mass attract and repel each other even when there exist no classical external forces and their average relative momentum vanishes. This quantum force depends crucially on the number of dimensions of space.......Two particles of identical mass attract and repel each other even when there exist no classical external forces and their average relative momentum vanishes. This quantum force depends crucially on the number of dimensions of space....
Two-dimensional electron gas in monolayer InN quantum wells
International Nuclear Information System (INIS)
Pan, W.; Wang, G. T.; Dimakis, E.; Moustakas, T. D.; Tsui, D. C.
2014-01-01
We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10 15 cm −2 (or 1.25 × 10 14 cm −2 per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm 2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Wang, Guangye; Huang, Wenjun; Song, Qi; Liang, Jinfeng
2017-11-01
This study aims to analyze the contact areas and pressure distributions between the femoral head and mortar during normal walking using a three-dimensional finite element model (3D-FEM). Computed tomography (CT) scanning technology and a computer image processing system were used to establish the 3D-FEM. The acetabular mortar model was used to simulate the pressures during 32 consecutive normal walking phases and the contact areas at different phases were calculated. The distribution of the pressure peak values during the 32 consecutive normal walking phases was bimodal, which reached the peak (4.2 Mpa) at the initial phase where the contact area was significantly higher than that at the stepping phase. The sites that always kept contact were concentrated on the acetabular top and leaned inwards, while the anterior and posterior acetabular horns had no pressure concentration. The pressure distributions of acetabular cartilage at different phases were significantly different, the zone of increased pressure at the support phase distributed at the acetabular top area, while that at the stepping phase distributed in the inside of acetabular cartilage. The zones of increased contact pressure and the distributions of acetabular contact areas had important significance towards clinical researches, and could indicate the inductive factors of acetabular osteoarthritis. Copyright © 2016. Published by Elsevier Taiwan.
Two-dimensional transient thermal analysis of a fuel rod by finite volume method
Energy Technology Data Exchange (ETDEWEB)
Costa, Rhayanne Yalle Negreiros; Silva, Mário Augusto Bezerra da; Lira, Carlos Alberto de Oliveira, E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear
2017-07-01
One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all time. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical analysis that disregard axial heat transport to determine its relevance. The results show the importance of axial heat transport consideration in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel's entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there's no bubble formation until that point). (author)
Electromagnetic-field amplification in finite one-dimensional photonic crystals
International Nuclear Information System (INIS)
Gorelik, V. S.; Kapaev, V. V.
2016-01-01
The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.
Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.
Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter
2018-06-01
We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.
Finite action for three dimensional gravity with a minimally coupled scalar field
International Nuclear Information System (INIS)
Gegenberg, Jack; Martinez, Cristian; Troncoso, Ricardo
2003-01-01
Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group. The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilocal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The thermal behavior, including the transition between different configurations, is analyzed, and it is found that the scalar black hole can decay into the Banados-Teitelboim-Zanelli solution irrespective of the horizon radius. It is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure gravity
Partially-massless higher-spin algebras and their finite-dimensional truncations
International Nuclear Information System (INIS)
Joung, Euihun; Mkrtchyan, Karapet
2016-01-01
The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.
International Nuclear Information System (INIS)
Lacey, G.; Thenoux, G.; Rodriguez-Roa, F.
2008-01-01
In accordance with the present development of empirical-mechanistic tools, this paper presents an alternative to traditional analysis methods for flexible pavements using a three-dimensional finite element formulation based on a liner-elastic perfectly-plastic Drucker-Pager model for granular soil layers and a linear-elastic stress-strain law for the asphalt layer. From the sensitivity analysis performed, it was found that variations of +-4 degree in the internal friction angle of granular soil layers did not significantly affect the analyzed pavement response. On the other hand, a null dilation angle is conservatively proposed for design purposes. The use of a Light Falling Weight Deflectometer is also proposed as an effective and practical tool for on-site elastic modulus determination of granular soil layers. However, the stiffness value obtained from the tested layer should be corrected when the measured peak deflection and the peak force do not occur at the same time. In addition, some practical observations are given to achieve successful field measurements. The importance of using a 3D FE analysis to predict the maximum tensile strain at the bottom of the asphalt layer (related to pavement fatigue) and the maximum vertical comprehensive strain transmitted to the top of the granular soil layers (related to rutting) is also shown. (author)
Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.
Xiao, Perry; Imhof, Robert E
2012-10-01
Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.
