WorldWideScience

Sample records for final disposal program

  1. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  2. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  3. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  4. Ethical aspects of final disposal. Final report

    International Nuclear Information System (INIS)

    Baltes, B.; Leder, W.; Achenbach, G.B.; Spaemann, R.; Gerhardt, V.

    2003-01-01

    In fulfilment of this task the Federal Environmental Ministry has commissioned GRS to summarise the current national and international status of ethical aspects of the final disposal of radioactive wastes as part of the project titled ''Final disposal of radioactive wastes as seen from the viewpoint of ethical objectives''. The questions arising from the opinions, positions and publications presented in the report by GRS were to serve as a basis for an expert discussion or an interdisciplinary discussion forum for all concerned with the ethical aspects of an answerable approach to the final disposal of radioactive wastes. In April 2001 GRS held a one-day seminar at which leading ethicists and philosophers offered statements on the questions referred to above and joined in a discussion with experts on issues of final disposal. This report documents the questions that arose ahead of the workshop, the specialist lectures held there and a summary of the discussion results [de

  5. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    In summary, as of December 1988, the four sites collectively stored about 95 million gallons of high-level waste in underground tanks and bins. Approximately 57 million gallons are stored at Hanford, 34 million gallons at Savannah River, 3 million gallons at INEL, and 6 million gallons at West Valley. The waste is in several forms, including liquid, sludge, and dry granular materials, that make it unsuitable for permanent storage in its current state at these locations. Leaks from the tanks, designed for temporary storage, can pose an environmental hazard to surrounding land and water for thousands of years. DOE expects that when its waste processes at Savannah River, West Valley, and Hanford become operational, the high-level radioactive waste stored at these sites will be blended with other materials to immobilize it by forming a glass-like substance. The glass form will minimize the risk of environmental damage and make the waste more acceptable for permanent disposal in a geologic repository. At INEL, DOE is still considering various other immobilization and permanent disposal approaches. In July 1989, DOE estimated that it would cost about $13 billion (in fiscal year 1988 dollars) to retrieve, process, immobilize, and store the high-level waste until it can be moved to a permanent disposal site: about $5.3 billion is expected to be spent at Savannah River, $0.9 billion at West Valley, $2.8 billion at Hanford, and $4.0 billion at INEL. DOE has started construction at Savannah River and West Valley for facilities that will be used to transform the waste into glass (a process known as vitrification). These sites have each encountered schedule delays, and one has encountered a significant cost increase over earlier estimates. More specifically, the Savannah River facility is scheduled to begin high-level waste vitrification in 1992; the West Valley project, based on a January 1989 estimate, is scheduled to begin high-level waste vitrification in 1996, about 8

  6. Water Resources Research Program. Abatement of malodors at diked, dredged-material disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Dravnieks, A.; Zussman, R.; Goltz, R.

    1976-06-01

    Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented for handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.

  7. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  8. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  9. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  10. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  11. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  12. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  13. Final disposal room structural response calculations

    International Nuclear Information System (INIS)

    Stone, C.M.

    1997-08-01

    Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations

  14. Disposal phase experimental program plan

    International Nuclear Information System (INIS)

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes

  15. Communication strategy for final disposal facility

    International Nuclear Information System (INIS)

    Seppaelae, Timo; Kurki, Osmo

    2000-01-01

    In May 1999, Posiva filed an application for a policy decision to the Council of State on the construction of a final disposal facility for spent nuclear fuel in Olkiluoto in the municipality of Eurajoki. The decision to be made by the Council of State must be ratified by the Parliament. The precondition for a positive decision is that the preliminary statement on safety to be provided by STLTK by the end of the year 1999 is in favour of Posiva. continuing with its repository development programme, and that the Eurajoki municipality approves the project in its statement by the 28th of January 2000. The policy decision by the Council of State is expected to be made in March followed by the ratification of the Parliament before the summer. In a poll-carried out among 350 decision-makers, less than 10 % of those who answered 134 persons) found Internet as the most important source of Posiva's information on final disposal. On the other hand, over 80 % of those who answered found the information folder as the most significant source of information. When considering all the information available on final disposal (TV, radio, newspapers, authorities, environmental organisations, etc.) Posiva was found to be the most significant source of information while newspapers and periodicals came second. In this case the environmental organisations seemed to have a minor role, as a result of not being too active in confrontation. As a conclusive remark it can be assumed that because it is not only Posiva's information that is relevant to decision-makers, but the media also plays a significant role, the impression that decision-makers have of final disposal is based on a mixture of messages coming from Posiva and from the media. That is why the communication related to decision-makers is also communication with media, in order to ensure that the messages produced by the media support the information produced by Posiva

  16. Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

    1981-01-01

    On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

  17. Final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Thoregren, U.

    1983-04-01

    Like many other countries whith similar geological conditions, Sweden plans to dispose of its long-lived radioactive nuclear waste by depositing it in final repositories located deep down in the crystalline bedrock. In order to be able to demonstrate that a given rock formation is suited for waste storage, it is necessary to have knowledge concerning its properties, particularly those that determine groundwater conditions and chemistry within the area. Also of importance are data that shed light on rock mechanics in the area and the occurrence of valuable minerals. The SKBF/KBS programme includes plans to carry out geological studies of 10-15 areas in different parts of the country during the 1980s. A standard programme for these studies is described in the following. The standard programme is inteded to serve as a basis for planning of the work and revisions or modifications that may be found to be appropriate in view of local conditions or experience. (author)

  18. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  19. Nuclear Waste Disposal Program 2016

    International Nuclear Information System (INIS)

    2016-12-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program

  20. Status of US program for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Smith, R.I.

    1991-04-01

    In this paper, a brief history of the United States' program for the disposal of spent nuclear fuel (SNF) and the legislative acts that have guided the program are discussed. The current plans and schedules for beginning acceptance of SNF from the nuclear utilities for disposal are described, and some of the development activities supporting the program are discussed. And finally, the viability of the SNF disposal fee presently paid into the Nuclear Waste Fund by the owners/generators of commercial SNF and high-level waste (HLW) is examined. 12 refs., 9 figs

  1. Regulatory criteria for final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Petraitis, E.; Ciallella, N.; Siraky, G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. It also presents the criteria developed by the Nuclear Regulatory Authority (ARN) to assess the long-term safety of final disposal systems for high level radioactive wastes. (author)

  2. Safety in the final disposal of radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K.; Carugati, S.; Brodersen, K. [and others

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG) 33 refs.

  3. Safety in the final disposal of radioactive waste. Final report

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG)

  4. Costs of the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Drasdo, P.

    2001-01-01

    The study on the costs of radioactive waste disposal covers the topic of national concepts for the countries Germany, France, United Kingdom, Sweden, Switzerland and Unites States of America. The introduction into the topic of radioactive waste disposal is concerned with the classification of radioactive wastes, the safety of final repositories and the different concepts of final disposal. The used methods of data acquisition and data processing are described. The study compares the national final disposal concepts in order to identify the reasons for the differences in capital costs and annuity costs in the respective countries. The final chapter is concerned with the optimum timing for the start-up of operation of final repositories

  5. R/V Endeavor cruise EN-024. Seabed Disposal Program: North Atlantic study area MPG-III 35030'N 61000'W, June 30--July 11, 1978. Final report

    International Nuclear Information System (INIS)

    Heath, G.R.; Laine, E.P.

    1978-09-01

    During 7 days in the vicinity of 35 0 30'N, 61 0 00'W (Seabed Disposal Program mid-late, mid-gyre study area MPG-III) we carried out 1830 km of subbottom acoustic profiling and 2 camera lowerings, and took 7 standard piston cores, 3 large diameter piston cores, 9 large diameter gravity cores and 2 dredge hauls of surface sediment. Pore fluids were extracted from 3 gravity cores and 1 piston core and on-board physical property measurements were made on 2 large diameter piston cores and 1 large diameter gravity core. These data and samples will be used to assess the lateral homogeneity and recent geologic history of the area, as well as to compare the sorption and physical barrier properties of the sediments with deposits from the MPG I and II areas in the Pacific

  6. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  7. Hanford grout disposal program - an environmentally sound alternative

    International Nuclear Information System (INIS)

    Bergman, T.B.; Allison, J.M.

    1987-01-01

    The Hanford Grout Disposal Program (HGDP) is a comprehensive, integrated program to develop technology and facilities for the disposal of ∼ 3.0 x 10 5 m 3 (80 million gal) of the low-level fraction of liquid radioactive tank wastes at the Hanford site in southeastern Washington state. Environmentally sound disposal via long-term protection of the public and the environment is the principal goal of the HGDP. To accomplish this goal, several criteria have been established that guide technology and facility development activities. The key criteria are discussed. To meet the challenges posed by disposal of these wastes, the HGDP is developing a waste form using grout-forming materials, such as blast furnace slag, fly ash, clays, and Portland cement for solidification and immobilization of both the radioactive and hazardous chemical constituents. In addition to development of a final waste form, the HGDP is also developing a unique disposal system to assure long-term protection of the public and the environment. Disposal of a low-level nonhazardous waste will be initiated, as a demonstration of the disposal system concept, in June 1988. Disposal of higher activity hazardous wastes is scheduled to begin in October 1989

  8. The Finnish final disposal programme proceeds to the site selection

    International Nuclear Information System (INIS)

    Seppaelae, T.

    1999-01-01

    Research for the selection of the final disposal site has been carried out already since the beginning of 1980's. Field studies were started in 1987: In the recent years, studied sites have included Olkiluoto in Eurajoki, Haestholmen in Loviisa, Romuvaara in Kuhmo and Kivetty in Aeaenekoski. Based on 40 years operation of four power plant units, the estimate for the accumulation of spent fuel to be disposed of in Finland is 2,600 tU. A 'Decision in Principle' is needed from the Finnish government to select the final disposal site, Posiva submitted the application for a policy decision in May 1999. The intended site of the facility is Olkiluoto which produces most of the spent fuel in Finland: A disposal would minimise the need of transports. In a poll among the inhabitants of Eurajoki, 60 per cent approved the final disposal facility. After a positive decision of the government, Posiva will construct an underground research facility in Olkiluoto. The construction of the final disposal facility will take place in the 2010's, the facility should be operational in 2020. (orig.) [de

  9. Subseabed Disposal Program Plan. Volume I. Overview

    International Nuclear Information System (INIS)

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations

  10. Final closure of a low level waste disposal facility

    International Nuclear Information System (INIS)

    Potier, J.M.

    1995-01-01

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m 3 . The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters per square meter and per year)

  11. L/ILW management and final disposal. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This is a proceedings of the Sino-French Seminar on Low- and Intermediate-Level waste Management and Final Disposal. The seminar was held on 26-28 April 1993 in Beijing of China. 33 papers are included in the proceedings. The great efforts in the treatment and disposal of different level radwastes and achievements in the research and development in China are introduced. The rich experience on the radwaste management in France are also introduced

  12. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  13. Temperature and stress calculation for final disposal

    International Nuclear Information System (INIS)

    Tarandi, T.

    1979-02-01

    Temperature and stress distribution in and around the final storage facility has been calculated for three different arrangements of the tunnels: - 2 planes with 60 m vertical distance between them - 2 planes with 100 m distance and - 1 plane. The highest temperatures and stresses occur for the 2 plane alternative with distance 60 m between planes. The maximum compressive stress is in this case 24.0 MPa 140 years after the time of deposition, compared with 12.6 MPa in the 1 plane case. The maximum tensile stress exists at the surface and is in the 2 plane case 6.0 MPa 800 - 1,500 years after deposition, compared with 4.2 MPa for the 1 plane variant. An estimation of maximum tensile stresses between the tunnel planes yields a value of 1.5 MPa. The above-mentioned stresses are due to temperature distribution induced by the radioactive waste. To obtain the total stresses, initial stresses in the undisturbed rock, which vary according to location, are to be added to these stresses. (author)

  14. Subseabed Disposal Program plan. Volume I. Overview

    International Nuclear Information System (INIS)

    1980-01-01

    Some of the most stable geologic formations are underneath the deep oceans. Purpose of this program is to assess the technical, environmental, and engineering feasibility of disposing of packaged high-level waste and/or repackaged spent reactor fuel in these formations

  15. Radiaoctive waste packaging for transport and final disposal

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    Prior and after the conditioning of radioactive wastes is the packaging design of uppermost importance since it will be the first barrier against water and human intrusion. The choice of the proper package according waste category as well criteria utilized for final disposal are shown. (author) [pt

  16. Final disposal of nuclear waste. An investigated issue

    International Nuclear Information System (INIS)

    Palmu, J.; Nikula, A.

    1996-01-01

    Since 1978, the nuclear power companies have co-ordinated joint studies of nuclear waste disposal through the Nuclear Waste Commission of Finnish Power Companies. The studies are done primarily to gather basic data, with a view to implementing nuclear waste management in a safe, economical and timely way. The power companies' research, development and design work with regard to nuclear waste has been progressing according to the schedule set by the Government, and Finland has received international recognition for its advanced nuclear waste management programme. Last year, the nuclear power companies set up a joint company, Posiva Oy, to manage the final disposal of spent uranium fuel. (orig.)

  17. Final disposal of spent fuel in the Finnish bedrock

    International Nuclear Information System (INIS)

    1992-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant (TVO-I and TVO-II reactors). According to present estimates, a total of 1840 tU of spent fuel will be accumulated during the 40-year lifetime of the power plant. An interim storage facility for spent fuel (TVO-KPA Store) has operated at Olkiluoto since 1987. The spent fuel will be held in storage for several decades before it is shipped to the repository site. Both train and road transportation are possible. The spent fuel will be encapsulated in composite copper and steel canisters (ACP Canister) in a facility that will be build above the ground on the site where the repository is located. The repository will be constructed at the depth of several hundreds of meters in the bedrock. In 1987 five areas were selected for preliminary site investigations. The safety analysis (TVO-92) that was carried out shows that the proposed safety criteria would be met at each of the candidate sites. In future expected conditions there would never be significant releases of radioactive substances to the biosphere. The site investigations will be continued in the period 1993 to 2000. In parallel, a R and D programme will be devoted to the safety and technology of final disposal. The site for final disposal will be selected in the year 2000 with the aim of having the capability to start the disposal operations in 2020

  18. Final disposal of spent nuclear fuel in the Finnish bedrock

    International Nuclear Information System (INIS)

    1992-12-01

    Teollisuuden Voima Oy (TVO) studies Finnish bedrock for the final disposal of the spent nuclear fuel from the Olkiluoto nuclear power plant. The study is in accordance with the decision in principle by Finnish government in 1983. The report is the summary of the preliminary site investigations carried out during the years 1987-1992. On the basis of these investigations a few areas will be selected for detailed site investigation. The characterization comprises five areas selected from the shortlist of potential candidate areas resulted in the earlier study during 1983-1985. Areas are located in different parts of Finland and they represent the main formations of the Finnish bedrock. Romuvaara area in Kuhmo and Veitsivaara area in Hyrynsalmi represent the Archean basement. Kivetty area in Konginkangas consists of mainly younger granitic rocks. Syyry in Sievi is located in transition area of Svecofennidic rocks and granitic rocks. Olkiluoto in Eurajoki represents migmatites in southern Finland. For the field investigations area-specific programs were planned and executed. The field investigations have comprised airborne survey by helicopter, geophysical surveys, geological mappings and samplings, deep and shallow core drillings, geophysical and hydrological borehole measurements and groundwater samplings

  19. Subseabed-disposal program: systems-analysis program plan

    International Nuclear Information System (INIS)

    Klett, R.D.

    1981-03-01

    This report contains an overview of the Subseabed Nuclear Waste Disposal Program systems analysis program plan, and includes sensitivity, safety, optimization, and cost/benefit analyses. Details of the primary barrier sensitivity analysis and the data acquisition and modeling cost/benefit studies are given, as well as the schedule through the technical, environmental, and engineering feasibility phases of the program

  20. Decision nearing on final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vira, J.

    2000-01-01

    The programme for final disposal of spent fuel from Finnish nuclear power plants is entering into important phase: in the year 2000 the Finnish Government is expected to decide whether the proposal made by Posiva Oy on the spent fuel disposal is in line with the overall good of society. Associated with the decision is also Posiva's proposal on siting the disposal facility at Olkiluoto in Eurajoki municipality on the western coast of Finland. An important document underlying Posiva's application for this principle decision is the report of the environmental impact assessment, which was completed in 1999. Safety considerations play an important role in the application. New assessments have, therefore, been made on both the operational and long-term safety as well as on safety of spent fuel transportation. (author)

  1. SKB`s planning of the EIA in connection with the final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Thegerstroem, C.; Forsstroem, H. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1995-12-01

    The plans for the final disposal of Swedish nuclear waste are summarized. The legal requirements on Environmental Impact Statements (EIS) and their role in the program for the final disposal of nuclear waste are described. SKB`s view of the purpose of the Environmental Impact Assessment is described in the light of the experience which now exists from the work on an encapsulation facility and a deep repository. In order to obtain an adequate basis for decision-making, the EIS is of central importance. In SKB`s view, with regard to the final disposal of nuclear waste in Sweden, there is a very good possibility of fulfilling the requirements on the EIS which should be made within modern environmental protection work. 8 refs, 5 figs.

  2. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  3. Site-selection studies for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Aeikaes, T.

    1984-02-01

    In the management of waste by the Industrial Power Company Ltd. (TVO) preparations are being made for the final disposal of unprocessed spent fuel into the Finnish bedrock. The site selection program will advance in three phases. The final disposal site must be made at the latest by the end of the year 2000, in accordance with a decision laid down by the Finnish Government. In the first phase, 1983-85, the main object is to find homogeneous stable bedrock blocks surrounded by fracture zones located at a safe distance from the planned disposal area. The work usually starts with a regional structural analysis of mosaics of Landsat-1 winter and summer imagery. Next an assortment of different maps, which cover the whole country, is used. Technical methods for geological and hydrogeological site investigations are being developed during the very first phase of the studies, and a borehole 1000 meters deep will be made in southwestern Finland. Studies for the final disposal of spent fuel or high-level reprocessing waste have been made since 1974 in Finland. General suitability studies of the bedrock have been going on since 1977. The present results indicate that suitable investigation areas for the final disposal of highly active waste can be found in Finland

  4. The final disposal facility of spent nuclear fuel

    International Nuclear Information System (INIS)

    Prvakova, S.; Necas, V.

    2001-01-01

    Today the most serious problem in the area of nuclear power engineering is the management of spent nuclear fuel. Due to its very high radioactivity the nuclear waste must be isolated from the environment. The perspective solution of nuclear fuel cycle is the final disposal into geological formations. Today there is no disposal facility all over the world. There are only underground research laboratories in the well developed countries like the USA, France, Japan, Germany, Sweden, Switzerland and Belgium. From the economical point of view the most suitable appears to build a few international repositories. According to the political and social aspect each of the country prepare his own project of the deep repository. The status of those programmes in different countries is described. The development of methods for the long-term management of radioactive waste is necessity in all countries that have had nuclear programmes. (authors)

  5. The spent fuel disposal program in Taiwan

    International Nuclear Information System (INIS)

    Li, K.K.

    1994-01-01

    It is important, especially for countries with plan to develop nuclear power, to recognize that two key factors to the future prosperity of nuclear power are the safety of nuclear power plants and the appropriate management of backend activities. This paper described the financial, managerial, technical, and political status of the spent fuel disposal program in a newly industrialized country. It is concluded that the R ampersand D works and operational practices associated with the backend activities must be carried out in parallel with the development of nuclear power

  6. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  7. Final disposal of spent nuclear fuel - basis for site selection

    International Nuclear Information System (INIS)

    Anttila, P.

    1995-05-01

    International organizations, e.g. IAEA, have published several recommendations and guides for the safe disposal of radioactive waste. There are three major groups of issues affecting the site selection process, i.e. geological, environmental and socioeconomic. The first step of the site selection process is an inventory of potential host rock formations. After that, potential study areas are screened to identify sites for detailed investigations, prior to geological conditions and overall suitability for the safe disposal. This kind of stepwise site selection procedure has been used in Finland and in Sweden. A similar approach has been proposed in Canada, too. In accordance with the amendment to the Nuclear Energy Act, that entered into force in the beginning of 1995, Imatran Voima Oy has to make preparations for the final disposal of spent fuel in the Finnish bedrock. Relating to the possible site selection, the following geological factors, as internationally recommended and used in the Nordic countries, should be taken into account: topography, stability of bedrock, brokenness and fracturing of bedrock, size of bedrock block, rock type, predictability and natural resources. The bedrock of the Loviisa NPP site is a part of the Vyborg rapakivi massif. As a whole the rapakivi granite area forms a potential target area, although other rock types or areas cannot be excluded from possible site selection studies. (25 refs., 7 figs.)

  8. Public Perspectives in the Japanese HLW Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki [Nuclear Waste Management Organization of Japan (NUNIO), Tokyo (Japan)

    2006-09-15

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue.

  9. Public Perspectives in the Japanese HLW Disposal Program

    International Nuclear Information System (INIS)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki

    2006-01-01

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue

  10. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  11. Astron Program final report

    International Nuclear Information System (INIS)

    Briggs, R.J.; Hester, R.E.; Porter, G.D.; Sherwood, W.A.; Spoerlein, R.; Stallard, B.W.; Taska, J.; Weiss, P.B.

    1975-01-01

    This report describes important experimental results obtained in the last two years of the Astron Program, an LLL controlled nuclear fusion program which terminated in 1973. Little theoretical work is included, but an extensive bibliography is given

  12. Management of radioactive fuel wastes: the Canadian disposal program

    International Nuclear Information System (INIS)

    Boulton, J.

    1978-10-01

    This report describes the research and development program to verify and demonstrate the concepts for the safe, permanent disposal of radioactive fuel wastes from Canadian nuclear reactors. The program is concentrating on deep underground disposal in hard-rock formations. The nature of the radioactive wastes is described, and the options for storing, processing, packaging and disposing of them are outlined. The program to verify the proposed concept, select a suitable site and to build and operate a demonstration facility is described. (author)

  13. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  14. Bibliography on ocean waste disposal. second edition. Final report 1976

    International Nuclear Information System (INIS)

    Stanley, H.G.; Kaplanek, D.W.

    1976-09-01

    This research bibliography is restricted to documents relevant to the field of ocean waste disposal. It is primarily limited to recent publications in the categories of: ocean waste disposal; criteria; coastal zone management; monitoring; pollution control; dredge spoil; dredge spoin disposal; industrial waste disposal; radioactive waste; oil spills; bioassay; fisheries resources; ocean incineration; water chemistry; and, Water pollution

  15. Geophysical borehole logging. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Rouhiainen, P.

    1984-01-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  16. Seabed Disposal Program. Annual report, January--December 1975

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1976-05-01

    This document is the report of the activities in the Seabed Disposal Program for CY 1975. A summary is given of the progress made to determine the feasibility of disposal of high-level solidified and encapsulated radioactive wastes into the deep seafloor. While a considerable amount of work remains to be done to assure safety and feasibility, no technological reasons have been presented that would preclude the possibility of successful disposal into submarine geologic media

  17. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 3: Comment response document

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program. This volume provides responses to public comments on the Draft SEIS-II. Comments are related to: Alternatives; TRU waste; DOE credibility; Editorial; Endorsement/opposition; Environmental justice; Facility accidents; Generator site operations; Health and safety; Legal and policy issues; NEPA process; WIPP facilities; WIPP waste isolation performance; Purpose and need; WIPP operations; Site characterization; Site selection; Socioeconomics; and Transportation

  18. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. This volume contains the following appendices: Waste inventory; Summary of the waste management programmatic environmental impact statement and its use in determining human health impacts at treatment sites; Air quality; Life-cycle costs and economic impacts; Transportation; Human health; Facility accidents; Long-term consequence analysis for proposed action and action alternatives; Long-term consequence analysis for no action alternative 2; and Updated estimates of the DOE's transuranic waste volumes

  19. High level radioactive wastes: Considerations on final disposal

    International Nuclear Information System (INIS)

    Ciallella, Norberto R.

    2000-01-01

    When at the beginnings of the decade of the 80 the National Commission on Atomic Energy (CNEA) in Argentina decided to study the destination of the high level radioactive wastes, was began many investigations, analysis and multidisciplinary evaluations that be origin to a study of characteristics never before carried out in Argentina. For the first time in the country was faced the study of an environmental eventual problem, several decades before that the problem was presented. The elimination of the high level radioactive wastes in the technological aspects was taken in advance, avoiding to transfer the problems to the future generations. The decision was based, not only in technical evaluations but also in ethical premises, since it was considered that the future generations may enjoy the benefits of the nuclear energy and not should be solve the problem. The CNEA in Argentina in 1980 decided to begin a feasibility study and preliminary engineering project for the construction of the final disposal of high level radioactive wastes

  20. UK program: glasses and ceramics for immobilization of radioactive wastes for disposal

    International Nuclear Information System (INIS)

    Johnson, K.D.B.

    1979-01-01

    The UK Research Program on Radioactive Waste Management includes the development of processes for the conversion of high-level-liquid-reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behavior under storage and disposal conditions have been examined. Methods for immobilizing activity from other wastes by conversion to glass or ceramic forms are described. The UK philosophy of final solutions to waste management and disposal is presented

  1. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  2. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    International Nuclear Information System (INIS)

    Granero, J.J.

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high level radioactive wastes and different solutions searched abroad which seems of interest for Spain. (author)

  3. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  4. Development of an international safeguards approach to the final disposal of spent fuel in geological repositories

    International Nuclear Information System (INIS)

    Murphey, W.M.; Moran, B.W.; Fattah, A.

    1996-01-01

    The International Atomic Energy Agency (IAEA) is currently pursuing development of an international safeguards approach for the final disposal of spent fuel in geological repositories through consultants meetings and through the Program for Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories (SAGOR). The consultants meetings provide policy guidance to IAEA; SAGOR recommends effective approaches that can be efficiently implemented by IAEA. The SAGOR program, which is a collaboration of eight Member State Support Programs (MSSPs), was initiated in July 1994 and has identified 15 activities in each of three areas (i.e. conditioning facilities, active repositories, and closed repositories) that must be performed to ensure an efficient, yet effective safeguards approach. Two consultants meetings have been held: the first in May 1991 and the last in November 1995. For nuclear materials emplaced in a geological repository, the safeguards objectives were defined to be (1) to detect the diversion of spent fuel, whether concealed or unconcealed, from the repository and (2) to detect undeclared activities of safeguards concern (e.g., tunneling, underground reprocessing, or substitution in containers)

  5. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  6. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  7. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  8. Swiss projects for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    At present, the major part of the discussion does not focus on technical assessment methodology and data, but rather on interpretation of the available geologic data for high-level waste disposal planning. Meanwhile, plans for the implementation of repositories have to be developed. Accordingly, the longer-term studies on high-level waste disposal are proceeding at a pace appropriate for their relatively far-future timescales, and intensified efforts are being put into projects for design, siting, safety assessment and construction of the more urgently required repository for low and intermediate level waste. (orig./PW) [de

  9. Strategic environmental audit for the national waste disposal program; Strategische Umweltpruefung zum Nationalen Entsorgungsprogramm. Umweltbericht fuer die Oeffentlichkeitsbeteiligung

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel [Oeko-Institut e.V., Darmstadt (Germany); and others

    2015-03-27

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  10. Final disposal of spent fuels and high activity waste: status and trends in the world

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2007-01-01

    Geological disposal of spent nuclear fuel and high level waste from reprocessing, properly conditioned, is described. This issue is a major challenge related to radioactive waste management. Several options are analyzed, such as application of separation and transmutation to high level waste before final disposal; need of multinational repositories; a phased approach to deep geological disposal and long term surface storage. Bearing in mind this information, a future article will report the state of art in the world. (author) [es

  11. Pre-feasibility study for final disposal of radioactive waste. Disposal concepts. Main report

    International Nuclear Information System (INIS)

    Andersen, L.; Skov, C.; Kueter, A.; Schepper, L.; Gottberg Roemer, H.; Refsgaard, A.; Utko, M.; Kristiansen, Torben

    2011-05-01

    This prefeasibility study is part of the overall process related to the decision on placement and design of a repository for the Danish low and medium level radioactive waste primarily from the facilities at Risoe. The prefeasibility study encompasses the preliminary design of a number of repository types based on the overall types set out in the 'Parliamentary decision' together with a preliminary safety assessment of these repository types based on their possible placement in a set of typical Danish geologies. The report consists of three parts. Part I is the descriptive part containing information on the waste to be disposed of, the potential conditioning (packaging) possibilities for the waste before placement in a repository, the suggested preliminary design of the different repository types, and the suggested visual appearance of the repository. Part II is the assessment part. It contains an introduction to the concepts used in the preliminary safety assessment, which encompasses: the assessment of potential long term impact and the assessment of possible accidental incidents. The division of the preliminary safety assessment in to these two categories has several reasons. One is that the criteria to which impact is to be compared are different for the two types of impact, another is that while the possible variation in the long term impact is primarily due to the possible variation in the parameters influencing the impact, the impact from accidental incidents is governed by the probability of the occurrence of these incidents and the potential consequence of the impact, which calls for a different assessment approach. Since the suggestions for packaging of the different waste types is a result of both types of assessments, part II also contains a description of these suggestions based on the preliminary safety assessments. Finally part II contains the costs related to the different types of repositories and the suggested packaging. Part III of the report

  12. Pre-feasibility study for final disposal of radioactive waste. Disposal concepts. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, L.; Skov, C.; Kueter, A.; Schepper, L.; Gottberg Roemer, H.; Refsgaard, A.; Utko, M.; Kristiansen, Torben (COWI A/S, Kgs. Lyngby (Denmark))

    2011-05-15

    This prefeasibility study is part of the overall process related to the decision on placement and design of a repository for the Danish low and medium level radioactive waste primarily from the facilities at Risoe. The prefeasibility study encompasses the preliminary design of a number of repository types based on the overall types set out in the 'Parliamentary decision' together with a preliminary safety assessment of these repository types based on their possible placement in a set of typical Danish geologies. The report consists of three parts. Part I is the descriptive part containing information on the waste to be disposed of, the potential conditioning (packaging) possibilities for the waste before placement in a repository, the suggested preliminary design of the different repository types, and the suggested visual appearance of the repository. Part II is the assessment part. It contains an introduction to the concepts used in the preliminary safety assessment, which encompasses: the assessment of potential long term impact and the assessment of possible accidental incidents. The division of the preliminary safety assessment in to these two categories has several reasons. One is that the criteria to which impact is to be compared are different for the two types of impact, another is that while the possible variation in the long term impact is primarily due to the possible variation in the parameters influencing the impact, the impact from accidental incidents is governed by the probability of the occurrence of these incidents and the potential consequence of the impact, which calls for a different assessment approach. Since the suggestions for packaging of the different waste types is a result of both types of assessments, part II also contains a description of these suggestions based on the preliminary safety assessments. Finally part II contains the costs related to the different types of repositories and the suggested packaging. Part III of the

  13. Final radioactive waste disposal: A European comparison of organization and costs

    International Nuclear Information System (INIS)

    Drasdo, P.

    2000-01-01

    The investigation is aimed to the comparison of organization structures of operators (plants) and governmental institutions concerned with the final disposal of radioactive waste. The study is covering Germany, France, United Kingdom and Sweden. The capital amount of total final disposal costs are the highest in Germany, the lowest in Sweden. This is also true for the final disposal costs that have to be financed by electricity production from nuclear power plants. The reasons for the differences with respect to economic efficiencies, political decisions and technical concepts are discussed

  14. Bases for Decisions on Final Disposal in Finland

    International Nuclear Information System (INIS)

    Avolahti, Jaana

    2001-01-01

    The disposal of the spent nuclear fuel is approaching one of the significant milestones in Finland. Social debate on the nuclear waste management is going on aiming at a decision of principle on future directions of spent fuel management. The research so far has required no political decision. This current situation is preceded by preparations for two decades carried out by Posiva Oy who took over the programme managed earlier by Teollisuuden Voinia Oy, one of the country's nuclear power companies. The preparations comprise site investigations, technical concept development, research into long-term safety and an environmental impact assessment. The work carried out by Posiva is under regular assessment by the authorities. Research programmes are drawn up every year and reports are published for open review. The preparations in the next years to come aim at starting the construction of the repository in 2010 and the disposal operations are planned to be started in 2020. Various stakeholders in Finland are involved in the decision-making process on the disposal of spent nuclear fuel. The process started when Posiva as an implementer applied for the Government's Decision in Principle in 1999. The Government made a favourable decision in December 2000 on the basis of different considerations. Among the important bases were the preceding favourable decisions made by the proposed siting municipality and the regulatory authority for radiation safety. At the moment the members of the Parliament are discussing the principles of the disposal in order to be able to vote on the Government's decision in the springtime. This paper discusses similarities and differences between the decisions made so far as regards the deep repository. The objective is to present the significance of the decisions from the point of view of an implementer of the repository. The Decision in Principle does not give any consent to start constructing the repository. Licenses for construction and

  15. Technical support document for the surface disposal of sewage sludge. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed

  16. Technical support document for the surface disposal of sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

  17. Qualification of old wastes for finale disposal; Qualifizierung von Altabfaellen fuer die Endlagerung

    Energy Technology Data Exchange (ETDEWEB)

    Dullau, R.; Kloeckner, J. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Uekoetter, S. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2010-05-15

    In the frame of the interim storage and final disposal of radioactive waste forms until now about 1200 barrels filled with old radioactive waste had to be requalified. The process of requalification is described in this contribution. The storage casks contained mainly high-pressure compacted and loose mixed waste, cemented waste and casting molds, building waste and combustion residuals, conditioned in the 1980ies. In the final repository Morsleben 80% of the waste forms were cleared for final disposal in Morsleben, 20% were qualified for interim storage and final disposal in the Schachtanlage Konrad. Based on these experiences the authors summarize recommendations for further requalification of old waste forms for the disposal in the Schachtanlage Konrad.

  18. Responsibility, coresponsibility and responsibility to the future in radiation protection and the question of final disposal

    International Nuclear Information System (INIS)

    Gellermann, R.

    2005-01-01

    Based on philosophical terms and concepts the responsibility, coresponsibility and responsibility to the future of people working in radiation protection are discussed and some resultant conclusions concerning finals disposal are derived. (orig.)

  19. Getting ready for final disposal in Finland - Independent verification of spent fuel

    International Nuclear Information System (INIS)

    Tarvainen, Matti; Honkamaa, Tapani; Martikka, Elina; Varjoranta, Tero; Hautamaeki, Johanna; Tiitta, Antero

    2001-01-01

    based on the active independent verification of declared data One of the difficulties that may be related to the final disposal will be old fuel, especially fuel with missing verified knowledge or fuel with poorly maintained continuity of knowledge. The Finnish SSAC has avoided this potential future problem in time by carrying out NDA verification measurements of spent fuel in a systematic manner since the beginning of the interim storing 1987. Data and spectra of the measurements have been stored into a spent fuel measurement database FISDAM (Finnish Safeguards Database of Measurements) maintained by the safeguards office of STUK. The NDA methods used are based on the detection of spent fuel specific signals i.e. fission product gamma rays or passive neutron emission from actinides. Final verification of spent fuel upon the final disposal is planned to be based on the FISDAM data followed by partial defect/rod level verification of all declared irradiated nuclear material. This will allow the SSAC to gain very high assurance that the data of the disposed material will be correct and complete. The SSAC verification activities may also form of close future cooperation with the IAEA and Euratom according to the principles of the Additional Protocol. Systematic and accurate measurements are an essential feature of the Finnish SSAC understanding of good safeguards. All present and future questions concerning declared data will be verified in time. The approach selected ensures that no undue burden is transferred to the future generations due to partially or poorly filled safeguards obligations The paper discusses the activities and results gained by the SSAC in addition to the programs and plans related to preparing for the final disposal safeguards needs, with special emphasis on the spent fuel NDA verification issues. (author)

  20. Direct ultimate disposal of spent fuel DEAB. Systems analysis. Ultimate disposal concepts. Final report. Main volume

    International Nuclear Information System (INIS)

    Wahl, A.

    1995-10-01

    The results elaborated under the project, systems analysis of mixed radwaste disposal concepts and systems analysis of ultimate disposal concepts, provide a comprehensive description and assessment of a radwaste repository, for heat generating wastes and for wastes with negligible heat generation, and thus represent the knowledge basis for forthcoming planning work for a repository in an abandoned salt mine. A fact to be considered is that temperature field calculations have shown that there is room for further optimization with regard to the mine layout. The following aspects have been analysed: (1) safety of operation; (2) technical feasibility and realisation and licensability of the concepts; (3) operational aspects; (4) varieties of utilization of the salt dome for the intended purpose (boreholes for waste emplacement, emplacement in galleries, multi-horizon systems); (5) long-term structural stability of the mine; (6) economic efficiency; (7) nuclear materials safeguards. (orig./HP) [de

  1. Subseabed Disposal Program. Annual report, January-December 1978

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1980-02-01

    This is the fifth annual report describing the progress and evaluating the status of the Subseabed Disposal Program (SDP), which was begun in June 1973. The program was initiated by Sandia Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans

  2. Treatment and final disposal of nuclear waste. Programme for research, development, demonstration and other measures

    International Nuclear Information System (INIS)

    1992-09-01

    The swedish program for R,D and D on disposal of radioactive waste in an underground repository is presented. Main topics are: Radioactive waste management, storage and disposal; encapsulation; environmental impacts; risk assessment; radionuclide migration; decommissioning; cost and international cooperation. 129 refs, 43 figs, 10 tabs

  3. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 1, Chapters 1--6

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. Chapters 1--6 include an introduction, background information, description of the proposed action and alternatives, description of the affected environments, environmental impacts, and consultations and permits

  4. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  5. Disposal of chemical agents and munitions stored at Pueblo Depot Activity, Colorado. Final, Phase 1: Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.W.; Blasing, T.J.; Ensminger, J.T.; Johnson, R.O.; Schexnayder, S.M.; Shor, J.T.; Staub, W.P.; Tolbert, V.R.; Zimmerman, G.P.

    1995-04-01

    Under the Chemical Stockpile Disposal Program (CSDP), the US Army proposes to dispose of lethal chemical agents and munitions stored at eight existing Army installations in the continental United States. In 1988, the US Army issued the final programmatic environmental impact statement (FPEIS) for the CSDP. The FPEIS and the subsequent Record of Decision (ROD) identified an on-site disposal process as the preferred method for destruction of the stockpile. That is, the FPEIS determined the environmentally preferred alternative to be on-site disposal in high-temperature incinerators, while the ROD selected this alternative for implementation as the preferred method for destruction of the stockpile. In this Phase I report, the overall CSDP decision regarding disposal of the PUDA Stockpile is subjected to further analyses, and its validity at PUDA is reviewed with newer, more detailed data than those providing the basis for the conclusions in the FPEIS. The findings of this Phase I report will be factored into the scope of a site-specific environmental impact statement to be prepared for the destruction of the PUDA stockpile. The focus of this Phase I report is on those data identified as having the potential to alter the Army`s previous decision regarding disposal of the PUDA stockpile; however, several other factors beyond the scope of this Phase I report must also be acknowledged to have the potential to change or modify the Army`s decisions regarding PUDA.

  6. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  7. Treatment and final disposal of nuclear waste. Programme for encapsulation, deep geological disposal, and research, development and demonstration

    International Nuclear Information System (INIS)

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs

  8. Treatment and final disposal of nuclear waste. Programme for encapsulation, deep geological disposal, and research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs.

  9. Proceedings of the 1981 subseabed disposal program. Annual workshop

    International Nuclear Information System (INIS)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal

  10. Proceedings of the 1981 subseabed disposal program. Annual workshop

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  11. Methods of characterization of salt formations in view of spent fuel final disposal

    International Nuclear Information System (INIS)

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2002-01-01

    Deep disposal in geological formations of salt, granite and clay seems to be at present the most proper and commonly adopted solution for final disposal of high-level radioactive wastes and spent fuel. Disposing such wastes represents the top-priority issue of the European research community in the field of nuclear power. Although seemingly premature for Romanian power system, the interest for final disposal of spent fuel is justified by the long duration implied by the studies targeting this objective. At the same time these studies represent the Romanian nuclear research contribution in the frame of the efforts of integration within the European research field. Although Romania has not made so far a decision favoring a given geological formation for the final disposal of spent fuel resulting from Cernavoda NPP, the most generally taken into consideration appears the salt formation. The final decision will be made following the evaluation of its performances to spent fuel disposal based on the values of the specific parameters of the geological formation. In order to supply the data required as input parameters in the codes of evaluation of the geological formation performances, the INR Pitesti initiated a package of modern and complex methodologies for such determinations. The studies developed so far followed up the special phenomenon of salt convergence, a phenomenon characteristic for only this kind of rock, as well as the radionuclide migration. These studies allow a better understanding of these processes of upmost importance for disposal's safety. The methods and the experimental installation designed and realized at INR Pitesti aimed at determination of thermal expansion coefficient, thermal conductivity, specific heat, which are all parameters of high specific interest for high level radioactive waste or spent fuel disposal. The paper presents the results of these studies as well as the methodologies, the experimental installations and the findings

  12. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    International Nuclear Information System (INIS)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States

  13. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  14. Spanish program on disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.; Ramos Salvador, L.; Martines Martinez, A.

