WorldWideScience

Sample records for final cvoc remediation

  1. Organic sponges for cost-effective CVOC abatement. Final report, September 1992--April 1994

    International Nuclear Information System (INIS)

    Flanagan, W.P.; Grade, M.M.; Horney, D.P.; Mackenzie, P.D.; Salvo, J.J.; Sivavec, T.M.; Stephens, M.L.

    1994-07-01

    Air contaminated with CVOCs (chlorinated volatile organic compounds) arise from air stripping of ground water or from soil and dual phase vapor extraction. A research program was undertaken to develop sorbents better than activated carbon for remediation. Two such sorbents were found: Dow's XUS polymer and Rohm and Haas' Ambersorb 563 (carbonaceous). Opportunities exist to further develop sorption and biodegradation technologies

  2. Organic sponges for cost-effective CVOC abatement. Final report, September 1992--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, W.P.; Grade, M.M.; Horney, D.P.; Mackenzie, P.D.; Salvo, J.J.; Sivavec, T.M.; Stephens, M.L.

    1994-07-01

    Air contaminated with CVOCs (chlorinated volatile organic compounds) arise from air stripping of ground water or from soil and dual phase vapor extraction. A research program was undertaken to develop sorbents better than activated carbon for remediation. Two such sorbents were found: Dow`s XUS polymer and Rohm and Haas` Ambersorb 563 (carbonaceous). Opportunities exist to further develop sorption and biodegradation technologies.

  3. Role of Acidophilic Methanotrophs in Long Term Natural Attenuation of cVOCs in Low pH Aquifers

    Science.gov (United States)

    2017-06-15

    grow well only in dilute , oligtrophic media (Kip et al., 2011; Dedysh et al., 2002). It is likely that these organisms or similar ones may exist in...Carbon tetrachloride Cu – Copper cVOCs – Chlorinated volatile organic compounds 1,1-DCA – 1,2-Dichloroethane 1,2-DCA – 1,2-Dichloroethane DCM...the biodegradation of chlorinated volatile organic compounds (cVOCs) in low pH groundwater aquifers. Our objectives included (1) determining whether

  4. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    International Nuclear Information System (INIS)

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-01-01

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone' The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS)

  5. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    International Nuclear Information System (INIS)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  6. Catalytic oxidation of chlorinated volatile organic compounds, dichloromethane and perchloroethylene. New knowledge for the industrial CVOC emission abatement

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaeaho, S.

    2013-09-01

    The releases of chlorinated volatile organic compounds (CVOCs) are controlled by strict regulations setting high demands for the abatement systems. Low temperature catalytic oxidation is a viable technology to economically destroy these often refractory emissions. Catalysts applied in the oxidation of CVOCs should be highly active and selective but also maintain a high resistance towards deactivation. In this study, a total of 33 different {gamma}-Al{sub 2}O{sub 3} containing metallic monoliths were studied in dichloromethane (DCM) and 25 of them in perchloroethylene (PCE) oxidation. The active compounds used were Pt, Pd, Rh or V{sub 2}O{sub 5} alone or as mixtures. The catalysts were divided into three different testing sets: industrial, CVOC and research catalysts. ICP-OES, physisorption, chemisorption, XRD, UV-vis DRS, isotopic oxygen exchange, IC, NH{sub 3}-TPD, H{sub 2}-TPR and FESEM-EDS were used to characterise the catalysts. Screening of the industrial catalysts revealed that the addition of V{sub 2}O{sub 5} improved the performance of the catalyst. DCM abatement was easily affected by the addition of VOC or water, but the effect on the PCE oxidation was only minor. Based on these screening tests, a set of CVOC catalysts were developed and installed into an industrial incinerator. The comparison between the laboratory and industrial scale studies showed that DCM oxidation in an industrial incinerator could be predicted relatively well. Instead, PCE was always seen to be oxidised far better in an industrial unit indicating that the transient oxidation conditions are beneficial for the PCE oxidation. Before starting the experiments with research catalysts, the water feed was optimised to 1.5 wt.%. Besides enhancing the HCl yields, water improved the DCM and PCE conversions. In the absence of oxygen, i.e. during destructive adsorption, the presence of water was seen to have an even more pronounced effect on the HCl formation and on the catalysts

  7. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: depth- and strata-dependent spatial variability from rock-core sampling

    Science.gov (United States)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-01-01

    dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.