Two dimensional finite element thermal model of laser surface glazing for H13 tool steel
Kabir, I. R.; Yin, D.; Naher, S.
2016-10-01
A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.
Two Dimensional Finite Element Model to Study Calcium Distribution in Oocytes
Naik, Parvaiz Ahmad; Pardasani, Kamal Raj
2015-06-01
Cytosolic free calcium concentration is a key regulatory factor and perhaps the most widely used means of controlling cellular function. Calcium can enter cells through different pathways which are activated by specific stimuli including membrane depolarization, chemical signals and calcium depletion of intracellular stores. One of the important components of oocyte maturation is differentiation of the Ca2+ signaling machinery which is essential for egg activation after fertilization. Eggs acquire the ability to produce the fertilization-specific calcium signal during oocyte maturation. The calcium concentration patterns required during different stages of oocyte maturation are still not completely known. Also the mechanisms involved in calcium dynamics in oocyte cell are still not well understood. In view of above a two dimensional FEM model has been proposed to study calcium distribution in an oocyte cell. The parameters such as buffers, ryanodine receptor, SERCA pump and voltage gated calcium channel are incorporated in the model. Based on the biophysical conditions the initial and boundary conditions have been framed. The model is transformed into variational form and Ritz finite element method has been employed to obtain the solution. A program has been developed in MATLAB 7.10 for the entire problem and executed to obtain numerical results. The numerical results have been used to study the effect of buffers, RyR, SERCA pump and VGCC on calcium distribution in an oocyte cell.
International Conference on Finite or Infinite Dimensional Complex Analysis and Applications
Tutschke, W; Yang, C
2004-01-01
There is almost no field in Mathematics which does not use Mathe matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam....
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids
Energy Technology Data Exchange (ETDEWEB)
Bungartz, H.J. [Technische Universitaet Muenchen (Germany)
1996-12-31
In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.
Quantum phase transitions in matrix product states of one-dimensional spin-1 chains
International Nuclear Information System (INIS)
Zhu Jingmin
2014-01-01
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement. (author)
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
International Nuclear Information System (INIS)
Franke, H.P.
1976-05-01
The finite element method is applied to the solution of the stationary 3D group diffusion equations. For this, a programme system with the name of FEM3D is established which also includes a module for semi-automatic mesh generation. Tetrahedral finite elements are used. The neutron fluxes are described by complete first- or second-order Lagrangian polynomials. General homogeneous boundary conditions are allowed. The studies show that realistic three-dimensional problems can be solved at less expense by iterative methods, in particular so when especially adapted matrix handling and storage schemes are used efficiently. (orig./RW) [de
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
Energy Technology Data Exchange (ETDEWEB)
Klymenko, M. V. [Department of Chemistry, University of Liège, B4000 Liège (Belgium); Klein, M. [The Fritz Haber Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Levine, R. D. [The Fritz Haber Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States); Remacle, F., E-mail: fremacle@ulg.ac.be [Department of Chemistry, University of Liège, B4000 Liège (Belgium); The Fritz Haber Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-07-14
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states corresponds to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
International Nuclear Information System (INIS)
Klymenko, M. V.; Klein, M.; Levine, R. D.; Remacle, F.
2016-01-01
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states corresponds to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.
Quantum statistical entropy corresponding to cosmic horizon in five-dimensional spacetime
Institute of Scientific and Technical Information of China (English)
2008-01-01
The generalized uncertainty relation is introduced to calculate the quantum statis-tical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical en-tropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime.
Mano, Tomohiro; Ohtsuki, Tomi
2017-11-01
The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016), 86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.
Directory of Open Access Journals (Sweden)
Nicolai Lang, Hans Peter Büchler
2018-01-01
Full Text Available Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.
Quantum critical singularities in two-dimensional metallic XY ferromagnets
Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.
2018-02-01
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.
Wave packet construction in three-dimensional quantum billiards
Indian Academy of Sciences (India)
We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers (, , ) determine its energy spectrum and consequently its dynamical behaviour. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits.
One-dimensional steady migration of quantum particles
International Nuclear Information System (INIS)
Serikov, A.A.; Kharkyanen, V.N.
1989-01-01
The formalism of nonequilibrium density matrices is used to investigate transmembrane transport of quantum particles along a molecular chain. For a homogeneous chain analytic expressions that describe a steady flux of particles and their distribution are found. The features of the transport are analyzed for the case of a disordered chain
Quantum electrodynamics within the framework of a new 4-dimensional symmetry
International Nuclear Information System (INIS)
Hsu, J.P.