    1977-01-01

    The Spanish Energetic Program assumes an installed nuclear electrical power of 23.000 MWe by the year 1985. Therefore, Spain is making an effort in the managment of radioactive wastes, that can be synthesized in the following points: 1.- Make-up and review of the regulation on the management of radioactive wastes. 2.- Development of the processes and equipment for the treatment of solid, liquid and gaseous wastes from the CNEN ''Juan Vigon'', as well as those from the Nuclear Center of Soria. Solidification studies of RAA wastes arisen from the reprocessing. 3.- Evaluation of radioactive waste treatment systems of the new installed nuclear power plants. Assistance to the nuclear and radioactive facilities operators. 4.- Increase the storage capacity of the pilot repository for solid radioactive wastes of categories 1 and 2 IAEA, located in Sierra Albarrana. Studies of adequate geological formation for storage of solid wastes of IAEA categories 3 and 4. 5.- Studies about long term surface storage systems for solidified RAA wastes arisen from the reprocessing [es

  15. Handling and final disposal of nuclear waste. Hard Rock Laboratory

    International Nuclear Information System (INIS)

    1989-09-01

    The purpose of the Hard Rock Laboratory is to provide an opportunity for research and development in a realistic and undisturbed underground rock environment down to the depth planned for the future repository. The R and D work in the underground laboratory has the following main goals: To test the quality and appropriateness of different methods for characterizing the bedrock with respect to conditions of importance for a final repository. To refine and demonstrate methods for how to adapt a repository to the local properties of the rock in connection with planning and construction. And, finally, to collect material and data of importance for the safety of the future repository and for confidence in the quality of the safety assessments 13 figs, 3 tabs

  16. Encapsulation and handling of spent nuclear fuel for final disposal

    International Nuclear Information System (INIS)

    Loennerberg, B.; Larker, H.; Ageskog, L.

    1983-05-01

    The handling and embedding of those metal parts which arrive to the encapsulation station with the fuel is described. For the encapsulation of fuel two alternatives are presented, both with copper canisters but with filling of lead and copper powder respectively. The sealing method in the first case is electron beam welding, in the second case hot isostatic pressing. This has given the headline of the two chapters describing the methods: Welded copper canister and Pressed copper canister. Chapter 1, Welded copper canister, presents the handling of the fuel when it arrives to the encapsulation station, where it is first placed in a buffer pool. From this pool the fuel is transferred to the encapsulation process and thereby separated from fuel boxes and boron glass rod bundles, which are transported together with the fuel. The encapsulation process comprises charging into a copper canister, filling with molten lead, electron beam welding of the lid and final inspection. The transport to and handling in the final repository are described up to the deposition and sealing in the deposition hole. Handling of fuel residues is treated in one of the sections. In chapter 2, Pressed copper canister, only those parts of the handling, which differ from chapter 1 are described. The hot isostatic pressing process is given in the first sections. The handling includes drying, charging into the canister, filling with copper powder, seal lid application and hot isostatic pressing before the final inspection and deposition. In the third chapter, BWR boxes in concrete moulds, the handling of the metal parts, separated from the fuel, are dealt with. After being lifted from the buffer pool they are inserted in a concrete mould, the mould is filled with concrete, covered with a lid and after hardening transferred to its own repository. The deposition in this repository is described. (author)

  17. Program SYVAC, for stochastic assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Sherman, G.R.; Hoffman, K.J.; Donahue, D.C.

    1985-01-01

    In this paper, the computer program SYVAC, used to assess concepts for the disposal of nuclear fuel waste, is described with regard to the development approach, the basic program structure, and quality assurance. The interrelationships of these aspects are illustrated by detailed descriptions of two concepts of fundamental importance to the program: the method of selecting parameter values from input probability density functions, and the numerical evaluation of the convolution integral. Quality assurance procedures, including different types of comparisons and peer review, are presented

  18. Archaeology audit program final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    In order to review oil and gas companies' archaeological management systems, the British Columbia Oil and Gas Commission (OGC) introduced its archaeology audit program (AAP) in April 2008. As part of this audit, twenty six oil and gas companies were selected for an office documentation review and a corresponding field audit. This document presented and described these audit results. The purpose of the final audit report was to provide information to assist oil and gas companies to improve their management systems by increasing the emphasis of the preservation of cultural resources. This report presented an overview of the AAP scope and methodology and provided examples from the audit of both good management practices encountered and practices in which opportunities for improvement to archaeological management systems could be implemented. Recommendations to address improvement opportunities were also discussed. It was concluded that the oil and gas companies subject to the audit were found to have met or exceeded OGC expectations for maintaining archaeological management systems. 2 tabs., 7 figs.

  19. Site investigations for the disposal of spent fuel - investigation program

    International Nuclear Information System (INIS)

    Aeikaes, Timo

    1985-11-01

    The Industrial Power Company Ltd (TVO) is making preparations for the final disposal of spent nuclear fuel into the Finnish bedrock. The revised site investigation program for the years 1986-2010 is presented in this report. The objectives and activities in the near future are described in more detail. The main objectives and frame programs for the investigations in the more distant future are described. The program planning of these investigations are being developed in the preceding site investigations. The investigations for the site selection are divided into four phases: 1983-1985 selection of the investigation areas, preparations for the field investigations, drilling and investigations in a deep test borehole; 1986-1992 preliminary site investigations in 5-10 investigation areas; 1993-2000 detailed site investigations in 2-3 investigation areas. Site selection in the year 2000; 2001-2010 complementary investigations on the selected site. The first investigation phase will be carried out as planned. In this phase a 1001 m deep test borehole was drilled at Lavia in western Finland. With the investigations in the borehole and related development work, preparations were made for the future field investigations. The equipment and investigation methods are being developed during the site investigations. The equipment for taking groundwater samples and the unit for hydraulic testing have been developed. In the future the emphasis in the work will be in developing equipment for monitoring of the hydraulic head and measuring the volumetric flow. In groundwater sampling the present procedure can be improved by adding the test for the in-situ measurements. The results of the field investigations will be stored and processed in a centralized data base. The data base will transmit the results for the interpretation and then the interpreted results transmitted for model calculations and reporting. The cost estimate for the investigations in 1986-2010 is 110-125 million

  20. Program criteria for subseabed disposal of radioactive waste: research strategies and review processes

    International Nuclear Information System (INIS)

    1981-09-01

    The Subseabed Disposal Program follows the policies and criteria of the National Waste Terminal Storage program for the development of land-based repositories, except where the technical differences between land and ocean geologic disposal make different approaches or criteria necessary. This is the first of a series of documents describing the procedures and criteria for the Subseabed Disposal Program

  1. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  2. USA program on the waste disposal of nuclear military complexes

    International Nuclear Information System (INIS)

    Vinogradova, I.

    1992-01-01

    The USA program on the nuclear military complex waste disposal which focuses on the problems of environment protection and recovery is briefly considered. A group of works on the updating of the existing and on the construction of new nuclear weapon undustries is chosen to be the priority direction. The problem of radioactive waste burial in the Hunford nuclear complex is discussed. Total expenses for military enterprise purification from radioactive wastes are estimated as 91.2-129 billion dollars, and expenses for realization of the whole program are estimated as 180 billion dollars for 50 years

  3. Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program Plan

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Eisenhower, B.M.; Reeves, M.E.; DePaoli, S.M.; Stinton, L.H.; Harrington, E.H.

    1989-02-01

    The objective of the Hazardous Waste Development, Demonstration and Disposal (HAZWDDD) Program Plan is to ensure that the needs for treatment and disposal of all its hazardous and mixed wastes have been identified and planned for. A multifaceted approach to developing and implementing this plan is given, including complete plans for each of the five installations, and an overall integrated plan is also described in this report. The HAZWDDD Plan accomplishes the following: (1) provides background and organizational information; (2) summarizes the 402 hazardous and mixed waste streams from the five installations by grouping them into 13 general waste categories; (3) presents current treatment, storage, and disposal capabilities within Energy Systems; (4) develops a management strategy by outlining critical issues, presents flow sheets describing management schemes for problem waste streams, and builds on the needs identified; (5) outlines specific activities needed to implement the strategy developed; and (6) presents schedule and budget requirements for the next decade. The HAZWDDD Program addresses current and future technical problems and regulatory issues and uncertainties. Because of the nature and magnitude of the problems in hazardous and mixed waste management, substantial funding will be required. 10 refs., 39 figs., 16 tabs

  4. Role of the Nuclear Regulatory Authority in the final disposal of radioactive wastes in Argentina

    International Nuclear Information System (INIS)

    Petraitis, E.J.; Siraky, G.; Novo, R.G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. The activities of the Nuclear Regulatory Authority (ARN) and the applied approaches in relation to inspection of facilities, safety assessments of associated systems and collaboration in the matter with international agencies are also exposed. (author) [es

  5. Radiation protection and safety for final disposal of radioactive wastes stored in Abadia de Goias, Brazil

    International Nuclear Information System (INIS)

    1991-01-01

    This standard aims to satisfy the radiation protection and safety conditions required by Brazilian Nuclear Energy Commission (CNEN) for final disposal of radioactive wastes stored in Abadia de Goias. These wastes are products of the accident happened in 1987 caused by the Cs-137 source violation. (M.V.M.)

  6. Final disposal in deep boreholes using multiple geological barriers. Digging deeper for safety. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido; Hurst, Stephanie; Merkel, Broder; Mueller, Birgit; Schilling, Frank

    2016-03-15

    The proceedings of the workshop on final disposal in deep boreholes using multiple geological barriers - digging deeper for safety include contributions on the following topics: international status and safety requirements; geological and physical barriers; deep drilling - shaft building; technical barriers and emplacement technology for high P/T conditions; recovery (waste retrieval); geochemistry and monitoring.

  7. The satellite symposium of the 2nd COE-INES international symposium, INES-2 on 'final disposal sites: How were they determined?'

    International Nuclear Information System (INIS)

    2007-03-01

    The symposium was organized on December 1, 2006, by Tokyo Institute of Technology in charge of the 21st century COE program to establish innovative nuclear energy systems for sustainable development of the world. It was aimed at finding the process of determining the final radioactive waste disposal sites of Japan through a comprehensive and interdisciplinary approach. Four guests, 2 from Finland and 2 from Korea each one from the promoting side and the other from the local governmental side, were invited from the two countries that have already determined the sites through the necessary processes to find the consensus. Participants were 103 including 7 from abroad. The symposium consisted of plenary lectures: Regulators' Role in Development of Finnish Nuclear Waste Disposal Program, and A Successful Case Site Selection for Low- and Intermediate-Level Radioactive Waste Disposal Facility, Site Selection for LILW Disposal Facility in Korea, Public Participations in the Selection and Acceptance of Olkiluoto Site for the Final Disposal of Spent Nuclear Fuel in Finland and, continuously, a panel discussion to find what are the key problems in solving the final disposal site selection in Japan and what will play a major role towards the solution of this important issues. The report includes all the lectures with diagrams and the records of questions and answers. (S. Ohno)

  8. Final disposal of the rad waste materials - question of the nuclear energy implementation and application perspectives

    International Nuclear Information System (INIS)

    Plecas, I.

    1995-01-01

    Two main problems that are denying and slowing down the development of nuclear energy are safe work of the nuclear power facilities (NEF) and disposal of the radioactive waste materials, produced from the NEF and infrastructure facilities of the nuclear fuel cycle (NFC). Although nowadays worldwide knowledge, based on the 45 year of experiences in handling the radioactive waste materials, do not treat the problems of final disposal of the rad waste materials as a task of the primary importance in NFC, this subject still engage experts from this field of investigations, especially in the countries that developed all aspects of the nuclear fuel cycle. Techniques for final disposal of low and intermediate level rad waste materials, are well known and are in state of implementation. The importance of the fundamental safety principles, implemented in the IAEA documents, concerning handling, treatment and final disposal of the rad waste materials, is presented. Future usage of nuclear energy, taking into account all the facts that are dealing with problems of the rad waste materials produced in the NFC, can be a reality. (author.)

  9. Biological studies of the U.S. subseabed disposal program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.; Jackson, D.W.

    1980-01-01

    The Subseabed Disposal Program (SDP) of the U.S. is assessing the feasibility of emplacing high level radioactive wastes (HLW) within deep-sea sediments and is developing the means for assessing the feasibility of the disposal practices of other nations. This paper discusses the role and status of biological research in the SDP. Studies of the disposal methods and of the conceived barriers (canister, waste form and sediment) suggest that biological knowledge will be principally needed to address the impact of accidental releases of radionuclides. Current experimental work is focusing on the deep-sea ecosystem to determine: (1) the structure of benthic communities, including their microbial component; (2) the faunal composition of deep midwater nekton; (3) the biology of deep-sea amphipods; (4) benthic community metabolism; (5) the rates of bacterial processes; (6) the metabolism of deep-sea animals, and (7) the radiation sensitivity of deep-sea organisms. A multi-compartment model is being developed to assess quantitatively, the impact (on the environment and on man) of releases of radionuclides into the sea

  10. Focal points of future FuE work concerning the final disposal of radioactive wastes (2011-2014)

    International Nuclear Information System (INIS)

    2012-07-01

    The present Federal support concept is the basis for applied fundamental research concerning final disposal of heat generating radioactive wastes. The use-oriented fundamental research is aimed to the development of a scientific-technical basis for the realization of a final repository for heat-generating radioactive wastes and spent nuclear fuel, to the continuous advancement of the state of science and technology with respect to final waste disposal and a substantial contribution to the constitution, development and preservation of scientific-technological competence in the field of nuclear waste management in Germany. The concept includes research and development work concerning final disposal in the host rock salt, clays and crystalline rocks (granite). The research and development main issues are the final disposal system, the system behavior, further topics in relation to final disposal and nuclear materials surveillance.

  11. Repository documentation rethought. A comprehensive approach from untreated waste to waste packages for final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton Philipp; Schubert, Johannes [VPC GmbH, Dresden (Germany)

    2017-11-15

    The German Act on Reorganization of Responsibility for Nuclear Disposal (Entsorgungsuebergangsgesetz (EntsorgUebG)) adopted in June 2017 provides the energy utilities with the new option of transferring responsibility for their waste packages to the Federal Government. This is conditional on the waste packages being approved for delivery to the Konrad final repository. A comprehensive approach starts with the dismantling of nuclear facilities and extends from waste disposal and packaging planning to final repository documentation. Waste package quality control measures are planned and implemented as early as in the process qualification stage so that the production of waste packages that are suitable for final deposition can be ensured. Optimization of cask and loading configuration can save container and repository volume. Workflow planning also saves time, expenditure and exposure time for personnel at the facilities. VPC has evaluated this experience and developed it into a comprehensive approach.

  12. Leadership Development Program Final Project

    Science.gov (United States)

    Parrish, Teresa C.

    2016-01-01

    TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.

  13. Preliminary environmental impact assessment for the final disposal of vanadium hazardous wastes

    International Nuclear Information System (INIS)

    Leyva Bombuse, D.; Peralta, J.L.; Gil Castillo, R.

    2006-01-01

    The aim of the present paper is the environmental impact assessment for the final management of vanadium wastes. The assessed practice is proposed as a final solution for a real problem in Cuba, related with the combustion fossil fuel burn in the electric generation. The study case, embrace the interim storage of hazardous wastes with high vanadium contents (5.08 T) and other heavy metals traces (Cr, Zn). According to the Cuban conditions (tacking into account the environmental regulations and infrastructure lack for the hazardous wastes disposal), it was decided the terrestrial dilution as a final disposal way. The environmental impact assessment methodology used, take into account, in the analyzed management practice, the actions, factors and environmental impacts. The positives and more relevant impacts were obtained for the socioeconomic means. The negative and irrelevant impacts were associated to the biotic and abiotic means. Socioeconomic factors were the most affected and the biotic and abiotic factors were less affected. The waste handling was the most relevant environmental action. According to the evaluated conditions, the obtained results showed that is feasible the terrestrial dilution as a sustainability way for the final disposal of vanadium hazardous wastes

  14. DOE Matching Grant Program; FINAL

    International Nuclear Information System (INIS)

    Dr Marvin Adams

    2002-01-01

    OAK 270 - The DOE Matching Grant Program provided$50,000.00 to the Dept of N.E. at TAMU, matching a gift of$50,000.00 from TXU Electric. The$100,000.00 total was spent on scholarships, departmental labs, and computing network

  15. Final disposal of decommissioning wastes in the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brewitz, W; Stippler, R

    1981-01-01

    The waste disposal concept of the Federal Republic of Germany for nuclear power plants provides for the final disposal of radioactive waste in deep geological formations and mines. The radiological safety of such a repository depends on a system of multiple barriers of which the geological barrier is the most important one. The isolation concept must guarantee the waste to decay below the limiting values of the German Radiation Protection Regulation within the repository. The expected total decommissioning waste masses from 12 nuclear power plants operating in the Federal Republic of Germany amounts to approxiametly 85000 Mg. For the final disposal of these wastes there are, under present aspects, two mines being considered as repositories. The pilot repository in the Asse II salt mine is in the state of licensing. The adandoned iron ore mine Konrad is being investigated for its feasibility and licensing will probably be initiated in 1982. Capacity and efficiency calculations have proved that both mines have got the technical requirements needed for the disposal of decommissioning and operating wastes from existent as well as from future built nuclear power plants.

  16. FLECHT SEASET program. Final report

    International Nuclear Information System (INIS)

    Hochreiter, L.E.

    1985-11-01

    This report presents the highlights and main findings of the USNRC, EPRI, and Westinghouse cooperative FLECHT SEASET program. The report indicates areas in which the results of the program can contribute to revising the current licensing requirements for Loss of Coolant (LOCA) safety analysis for PWRs. Also identified are several technical areas in which the new FLECHT SEASET data and analysis can lead to improved safety analysis modeling, and thereby to predicted PWR response for postulated accident scenarios. Significant progress has been made in the modeling areas of nonequilibrium dispersed two-phase flow during reflood. Improved models and understanding of this rod bundle cooling regime are summarized in this report. Another important result of the FLECHT SEASET program arises from the natural circulation test series, which investigated single-phase, two-phase, and reflux condensation cooling modes of a scaled PWR under small-break LOCA conditions. The tests and subsequent analysis constitute one of few complete sets of data for these cooling modes in which full-height, multitube steam generators with sufficient instrumentation were used to examine primary-to-secondary heat transfer in the generators. It is believed that the natural circulation test data will be extremely useful to benchmark the improved post-TMI small-break LOCA computer codes. 170 figs., 13 tabs

  17. Safeguards for final disposal of spent nuclear fuel. Methods and technologies for the Olkiluoto site

    International Nuclear Information System (INIS)

    Okko, O.

    2003-05-01

    The final disposal of the nuclear material shall introduce new safeguards concerns which have not been addressed previously in IAEA safeguards approaches for spent fuel. The encapsulation plant to be built at the site will be the final opportunity for verification of spent fuel assemblies prior to their transfer to the geological repository. Moreover, additional safety and safeguards measures are considered for the underground repository. Integrated safeguards verification systems will also concentrate on environmental monitoring to observe unannounced activities related to possible diversion schemes at the repository site. The final disposal of spent nuclear fuel in geological formation will begin in Finland within 10 years. After the geological site investigations and according to legal decision made in 2001, the final repository of the spent nuclear fuel shall be located at the Olkiluoto site in Eurajoki. The next phase of site investigations contains the construction of an underground facility, called ONKALO, for rock characterisation purposes. The excavation of the ONKALO is scheduled to start in 2004. Later on, the ONKALO may form a part of the final repository. The plans to construct the underground facility for nuclear material signify that the first safeguards measures, e.g. baseline mapping of the site area, need to take prior to the excavation phase. In order to support the development and implementation of the regulatory control of the final disposal programme, STUK established an independent expert group, LOSKA. The group should support the STUK in the development of the technical safeguards requirements, in the implementation of the safeguards and in the evaluation of the plans of the facility operator. This publication includes four background reports produced by this group. The first of these 'NDA verification of spent fuel, monitoring of disposal canisters, interaction of the safeguards and safety issues in the final disposal' describes the new

  18. Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain

    International Nuclear Information System (INIS)

    Huertas, F.; Ulibarri, A.

    1993-01-01

    Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m 2 , including the rock salt dump. The space required for the underground facilities amounts to 1.2 km 2 , approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented

  19. An alternative waste form for the final disposal of high-level radioactive waste (HLW) on the basis of a survey of solidification and final disposal of HLW

    International Nuclear Information System (INIS)

    Bauer, C.

    1982-01-01

    The dissertation comprises two separate parts. The first part presents the basic conditions and concepts of the process leading to the development of a waste form, such as:origin, composition and characteristics of the high-level radioactive waste; evaluation of the methods available for the final disposal of radioactive waste, especially the disposal in a geological formation, including the resulting consequences for the conditions of state in the surroundings of the waste package; essential option for the conception of a waste form and presentation of the waste forms developed and examined on an international level up to now. The second part describes the production of a waste form on TiO 2 basis, in which calcined radioactive waste particles in the submillimeter range are embedded in a rutile matrix. That waste form is produced by uniaxial pressure sintering in the temperature range of 1223 K to 1423 K and pressures between 5 MPa and 20 MPa. Microstructure, mechanical properties and leaching rates of the waste form are presented. Moreover, a method is explained allowing compacting of the rutile matrix and also integration of a wasteless overpack of titanium or TiO 2 into the waste form. (orig.) [de

  20. Krypton-85 disposal program. Semiannual report, August 15, 1977--March 31, 1978

    International Nuclear Information System (INIS)

    Klett, R.D.

    1979-02-01

    The first 7.5 months of the Krypton-85 disposal program are summarized. Included are task definitions and initial progress in geologic disposal system studies, SURF compatibility, augmented heat dissipation, material qualification, exterior canister compatibility, ceramic liners for canisters, and geologic transport. Feasibility studies indicate that Kr-85 can be disposed of at SURF facility or in near-surface geologic repositories

  1. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  2. 78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-03-11

    ... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R02-RCRA-2013-0144; FRL-9693-3] New York: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...

  3. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-12-27

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...

  4. A linear program for assessing the assignment and scheduling of radioactive wastes for disposal to sea

    International Nuclear Information System (INIS)

    Hutchinson, W.

    1983-04-01

    The report takes the form of a user guide to a computer program using linear programming techniques to aid the assignment and scheduling of radioactive wastes for disposal to sea. The program is aimed at the identification of 'optimum' amounts of each waste stream for disposal to sea without violating specific constraints values and/or fairness parameters. (author)

  5. Developments in the Canadian program for geological disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Allan, C.J.; Nuttall, K.

    1996-01-01

    The Canadian Nuclear Fuel Waste Management Program is at the end of disposal concept and technology development and is now undergoing a comprehensive environmental review. This paper will review: the history of the Canadian program; the disposal concept and the associated technologies; the program achievements and the lessons learned; and the status of the environmental review. (author)

  6. Nuclear Waste Disposal Program 2016; Entsorgungsprogramm 2016 der Entsorgungspflichtigen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-12-15

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program.

  7. Development of knowledge building program concerning about high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Yamada, Kazuhiro; Takase, Hiroyasu

    2005-01-01

    Acquirement of knowledge about the high-level radioactive waste (HLW) disposal is one of the important factors for public to determine the social acceptance of HLW disposal. However in Japan, public do not have knowledge about HLW and its disposal sufficiently. In this work, we developed the knowledge building program concerning about HLW disposal based on Nonaka, and Takeuchi's SECI spiral model in knowledge management, and carried to the experiment on this program. In the results, we found that the participants' knowledge about the HLW disposal increased and changed from misunderstanding' or 'assuming' to 'facts' or 'consideration' through this experimental program. These results said that the experimental program leads participants to have higher quality of knowledge about the HLW disposal. In consequence, this knowledge building program may be effective in the acquirement of high quality knowledge. (author)

  8. Comparative overview of dangers, protective measures and risks for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-10-01

    The purpose of this report is to present an overview of the anticipated risks of geological disposal of radioactive wastes and to compare these to 'conventional' risks, which voluntarily or involuntarily are associated with human activities and have accompanied mankind for long times. Radioactive wastes which result from the generation of electricity by commercial nuclear reactors as well as those originating from research, industrial and medical applications necessitate prolonged isolation from the biosphere to their long-lived, although decaying, toxicity. Chapter 2 of this report contains a survey of the nature and extent of the potential hazard of radioactive waste, drawing attention to the fact that the toxicity of radionuclides is comparable to that of nonradioactive chemical compounds. The possibility of adverse effects on the public cannot be ruled out for either kind of waste. Current plans aim at the safe and effective disposal of radioactive wastes in deep and stable geological formations which should serve as hosts for engineered final repositories. For a final repository to be suitable, the site chosen should be free from circulating groundwater or the free movement of the groundwater must be strongly restricted. In order to prevent radioactive substances migrating away from the final repository in which they have been placed, it is planned to utilise natural and man-made barriers which function largely independently from each other. Thorough knowledge of the properties of man-made barriers, is as important as knowledge of the natural barriers, which are determined by the geology and hydrogeology of the site of the final repository. This principle of protection is known as a 'multiple-barrier concept' and is considered capable of providing safe disposal of radioactive wastes

  9. Interim Storage of Spent Nuclear Fuel before Final Disposal in Germany - Regulator's view

    International Nuclear Information System (INIS)

    Arens, G.; Goetz, Ch.; Geupel, Sandra; Gmal, B.; Mester, W.

    2014-01-01

    For spent nuclear fuel management in Germany the concept of dry interim storage in dual purpose casks before direct disposal is applied. The Federal Office for Radiation Protection (BfS) is the competent authority for licensing of interim storage facilities. The competent authority for surveillance of operation is the responsible authority of the respective federal state (Land). Currently operation licenses for storage facilities have been granted for a storage time of 40 years and are based on safety demonstrations for all safety issues as safe enclosure, shielding, sub-criticality and decay heat removal under consideration of operation conditions. In addition, transportability of the casks for the whole storage period has to be provided. Due to current delay in site selection and exploration of a disposal site, an extension of the storage time beyond 40 years could be needed. This will cause appropriate actions by the licensee and the competent authorities as well. A brief description of the regulatory base of licensing and surveillance of interim storage is given from the regulators view. Furthermore the current planning for final disposal of spent nuclear fuel and high level waste and its interconnections between storage and disposal concepts are shortly explained. Finally the relevant aspects for licensing of extended storage time beyond 40 years will be discussed. Current activities on this issue, which have been initiated by the Federal Government, will be addressed. On the regulatory side a review and amendment of the safety guideline for interim storage of spent fuel has been performed and the procedure of periodic safety review is being implemented. A guideline for implementing an ageing management programme is available in a draft version. Regarding safety of long term storage a study focussing on the identification and evaluation of long term effects as well as gaps of knowledge has been finished in 2010. A continuation and update is currently underway

  10. Quality assurance guidance for low-level radioactive waste disposal facility: Final report

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1989-01-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements for a low-level waste (LLW) disposal facility. The QC requirements are the basis for developing of a quality assurance (QA) program and for the guidance provided herein. The criteria are basic to any QA program. The document specifically establishes QA guidance for the design, construction, and operation of those structures, systems, components, as well as, for site characterization activities necessary to meet the performance objectives and to limit exposure to our release of radioactivity. 7 refs

  11. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    International Nuclear Information System (INIS)

    1982-03-01

    The NWTS-33 series, of which this document is a part, provides guidance for the National Waste Terminal Storage (NWTS) program in the development and implementation of licensed mined geologic disposal systems for solidified high-level and TRU wastes. Program objectives, functional requirements, and system performance criteria are found in this document. At the present time final criteria have not been issued by the Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA). The criteria in these documents have been developed on the basis of DOE's judgment of what is required to protect the health and safety of the public and the quality of the environment. It is expected that these criteria will be consistent with regulatory standards. The criteria will be re-evaluated on a periodic basis to ensure that they remain consistent with national waste management policy and regulatory requirements. A re-evaluation will be made when final criteria are promulgated by the NRC and EPA. A background section that briefly describes the mined geologic disposal system and explains the hierarchy and application of the NWTS criteria is included in Section 2.0. Secton 3.0 presents the program objectives, Section 4.0 functional requirements, Secton 5.0 the system performance criteria, and Section 6.0 quality assurance and standards. A draft of this document was issued for public comment in April 1981. Appendix A contains the DOE responses to the comments received. Appendix B is a glossary

  12. Subseabed Disposal Program In-Situ Heat Transfer Experiment (ISHTE)

    International Nuclear Information System (INIS)

    Percival, C.M.

    1983-05-01

    A heat transfer experiment is being developed in support of the Subseabed Disposal Program. The primary objectives of this experiment are: to provide information on the in situ response of seabed sediment to localized heating; to provide an opportunity to evaluate theoretical models of the response and to observe any unanticipated phenomena which may occur; and to develop and demonstrate the technology necessary to perform waste isolation oriented experiments on the seafloor at depths up to 6000 m. As presently envisaged, the heat transfer experiment will be conducted at a location in the central North Pacific though it could be performed anywhere that the ocean bottom is of the type deemed suitable for the disposal of nuclear waste material. The experiment will be conducted of the seafloor from a recoverable space-frame platform at a depth of approximately 6000 m. A 400-W isotopic heat source will be implanted in the illite sediment and the subsequent response of the sediment to the induced thermal field evaluated. After remote initiation of the experiment, a permanent record of the data obtained will be recorded on board the platform, with selected information transmitted to a surface vessel by acoustic telemetry. The experiment will be operational for one year, after which the entire platform will be recovered. Current plans call for the deployment of the experiment in 1986. Specific activities which will be pursued during the course of the experiment include: measurement of the thermal field; determination of the effective thermal conductivity of the sediment; measurement of pore pressure; evaluation of radionuclide migration processes; pore water sampling; sediment chemistry studies; sediment shear strength measurements; and coring operations in the immediate vicinity of the experiment for postexperiment analysis

  13. Assessment of DOE low-level radioactive solid waste disposal storage activities: task 103. Final report

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    From a survey of DOE sites, facilities, and practices for the disposal/storage of low-level radioactive solid waste, the following can be summarized: (1) No health hazard has been reported. (2) Some burial grounds are releasing small quantities of radionuclides to the immediate environment. These releases are well within release limits at all sites with the exception of on-site concentrations at ORNL. At ORNL, concentrations in the Clinch River are less than 1% of the release limits. (3) Many practices have been instituted in the last few years which have improved disposal/storage operations considerably. The most notable are: (a) improved record keeping and a centralized computer data file, (b) improved burial site surface maintenance and drainage control, (c) initiation of the use of waste compactors and current plans for their use at most burial sites, (d) initiation of studies at major sites for evaluation of the long-term impact of buried waste, (e) improvement of modeling/monitoring programs at all major sites, (f) initiation of studies to provide engineering methods of reducing burial ground discharges at ORNL, and (g) initiation of the shallow land burial technologoy program.Overall, the low-level waste is being disposed of and stored in a safe and orderly manner. Recent and planned improvements will provide increased environmental protection. The only unsatisfactory area involves record keeping. Records of waste buried years ago are either poor or nonexistent. This makes it very difficult to evaluate the total impact of some 30 years of disposal operations. While some of this important history is lost forever, projects now under way should be able to reconstruct most of it

  14. Strategic program for deep geological disposal of high level radioactive waste in China

    International Nuclear Information System (INIS)

    Wang Ju

    2004-01-01

    A strategic program for deep geological disposal of high level radioactive waste in China is proposed in this paper. A '3-step technical strategy': site selection and site characterization-site specific underground research laboratory-final repository, is proposed for the development of China's high level radioactive waste repository. The activities related with site selection and site characterization for the repository can be combined with those for the underground research laboratory. The goal of the strategy is to build China's repository around 2040, while the activities can be divided into 4 phases: 1) site selection and site characterization; 2) site confirmation and construction of underground research laboratory, 3) in-situ experiment and disposal demonstration, and 4) construction of repository. The targets and tasks for each phase are proposed. The logistic relationship among the activities is discussed. It is pointed out that the site selection and site characterization provide the basis for the program, the fundamental study and underground research laboratory study are the key support, the performance assessment plays a guiding role, while the construction of a qualified repository is the final goal. The site selection can be divided into 3 stages: comparison among pre-selected areas, comparison among pre-selected sites and confirmation of the final site. According to this strategy, the final site for China's underground research laboratory and repository will be confirmed in 2015, where the construction of an underground laboratory will be started. In 2025 the underground laboratory will have been constructed, while in around 2040, the construction of a final repository is to be completed

  15. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  16. Corrosion resistance of canisters for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Mattsson, E.

    1979-01-01

    A group of Swedish scientists has evaluated from the corrosion point of view three alternative canister types for final disposal of waste from nuclear reactors in boreholes in rock 500 m below ground. Titanium canisters with a wall-thickness of 6 mm and 100 mm thick lead lining have been estimated to have a life of at least thousands of years, and probably tens of thousands of years. Copper canisters with 200-mm-thick walls would last for hundreds of thousands of years. The third type, α-alumina sintered under isostatic pressure, is a very promising canister material

  17. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  18. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2011-01-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  19. The establishment of computer codes for radiological assessment on LLW final disposal in Taiwan

    International Nuclear Information System (INIS)

    Yang, C.C.; Chen, H.T.; Shih, C.L.; Yeh, C.S.; Tsai, C.M.

    1988-01-01

    For final shallow land disposal of Low Level Waste (LLW) in Taiwan, an effort was initiated to establish the evaluation codes for the needs of environmental impact analysis. The objective of the computer code is to set up generic radiological standards for future evaluation on 10 CFR Part 61 Licensing Requirements for Land Disposal of Radioactive Wastes. In determining long-term influences resulting from radiological impacts of LLW at disposal sites there are at least three quantifiable impact measures selected for calculation: dose to members of the public (individual and population), occupational exposures and costs. The computer codes are from INTRUDE, INVERSI and INVERSW of NUREG-0782, OPTIONR and GRWATRR of NUREG-0945. They are both installed in FACOM-M200 and IBM PC/AT systems of Institute of Nuclear Energy Research (INER). The systematic analysis of the computer codes depends not only on the data bases supported by NUREG/CR-1759 - Data Base for Radioactive Waste Management, Volume 3, Impact Analysis Methodology Report but also the information collected from the different exposure scenarios and pathways. The sensitivity study is also performed to assure the long-term stability and security for needs of determining performance objectives

  20. Imaging the risks - risking the image: Social impact assessment of the final disposal facility

    International Nuclear Information System (INIS)

    Avolahti, J.; Vira, J.

    1999-01-01

    Preparations for the final disposal of spent nuclear fuel in Finland started about twenty years ago. At present the work is carried out by Posiva Oy, which in 1996 took over the programme managed earlier by Teollisuuden Voima Oy, one of the country's nuclear power companies. From 1996 on the preparations have been made for all the spent fuel from Finnish nuclear power stations. The site for the final disposal facility will be selected among four alternatives by the end of 2000 and - assuming that the technical approach proposed by Posiva is accepted by the Government and the Parliament - the construction of the repository will start in the 2010s. The disposal operations are planned to be started in 2020. The alternative four sites have gone through a systematic site selection process based on geologic siting criteria and on environmental and cultural considerations. One of the objectives of the process was to avoid inhabited areas, agricultural fields, valuable groundwater or preservation areas as well as areas which might draw interest as regards the potential for ore deposits. The idea was that the field investigations and later the possible disposal facility should not cause any harm to local people. Two of the candidate sites are at present nuclear power plant sites situated at the coast, the two other candidates are inland sites with no nuclear activities. The geologic siting investigations were started in 1987. Interim assessments of the results so far have been made in 1992 and 1996 and a final report of all the investigations will be published before the end of 2000. The present view is that all four candidates are geologically suitable for siting the repository. Posiva's EIA for the final disposal of spent fuel in Finland is nearing completion. A considerable effort was made to involve local groups and individuals in the assessment process. Yet the participation remained limited and consisted mainly of active opponents of the project and of those who were

  1. Imaging the risks - risking the image: Social impact assessment of the final disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Avolahti, J.; Vira, J. [Posiva Oy, Helsinki (Finland)

    1999-12-01

    Preparations for the final disposal of spent nuclear fuel in Finland started about twenty years ago. At present the work is carried out by Posiva Oy, which in 1996 took over the programme managed earlier by Teollisuuden Voima Oy, one of the country's nuclear power companies. From 1996 on the preparations have been made for all the spent fuel from Finnish nuclear power stations. The site for the final disposal facility will be selected among four alternatives by the end of 2000 and - assuming that the technical approach proposed by Posiva is accepted by the Government and the Parliament - the construction of the repository will start in the 2010s. The disposal operations are planned to be started in 2020. The alternative four sites have gone through a systematic site selection process based on geologic siting criteria and on environmental and cultural considerations. One of the objectives of the process was to avoid inhabited areas, agricultural fields, valuable groundwater or preservation areas as well as areas which might draw interest as regards the potential for ore deposits. The idea was that the field investigations and later the possible disposal facility should not cause any harm to local people. Two of the candidate sites are at present nuclear power plant sites situated at the coast, the two other candidates are inland sites with no nuclear activities. The geologic siting investigations were started in 1987. Interim assessments of the results so far have been made in 1992 and 1996 and a final report of all the investigations will be published before the end of 2000. The present view is that all four candidates are geologically suitable for siting the repository. Posiva's EIA for the final disposal of spent fuel in Finland is nearing completion. A considerable effort was made to involve local groups and individuals in the assessment process. Yet the participation remained limited and consisted mainly of active opponents of the project and of those

  2. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  3. Place of the final disposal of short lived dismantling waste; Plats foer slutfoervaring av kortlivat rivningsavfall

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    This report deals with the short-lived low and intermediate level radioactive waste, which will mainly arise from the dismantling of the Swedish nuclear power plants, but also the dismantling of other nuclear facilities. For these installations to be dismantled, there must be the capacity to receive and dispose of dismantling waste. SKB plans to expand the existing final repository for short-lived radioactive waste (SFR) in Forsmark for this purpose. The legislation requires alternatives to the chosen location. The alternate location for the disposal of decommissioning waste SKB has chosen to compare with is a location in the Simpevarp area outside Oskarshamn. There are currently Oskarshamn nuclear power plant and SKB between stock 'CLAB'. The choice of Simpevarp as alternative location is based on that it's one of the places in the country where data on the bedrock is available to an extent that allows an assessment of the prospects for long-term security, such an assessment is actually showing good potential, and that the location provide realistic opportunities to put into practice the disposal of decommissioning waste. At a comparison between the disposal of short-lived decommissioning waste in an extension of SFR with the option to build a separate repository for short-lived decommissioning waste in Simpevarp, the conclusion is that both options offer potentially good prospects for long-term security. The differences still indicated speaks to the Forsmark advantage. Similar conclusions were obtained when comparing the factors of environment, health and social aspects.

  4. Current status of spent fuel disposal program in Taiwan, Republic of China

    International Nuclear Information System (INIS)

    Soong, K.L.; Liu, S.J.

    1989-01-01

    In the year of 1988, Taiwan has completed a two-year preliminary study and began in late 1988 a second term for the final disposal of spent fuel program. The research conducted in the first phase was mainly concentrated on the reviews of international studies and domestic geological literatures, set-up of siting criteria, and pertinent engineering analysis of a repository. Taiwan is an area of complex and unstable geological structures, abundant ground water and high density of population. Favorable host rocks under consideration for permanent waste disposal are thick shales and mudstones, metamorphosed rocks of mesozoic basement, solidified quartzite and mesozoic granitic gneiss. The analysis of heat transfer for hypothetical case studies indicate that the temperature rises in the repository systems would be well below the proposed maximum admissible temperatures. The repository size would be less than 2 km 2 when appropriate period for surface storage of spent fuel is satisfied. A probabilistic risk analysis also demonstrates that the presence of faulting and other tectonic instabilities characterize Taiwan's disadvantages for geological disposal of nuclear waste

  5. Disposal facility for spent nuclear fuel. Environmental impact assessment program

    International Nuclear Information System (INIS)

    1998-01-01

    The report presents the Environmental Impact Assessment (EIA) of the high level radioactive waste disposal in Finland. In EIA different alternatives concerning site selection, construction, operation and sealing of the disposal facility as well as waste transportation and encapsulation of the waste are considered

  6. A directory of computer programs for assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Broyd, T.W.; Dean, R.B.; Hobbs, G.D.; Knowles, N.C.; Putney, J.M.; Wrigley, J.

    1984-01-01

    This Directory describes computer programs suitable for the assessment of radioactive waste disposal facilities in geological formations. The programs, which are mainly applicable to the post closure analysis of the repository, address combinations of the following topics: nuclide inventory, corrosion, leaching, geochemistry, stress analysis, heat transfer, groundwater flow and radionuclide transport. Biosphere modelling, surface water flow and risk analysis are not covered. A total of 248 programs are identified, of which 50 are reviewed in detail, 134 in summary and 64 in tabular fashion. The directory has been compiled using a combination of literature searches, telephone and postal correspondence and meetings with recognised experts in the respective areas of work covered. It differs from previous reviews of computer programs for similar topics areas in two main respects. Firstly, the method of obtaining information has resulted in program descriptions of considerable breadth and detail. Secondly, the Directory has concentrated wherever possible on European codes, whereas most previous work of this nature has looked solely at programs developed in North America. The reviews are presented in good faith, but it has not been possible to run any of the programs on a computer, and so truly objective comparisons may not be made. Finally, although the Directory is specific to the post-closure assessment of a repository site, some of the programs described could also be used in other areas of repository analysis (eg repository design)

  7. Program Development Plan and Team up; FINAL

    International Nuclear Information System (INIS)

    Solar Electric Power Association

    2001-01-01

    The final summary report is a comprehensive view of TEAM-UP, with documented data, information, and experiences that SEPA has collected throughout the program, including lessons learned by participating ventures, and sections covering costs and other information on both large and small systems. This report also covers the barriers that TEAM-UP faced to PV commercialization at the beginning of the program, barriers the project was able to remove or reduce, and what barriers remain on the road ahead

  8. Final disposal of radioactive wastes in Switzerland: concept and overview of Project Guarantee 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The validity of the operational licences of the existing Swiss nuclear power plants (NPP) Beznau I and II, Muehleberg, Goesgen and Leibstadt after 31st. December 1985 is, because of official requirements, dependent on the demonstration of permanent, safe management and final disposal of radioactive waste. For this purpose, the NPP companies have to prepare a so-called guarantee project and present this to the Bundesrat for review. The appropriate investigations and research have been carried out by Nagra (National Cooperative for the Storage of Radioactive Waste). The 1985 Project Gewaehr (Guarantee) is described in an eight volume report NGB 85-01 to 85-08 and individual research projects are reported on in separate NTB-series reference reports. The present volume NGB 85-01 takes the form of a self-contained project overview in which the concepts for nuclear waste management are described, the contents of the remaining volumes NGB 85-02 to 85-08 are summarized and Project conclusions are drawn from Project Gewaehr 1985. Project Gewaehr 1985 covers two repository types: Type C repository for high-level and certain alpha-containing intermediate-level waste, and Type B repository for all remaining intermediate- and low-level waste. The Project shows in detail that technical feasibility of final disposal can be assumed given presently available methods, that the technical safety barriers show a high level of efficiency and that suitable geological options are available to ensure long-term safety in Switzerland as the concept is defined by official requirements. The Project safety analyses show that the chosen disposal concepts assure the protection of mankind and the environment under all realistically anticipated conditions

  9. The suitability of Finnish bedrock to the final disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuorela, P.; Hakkarainen, V.