  8. Well Installation and Sampling Report for Monitoring Wells TCM6 TCM7, and TNX 28D - 40D and GeoSiphon Cell TGSC-2

    International Nuclear Information System (INIS)

    Nichols, R.L.

    1999-01-01

    The shallow groundwater and sediments beneath the TNX Area are contaminated with both dissolved and residual chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE), carbon tetrachloride and perchloroethylene (PCE). The Savannah River Technology Center (SRTC) is studying a new technology for remediating CVOCs known as GeoSiphon

  9. IAEA Remediation Mission Issues Final Report

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed their assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). Their Final Report, delivered to the Japanese authorities, is available here. ''A lot of good work, done at all levels, is on-going in Japan in the area of environmental remediation,'' said Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. In the report, Japan is encouraged to continue its remediation efforts, taking into account the advice provided by the Mission. ''In the early phases of the Fukushima Daiichi accident, a very cautious approach was adopted by the Japanese authorities in terms of dealing with the handling of residue materials. It is considered right to do so,'' Lentijo said. ''However, at this point in time, we see that there is room to take a more balanced approach, focussing on the real priority areas, classifying residue materials and adopting appropriate remediation measures on the basis of the results of safety assessments for each specific situation.'' The IAEA stands ready to support Japan as it continues its efforts to remediate the environment in the area off-site the Fukushima Daiichi NPP. The IAEA sent the mission to Japan from 7 to 15 October 2011 following a request from the country's government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several ministries and institutions. A Preliminary Summary Report was issued on 14 October. Background The accident at the Fukushima Daiichi NPP has led to elevated levels of radiation over large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA

  10. A/M Area Vadose Zone Monitoring Plan (U)

    International Nuclear Information System (INIS)

    Kupar, J.; Jarosch, T.R.; Jackson, D.G. Jr.; Looney, B.B.; Jerome, K.M.; Riha, B.D.; Rossabi, J.; Van Pelt, R.S.

    1998-03-01

    Characterization and monitoring data from implementation and the first two and one half years of vadose zone remediation operations indicate that this activity has substantially improved the performance of the A/M Area Groundwater Corrective Action Program. During this period, vadose zone remediation removed approximately 225, 000 lbs (100,000 Kg) of chlorinated solvents (CVOCs) from the subsurface. Further, vadose zone remediation system operation increased the overall CVOC removal rate of the A/M Area Groundwater Corrective Action by 300% to 500% during this period versus the groundwater pump and treat system along. Various support activities have been performed to support operation and documentation of performance of the vadose zone remediation system. These activities address performance of existing systems (contaminant distributions, zone of influence, and process monitoring data), evaluation of suspect sources, evaluation of alternative/enhancement technologies, and initial development of remediation goals. In particular, the most recent A/M vadose zone remediation support activities (described in WSRC-RP-97-109) were completed and the results provide key documentation about system performance

  11. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  12. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    International Nuclear Information System (INIS)

    1997-01-01

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC)

  13. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    International Nuclear Information System (INIS)

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  14. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

    2012-02-26

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U

  15. Natural attenuation of chlorinated volatile organic compounds in ground water at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington

    Science.gov (United States)

    Dinicola, Richard S.; Cox, S.E.; Landmeyer, J.E.; Bradley, P.M.

    2002-01-01

    The U.S. Geological Survey (USGS) evaluated the natural attenuation of chlorinated volatile organic compounds (CVOCs) in ground water beneath the former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. The predominant contaminants in ground water are trichloroethene (TCE) and its degradation byproducts cis-1,2-dichloroethene (cisDCE) and vinyl chloride (VC). The Navy planted two hybrid poplar plantations on the landfill in spring of 1999 to remove and control the migration of CVOCs in shallow ground water. Previous studies provided evidence that microbial degradation processes also reduce CVOC concentrations in ground water at OU 1, so monitored natural attenuation is a potential alternative remedy if phytoremediation is ineffective. This report describes the current (2000) understanding of natural attenuation of CVOCs in ground water at OU 1 and the impacts that phytoremediation activities to date have had on attenuation processes. The evaluation is based on ground-water and surface-water chemistry data and hydrogeologic data collected at the site by the USGS and Navy contractors between 1991 and 2000. Previously unpublished data collected by the USGS during 1996-2000 are presented. Natural attenuation of CVOCs in shallow ground water at OU 1 is substantial. For 1999-2000 conditions, approximately 70 percent of the mass of dissolved chlorinated ethenes that was available to migrate from the landfill was completely degraded in shallow ground water before it could migrate to the intermediate aquifer or discharge to surface water. Attenuation of CVOC concentrations appears also to be substantial in the intermediate aquifer, but biodegradation appears to be less significant; those conclusions are less certain because of the paucity of data downgradient of the landfill beneath the tide flats. Attenuation of CVOC concentrations is also substantial in surface water as it flows through the adjacent marsh and out to the tide