1977-06-01
Quantum electrodynamics is discussed within the framework of a new 4-dimensional symmetry in which the concept of time, the propagation of light and the transformation property of many physical quantities are drastically different from those in special relativity. However, they are consistent with experiments. The new framework allows for natural developments of additional concepts. A possible and crucial experimental test of the new 4-dimensional symmetry is discussed
A review of finite size effects in quasi-zero dimensional superconductors.
Bose, Sangita; Ayyub, Pushan
2014-11-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size
A review of finite size effects in quasi-zero dimensional superconductors
International Nuclear Information System (INIS)
Bose, Sangita; Ayyub, Pushan
2014-01-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non
Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun
2017-11-01
A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
Energy Technology Data Exchange (ETDEWEB)
Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic)
2012-06-04
In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.
International Nuclear Information System (INIS)
Sergyeyev, Artur
2012-01-01
In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.
Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
International Nuclear Information System (INIS)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
Energy Technology Data Exchange (ETDEWEB)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.
Parametric study of nonlinear electrostatic waves in two-dimensional quantum dusty plasmas
International Nuclear Information System (INIS)
Ali, S; Moslem, W M; Kourakis, I; Shukla, P K
2008-01-01
The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted
Quantum of optical absorption in two-dimensional semiconductors.
Fang, Hui; Bechtel, Hans A; Plis, Elena; Martin, Michael C; Krishna, Sanjay; Yablonovitch, Eli; Javey, Ali
2013-07-16
The optical absorption properties of free-standing InAs nanomembranes of thicknesses ranging from 3 nm to 19 nm are investigated by Fourier transform infrared spectroscopy. Stepwise absorption at room temperature is observed, arising from the interband transitions between the subbands of 2D InAs nanomembranes. Interestingly, the absorptance associated with each step is measured to be ∼1.6%, independent of thickness of the membranes. The experimental results are consistent with the theoretically predicted absorptance quantum, AQ = πα/nc for each set of interband transitions in a 2D semiconductor, where α is the fine structure constant and nc is an optical local field correction factor. Absorptance quantization appears to be universal in 2D systems including III-V quantum wells and graphene.
Two-dimensional Ising physics in quantum Hall ferromagnets
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; MacDonald, A. H.; Rezayi, E. H.
2002-01-01
Roč. 12, - (2002), s. 1-7 ISSN 1386-9477 R&D Projects: GA ČR GA202/01/0754; GA MŠk OC 514.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * higher Landau levels * domain walls Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.107, year: 2002
Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen
2006-05-01
To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.
Directory of Open Access Journals (Sweden)
Djordjevich Alexandar
2017-12-01
Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.
Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well
Directory of Open Access Journals (Sweden)
H. J. Huang
2015-11-01
Full Text Available The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC, or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.
Energy Technology Data Exchange (ETDEWEB)
Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)
2016-06-15
We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)
Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics
International Nuclear Information System (INIS)
Bonezzi, R.; Latini, E.; Waldron, A.
2010-01-01
Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.
International Nuclear Information System (INIS)
Ishiguro, Misako; Higuchi, Kenji
1983-01-01
The finite element method is applied in Galerkin-type approximation to three-dimensional neutron diffusion equations of fast reactors. A hexagonal element scheme is adopted for treating the hexagonal lattice which is typical for fast reactors. The validity of the scheme is verified by applying the scheme as well as alternative schemes to the neutron diffusion calculation of a gas-cooled fast reactor of actual scale. The computed results are compared with corresponding values obtained using the currently applied triangular-element and also with conventional finite difference schemes. The hexagonal finite element scheme is found to yield a reasonable solution to the problem taken up here, with some merit in terms of saving in computing time, but the resulting multiplication factor differs by 1% and the flux by 9% compared with the triangular mesh finite difference scheme. The finite element method, even in triangular element scheme, would appear to incur error in inadmissible amount and which could not be easily eliminated by refining the nodes. (author)
ICTP Summer Course on Low-Dimensional Quantum Field Theories for Condensed Matter Physicists
Morandi, G; Lu, Y
1995-01-01
This volume contains a set of pedagogical reviews covering the most recent applications of low-dimensional quantum field theory in condensed matter physics, written by experts who have made major contributions to this rapidly developing field of research. The main purpose is to introduce active young researchers to new ideas and new techniques which are not covered by the standard textbooks.