    1982-12-01

    A regional investigation of the suitability of Finnish bedrock to the final disposal of high-level radioactive waste is described. International geological criteria are applied to Finnish bedrock conditions. The main bedrock units are classified into different areas as concerning to recommendations for further site selection investigations. The Pre-Cambrian crystalline rocks are generally of tight and strong composition and a major problem from the standpoint of waste disposal is fracturing. On the other hand, fractures are quite unevenly distributed in Finland and the bedrock seems to consist of stabile blocks surrounded by fracture zones. Crustal movements between the different bedrock blocks are in Finland at most only tenths of millimeters a year, and the movements are concentrated in the fracture zones. The fracture pattern also controls the hydrogeological system of the bedrock as the main groundwater flow occurs along the fractures. The fracturing thus has an influence on the stability as well as the hydrogeological conditions of the bedrock. The regional recommendations for further site selection studies are based on geological criteria, such as fracturing, seismisity and economic resources. Other criteria, such as topography and erosion, are less significant in comparison. A number of different criteria are likely to prove significant later in more detailed local site investigation studies. The most favorable regions for more detailed investigations contain the granitic rocks of Central Finland and some of them are also to be found in northern and eastern parts of the country. Almost none of the main bedrock units can be classified as completely unsuitable for site selection investigations. Massifs large enough for the final disposal of high-level radioactive waste can be found through detailed surveys in most parts of Finland because of the heterogeneity of the bedrock

  10. Questions on geology in connection with final radioactive waste disposal in the Fennoscandian Shield

    International Nuclear Information System (INIS)

    Bjoerklund, A.

    1990-01-01

    The use of nuclear power involves handling and disposal of radioactive waste. A number of methods for disposal have been proposed, one of which is the construction of repositories in crystalline bedrock of old continental crust. This possibility is usually considered reliable because of the relative stability of such bedrock. The Fennoscandian area has repeatedly been glaciated during the past 3 mission years. The last glacial event terminated some 10 000 years ago. This glacial ''massage'' has maintained a dense network of fractures and faults open for circulating water and ascending gas. Blocks of relatively unfractured bedrock have been proposed as suitable sites for the disposal of nuclear waste. Such questions concern neotectonic activity, the movement, salt content and amount of water at a few hundred metres depth, the mobility of elements in the bedrock as well as the geological processes which might be active beneath any future ice cap. Deep groundwaters, dating of young fracture minerals and neotectonic movements have been studied during 1985 - 1989 in a Nordic reserach program sponsored by NKA, the Nordic Liaison Committee for Atomic Energy. Deep saline groundwaters may have a negative effect on repositories of nuclear waste and the knowledge of the location of such waters may also give a hint as to the pattern of water movement in the bedrock. Therefore the composition, origin and location of deep groundwaters were studied. The development of faults in the bedrock through a site of waste disposal before the radioactivity in the waste has decayed to a safe level is considered a serious risk factor. Neotectonic movements have mostly followed old faults and fracture zones in the bedrock, which repeatedly have been reactivated during geological time, leaving blocks between the faults tectonically undisturbed. (CLS) 80 refs

  11. Safe, secure, and clean disposal of final nuclear wastes using 'PyroGreen' strategies

    International Nuclear Information System (INIS)

    Jung, HyoSook; Choi, Sungyeol; Hwang, Il Soon

    2011-01-01

    Spent nuclear fuels (SNFs) present global challenges that must be overcome to pave way for safe, secure, peaceful and clean nuclear energy. As one of innovative solutions, we have proposed an innovative partitioning, transmutation, and disposal approach named as 'PyroGreen' that is designed to eliminate the need for high-level waste repositories. A flowsheet of pyrochemical partitioning process with technically achievable values of decontamination factors on long-living radionuclides has been established to enable all the final wastes to be disposed of as low and intermediate level wastes. The long-term performance of a geological repository was assessed by SAFE-ROCK code for the final wastes from the PyroGreen processing of entire 26,000 MTHM of SNFs arising from lifetime operation of 24 pressurized water reactors. The assessment results agree well with an earlier study in the fact that most harmful radionuclides dominating groundwater migration risk are shown to be long-living fission products including C-14, Cl-36, Se-79, I-129, and Cs-135, whereas most actinides including U, Pu, Np, Am, and Cm are shown to remain near the repository. It is shown that the final wastes can meet the radiological dose limit of current Korean regulation on the low and intermediate level waste repository. Long-living actinide concentration in wastes is comparable with those in wastes in Waste Isolation Pilot Plant that has proved adequately low risk of human intrusion. Overall decontamination factors required for PyroGreen are finally determined as 20,000 for uranium and all transuranic elements whereas much lower values in the range of 10-50 are required for important fission products including Se, Tc, I, Sr, and Cs in order to eliminate the need for any high-level waste repository. It has been shown that experimentally demonstrated recovery rate data for key process steps positively support the feasibility of PyroGreen. SAFE-ROCK code was used to evaluate the long-term performance

  12. Handling and final disposal of nuclear waste. Programme for research development and other measures

    International Nuclear Information System (INIS)

    1989-09-01

    The report is divided into two parts. Part 1 presents the premises for waste management in Sweden and the waste types that are produced in Sweden. A brief description is then provided of the measures required for the handling and disposal of the various waste forms. An account of measures for decommissioning of nuclear power plants is also included. Part 2 describes the research program for 1990-1995, which includes plans for siting, repository design; studies of rock properties and chemistry, biosphere, technological barriers. Activities within two large projects, the Stripa laboratory and Natural analogues are also described. 240 refs. 40 figs

  13. The final disposal of radioactive wastes as social, political and scientific project - an introduction

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2015-01-01

    The nuclear power production that was productive for two generations produces radioactive wastes that will be a hazardous and financial burden for many future generations. Science, politics, industry and the society are responsible to find a successful solution for the project of final disposal of radioactive wastes. With the fast development of renewable energies with the perspectives of sustainability and other advantages nuclear power will not have a remarkable future. The search for a final repository site is a tremendous governmental, economic and public challenge but can also be seen as a social chance. Democracy could be enforced by this process, public commitment, transparency, co-determination, confidence in political processes are indispensible premises.

  14. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  15. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    International Nuclear Information System (INIS)

    Wildi, Walter; Dermange, Francois; Appel, Detlef; Buser, Marcos; Eckhardt, Anne; Hufschmied, Peter; Keusen, Hans-Rudolf; Aebersold, Michael

    2000-01-01

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA

  16. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  17. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  18. Argentine project for the final disposal of high-level radioactive wastes; Projecto Argentino para la eliminacion de residuos radioactivos de alta actividad

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, E; Ciallella, N R; Petraitis, E J

    1990-12-31

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author).

  19. Comparison of different target material options for the European Spallation Source based on certain aspects related to the final disposal

    Science.gov (United States)

    Kókai, Zsófia; Török, Szabina; Zagyvai, Péter; Kiselev, Daniela; Moormann, Rainer; Börcsök, Endre; Zanini, Luca; Takibayev, Alan; Muhrer, Günter; Bevilacqua, Riccardo; Janik, József

    2018-02-01

    Different target options have been examined for the European Spallation Source, which is under construction in Lund, Sweden. During the design update phase, parameters and characteristics for the target design have been optimized not only for neutronics but also with respect to the waste characteristics related to the final disposal of the target. A rotating, solid tungsten target was eventually selected as baseline concept; the other options considered included mercury and lead-bismuth (LBE) targets suitable for a pulsed source. Since the licensee is obliged to present a decommissioning plan even before the construction phase starts, the radioactive waste category of the target after full operation time is of crucial importance. The results obtained from a small survey among project partners of 7th Framework Program granted by EU 202247 contract have been used. Waste characteristics of different potential spallation target materials were compared. Based on waste index, the tungsten target is the best alternative and the second one is the mercury target. However, all alternatives have HLW category after a 10 year cooling. Based on heat generation alone all of the options would be below the HLW limit after this cooling period. The LBE is the least advantageous alternative based on waste index and heat generation comparison. These results can be useful in compiling the licensing documents of the ESS facility as the target alternatives can be compared from various aspects related to their disposal.

  20. Adapting the notion of natural (geological) barrier for final disposal of low- and intermediate-level radioactive wastes in Romania

    International Nuclear Information System (INIS)

    Durdun, I.; Marunteanu, C.; Andrei, V.

    2001-01-01

    According to the Minimum Disturbances Design (MDD) notion by Carl-Olof Morfeldt of Mineconsult, Sweden, any site selection, design and construction of low- and intermediate-level radioactive waste repository should be based on a thorough knowledge of the geological environmental so that the implantation of the disposal facility induce no significant harmful consequences. This work presents the way in which the Romanian program of radioactive waste management was implemented for disposal of low- and intermediate-level radioactive wastes from Cernavoda NPP. Based on geological criteria of selection of lithologic, petrographic, tectonic, seismologic, hydrologic and geo-technic nature, 37 sites were analyzed from which 2 were retained and finally one, Saligny site, was chosen, as the most close to Cernavoda NPP. Also, public acceptance and transport connections were taken into consideration. SUTRA, SWMS-2D and CHAIN-2D codes were applied to analyze the safety and the geological barrier effects. The barrier consists in red clay, a smectitic mineralogic compound. The computation showed that in Saligny vault the maximal tritium extension is kept inside due to the red clay barrier. Geo-technical engineering works were conducted to improve the properties of the loess upper layer which resulted in lowering its sensitivity to moistening and erosion

  1. Greater confinement disposal program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Towler, O.A.; Peterson, D.L.; Johnson, G.M.; Helton, B.D.

    1984-01-01

    The first facility to demonstrate Greater Confinement Disposal (GCD) in a humid environment in the United States has been built and is operating at the Savannah River Plant. GCD practices of waste segregation, packaging, emplacement below the root zone, and waste stabilization are being used in the demonstration. Activity concentrations to select wastes for GCD are based on a study of SRP burial records, and are equal to or less than those for Class B waste in 10CFR61. The first disposal units to be constructed are 9-foot diameter, thirty-foot deep boreholes which will be used to dispose of wastes from production reactors, tritiated wastes, and selected wastes from off-site. In 1984 an engineered GCD trench will be constructed for disposal of boxed wastes and large bulky items. 2 figures, 1 table

  2. The characterization of cement waste form for final disposal of decommissioning concrete wastes

    International Nuclear Information System (INIS)

    Lee, Yoon-ji; Lee, Ki-Won; Min, Byung-Youn; Hwang, Doo-Seong; Moon, Jei-Kwon

    2015-01-01

    Highlights: • Decommissioning concrete waste recycling and disposal. • Compressive strength of cement waste form. • Characteristic of thermal resistance and leaching of cement waste form. - Abstract: In Korea, the decontamination and decommissioning of KRR-1, 2 at KAERI have been under way. The decommissioning of the KRR-2 was finished completely by 2011, whereas the decommissioning of KRR-1 is currently underway. A large quantity of slightly contaminated concrete waste has been generated from the decommissioning projects. The concrete wastes, 83ea of 200 L drums, and 41ea of 4 m 3 containers, were generated in the decommissioning projects. The conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled with a void space after concrete rubble pre-placement into 200 L drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from a compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested as an optimized mixing ratio of 75:15:10. In addition, the compressive strength of the cement waste form was satisfied, including a fine powder up to a maximum of 40 wt% in concrete debris waste of about 75%. According to the scale-up test, the mixing ratio of concrete waste, water, and cement is 75:10:15, which meets the satisfied compressive strength because of an increase in the particle size in the waste

  3. Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

    1994-01-01

    Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment

  4. Problems related to final disposal of high-level radioactive waste in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    According to this presentation, the radioactivity of the total amount of radioactive waste accumulated in Russia to date is 1.5*10 9 Ci and of spent fuel 4.5*10 9 Ci. A table is given that shows the source, type, volume activity and storage type under the responsibility of the different departments and enterprises. 99.9% of the wastes are accumulated at the enterprises of Minatom of the Russian Federation. Some companies inject their liquid wastes from ionisation sources and intermediate liquid waste from the nuclear power industry into deep-seated reliably isolated aquifers. The Mayak plant has released liquid low-level and intermediate wastes into artificial reservoirs and Lake Karachay. Liquid high-level wastes are always stored in special tanks at interim storage facilities. A large number of nuclear submarines are laid up in North-Western Russia and East Russia, with spent fuel still in place as the interim storages in these regions are filled up and there are no conditioning plants. Underground disposal is considered the best way of isolating radioactive waste for as long as it is hazardous to the environment. Two new technologies are discussed. One involves including long-lived isotopes in high-stable mineral matrices, the other uses selective separation from the bulk of wastes. The matrices should be disposed of deep in the Earth's crust, at least 2-3 km down. Liquid waste of caesium-strontium fraction must be transformed into glass-like form and stored underground at a depth of a few hundred metres. Short-lived low level and intermediate level wastes should be conditioned and then deposited in subsurface ferroconcrete repositories constructed in clays. Finally, the presentation discusses the selection of sites and conditions for radioactive waste disposal. Two sites are discussed, the Mayak plant and a possible site at Mining Chemical Combine in Krasnoyarsk-26

  5. Special feature of the facilities for final disposal of radioactive waste and its potential impact on the licensing process

    International Nuclear Information System (INIS)

    Lee Gonzales, Horacio M.; Medici, Marcela A.; Alvarez, Daniela E.; Biaggio, Alfredo L.

    2009-01-01

    During the lifetime of a radioactive waste disposal facility it is possible to identify five stages: design, construction, operation, closure and post-closure. While the design, and pre-operation stages are, to some extent, similar to other kind of nuclear or radioactive facilities; construction, operation, closure and post-closure have quite special meanings in the case of radioactive waste disposal systems. For instance, the 'closure' stage of a final disposal facility seems to be equivalent to the commissioning stage of a conventional nuclear or radioactive facility. This paper describes the unique characteristics of these stages of final disposal systems, that lead to concluded that their licensing procedure can not be assimilated to the standard licensing procedures in use for other nuclear or radioactive facilities, making it necessary to develop a tailored license system. (author)

  6. Reduction requirements for actinides with special regard to the isolation time at final disposal

    International Nuclear Information System (INIS)

    Philippen, P.W.

    1996-01-01

    The additional knowledge acquired about the metabolism of the actinide elements, and the experience with the development of cancer risk have resulted in several realignments of the ALI limits by the ICRP. This needs a re-evaluation of the toxicity potential inherent in the nuclear fuel cycles of nuclear reactors and a re-evaluation of drawn conclusions. The radiotoxical evaluation of actinides and long-lived fission products are presented and discussed with special regard to Partitioning and Transmutation (P and T) issues. Detailed information about balancing the toxicity potential flow and its growth during the nuclear fuel cycle is given in order to determine a reference value for the comparison of natural and man-made toxicity. Calculations for different fuel types are exhibited and the resulting toxicity potentials are compared to these reference values in order to solely quantify in an idealized way the consequences of human action. The long-term toxicity potential of discharged PWR-fuels in case of direct disposal as well as Pu-recycling within MOX elements using U and Th are presented. The inherent drawbacks leads to the conclusion that with respect to a modified goal of final disposal only a full-scale P and T scheme is able to achieve long-term toxicity potentials on the same level as that of fresh fuel decaying naturally. Thus, the storage in a repository can relay more heavily on engineered barriers. (author). 15 refs, 9 figs, 1 tab

  7. The characterization of cement waste form for final disposal of decommissioned concrete waste

    International Nuclear Information System (INIS)

    Lee, K.W.; Lee, Y.J.; Hwang, D.S.; Moon, J.K.

    2015-01-01

    Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. In addition, 83 drums of 200 l, and 41 containers of 4 m 3 of concrete waste were generated. Conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled into a void space after concrete rubble pre-placement into 200 l drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10 as the optimized mixing ratio. In addition, the compressive strength of cement waste form was satisfied, including fine powder up to a maximum 40 wt% in concrete debris waste of about 75%. (authors)

  8. Closing the gap between spent fuel storage and final disposal in a multinational management system

    International Nuclear Information System (INIS)

    Bredell, P.J.

    1999-01-01

    In this paper, a multinational spent fuel management concept is proposed. The management concept is based on a service agreement between countries, which intend participating in a common spent fuel (SNF) management venture. Accordingly, one of the participants in this venture would act as the hosting country, while the others fulfil the role of customer countries. The hosting country would agree to accept SNF from customer countries under specific conditions, as required by the service agreement. The service agreement should cover a sufficient number of options that customers can use, such as storage, reprocessing or disposal. The service offering should be flexible enough to accommodate diverse customer requirements. Typically, the first step in the multinational management process is the storage of the SNF delivered to the hosting country. The final step being the disposal of the material in a deep geologic repository. This paper explores the ways and means of closing the gap between the first and last steps in the management process. (author)

  9. Treatment and disposal of radioactive wastes from nuclear power plants. Research programs

    International Nuclear Information System (INIS)

    1992-09-01

    The report presents programs for research, development and demonstration concerning radioactive waste disposal in underground facilities. The main topics are: Radioactive waste management, radioactive waste storage, capsules, environmental impacts, risk assessment, radionuclide migration, radioactive waste disposal, decommissioning, cost, and international cooperation. (129 refs.)

  10. Qualification of A type package for transport and final disposal of radium-226 needles

    International Nuclear Information System (INIS)

    Rodrigues, D.L.; Vicente, R.

    1988-01-01

    One of the objectives of the Fuel Cycle Department is to develop packages for radioactive wastes, including discarded industrial and radiotherapy sources. This paper describes the work undertaken to qualify a package for transport and final disposal of radium needles, and gives a detailed description of the tests carried out to verify shielding integrity and contaiment system before and after free drop test according to IAEA recomendations for type A, non-especial form packages. Shielding integrity was verified by gamma field scanning over the package surface, using a Geiger-Muller detector and a 60 Co gamma source. Containment system was verified by pressurizing the specimen with helium and by searching for leaks a He-leak detector, with sensitivity of 3 x 10 -10 atm x cm 3 /s, air equivalent. The package is described in detail along with the apparatus for the safe handling and packing of the radium needles. (author) [pt

  11. The impact of a final disposal facility for spent nuclear fuel on a municipality's image

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Haapavaara, L.; Lampinen, T.

    1999-02-01

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities' point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality's image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter 'which does not concern me', provided that the facility will not be placed too near one's own home. Among those interviewed the subject seemed not to be of any 'great interest and did not arouse spontaneous feelings for or against'. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  12. Financial compensation for municipalities hosting interim or final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Barboza, Alex; Vicente, Roberto

    2005-01-01

    Brazilian Law No. 10308 issued November 20, 2001, establishes in its 34th article that 'those municipalities hosting interim or final disposal facilities for radioactive waste are eligible to receive a monthly payment as compensation'. The values of due payments depend on parameters such as volume of wastes and activity and half-lives of the radionuclides. The method to calculating those values was established by the National Commission on Nuclear Energy, the Brazilian regulatory authority, by Resolution No. 10, issued in the August 18, 2003. In this paper we report the application of that method to a low- and intermediate-level radioactive waste interim storage facility at the Nuclear Energy Research Institute. (author)

  13. Cost analysis for final disposal of double-shell tank waste

    International Nuclear Information System (INIS)

    Seifert, T.W.; Markillie, K.D.

    1996-01-01

    The Cost Analysis For Final Disposal of Double-Shell Tank Waste provides the Department of Energy (DOE) and DOE contractors with a better understanding of costs associated with the transfer, storage, and treatment of liquid mixed wasted within the Double-Shell Tank System (DST). In order to evaluate waste minimization/pollution prevention ideas, it is necessary to have reliable cost data that can be used in cost/benefit analyses; preparation of funding requests and/or proposals; and provide a way for prioritizing and allocating limited resources. This cost per gallon rate will be used by DST waste generators to assess the feasibility of Pollution Prevention Opportunity Assessments (P20A) and to determine the cost avoidances or savings associated with the implementation of those P20As

  14. Comparison of low-level waste disposal programs of DOE and selected international countries

    International Nuclear Information System (INIS)

    Meagher, B.G.; Cole, L.T.

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada's first demonstration LLW disposal facility

  15. Dresden 1 plutonium recycle program. Final report

    International Nuclear Information System (INIS)

    Bresnick, S.D.

    1980-01-01

    This is the final report on the Dresden 1 Plutonium Recycle Demonstration Program. It covers the work performed from July 1, 1978 to completion, which includes in-pool inspection of two fuel assemblies, removal of two fuel rods, and post-irradiation examination (PIE) of six fuel rods. Appendix A describes the inspection and rod removal operations, and Appendix B describes the PIE work

  16. The French underground research laboratory program, contribution to the feasibility and safety studies of geological disposal

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.; Niezborala, J.M.; Ben Slimane, K.

    2001-01-01

    The paper presents the content of the research program to be performed during the construction and the operation of the National Agency for Radioactive Waste Management's (ANDRA) underground laboratory, located in the east of France. The general architecture of the program is presented. Emphasis is put on an iterative process, the purpose of which is mainly to: Prepare site behavior models before starting each phase of the field work (bore hole drilling, shaft sinking, construction of underground galleries, specific experiments); Test and check each model through actual observations and measurements; Adjust the models to take into account the results of the former phase and predict the results expected during the following one. All these models, after validation, will be exploited during the assessment of the safety related performance of the components of the potential repository as well as the whole facility; Obtain necessary data related to the feasibility study of the disposal facility (mechanical design, thermal design, etc.,) and its safety assessment. The relationship between the experimental program, the conceptual design program and the safety evaluation program is explained in order to reach the project objectives which is the final document set to be provided to French authorities in 2006 according to the French law of December 1991. (author)

  17. Status of the high-level nuclear waste disposal program in Japan

    International Nuclear Information System (INIS)

    Uematsu, K.

    1985-01-01

    The Japan Atomic Energy Commission (JAEC) initiated a high-level radioactive waste disposal program in 1976. Since then, the Advisory Committee on Radioactive Waste Management of JAEC has revised the program twice. The latest revision was issued in 1984. The committee recommended a four-phase program and the last phase calls for the beginning of emplacement of the high-level nuclear waste into a selected repository in the Year 2000. The first phase is already completed, and the second phase of this decade calls for the selection of a candidate disposal site and the conducting of the RandD of waste disposal in an underground research laboratory and in a hot test facility. This paper covers the current status of the high-level nuclear waste disposal program in Japan

  18. Assumption and program of the earlier stage construction of L/ILW disposal site

    International Nuclear Information System (INIS)

    Li Xuequn; Chen Shi; Li Xinbang

    1993-01-01

    The authors analysed the production and treatment of low- and intermediate-level radwastes (L/ILW) in China. Some problems and situation in this field are introduced. Over the past ten years, preliminary efforts have been made by CNNC (China National Nuclear Corporation) in policy, law and rules, developing program, management system, siting, engineering techniques, and safety assessment for radwaste disposal. The investment of the earlier stage work of L/ILW disposal site construction is estimated, the program and assumption to disposal site construction of the L/ILW are reviewed

  19. Seabed disposal program: a first-year report, December 1974

    International Nuclear Information System (INIS)

    Bishop, W.P.

    1975-03-01

    A summary is given of the progress made by a study group, composed of persons from many disciplines and organizations, which was formed to examine certain areas of the world's oceans to determine whether it is feasible to use such areas, or the ocean floor beneath them, as permanent disposal sites for high-level nuclear wastes. (U.S.)

  20. Greater confinement disposal program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Peterson, D.L.; Reddick, J.A.

    1984-01-01

    A facility to demonstrate Greater Confinement Disposal (GCD) of low-level solid radioactive waste in a humid environment has been built and is operating at the Savannah River Plant (SRP). GCD practices of waste segregation into high and low activity concentrations, emplacement of waste below the root zone, waste stabilization, and capping are being used in the demonstration. Activity concentrations to select wastes for GCD are based on the volume/activity distribution of low-level solid wastes as obtained from SRP burial records, and are equal to or less than those for Class B waste in 10 CFR 61. The first disposal units constructed are twenty 9-ft-diam, 30-ft-deep boreholes. These holes will be used to dispose of wastes from the production reactors, tritiated wastes, and selected wastes from offsite. In 1984, construction will begin on an engineered GCD trench for disposal of boxed waste and large bulky items that meet the activity concentration criteria. 4 references, 5 figures, 2 tables

  1. Revision 2 of the Program of NPP Krsko Decommissioning and SF and LILW Disposal

    International Nuclear Information System (INIS)

    Levanat, I.; Lokner, V.; Rapic, A.

    2010-01-01

    First joint Slovenian-Croatian Program of NPP Krsko Decommissioning and SF and LILW Disposal (DP) was completed in 2004 and formally adopted in 2005. As bilateral agreement on the NPP requires periodic revisions at least each 5 years, revision 2 of DP was started in September 2008, with the purpose to incorporate relevant developments since the 1st revision, to improve the level of details and reliability of DP, and to propose updated and more accurate cost estimates and appropriate financing models. In the first phase of the revision, new supporting studies for DP modules were prepared. Among these studies, the most demanding was the NPP Krsko specific Preliminary Decommissioning Plan (PDP), complying with the IAEA-recommended format, which included development of the NPP decommissioning inventory database. For upgrade of SF management, new and more detailed descriptions with improved cost estimates were prepared. Update of LILW disposal concept was based on new developments and projects prepared for the Slovenian repository. In the second phase of the revision, integrated DP scenarios were formulated and analyzed. They integrate NPP decommissioning together with RW and SF management/disposal into rationally inter-related sequences. Boundary conditions for this revision required: (a) that the reference scenario from the previous revision should be re-examined, with appropriate variations or new alternatives; (b) that the option of the NPP Krsko life extension should also be included; and (c) that the possibility of diverging interests of the contracting parties should also be analyzed (i.e. waste division and separate management). Finally, scenario evaluation is intended to compare the analyzed scenarios taking into account both their feasibility and estimated costs. It should provide the basis for determining future financing of DP, namely the annuities to be paid by the NPP Krsko owners into the national decommissioning funds.(author).

  2. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  3. Qualification of final closure for disposal container I - applicability of TIG and EBW for overpack welding

    International Nuclear Information System (INIS)

    Asano, H.; Kawahara, K.; Ishii, J.; Shige, T.

    2002-01-01

    Regarding the final sealing technique of the overpack using carbon steel, one of the candidate materials for the disposal container in the geological disposal of high-level radioactive waste in Japan, welding tests were conducted using TIG (GTAW), a typical arc welding process, and electron beam welding (EBW), a high-energy beam welding process. The purpose of the tests was to evaluate the applicability, the scope of the applications and the conditions for the application of the existing techniques; while also examining the welding conditions and the weld quality. Regarding TIG, the optimum welding conditions (the conditions pertaining to the welding procedures and the groove geometry) were checked by using a specimen with a plate thickness of 50 mm, and then circumferential welding tests were conducted for cylindrical specimens with a groove depth of 100 mm and 150 mm. Radiographic testing showed that there was no significant weld defect in the weld and that the welding characteristics were satisfactory. The results of the test of the mechanical properties of the joint were also satisfactory. Measurement of the temperature distribution and the residual stress distribution at the time of the welding was conducted for an evaluation of the residual stress caused by the welding, and an appropriate residual stress analysis method was developed, which confirmed the generation of tensile stress along the circumferential direction of the weld. Then it was pointed out that a necessity of further consideration of how to reduce the stress and to examine the influence that residual stress has on corrosion property. The goal in the EBW test was to achieve a one-pass full penetration welding process for 190 mm while conducting a partial penetration welding test for a welding depth of 80 mm. Subsequent radiographic testing confirmed that there was no significant weld defect. (orig.)

  4. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    International Nuclear Information System (INIS)

    1981-04-01

    At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories

  5. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-04-01

    At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.

  6. Transport in biosphere of radionuclides released from finally disposed nuclear waste - background information for transport and dose model

    International Nuclear Information System (INIS)

    Hulmi, R.; Savolainen, I.

    1981-07-01

    An outline is made about the biosphere transport and dose models employed in the estimation of doses due to releases from finally disposed nuclear waste. The models often divide into two parts; the first one describes the transport of radionuclides in those parts of biosphere where the time scale is large (e.g. soil, sea and sea sediment), the second part of the model describes the transport of nuclides in the systems where the time scale is small (e.g. food chains, plants and animals). The description of biosphere conditions includes remarkable uncertainty due to the complexity of the biosphere and its ecosystems. Therefore studies of scenario type are recommended: some values of parametres describing the conditions are assumed, and the consequences are estimated by using these values. The effect of uncertainty in various factors on the uncertainty of final results should be investigated with the employment of alternative scenarios and parametric sensitivity studies. In addition to the ordinary results, intermediate results should be presented. A proposal for the structure of a transport and dose program based on dynamic linear compartment model is presented and mathematical solution alternatives are studied also

  7. Legal, political, and institutional implications of the seabed assessment program for radioactive waste disposal

    International Nuclear Information System (INIS)

    Deese, D.A.

    1977-01-01

    Sub-seabed disposal of high-level radioactive waste is discussed. The following conclusions are drawn: The outcome will be determined largely by the national political stances taken toward a sub-seabed disposal program. Political and diplomatic responses from individual countries should be expected to be heavily influenced by the number, type, and timing of options available for high-level waste disposal. The budgetary and institutional support Washington gives to the sub-seabed program will have a crucial influence on the progress of sub-seabed science and technology over the next three to five years. Despite the growing need of nations, such as Japan and Britain, for a high-level waste disposal option, a sub-seabed program will probably not be employed if it is not strongly funded and supported by the United States. Clearly, there are enough level and political obstacles to destroy or delay a sub-seabed disposal program. The nontechnical hurdles to seabed disposal at least equal the scientific and technical ones. But, on the other hand, there are important potential social and political benefits to be gained from any serious attempt to mount a successful sub-seabed program. These lie principally in international cooperation on waste management, environmental protection, nonproliferation of nuclear weapons, and governing the deep seabed

  8. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    Day, R.S.; Duncan, G.M; Trent, S.J.

    1998-07-01

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  9. Greater Confinement Disposal Program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Peterson, D.L.

    1983-01-01

    Plans for improved LLW disposal at the Savannah River Plant include Greater Confinement Disposal (GCD) for the higher activity fractions of this waste. GCD practices will include waste segregation, packaging, emplacement below the root zone, and stabilizing the emplacement with cement. Statistical review of SRP burial records showed that about 95% of the radioactivity is associated with only 5% of the waste volume. Trigger values determined in this study were compared with actual burials in 1982 to determine what GCD facilities would be needed for a demonstration to begin in Fall 1983. Facilities selected include 8-feet-diameter x 30-feet-deep boreholes to contain reactor scrap, tritiated waste, and selected wastes from offsite

  10. The radioactive waste management and disposal program in France

    International Nuclear Information System (INIS)

    Jacq, F.

    2001-01-01

    The bill voted in 1991 provides a framework, up to the year 2006, for all researches conducted in France on the management of high-level and long-lived radioactive wastes. Three complementary directions are explored in the intervening period, including geological disposal. The law sets the conditions for the studies and researches, particularly the necessary reliance on experiments in underground laboratories. In August 1999, the government authorized Andra to build a first laboratory, in the clay formation at the boundary of the Meuse and Haute-Marne departments, an operation that is under way today. A second laboratory is also slated, in a granitic formation, on a site remaining to be determined. When the 2006 deadline arrives, a debate will be organized in the French Parliament. The present article discusses the researches conducted in connection with the feasibility study of disposal in a deep geological formation, and highlights the complementarity between the different research directions. (author)

  11. Hazard and socioenvironmental weakness: radioactive waste final disposal in the perception of the Abadia de Goias residents, GO, Brazil

    International Nuclear Information System (INIS)

    Pereira, Elaine Campos

    2005-01-01

    The work searches into the hazard and the weakness which involves the community around the radioactive waste final disposal, localized in Abadia de Goias municipality, Goias state, Brazil. In order to obtain a deep knowledge on the characteristic hazards of the modernity, the sociological aspects under discussion has been researched in the Anthony Giddens and Ulrich Beck works. The phenomenon was analyzed based on the the subjective experiences of the residents, which live there for approximately 16 years. This temporal analysis is related to the social impact suffered by the residents due to the radioactive wastes originated from the radiation accident with 137 cesium in Goiania, GO, Brazil, in 1987. In spite of the local security, they identified the disposal as a hazard source, although the longer time residents have been better adaptation. The weakness of the local is significant by the proximity of residences near the area of the radioactive waste final disposal. (author)

  12. International safeguards concerns of Spent Fuel Disposal Program

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1988-01-01

    The purpose of this paper is to stimulate discussions on the subjects of safeguarding large quantities of plutonium contained in spent fuels to be disposed of in geologic respositories. All the spent fuel disposal scenarios examined here pose a variety of safeguards problems, none of which are adequately addressed by the international safeguards community. The spent fuels from once-through fuel cycles in underground repositories would become an increasingly attractive target for diversion because of their plutonium content and decreasing radioactivity. Current design of the first geologic repository in the US will have the capacity to accommodate wastes equivalent to 70,000 Mt of uranium from commercial and defense fuel cycles. Of this, approximately 62,000 Mt uranium equivalent will be commerical spent fuel, containing over 500 Mt of plutonium. International safeguards commitments may require us to address the safeguards issues of disposing of such large quanities of plutonium in a geologic repository, which has the potential to become a plutonium mine in the future. This paper highlights several issues that should be addressed in the near term by US industries and the DOE before geologic repositories for spent fuels become a reality

  13. Subseabed Disposal Program Plan. Volume II. FY80 budget and subtask work plans

    International Nuclear Information System (INIS)

    1980-01-01

    This volume of the Subseabed Disposal Program Plan presents a breakdown of the master program structure by major activity. Each activity is described and accompanied by a specific cost plan schedule and a milestone plan. The costs have been compiled in the Cost Plan Schedules attached to each Subtask Work Plan. The FY 1980 budget for the Subseabed Disposal Program is summarized at the second level of the Work Breakdown Structure. The milestone plans for FY 80 are presented. The milestones can be changed only with the concurrence of the Sandia Subseabed Program Manager

  14. Comparison of national programs and regulations for the management of spent fuel and disposal of high-level waste in seven countries

    International Nuclear Information System (INIS)

    Numark, N.J.; Mattson, R.J.; Gaunt, J.

    1986-01-01

    This paper describes programs and regulatory requirements affecting the management of spent fuel and disposal of high-level radioactive waste in seven nations with large nuclear power programs. The comparison is intended to illustrate that the range of spent fuel management options is influenced by certain technical and political constraints. It begins by providing overall nuclear fuel cycle facts for each country, including nuclear generating capacities, rates of spent fuel discharge, and policies on spent fuel reprocessing. Spent fuel storage techniques and reprocessing activities are compared in light of constraints such as fuel type. Waste disposal investigations are described, including a summary of the status of regulatory developments affecting repository siting and disposal. A timeline is provided to illustrate the principle milestones in spent fuel management and waste disposal in each country. Finally, policies linking nuclear power licensing and development to nuclear waste management milestones and RandD progress are discussed

  15. Final disposal of high-level radioactive waste. State of knowledge and development for safety assessment

    International Nuclear Information System (INIS)

    Sato, Seichi; Muraoka, Susumu; Murano, Toru

    1995-01-01

    In Europe and USA, the formation disposal of high level radioactive waste entered the stage of doing the activities aiming at its execution. Also in Japan, the storage of high level waste began in the spring of 1995. Regarding the utilization of nuclear power, the establishment of the technology for disposing radioactive waste is the subject of fist priority, and the stage that requires its social recognition has set in. There are the features of formation disposal in that the disposal is in the state of confining extremely large amount of radioactivity, and that the assessment of long term safety exceeding tens of thousands years is demanded. The amount of occurrence and the main nuclides of high level radioactive waste, the disposal as seen in the Coady report and in the IAEA standard, the selection of dispersion or confinement and the selection of passive system or long term human participation, the reason why formation disposal is selected, the features of formation disposal and the way of advancing the research, the general techniques of safety assessment, artificial barriers and natural barriers for formation disposal, and the subjects of formation disposal are described. (K.I.) 57 refs

  16. Treatment and final disposal of nuclear waste. Siting of a deep repository

    International Nuclear Information System (INIS)

    1992-09-01

    Systems and facilities in the program for demonstration deposition of nuclear waste are presented. The siting process is described, from the general studies to the ultimate goal, where a permit to start demonstration deposition has been obtained. National and foreign experiences of siting issues are accounted for. Finally, the structure and plan for work for 1993-98 are outlined. 46 refs, 15 figs, 5 tabs

  17. Batch-wise final disposal made feasible by long-term interim storage of waste: the choice of the Netherlands

    International Nuclear Information System (INIS)

    Codee, Hans D.K.; Vrijen, Jan

    1991-01-01

    Radioactive waste produced in the Netherlands is managed by COVRA, the Central Organisation for Radioactive Waste. All kinds and categories of radwaste generated in the next 50-100 years will be stored in above ground engineered structures which allow retrieval at all times. After this long-term storage, the wastes will finally be disposed of in a deep geologic repository. At the political level no firm decisions have yet been taken with respect to the final disposal. Disposal in rock salt, which is available in the Netherlands, is explored as an option. Immediate disposal requires the availability of a large amount of money as well as a site. Neither of the two are available at present in the Netherlands, nor are they required at this time. Based on economic considerations, immediate disposal into a rock salt facility in not an acceptable option for the wastes presently produced in the Netherlands. Only after sufficient capital has been generated through an interest bearing fund can this option be considered for implementation

  18. Final disposal of spent nuclear fuel-equipment for site characterization

    International Nuclear Information System (INIS)

    Almen, K.; Hansson, K.; Johansson, B.E.; Nilsson, G.; Andersson, O.; Wikberg, P.; Aahagen, H.

    1983-05-01

    The suitability of a certain geological formation as a repository for the final disposal of spent nuclear fuel can be determined only after detailed investigation and analysis. The purpose of the investigations is to provide information on the geology and the hydrology and chemistry of the site concerned. The value of these data largely depends on the way in which they have been collected. The report of the findings should enable the investigating party to evaluate the function and the accuracy of the equipment with which field data have been collected for KBS 3. This report describes the geophysical equipment, the hydraulic testing equipment, the water chemistry sample extracting equipment and the core-logging equipment used. The objectives of the instrument development have been: - to obtain a high data quality. - to collect data automatically in logs and tape recorders for direct transfer to a central processing unit. - to provide back-up in order to counteract loss of data. - to make instrument more efficient. (author)

  19. Sampling plan design and analysis for a low level radioactive waste disposal program

    International Nuclear Information System (INIS)

    Hassig, N.L.; Wanless, J.W.

    1989-01-01

    Low-level wastes that are candidates for BRC (below regulatory concern) disposal must be subjected to an extensive monitoring program to insure the wastes meet (potential) bulk property and contamination concentration BRC criteria for disposal. This paper addresses the statistical implications of using various methods to verify BRC criteria. While surface and volumetric monitoring each have their advantages and disadvantages, a dual, sequential monitoring process is the preferred choice from a statistical reliability perspective. With dual monitoring, measurements on the contamination are verifiable, and sufficient to allow for a complete characterization of the wastes. As these characterizations become more reliable and stable, something less than 100% sampling may be possible for release of wastes for BRC disposal. This paper provides a survey of the issues involved in the selection of a monitoring and sampling program for the disposal of BRC wastes

  20. 83-inch cyclotron research program. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.C.