  16. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    International Nuclear Information System (INIS)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites

  17. Implementation of Enhanced Attenuation at the DOE Mound Site OU-1 Landfill: Accelerating Progress and Reducing Costs

    Energy Technology Data Exchange (ETDEWEB)

    Hooten, Gwendolyn [U.S. Department of Energy, Office of Legacy Management; Cato, Rebecca [Navarro Research and Engineering; Looney, Brian [Savannah River National Laboratory, Aiken, SC

    2016-03-06

    At the US Department of Energy (DOE), Office of Legacy Management, Mound, Ohio, Site, chlorinated organic contaminants (cVOCs) originating from the former solid-waste landfill have impacted groundwater in Operable Unit 1 (OU-1). The baseline groundwater remedy was groundwater pump and treat (P&T). Since the source materials have been removed from the landfill, the Mound core team, which consists of DOE, US Environmental Protection Agency (US EPA), Ohio EPA, and other stakeholders, is assessing the feasibility of switching from the active P&T remedy to a passive attenuation-based remedy. Toward this end, an enhanced attenuation (EA) strategy based on the creation of structured geochemical zones was developed. This EA strategy addresses the residual areas of elevated cVOCs in soil and groundwater while minimizing the rebound of groundwater concentrations above regulatory targets (e.g., maximum contaminant levels [MCLs]) and avoiding plume expansion while the P&T system is turned off. The EA strategy has improved confidence and reduced risk on the OU-1 groundwater transition path to monitored natural attenuation (MNA). To better evaluate the EA strategy, DOE is conducting a field demonstration to evaluate the use of edible oils to enhance the natural attenuation processes. The field demonstration is designed to determine whether structured geochemical zones can be established that expedite the attenuation of cVOCs in the OU-1 groundwater. The EA approach at OU-1 was designed based on “structured geochemical zones” and relies on groundwater flow through a succession of anaerobic and aerobic zones. The anaerobic zones stimulate relatively rapid degradation of the original solvent source compounds (e.g., cVOCs such as tetrachloroethene [PCE] and trichloroethene [TCE]). The surrounding aerobic areas encourage relatively rapid degradation of daughter products (such as dichloroethene [DCE] and vinyl chloride [VC]) as well as enhanced cometabolism of TCE resulting from

  18. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report; FINAL

    International Nuclear Information System (INIS)

    Suslick, K. S.

    2001-01-01

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions

  19. Final report on Phase II remedial action at the former Middlesex Sampling Plant and associated properties. Volume 2

    International Nuclear Information System (INIS)

    1985-04-01

    Volume 2 presents the radiological measurement data taken after remedial action on properties surrounding the former Middlesex Sampling Plant during Phase II of the DOE Middlesex Remedial Action Program. Also included are analyses of the confirmatory radiological survey data for each parcel with respect to the remedial action criteria established by DOE for the Phase II cleanup and a discussion of the final status of each property. Engineering details of this project and a description of the associated health physics and environmental monitoring activities are presented in Volume 1

  20. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  1. Final remediation of the provisional storage near Zavratec

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2000-01-01

    In the Western part of Slovenia near the village of Zavratec radioactive waste from the decontamination of the Oncological Institute has been stored in an old abandoned military barracks for many decades. The ARAO Agency had been assigned to remediate this provisional storage. In 1996 the first phase of the remediation was concluded, in which the measurements, inventorying and repacking of radioactive waste were carried out. At the end of this phase the waste was restored. After three years of suspension, the remedial work continued in autumn 1999 with the separation of radioactive from non-radioactive waste and transportation of all radioactive waste to the Slovenian central storage for small producers near Ljubljana. At the beginning of the year 2000 the old storage near Zavratec was completely decontaminated to be released for unrestricted use. The preparation for and the implementation of remedial actions are presented in the paper. (author)

  2. Final audit report of remedial action construction at the UMTRA Project Ambrosia Lake, New Mexico, site

    International Nuclear Information System (INIS)

    1995-09-01

    The final audit report for remedial action at the Ambrosia Lake, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and a QA final closeout inspection performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC). One radiological surveillance and three radiological audits were performed at the Ambrosia Lake site. The surveillance was performed on 12--16 April 1993 (DOE, 1993d). The audits were performed on 26--29 July 1993 (DOE, 1993b); 21--23 March 1994 (DOE, 1994d); and 1--2 August 1994 (DOE, 1994d). The surveillance and audits resulted in 47 observations. Twelve of the observations raised DOE concerns that were resolved on site or through subsequent corrective action. All outstanding issues were satisfactorily closed out on 28 December 1994. The radiological surveillance and audits are discussed in this report. A total of seven QA in-process surveillances were performed at the Ambrosia Lake UMTRA site are discussed. The DOE/TAC Ambrosia Lake final remedial action close-out inspection was conducted on 26 July 1995 (DOE, 1995a). To summarize, a total of 155 observations were noted during DOE/TAC audit and surveillance activities. Follow-up to responses required from the RAC for the DOE/TAC surveillance and audit observations indicated that all issues related to the Ambrosia Lake site were resolved and closed to the satisfaction of the DOE

  3. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  4. Final audit report of remedial action construction at the UMTRA Project Falls City, Texas, site

    International Nuclear Information System (INIS)

    1995-05-01

    This final audit report for the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site summarizes the radiological audits and the quality assurance (QA) in-process surveillances, audits, and final close-out inspection performed by the U.S. Department of Energy (DOE) and Technical Assistance Contractor (TAC). It also summarizes U.S. Nuclear Regulatory Commission (NRC) surveillances. One radiological audit and three radiological surveillances were performed at the Falls City site. These surveillances and audit, which resulted in 31 observations, focused primarily on processing site activities and were performed on the following dates: 3-6 August 1992, 29-30 October 1992, 22-26 March 1993, and 1-3 November 1993. All outstanding radiological issues were closed out at the completion of the construction activities. Six QA in-process surveillances, which resulted in 71 observations, were performed at the Falls City site on the following dates: 22-24 July 1992, 23-25 November 1992, 17-19 May 1993, 16-18 August 1993, 13-15 October 1993, and 2-4 February 1994. All outstanding issues were closed out with the February surveillance on 3 March 1994. The DOE/TAC remedial action close-out inspections of the Falls City site, which resulted in 56 observations, were conducted 9-10 June 1994 and 26 July 1994. The inspections were closed out on 26 January 1995. The NRC performed three on-site construction reviews (OSCR), resulting in seven observations of remedial action construction activities that occurred during site visits. The OSCRs were performed 9 December 1992, 12 May 1993, and 25 October 1993. Since all audit and surveillance observations and recommendations have been closed out, this final audit report segment of the site certification process is complete

  5. Final audit report of remedial action construction at the UMTRA Project, Grand Junction, Colorado, processing site

    International Nuclear Information System (INIS)

    1995-02-01

    This final audit report (FAR) for remedial action at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project processing site consists of a summary of the radiological surveillances/ audits, the quality assurance (QA) in-process surveillances, and the QA final close-out inspection performed by the US Department of Energy (DOE) and Technical Assistance Contractor (TAC). The FAR also summarizes other surveillances performed by the US Nuclear Regulatory Commission (NRC). To summarize, a total of one finding and 127 observations were noted during DOE/TAC audit and surveillance activities. The NRC noted general site-related observations during the OSCRs. Follow-up to responses required from MK-Ferguson for the DOE/TAC finding and observations indicated that all issues related to the Grand Junction processing site were resolved and closed out to the DOE's satisfaction. The NRC OSCRs resulted in no issues related to the Grand Junction processing site requiring a response from MK-Ferguson

  6. Remediation strategies for contaminated territories resulting from Chernobyl accident. Final report

    International Nuclear Information System (INIS)

    Jacob, P.; Fesenko, S.; Firsakova, S.K.

    2001-03-01

    The present report realizes a settlement specific approach to derive remediation strategies and generalizes the results to the whole affected area. The ultimate aim of the study is to prepare possible investment projects on remediation activities in the contaminated territories. Its current aim was to identify the areas and the remedial actions that should be primarily supported and their corresponding cost. The present report starts with an outline of the methodology of deriving remediation strategies, a description of data for 70 representative settlements and of parameters of the remedial actions considered, and a classification of the contaminated territory according to radiological criteria. After summarising aspects of the contamination situation and applications of remedial actions in the past, dose calculations and derived remediation strategies for the representative settlements are described. These are generalized to the total contaminated territory. Within the contaminated territory private produce is of main importance for the radionuclide intake. At the end of the report, radiological aspects of the produce of collective farms are described. (orig.)