    1983-07-01

    In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan

  1. A product designed for final disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Baboescu, E.; Popescu, I. V.

    2001-01-01

    The product 'metallic barrel - concrete - low level radioactive wastes - 1' (ABBD - 1) was certified according to the company's standard SF ICN/1994, updated 1. The product ABBD -1 is produced according to the following certified technologies: - technology for processing and conditioning of low level radioactive solid wastes; - technology for processing and conditioning of waste ion exchangers from the TRIGA reactor; - technology for conditioning the β - γ radioactive compacts. The product is constituted of a protection shield, the concrete block - radioactive waste, securing high mechanical strength and a high degree of radionuclides retaining, thus ensuring the necessary condition for long time disposal and, finally, the metallic container fulfilling the National Standards of Nuclear Safety for Radioactive Materials Transportation. The metallic container is made of pickled slab, with a 220 l capacity, according to STAS 7683/88 standards. The main characteristics of the product 'ABBD - 1' are: - size: height, 915 ± 10 mm, diameter, 600 ± 5 mm; - mass, 300 - 600 kg; - maximum permissible activity, 6 x 10 9 Bq/ barrel (0.164 Ci/barrel); - equivalent dose rate for gamma radiation at barrel's wall, max. 1 mSv/h (200 mrem/h); - unfixed external contamination, 2 ; - compression strength of concrete block alone, > 5 x 10 6 N/m 2 ; - lixiviation rate, -3 cm/day; - the compact concrete block-radioactive waste is leak-proof and crack-free. The final product is transferred from INR Pitesti to National Repository for Radioactive Waste by railway and road transportation according to the provisions of the National Commission for Nuclear Activity Control as stipulated in the National Standards of Nuclear Safety of Radioactive Materials Transportation

  2. Responsibility, safety and certainty. A new consensus on nuclear waste disposal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-05-25

    With the consent of all parties represented in the Bundestag, the Federal Republic of Germany resolved to properly end the use of nuclear energy for power generation. The legal framework for the energy transition is provided by the consensus reached on nuclear energy in 2001 and the Nuclear Power Phase-Out Act (Atomgesetz, hereinafter: Atomic Energy Act) passed in 2002 and amended in 2011, together with the Renewable Energy Sources Act (Erneuerbare-Energien-Gesetz, hereinafter: Renewable Energy Act), the Energy Industry Act (Energiewirtschaftsgesetz) and extensive provisions on accelerating the construction of power lines in Germany. Nuclear energy plants will have gradually phased out their power generation operations by the end of the year 2022. The decision to phase out nuclear power plants has entailed major changes in radioactive waste management - dismantling, packaging spent fuel in containers, and interim storage and final disposal. For one thing, the amount of radioactive waste requiring final storage is now easier to calculate and to limit, in contrast with periods of indefinite operation. Limiting the operating lives of nuclear plants also shortens the period in which assets can be generated for the decreased amounts of high-level, intermediate-level and low-level waste. Along with the phase-out, the rapidly expanding renewable energy market and continued integration into the European Single Market has changed market conditions for nuclear power plant operators. Not only have new market participants joined the competition for power generation - due to a surplus and, ultimately, to price erosion in the international fuel markets, stock market prices for power have dropped dramatically. This has affected nuclear power plant operators in particular, because of their large share in conventional power generation.

  3. Long-term integrity of waste package final closure for HLW geological disposal, (2). Applicability of TIG welding method to overpack final closure

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sawa, Shuusuke; Aritomi, Masanori

    2005-01-01

    Overpack, a high-level radioactive waste package for geological disposal, seals vitrified waste and in line with Japan's waste management program is required to isolate it from contact with groundwater for 1,000 years. In this study, TIG (Tungsten Inert Gas) welding method, a typical arc welding method and widely used in various industries, was examined for its applicability to seal a carbon steel overpack lid with a thickness of 190 mm. Welding conditions and welding parameters were examined for multi-layer welding in a narrow gap for four different groove depths. Weld joint tests were conducted and weld flaws, macro- and microstructure, and mechanical properties were assessed within tentatively applied criteria for weld joints. Measurement and numerical calculation for residual stress were also conducted and the tendency of residual stress distribution was discussed. These test results were compared with the basic requirements of the welding method for overpack which were pointed out in our first report. It is assessed that the TIG welding method has the potential to provide the necessary requirements to complete the final closure of overpack with a maximum thickness of 190 mm. (author)

  4. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M.

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  5. Final disposal of spent fuels and high activity waste: status and trends in the world. Part 2

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2008-01-01

    The proper management of spent fuel arising from nuclear power production is a key issue for the sustainable development of nuclear energy. Some countries have adopted reprocessing of spent fuel and part of them has continued to develop and improve closed fuel cycle technologies; some other countries have adopted a direct final disposal. The objective in this article is to provide an update on the latest development in the world related with the geological disposal of spent nuclear fuel and high level wastes. (author) [es

  6. Suggested state requirements and criteria for a low-level radioactive waste disposal site regulatory program

    International Nuclear Information System (INIS)

    Ratliff, R.A.; Dornsife, B.; Autry, V.; Gronemyer, L.; Vaden, J.; Cashman, T.

    1985-08-01

    Description of criteria and procedure is presented for a state to follow in the development of a program to regulate a LLW disposal site. This would include identifying those portions of the NRC regulations that should be matters of compatibility, identifying the various expertise and disciplines that will be necessary to effectively regulate a disposal site, identifying the resources necessary for conducting a confirmatory monitoring program, and providing suggestions in other areas which, based on experiences, would result in a more effective regulatory program

  7. AISI Direct Steelmaking Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Aukrust, E.

    1994-08-01

    This final report deals with the results of a 5-yr project for developing a more energy-efficient, environmentally friendly, less costly process for producing hot metal than current coke ovens and blast furnaces. In the process, iron ore pellets are smelted in a foamy slag created by reaction of coal char with molten slag to produce CO. The CO further reacts with oxygen, which also reacts with coal volatile matter, to produce the heat necessary to sustain the endothermic reduction reaction. The uncombusted CO and H{sub 2} from the coal are used to preheat and prereduce hematite pellets for the most efficient use of the energy in the coal. Laboratory programs confirmed that the process steps worked. Pilot plant studies were successful. Economic analysis for a 1 million tpy plant is promising.

  8. NEARSOL - a simple program to model actinide speciation and solubility under waste disposal conditions

    International Nuclear Information System (INIS)

    Leach, S.J.; Pryke, D.C.

    1986-05-01

    A simple program, NearSol, has been written in Fortran 77 on the Harwell Central Computer to model the aqueous speciation and solubility of actinides under near-field conditions for disposal using a simple thermodynamic approach. The methodology and running of the program are described together with a worked example. (author)

  9. Geological site selection studies for the final disposal of spent nuclear fuel in Finland

    International Nuclear Information System (INIS)

    Salmi, M.; Vuorela, P.; Kuivamaeki, A.

    1985-10-01

    have been met with that should be avoided in the sites to be selected for the final disposal of nuclear waste

  10. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Ruotsalainen, P.; Cosma, C.; Keskinen, J.; Hinkkanen, H.; Rouhiainen, P.; Oehberg, A.

    1998-01-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements

  11. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [IVO Power Engineering Ltd. (Finland); Ahokas, H.; Ruotsalainen, P. [Fintact Oy (Finland); Cosma, C.; Keskinen, J. [Vibrometric Oy (Finland); Hinkkanen, H. [Posiva Oy (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland); Oehberg, A. [Saanio and Riekkola Consulting Engineers (Finland)

    1998-09-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements 23 refs, 4 figs

  12. Characterization of long-term geological changes for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Blomqvist, R.; Aikaes, T.

    1996-01-01

    The bedrock of Finland is very old and major crustal deformation processes ceased long ago. At present continuous slow processes prevail and geological changes taking place today are very difficult to observe. Anticipated future geological changes are dominated by the renewed development of the continental ice sheet in northern Europe. The present climate will deteriorate to a state amenable to glacier formation. Continuous processes such as groundwater flow and interrelated hydrogeochemical phenomena will be influenced by changes in the climate as well as by developing permafrost. The crust itself will be loaded by the weight of the ice sheet, and will will warp down. The final disposal programme has been devised with even more exceptional future changes in mind. The process of site identification in the site selection research programme has been developed to consider the eventuality of the future bedrock movements. Analysis of bedrock geometry and block patterns, together with related fracture zones assists in selecting a repository site where the risks of accumulation of large stresses, and their subsequent release as shear movements, can be minimized. By studying the prevailing conditions and tracing the record of earlier events an understanding of the relevant processes in general is developed. Paleo-hydrogeology is one of the areas which can provide information relating to 'why the conditions at the site today are as they are'. Although it is not possible to predict the future behavior of a site in a detailed manner, it is possible to constrain the scenarios needed in the safety assessment by establishing and documenting real events that have sometimes occurred, and that will most probably be repeated. (authors). 31 refs., 8 figs

  13. Characterisation and final disposal behaviour of theoria-based fuel kernels in aqueous phases

    International Nuclear Information System (INIS)

    Titov, M.

    2005-08-01

    Two high-temperature reactors (AVR and THTR) operated in Germany have produced about 1 million spent fuel elements. The nuclear fuel in these reactors consists mainly of thorium-uranium mixed oxides, but also pure uranium dioxide and carbide fuels were tested. One of the possible solutions of utilising spent HTR fuel is the direct disposal in deep geological formations. Under such circumstances, the properties of fuel kernels, and especially their leaching behaviour in aqueous phases, have to be investigated for safety assessments of the final repository. In the present work, unirradiated ThO 2 , (Th 0.906 ,U 0.094 )O 2 , (Th 0.834 ,U 0.166 )O 2 and UO 2 fuel kernels were investigated. The composition, crystal structure and surface of the kernels were investigated by traditional methods. Furthermore, a new method was developed for testing the mechanical properties of ceramic kernels. The method was successfully used for the examination of mechanical properties of oxide kernels and for monitoring their evolution during contact with aqueous phases. The leaching behaviour of thoria-based oxide kernels and powders was investigated in repository-relevant salt solutions, as well as in artificial leachates. The influence of different experimental parameters on the kernel leaching stability was investigated. It was shown that thoria-based fuel kernels possess high chemical stability and are indifferent to presence of oxidative and radiolytic species in solution. The dissolution rate of thoria-based materials is typically several orders of magnitude lower than of conventional UO 2 fuel kernels. The life time of a single intact (Th,U)O 2 kernel under aggressive conditions of salt repository was estimated as about hundred thousand years. The importance of grain boundary quality on the leaching stability was demonstrated. Numerical Monte Carlo simulations were performed in order to explain the results of leaching experiments. (orig.)

  14. Final Environmental Impact Statement on 10 CFR Part 61 licensing requirements for land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1982-11-01

    The three-volume final environmental impact statement (FEIS) is prepared to guide and support publication of a final regulation, 10 CFR Part 61, for the land disposal of low-level radioactive waste. The FEIS is prepared in response to public comments received on the draft environmental impact statement (DEIS) on the proposed Part 61 regulation. The DEIS was published in September 1981 as NUREG-0782. Public comments received on the proposed Part 61 regulation separate from the DEIS are also considered in the FEIS. The FEIS is not a rewritten version of the DEIS, which contains an exhaustive and detailed analysis of alternatives, but rather references the DEIS and presents the final decision bases and conclusions (costs and impacts) which are reflected in the Part 61 requirements. Four cases are specifically considered in the FEIS representing the following: past disposal practice, existing disposal practice, Part 61 requirements, and an upper bound example. The Summary and Main Report are contained in Volume 1. Volume 2 consists of Appendices A - Staff Analysis of Public Comments on the DEIS for 10 CFR Part 61, and Appendices B - Staff Analysis of Public Comments on Proposed 10 CFR Part 61 Rulemaking. Volume 3 contains Appendices C-F, entitled as follows: Appendix C - Revisions to Impact Analysis Methodology, Appendix D - Computer Codes Used for FEIS Calculations, Appendix E - Errata for the DEIS for 10 CFR Part 61 and last, Appendix F - Final Rule and Supplementary Information

  15. Organizational Challenge of Posiva’s Final Disposal Programme: From an R&D Organization to a Project Organization, and Further Towards an Operational Organization

    International Nuclear Information System (INIS)

    Mokka, J.

    2016-01-01

    Full text: Posiva Oy is an expert organization established in 1995 and responsible for the final disposal of the spent nuclear fuel of its owners. Posiva currently employs around 100 people and has a turnover of some 63 million (2015). The company headquarters are located in Olkiluoto in the municipality of Eurajoki, Finland. Posiva is owned by two Finnish NPP operators Teollisuuden Voima Oyj (60%) (TVO) and Fortum Power & Heat Oy (40%), both of which are responsible for their costs of nuclear waste management. The Finnish final disposal programme has a long history. When NPP unit Olkiluoto 1 renewed its operating licence for the first time in 1983, TVO presented a programme showing final disposal to commence in the 2020s. In the 1980s and 1990s, the programme concentrated on concept development and site selection activities. After 2003, when Posiva received the decision in principle from the Finnish Government, a new phase began in the programme. Since 2004, Posiva Oy has constructed an underground rock characterization facility on the repository site in Olkiluoto, in western Finland. This facility, called ONKALO, has provided an opportunity to carry out further site investigations, develop construction techniques, and test and demonstrate the engineered barrier system in an actual repository environment. As a result of these investigations and development efforts, the application for a licence to construct the encapsulation plant and the geological repository was submitted in 2012. The Radiation and Nuclear Safety Authority in Finland (STUK) first gave a positive review on the safety of the facility, and consequently the Finnish Government granted the construction licence in November 2015. After receiving the construction licence as the first disposal programme in the world, the next phase in the program will be the construction project of the final disposal facilities required for the disposal operations. A significant first-of-a-kind construction project like

  16. Inter- and transdisciplinarity as a precondition for final nuclear waste disposal

    International Nuclear Information System (INIS)

    Chaudry, Saleem; Kuppler, Sophie; Smeddinck, Ulrich

    2016-01-01

    Searching for solutions for solving environmental problems, dissolves the boundaries between the several scientific disciplines. The disposal of radioactive waste requires such interdisciplinary solutions. A problem is described, which generates new problems, if one is solved. The interdisciplinary cooperation for the evaluation of a disposal solution is described. The point of view is a theoretical approach and a transdisciplinary combination of science and the public.

  17. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    Science.gov (United States)

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations

  18. Intruder dose pathway analysis for the onsite disposal of radioactive wastes: the ONSITE/MAXI1 computer program

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Kennedy, W.E. Jr.; Neuder, S.M.

    1984-10-01

    Because of uncertainties associated with assessing the potential risks from onsite burials of radioactive waste, the US Nuclear Regulatory Commission (NRC) has amended its regulations to provide greater assurance that buried radioactive material will not present a hazard to public health and safety. The amended regulations now require licensees to apply for approval of proposed procedures for onsite disposal pursuant to 10 CFR 20.302. The NRC technically reviews these requests on a case-by-case basis. These technical reviews require modeling potential pathways to man and projecting radiation dose commitments. This document contains a summary of our efforts to develop human-intrusion scenarios and to modify a version of the MAXI computer program for potential use by the NRC in reviewing applications for onsite radioactive waste disposal. The documentation of the ONSITE/MAXI computer program is written for two audiences. The first (Audience A) includes persons concerned with the mathematical models and computer algorithms. The second (Audience B) includes persons concerned with exercising the computer program and scenarios for specific onsite disposal applications. Five sample problems are presented and discussed to assist the user in operating the computer program. Summaries of the input and output for the sample problems are included along with a discussion of the hand calculations performed to verify the correct operation of the computer program. Computer listings of the ONSITE/MAXI1 computer program with an abbreviated data base listing are included as Appendix 1 to this document. Finally, complete listings of the data base with listings of the special codes used to create the data base are included in Appendix 2 as a microfiche attachment to this document

  19. A program for evolution from storage to disposal of radioactive wastes at CRNL

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1985-10-01

    This report reviews past and current radioactive waste management practices at the Chalk River Nuclear Laboratories (CRNL) and outlines the proposed future program. For nearly 40 years, radioactive wastes have been generated at CRNL and have also been received there on a continuing basis from hospitals, industries, universities and miscellaneous other sources across Canada. The solid wastes now at CRNL have been either stored or buried and their total consolidated volume is approaching 50 000 m 3 . Much of that waste will require disposal as will the future wastes of similar character. The waste management program plan describes the proposed development of safe disposal facilities which could be built on site to accommodate most, if not all, of the radioactive wastes for which CRNL has responsibility. Three reference disposal concepts, each potentially capable of accepting a portion of the wastes, are described. One of these, the intrusion-resistant shallow land burial (SLB) concept, could be suitable for disposal of most of the CRNL wastes. It is proposed that a prototype SLB facility be designed, constructed and operated on the CRNL property and filled by 1992 to provide a focus for disposal research and development programs and to accumulate experience in all aspects of waste management. 53 refs

  20. Final Environmental Impact Statement Resource Programs

    International Nuclear Information System (INIS)

    1993-02-01

    BPA's preferred alternative is the Emphasize Conservation Alternative. System and environmental costs are low. Environmental impacts from conservation are minimal. This alternative is cost-effective and environmentally responsible; only the High Conservation Alternative has lower costs and fewer environmental impacts. However, there is some concern about the cost-effectiveness, reliability, and commercial availability of the high conservation resources. If the supply of the additional conservation potential was confirmed and it became cost-effective, the High Conservation Alternative would be preferred. The Draft Resource Programs EIS was released for public review during the summer of 1992. Comments received by letter or in the public hearing held June 16, 1992, were used to revise and update data and analyses of the EIS (public comments and BPA's responses are contained in Volume III of the Final EIS). In addition, a number of revisions were made in the Chapter 3 material describing each resource type, and in Chapter 4 and the Summary, to assure consistency with the modeling and analysis in Chapter 5. Additional information about the capacity aspects of each resource type and alternative has been added, and the material on conservation and its impacts has been reorganized

  1. Evaluation of dose due to the liberation of the radioactive content present in systems of final disposal of radioactive residues

    International Nuclear Information System (INIS)

    Amado, V.; Lopez, F.

    2006-01-01

    The disposal systems of radioactive residuals well-known as repositories near to the surface, are used to dispose residuals that can contain high concentrations of radionuclides of period of short semi disintegration, which they would decay at levels radiologically insignificant in some few decades or in some centuries: and acceptably low concentrations of radionuclides of period of long semi disintegration. The dose that would receive the critic group due to these systems it could be increased by cause of discreet events that affect the foreseen retard time, or by the gradual degradation of the barriers. To this last case it contributes the presence of water, because it implies leaching and dissolution that can give place to radionuclide concentrations in the underground water greater to the prospective ones. The dosimetric evaluation is important because it offers useful objective information to decide if a given repository is adjusted to the purposes of its design and it fulfills the regulatory requirements. In this work a simplified evaluation of the dose that would receive the critic group due to the liberation of contained radionuclides in a hypothetical system of final disposition of radioactive residuals is presented. For it, they are considered representative values of the usually contained activities in this type of systems and they are carried out some approaches of the source term. The study is developed in two stages. In the first one, by means of the Radionuclide pollutant scattering pattern in phreatic aquifers (DRAF) it is considered the scattering of the pollutants in the phreatic aquifer, until the discharge point in the course of the nearest surface water. This model, developed originally in the regulatory branch of the National Commission of Argentine Atomic Energy (CNEA); it solves the transport equation of solutes in porous means in three dimensions, by the finite differences method having in account the soil retention and the radioactive

  2. Subseabed Radioactive Waste Disposal Feasibility Program: ocean engineering challenges for the 80's

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1980-01-01

    The objective of the Subseabed Disposal Program is to assess the feasibility of disposing of high-level radioactive wastes or spent fuel in suitable geologic formations beneath the deep ocean floor. The program is entering a phase which will address engineering feasibility. While the current phase of the program to determine the scientific and environmental feasibility of the concept is not yet complete, activities to assess the engineering aspects are being initiated in parallel to facilitate the development of the concept on a time scale commensurate with other related programs both in the United States and abroad. It is anticipated that engineering aspects will become the central focus of the program during the early 80's and will continue so through the establishment of a pilot-plant level activity which could occur by the mid-90's

  3. Subseabed radioactive waste disposal feasibility program: ocean engineering challenges for the 80's

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1980-11-01

    The objective of the Subseabed Disposal Program is to assess the feasibility of disposing of high-level radioactive wastes or spent fuel in suitable geologic formations beneath the deep ocean floor. The program is entering a phase which will address engineering feasibility. While the current phase of the program to determine the scientific and environmental feasibility of the concept is not yet complete, activities to assess the engineering aspects are being initiated in parallel to facilitate the development of the concept on a time scale commensurate with related programs both in the United States and abroad. It is anticipated that engineering aspects will become the central focus of the program during the early 80's and will continue so through the establishment of a pilot-plant level activity which could occur by the mid-90's

  4. Concept and Idea-Project for Yugoslav Low and Intermediate level Radioactive Waste Materials Final Disposal Facility

    International Nuclear Information System (INIS)

    Peric, A.

    1997-01-01

    Encapsulation of rad waste in a mortar matrix and displacement of such solidified waste forms into the shallow land burial system, engineered trench system type is suggested concept for the final disposal of low and intermediate level rad waste. The mortar-rad waste mixtures are cured in containers of either concrete or metal for an appropriate period of time, after which solidified rad waste-mortar monoliths are then placed in the engineered trench system, parallelepiped honeycomb structure. Trench consists of vertical barrier-walls, bottom barrier-floors, surface barrier-caps and permeable-reactive walls. Surroundings of the trench consists of buffer barrier materials, mainly clay. Each segment of the trench is equipped with the independent drainage system, as a part of the main drainage. Encapsulation of each filled trench honeycomb segment is performed with concrete cap. Completed trench is covered with impermeable plastic foil and soil leaner, preferably clay. Paper presents an overview of the final disposal facility engineered trench system type. Advantages in comparison with other types of final disposal system are given. (author)

  5. A concept for a station for the encapsulation of vitrified highly radioactive waste into containers for final disposal

    International Nuclear Information System (INIS)

    Anon

    1984-09-01

    The report presents a concept and plans for a station for the encapsulation of vitrified highly radioactive waste into containers for final disposal. The process steps, the layout of the station, the main components of equipment and the sequence of operations under normal conditions are described. The station is designed for vitrified waste from reprocessing. The volume of the waste packages is 150 l, and each package contains the equivalent of 1.33 tonne HM of fuel. The radionuclide activity of the waste corresponds to spent fuel with a decay time of 40 years from discharge from the reactor. It is assumed that after transport under normal conditions the steel shell enclosing the waste is gastight and its surface is free of contamination. The containers for final disposal are made of cast steel and have the form of hollow cylinders with hemispherical ends; their overall length is 2 m and their overall diameter 0.94 m. The station is so designed that the whole procedure, from supply of the transport containers containing the waste to the delivery of the full final disposal containers, is carried out by remote control behind radiation screens in an area isolated from the environment. Containers that do not fulfill the quality control requirements can be improved or repaired in a special rework cell without interfering with the further normal operation of the plant. (author)

  6. Status of U.S. nuclear waste disposal programs

    International Nuclear Information System (INIS)

    Eastering, J.B.

    1987-01-01

    Since the days of the Manhattan Project in the early 1940's, the United States has recognized the need for a system of effective nuclear waste management. The evolution of that system has been directed by a series of legislative actions to determine responsibilities and develop procedures. Under these laws, the U.S. Department of Energy (DOE), as the lead agency, is required to plan and implement the programs that will ensure safe and efficient management of nuclear wastes from both civilian and defense activities. This overview paper describes the organization of these programs

  7. A dose assessment for final low level waste disposal located at Cernavoda

    International Nuclear Information System (INIS)

    Moldoveanu, E.

    1995-01-01

    This paper presents the first step in the radiological effect evaluation of the low radioactive wastes disposal which will be located in Cernavoda's area. The calculations are done with some approximations based on pessimistic hypotheses. In this sense, the primary step of the accident scenario is a total failure of the wastes disposal and a total emission of radioactive wastes in the environment. The results are estimated versus the time in which radioisotopes migrate through geological formations until they arrive at the underground water. It is considered that for Cernavoda, a town situated in the vicinity of the disposal, the water is contaminated with all radioisotopes arising in this way, and people ingest this water (2 l/day). The results are presented in tables and figures. (author)

  8. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    Energy Technology Data Exchange (ETDEWEB)

    B. C. Culp

    2007-05-01

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

  9. Public involvement in the Hanford Double-Shell Tank waste disposal program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-06-01

    Hanford's Double-Shell Tank (DST) waste disposal program was redefined following serious challenges to the viability of the previous strategy due to increased regulatory requirements and operating expectations. Redefinition of the DST waste disposal program involved a far-reaching set of decisions and actions. A formal stakeholder involvement process was used to bring the concerns of outside groups into the definition and evaluation of altemative tank waste disposal strategies, broadening the participation and ownership of the revised pregrain. Hanford's Double-Shell Tank (DST) waste disposal strategy, calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year-old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHCP) sought input from outside stakeholder groups (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) through a formal stakeholder involvement and multi-attribute utility (MAU) analysis process. This paper describes that process and its results

  10. Grain Size Data from the Brine Disposal Program, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are part of the Brine Disposal Program funded by NOAA in the US Gulf of Mexico, compiled by NOAA/CEAS and partially conducted by R. W. Hann of Texas A and...

  11. Seabed disposal program. Annual report, January--December 1977. Volume 1

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1979-01-01

    At the conclusion of the fourth year of the program, it can again be stated that no technological or environmental reasons have been identified that would preclude the possibility of successful disposal of HLW or spent fuel in stable, sedimentary formations beneath the abyssal floors of the deep oceans

  12. Life cycle assessment of geological repositories for the final disposal of spent fuel in Finland and Sweden

    International Nuclear Information System (INIS)

    Puhrer, A.; Bauer, C.

    2014-01-01

    This paper presents a Life Cycle Assessment (LCA) of the geological repositories for the final disposal of spent nuclear fuel in Finland and Sweden. A separate LCA has been performed for the geological spent fuel repository in each country and the results have been compared. A further benchmark comparison has been made with the LCA of the Swiss geological repository for high-level waste and spent fuel. The life cycle inventory (LCI) product system boundaries include the spent fuel repository and encapsulation facility in each country. All materials, processes, consumed utilities and transport associated with the construction, operation and closure of the repositories for spent fuel are included in the LCI. The life cycle impact assessment (LCIA) is performed using two methods: IPCC 2007 Climate Change and ReCiPe. These assessment methods return results pertaining to global warming potential (GWP) as well as a number of environmental impact categories such as human toxicity and natural land transformation. Results indicate that the use of copper for disposal canister fabrication and bentonite for repository backfilling are the causes for most of the environmental impact of the spent fuel repositories in Finland and Sweden. Alternate, less bentonite-intensive backfilling scenarios may mitigate this impact. While the Swiss bentonite consumption is lower and no copper is used for canister fabrication, the Swiss electricity and fuel consumption associated with final disposal of high-level waste and spent fuel is significantly higher than in Finland or Sweden. Approximately 1 g CO 2 -eq is emitted due to the final disposal of spent fuel and HLW per kWh of nuclear generated electricity. This represents some 10% of the emissions due to the entire nuclear energy chain and is practically negligible in the context of GHG emissions of other energy technologies. (authors)

  13. Projection of Environmental Pollutant Emissions From Different Final Waste Disposal Methods Based on Life Cycle Assessment Studies in Qazvin City

    Directory of Open Access Journals (Sweden)

    Javad Torkashvand

    2015-12-01

    Full Text Available In the current study, the life cycle assessment (LCA method was used to expect the emissions of different environmental pollutants through qualitative and quantitative analyses of solid wastes of Qazvin city in different final disposal methods. Therefore, four scenarios with the following properties considering physical analysis of Qazvin’s solid wastes, the current status of solid waste management in Iran, as well as the future of solid waste management of Qazvin were described. In order to detect the quantity of the solid wastes, the volume-weighted analysis was used and random sampling method was used for physical analysis. Of course, regarding the method of LCA, it contains all stages from solid wastes generation to its disposal. However, since the main aim of this study was final disposal stage, the emissions of pollutants of these stages were ignored. Next, considering the mixture of the solid waste, the amount of pollution stemming from each of final disposal methods from other cities having similar conditions was estimated. The findings of the study showed that weight combination of Qazvin solid wastes is entirely similar to that of other cities. Thus, the results of this study can be applied by decision makers around the country. In scenarios 1 and 2, emission of leachate containing high amounts of COD and BOD is high and also the highest content of nitrate, which can contaminate water and soil resulting in high costs for their management. In scenarios 3 and 4, the amounts of gaseous pollutants, particularly CO2, as well as nitrogen oxides are very high. In conclusion, the LCA methods can effectively contribute to the management of municipal solid wastes (MSW to control environmental pollutants with least expenses.

  14. Public attitudes toward geological disposal of carbon dioxide in Canada : final report

    International Nuclear Information System (INIS)

    Sharp, J.

    2005-01-01

    A research project investigating the public's perceptions of the risks and benefits of the geologic disposal of carbon dioxide (GDC) technology was presented. Data for the project was collected in 2 phases. Focus groups were conducted in order to understand the likely range of attitudes and concerns about the technology. The information obtained from the focus groups was then used to design an Internet-based survey for administration to a sample of 1967 Canadians. The survey included questions about climate change and GDC as well as a discrete choice experiment. Linear multiple regression analysis was used to identify the determinants of the respondents' support for GDC. Results showed that while a strong majority of Canadians believed that climate change was occurring, climate change ranked very low in importance compared to other national issues, and was the lowest ranked environmental issue. Knowledge of GDC was low, and the vast majority of those who had heard of GDC could not identify what environmental problem it was meant to address. The most important benefits of GDC were seen to be its utility as a bridging technology while long-term climate change solutions are developed; the potential for its use in enhanced oil recovery; and its ability to reduce greenhouse gas (GHG) emissions. However, the risks of GDC were rated as more important than the benefits, and included concerns about unknown future impacts; contamination of groundwater; the risk of a carbon dioxide (CO 2 ) leak; and risks to plants and animals. It was concluded that respondents were slightly supportive of GDC development in Canada, and perceived the technology as having a net positive impact on the environment. GDC was seen as less risky than normal oil and gas industry operations, nuclear power, or coal-burning power plants. It was concluded that GDC is less popular then energy efficiency and renewable energy alternatives, and should be used in combination with these technologies in order to

  15. Workplace Wellness Programs Study: Final Report

    OpenAIRE

    Mattke, Soeren; Liu, Hangsheng; Caloyeras, John; Huang, Christina Y.; Van Busum, Kristin R.; Khodyakov, Dmitry; Shier, Victoria

    2013-01-01

    This article investigates the characteristics of workplace wellness programs, their prevalence, their impact on employee health and medical cost, facilitators of their success, and the role of incentives in such programs.

  16. Evaluation and design of drained low-level radioactive disposal sites. Final report

    International Nuclear Information System (INIS)

    Eichholz, G.G.

    1984-12-01

    Low-level disposal in shallow trenches has been the subject of much critical assessment in recent years. Historically most trenches have been located in fairly permeable settings and any liquid waste stored has migrated at rates limited mainly by hydraulic effects and the ion exchange capacity of underlying soil minerals. Attempts to minimize such seepage by choosing sites in very impermeable settings lead to overflow and surface runoff, whenever the trench cap is breached by subsidence or erosion. The work described in this report was directed to an optimum compromise situation where less reliance is placed on cap permanence, any ground seepage is directed and controlled, and the amount of waste leaching that would occur is minimized by keeping the soil surrounding the waste at only residual moisture levels at all times. Measurements have been conducted to determine these residual levels for some representative soils, to estimate the impact on waste migration of mainly unsaturated flow conditions, and to generate a conceptual design of a disposal facility which would provide adequate drainage to keep the waste from being exposed to continuous leaching by standing water. An attempt has also been made to quantify the reduced source terms under such periodic, unsaturated flow conditions, but those tests have not been conclusive to date. For low-permeability soils the waste should be placed about 1 ft. above the saturated layer formed by suction forces immediately above the gravel layer. Since most disposal sites, even in humid regions of the United States, are exposed only to intermittent rainfall and as most trench designs incorporate some gravel base for drainage, the results of this project have broader applications in assessing actual migration conditions in shallow trench disposal sites. Similar considerations may also apply to disposal of hazardous wastes

  17. Engineering geology study of demo plant radioactive waste final disposal site of medium depth NSD type at Puspiptek, Serpong

    International Nuclear Information System (INIS)

    Heri Syaeful; Sucipta; Imam Achmad Sadisun

    2014-01-01

    Final disposal of radioactive waste intended to keep radioactive substances does not released to the environment until the substance activity decreased to the safe level. Storage concept of radioactive waste (RAW) final disposal that will be developed at the area of Puspiptek, Serpong is near surface disposal (NSD). Based on depth, NSD divided on two type, near surface NSD and medium depth NSD. Concept NSD in this research is medium depth NSD, which is between 30 – 300 meters. During NSD construction in medium-depth required the works of sub-surface excavation or tunneling. Analysis of in-situ stresses and sub-surface deformation performed to recognize the stress magnitude and its distribution that developed in soil/rock as well as the deformation occurred when sub-surface excavation takes place. Based on the analysis, acknowledged the magnitude of tensional and compression stress and its distribution that range from -441 kPa to 4,028 kPa with values of natural deformation or without reinforcement between 4.4 to 13.5 cm. A rather high deformation value which is achieved 13.5 cm leads to necessity of engineering reinforcement during excavation. The designs of engineering reinforcement on every excavation stage refer to the result of modeling analysis of stress and deformation distribution pattern. (author)

  18. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  19. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J.; Adams, E.E. [eds.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  20. Suitability of Haestholmen Loviisa for final disposal of spent fuel. Preliminary study; Loviisan Haestholmenin soveltuvuus kaeytetyn polttoaineen loppusijoitukseen. Esiselvitys

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Based on the amendment of the Nuclear Energy Act the spent nuclear fuel of Imatran Voima Oy (IVO) will be disposed of in Finland instead of returning it to Russia. After Teollisuuden Voima Oy (TVO) and IVO had founded a joint company Posiva Oy the work IVO started in 1995 was brought together with the ongoing research programme for final disposal of spent fuel and extended to a feasibility study. The feasibility study was launched in the beginning of 1996. The geological evaluation was mainly based on the previous investigations at the island. For this study the complementary geological mapping has been carried out at the Haestholmen and on the surrounding area with a radius of 20 km. (49 refs.).

  1. Performance objectives of the tank waste remediation system low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-01-01

    Before low-level waste may be disposed of, a performance assessment must be written and then approved by the U.S. Department of Energy. The performance assessment is to determine whether open-quotes reasonable assuranceclose quotes exists that the performance objectives of the disposal facility will be met. The DOE requirements for waste disposal require: the protection of public health and safety; and the protection of the environment. Although quantitative limits are sometimes stated (for example, the all exposure pathways exposure limit is 25 mrem/year), usually the requirements are stated in a general nature. Quantitative limits were established by: investigating all potentially applicable regulations as well as interpretations of the Peer Review Panel which DOE has established to review performance assessments, interacting with program management to establish their needs, and interacting with the public (i.e., the Hanford Advisory Board members; as well as affected Indian tribes) to understand the values of residents in the Pacific Northwest

  2. Chemical Stockpile Disposal Program: Review and comment on the Phase 1 environmental report for the Pueblo Depot Activity, Pueblo, Colorado

    International Nuclear Information System (INIS)

    Olshansky, S.J.; Krummel, J.R.; Policastro, A.J.; McGinnis, L.D.

    1994-03-01

    As part of the Chemical Stockpile Disposal Program, an independent review is presented of the US Army Phase I environmental report for the disposal of chemical agents and munitions stored at the Pueblo Depot Activity (PUDA) in Pueblo, Colorado. The Phase I report addresses new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). These concerns are addressed by examining site-specific data for the PUDA. On the basis of our review of the Phase I report, we concluded that on-site meteorological data from December 1988 to June 1992 appear to be of insufficient quality to have been used instead of the off-site Pueblo airport data. No additional meteorological data have been collected since June 1992. The Phase I report briefly mentions problems with the air pollution control system. These problems will likely require the systems to be upgraded at the Johnston Atoll site and at each of the other depots in the continental United States. Without such improvements, the probability of accidents during start-up and shutdown would likely increase. The Army has a lessons-learned program to incorporate improvements into the design of future facilities. The Phase I report does not make any design change commitments. These issues need to be fully evaluated and resolved before any final conclusion concerning the adequacy of the decision in the FPEIS can be made with respect to the PUDA. With the exception of this issue, the inclusion of other more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at the PUDA). We recommend that site-specific data on water, ecological, socioeconomic, and cultural resources and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process

  3. BWR Refill-Reflood Program. Final report

    International Nuclear Information System (INIS)

    Myers, L.L.

    1983-09-01

    The BWR Refill-Reflood Program is part of the continuing Loss of Coolant Accident (LOCA) research in the United States which is jointly sponsored by the Nuclear Regulatory Commission, the Electric Power Research Institute, and the General Electric Company. The current program expanded the focus of this research to include full scale experimental evaluations of multidimensional and multichannel effects during system refill. The program has also made major contributions to the BWR version of the Transient Reactor Analysis Code (TRAC) which has been developed cooperatively with the Idaho National Engineering Laboratory (INEL) for application to BWR transients. A summary description of the complete program is provided including the principal findings and main conclusions of the program. The results of the program have shown that multidimensional and parallel channel effects have the potential to significantly improve the system response over that observed in single channel tests

  4. Final Technical Report, reEnergize Program

    Energy Technology Data Exchange (ETDEWEB)

    Wamstad-Evans, Kristi [City of Omaha; Williams, Eric [City of Omaha; Kubicek, Jason [City of Omaha

    2013-12-27

    The reEnergize Program helped to build a market for residential and commercial energy evaluations and upgrades. The program provided incentives to encourage participants to save energy, save money, and make their homes and businesses more safe, healthy, and comfortable. As part of the Better Buildings Neighborhood Program (BBNP), the successful investment of this $10 million grant toward market development was the first grant funding collaboration between the cities of Omaha and Lincoln. Through more than three years of work, thousands of participants, contractors, and community members worked together to make the reEnergize Program a demonstration of how to “Build Energy Smart Communities.”

  5. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  6. CONCRETE CONTAINERS FOR LONG TERM STORAGE AND FINAL DISPOSAL OF TRU WASTE AND LONG LIVED ILW

    International Nuclear Information System (INIS)

    Sakamoto, H.; Asano, H.; Tunaboylu, K.; Mayer, G.; Klubertanz, G.; Kobayashi, S.; Komuro, T.; Wagner, E.

    2003-01-01

    Transuranic (TRU) waste packaging development has been conducted since 1998 by the Radioactive Waste Management Funding and Research Centre (RWMC) to support the TRU waste disposal concept in Japan. In this paper, the overview of development status of the reinforced concrete package is introduced. This package has been developed in order to satisfy the Japanese TRU waste disposal concept based on current technology and to provide a low cost package. Since 1998, the basic design work (safety evaluation, manufacturing and handling procedure, economic evaluation, elemental tests etc.) have been carried out. As a result, the basic specification of the package was decided. This report presents the concept as well as the results of basic design, focused on safety analysis and handling procedure of the package. Two types of the packages exist: - Package-A: for non-heat generating TRU waste from reprocessing in 200 l drums and - Package-B: for heat generating TRU-waste from reprocessing

  7. A discussion about high-level radioactive waste disposal program. From the results of dialogue with citizens

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Furukawa, Masashi; Sugiyama, Daisuke; Chida, Taiji

    2008-01-01

    Implementation of HLW disposal is one of urgent issue, when we will continue the use of nuclear power. But, the citizens may not have the sufficient amount of information or knowledge about HLW disposal in order to make themselves decision to this issue. To know how the citizens understand about HLW disposal, we tried to talk about the HLW disposal with 11 citizen groups through the face-to-face dialogue. One group consists of 2-3 persons, and we had 3 times dialogue to one group. In this dialogue, the participants had a certain amount of knowledge about HLW disposal, and their opinions to the issue of HLW disposal program. These opinions include the doubt against open application system to select the siting area, the emotion like NIMBY, indication of lack of public relations about HLW disposal, and so on. (author)

  8. Storage and final disposal of low and intermediate level radioactive waste materials in Europe

    International Nuclear Information System (INIS)

    Plecas, I.

    1997-01-01

    As of the end of 1995, 18 countries in Europe had electricity-generating nuclear power reactors in operation or under construction. There are currently 217 operating units, with a total capacity of about 165 GW e. In addition, there are 26 units under construction, which would bring the total electrical generating capacity to about 190 GW e.The management of radioactive waste is not a new concept. It has been safely practised for low and intermediate level wastes for almost 40 years. Today, after decades of research, development and industrial applications, it can be stated confidently that safe technological solutions for radioactive waste management exist. However, waste disposal as a whole waste management system is no longer a matter for scientists but requires co-operation with politicians, licensing authorities, industry and ultimately general public. The goal is unique: the protection of human health and the global environment against possible short term and (very) long term effects of radioactive materials. Disposal of waste materials in a repository without the intention of retrieval, whereas storage, as previously discussed, is done with the intention that the waste will be retrieved at a later time. If disposed waste is abandoned, the repository site is not abandoned, but surveillance should not be necessary beyond some expected period of institutional control. (author)

  9. Simulation of concrete deterioration in Finnish rock cavern conditions for final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Kari, O.P.; Puttonen, J.