  7. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    International Nuclear Information System (INIS)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions

  8. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  9. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Suslick, K. S.

    2001-07-05

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions.

  10. Superfund record of decision (EPA Region 6): Oklahoma Refining Company, Cyril, OK. (First remedial action), June 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 160-acre Oklahoma Refining site is a petroleum refinery located on the eastern edge of Cyril, Oklahoma, in Caddo County. The facility included refinery process areas, bulk storage tanks, waste pits, wastewater treatment ponds, and a land treatment area. During the mid-1980's, EPA investigations revealed large-scale organic and heavy metal contamination of onsite soil and ground water. In 1990, EPA conducted a removal action, which included characterization and removal of drums, plugging wells, and wildlife protection measures. The ROD addresses the remediation of onsite contaminated soil, sediment, surface water, and ground water as a final remedy. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water are VOCs, including benzene, toluene, and xylenes; other organics, including PAHs and phenols; and metals, including arsenic, chromium, and lead. The selected remedial action for the site is included

  11. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment plan

    International Nuclear Information System (INIS)

    April, J.G.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Plastino, J.C.; Roeck, F.V.; Tuttle, B.G.

    1997-04-01

    This Readiness Assessment Plan presents the methodology used to assess the readiness of the 300-FF-1 Remedial Action Project. Remediation involves the excavation, treatment if applicable, and final disposal of contaminated soil and debris associated with the waste sites in the 300-FF-1 Operable Unit. The scope of the 300-FF-1 remediation is to excavate, transport, and dispose of contaminated solid from sites identified in the 300-FF-1 Operable Unit

  12. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    2006-01-01

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project

  13. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  14. Microbial Assisted Phyto remediation Of Palm Oil Mill Final Discharge (POMFD) Wastewater

    International Nuclear Information System (INIS)

    Mohd Faizal Hamzah; Norjan Yusof; Hasimah Alimon

    2016-01-01

    This study assesses microbial assisted phyto remediation of palm oil mill final discharge (POMFD) wastewater using three local macrophyte species: Leersia oryzoides, Pistia stratiotes and Ludwigia peploides. It was found respectively that BOD 5 , COD, NH 3 -N removal efficiencies of 84.7 %, 22.3 %, and 73.5 % were achieved for P. stratiotes; 88.1 %, 18 % and 69.2 % for L. peploides; and 86.1 %, 11.7 % and 69.3 % for L. oryzoides. The level of C, H and N in the tissue were influenced by macrophyte species and organs (p < 0.05). The bioconcentration factors (BCF) of various metals such as Mg, Ca, K, Na, Fe and Zn of the three macrophyte were 10 -1 to 10 0 with Fe being highly accumulated in roots of all the macrophyte (BCF=10 2 ). The translocation factors (TF) of most metals from root to shoot tissues were in a range of 10 -3 to 10 0 . In comparison with other metals, K was capable to be efficiently translocated from root to shoots in all the macrophyte species (TF=10 0 ). In this study, Bacillus megaterium, Pseudomonas spp. and Bacillus cereus that are usually involved in denitrification were identified in P. stratiotes, L. pepoides and L. oryzoides roots respectively. This confirms the macrophyte-microorganism interaction in remediation of POMFD wastewater. (author)

  15. Remedial action and waste disposal project: 100-DR-1 remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Calverley, C.

    1996-08-01

    This plan presents the method used to assess the readiness of the 100- DR-1 Remedial Action Project. Remediation of the 100-D sites (located on the Hanford Site) involves the excavation (treatment if applicable) and final disposal of contaminated soil and debris associated with the high-priority waste sites in the 100 Areas

  16. Linking deposit morphology and clogging in subsurface remediation: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, David C. [University of Colorado Denver

    2013-12-11

    Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathways of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary

  17. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  18. French uranium mining sites remediation

    International Nuclear Information System (INIS)

    Roche, M.

    2002-01-01

    Following a presentation of the COGEMA's general policy for the remediation of uranium mining sites and the regulatory requirements, the current phases of site remediation operations are described. Specific operations for underground mines, open pits, milling facilities and confining the milled residues to meet long term public health concerns are detailed and discussed in relation to the communication strategies to show and explain the actions of COGEMA. A brief review of the current remediation situation at the various French facilities is finally presented. (author)

  19. Mobile Launch Platform Vehicle Assembly Building Area (SWMU 056) Hot Spot 3 Bioremediation Interim Measures Work Plan, Kennedy Space Center, Florida

    Science.gov (United States)

    Whitney L. Morrison; Daprato, Rebecca C.