    2014-01-01

    Highlights: • Concrete deterioration in Finnish rock cavern disposal conditions was simulated. • Simulation requires advanced models instead of traditional linear diffusion models. • Concrete analysed performed moderately during the period of 500 years. • Corrosion of steel reinforcement cannot be excluded during the period analysed. - Abstract: A simulation of concrete ageing in Finnish rock cavern disposal conditions showed that the concrete undergoes complex deterioration processes during the period required for lowering the level of radiation. In respect of the concrete ageing, the life time of the disposal facilities shall be divided into the periods before and after the closing of the caverns. Generally, the sulphate-resistant type of concrete analysed performed moderately during the analysed period of 500 years contrary to the corrosion of steel reinforcement, which cannot be excluded. Simulation of ageing clearly requires thermodynamical methods instead of linear diffusion models based on Fick’s law, which are traditionally used in construction industry. The study proves that the thermodynamical simulation method developed with adequate experimental data also makes it possible to observe latent factors of concrete deterioration

  10. Innovative Technology Development Program. Final summary report

    International Nuclear Information System (INIS)

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) Program. The plan is part of the DOE's program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE's clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process

  11. INEL Geothermal Environmental Program. Final environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Cahn, L.S.

    1982-09-01

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

  12. Subseabed disposal program annual report, January-December 1978. Volume II. Principal investigator progress reports

    International Nuclear Information System (INIS)

    1979-10-01

    The topics covered in this report include: geologic siting considerations for the disposal of radioactive wastes into submarine geologic formations; geologic assessment of the MPG-1 regions Central North Pacific; site mapping; geotechnical aspects of subsurface seabed disposal; heat transfer, thermal and fluid physics in the deep ocean sediments; mechanical response predictive capability; sediment-seawater interaction at 300 0 C, 500 bars; stability of actinides in chloride media; cannister corrosion studies; nuclide sorption and migration; development of apparatus and measurement of thermal conductivity of seabed illite and smectite at temperatures to 500 0 C at simulated depths to 15,000 ft (9000 psi); in-situ heat transfer experiments; preliminary seabed disposal transport modeling studies; radionuclide migration studies; radionuclide distributions in deep ocean cores; benthic biological studies; deep sea microbial studies; activity rates of abyssal communities; Deep-towed RUM III (Sandia Seabed working platform): a third-generation remote underwater manipulator; long coring facility program; transportation; legal, political, and institutional implications of the Seabed Program for radioactive waste disposal

  13. Solving a multi-objective location routing problem for infectious waste disposal using hybrid goal programming and hybrid genetic algorithm

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    2018-01-01

    Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles

  14. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  15. Main areas of work of the German Radiation Protection Office (BfS). Final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kleemann, U.

    2006-01-01

    The Federal Ministry for Environment, Nature Conservation and Reactor Safety (BMU) formulated twelve questions which are in principle relevant to all host rock formations and require clarification in any case. The task of the BfS was to compile a comparison of different host rock formations on the basis of the answers given to these twelve questions for the individual projects. The main focus was on whether these safety-related questions merit different answers for different host rock formations and whether this has an impact on the requirements to be placed on final disposal concepts

  16. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  17. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    International Nuclear Information System (INIS)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias

    2008-01-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides

  18. Subseabed disposal program annual report, January-December 1979. Volume I. Summary and status

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-08-01

    This is the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program, which was begun in June 1973. The program was initiated by Sandia National Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world's oceans as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans. Summaries are presented in the following areas: systems analysis; barrier system characterization and assessment; environmental studies; emplacement; sampling and instrumentation development; and transportation studies

  19. Penn State continuing education program on low-level radioactive waste disposal and management: lessons learned

    International Nuclear Information System (INIS)

    Vincenti, J.R.

    1985-01-01

    Since November of 1983, The Pennsylvania State University, Institute for Research on Land and Water Resources has provided the citizens of the Commonwealth of Pennsylvania with information on low-level radioactive waste disposal and management through a continuing education program called the PIER (Public Involvement and Education on Radiation) Program. This paper will review the form, function, and development of this continuing education program and some of the lessons learned in providing citizens of the Commonwealth with information in both formal and informal educational settings

  20. Navy explosive ordnance disposal project: Optical ordnance system development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1996-03-01

    An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.

  1. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  2. Final disposal of spent nuclear fuel-geological, hydrogeological and geophysical methods for site characterization

    International Nuclear Information System (INIS)

    Ahlbom, K.; Carlsson, L.; Olsson, O.

    1983-05-01

    Investigations for the siting of a final repository for high-level radioactive waste are currently being conducted in crystalline rock formations in Sweden. A repository will be located at a depth of about 500 m, and investigations are being carried out in drill holes to below that level. A standard program has been established for the site investigations, comprising a number of phases: 1. General reconnaissance for selection of study site 2. Detailed investigation on the ground surface 3. Depth investigation in drill holes 4. Evaluation and modelling 1. Includes geological and geophysical reconnaissance measurements and drilling of one deep drill hole 2. includes surface and depth investigation within an area of approximately 4-8 km 2 . The surface investigations consist of geophysical measurements including electrical resistivity, magnetization, induced polarization and seismic measurements, and yeild informatin on the composition and fracturing of the bedrock in the superficial parts of the study sites. Mapping of the superficial parts of the bedrock are concluded with short percussion and core drillholes down to 150-250 metres in order to determine the dip and character of fracture zones and rock boundaries. 3. Comprises core drilling to vertical depths of about 600 m, core mapping geophysical well-logging and different hydraulic downhole measurements. In core mapping, the emphasis is placed on fracture characterization of the core. The geophysical logging includes three resistivity methods, natural gamma, induced polarization, spontaneous potential and temperature, salinity, pH and Eh of the drill hole fluid. The hydraulic measurements include: measurements of hydraulic conductivity by single-hole and cross-hole testing, determination of the hydraulic fracture frequency and determination of groundwater head at different levels in the bedrock. (G.B.)

  3. Development of the disposal technology research component of the national uranium tailings program

    International Nuclear Information System (INIS)

    Melis, L.A.

    1983-03-01

    The National Technical Planning Group on Uranium Tailings Research, organized by CANMET in 1980, recommended the establishment of a National Uranium Tailings Program to develop research on the long-term abandonment of uranium mine tailings. This report deals with the disposal technology component of this program and attempts to provide recommendations with respect to potential research avenues in this area. A description of uranium tailings in Canada is provided in order to identify the current situation with uranium tailings management. Uranium mining sites described include the Elliot Lake and Bancroft area of Ontario, the northern Saskatchewan properties and the two abandoned sites in the North West Territories. The description of the sites was facilitated by subdividing the tailings into inactive sites, active sites, new tailings sites and areas of tailings in a close-out situation. Methods identified as promising include subsurface disposal, in-situ leaching, prevention of pyrite oxidation and reclamation studies at abandoned sites

  4. Fusion Simulation Program Definition. Final report

    International Nuclear Information System (INIS)

    Cary, John R.

    2012-01-01

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents

  5. Disposal of low-level radioactive waste using high-calcium fly ash. Final report

    International Nuclear Information System (INIS)

    Cogburn, C.O.; Hodgson, L.M.; Ragland, R.C.

    1986-04-01

    The feasibility of using calcium-rich fly ash from coal-fired power plants in the disposal of low-level radioactive waste was examined. The proposed areas of use were: (1) fly-ash cement as a trench lining material; (2) fly ash as a backfill material; and (3) fly ash as a liquid waste solidifier. The physical properties of fly-ash cement were determined to be adequate for trench liner construction, with compressive strengths attaining greater than 3000 psi. Hydraulic conductivities were determined to be less than that for clay mineral deposits, and were on the order of 10 -7 cm/sec, with some observed values as low as 10 -9 cm/sec. Removal of radioisotopes from acidified solutions by fly ash was good for all elements tested except cesium. The removal of cesium by fly ash was similar to that of montmorillonite clay. The corrosive effects on metals in fly ash environments was determined to be slight, if not non-existent. Coatings at the fly-ash/metal interfaces were observed which appeared to inhibit or diminish corrosion. The study has indicated that high-calcium fly ash appears to offer considerable potential for improved retention of low-level radioactive wastes in shallow land disposal sites. Further tests are needed to determine optimum methods of use. 8 refs., 4 figs., 7 tabs

  6. Determining ''Best Practicable Environmental Options'' for final waste disposal of radioactive waste

    International Nuclear Information System (INIS)

    Smith, Graham

    1999-01-01

    This presentation discusses some ideas on what the Best Practical Environmental Option (BPEO) process should include. A BPEO study to help develop a radioactive waste management strategy should not only look at post-closure safety of a facility. In the UK there was a 1986 Study of BPEOs for management of low and intermediate level radioactive wastes. This study tried to answer important questions such as (1) What are the practical options, (2) Which wastes should go to shallow burial, (3) Which wastes should go to sea disposal, (4) How does storage compare with disposal and (5) What are the cost and environmental trade-offs. The presentation discusses what was done to answer the questions. The BPEO Study resulted in major improved effort to characterise waste, much greater quantitative understanding of where and when the real costs, and environmental and radiological impacts arise. All options would be useful within a national strategy. But there was clearly a need for resolution of political acceptance problems, integration of policy with other hazardous waste management, and stronger legal framework

  7. DOE Utility Matching Program Final Technical Report

    International Nuclear Information System (INIS)

    Haghighat, Alireza

    2002-01-01

    This is the Final report for the DOE Match Grant (DE-FG02-99NE38163) awarded to the Nuclear and Radiological Engineering (NRE) Department, University of Florida, for the period of September 1999 to January 2002. This grant has been instrumental for maintaining high-quality graduate and undergraduate education at the NRE department. The grant has been used for supporting student entry and retention and for upgrading nuclear educational facilities, nuclear instrumentation, computer facilities, and computer codes to better enable the incorporation of experimental experiences and computer simulations related to advanced light water fission reactor engineering and other advanced reactor concepts into the nuclear engineering course curricula

  8. Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) program plan: Executive summary

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Eisenhower, B.M.; Reeves, M.E.; DePaoli, S.M.; Stinton, L.H.; Harrington, E.H.

    1989-02-01

    The Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program Plan provides a strategy for management of hazardous and mixed wastes generated by the five Department of Energy (DOE) installations managed by Martin Marietta Energy Systems, Inc. (Energy Systems). This integrated corporate plan is based on the individual installation plans, which identify waste streams, facility capabilities, problem wastes, future needs, and funding needs. Using this information, the corporate plan identifies common concerns and technology/facility needs over the next 10 years. The overall objective of this corporate plan is to ensure that treatment, storage, and disposal (TSD) needs for all hazardous and mixed wastes generated by Energy Systems installations have been identified and planned for. Specific objectives of the program plan are to (1) identify all hazardous and mixed waste streams; (2) identify hazardous and mixed waste TSD requirements; (3) identify any unresolved technical issues preventing implementation of the strategy; (4) develop schedules for studies, demonstrations, and facilities to resolve the issues; and (5) define the interfaces with the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. 10 refs., 7 figs

  9. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  10. Resource Programs: Final Environmental Impact Statement

    International Nuclear Information System (INIS)

    1993-02-01

    Every two years, BA prepares a Resource Program, which identifies the resource actions BA will take to meet its obligation to serve the forecasted power requirements of its customers. The Resource Programs Environmental Impact Statement (RPEIS) is a programmatic environmental document that will support decisions made in several future Resource Programs. Environmental documents tiered to this EIS may be prepared on a site-specific basis. The RPEIS includes a description of the environmental effects and mitigation for the various resource types available in order to evaluate the trade-offs among them. It also assesses the environmental impacts of adding thirteen alternative combinations of resources to the existing power system. The alternatives represent the range of actions BA could take to meet its load obligations. Each of the alternatives allows BA to meet the almost 5,000 average megawatt load increase that could occur with high load growth, or an equivalent need for resources caused by a combination of load growth and any future loss of resources

  11. Wilsonville wastewater sampling program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-10-01

    As part of its contrast to design, build and operate the SRC-1 Demonstration Plant in cooperation with the US Department of Energy (DOE), International Coal Refining Company (ICRC) was required to collect and evaluate data related to wastewater streams and wastewater treatment procedures at the SRC-1 Pilot Plant facility. The pilot plant is located at Wilsonville, Alabama and is operated by Catalytic, Inc. under the direction of Southern Company Services. The plant is funded in part by the Electric Power Research Institute and the DOE. ICRC contracted with Catalytic, Inc. to conduct wastewater sampling. Tasks 1 through 5 included sampling and analysis of various wastewater sources and points of different steps in the biological treatment facility at the plant. The sampling program ran from May 1 to July 31, 1982. Also included in the sampling program was the generation and analysis of leachate from SRC product using standard laboratory leaching procedures. For Task 6, available plant wastewater data covering the period from February 1978 to December 1981 was analyzed to gain information that might be useful for a demonstration plant design basis. This report contains a tabulation of the analytical data, a summary tabulation of the historical operating data that was evaluated and comments concerning the data. The procedures used during the sampling program are also documented.

  12. Hydraulic containment of low-level radioactive waste disposal sites: [Final technical report

    International Nuclear Information System (INIS)

    Ostendorf, D.W.; Noss, R.R.; Miller, A.B.; Phillips, H.S.

    1987-01-01

    This document describes the use of impermeable barriers for the containment of liquid radioactive wastes at low-level radioactive waste disposal sites. Included are a review of existing barrier systems, assessments of laboratory and field data, and simulations of system performance under humid and arid conditions. Alternatives are identified as the most promising of the existing systems based on retention of irradiated water, field installation feasibility, and response to aggressive permeation. In decreasing order of preference, the favored systems are asphalt slurry, high density polyethylene synthetic liner, polyvinyl chloride synthetic liner, lean portland cement concrete, and compacted bentonite liner. It should be stressed that all five of these alternatives effectively retain irradiated water in the humid and arid simulations. Recommendations on the design and operation of the hydraulic containment system and suggestions on avenues for future research are included. 102 refs., 27 figs., 23 tabs

  13. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal: Final Act

    International Nuclear Information System (INIS)

    1989-03-01

    The Conference on Plenipotentiaries on the Global Convention on the Control of Transboundary Movements of Hazardous Wastes was convened by the Executive Director of the United Nations Environment Programme (UNEP) pursuant to decision 14/30, adopted by the Governing Council of UNEP on 17 June 1987. The Conference adopted the Global Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal. In the 29 articles of this Convention the definitions of hazardous wastes, the scope of the Convention, general obligations of the signatory parties, transboundary waste movement between Parties as well as through states which are not parties, illegal traffic, international control, liabilities, financial aspects, verification, accession and withdrawal of the Parties are defined in detail. There are 6 Annexes, including specifications of hazardous wastes, information requirements, notification rules, etc

  14. Final report: Accelerated beta decay for disposal of fission fragment wastes

    International Nuclear Information System (INIS)

    Reiss, Howard R.

    2000-01-01

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory

  15. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  16. Deep Impact's EPO Program: Final Report

    Science.gov (United States)

    McFadden, Lucy-Ann A.; Warner, E. M.; McLaughlin, S.; Behne, J.; Ristvey, J.; Rountree-Brown, M.

    2006-09-01

    NASA's Deep Impact mission sent an impactor spacecraft into the path of periodic comet 9P/Tempel 1 on July 4, 2005. The Education and Public Outreach goals of the mission were to effectively communicate the mission to target audiences, particularly educators and students with an emphasis on critical thinking using science, math and engineering concepts. A second goal was to invite audiences to participate throughout the mission using products and interactive programs. In the six-years of the mission, we built a community of scientists, educators, students, and both amateur and technically proficient astronomers, who brought the excitement of the mission to their own community. The web site was the focus of the program (http://deepimpact.umd.edu or deepimpact.jpl.nasa.gov). A monthly electronic newsletter sent to an ever- growing distribution list kept subscribers up to date on mission activities. A program to send your name to the comet engaged the public. Curriculum enhancements covering the physics of crater formation, nature of comets and a case study in optimized decision-making designed for students are available (http://deepimpact.umd.edu/educ/index.html). Mathematical (http://deepimpact.umd.edu/disczone/challenge.html) and conceptual questions of a technical nature (http://deepimpact.umd.edu/disczone/braintwist.html) are posed and solved in Mission Challenges and Brain Twisters. Materials provided for students and amateur astronomers to acquire comet observing skills are available (http://deepimpact.umd.edu/amateur/index.shtml).The Small Telescope Science Program was a successful pro-amateur collaboration providing information on brightness variations of the comet both before and after impact (http://deepimpact.umd.edu/stsp/). The night, of impact, events were held at public venues around the world where the excitement of a successful mission exploring the inside of a comet was felt. Results are at http://deepimpact.umd.edu/results/index.html. The mission is

  17. International program to study subseabed disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables

  18. Geologic disposal evaluation program semiannaul report for period ending March 31, 1975

    International Nuclear Information System (INIS)

    1975-07-01

    The Radioactive Waste Repository Project at the Oak Ridge National Laboratory has for some time been engaged in a program directed toward establishing a Federal Repository for radioactive wastes, primarily solidified high-level waste, in a bedded salt formation. Early in 1974, the project was restructured and, to more nearly reflect its broadened scope, was renamed the Geologic Disposal Evaluation (GDE) Program. This report is the first in a series of semiannual progress reports which will be issued to document the progress made in the GDE Program. Most of the subject matter discussed is either geologic or developmental in nature, as would be expected, since the engineering assessment depends on the data generated in these two areas. In addition, since this report also covers the transition period between the Radioactive Waste Repository Project (RWRP) and the GDE Program, information on several RWRP programs, is included. (U.S.)

  19. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE’s Waste Disposal/Tank Closure Efforts – 15436

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Heather [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, Frank [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, Christine [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, Kevin [Vanderbilt Univ./CRESP, Nashville, TN (United States); Kosson, David [Vanderbilt Univ./CRESP, Nashville, TN (United States); Samson, Eric [SIMCO Technologies, Inc. (United States); Mallick, Pramod [US DOE, Washington, DC (United States)

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  20. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE@@@s Waste Disposal/Tank Closure Efforts @@@ 15436

    International Nuclear Information System (INIS)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Kosson, David; Samson, Eric; Mallick, Pramod

    2015-01-01

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods and data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox @@ @@Version 2.0@@@ which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance

  1. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10 -6 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10 -11 m 2 /s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Kivetty is classified as fresh water and

  2. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically most evolved

  3. Prestudy of final disposal of long-lived low and intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wiborgh, M [ed.; Kemakta Konsult AB., Stockholm (Sweden)

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m{sup 3}. The total activity content at repository closure is estimated to be about 1 {center_dot}10{sup 17} Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times.

  4. Prestudy of final disposal of long-lived low and intermediate level waste

    International Nuclear Information System (INIS)

    Wiborgh, M.

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m 3 . The total activity content at repository closure is estimated to be about 1 ·10 17 Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times

  5. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  6. Collaboration of the Dutch research program for radioactive waste disposal (OPERA) and TU Delft

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, D.M.; Kloosterman, J.L. [TU Delft (Netherlands). Reactor Inst. Delft; Neeft, E.A.C.; Verhoef, E.V. [COVRA N.V., Nieuwdorp (Netherlands)

    2015-07-01

    Radioactive waste in the Netherlands is collected, treated and stored by COVRA (Centrale Organisatie Voor Radioactief Afval) in the interim storage facility for at least 100 a. After this period of long-term storage, geological disposal is foreseen. The policy is based on a step-wise decision process in which all decisions are taken to ensure safe disposal in a repository, but without excluding unforeseen alternative solutions that might develop in the future. OPERA is the Dutch acronym for research program into geological disposal of radioactive waste. It started in 2011 and is running for five years. The OPERA Research plan is developed by NRG in close collaboration with COVRA. Radioactive waste disposal in the Netherlands is at an early, conceptual phase. The aim of Opera is to develop a first preliminary safety case to structure the research necessary for the eventual deployment of a repository in the Netherlands. The OPERA research program aims at a close cooperation with the Belgian research program on radioactive waste disposal. The result of OPERA will be to detail a first roadmap for the long-term research on geological disposal of radioactive waste in the Netherlands, based initially on a re-evaluation of existing safety and feasibility studies conducted more than ten years ago, making use of present international and, wherever possible, national knowledge. This will be done by developing initial and conditional safety cases for generic GDFs in Zechstein rock salt and Boom Clay formations in the Netherlands. The goal in OPERA is to develop initial safety cases that are intended to mark the start of the research development process and to iterate these as knowledge grows to new developed insights. The safety case is conditional since plausible assumptions must later be confirmed in a safety case e.g. for site selection. Dutch, Belgian, German, English and French organizations participate in OPERA. These organizations can be found in the two documents with

  7. Collaboration of the Dutch research program for radioactive waste disposal (OPERA) and TU Delft

    International Nuclear Information System (INIS)

    Bykov, D.M.; Kloosterman, J.L.

    2015-01-01

    Radioactive waste in the Netherlands is collected, treated and stored by COVRA (Centrale Organisatie Voor Radioactief Afval) in the interim storage facility for at least 100 a. After this period of long-term storage, geological disposal is foreseen. The policy is based on a step-wise decision process in which all decisions are taken to ensure safe disposal in a repository, but without excluding unforeseen alternative solutions that might develop in the future. OPERA is the Dutch acronym for research program into geological disposal of radioactive waste. It started in 2011 and is running for five years. The OPERA Research plan is developed by NRG in close collaboration with COVRA. Radioactive waste disposal in the Netherlands is at an early, conceptual phase. The aim of Opera is to develop a first preliminary safety case to structure the research necessary for the eventual deployment of a repository in the Netherlands. The OPERA research program aims at a close cooperation with the Belgian research program on radioactive waste disposal. The result of OPERA will be to detail a first roadmap for the long-term research on geological disposal of radioactive waste in the Netherlands, based initially on a re-evaluation of existing safety and feasibility studies conducted more than ten years ago, making use of present international and, wherever possible, national knowledge. This will be done by developing initial and conditional safety cases for generic GDFs in Zechstein rock salt and Boom Clay formations in the Netherlands. The goal in OPERA is to develop initial safety cases that are intended to mark the start of the research development process and to iterate these as knowledge grows to new developed insights. The safety case is conditional since plausible assumptions must later be confirmed in a safety case e.g. for site selection. Dutch, Belgian, German, English and French organizations participate in OPERA. These organizations can be found in the two documents with

  8. Environmental studies data base: development and data synthesis activities of the US Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hesssler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Yayanos, A.A.

    1980-01-01

    The US Subseabed Disposal Program is assessing the scientific feasibility of subseabed emplacement of high-level nuclear wastes. Studies of disposal methods and of the barriers to radionuclide migration (canister, waste form and sediment) suggest that environmental information will be needed to address the impact of accidental release of radionuclides in the deep sea. Biological, physical, and geochemical data are being collected from field and laboratory studies as well as from literature searches. These data are being analyzed using a multicompartmental radionuclide transport model and appropriate physical oceanographic models. The data integrated into this framework will help answer two questions: what are the environmental effects of radionuclides which may be released in the deep sea, and what are the effects of such a release upon man

  9. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    International Nuclear Information System (INIS)

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary

  10. Environmental studies data base development and data synthesis activities of the US Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Yayanos, A.A.; Jackson, D.W.

    1981-05-01

    The US Subseabed Disposal Program is assessing the scientific feasibility of subseabed emplacement of high-level nuclear wastes. Studies of disposal methods and of the barriers to radionuclide migration (canister, waste form, and sediment) suggest that environmental information will be needed to address the impact of accidental release of radionuclides in the deep sea. Biological, physical, and geochemical data are being collected from field and laboratory studies as well as from literature searches. These data are being analyzed using a multicompartmental radionuclide transport model and appropriate physical oceanographic models. The data integrated into this framework will help answer two questions - what are the environmental effects of radionuclides that may be released in the deep sea, and what are the effects of such a release upon man

  11. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  12. Environmental Assessment : Squawfish Management Program : Final.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-05-01

    Bonneville Power Administration (BPA) proposes to decrease the number of northern squawfish (Ptychocheilus oregonensis) in reservoirs in the Columbia River system. The goal of the Squawfish Management Program is to reduce losses of outmigrating juvenile salmon and steelhead (salmonids) to northern squawfish predation. The objective is to reduce the number of northern squawfish that feed on juvenile salmonids (smolts) by 10 to 20 percent to alter the age and size structure of the northern squawfish population. The hypothesis, based on computer modeling, indicates that sustained northern squawfish harvest (5 to 10 years) and the resultant population restructuring may reduce losses of juvenile salmonids to predation by up to 50 percent or more within 10 years. The proposed action would target northern squawfish 11 inches and longer, the size in which northern squawfish being preying significantly on juvenile salmonids. BPA proposes to fund three types of fisheries to harvest northern squawfish. BPA also proposes to fund monitoring activities of these fisheries to determine whether desired or other results occur. The three fisheries methods proposed are: (1) commercial Tribal fishing; (2) sport reward fishing; and (3) fishing from restricted areas of each dam ( dam angling''). These fisheries were tested in 1990 and 1991.

  13. NANA Geothermal Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  14. Wildlife mitigation program final environmental impact statement

    International Nuclear Information System (INIS)

    1997-03-01

    BPA is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and improvement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative, i.e., not to establish program-wide standards. Five standardizing (action) alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information

  15. The HAW-Project. Test disposal of highly radioactive radiation sources in the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Cuevas, C. de las; Donker, H.; Feddersen, H.K.; Garcia-Celma, A.; Gies, H.; Goreychi, M.; Graefe, V.; Heijdra, J.; Hente, B.; Jockwer, N.; LeMeur, R.; Moenig, J.; Mueller, K.; Prij, J.; Regulla, D.; Smailos, E.; Staupendahl, G.; Till, E.; Zankl, M.

    1995-01-01

    In order to improve the final concept for the disposal of high-level radioactive waste (HAW) in boreholes drilled into salt formation plans were developed a couple of years ago for a full scale testing of the complete technical system of an underground repository. To satisfy the test objectives, thirty highly radioactive radiation sources were planned to be emplaced in six boreholes located in two test galleries at the 800-m-level in the Asse salt mine. A duration of testing of approximately five years was envisaged. Because of licensing uncertainties the German Federal Government decided on December 3rd, 1992 to stop all activities for the preparation of the test disposal immediately. In the course of the preparation of the test disposal, however, a system, necessary for handling of the radiation sources was developed and installed in the Asse salt mine and two non-radioactive reference tests with electrical heaters were started in November 1988. These tests served for the investigation of thermal effects in comparison to the planned radioactive tests. An accompanying scientific investigation programme performed in situ and in the laboratory comprises the estimation and observation of the thermal, radiation-induced, and mechanical interaction between the rock salt and the electrical heaters and the radiation sources, respectively. The laboratory investigations are carried out at Braunschweig (FRG), Petten (NL), Saclay (F) and Barcelona (E). As a consequence of the premature termination of the project the working programme was revised. The new programme agreed to by the project partners included a controlled shutdown of the heater tests in 1993 and a continuation of the laboratory activities until the end of 1994. (orig.)

  16. Qualification of final closure for disposal container II - applicability of TOFD and phased array technique for overpack welding

    International Nuclear Information System (INIS)

    Asano, H.; Kawahara, K.; Arakawa, T.; Kurokawa, M.

    2002-01-01

    With a focus on carbon steel, which is one of the candidate materials for the disposal container used in the geological disposal of high-level radioactive waste in Japan, the defect detection capabilities were examined regarding engineering defects of the TOFD technique, an ultrasonic testing method, and the phased array TOFD technique as non-destructive test techniques for the inspection of the weld of a carbon steel overpack. Regarding the TOFD technique, a measurement was conducted concerning the influence of the crossing angle of the ultrasonic beams on the capability of detect flaws, for examining the detection characteristics of the technique in relation to the lid structure of an overpack, and it was pointed out that it is appropriate to consider the lower tip of slit as the reference flaw. Based on the measurements and calculations regarding sound pressure distribution, projections about the scope covered by one test session were made and the optimum testing conditions were examined. Regarding the phased array TOFP technique, the detectability and quantification characteristics were investigated, and comparisons with those of the TOFD technique and the phased array UT technique were made. From the viewpoint of securing long-term corrosion resistance for an overpack, the ways of thinking for ensuring the quality and long-term integrity of the final sealing area of a disposal container were examined. This study stresses that identifying and defining the defects that are harmful to corrosion allowance is important as well as achieving improvements in the welding and testing techniques, and that the question to solve in particular from now on is how to establish effective means to detect defects on the weld surface and the near surface and how to approach the level of tolerance concerning the defects on and near the surface. (orig.)

  17. Investigation of siting parameters for near surface disposal of low-level nuclear waste. Final report

    International Nuclear Information System (INIS)

    Schell, W.R.; Sanchez, A.L.; Thomas, E.D.

    1985-01-01

    A study was initiated in April 1984 to evaluate actual problems associated with and to recommend improvements for near surface disposal of low-level radioactive wastes in the State of Pennsylvania and the humid Northeast. The results of field measurements showed some vertical transport of 137 Cs and other fallout radionuclides in 210 Pb dated peat cores from the unsaturated zone. Under the natural acid rain conditions (pH 4.0), the most mobile radionuclide, 137 Cs, gave diffusion coefficients of 10 -7 to 10 -9 cm 2 /sec in the different organic rich soils. Both the upward and downward migration of radionuclides resulted from the hydrological cycle of evapotranspiration and precipitation which gave diffusive mixing of mobile radionuclides. The distribution coefficient, K/sub d/ values, for several radionuclides in the organic rich soils were found to be equal to or greater than those measured previously for inorganic clay and sediment matrices. To insure that radionuclides do not enter water supplies in the humid Northeast where pH 4.0 rain is encountered, a peat liner should be considered in the multibarrier design of repositories. 32 refs., 16 figs., 8 tabs

  18. Study on risk communication by using web system for the social consensus toward HLW final disposal

    International Nuclear Information System (INIS)

    Kugo, Akihide; Yoshikawa, Hidekazu; Shimoda, Hiroshi; Uda, Akinobu; Wakabayashi, Yasunaga; Ito, Kyoko

    2008-01-01

    The web site that has illustrated characters to navigate information pertaining to unfamiliar issue such as high-level radioactive waste geological disposal is an effective method. However, since the information was provided mainly from a pro-nuclear power generation group, it resulted in frustration for the web site user because viewpoints outside the group were not considered nor the explanations were based on only rational aspects, the persuasive explanation based on technical viewpoints in other words. To close this communication gap, this research aims to enhance a better sense of involvement and social collaboration by creating an interactive communication model promoting emotional acceptance and independent thinking with Web system. This purpose was accomplished by the dialog-mode explanation and the scenarios with norm activation theory supported by facial expressions of the illustrated navigators to stimulate the emotional involvement of viewers and the specialists' reliable response on the electrical bulletin board system, then we conducted preparatory experiments concerning its effects and assessed its affectiveness by making this model available over the Internet. (author)

  19. Final Environmental Assessment for solid waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1995-08-01

    New solid waste regulations require that the existing Nevada Test Site (NTS) municipal landfills, which receive less than 20 tons of waste per day, be permitted or closed by October 9, 1995. In order to be permitted, the existing landfills must meet specific location, groundwater monitoring, design, operation, and closure requirements. The issuance of these regulations has resulted in the need of the Department of Energy (DOE) to provide a practical, cost-effective, environmentally sound means of solid waste disposal at the NTS that is in compliance with all applicable federal, state, and local regulations. The current landfills in Areas 9 and 23 on the Nevada Test Site do not meet design requirements specified in new state and federal regulations. The DOE Nevada Operations Office prepared an environmental assessment (EA) to evaluate the potential impacts of the proposal to modify the Area 23 landfill to comply with the new regulations and to close the Area 9 landfill and reopen it as Construction and Demolition debris landfill. Based on information and analyses presented in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act. Therefore, an environmental impact statement (EIS) is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  20. Stakeholder involvement in redefining Hanford's Double-Shell Tank Waste Disposal Program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-01-01

    Hanford's Double-Shell Tank (DST) waste disposal strategy, outlined in the Final Environmental Impact Statement, Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory, (PNL) and Westinghouse Hanford Company, (WHC) and sought input from outside stakeholder (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) groups through a formal stakeholder involvement and multiattribute utility (MAU) analysis process

  1. DECONTAMINATION SYSTEMS AND INFORMATION RESEARCH PROGRAM; FINAL

    International Nuclear Information System (INIS)

    Echol E. Cook, Ph.D., PE.

    1998-01-01

    During the five plus years this Cooperative Agreement existed, more than 45 different projects were funded. Most projects were funded for a one year period but there were some, deemed of such quality and importance, funded for multiple years. Approximately 22 external agencies, businesses, and other entities have cooperated with or been funded through the WVU Cooperative Agreement over the five plus years. These external entities received 33% of the funding by this Agreement. The scope of this Agreement encompassed all forms of hazardous waste remediation including radioactive, organic, and inorganic contaminants. All matrices were of interest; generally soil, water, and contaminated structures. Economic, health, and regulatory aspects of technologies were also within the scope of the agreement. The highest priority was given to small businesses funded by the Federal Energy Technology Center (FETC) and Department of Energy (DOE) involved in research and development of innovative remediation processes. These projects were to assist in the removal of barriers to development and commercialization of these new technologies. Studies of existing, underdeveloped technologies, were preferred to fundamental research into remediation technologies. Sound development of completely new technologies was preferred to minor improvements in existing methods. Solid technological improvements in existing technologies or significant cost reduction through innovative redesign were the preferred projects. Development, evaluation, and bench scale testing projects were preferred for the WVU research component. In the effort to fill gaps in current remediation technologies, the worth of the WVU Cooperative Agreement was proven. Two great technologies came out of the program. The Prefabricated Vertical Drain Technology for enhancing soil flushing was developed over the 6-year period and is presently being demonstrated on a 0.10 acre Trichloroethylene contaminated site in Ohio. The Spin

  2. Medicaid program; health care-related taxes. Final rule.

    Science.gov (United States)

    2009-06-30

    This rule finalizes our proposal to delay enforcement of certain clarifications regarding standards for determining hold harmless arrangements in the final rule entitled, "Medicaid Program; Health Care-Related Taxes" from the expiration of a Congressional moratorium on enforcement from July 1, 2009 to June 30, 2010.

  3. Seabed Disposal Program. Annual report, January--December 1976. Part II

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1977-08-01

    During the first two years of the program, studies were made of the water column extending from the seabed to the surface in mid-gyre regions. It was concluded that this water column is unsuitable for consideration as the disposal medium. Studies were shifted to characterization of the mid-plate, mid-gyre sediments, natural processes in the sediments, and how these natural processes are altered or impacted by the presence of high-level radioactive wastes. These activities continued in the third year of the Program and include (1) development of a number of analytical models as part of the overall systems analysis effort; (2) an extensive program to evaluate the sorption properties of the sediments with respect to single species ions and the competition provided by other waste constituents; (3) an assessment of thermal problems associated with the radiogenic heat produced by the waste and its impact upon the physical and chemical properties of the sediments; (4) continued studies to characterize the sediments; (5) development of capabilities to investigate waste canister emplacement techniques; (6) corrosion studies to evaluate potential canister materials; (7) biological investigations in support of assessment studies addressing accident scenarios and environmental impact; and (8) development of an international program of scientific investigations and information exchange. At the end of the third year, available data indicate that studies should be continued on the concept of disposal in the seabed

  4. Microbial occurrence in bentonite-based buffer materials of a final disposal site for low level radioactive waste in Taiwan

    International Nuclear Information System (INIS)

    Chou Fongin; Chen Tzungyuang; Li Chiachin; Wen Hsiaowei

    2011-01-01

    This research addresses the potential of microbial implications in bentonite for use as a buffer and backfill material in final disposal site for low-level radioactive waste (LLRW) in Taiwan, where has a special island-type climate. Microbe activities naturally present in this site were analyzed, and buffer materials (BM) consisted of 100%, 70% or 50% bentonite were prepared for laboratory studies. A total of 39 microbial strains were isolated, and the predominant strains included four bacterial, one yeast and four fungal strains. Growth inhibition was not detected in any tested strain cultured in a radiation field with a dose rate of 0.2 Gy/h. Most of the isolated strains grew under a dose rate of 1.4 Gy/h. The D 10 values of the tested strains ranged from 0.16 to 2.05 kGy. The mycelia of tested fungal strains could spread over 5 cm during six months of inoculation in BM. The spreading activity of the tested bacteria was less than that of the fungi. Moreover, biofilms were observed on the surfaces of the BM. Since a large and diverse population of microbes is present in Taiwan, microbes may contribute to the mobilization of radionuclides in the disposal site. (author)

  5. Final disposal of spent fuel in the Finnish bedrock. Scope and requirements for site-specific safety analysis

    International Nuclear Information System (INIS)

    1996-12-01

    The report is a summary of the research conducted in the period 1993 to 1996 into safety of spent fuel final disposal. The principal goal of the research in this period, as set in 1993, was to develop a strategy for site-specific safety analysis. At the same time efforts were to be continued to gather data and validate the technical approach for the analysis. The work aimed at having the data needed for the analysis available at the end of year 1998. A safety assessment update, TILA-96, prepared by VTT Energy, is published as a separate report. The assessment is based on the TVO-92 safety analysis, but takes into account the knowledge acquired after 1992 on safety aspects of the disposal system and the data gathered from the site investigations made by TVO and from the beginning of 1996, by Posiva. Since the site investigations are still ongoing and much of the data gathered still pending interpretation, only limited amount of new site-specific information has been available for the present assessment. (172 refs.)

  6. The study of the container types used for transport and final disposal of the radioactive wastes resulting from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Postelnicu, C.

    1998-01-01

    The purpose of the present paper is to select from a variety of package forms and capacities some containers which will be used for transport and disposal of the radioactive wastes resulting from decommissioning of nuclear facilities into the National Repository for Radioactive Waste - Baita, Bihor county. Taken into account the possibilities of railway and / or road transport and waste disposal in our country, detailed container classification was given in order to use them for radioactive waste transport and final disposal from decommissioning of IFIN-HH Research Reactor. (author)

  7. Insulating Structural Ceramics Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael

    2005-11-22

    turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.

  8. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10 -13 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the postglacial

  9. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10 -6 m 2 /s or 1.3 x 10 -6 m 2 /s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose from the Baltic Sea some

  10. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  11. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  12. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  13. Application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal. Final report; Anwendung und Weiterentwicklung von Modellen fuer Endlagersicherheitsanalysen auf die Freigabe radioaktiver Stoffe zur Deponierung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Larue, Juergen; Seher, Holger; Weiss, Dietmar

    2014-08-15

    The project of application and further development of models for the final repository safety analyses on the clearance of radioactive materials for disposal is aimed to study the long-term safety using repository-specific simulation programs with respect to radiation exposure for different scenarios. It was supposed to investigate whether the 10 micro Sv criterion can be guaranteed under consideration of human intrusion scenarios. The report covers the following issues: selection and identification of models and codes and the definition of boundary conditions; applicability of conventional repository models for long-term safety analyses; modeling results for the pollutant release and transport and calculation of radiation exposure; determination of the radiation exposure.

  14. The public, experts and deliberations. Consultations about final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Soneryd, Linda; Lidskog, Rolf

    2006-11-01

    The Swedish process for consultations are studied in order to gain knowledge about the relation between experts and the general public in processes that involve complex scientific and technological issues. The following questions are discussed: How to delimit and define 'the general public' and which methods are used for doing this? Which arenas for dialog are created, and which are the institutional conditions for participation. Are there mechanisms that support or counteract negotiations about the boundaries of the expertise? How do actors that participate in consultation activities relate to experts? How are local and cross-border environment consequences discussed in consultations? The empirical material used in the study consists of observation, formal and informal interviews and documents. Conclusions drawn are that the organisation of consultations puts a special focus on the municipalities, the local population and local environmental issues. SKB has, after advice from consultation participants taken measures to change the process. This has not, however, changed the institutional conditions for participating as given on the different arenas. SKB's local information and communication activity create good relationships but have only weak mechanisms to counteract the dominating role of SKB. The process holds mechanisms that both support and counteract discussions and negotiations about the expertise's boundaries. A counteracting mechanism is when participants relate to EIS as a legal tool and make references to law interpretations that support their own position. The expertise's boundaries are challenged through views and comments about the long time aspects that are involved in the repository question. During consultations, no systematic discussion is pursued about values related to different disposal solutions and images of the future or about which roles citizens have in the consultation process, in their function of municipality politicians, environment

  15. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel

    International Nuclear Information System (INIS)

    1988-07-01

    This paper is primarily concerned with Section 11 of INFCIRC/153 which provides for the possible termination of safeguards based on a determination that the nuclear material in question has been consumed, has been diluted, or has become practicably irrecoverable. Two distinctly different categories of nuclear material have been suggested for possible termination of safeguards based on a determination that the nuclear material has become practicably irrecoverable: One relates to a variety of low concentration waste materials, meaning thereby materials which the State or plant operator considers to be of questionable economic recoverability and the other relates to the spent fuel placed in facilities described as ''permanent repositories'' which are at least claimed to represent ''final disposal'' facilities and are candidates for a possible determination of practicably irrecoverable. 26 refs, tabs

  16. Conversion of radwaste-loaded zeolites into a borosilicate glass to improve their properties for final disposal (preliminary results)

    International Nuclear Information System (INIS)

    Kazemian, H.; Ghannadi Maraghe, M.; Mallah, M.H.; Firooz Zare, M.; Kooshkestani, R.; Naghavi, S.Sh.

    2002-01-01

    Research was undertaken to fix radioisotopes from simulated nuclear waste streams into durable and stable borosilicate glass matrices based on the conversion of different type of zeolites. It was found that the selectivity of Iranian clinoptilolite and the relevant synthetic zeolite toward cesium and strontium were quite good whereas the leach resistance of the loaded zeolite was relatively poor. To improve the leach resistance of the used zeolites, conversion of the spent exchangers into borosilicate glass was investigated. Results obtained in the non active bench scale tests phase were promising. It is concluded that spent zeolites loaded with radioactive materials can be converted into a durable, high leach resistant borosilicate glass, a proper matrix for final disposal of nuclear waste. (author)

  17. VA Dental Insurance Program--federalism. Direct final rule.

    Science.gov (United States)

    2013-10-22

    The Department of Veterans Affairs (VA) is taking direct final action to amend its regulations related to the VA Dental Insurance Program (VADIP), a pilot program to offer premium-based dental insurance to enrolled veterans and certain survivors and dependents of veterans. Specifically, this rule will add language to clarify the limited preemptive effect of certain criteria in the VADIP regulations.

  18. 75 FR 45563 - Terrorism Risk Insurance Program; Final Netting

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF THE TREASURY 31 CFR Part 50 RIN 1505-AC24 Terrorism Risk Insurance Program; Final... Title I of the Terrorism Risk Insurance Act of 2002 (``TRIA'' or ``the Act''), as amended by the Terrorism Risk Insurance Extension Act of 2005 (``Extension Act'') and the Terrorism Risk Insurance Program...

  19. 75 FR 53786 - Senior Community Service Employment Program; Final Rule

    Science.gov (United States)

    2010-09-01

    ... Part IV Department of Labor Employment and Training Administration 20 CFR Part 641 Senior... Administration 20 CFR Part 641 RIN 1205-AB48 and RIN 1205-AB47 Senior Community Service Employment Program; Final... implement changes in the Senior Community Service Employment Program (SCSEP) resulting from the 2006...

  20. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  1. A directory of computer programs for assessment of radioactive waste disposal in geological formations. Volume 2

    International Nuclear Information System (INIS)

    Ashton, J.; Broyd, T.W.; Jones, M.A.; Knowles, N.C.; Liew, S.K.; Mawbey, C.S.; Read, D.; Smith, S.L.

    1993-01-01

    This directory describes computer programs suitable for the assessment of radioactive waste disposal facilities in geological formations. The programs, which are mainly applicable to the post-closure analysis of the repository, address combinations of the following topics: nuclide inventory, corrosion, leaching, geochemistry, geomechanics, heat transfer, groundwater flow, radionuclide migration, biosphere modelling, safety assessment and site evolution. A total of 320 programs are identified, of which 84 are reviewed in detail, 192 in summary and 44 in tabular fashion. Originally published in 1983, the directory was updated in 1985 with the addition of new programs and the revision of some of the existing program reviews. This directory has been completely rewritten in 1991 with the addition of more new programs and a full revision of all the existing program reviews, some of which have been deleted as they are no longer in general use. Although the directory is specific to the post-closure assessment of a repository site, some of the programs described can also be used in other areas of repository (e.g. repository design). This directory is composed of two volumes, the present volume is the second

  2. A directory of computer programs for assessment of radioactive waste disposal in geological formations. Volume 1

    International Nuclear Information System (INIS)

    Ashton, J.; Broyd, T.W.; Jones, M.A.; Knowles, N.C.; Liew, S.K.; Mawbey, C.S.; Read, D.; Smith, S.L.

    1993-01-01

    This directory describes computer programs suitable for the assessment of radioactive waste disposal facilities in geological formations. The programs, which are mainly applicable to the post-closure analysis of the repository, address combinations of the following topics: nuclide inventory, corrosion, leaching, geochemistry, geomechanics, heat transfer, groundwater flow, radionuclide migration, biosphere modelling, safety assessment and site evolution. A total of 320 programs are identified of which 84 are reviewed in detail, 192 in summary and 44 in tabular fashion. Originally published in 1983, the directory was updated in 1985 with the addition of new programs and the revision of some of the existing program reviews. This directory has been completely rewritten in 1991 with the addition of more new programs and a full revision of all the existing program reviews, some of which have been deleted as they are no longer in general use. Although the directory is specific to the post-closure assessment of a repository site, some of the programs described can also be used in other areas of repository (e.g. repository design). This directory is composed of two volumes, the present volume is the first

  3. DOE Defense Program (DP) safety programs. Final report, Task 003

    International Nuclear Information System (INIS)

    1998-01-01

    The overall objective of the work on Task 003 of Subcontract 9-X52-W7423-1 was to provide LANL with support to the DOE Defense Program (DP) Safety Programs. The effort included the identification of appropriate safety requirements, the refinement of a DP-specific Safety Analysis Report (SAR) Format and Content Guide (FCG) and Comprehensive Review Plan (CRP), incorporation of graded approach instructions into the guidance, and the development of a safety analysis methodologies document. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided here

  4. The WIPP research and development program: providing the technical basis for defense waste disposal

    International Nuclear Information System (INIS)

    Hunter, Th.O.

    1983-01-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, is being developed by the US Department of Energy as a research and development facility to demonstrate the safe disposal of radioactive wastes from the defense programs of the United States. Underground workings are at a depth of 660 in a bedded-salt formation. Site investigations began in the early 1970s and are culminating with the completion of the Site and Preliminary Design Validation (SPDV) program in 1983 in which two shafts and several thousand feet of underground drifts are being constructed. The underground facility will be used for in situ tests and demonstrations that address technical issues associated with the disposal of transuranic and defense high-level wastes (DHLW) in bedded salt. These tests are based on several years of laboratory tests, field tests in mines, and analytical modeling studies. They primarily address repository development in bedded salt, including thermal-structural interactions plugging and sealing, and facility operations; and waste package interactions, including the effects of the waste on local rock salt and the evaluation of waste package materials. In situ testing began in the WIPP with the initiation of the SPDV program in 1981. In 1983, a major series of tests will begin to investigate the response of the rock salt without the use of any radioactivity

  5. Test program for closure activities at a mixed waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Harley, J.P. Jr.

    1988-01-01

    A 58-acre site at the Savannah River Plant which was used for disposal of low-level radioactive waste and quantities of the hazardous materials lead, cadmium, scintillation fluid, and oil will be the first large waste site at the Savannah River Plant to be permanently closed. The actions leading to closure of the facility will include surface stabilization and capping of the site. Test programs have been conducted to evaluate the effectiveness of dynamic compaction as a stabilization technique and the feasibility of using locally derived clay as a capping material

  6. The Canadian development program for conditioning CANDU reactor wastes for disposal

    International Nuclear Information System (INIS)

    Charlesworth, D.H.; Bourns, W.T.; Buckley, L.P.

    1978-07-01

    Currently, radioactive wastes arising from the operation of Canadian nuclear reactors are placed in interim storage in concrete containment structures except for gaseous and liquid wastes containing small amounts of radioactivity which are dispersed. With the objective of replacing storage by permanent disposal, a program is underway to develop and demonstrate an integrated process for converting all reactor wastes to a stable, leach-resistant form which will immobilize the radionuclides in the waste repository. The major tool for this development is a Waste Treatment Centre, now being constructed at Chalk River Nuclear Laboratories, which will combine reverse-osmosis, incineration, evaporation and bituminizing processes. (author)

  7. Development of a reference biospheres methodology for radioactive waste disposal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F van [NAGRA (Switzerland); and others

    1996-09-01

    The BIOMOVS II Working Group on Reference Biospheres has focused on the definition and testing of a methodology for developing models to analyse radionuclide behaviour in the biosphere and associated radiological exposure pathways(a Reference Biospheres Methodology). The Working Group limited the scope to the assessment of the long-term implications of solid radioactive waste disposal. Nevertheless, it is considered that many of the basic principles would be equally applicable to other areas of biosphere assessment. The recommended methodology has been chosen to be relevant to different types of radioactive waste and disposal concepts. It includes the justification, arguments and documentation for all the steps in the recommended methodology. The previous experience of members of the Reference Biospheres Working Group was that the underlying premises of a biosphere assessment have often been taken for granted at the early stages of model development, and can therefore fail to be recognized later on when questions of model sufficiency arise, for example, because of changing regulatory requirements. The intention has been to define a generic approach for the formation of an 'audit trail' and hence provide demonstration that a biosphere model is fit for its intended purpose. The starting point for the methodology has three. The Assessment Context sets out what the assessment has to achieve, eg. in terms of assessment purpose and related regulatory criteria, as well as information about the repository system and types of release from the geosphere. The Basic System Description includes the fundamental premises about future climate conditions and human behaviour which, to a significant degree, are beyond prediction. The International FEP List is a generically relevant list of Features, Events and Processes potentially important for biosphere model development. The International FEP List includes FEPs to do with the assessment context. The context examined in detail by

  8. Development of a reference biospheres methodology for radioactive waste disposal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1996-09-01

    The BIOMOVS II Working Group on Reference Biospheres has focused on the definition and testing of a methodology for developing models to analyse radionuclide behaviour in the biosphere and associated radiological exposure pathways(a Reference Biospheres Methodology). The Working Group limited the scope to the assessment of the long-term implications of solid radioactive waste disposal. Nevertheless, it is considered that many of the basic principles would be equally applicable to other areas of biosphere assessment. The recommended methodology has been chosen to be relevant to different types of radioactive waste and disposal concepts. It includes the justification, arguments and documentation for all the steps in the recommended methodology. The previous experience of members of the Reference Biospheres Working Group was that the underlying premises of a biosphere assessment have often been taken for granted at the early stages of model development, and can therefore fail to be recognized later on when questions of model sufficiency arise, for example, because of changing regulatory requirements. The intention has been to define a generic approach for the formation of an 'audit trail' and hence provide demonstration that a biosphere model is fit for its intended purpose. The starting point for the methodology has three. The Assessment Context sets out what the assessment has to achieve, eg. in terms of assessment purpose and related regulatory criteria, as well as information about the repository system and types of release from the geosphere. The Basic System Description includes the fundamental premises about future climate conditions and human behaviour which, to a significant degree, are beyond prediction. The International FEP List is a generically relevant list of Features, Events and Processes potentially important for biosphere model development. The International FEP List includes FEPs to do with the assessment context. The context examined in

  9. Development of a reference biospheres methodology for radioactive waste disposal. Final report

    International Nuclear Information System (INIS)

    Dorp, F. van

    1996-09-01

    The BIOMOVS II Working Group on Reference Biospheres has focused on the definition and testing of a methodology for developing models to analyse radionuclide behaviour in the biosphere and associated radiological exposure pathways (a Reference Biospheres Methodology). The Working Group limited the scope to the assessment of the long-term implications of solid radioactive waste disposal. Nevertheless, it is considered that many of the basic principles would be equally applicable to other areas of biosphere assessment. The recommended methodology has been chosen to be relevant to different types of radioactive waste and disposal concepts. It includes the justification, arguments and documentation for all the steps in the recommended methodology. The previous experience of members of the Reference Biospheres Working Group was that the underlying premises of a biosphere assessment have often been taken for granted at the early stages of model development, and can therefore fail to be recognized later on when questions of model sufficiency arise, for example, because of changing regulatory requirements. The intention has been to define a generic approach for the formation of an 'audit trail' and hence provide demonstration that a biosphere model is fit for its intended purpose. The starting point for the methodology has three. The Assessment Context sets out what the assessment has to achieve, eg. in terms of assessment purpose and related regulatory criteria, as well as information about the repository system and types of release from the geosphere. The Basic System Description includes the fundamental premises about future climate conditions and human behaviour which, to a significant degree, are beyond prediction. The International FEP List is a generically relevant list of Features, Events and Processes potentially important for biosphere model development. The International FEP List includes FEPs to do with the assessment context. The context examined in detail by

  10. Application of the new requirements of safety of the IAEA for the previous management to the final disposal of radioactive waste in the region: a personal vision

    International Nuclear Information System (INIS)

    Sed, Luis Andres Jova

    2013-01-01

    The work includes the requirements for the responsibilities associated with the management prior to the final disposal of radioactive waste and as they are referred to in the Region. Also discusses the requirements for the main stages of the management prior to the final disposal of radioactive waste. A very important section of the new requirements is that establish requirements for safe operation of facilities management prior to the final disposal of radioactive wastes and the implementation of activities under conditions of safety and development. The work is emphatic on the importance of safety justification since the beginning of the development of a facility as a basis for the decision-making and approval process. Emphasis is also on the gradual approach which should provide for the collection, analysis and interpretation of the relevant technical data, plans for the design and operation, and the formulation of the justification of the security. This paper gives a personal view of the situation in the Region

  11. Expectation and task for constructing the volume reduction system of removed soils. In search of the technical integrity from the intermediate storage to final disposal

    International Nuclear Information System (INIS)

    Mori, Hisaki

    2016-01-01

    The intermediate storage volume of the removed soils and incineration ash in Fukushima is supposed about 22 million cubic meters. Within 30 years after starting the intermediate storage, the final disposal outside Fukushima prefecture to these removed soils and incineration ash is determined by the law. Because these removed soils are the very-very low radio activity, the volume reduction method is most effective to reduce the burden of the final disposal. As the volume reduction technology is the stage of research and development, the possibility of the introduction of the volume reduction technology that has the consistency of the final disposal technology is evaluated from the point of view of cost. Since this business is accompanied by economic and technical risk to implement private companies, this project is considered appropriate to be implemented as a national project. (author)

  12. Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: A decrement solution for nuclide and heavy metal disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxue [Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010 (China); Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Dong, Faqin, E-mail: fqdong@swust.edu.cn [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Zhang, Wei [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Nie, Xiaoqin [Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang, 621010 (China); Sun, Shiyong [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege [Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010 (China)

    2016-08-15

    Highlights: • A programmed gradient descent biosorption process was designed. • The adsorption and bioaccumulation quantity of strontium ions by yeast cell were measured. • The decrement of biosorbents after biosorption by ashing was analyzed. • A technological flow process of decrement solution for waste disposal was proposed. - Abstract: One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO{sub 4} existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields.

  13. Search for a final repository site. How is the status of the preparation of final radioactive waste disposal in Germany?; Endlagersuche. Wie steht es um die Vorbereitung der Entsorgung radioaktiver Abfaelle in Deutschland?

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika C.M. (ed.) [Evangelische Akademie Loccum, Rehburg-Loccum (Germany). Arbeitsbereich Naturwissenschaften, Oekologie und Umweltpolitik

    2017-07-01

    During the workshop on the status of the preparation of final radioactive waste disposal in Germany the following issues were discussed: socio-economic challenges two years after the final report of the commission for final disposal of radioactive wastes; the question of public participation - the difficult search for a repository site, experiences and intents of public participation during the work of the commission, interim storage of hear generating radioactive wastes, extended interim-storage, long-term interim storage facilities - opinion of the concerned public, how to establish a controlling and correcting surveillance of the process?.

  14. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    International Nuclear Information System (INIS)

    Bjarnadottir, H.; Hilding-Rydevik, T.

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented. Our perception of

  15. Seminar on R + D work and studies on the disposal and final storage of radioactive waste

    International Nuclear Information System (INIS)

    1979-10-01

    The Seminar had following goals: The research- and development works for safeguarding and final storage of waste are discussed and gone through with regard to their complete processing in due time. A survey on possible co-operation in R+D work is to be set up. The PTB (Physical-technical federal organisation) can normally not order any R+D work nor can it financially support them; it will, however support necessary R+D works with all possibilities it has, for example by sending letters of recommendation and agreement to ministries and other competent institutions. For special investigations relevant for the permission, there are also own means in restricted volume available. (orig./HP) 891 HP/orig.- 892 HIS [de

  16. Risk perspective on final disposal of nuclear waste. Individuals, society and communication

    International Nuclear Information System (INIS)

    Lindblad, Inga-Britt

    2007-01-01

    This report tries to evaluate the importance of the risk perspective in connection with final storage of nuclear waste. The concept 'risk' has different importance for experts and general public, within different research directions and among stakeholders in the nuclear waste issue. The report has been published in order to give an interdisciplinary scientific perspective on the risk concept. The authors have their background in different disciplines: radiation physics, psychology, media- and communications-science. The report treats four different themes: The first theme concerns perspectives on the risk concept and describes various principles for how risks can be handled in the society. The next theme is about comparing various risks. This section shows that risk comparisons can to be done within the framework of a scientific attitude and during certain given conditions. The third theme elucidates results from research about subjective risk, and shows that a large number of factors influence how risks are considered by individuals, and can influence his risk behavior and also how the individual means that the society will make decisions in risk-related questions. The fourth and last theme is about risk communication. Since the risk concept contains many different aspects it is clear that risk should not only be informed about, but also communicated. If a purely mathematical definition of risk was the only valid form, such information, from experts to the citizens, would possibly be sufficient. But since there are other relevant factors to take into consideration (t.ex the individual's own values), a communicative process must take place, i.e. the citizens should have influence on how risks are compared and managed. In the final theme, the authors have chosen to reflect around the themes above, i.e. different perspectives on the risk concept, risk comparisons, subjective risk view and risk communication are discussed

  17. Navy radon assessment and mitigation program: Final report

    International Nuclear Information System (INIS)

    1994-10-01

    This final report encompasses the events from the beginning of the Navy Radon Assessment and Mitigation Program to the closure of the program on October 31, 1994. Included in the report are discussions of the phases of the program including screening, assessment, mitigation, and post-mitigation. The primary discussion involves screening and assessment. The report addresses recommendations made to the Naval Facilities Engineering Command by the Hazardous Waste Remedial Actions Program of Martin Marietta Energy Systems, Inc., and the final decisions that were made. Special emphasis is placed on quality assurance/quality control (QA/QC), since QA/QC was given top priority during the implementation of this program. Included in the discussion on QA/QC are ana overview of the measurement process, positive and negative controls, replicated measurements, and application of chamber exposures to data calibration. The report concludes with a discussion of testing considerations for naval facilities and radon mitigation considerations for the Department of the Navy

  18. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    Science.gov (United States)

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  19. The search for a final disposal site as field of conflict. A proposition for a profile of a problem-oriented sociological repository research

    International Nuclear Information System (INIS)

    Hocke, P.

    2005-01-01

    The search for a final disposal site for high-level nuclear waste in Germany is to characterize as an enduring and politicised conflict causing a blocked process of decision making. A social science based research on final disposals, reflecting this stalemate situation in Germany, did not take place since the middle of the 1980s. This ITAS paper presents a proposal, how - by the means of social science - the chances and risks for further decision making about nuclear waste could be articulated more precise. (orig.)

  20. Safety Assessment for LILW Near-Surface Disposal Facility Using the IAEA Reference Model and MASCOT Program

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Park, Joo Wan; Kim, Chang Lak

    2002-01-01

    A reference scenario of vault safety case prepared by the IAEA for the near-surface disposal facility of low-and intermediate-level radioactive wastes is assessed with the MASCOT program. The appropriate conceptual models for the MASCOT implementation is developed. An assessment of groundwater pathway through a drinking well as a geosphere-biosphere interface is performed first, then biosphere pathway is analysed to estimate the radiological consequences of the disposed radionuclides based on compartment modeling approach. The validity of conceptual modeling for the reference scenario is investigated where possible comparing to the results generated by the other assessment. The result of this study shows that the typical conceptual model for groundwater pathway represented by the compartment model can be satisfactorily used for safety assessment of the entire disposal system in a consistent way. It is also shown that safety assessment of a disposal facility considering complex and various pathways would be possible by the MASCOT program

  1. Superfund Record of Decision (EPA Region 4): Maxey Flats Nuclear Disposal site, Fleming County, KY. (First remedial action), September 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The 280-acre Maxey Flats Nuclear Disposal site is an inactive low-level radioactive waste disposal facility in Fleming County, Kentucky. The estimated 663 people who reside within 2.5 miles of the site use the public water supply for drinking purposes. From 1962 to 1977, Nuclear Engineering Company, Inc. (NECO), operated a solid by-product, source, and special nuclear material disposal facility under a license with the State. Several State investigations in the 1970's revealed that leachate contaminated with tritium and other radioactive substances was migrating from the disposal trenches to unrestricted areas. The Record of Decision (ROD) addresses final remediation of soil, debris, and associated leachate. The primary contaminants of concern affecting the soil and debris are VOCs including benzene, TCE, and toluene; metals including arsenic and lead; and radioactive materials. The selected remedial action for the site is included

  2. The final disposal of radioactive wastes. Are we nearing a solution to a decade-old conflict?

    International Nuclear Information System (INIS)

    Koenig, Wolfram

    2013-01-01

    The present article describes how the recent decision to phase out nuclear energy has created an opportunity to gain public acceptance of a nuclear waste repository in Germany. Now that the phase-out has been finalised the amount of radioactive waste requiring disposal has become quantifiable. This has created clarity as to the magnitude of the environmental problem waiting to be solved. The longer it takes to get the final storage of radioactive wastes underway the greater will be the risk that in the end nobody is prepared to assume responsibility and the cheapest solution - in the literal sense of the word - is adopted, which is to export the wastes abroad. Since more than a year the political leadership has been struggling to work out the details of a law governing the search for a final repository. The recent approval given by the government of the federal state of Lower Saxony has come in time to throw the door wide open ahead of the federal elections for a procedure that can count on broad support among the political leadership. The chances are now good for a lasting resolution to a dispute that has been carried on in the German Federal Republic for decades, sometimes with ferocity, over the risks associated with the use of nuclear energy, and they must be grabbed.

  3. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    Science.gov (United States)

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  4. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  5. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    International Nuclear Information System (INIS)

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables

  6. SKB 91. Final disposal of spent nuclear fuel. Importance of the bedrock for safety

    International Nuclear Information System (INIS)

    1992-05-01

    The safety of a deep repository for spent nuclear fuel has been assessed in this report. The spent fuel is assumed to be encapsulated in a copper canister and deposited at a depth of 600 m in the bedrock. The primary purpose has been to shed light on the importance of the geological features of the site for the safety of a final repository. The assessment shows that the encapsulated fuel will, in all likelihood, be kept isolated from the groundwater for millions of years. This is considerably longer than the more than 100 000 years that are required in order for the toxicity of the waste to have declined to a level equivalent to that of rich uranium ores. However, in order to be able to study the role of the rock as a barrier to the dispersal of radioactive materials, calculations have been carried out under the assumption that waste canisters leak. The results show that the safety of a carefully designed repository is only affected to a small extent by the ability of the rock to retain the escaping radionuclides. The primary role of the rock is to provide stable mechanical and chemical conditions in the repository over a long period of time so that the function of the engineered barriers is not jeopardized. (187 refs.) (au)

  7. Properties of container and backfill materials for the final disposal of highly radioactive fission products

    International Nuclear Information System (INIS)

    Mirschinka, V.

    1983-11-01

    The qualifications of six metallic alloys to serve as canister materials for an in-can glass smelting process were studied. These alloys are: N 6 1.4864 (X 12NiCrSi3616, Thermax 16/36), No. 2.4816 (NiCr15Fe, Inconel 600), No. 2.4610 (Hastelloy C4), No. 2.4778 (UMCO50), No. 1.5415 (15MO3), No. 1.1005 (ZSH-Spezial). The mechanical properties of any of the six materials at high temperatures were found to be sufficient. The chemical interactions between glass and metal were investigated by glass smelting tests and electron microprobe analyses, showing that chromium as an alloying element of the crucible material may affect the quality of the glass product by causing inhomogeneities and a violent blistering in the glass matrix. The resistance against corrosion by concentrated salt solutions under elevated pressure and temperature similar to final depository conditions was tested showing that the presence of a bentonite suspension in the salt solution reduces the corrosion attack of the metal significantly. Diffusion experiments of salt solutions doted with radioactive isotopes Na-22 and Cl-36 as tracer substances were made to show the retardation behaviour of salt ions in compacted bentonite. However, a long-term barrier effect of the bentonite against salt ion diffusion could not be verified. (orig./HOE)

  8. Strategic environmental safety inspection for the National disposal program. Description of the inspection volume. Documentation for the scoping team

    International Nuclear Information System (INIS)

    2015-01-01

    The Strategic environmental safety inspection for the National disposal program covers the following topics: Legal framework: determination of the requirement for an environmental inspection program, coordination of the scoping team into the overall context; environmental targets; approach for assessment and evaluation of environmental impact, description of the inspection targets for the strategic environmental inspection; consideration of alternatives.

  9. Solving multi-objective facility location problem using the fuzzy analytical hierarchy process and goal programming: a case study on infectious waste disposal centers

    Directory of Open Access Journals (Sweden)

    Narong Wichapa

    Full Text Available The selection of a suitable location for infectious waste disposal is one of the major problems in waste management. Determining the location of infectious waste disposal centers is a difficult and complex process because it requires combining social and environmental factors that are hard to interpret, and cost factors that require the allocation of resources. Additionally, it depends on several regulations. Based on the actual conditions of a case study, forty hospitals and three candidate municipalities in the sub-Northeast region of Thailand, we considered multiple factors such as infrastructure, geological and social & environmental factors, calculating global priority weights using the fuzzy analytical hierarchy process (FAHP. After that, a new multi-objective facility location problem model which combines FAHP and goal programming (GP, namely the FAHP-GP model, was tested. The proposed model can lead to selecting new suitable locations for infectious waste disposal by considering both total cost and final priority weight objectives. The novelty of the proposed model is the simultaneous combination of relevant factors that are difficult to interpret and cost factors, which require the allocation of resources. Keywords: Multi-objective facility location problem, Fuzzy analytic hierarchy process, Infectious waste disposal centers

  10. A Monte Carlo program for generating hadronic final states

    International Nuclear Information System (INIS)

    Angelini, L.; Pellicoro, M.; Nitti, L.; Preparata, G.; Valenti, G.

    1991-01-01

    FIRST is a computer program to generate final states from high energy hadronic interactions using the Monte Carlo technique. It is based on a theoretical model in which the high degree of universality in such interactions is related with the existence of highly excited quark-antiquark bound states, called fire-strings. The program handles the decay of both fire-strings and unstable particles produced in the intermediate states. (orig.)

  11. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  12. Seismic VSP and HSP surveys on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Keskinen, J.; Cosma, C.; Heikkinen, P.

    1992-10-01

    Seismic reflection surveys in boreholes were carried out for Teollisuuden Voima Oy at five sites in Finland (Eurajoki Olkiluoto, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Kuhmo Romuvaara and Sievi Syyry). The vertical Seismic Profiling (VSP) surveys were a part of the investigation programme for the final disposal of spent nuclear fuel. The purpose was to detect fractured zones, lithological contacts and other anomalies in the structure of the rockmass and to determine their position and orientation. Horizontal Seismic Profiling (HSP) was used at the Olkiluoto site, additionally to VSP. The data has been organized in profiles containing seismograms recorded from the same shotpoint (shot gathers). One of the most powerful processing methods used with this project has been the Image Space Filtering, a new technique, which has been developed (in the project) for seismic reflection studies in crystalline rock. The method can be applied with other rock types where steeply inclined or vertical anomalies are of interest. It acts like a multichannel filter, enhancing the reflected events and also as an interpretation tool, to estimate the strength and position of the reflectors. This approach has been of great help in emphasizing the weak reflections from uneven and sometimes vanishing interfaces encountered in crystalline

  13. Long-term, low-level radwaste volume-reduction strategies. Volume 4. Waste disposal costs. Final report

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Adam, J.A.; Rogers, V.C.; Merrell, G.B.

    1984-11-01

    Volume 4 establishes pricing levels at new shallow land burial grounds. The following conclusions can be drawn from the analyses described in the preceding chapters: Application of volume reduction techniques by utilities can have a significant impact on the volumes of wastes going to low-level radioactive waste disposal sites. Using the relative waste stream volumes in NRC81 and the maximum volume reduction ratios provided by Burns and Roe, Inc., it was calculated that if all utilities use maximum volume reduction the rate of waste receipt at disposal sites will be reduced by 40 percent. When a disposal site receives a lower volume of waste its total cost of operation does not decrease by the same proportion. Therefore the average cost for a unit volume of waste received goes up. Whether the disposal site operator knows in advance that he will receive a smaller amount of waste has little influence on the average unit cost ($/ft) of the waste disposed. For the pricing algorithm postulated, the average disposal cost to utilities that volume reduce is relatively independent of whether all utilities practice volume reduction or only a few volume reduce. The general effect of volume reduction by utilities is to reduce their average disposal site costs by a factor of between 1.5 to 2.5. This factor is generally independent of the size of the disposal site. The largest absolute savings in disposal site costs when utilities volume reduce occurs when small disposal sites are involved. This results from the fact that unit costs are higher at small sites. Including in the pricing algorithm a factor that penalizes waste generators who contribute larger amounts of the mobile nuclides 3 H, 14 C, 99 Tc, and 129 I, which may be the subject of site inventory limits, lowers unit disposal costs for utility wastes that contain only small amounts of the nuclides and raises unit costs for other utility wastes

  14. Program for closure of an inactive radioactive waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    The 643-G Radioactive Waste Disposal Facility was operated at the Savannah River Plant from 1952 through 1974, and has been inactive since that time. The actions leading to closure of 643-G will involve a combination of activities consisting of limited waste removal, stabilization, capping, and monitoring. The overall effect of these closure actions will be to place the 643-G site in a physically and chemically stable state which will remain stable over a long period of time. During a one-hundred year institutional control period surveillance and monitoring of the site will be carried out to verify that the performance of the system is acceptable, and access of the general public to the site will be restricted. The program described in this paper is a recommendation; the actual closure plan will be negotiated with regulatory authorities. 2 figs., 1 tab

  15. Status of the United States' high-level nuclear waste disposal program

    International Nuclear Information System (INIS)

    Rusche, B.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 is a remarkable piece of legislation in that there is general agreement on its key provisions. Nevertheless, this is a program intended to span more than a century, with some choices by Congress, states, Indian tribes and the nuclear power industry yet to be made. The crafters of the Act clearly recognized this. And further, the crafters recognized ''. . .that. . .state, Indian tribe and public participation in the planning and development of repositories is essential in order to promote public confidence in the safety of disposal of such waste and spent fuel . . . High-level radioactive waste and spent nuclear fuel have become major subjects of public concern, and appropriate precautions must be taken to ensure that such waste and spent fuel do not adversely affect the public health and safety and the environment for this or future generations

  16. Advanced Fuel Cycle Initiative University Fellowship Program. Final Progress Report

    International Nuclear Information System (INIS)

    Dixon, Cathy

    2012-01-01

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missions in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.

  17. Final disposal of spent nuclear fuel in Sweden: The evolving role for KASAM when society is preparing for important decisions

    International Nuclear Information System (INIS)

    Glimelius, Kristina; Hedberg, Bjoern; Norrby, Soeren; Soederberg, Olof

    2006-01-01

    KASAM, the Swedish National Council for Nuclear Waste, is an independent scientific council attached to the Ministry of Sustainable Development. The members of KASAM are independent scientists within a wide range of areas of importance for the final disposal of radioactive waste, not only within technology and natural sciences but also within areas such as ethics and social sciences. Swedish nuclear waste management policy and implementation is currently in a protracted phase of planning and decisions. Starting in 2006 , the Swedish Nuclear Waste Management Co (SKB) is expected to submit the necessary applications for permits to construct an encapsulation facility and a disposal facility for spent nuclear fuel (in crystalline bedrock about 500 meters below the ground). According to Swedish legislation, basic permits have to be granted by the Government, but the Government will not grant such permits unless the concerned host municipality accepts the proposal. The Government decision will form the basis for detailed licensing decisions by the regulatory authorities. KASAM has an important role as an independent advisory body to the Ministry of Sustainable Development. Also, KASAM will continue its function of creating forums for dialogue that could contribute to increase knowledge and understanding and improve the knowledge base for decision-making. There are a number of questions that are relevant. Examples are: Will society have a satisfactory basis for decision-making? What happens if society is not capable of making necessary decisions? Does the decision-making process enable society to postpone important decisions if more time is needed, to avoid obstacles if they appear, and - if needed - reverse decisions? Considering issues like this, KASAM has set up a plan for its activities in the next few years. These activities are meant to contribute to the ability of society as a whole to arrive at a well-founded decision that is widely accepted. Based on facts

  18. Information need about the safety of the final disposal of nuclear waste. Information receiver's views in Eurajoki, Kuhmo and Aeaenekoski municipalities

    International Nuclear Information System (INIS)

    Hautakangas, H.

    1997-03-01

    The study analyses the public's information need about the safety issues related to the final disposal of spent nuclear fuel generated by the Finnish nuclear power stations. Locals in three municipalities that are studied as possible sites for final disposal were interviewed for the study. Earlier studies made in Finland had indicated that the public's knowledge about safety issues related to the final disposal was almost opposite to the findings of the natural sciences. Also, the public had expressed a wish to receive more information from the safety authority, the Finnish Centre for Radiation and Nuclear Safety (STUK). This study therefore had two basic objectives: To find out what kind of safety information the locals need and what the safety authority's role could be in providing information. The main results show interest and need especially for information concerning the disposal phases taking place on the ground level, such as nuclear waste transportation and encapsulation. Also, the interviews show a clear need and desire for an impartial actor such as STUK in the information and communication process. (author) (107 refs.)

  19. Focal points of future FuE work concerning the final disposal of radioactive wastes (2011-2014); Schwerpunkte zukuenftiger FuE-Arbeiten bei der Endlagerung radioaktiver Abfaelle (2011-2014)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The present Federal support concept is the basis for applied fundamental research concerning final disposal of heat generating radioactive wastes. The use-oriented fundamental research is aimed to the development of a scientific-technical basis for the realization of a final repository for heat-generating radioactive wastes and spent nuclear fuel, to the continuous advancement of the state of science and technology with respect to final waste disposal and a substantial contribution to the constitution, development and preservation of scientific-technological competence in the field of nuclear waste management in Germany. The concept includes research and development work concerning final disposal in the host rock salt, clays and crystalline rocks (granite). The research and development main issues are the final disposal system, the system behavior, further topics in relation to final disposal and nuclear materials surveillance.

  20. Disposal of high active nuclear fuel waste. A critical review of the Nuclear Fuel Safety (KBS) project on final disposal of vitrified high active nuclear fuel waste

    International Nuclear Information System (INIS)

    1978-01-01

    This report has been prepared by the Swedish Energy Commission's working group for Safety and Environment. The main contributions are by profs. Jan Rydberg of Chalmers University of Technology, Sweden and John W Winchester of Florida State University, USA. The aim of the report is to discuss weather the KBS-project fullfills the Swedish ''Stipulations Act'', that a absolutely safe way of disposing of the nuclear waste must have been demonstrated before any new reactors are allowed to be taken inot use. Rydberg and Winchester do not arrive at similar conclusions. (L.E.)

  1. Photovoltaic subsystem marketing and distribution model: programming manual. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Complete documentation of the marketing and distribution (M and D) computer model is provided. The purpose is to estimate the costs of selling and transporting photovoltaic solar energy products from the manufacturer to the final customer. The model adjusts for the inflation and regional differences in marketing and distribution costs. The model consists of three major components: the marketing submodel, the distribution submodel, and the financial submodel. The computer program is explained including the input requirements, output reports, subprograms and operating environment. The program specifications discuss maintaining the validity of the data and potential improvements. An example for a photovoltaic concentrator collector demonstrates the application of the model.

  2. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the National Energy Peak Leveling Program (NEPLP).

  3. The social impacts of the final disposal of spent nuclear fuel from the point of view of the inhabitants. Interview research

    International Nuclear Information System (INIS)

    Viinikainen, T.

    1998-12-01

    The research studied the social impacts of the final disposal of spent nuclear fuel by the means of qualitative methods. The principal research material consisted of 49 theme interviews carried out in four municipalities, Eurajoki, Kuhmo, Loviisa and Aeaenekoski, all of which have a candidate site for spent fuel disposal. The interviews covered residents living near the possible disposal site, local authorities from different sectors of the municipality, social workers, youth workers and teachers, local businesses, trade and other organisations as well as environmental and citizen movements. When considering the risk conceptions and worries over safety, a fairly consistent view on the safety of the different phases of the project can be identified in all the municipalities. The transportation of nuclear waste aroused definitely the most worries over safety, especially because of the danger of sabotage and traffic accidents. When considering the encapsulation stage' the interviews revealed that risks are associated with this stage because it entails a 'human factor': the treatment of a dangerous substance in a disposal site above ground is considered hazardous. When considering the time after the closing of the disposal system, an opinion could be formed on the basis of the interviews that a final disposal system in hard bedrock would probably perform adequately in the short term but there can be no certain knowledge of risks in the long term. Confidence or lack of confidence in the safety of the project appeared as the most important factor causing social impacts. As a summary of the results, it can be concluded that especially (1) familiarity of the risk and (2) the possibility that taking risks are advantageous to oneself increase the acceptability of the risk. These are also the factors which distinguish the municipalities with nuclear power plants (Loviisa and Eurajoki) from the other two municipalities. The fair allocation of risks as well as the division of

  4. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  5. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  6. Medicare and Medicaid programs; advance directives--HCFA. Final rule.

    Science.gov (United States)

    1995-06-27

    This final rule responds to public comments on the March 6, 1992 interim final rule with comment period that amended the Medicare and Medicaid regulations governing provider agreements and contracts to establish requirements for States, hospitals, nursing facilities, skilled nursing facilities, providers of home health care or personal care services, hospice programs and managed care plans concerning advance directives. An advance directive is a written instruction, such as a living will or durable power of attorney for health care, recognized under State law, relating to the provision of health care when an individual's condition makes him or her unable to express his or her wishes. The intent of the advance directives provisions is to enhance an adult individual's control over medical treatment decisions. This rule confirms the interim final rule with several minor changes based on our review and consideration of public comments.

  7. An opinion survey on the image of incidents or accidents at a final disposal site for high-level radioactive waste

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2008-01-01

    Previous studies show that a major psychological factor of attitudes toward final disposal sites for high-level radioactive waste (hereinafter referred to as 'disposal sites') is risk perception. On the basis of this finding, the present survey attempted to identify mental images of assumable incidents and accidents likely to occur at disposal sites. Specifically, 402 respondents in the Kansai Area were asked to describe their mental image of what kind/level of incident or accident could possibly occur at a Disposal Site by what cause and what size of damage was expectable from such incident/accident. The results showed that following: regarding assumable incidents/accidents (1) people are most afraid of a large-scale natural disaster including a major earthquake beyond an assumed level of intensity, that they feel would probably generate the heaviest damage, (2) people assume that no major accident leading to serious damage is likely to occur in the early days after the launch of operation, (3) people have an impression that the longer the passage of time, the higher the probability of incident/accident occurrence becomes, regardless of the size of resulting damage. Those who strongly feel that Disposal Sites are dangerous are, when compared to others who do not have such a strong impression, apt to overestimate the size of assumable damage regardless of the cause of damage and also to overestimate the growth rate of the probability of incident/accident occurrence over the course of time. (author)

  8. The environmental factors to be considered in the site selection studies of the spent fuel final disposal

    International Nuclear Information System (INIS)

    Aeikaes, Timo

    1985-10-01

    The ojective of the work has been to elucidate environmental factors, which could have an influence on the selection of areas. The factors were identified and their significance evaluated by going through the present plan for the final disposal of spent fuel. Population density and transport conditions were the most important factors. Protected areas, groundwater reservoirs and restrictions presented in regional land-use plans were also noted. The potential areas have been identified by the Geological Survey of Finland. First 327 large bedrock blocks were identified. The extent of the block areas was between 100-200 km 2 . The environmental factors of these areas were mapped and the areas were classified. The study was based on maps, published regional plans and inventory of groundwater reservoirs. The Geological Survey of Finland selected 162 block areas for preliminary characterization and geological classification. 61 block areas were chosen for further geological studies. By interpretation of aerial photographs and field reconnaissance trip the Geological Survey identified 134 potential investigation areas. A large block area typically contained two possible investigation areas. The extent of these areas varied between 5-10 km 2 . The environmental factors of 134 possible investigation areas were studied in detail. Due to the classification made earlier, the areas were typically sparsely populated forest areas. In the detailed study the main emphasis was but on evaluation of population density, transport and inventory of land ownership. The land-ownership is important for practical reasons. Land-owner's permission is needed for the operations in the field. Areas were classified separately according to population density, transport and land-ownership. In classification the most suitable areas were uninhabited regions with few landowners and locating close (less than 10 km) to the railroad. Only a minority of the areas fell in this category with the requirement

  9. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    International Nuclear Information System (INIS)

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

    1988-04-01

    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in each of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs

  10. Final Environmental Impact Statement on 10 CFR Part 61 licensing requirements for land disposal of radioactive waste. Summary and main report

    International Nuclear Information System (INIS)

    1982-11-01

    The three-volume final environmental impact statement (FEIS) is prepared to guide and support publication of a final regulation, 10 CFR Part 61, for the land disposal of low-level radioactive waste. The FEIS is prepared in response to public comments received on the draft environmental impact statement (DEIS) on the proposed Part 61 regulation. The DEIS was published in September 1981 as NUREG-0782. Public comments received on the proposed Part 61 regulation separate from the DEIS are also considered in the FEIS. The FEIS is not a rewritten version of the DEIS, which contains an exhaustive and detailed analysis of alternatives, but rather references the DEIS and presents the final decision bases and conclusions (costs and impacts) which are reflected in the Part 61 requirements. Four cases are specifically considered in the FEIS representing the following: past disposal practice, existing disposal practice, Part 61 requirements, and an upper bound example. The Summary and Main Report are contained in Volume 1. Volume 2 consists of Appendices A - Staff Analysis of Public Comments on the DEIS for 10 CFR Part 61, and Appendices B - Staff Analysis of Public Comments on Proposed 10 CFR Part 61 Rulemaking. Volume 3 contains Appendices C-F, entitled as follows: Appendix C - Revisions to Impact Analysis Methodology, Appendix D - Computer Codes Used for FEIS Calculations, Appendix E - Errata for the DEIS for 10 CFR Part 61 and last, Appendix F - Final Rule and Supplementary Information

  11. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  12. Comparison between the KBS-3 method and the deep borehole for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Grundfelt, Bertil

    2010-09-01

    In this report a comparison is made between disposal of spent nuclear fuel according to the KBS-3 method with disposal in very deep boreholes. The objective has been to make a broad comparison between the two methods, and by doing so to pinpoint factors that distinguish them from each other. The ambition has been to make an as fair comparison as possible despite that the quality of the data of relevance is very different between the methods

  13. KNK I Test Program, Final Report Part 1

    International Nuclear Information System (INIS)

    Kathol, W.

    1976-01-01

    The compact sodium cooled nuclear reactor KNK I of the Karlsruhe Research Center reached full power for the first time in February 1974. The goal of KNK I is to collect experience for the construction and operation of larger reactors, such as SNR 300. In order to deepen these experiences, a test program was drawn up and conducted from 1973 until 1975 within the framework of R and D work on the development of fast breeder reactors. The program included individual tasks concerning reactor design, safety instrumentation, irradiation and post-examination as well as behavior of components during operation. The performance of the tests was essentially governed by the licensing procedure imposed under the atomic energy act for the construction and operation of nuclear facilities. This report is the first part of the final report of the test program

  14. International Piping Integrity Research Group (IPIRG) Program. Final report

    International Nuclear Information System (INIS)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program

  15. Now Enhancing Working Skills: The ``NEWS`` Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, A. [Merex Corp. (United States)

    1995-01-23

    In October of 1992, Los Alamos National Laboratory and Merex Corporation began a pilot basic skills program to enhance workers` skills. The program, known as the NEWS (Now Enhancing Working Skills) Program, was implemented by the Training and Development Group of the Human Resources Division. A group of 106 employees known as Radiological Control Technicians (RCTs) from ESH-1 (Environmental, Safety, and Health) were targeted to take mandated DOE (Department of Energy) training. The main goal of the LANL/Merex partnership was to help RCTs prepare for mandated DOE Rad Con training and job performance by improving their information processing and math skills. A second goal of this project was to use the information from this small group to make some predictions about the Laboratory as a whole. This final report contains the description and an appendix for the ``NEWS`` program. The topics in this report include Merex class descriptions, test score results for the MAT, the WAT, the TABE, and Challenge test, a follow-up survey to Merex IPS and math training, student feedback statistics for skills programs, and lessons learned from the program.

  16. International Piping Integrity Research Group (IPIRG) Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Schmidt, R.; Scott, P. [and others

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  17. Synthesis of the Results of the Field Verification Program Upland Disposal Alternative

    National Research Council Canada - National Science Library

    Folsom, Bobby

    1998-01-01

    ...) procedures for predicting potential contaminant mobility into animals. The upland disposal site was constructed within a protected area using conventional construction techniques and was hydraulically filled from barges...

  18. Chronic beryllium disease prevention program; worker safety and health program. Final rule.

    Science.gov (United States)

    2006-02-09

    The Department of Energy (DOE) is today publishing a final rule to implement the statutory mandate of section 3173 of the Bob Stump National Defense Authorization Act (NDAA) for Fiscal Year 2003 to establish worker safety and health regulations to govern contractor activities at DOE sites. This program codifies and enhances the worker protection program in operation when the NDAA was enacted.

  19. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  20. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  1. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    Science.gov (United States)

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  2. Data analysis of the 1984 and 1986 soil sampling programs at Materials Disposal Area T in the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Drennon, B.J.

    1993-09-01

    An environmental surveillance program for Materials Disposal Area T (MDA-T) at Los Alamos, New Mexico is described. The waste-use history of this disposal site is described, followed by a description of the materials and methods used to analyze data from two surface soil radionuclide sampling programs performed at this disposal site. The disposal site's physical features are related to the spatial distribution of radionuclide concentration contours in an attempt to evaluate radionuclide migration mechanisms in and around the site. The usefulness of the data analysis efforts is evaluated and recommendations are made for future studies

  3. Engineering geological conditions of the Loviisa power plant area relating to the final disposal of reactor waste

    International Nuclear Information System (INIS)

    Anttila, Pekka

    1988-12-01

    The bedrock in the study area consists of Precambrian rapakivi granite with its varieties. The rock type is mostly fresh and strong. Alteration and weathering of the rock material occurs only in association with the fracturing. Fracture properties - orientation, aperture, hydraulic conductivity, filling and weathering - have been treated with respect to final disposal and siting of the repository. The results achieved have been compared with corresponding results obtained in Finland and other countries. Two vertical and one horizontal or gently dipping fracture sets typical of granitic rocks are present, the last mentioned of which are dominant. The hydraulic conductivity of the fractures varies greatly, generally between k=10 -9 and 10 -5 m/s, owing to, e.g. the state of stress in the rock, cementation and filling of the fractures. According to the sorption tests, weathering of the fracture surfaces as well as the filling material of the fractures has been found to increase remarkably the sorption capacity of the rock mass. A three-dimensional engineering geological model has been prepared of the bedrock. According to the model, three gently dipping fracture zones divide the rock mass into different zones of intact and broken rock. The zones are considered as hydraulic units, for which hydraulic conductivity and effective porosity were determined. In the fracture zones the values for these are in the order of k = 10 -6 m/s and 0 = 4 . 10 -3 average. In the intact rock zones, the corresponding values are generally one decade less. The study area has two separate groundwater zones in the bedrock. The surface parat of the groundwater is fresh, with relic seawater of the Baltic Sea below; its salinity reaches some 1% at the maximum. The main fracture zones seem to determine the groundwater level and flow. The water flow is mainly concentrated to the fresh groundwater zone, the saline groundwater being nearly stagnant. The construction properties of the bedrock have

  4. Design and development of deep-water piezometer for the Sandia Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Bennett, R.H.; Burns, J.T.; Lambert, D.N.

    1981-01-01

    The National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratories (AOML), Marine Geology and Geophysics Laboratory (MGGL) contracted with Sandia Laboratories, Subseabed Disposal Program (SDP) to prepare initial design and to begin development of a piezometer for the In Situ Heat Transfer Experiment (ISHTE). General design specifications and material types were established by mutual agreement between AOML and Sandia during planning meetings. ISHTE experimental objectives were considered of paramount importance in arriving at the piezometer specifications and on the types of materials to be used. AOML's objectives for the design and development of the piezometer in 1980 included: (1) preliminary design of the mechanical components of the piezometer probe, (2) purchasing of basic materials for fabrication of the initial probe, (3) purchasing of a few selected pressure sensors for high-pressure testing, (4) installation of a high-pressure test facility at AOML for testing pressure sensors, and (5) initiating preliminary testing of pressure sensors. Each of the objectives (1 to 5) were completed successfully in 1980. In addition, AOML constructed a prototype piezometer probe which was tested for mechanical performance in situ in submarine sediments on the US Atlantic continental slope aboard the DSRV ALVIN in October 1980 during NOAA allocated ALVIN time. The mechanical performance test was successful

  5. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    Energy Technology Data Exchange (ETDEWEB)

    Bjarnadottir, H.; Hilding-Rydevik, T. [Nordregio, Stockholm (Sweden)

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented

  6. Final environmental statement for the geothermal leasing program

    Energy Technology Data Exchange (ETDEWEB)

    1973-12-31

    This second of the four volumes of the Geothermal Leasing Program final impact statement contains the individual environmental statements for the leasing of federally owned geothermal resources for development in three specific areas: Clear Lake-Geysers; Mono Lake-Long Valley; and Imperial Valley, all in California. It also includes a summary of the written comments received and departmental responses relative to the Draft Environmental Impact Statement issued in 1971; comments and responses on the Draft Environmental Impact Statement; consultation and coordination in the development of the proposal and in the preparation of the Draft Environmental Statement; and coordination in the review of the Draft Environmental Statement.

  7. TMI-2 instrumentation and electrical program final evaluation report

    International Nuclear Information System (INIS)

    Mayo, C.W.; Huzdovich, J.W.; Roby, A.R.; Test, L.D.

    1986-11-01

    This report presents the authors collective opinions on the value to the nuclear industry of the various investigations performed at TMI-2 by the Instrumentation and Electrical Program. The authors demonstrate that more attention must be given to the prevention of moisture intrusion during design, construction, operation, and maintenance of a nuclear power plant. They also point out that, while basic engineering designs of instruments are more than adequate, the applications engineering and specifications could be improved. Finally, they show that advanced testing technology, exemplified by the Electrical Circuit Characterization and Diagnostics (ECCAD) System, may be very useful as a diagnostic tool when used as part of the testing or maintenance program in a nuclear power plant

  8. Near-term electric vehicle program: Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B. H.; Murry, R.

    1977-08-01

    A final report is given for an Energy Research and Development Administration effort aimed at a preliminary design of an energy-efficient electric commuter car. An electric-powered passenger vehicle using a regenerative power system was designed to meet the near-term ERDA electric automobile goals. The program objectives were to (1) study the parameters that affect vehicle performance, range, and cost; (2) design an entirely new electric vehicle that meets performance and economic requirements; and (3) define a program to develop this vehicle design for production in the early 1980's. The design and performance features of the preliminary (baseline) electric-powered passenger vehicle design are described, including the baseline power system, system performance, economic analysis, reliability and safety, alternate designs and options, development plan, and conclusions and recommendations. All aspects of the baseline design were defined in sufficient detail to verify performance expectations and system feasibility.

  9. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  10. Scenarios of the TWRS low-level waste disposal program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  11. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    International Nuclear Information System (INIS)

    Okrent, D.

    1997-01-01

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident

  12. RD and D Programme 98. Treatment and final disposal of nuclear waste. Programme for research, development and demonstration of encapsulation and geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    RD and D-Programme 98 is intended to provide an overview of SKBs activities and plans. The detailed research programme is presented in a separate background report. In parallel with RDD-Programme 98, SKB is publishing a number of reports that provide a more thorough background and a more detailed account, particularly on those issues that the Government mentioned in its decision regarding RD and D-Programme 95. The programme is divided into two parts: Background and Execution. The background part begins with a chapter on the basic premises. It deals with general principles, laws and the properties of the waste. The facilities that exist today for dealing with the nuclear waste are also described in the introductory chapter. The two following chapters have to do with the choice between different methods for disposing of nuclear waste and with the KBS-3 method, which SKB has chosen as its main alternative. These two chapters provide a broader account of both the KBS-3 method and different alternative methods than previous RD and D-programmes. The background part concludes with a chapter about the long-term safety of the deep repository. The second part, Execution, begins with an overview of SKBs strategy and the main features of the programme, both for the next few years and further in the future. The plans for siting, technology and safety assessment are then presented in greater detail. This is followed by an overview of our plans for supportive research and development, including continued R and D on other methods than the KBS-3 method. The programme concludes with a chapter on decommissioning of nuclear facilities. An important part of the ongoing and planned work is consultation on environmental impact assessments. A first draft of the contents of future environmental impact statements is therefore provided. By attaching it to RD and D-Programme 98, SKB wishes to give all reviewing bodies an opportunity to offer their viewpoints at an early stage on what future

  13. RD and D Programme 98. Treatment and final disposal of nuclear waste. Programme for research, development and demonstration of encapsulation and geological disposal

    International Nuclear Information System (INIS)

    1998-09-01

    RD and D-Programme 98 is intended to provide an overview of SKBs activities and plans. The detailed research programme is presented in a separate background report. In parallel with RDD-Programme 98, SKB is publishing a number of reports that provide a more thorough background and a more detailed account, particularly on those issues that the Government mentioned in its decision regarding RD and D-Programme 95. The programme is divided into two parts: Background and Execution. The background part begins with a chapter on the basic premises. It deals with general principles, laws and the properties of the waste. The facilities that exist today for dealing with the nuclear waste are also described in the introductory chapter. The two following chapters have to do with the choice between different methods for disposing of nuclear waste and with the KBS-3 method, which SKB has chosen as its main alternative. These two chapters provide a broader account of both the KBS-3 method and different alternative methods than previous RD and D-programmes. The background part concludes with a chapter about the long-term safety of the deep repository. The second part, Execution, begins with an overview of SKBs strategy and the main features of the programme, both for the next few years and further in the future. The plans for siting, technology and safety assessment are then presented in greater detail. This is followed by an overview of our plans for supportive research and development, including continued R and D on other methods than the KBS-3 method. The programme concludes with a chapter on decommissioning of nuclear facilities. An important part of the ongoing and planned work is consultation on environmental impact assessments. A first draft of the contents of future environmental impact statements is therefore provided. By attaching it to RD and D-Programme 98, SKB wishes to give all reviewing bodies an opportunity to offer their viewpoints at an early stage on what future

  14. Land suitability for final waste disposal with emphasis on septic systems installation in southern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Jeani Moreira de Oliveira

    2016-02-01

    Full Text Available ABSTRACT Environmental pollution is a problem that has been noted due to changes in the environment, affecting natural resources. Regarding the soil, it may offer great potential for waste disposal. Thus, this study aims to propose criteria for evaluating local suitability for waste disposal, according to soil and terrain attributes for southern Minas Gerais State, and to apply those criteria to define the most appropriate locations for installation of septic systems in a pilot watershed. Literature and the authors' experience were used to propose the more important criteria regarding the suitability of sites for waste disposal. The set of attributes taken into account was grouped into four suitability classes: Adequate, Regular, Restricted and Inadequate. The defined criteria and considered limiting were: soil depth, texture, textural gradient, structure, natural drainage, water infiltration, type of surface horizon, water table depth, depth of perched water table, distance from water bodies, relief, stoniness, rockiness and risk of flooding. From these, soil depth, natural drainage, water table depth, relief and distance from water bodies were adopted for the installation of septic systems. From the total area of the watershed, 5.29% fit in the Adequate suitability class. The Regular, Restricted, and Inadequate sites accounted for, respectively, 19.72%, 41.99% and 33% of the wathershed. Factors such as soil and terrain attributes provide a basis for defining more appropriate places for waste disposal. Future work should involve the refinement of these propositions, since there are rare studies in this research line in Brazil.

  15. Final Environmental Impact Statement. Disposal and Reuse of George Air Force Base, California. Volume 2. Public Comments and Responses, Appendices

    Science.gov (United States)

    1992-03-01

    mbemehim ~du feildes Twoa 9.9 93~ Imposes GaO meji amy Imo eaudepoGa eaadeeedaus of ,eadaed at ueme G mu gdauw asadarnasimn hi Gam0’ Tbe I* bkt iddea...Southwest Gas Corporation The Nature Conservancy The Sun D-12 George AFO Disposal and Reuse FEIS Unlversky o Callornim Los Angels (uCLA) URS Consultads Vector

  16. 75 FR 50932 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-08-18

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...-1990. FOR FURTHER INFORMATION CONTACT: Robin Biscaia, RCRA Waste Management Section, Office of Site... final [[Page 50933

  17. Evaluation and review of planning for greater-confinement disposal by the Independent Peer Review Committee, July 9-10, 1985. Final report

    International Nuclear Information System (INIS)

    1985-07-01

    This evaluation and review was performed under contract by Argonne National Laboratory in support of their role for developing the ''Planning for Greater Confinement Disposal'' Document for the Low-Level Waste Management Program Office for the Department of Energy, Office of Defense Waste and Byproducts Management. The Independent Peer Review Committee was composed of 13 well-qualified and recognized experts in their fields and pertinent disciplines, collectively representing considerable expertise and experience in waste disposal operations, waste management, environmental assessment and impact analysis, and other aspects of radioactive waste disposal. The members of the Peer Review Committee, their organizations, and thier area of expertise are given in Appendix 1. The general consensus of the Independent Review Committee was that the ''Planning for Greater-Confinement Disposal'' document was reasonably comprehensive, covering nearly all topics necessary to provide a good planning guide. There is, however, a definite need to reorganize the document into two volumes with appendices and the relationship of the GCD document to other LLWMP documents needs to be clarified in the introductory volume. Specific recommendations made by the committee on the DCD document are given in Section 3.2. Recommendations by the committee that have a somewhat broader scope than just the GCD document are given in Section 3.3

  18. Environmental requirements for radioactive wastes final disposal in shallow ground repositories; Requisitos ambientais para disposicao final de rejeitos radioativos em repositorios de superficie

    Energy Technology Data Exchange (ETDEWEB)

    Raduan, Rosane Napolitano

    1994-12-31

    Low and intermediate level radioactive waste confinement have been a well know practice for about five decades. Wastes disposal in shallow ground repositories are originated in the nuclear fuel cycle and the application of isotopes in medicine, industry, research and education and other activities. An adequate choice of sites for repositories constructions is based on a criterions analysis of a series of requirements for environmental impact assessment. This analysis allows, together with physical and chemical parameters of the immobilized and packed radioactive wastes, to carry out this choice. The main objective of this work is to have an overview of principal topics that allows an environment impact analysis resulting from a controlled radioactive waste disposal. (author). 68 refs., 14 figs., 6 tabs.

  19. Evaluation of dose due to the liberation of the radioactive content present in systems of final disposal of radioactive residues; Evaluacion de la dosis debida a la liberacion del contenido radiactivo presente en sistemas de disposicion final de residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Amado, V; Lopez, F [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, Ciudad Autonoma de Buenos Aires (C1429BNP) (Argentina)

    2006-07-01

    The disposal systems of radioactive residuals well-known as repositories near to the surface, are used to dispose residuals that can contain high concentrations of radionuclides of period of short semi disintegration, which they would decay at levels radiologically insignificant in some few decades or in some centuries: and acceptably low concentrations of radionuclides of period of long semi disintegration. The dose that would receive the critic group due to these systems it could be increased by cause of discreet events that affect the foreseen retard time, or by the gradual degradation of the barriers. To this last case it contributes the presence of water, because it implies leaching and dissolution that can give place to radionuclide concentrations in the underground water greater to the prospective ones. The dosimetric evaluation is important because it offers useful objective information to decide if a given repository is adjusted to the purposes of its design and it fulfills the regulatory requirements. In this work a simplified evaluation of the dose that would receive the critic group due to the liberation of contained radionuclides in a hypothetical system of final disposition of radioactive residuals is presented. For it, they are considered representative values of the usually contained activities in this type of systems and they are carried out some approaches of the source term. The study is developed in two stages. In the first one, by means of the Radionuclide pollutant scattering pattern in phreatic aquifers (DRAF) it is considered the scattering of the pollutants in the phreatic aquifer, until the discharge point in the course of the nearest surface water. This model, developed originally in the regulatory branch of the National Commission of Argentine Atomic Energy (CNEA); it solves the transport equation of solutes in porous means in three dimensions, by the finite differences method having in account the soil retention and the radioactive

  20. 78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  1. Actinide partitioning-transmutation program final report. III. Transmutation studies

    International Nuclear Information System (INIS)

    Wachter, J.W.; Croff, A.G.

    1980-07-01

    Transmutation of the long-lived nuclides contained in fuel cycle wastes has been suggested as a means of reducing the long-term toxicity of the wastes. A comprehensive program to evaluate the feasibility and incentives for recovering the actinides from wastes (partitioning) and transmuting them to short-lived or stable nuclides has been in progress for 3 years under the direction of Oak Ridge National Laboratory (ORNL). This report constitutes the final assessment of transmutation in support of this program. Included are (1) a summary of recent transmutation literature, (2) a generic evaluation of actinide transmutation in thermal, fast, and other transmutation devices, (3) a preliminary evaluation of 99 Tc and 129 I transmutation, and (4) a characterization of a pressurized-water-reactor fuel cycle with and without provisions for actinide recovery and transmutation for use in other parts of the ORNL program. The principal conclusion of the report is that actinide transmutation is feasible in both thermal and fast reactors, subject to demonstrating satisfactory fuel performance, with relatively little impact on the reactor. It would also appear that additional transmutation studies are unwarranted until a firm decision to proceed with actinide transmutation has been made by the responsible authorities

  2. Flammability Assessment Methodology Program Phase I: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    C. A. Loehr; S. M. Djordjevic; K. J. Liekhus; M. J. Connolly

    1997-09-01

    The Flammability Assessment Methodology Program (FAMP) was established to investigate the flammability of gas mixtures found in transuranic (TRU) waste containers. The FAMP results provide a basis for increasing the permissible concentrations of flammable volatile organic compounds (VOCs) in TRU waste containers. The FAMP results will be used to modify the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (TRUPACT-II SARP) upon acceptance of the methodology by the Nuclear Regulatory Commission. Implementation of the methodology would substantially increase the number of drums that can be shipped to the Waste Isolation Pilot Plant (WIPP) without repackaging or treatment. Central to the program was experimental testing and modeling to predict the gas mixture lower explosive limit (MLEL) of gases observed in TRU waste containers. The experimental data supported selection of an MLEL model that was used in constructing screening limits for flammable VOC and flammable gas concentrations. The MLEL values predicted by the model for individual drums will be utilized to assess flammability for drums that do not meet the screening criteria. Finally, the predicted MLEL values will be used to derive acceptable gas generation rates, decay heat limits, and aspiration time requirements for drums that do not pass the screening limits. The results of the program demonstrate that an increased number of waste containers can be shipped to WIPP within the flammability safety envelope established in the TRUPACT-II SARP.

  3. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 1 of 2

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-04-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared of each Appendix for inclusion in the Energy Data Base

  4. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hinga, K.R. (ed.)

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base.

  5. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    International Nuclear Information System (INIS)

    Hinga, K.R.

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  6. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 2 of 2

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-04-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume II, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  7. The effects of the final disposal facility for spent nuclear fuel on regional economy; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen aluetaloudelliset vaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, S. [Seppo Laakso Urban Research (Finland)

    1999-03-01

    The study deals with the economic effects of the final disposal facility for spent nuclear fuel on the alternative location municipalities - Eurajoki, Kuhmo, Loviisa and Aeaenekoski - and their neighbouring areas (in Finland). The economic influence of the facility on industrials, employment, population, property markets, community structure and local public economics are analysed applying the approach of regional economics. The evaluation of the facility`s effects on employment is based on the input-output analysis. Both the direct and indirect effects of the construction and the functioning of the facility are taken into account in the analysis. According to the results the total increase in employment caused by the construction of the facility is about 350 persons annually, at national level. Some 150 persons of this are estimated to live in the wider region and 100-150 persons in the facility`s influence area consisting of the location municipality and neighbouring municipalities. This amount is reached at the top stage of construction (around the year 2018). At the production stage - after the year 2020 - the facility`s effects on employment will be concentrated significantly more on the location municipality and the rest of the influence area than on the rest of the country, compared with the construction stage. The estimated employment growth in the production stage is approximately 160 persons at national level of which 100-120 persons live in the candidate municipality and in the rest of the influence area. There is a direct link between local employment and population development. The growth of jobs attracts immigrants affecting the development of both the number and the structure of population. The facility`s effects on population development in the alternative location municipalities are analysed using comparative population forecasts based on demographic population projection methods. According to the results the job growth caused by the facility will

  8. Comparative overview of dangers, protective measures and risks for the final disposal of radioactive wastes. Vergleichende Uebersicht der Gefahren, Schutzmassnahmen und Risiken einer Endlagerung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The purpose of this report is to present an overview of the anticipated risks of geological disposal of radioactive wastes and to compare these to 'conventional' risks, which voluntarily or involuntarily are associated with human activities and have accompanied mankind for long times. Radioactive wastes which result from the generation of electricity by commercial nuclear reactors as well as those originating from research, industrial and medical applications necessitate prolonged isolation from the biosphere to their long-lived, although decaying, toxicity. Chapter 2 of this report contains a survey of the nature and extent of the potential hazard of radioactive waste, drawing attention to the fact that the toxicity of radionuclides is comparable to that of nonradioactive chemical compounds. The possibility of adverse effects on the public cannot be ruled out for either kind of waste. Current plans aim at the safe and effective disposal of radioactive wastes in deep and stable geological formations which should serve as hosts for engineered final repositories. For a final repository to be suitable, the site chosen should be free from circulating groundwater or the free movement of the groundwater must be strongly restricted. In order to prevent radioactive substances migrating away from the final repository in which they have been placed, it is planned to utilise natural and man-made barriers which function largely independently from each other. Thorough knowledge of the properties of man-made barriers, is as important as knowledge of the natural barriers, which are determined by the geology and hydrogeology of the site of the final repository. This principle of protection is known as a 'multiple-barrier concept' and is considered capable of providing safe disposal of radioactive wastes.

  9. 2004 Power marketing program final EIS - final environmental impact statement. Volume 2 - appendices

    International Nuclear Information System (INIS)

    1997-02-01

    This volume contains appendices to the Final Environmental Impact Statement (FEIS) for the Power Marketing Program proposal of the Western Area Power Administration. The FEIS identified peaking power scheduling as the environmentally preferred alternative, and presented the analysis of alternatives and environmental impacts. Sixteen appendices to the FEIS are included in this document. The appendices are: Statutory and Legal Framework; Sierra Nevada Region Customer Groups and Economic Regions; Renewable Technology Cost Information Matrix; Hydrological Assumptions; Recreation Resources; Archaeological and Historical Resources; Incremental Power Resources; Air Quality Regulatory Structure; Energy Generation; Stage Contents Relationships for Regulating Reservoirs; Power Costs; Socioeconomic Impacts; Projected Air Resource Impacts; Land use, Water Quality, and Solid Waste Impact Factors; Draft Environmental Impact Statement Comments and Responses, and Contractor Disclosure Statements. 21 figs., 24 tabs

  10. Selection and examination of types of waste relevant to underground disposal. Final report; Auswahl und Untersuchung UTD-relevanter Abfallarten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, C. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Braunschweig (Germany). Inst. fuer Tieflagerung; Brasser, T. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Braunschweig (Germany). Inst. fuer Tieflagerung; Bahadir, M. [Technische Univ. Braunschweig (Germany). Inst. fuer Oekologische Chemie und Abfallanalytik; Fischer, R. [Technische Univ. Braunschweig (Germany). Inst. fuer Oekologische Chemie und Abfallanalytik; Lorenz, W. [Technische Univ. Braunschweig (Germany). Inst. fuer Oekologische Chemie und Abfallanalytik; Petersen, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Oekologische Chemie und Abfallanalytik

    1995-12-31

    In order to do justice to the principle laid down in the Waste Management Technical Code that wastes disposed of underground in salt rock formations should remain clear of the biosphere for an indefinite time and without the need for later remedial measures and in order to realise the concept of so-called pollution-free disposal (mainly in non-saline formations) it is necessary to have verified knowledge on the types of waste concerned, the geological and hydrogeological conditions at the disposal site and in its surroundings, and on the future development of the entire disposal system. The long-term safety of a disposal site (or that of any kind of underground disposal of materials) depends on whether water or aqueous solutions can act on the host rock or on the wastes deposited in it, the extent to which this can result in dissolving processes and/or contaminant mobilisation and, finally, on whether this can conceivably lead to an impairment of the intended barriers and to a disposal of contaminants in the nearer or farther surroundings of the underground disposal site. This means in particular that the wastes themselves and their reactivity with fluid components in geological systems must be well-known or else examined and duly assessed. The following final report therefore is intended as a contribution to creating the requisite database for types of waste relevant to underground disposal. It has been possible here to collect important information on arising waste quantities and critical waste constituents and assess their hazard potential and so provide a basis for further research and development work. (orig./SR) [Deutsch] Der in der TA Abfall formulierte Grundsatz, bei der Ablagerung von Abfaellen in untertaegigen Anlagen im Salzgestein die Abfaelle dauerhaft und nachsorgefrei von der Biosphaere fernzuhalten, wie auch die Realisierung des Konzeptes der sog. immissionsneutralen Ablagerung (vornehmlich in nichtsalinaren Formationen) erfordern gesicherte

  11. Potential radiological doses associated with the disposal of petroleum industry NORM via landspreading. Final report, September 1998

    International Nuclear Information System (INIS)

    Smith, K.P.; Blunt, D.L.; Arnish, J.J.

    1998-12-01

    As a result of oil and gas production and processing operations, naturally occurring radioactive materials (NORM) sometimes accumulate at elevated concentrations in by-product waste streams. The primary radionuclides of concern in NORM wastes are radium-226 of the uranium-238 decay series, and radium-228, of the thorium-232 decay series. The production waste streams most likely to be contaminated by elevated radium concentrations include produced water, scale, and sludge. Scales and sludges removed from production equipment often are disposed of by landspreading, a method in which wastes are spread over the soil surface to allow the hydrocarbon component of the wastes to degrade. In this study, the disposal of NORM-contaminated wastes by landspreading was modeled to evaluate potential radiological doses and resultant health risks to workers and the general public. A variety of future land use scenarios--including residential, industrial, recreational, and agricultural scenarios--were considered. The waste streams considered included scales and sludges containing NORM above background levels. The objectives of this study were to (1) estimate potential radiological doses to workers and the general public resulting from the disposal of NORM wastes by noncommercial landspreading activities and (2) analyze the effect of different land use scenarios on potential doses

  12. Final disposal of spent fuels and high activity waste: the European model for a shared regional repository. Part 3

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2009-01-01

    Geological disposal is a essential element and the only available approach to the management strategy for spent nuclear fuel and high level radioactive waste from reprocessing and also for other long-lived waste from nuclear technology applications. It is technically feasible and offers the required long term safety. The growth of existing nuclear programmes and the expansion of nuclear technology to new countries will have effects on the fuel cycle because of the increased concern on proliferation and waste management. The crucial task is to ensure that all countries that use nuclear energy now or will do it in the future, have defined and agreed safety and security standards for all facilities and a credible waste disposal strategy , accepted by the community, when this become necessary. Multinational cooperation on essential aspects of fuel cycle, particularly the geological disposal, is required for several countries with relatively small nuclear energy programmes or small quantities of radioactive waste. For these countries, that can be in different stages of development, the possibility to share a deep geological repository could be convenient. The European Union SAPIERR project is described in this paper as an example of a regional multinational cooperation. (author) [es

  13. Final argument relating to the Canadian nuclear power program

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1978-05-01

    This report is the second brief, and one of a number of documents, submitted by Atomic Energy of Canada Limited (AECL) to the Ontario Royal Commission on Electric Power Planning. It is intended to update the original brief (AECL--5800) with respect to those matters that emerged during the course of the hearings and which had not been fully anticipated in that brief, as well as to summarize the AECL position on the various issues. To enable it to qualify as a ''final argument'' it contains only evidence or material that has been presented to the Royal Commission and is provided with marginal notations identifying the source of each section. It is AECL's position that the Canadian nuclear power program provides a safe, proven and efficient means of making a needed contribution to electricity supply, while strengthening the economy through the deployment of indigenous technology and resources. (author)

  14. Mid-plate, mid-gyre seabed assessment program for nuclear waste disposal. Final report

    International Nuclear Information System (INIS)

    Hollister, C.D.

    1976-01-01

    Status of the following tasks is reported: acoustic experiments for lateral and vertical consistency determinations; design, fabricate, and interface core launch and recovery system for C. S. LONG LINES; field test Giant Piston Core (GPC) on Bermuda Rise with LONG LINES, summer of 1976; GPC cruise to MPG-1 in October 1976; core sample analysis and data synthesis for vertical consistency; and acoustic mapping of MPG-1 for horizontal consistency

  15. Chemical Stockpile Disposal Program Final Programmatic Environmental Impact Statement Volume 3: Appendices A-S

    Science.gov (United States)

    1988-01-01

    Parts of the Guinea-Pig Eye," Acta. Pharmacol. Toxicol. 38, 299-307. Lynch, M. R., Rice, M. A., and Robinson, S. W. 1986. "Dissociation of Locomotor ...34Effects of the Organophosphorus Compound, 0-ethyl-N-dimethyl-phosphoramidocyanidate (Tabun), on Flavor Aversions, Locomotor Activity, and Rotarod...R. M. 1979. "Disappearance of Hydrocarbons Following a Major Gasoline Spill in the Ohio River," pp. 503-507 in Developments in Industrial

  16. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  17. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  18. Shallow land disposal, the french system

    International Nuclear Information System (INIS)

    Barthoux, A.; Marque, Y.

    1986-01-01

    Since 1969, low and medium activity waste are disposed of in France at the Centre Manche. The management system set up covers the whole of the operations, from the sorting of the wastes and their conditioning to the final disposal. Safety standards and technical issues were found satisfactory by the National Safety Authority and they are the basis of the program for the realization of two new disposal sites which should take over from the Centre Manche loaded towards 1990. ANDRA, a National Agency, is responsible for the long term management of radioactive waste, in France [fr

  19. Radiation damage studies on natural rock salt from various geological localities of interest to the radioactive waste disposal program

    International Nuclear Information System (INIS)

    Levy, P.W.

    1981-01-01

    As part of a program to investigate radiation damage in geological materials of interest to the radioactive waste disposal program, radiation damage, particularly radiation induced sodium metal colloid formation, has been studied in 14 natural rock salt samples. All measurements were made with equipment for making optical absorption and other measurements on samples, in a temperature controlled irradiation chamber, during and after 0.5 to 3.0 MeV electron irradiation. Samples were chosen for practical and scientific purposes, from localities that are potential repository sites and from different horizons at certain localities

  20. Deep boreholes. An alternative for final disposal of spent nuclear fuel? Report from KASAM's question-and-answer session on 14-15 March 2007

    International Nuclear Information System (INIS)

    2009-03-01

    On 14-15 March 2007, KASAM held a hearing for the purpose of thoroughly examining deep boreholes as a method for the final disposal of spent nuclear fuel. Some of the questions that were raised were: What are the technical, geological and hydrological premises and possibilities? What are the risks from different viewpoints and what values underlie different views of the potential and suitability of deep boreholes? This report is a summary of the seminar. KASAM has made a selection of contributions and questions from the debate that took place on the basis of their relevance to the purpose of the seminar. The report generally follows the chronological lecture-and debate format of the seminar, but has been edited according to different issues rather than according to when different persons spoke. Chapter 2 describes a number of premises and criteria in the Environmental Code's and the Nuclear Activities Act's requirements on alternatives reporting. The chapter also contains a description of what the deep borehole concept entails and a discussion of the geoscientific premises. In addition, the chapter describes how different values can influence the choice of final disposal method. Chapters 3-6 describe and discuss technology and long-term safety, the viewpoints of the supervisory authorities on deep boreholes and safety philosophy via lectures followed by questions by KASAM's questioners and the audience. On the evening of 14 March, representatives of the seven parliamentary parties discussed their preparations and standpoints for an upcoming national debate on the final disposal of nuclear waste. This discussion is also reproduced in the report as Chapter 7. The main points from a concluding panel debate and discussion are presented in Chapter 8. In conclusion, Chapter 9 contains some reflections on various arguments proffered during the question-and-answer session, questions on which agreement seems to exist, and where there are differences of opinion. Speakers

  1. 78 FR 29117 - After Final Consideration Pilot Program 2.0

    Science.gov (United States)

    2013-05-17

    ...] After Final Consideration Pilot Program 2.0 AGENCY: United States Patent and Trademark Office, Commerce... Final Consideration Pilot Program (AFCP) to create the After Final Consideration Pilot Program 2.0 (AFCP....0 to consider the response. If the examiner's consideration of a proper AFCP 2.0 request and...

  2. Site-specific evaluation of safety issues for high-level waste disposal in crystalline rocks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M. (ed.) [DBE Technology GmbH, Peine (Germany)

    2016-03-31

    In the past, German research and development (R and D) activities regarding the disposal of radioactive waste, including spent nuclear fuel, focused mainly on domal rock salt because rock salt was the preferred host rock formation. In addition, generic R and D work regarding alternative host rocks (crystalline rocks and claystones) had been performed as well for a long time but with lower intensity. Around the year 2000, as a consequence of the moratorium on the Gorleben site, the Federal Government decided to have argillaceous rocks and crystalline rocks investigated in more detail. As Germany does not have any underground research and host rock characterization facilities, international cooperation received a high priority in the German R and D programme for high-level waste (HLW) disposal in order to increase the knowledge regarding alternative host rocks. Major cornerstones of the cooperation are joint projects and experiments conducted especially in underground research laboratories (URL) in crystalline rocks at the Grimsel Test Site (Switzerland) and the Hard Rock Laboratory (HRL) Aespoe(Sweden) and in argillaceous rocks at the URL Mont Terri (Switzerland) and Bure (France). In 2001, the topic of radioactive waste disposal was integrated into the agreement between the former Russian Ministry of Atomic Energy (Minatom, now Rosatom) and the German Ministry of Labor (BMWA), now Ministry of Economic Affairs and Energy (BMWi), on cooperation regarding R and D on the peaceful utilization of nuclear power (agreement on ''Wirtschaftlich-Technische Zusammenarbeit'' WTZ). The intention was to have a new and interesting opportunity for international R and D cooperation regarding HLW disposal in crystalline rocks and the unique possibility to perform site-specific work, to test the safety demonstration tools available, and to expand the knowledge to all aspects specific to these host rocks. Another motivation for joining this cooperation was the

  3. The Michigan high-level radioactive waste program: Final technical progress report

    International Nuclear Information System (INIS)

    1987-01-01

    This report comprises the state of Michigan's final technical report on the location of a proposed high-level radioactive waste disposal site. Included are a list of Michigan's efforts to review the DOE proposal and a detailed report on the application of geographic information systems analysis techniques to the review process

  4. 76 FR 62306 - Countermeasures Injury Compensation Program (CICP): Administrative Implementation, Final Rule

    Science.gov (United States)

    2011-10-07

    ... income or poverty; or the behavior and personal responsibility of youth, as determined under section 654... have a positive impact on the disposable income and poverty elements of family well-being to the extent...-line access to both proposed and final rules of the rulemaking docket on regulations.gov , including...

  5. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume III of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type

  6. Constitutive properties and material model development for marine sediments in support of the subseabed disposal program

    International Nuclear Information System (INIS)

    Baladi, G.Y.; Akers, S.A.

    1981-01-01

    The purpose of the theoretical investigation was to develop an appropriate elastic-plastic effective-stress constitutive model and the necessary numerical algorithms for seabed sediments for use in computer code simulations of both early-time dynamic penetration of waste canisters and late-time hole closure. The purpose of the experimental program was to provide high-pressure dynamic stress-strain and strength properties for seabed sediments of interest, which in conjunction with data provided by the University of Rhode Island (URI), could be used to guide the development and verification of a constitutive model for such materials. The results of the theoretical program are documented in Part I of this report, which contains four chapters. The fundamental basis of elastic-plastic constitutive models is presented in Chapter 1. The numerical implementation of the elastic-plastic models is discussed in Chapter 2. The development of the effective-stress constitutive model for seabed sediments is presented in Chapter 3. The behavior of this effective-stress model under hydrostatic and triaxial compression test conditions is illustrated in Chapter 4. Part II deals with the experimental program and includes five chapters. Chapter 1 deals with background geotechnical information regarding the physical properties of seabed sediments and presents the scope of the experimental program. Testing equipment and specimen preparation are described in Chapter 2. Chapter 3 outlines test procedures and techniques. Test results are presented in Chapter 4. Representative constitutive properties for Pacific illite are given in Chapter 5. Comparison of the final effective-stress constitutive model fits with laboratory test data are presented in Part III. The numerical values of the material model constants for Pacific illite are also summarized therein. Part IV contains a summary and recommendations for future work

  7. Identification of sites for the low-level waste disposal development and demonstration program

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Lee, D.W.

    1988-04-01

    This report presents the results of site selection studies for potential low-level radioactive waste disposal sites on the Oak Ridge Reservation (ORR). Summaries of the site selection procedures used and results of previous site selection studies on the ORR are included. This report includes recommendations of sites for demonstration of shallow land burial using engineered trench designs and demonstration of above-grade disposal using design concepts similar to those used in tumulus disposal. The site selection study, like its predecessor (ORNL/TM-9717, Use of DOE Site Selection Criteria for Screening Low-Level Waste Disposal Sites on the Oak Ridge Reservation), involved application of exclusionary site screening criteria to the region of interest to eliminate unacceptable areas from consideration. Also like the previous study, the region of interest for this study was limited to the Oak Ridge Department of Energy Reservation. Reconnaissance-level environmental data were used in the study, and field inspections of candidate sites were made to verify the available reconnaissance data. Five candidate sites, all underlain by Knox dolomite residuum and bedrock, were identified for possible development of shallow land burial facilities. Of the five candidate sites, the West Chestnut site was judged to be best suited for deployment of the shallow land burial technology. Three candidate sites, all underlain by the Conasauga Group in Bear Creek Valley, were identified for possible development of above-grade disposal technologies. Of the three sites identified, the Central Bear Creek Valley site lying between State Route 95 and Gum Hollow Road was ranked most favorable for deployment of the above-grade disposal technology

  8. Alternative approaches to assessing the performance and suitability of Yucca Mountain for spent fuel disposal. Final report

    International Nuclear Information System (INIS)

    McGuire, R.; Smith, G.; Klos, R.

    1998-11-01

    Significant resources and effort have been expended by EPRI over the past few years in modeling and understanding issues related to high-level radioactive waste disposal. Previous reports have documented the general model used in the EPRI work and specific inputs to that model for examination of the potential repository at Yucca Mountain, Nevada. Modeling of the potential Yucca Mountain site is an on-going process, and new data are being collected with which to evaluate and modify models of physical processes. This report is divided into two parts. The first part presents results from specific calculational cases of repository performance, updated for the most recent data and conceptual models. The second part discusses possible alternatives for the components of the assessment context for a repository at Yucca Mountain. Part 2 also presents additional information on time frames and a interaction matrix method of documenting TSPA model interactions. The main purposes of Part of this report is to describe the subsystem and total system performance models and present results and analysis of the results. Part 1 includes presentation of new models of waste container failure that accounts for new container material, a new model of the effect of hydrothermal activity and heterogeneous groundwater flow in the unsaturated zone on temperatures and the distribution of groundwater capable of dripping into the repository drifts. Part 1 also: identifies the key technical components of the candidate spent fuel and HLW disposal facility at Yucca Mountain using IMARC Phase 4; makes recommendations regarding the prioritization of the technical development work remaining; and provides an assessment of the overall technical suitability of the candidate HLW disposal facility at Yucca Mountain

  9. ORNL results for Test Case 1 of the International Atomic Energy Agency's research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    International Nuclear Information System (INIS)

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A.; Roemer, E.K.

    1993-01-01

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled '''The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.'' The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault

  10. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  11. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  12. SLEUTH (Strategies and Lessons to Eliminate Unused Toxicants: Help!). Educational Activities on the Disposal of Household Hazardous Waste. Household Hazardous Waste Disposal Project. Metro Toxicant Program Report No. 1D.

    Science.gov (United States)

    Dyckman, Claire; And Others

    This teaching unit is part of the final report of the Household Hazardous Waste Disposal Project. It consists of activities presented in an introduction and three sections. The introduction contains an activity for students in grades 4-12 which defines terms and concepts for understanding household hazardous wastes. Section I provides activities…

  13. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    International Nuclear Information System (INIS)

    Collins, M.S.; Borgstrom, C.M.

    2004-01-01

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and

  14. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal: Phase 2, Final report

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Cadwell, L.L.; Kennedy, W.E. Jr.; Prohammer, L.A.; Simmons, M.A.

    1986-11-01

    The results reported here establish the relevance and propose a method for including biotic transport in the assessment and licensing process for commercial low-level waste disposal sites. Earlier work identified the biotic transport mechanisms and process scenarios linking biotic transport with dose to man, and developed models for assessment of impacts. Model modification and improvement efforts in enhancing the ability to represent soil erosion and soil transport within the trench cover. Two alternative hypotheses on plant root uptake were incorporated into the model to represent transport of radionuclides by roots that penetrate the buried waste. Enhancements were also made to the scenario for future site intruder activities. Representation of waste package decomposition in the model was confirmed as the best available alternative. Results from sensitivity analyses indicate that additional information is needed to evaluate the alternative hypotheses for plant root uptake of buried wastes. Site-specific evaluations of the contribution from biotic transport to the potential dose to man establish the relevance in the assessment process. The BIOPORT/MAXI1 computer software package is proposed for dose assessments of commercial low-level waste disposal sites

  15. Disposal of high-level radioactive wastes in the unsaturated zone: technical considerations and response to comments. Final report

    International Nuclear Information System (INIS)

    Hackbarth, C.J.; Nicholson, T.J.; Evans, D.D.

    1985-10-01

    On July 22, 1985, the US Nuclear Regulatory Commission (NRC) promulgated amendments to 10 CFR Part 60 concerning disposal of high-level radioactive waste (HLW) in geologic repositories in the unsaturated zone (50 FR 29641). This report contains a discussion of the principal technical issues considered by the NRC staff during the development of these amendments. It expands or revises certain technical discussions originally presented in draft NUREG-1046 (February 1984) based on public comment letters and an increasing understanding of the physical, geochemical, and hydrogeologic processes operative in unsaturated geologic media. The following issues related to disposal of HLW within the unsaturated zone are discussed: hydrogeologic properties and conditions, heat dissipation and temperature, geochemisty, retrievability, potential for exhumation of the radioactive waste by natural causes and by human intrusion, the effects of future climatic changes on the level of the regional water table, and transport of radionuclides in the gaseous state. The changes to 10 CFR Part 60 in definitions, siting criteria, and design criteria for the geologic repository operations area are discussed. Other criteria examined by the NRC staff but which were not changed in rule are the minimum 300-meter depth for waste emplacement, limitations on exploratory boreholes, backfill requirements, waste package design criteria, and provisions for ventilation

  16. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal: Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Kennedy, W.E. Jr.; Prohammer, L.A.; Simmons, M.A.

    1986-11-01

    The results reported here establish the relevance and propose a method for including biotic transport in the assessment and licensing process for commercial low-level waste disposal sites. Earlier work identified the biotic transport mechanisms and process scenarios linking biotic transport with dose to man, and developed models for assessment of impacts. Model modification and improvement efforts in enhancing the ability to represent soil erosion and soil transport within the trench cover. Two alternative hypotheses on plant root uptake were incorporated into the model to represent transport of radionuclides by roots that penetrate the buried waste. Enhancements were also made to the scenario for future site intruder activities. Representation of waste package decomposition in the model was confirmed as the best available alternative. Results from sensitivity analyses indicate that additional information is needed to evaluate the alternative hypotheses for plant root uptake of buried wastes. Site-specific evaluations of the contribution from biotic transport to the potential dose to man establish the relevance in the assessment process. The BIOPORT/MAXI1 computer software package is proposed for dose assessments of commercial low-level waste disposal sites.

  17. Evaluation of shale hosted low-level waste disposal sites in semi-arid environments: Final report

    International Nuclear Information System (INIS)

    Roggenthen, W.M.; Rahn, P.H.; Arthur, R.C.; Miller, J.R.; Bangsund, W.J.; Eberlin, J.

    1985-09-01

    This report covers the findings of a multidisciplinary investigation intended to delineate critical factors and concerns associated with shale hosted, low-level radioactive waste disposal sites located in semiarid environments. The investigations focus primarily upon concerns regarding the hydrology, geochemistry, and meteorology of such an environment. The studies described within this report specifically do not constitute an evaluation of any one particular site nor even a particular class of sites. Rather, it is the intention of the report to present data and insights that would assist private concerns and governmental agencies in the efficient and prudent development of such disposal areas. This report assumes that the hypothetical waste site in question would be developed as a trench type operation similar to that used at Barnwell, South Carolina, with variations upon the techniques used at Beatty Flat, Nevada, and Hanford, Washington. The trench design (Figures 1 and 2) is assumed to be similar to that generic design described in ''Procedures and Technology for Shallow Land Burial, DOE/LLw-13Td, 1983) although it is also assumed that improvements and adaptations will be made upon this basic design to meet the individual needs of a particular site. During the preparation of this report it became apparent that new types of trench design are being studied. Discussions of these trench design proposals are not central to this report. The examples of trench design in Figures 1 and 2 are presented only to give an idea as to the general philosophy of construction of shallow burial facilities

  18. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, year 1 report. Volume 1. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site located 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. During the study period, the daily discharge averaged 529,000 barrels of 216 0/00 brine, representing a loading of 18,000 metric tons of salt per day. The objective of this study are: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. This report describes the methodology and significant results of the first year's monitoring effort of the West Hackberry brine disposal site. The investigative tasks, presented as separate sections, are: Physical Oceanography, Estuarine Hydrology and Hydrography, Analysis of Discharge Plume, Water and Sediment Quality, Special Pollutant Surveys, Benthos, Nekton, Phytoplankton, Zooplankton and Data Management.

  19. Toxicants in Consumer Products. Household Hazardous Waste Disposal Project. Metro Toxicant Program No. 1B.

    Science.gov (United States)

    Ridgley, Susan M.

    Four general product classes (pesticides, paint products, household cleaners, and automotive products) are reviewed in this document. Each product class is described, and several aspects of the problem associated with product use or disposal are examined, including estimates of volumes used and environmental impacts. Technical data on the specific…

  20. Study of deep ocean currents near the 3800-M low-level radioactive waste disposal site. May 1984-May 1986. Final report

    International Nuclear Information System (INIS)

    Casagrande, C.; Hamilton, P.

    1988-06-01

    The report presents the results of a two-year study of a U.S. 3800-m low-level radioactive waste-disposal site near the mouth of the Hudson Canyon. The program objectives were to describe the currents, including their source and variability, and deduce from the data the potential for, and direction of, transport of contaminants from the disposal area. The results show that the currents in the disposal area range in strength from a few to 62 cm/sec and are principally due to the presence of low-frequency topographic Rossby waves having periods of approximately two to four weeks. The currents generally flow towards the southwest, in line with the general topography of the mid-Atlantic region. The canyon acts to distort the southwest flow, resulting in currents below the canyon rim which are aligned with the canyon onshore-offshore axis. The direction of currents along the canyon axis appears to be determined by the proximity of both the Gulf Stream and the Western Boundary Undercurrent

  1. 77 FR 47302 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-08

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... EPA proposed to authorize South Dakota's State Hazardous waste management Program revisions published... to the hazardous waste program revisions submitted by South Dakota. The Agency published a Proposed...

  2. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-15

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act...

  3. Amchitka Radiobiological Program. Final report, July 1970-December 1979

    International Nuclear Information System (INIS)

    Sibley, T.H.; Tornberg, L.D.

    1982-11-01

    The Amchitka Radiobiological Program, to collect biological and environmental samples for radiological analyses, began in 1970 and continued through 1979. The principal objective was to determine the extent of radionuclide contamination from worldwide atmospheric fallout and from the detonation of three underground nuclear tests on Amchitka. Leakage of radionuclides from the underground test sites would be suspected if the amount of contamination was significantly greater than could be attributed to worldwide fallout or if an unexpected assemblage of radionuclides was detected. No radionuclides from the underground sites were detected, except for tritium from the Long Shot test (1965) which produced increased tritium concentrations in surface water and freshwater plants near the test site. This final report compiles all previous data into one report and considers the temporal trends in these data. Two naturally occurring radionuclides, 40 K and 7 Be, were the most abundantly occurring radionuclides in most samples; in lichen samples either 137 Cs or 144 Ce had the highest activity. All samples were below applicable Radiation Protection Guides and by 1979 most samples were near or below the statistical detection limits. Increased concentrations of short-lived fallout radionuclides following the Chinese atmospheric tests were found in freshwater and seawater samples and in most indicator organisms

  4. International piping integrity research group (IPIRG) program final report

    International Nuclear Information System (INIS)

    Schmidt, R.; Wilkowski, G.; Scott, P.; Olsen, R.; Marschall, C.; Vieth, P.; Paul, D.

    1992-04-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Programme. The IPIRG Programme was an international group programme managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United states. The objective of the programme was to develop data needed to verify engineering methods for assessing the integrity of nuclear power plant piping that contains circumferential defects. The primary focus was an experimental task that investigated the behaviour of circumferentially flawed piping and piping systems to high-rate loading typical of seismic events. To accomplish these objectives a unique pipe loop test facility was designed and constructed. The pipe system was an expansion loop with over 30 m of 406-mm diameter pipe and five long radius elbows. Five experiments on flawed piping were conducted to failure in this facility with dynamic excitation. The report: provides background information on leak-before-break and flaw evaluation procedures in piping; summarizes the technical results of the programme; gives a relatively detailed assessment of the results from the various pipe fracture experiments and complementary analyses; and, summarizes the advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG Program

  5. α-waste conditioning concepts on the basis of waste arisings, actinide distribution and their influence on final disposal products

    International Nuclear Information System (INIS)

    Krause, H.; Scheffler, K.

    1978-01-01

    Among the wastes arising from the reprocessing and Pu-fuel element fabrication plants, only seven waste streams contain the major part of the actinides going into the radioactive waste. It is shown that the liquid α-waste from fuel element fabrication, the high level liquid waste, and the active fraction of the medium level liquid waste can be incorporated into borosilicate glass. Wet combustion of solid burnable waste allows a relatively easy and complete recovery of plutonium. Leached hulls, sludges from feed clarification and solid non-combustible wastes can be incorporated into concrete. These treatment methods guarantee that only relatively small amounts of high quality α-bearing residues have to be disposed of

  6. Treatment, conditioning and packaging for final disposal of low and intermediate level waste from Cernavoda: a techno-economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Suryanarayan, S.; Husain, A. [Kinectrics Inc., Toronto, ON (Canada); Fellingham, L.; Nesbitt, V. [Nuvia Ltd., Didcot, Oxfordshire (United Kingdom); Toro, L. [Mate-fin, Bucharest (Romania); Simionov, V.; Dumitrescu, D. [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2011-07-01

    National Nuclearelectrica Society (SNN) owns and operates two CANDU-6 plants at Cernavoda in Romania. Two additional units are expected to be built on the site in the future. Low and intermediate level short-lived radioactive wastes from Cernavoda are planned to be disposed off in a near-surface repository to be built at Saligny. The principal waste streams are IX resins, filters, compactable wastes, non-compactables, organic liquids and oil-solid mixtures. Their volumetric generation rates per reactor unit are estimated to be: IX resins (6 m{sup 3}/y), filters (2 m{sup 3}/y), compactables (23 m{sup 3}/y) and non-compactables (15 m{sup 3}/y). A techno-economic assessment of the available options for a facility to treat and condition Cernavoda's wastes for disposal was carried out in 2009 based on projected waste volumes from all four units. A large number of processes were first screened to identify viable options. They were further considered to develop overall processing options for each waste stream. These were then consolidated to obtain options for the entire plant by minimizing the number of unit operations required to process the various waste streams. A total of 9 plant options were developed for which detailed costing was undertaken. Based on a techno-economic assessment, two top ranking plant options were identified. Several scenarios were considered for implementing these options. Amongst them, a contractor run operation of a facility located on the Cernavoda site was considered to be more cost effective than operating the facility using SNN personnel. (author)

  7. Development of a natural analogue database to support the safety case of the Korean radioactive waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Baik, M.H.; Park, T.J.; Kim, I.Y.; Jeong, J. [Korea Atomic Research Institute, Yuseong-Gu, Daejeon (Korea, Republic of); Choi, K.W. [Korea Institute of Nuclear Safety, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-06-15

    In this study, the status of natural analogue studies in Korea is briefly summarized and applicability of existing natural analogue information to the Korean safety case has been evaluated. To enable effective application of natural analogue information to the overall evaluation of long-term safety (the 'safety case') for the geological disposal of radioactive wastes, a natural analogue database has been developed by collecting, classifying, and evaluating relevant data. The natural analogue data collected were classified into categories based on site information, components/processes of the disposal system, properties/phenomena, reference, safety case application, application method, and suitability to a safety case. Suitability of the natural analogue data to a specific safety case was evaluated based upon the importance and the applicability to the Korean safety case. As a result, 75 natural analogue datasets were selected as important for the Korean safety case. The database developed can now be utilized in the RD and D (Research, Development, and Demonstration) program development for natural analogue studies. In addition, the methodology developed and the database compiled in this study may assist in the development of safety case including safety assessment for high-level radioactive waste disposal in Korea as well as in other countries. (authors)

  8. Development of a natural analogue database to support the safety case of the Korean radioactive waste disposal program

    International Nuclear Information System (INIS)

    Baik, M.H.; Park, T.J.; Kim, I.Y.; Jeong, J.; Choi, K.W.

    2015-01-01

    In this study, the status of natural analogue studies in Korea is briefly summarized and applicability of existing natural analogue information to the Korean safety case has been evaluated. To enable effective application of natural analogue information to the overall evaluation of long-term safety (the 'safety case') for the geological disposal of radioactive wastes, a natural analogue database has been developed by collecting, classifying, and evaluating relevant data. The natural analogue data collected were classified into categories based on site information, components/processes of the disposal system, properties/phenomena, reference, safety case application, application method, and suitability to a safety case. Suitability of the natural analogue data to a specific safety case was evaluated based upon the importance and the applicability to the Korean safety case. As a result, 75 natural analogue datasets were selected as important for the Korean safety case. The database developed can now be utilized in the RD and D (Research, Development, and Demonstration) program development for natural analogue studies. In addition, the methodology developed and the database compiled in this study may assist in the development of safety case including safety assessment for high-level radioactive waste disposal in Korea as well as in other countries. (authors)

  9. HLW disposal in Germany - R and D achievements and outlook

    International Nuclear Information System (INIS)

    Steininger, W.

    2006-01-01

    The paper gives a brief overview of the status of R and D on HLW disposal. Shortly addressed is the current nuclear policy. After describing the responsibilities regarding R and D for disposing of heat-generating high-level (HLW) waste (vitrified waste and spent fuel), selected projects are mentioned to illustrate the state of knowledge in disposing of waste in rock salt. Participation in international projects and programs is described to illustrate the value for the German concepts and ideas for HLW disposal in different rock types. Finally, a condensed outlook on future activities is given. (author)

  10. Status of work on the final repository concept concerning direct disposal of spent fuel rods in fuel rod casks (BSK)

    International Nuclear Information System (INIS)

    Filbert, W.; Wehrmann, J.; Bollingerfehr, W.; Graf, R.; Fopp, S.

    2008-01-01

    The reference concept in Germany on direct final storage of spent fuel rods is the burial of POLLUX containers in the final repository salt dome. The POLLUX container is self-shielded. The final storage concept also includes un-shielded borehole storage of high-level waste and packages of compacted waste. GNS has developed a spent fuel container (BSK-3) for unshielded borehole storage with a mass of 5.2 tons that can carry the fuel rods of three PWR reactors of 9 BWR reactors. The advantages of BSK storage include space saving, faster storage processes, less requirements concerning technical barriers, cost savings for self-shielded casks.

  11. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    International Nuclear Information System (INIS)

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1

  12. Development of the program for underground disposal of radioactive wastes in Slovenia

    International Nuclear Information System (INIS)

    Marc, D.; Loose, A.; Mele, I.

    1995-01-01

    In Slovenia, three of four steps of surface low and intermediate level radioactive wastes (LILW) repository site selection have already been completed . Since the fourth step is stopped due to the strong public opposition, an option of underground disposal is now being considered. In 1994, Agency for Rad waste Management started with preparation of basic guidelines for site selection of an underground LILW repository in Slovenia. The guidelines consist of general and geological criteria. General criteria are similar to those used for surface repository site selection, while geological criteria, based strongly on International Atomic Energy Agency (IAEA) recommendations, include some changes. Mainly they are less rigorous and more qualitative. A set of basic geological recommendations and guidelines for an underground disposal of radioactive wastes is presented in this paper. A comparison between proposed geological criteria for underground repository site selection and geological criteria used for surface repository site selection is given as well. (author)

  13. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  14. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  15. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    International Nuclear Information System (INIS)

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules

  16. A Comprehensive Child Development Program; Title XX, Final Report.

    Science.gov (United States)

    Whatley, Juanita T.

    This booklet describes the Comprehensive Child Day Care Program for the Atlanta Public School System, a Title XX Program. This program provided day care services for children of clients in various categories. The program goals for 1975-76 were geared toward providing comprehensive day care to encompass social services to the family and…

  17. The effects of the final disposal facility for spent nuclear fuel on regional and municipal economy assessment of socio economical impacts

    International Nuclear Information System (INIS)

    Laakso, S.; Kuisma, H.; Kilpelaeinen, P.; Kostiainen, E.

    2007-12-01

    The aim of this study is to give an up-to-date assessment of the effects the construction of the final disposal facility for spent nuclear fuel in Eurajoki, based on latest knowledge. The disposal facility's effects on employment, population, housing construction, community structure and economy are estimated in the municipality of Eurajoki and in the wider region under the influence of the facility. The time-span of the report reaches from 2001 to the early 2020's when the facility will be in operation. The investment in research and construction of the disposal facility during the years 2004-2020 will be all together approximately 290 million euros. The estimation for the overall effect on national employment during the years 2001-2020 is circa 6 800 manyears, of which 4 200 man-years are from direct effects and 2 600 from indirect effects. The direct employment effects of the project will be at its highest approximately 325 man-year per year in 2020. The direct effect on employment during the operational period is estimated to be circa 130 man-years per year, of which the share of regular employees of Posiva is slightly over 100 man-years. At its highest, about 45 man-years per year of the total effect on employment (direct + indirect effects) will be directed to Eurajoki municipality. During the operational phase the share of Eurajoki is estimated to be circa 30 man-years per year. For the whole region, the effect of the disposal facility on employment will be significant, at its height in 2020, approximately 220 man-years per year. The disposal facility will also have an effect on the size and the structure of the population due to changes in employment and jobs. The estimation for the cumulative effect on the growth of the population caused by the facility is 80 more inhabitants in Eurajoki by 2020, which corresponds to 1,4 % of the municipality's current population. The growth of the population brought about by the facility in the whole region is estimated

  18. Judgement of properties and function of concrete in connection with final disposal of nuclear fuel wastes in rock

    International Nuclear Information System (INIS)

    Bergstroem, S.G.; Fagerlund, G.; Romben, L.

    1977-06-01

    This report deals with the possibility of using concrete in conjuction with the permanent storage of nuclear fuel waste in rock storage facilities. The emphasis has been placed on properties such as strength and tightness and how these may be affected by internal and external causes of destruction during a filling stage of approximately 100 years and during the final storage stage of 1 000 - 100 000 years. It is established that spontaneous structural changes, which lead to a certain increase in porosity, cannot be precluded during the filling stage and uring the final storage stage. It is deemed possible to avoid cracking during the manufacture and during the filling stage if the concrete is kept moist. The risk for cracking during the final storage stage is difficult to assess. Attempts are made to estimate the tightness of aged concrete during the various stages. The tightness during the final storage stage is difficult to assess due to the fact that the scope of the cracking cannot be estimated. Chemical attacks during the filling stage are deemed to be small and can be repaired. The risk for destruction due to radioactive radiation is extremely small. Reinforcement, if any, can be protected during the filling stage on condition that the concrete is kep saturated but all reinforcement will be destroyed during the final storage stage. By way of conclusion, a number of general views on the choice of concrete and work methods are provided. (author)

  19. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Phase I. Final report. Vol. 4

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Cadwell, L.L.; Eberhardt, L.E.; Kennedy, W.E. Jr.; Peloquin, R.A.; Simmons, M.A.

    1984-05-01

    Licensing and regulation of commercial low-level waste (CLLW) burial facilities require that anticipated risks associated with burial sites be evaluated for the life of the facility. This work reviewed the existing capability to evaluate dose to man resulting from the potential redistribution of buried radionuclides by plants and animals that we have termed biotic transport. Through biotic transport, radionuclides can be moved to locations where they can enter exposure pathways to man. We found that predictive models currently in use did not address the long-term risks resulting from the cumulative transport of radionuclides. Although reports in the literature confirm that biotic transport phenomena are common, assessments routinely ignore the associated risks or dismiss them as insignificant without quantitative evaluation. To determine the potential impacts of biotic transport, we made order-of-magnitude estimates of the dose to man for biotic transport processes at reference arid and humid CLLW disposal sites. Estimated doses to site residents after assumed loss of institutional control were comparable to dose estimates for the intruder-agricultural scenario defined in the DEIS for 10 CFR 61 (NRC). The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by order of magnitude estimates presented in this study. 17 references, 10 figures, 8 tables

  20. Final report on the acquisition of data for use in the probabilistic risk assessment of underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dalrymple, G.J.; Johnson, K.B.; Phillips, L.D.

    1986-01-01

    A preliminary radiological assessment of a potential site for the disposal of radioactive wastes is likely to be based on a limited amount of measured data. Under these circumstances the parameter probability distributions required as input to the SYVAC model have to be obtained from the judgements of experts. This study examined the feasibility of using a formal, auditable technique for encoding probabilities from expert opinions. When a more detailed site investigation is carried out, site specific measured data will become available. The feasibility of using a Bayesian approach for incorporating this measured data into the subjective probability distributions supplied by experts was examined. Measured data on the hydrogeological properties of the site are likely to be spatially correlated. A brief study of the suitability of using the Kriging technique for modelling and quantifying spatial correlations was conducted. The use of Kriging models can be very expensive and a more detailed cost-benefit study is required. There are a very large number of combinations of future events (or scenarios) which may effect the transport of radionuclides from a repository site. Two techniques, event trees and influence diagrams, for categorising and quantifying scenarios were examined. The study concluded that event trees can become unmanageable when there are a large number of possible scenarios. It is recommended that influence diagrams can provide a practical solution to categorising and quantifying scenarios. (author)

  1. Analysis of long-term geological and hydrogeological changes in the Swedish programme for final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Ericsson, L.O.; Boulton, G.S.

    1996-01-01

    In assessing the safety of deep disposal of nuclear waste in crystalline rocks it is important establish whether recent or future changes in loading can lead to fracturing and block displacement which may change the hydrogeological setting of a repository. Furthermore, it is of vital importance to understand how future climate changes, especially future glaciations, will influence the groundwater flow around a deep repository. The Swedish programme comprises R and D activities which attempt to quantify probable impacts of earthquakes, glaciation and land uplift. The activities emphasize geodynamic processes in the Baltic Shield, post-glacial faulting and glacial impacts on hydrogeology and ground water chemistry. A time-dependent, thermo-mechanically coupled, three-dimensional model of the ice sheet behaviour in Scandinavia has been developed. The model is driven by changes in the elevation of the permanent snow line on its surface and by air temperature and predicts the behaviour of the ice sheet for an earth's surface of given form and mechanical properties. The ice sheet model reconstructs the ice sheet thickness, ice sheet temperature distribution, including basal temperature, basal meting pattern and velocity distribution. The model is coupled to a sub-glacial Dancian groundwater flow model which in turn provides boundary for evaluations of long-term hydrogeological evolution at specific sites. (authors). 22 refs., 3 figs

  2. Canister materials proposed for final disposal of high level nuclear waste - a review with respect to corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, E; Odoj, R; Merz, E [eds.

    1981-06-01

    Spent fuel from nuclear reactors has to be disposed of either after reprocessing or without such treatment. Due to toxic radiation the nuclear waste has to be isolated from the biosphere for 300-1000 years, or in extreme cases for more than 100,000 years. The nuclear waste will be enclosed in corrosion resistant canisters. These will be deposited in repositories in geological formations, such as granite, basalt, clay, bedded or domed salt, or the sediments beneath the deep ocean floor. There the canisters will be exposed to groundwater, brine or seawater at an elevated temperature. Species formed by radiolysis may affect the corrosivity of the agent. The corrosion resistance of candidate canister materials is evaluated by corrosion tests and by thermodynamic and mass transport calculations. Examination of ancient metal objects after long exposure in nature may give additional information. On the basis of the work carried out so far, the principal candidate canister materials are titanium materials, copper and high purity alumina.

  3. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-24

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... implement its base Hazardous Waste Management Program. We granted authorization for changes to their program... opportunity to apply for final authorization to operate all aspects of their hazardous waste management...

  4. Deep boreholes. An alternative for final disposal of spent nuclear fuel? Report from KASAM's question-and-answer session on 14-15 March 2007

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    On 14-15 March 2007, KASAM held a hearing for the purpose of thoroughly examining deep boreholes as a method for the final disposal of spent nuclear fuel. Some of the questions that were raised were: What are the technical, geological and hydrological premises and possibilities? What are the risks from different viewpoints and what values underlie different views of the potential and suitability of deep boreholes? This report is a summary of the seminar. KASAM has made a selection of contributions and questions from the debate that took place on the basis of their relevance to the purpose of the seminar. The report generally follows the chronological lecture-and debate format of the seminar, but has been edited according to different issues rather than according to when different persons spoke. Chapter 2 describes a number of premises and criteria in the Environmental Code's and the Nuclear Activities Act's requirements on alternatives reporting. The chapter also contains a description of what the deep borehole concept entails and a discussion of the geoscientific premises. In addition, the chapter describes how different values can influence the choice of final disposal method. Chapters 3-6 describe and discuss technology and long-term safety, the viewpoints of the supervisory authorities on deep boreholes and safety philosophy via lectures followed by questions by KASAM's questioners and the audience. On the evening of 14 March, representatives of the seven parliamentary parties discussed their preparations and standpoints for an upcoming national debate on the final disposal of nuclear waste. This discussion is also reproduced in the report as Chapter 7. The main points from a concluding panel debate and discussion are presented in Chapter 8. In conclusion, Chapter 9 contains some reflections on various arguments proffered during the question-and-answer session, questions on which agreement seems to exist, and where there are differences of

  5. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  6. Community Solar Program Final Report for Austin Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-02-10

    Austin Energy seeks to expand its portfolio of renewable programs with an innovative community solar program. The program provides an opportunity for Austin Energy's customers, who are unable or uninterested in installing solar on their own premises, to purchase solar power.

  7. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    Science.gov (United States)

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  8. Middle East Studies Teacher Training Program. Final Report.

    Science.gov (United States)

    Sefein, Naim A.

    This guide presents a teacher training program in Middle Eastern studies and procedures for program implementation. Details concerning program announcement, participant selection, and travel accommodations are included. Participants attended an orientation and registration workshop and an intensive academic workshop before flying to Egypt for the…

  9. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume IV of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Transportation is an integral component of the alternatives being considered for each type of radioactive waste in the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The types of radioactive waste considered in Part I are high-level waste (HLW), low-level waste (LLW), transuranic waste (TRUW), and low-level mixed waste (LLMW). For some alternatives, radioactive waste would be shipped among the DOE sites at various stages of the treatment, storage, and disposal (TSD) process. The magnitude of the transportation-related activities varies with each alternative, ranging from minimal transportation for decentralized approaches to significant transportation for some centralized approaches. The human health risks associated with transporting various waste materials were assessed to ensure a complete appraisal of the impacts of each PEIS alternative being considered

  10. Final disposal of spent fuel in the Finnish bedrock. Scope and requirements for site-specific safety analysis; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Paikkakohtaisen turvallisuusanalyysin edellytykset ja mahdollisuudet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The report is a summary of the research conducted in the period 1993 to 1996 into safety of spent fuel final disposal. The principal goal of the research in this period, as set in 1993, was to develop a strategy for site-specific safety analysis. At the same time efforts were to be continued to gather data and validate the technical approach for the analysis. The work aimed at having the data needed for the analysis available at the end of year 1998. A safety assessment update, TILA-96, prepared by VTT Energy, is published as a separate report. The assessment is based on the TVO-92 safety analysis, but takes into account the knowledge acquired after 1992 on safety aspects of the disposal system and the data gathered from the site investigations made by TVO and from the beginning of 1996, by Posiva. Since the site investigations are still ongoing and much of the data gathered still pending interpretation, only limited amount of new site-specific information has been available for the present assessment. (172 refs.).

  11. LISA. A code for safety assessment in nuclear waste disposals program description and user guide

    International Nuclear Information System (INIS)

    Saltelli, A.; Bertozzi, G.; Stanners, D.A.

    1984-01-01

    The code LISA (Long term Isolation Safety Assessment), developed at the Joint Research Centre, Ispra is a useful tool in the analysis of the hazard due to the disposal of nuclear waste in geological formations. The risk linked to preestablished release scenarios is assessed by the code in terms of dose rate to a maximum exposed individual. The various submodels in the code simulate the system of barriers -both natural and man made- which are interposed between the contaminants and man. After a description of the code features a guide for the user is supplied and then a test case is presented

  12. Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Final report

    International Nuclear Information System (INIS)

    1987-06-01

    In accordance with the National Environmental Policy Act, the Commission's implementing regulations, and the Commission's April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the supplement includes a specific environmental evaluation of the licensee's proposal for water disposition. Although no clearly preferable water disposal alternative was identified, the supplement concluded that a number of alternatives could be implemented without significant environmental impact. The NRC staff has concluded that the licensee's proposed disposal of the accident-generated water by evaporation will not significantly affect the quality of the human environment. Further, any impacts from the disposal program are outweighed by its benefits

  13. Intruder dose pathway analysis for the onsite disposal of radioactive wastes: The ONSITE/MAXI1 computer program

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.; Napier, B.A.; Neuder, S.M.

    1987-02-01

    This document summarizes initial efforts to develop human-intrusion scenarios and a modified version of the MAXI computer program for potential use by the NRC in reviewing applications for onsite radioactive waste disposal. Supplement 1 of NUREG/CR-3620 (1986) summarized modifications and improvements to the ONSITE/MAXI1 software package. This document summarizes a modified version of the ONSITE/MAXI1 computer program. This modified version of the computer program operates on a personal computer and permits the user to optionally select radiation dose conversion factors published by the International Commission on Radiological Protection (ICRP) in their Publication No. 30 (ICRP 1979-1982) in place of those published by the ICRP in their Publication No. 2 (ICRP 1959) (as implemented in the previous versions of the ONSITE/MAXI1 computer program). The pathway-to-human models used in the computer program have not been changed from those described previously. Computer listings of the ONSITE/MAXI1 computer program and supporting data bases are included in the appendices of this document

  14. The impact of a final disposal facility for spent nuclear fuel on a municipality`s image; Tutkimus loppusijoituslaitoksen vaikutuksista kuntien imagoon

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanpaeae, H; Haapavaara, L; Lampinen, T

    1999-02-01

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities` point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality`s image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter `which does not concern me`, provided that the facility will not be placed too near one`s own home. Among those interviewed the subject seemed not to be of any `great interest and did not arouse spontaneous feelings for or against`. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  15. Highly Insulating Windows Volume Purchase Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  16. 76 FR 18624 - Research, Technical Assistance and Training Programs: Notice of Final Circular

    Science.gov (United States)

    2011-04-04

    ... to FTA Circular 6100.1D, Research and Technical Assistance Training Program: Application Instructions... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Research, Technical Assistance and Training Programs: Notice of Final Circular AGENCY: Federal Transit Administration (FTA), DOT. ACTION...

  17. Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways under Renewable Fuel Standard Program

    Science.gov (United States)

    This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.

  18. Program grants for black lung clinics--PHS. Final rule.

    Science.gov (United States)

    1985-02-27

    The Public Health Service hereby revises the regulations governing the grants program for black lung clinics established under section 427(a) of the Federal Mine Safety and Health Act of 1977. The revision is in keeping with the Department of Health and Human Services' desire to remove as many programmatic burdens and restrictions from grantees as possible, while maintaining program integrity.

  19. Group Use and Other Aspects of Programmed Instruction. Final Report.

    Science.gov (United States)

    Crist, Robert L.

    The use of group approval as a social reinforcer and related methods in group presentation of programed instruction were investigated in a series of studies. The efficacy of programed instructional materials is frequently limited by their inability to command and maintain adequate attention and motivation. To consider social reinforcement effects…

  20. Camp Verde Adult Reading Program. Final Performance Report.

    Science.gov (United States)

    Maynard, David A.

    This document begins with a four-page performance report describing how the Camp Verde Adult Reading Program site was relocated to the Community Center Complex, and the Town Council contracted directly with the Friends of the Camp Verde Library to provide for the requirements of the program. The U.S. Department of Education grant allowed the…

  1. Final report for the Pre-Freshman Enrichment Program (PREP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This project reflected cooperation across the disciplines in the physical sciences, engineering, mathematics and computer science. The University of the Pacific served as the center for this pre-college program. The idea was to use this link as a pilot program.

  2. From dispensing to disposal: the role of student pharmacists in medication disposal and the implementation of a take-back program.

    Science.gov (United States)

    Gray-Winnett, Misty D; Davis, Courtney S; Yokley, Stephanie G; Franks, Andrea S

    2010-01-01

    To decrease the amount of pharmaceuticals present in our community's water supply, reduce the accidental and intentional ingestion of pharmaceuticals, and increase awareness of proper medication disposal. Knoxville, TN, from November 2008 to November 2009. Medication and thermometer collection events were held at various community retail establishments. Community officials and students collaborated to plan advertising, implementation, and appropriate medication and thermometer disposal. Event volunteers set up easily accessible tents and tables in high-traffic areas to collect unused medications, mercury thermometers, and recyclable medication bottles. Student pharmacists worked cooperatively with community partners to collect unused medications and exchange thermometers. Pounds of recyclables collected, pounds of medications collected, and number of thermometers exchanged. The events increased community awareness of appropriate medication disposal and pharmacists' roles in safe use of medications. From November 2008 to November 2009, more than 1,100 pounds of unwanted medications were collected through events and the drop box. Additionally, more than 470 pounds of recyclable packaging material was collected and 535 mercury thermometers exchanged. Student pharmacists can partner with community officials and businesses to provide safe and appropriate medication and mercury thermometer disposal.

  3. Hood River Production Program Review, Final Report 1991-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith; Chapman, Colin; Ackerman, Nicklaus

    2003-12-01

    This document provides a comprehensive review of Bonneville Power Administration (BPA) funded activities within the Hood River Basin from 1991 to 2001. These activities, known as the Hood River Production Program (HRPP), are intended to mitigate for fish losses related to operation of federal dams in the Columbia River Basin, and to contribute to recovery of endangered and/or threatened salmon and steelhead, as directed by Nation Oceanic and Atmospheric Administration - Fisheries (NOAA Fisheries). The Environmental Impact Statement (EIS) for the HRPP, which authorized BPA to fund salmon and steelhead enhancement activities in the Hood River Basin, was completed in 1996 (BPA 1996). The EIS specified seven years of monitoring and evaluation (1996-2002) after program implementation to determine if program actions needed modification to meet program objectives. The EIS also called for a program review after 2002, that review is reported here.

  4. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  5. 76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S...

  6. 77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division...

  7. Current status and future plan of research and development program related to geological disposal at CEN-SCK

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, Bernard; Put, Martin [Centre d`Etude de l`Energie Nucleaire, Mol (BBE)

    1994-12-31

    The studies at CEN-SCK related to the R and D of geological disposal are performed within the research unit `waste and disposal` which also deals with the characterization of waste packages and their compatibility with host clay. The in situ test program developed by the underground research facility is shown. The in situ corrosion and leaching test, the combined radiation/heating test CERBERUS, the in situ migration experiment and the geotechnical survey on the gallery structures and their surrounding clay have been continued, and the main achievements until mid 1993 are reported. New actions have been started since 1991 related to hydrogeological modeling, the migration of gas in clay and the `PARCLAY` demonstration test. Besides the periodic measurement of water level in hydrological observation well network, the critical review of the previous regional hydrological modeling has been carried out. Migration studies were extended to the permeation of hydrogen, and the MEGAS project of the modeling and experiment of gas migration was started. Four main experiments, ARCHIMEDES, PHEBUS, BACCHUS 2 and ATLAS, as the international efforts are explained. (K.I.).

  8. The role of the canister in a system for the final disposal of spent fuel or high-level waste

    International Nuclear Information System (INIS)

    Papp, T.

    1986-01-01

    A final repository for radioactive waste must isolate the toxic substances or distribute their release over time or space to avoid causing harmful concentrations of radionuclides in the biosphere. The Swedish research has focused on a repository 500 m down in crystalline rock where the geochemical environment can give canisters a service life of the order of a million years. These evaluations are discussed and the safety effect of the canister is compared with that of other barriers available in a repository system. Our conclusions are that a combined protection effect of natural and man-made barriers can be achieved that substantially exceeds what could reasonably be required by society. An actual repository design can then be based on an optimization of the cost to reach a level of accepted safety with due regard for the safety margins and redundancy necessary for achieving public confidence. (author)

  9. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Environmental monitoring and surveillance programs

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Eddy, P.A.; Jaquish, R.E.; Ramsdell, J.V. Jr.

    1988-07-01

    Licensing of a facility for low-level radioactive waste disposal requires the review of the environmental monitoring and surveillance programs. A set of review criteria is recommended for the US Nuclear Regulatory Commission (NRC) staff to use in each monitoring phase---preoperational, operational, and post operational---for evaluating radiological and selected nonradiological parameters in proposed environmental monitoring and surveillance programs at low-level waste disposal facilities. Applicable regulations, industry standards, and technical guidance on low-level radioactive waste are noted throughout the document. In the preoperational phase, the applicant must demonstrate that the environmental monitoring program identifies radiation levels and radionuclide concentrations at the site and also provides adequate basic data on the disposal site. Data recording and statistical analyses for this phase are addressed

  10. Effectiveness of Oregon's teen licensing program : final report.

    Science.gov (United States)

    2008-06-01

    Significant changes in Oregons teen licensing laws went into effect on March 1, 2000. The new laws expanded the provisional driving license program which had been in effect since October 1989 and established a graduated driver licensing (GDL) prog...

  11. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  12. CERT tribal internship program. Final intern report: Karen Sandoval, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The purpose of the project was to: create a working relationship between CERT and Colorado State University (CSU); involve and create relationships among individuals and departments at CSU; empower Native communities to run their own affairs; establish programs for the benefit of Tribes; and create Native American Program Development Office at CSU. The intern lists the following as the project results: revised a Native American Program Development document; confirmation from 45 departments across campus for Summit attendance [Tribal Human Resource Development Summit]; created initial invitee list from CSU departments and colleges; and informed CERT and CSU staff of results. Much of the response from the campus community has been positive and enthusiastic. They are ready to develop new Native American programs on campus, but need the awareness of what they can do to be respectful of Tribal needs.

  13. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  14. Building-owners energy-education program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The objectives of the program are to develop and test market a cogent education program aimed specifically at building owners to help them be more decisive and knowledgeable, and to motivate them to direct their managers and professionals to implement a rational plan for achieving energy conservation in their commercial office buildings and to establish a plan, sponsored by the Building Owners and Managers Association International (BOMA) to implement this educational program on a nation-wide basis. San Francisco, Chicago, and Atlanta were chosen for test marketing a model program. The procedure used in making the energy survey is described. Energy survey results of participating buildings in San Francisco, Chicago, and Atlanta are summarized. (MCW)

  15. A pavement management research program for Oregon highways : final report.

    Science.gov (United States)

    1989-12-01

    An extensive program was developed to measure pavement deflection skid resistance, and rideability throughout Oregon. The data from those "objective" measures were then evaluated for correlations with observed pavement distress and traffic factors. :...

  16. Health Education Assistance Loan (HEAL) Program. Final rule.

    Science.gov (United States)

    2017-11-15

    On July 1, 2014, the HEAL Program was transferred from the U.S. Department of Health and Human Services (HHS) to the U.S. Department of Education (the Department). To reflect this transfer and to facilitate the servicing of all HEAL loans that are currently held by the Department, the Secretary adds the HEAL Program regulations to the Department's chapter in the Code of Federal Regulations (CFR).

  17. U.S. Programs in the development of spent fuel and high-level waste disposal technology

    International Nuclear Information System (INIS)

    Rusche, B.C.

    1987-01-01

    U. S. Progess in the development of a national high-level radioactive waste disposal system is reported. The mutual benefits of international cooperation in developing the technology for radioactive management and disposal are also described. (Huang)

  18. 78 FR 70255 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-11-25

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R03-RCRA-2013-0571; FRL-9903-07-Region 3] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... final authorization of revisions to its hazardous waste program under the Resource Conservation and...

  19. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-19

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Final..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management System...

  20. Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 1

    International Nuclear Information System (INIS)

    1975-12-01

    Information is presented under the following section headings: LMFBR program options and their compatibility with the major issues affecting commercial development, Proposed Final Environmental Statement for the LMFBR program, December 1974, WASH-1535, supplemental material, and material relating to Proposed Final Environmental Statement review