    2016-01-01

    This Interim Measures Work Plan (IMWP) presents an approach and design for the remediation of chlorinated volatile organic compound (CVOC) groundwater impacts using bioremediation (biostimulation and bioaugmentation) in Hot Spot 3, which is defined by the area where CVOC (trichloroethene [TCE], cis-1,2-dichloroethene [cDCE], and vinyl chloride [VC]) concentrations are greater than 10 times their respective Florida Department of Environmental Protection (FDEP) Natural Attenuation Default Concentration (NADC) [10xNADC] near the western Mobile Launch Platform (MLP) structure. The IM treatment area is the Hot Spot 3 area, which is approximately 0.07 acres and extends from approximately 6 to 22 and 41 to 55 feet below land surface (ft BLS). Within Hot Spot 3, a source zone (SZ; area with TCE concentrations greater than 1% solubility [11,000 micrograms per liter (micrograms/L)]) was delineated and is approximately 0.02 acres and extends from approximately 6 to 16 and 41 to 50 ft BLS.

  20. Final audit report of remedial action construction at the UMTRA Project Site, Gunnison, Colorado. Revision 0

    International Nuclear Information System (INIS)

    1996-01-01

    The final audit report for remedial action at the Gunnison, Colorado Uranium Mill Tailings Remedial Action (UMTRA) Project site consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the U.S. Department of Energy (DOE) and the Technical Assistance Contractor (TAC); and on-site construction reviews (OSCR) performed by the U.S. Nuclear Regulatory Commission (NRC). Two radiological surveillances and four radiological audits were performed at the Gunnison site. The surveillances were performed on 16 to 19 September 1992 and 28 June to 1 July 1993. The radiological audits were performed on 4 to 7 October 1993; 13 to 16 June 1994; 19 to 22 September 1994 and 10 to 12 July 1995. The surveillances and audits resulted in 79 observations. Thirty-four of the observations raised DOE concerns that were resolved on the site or through subsequent corrective action. All outstanding issues were closed on 12 July 1995. The radiological surveillances and audits are discussed in Section 2.0 of this report. Ten QA in-process surveillances were performed at the Gunnison UMTRA Project site. The surveillances were performed on 24 to 25 September 1992, 7 to 9 July 1993, 29 October 1993, 27 to 28 June 1994, 31 October to 1 November 1994, 19 to 20 June 1 995, 20 to 21 July 1995, 17 to 18 August 1995, 20 September 1995, and 11 to 13 October 1995. The surveillances resulted in 100 observations. Six observations contained recommendations that required responses from the Remedial Action Contractor (RAC). Ninety-five observations contained a recommendation that required no response. All outstanding issues were closed on 8 January 1996. The QA in-process surveillances are discussed in Section 3.0 of this report

  1. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process.

  2. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    International Nuclear Information System (INIS)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process

  3. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-05-01

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

  4. Groundwater remediation in the Straz leaching operation

    International Nuclear Information System (INIS)

    Novak, J.

    2001-01-01

    The locality affected by consequences of the chemical mining of the uranium during underground leaching 'in situ' is found in the area of the Czech Republic in the northeastern part of the Ceska Lipa district. In the contribution the complex groundwater remediation project is discussed. First, the risks of the current state are expressed. Then the alternatives of remediation of the both Cenomanian and Turonian aquifers are presented. Evaluation of the remediation alternatives with the view to the time-consumption, economy, ecology and the elimination of unacceptable risks for the population and environment is done. Finally, the present progress of remediation and the conception of remediation of chemical mining on deposit of Straz pod Ralskem are presented. (orig.)

  5. RCRA corrective action ampersand CERCLA remedial action reference guide

    International Nuclear Information System (INIS)

    1994-07-01

    This reference guide provides a side-by-side comparison of RCRA corrective action and CERCLA Remedial Action, focusing on the statutory and regulatory requirements under each program, criterial and other factors that govern a site's progress, and the ways in which authorities or requirements under each program overlap and/or differ. Topics include the following: Intent of regulation; administration; types of sites and/or facilities; definition of site and/or facility; constituents of concern; exclusions; provisions for short-term remedies; triggers for initial site investigation; short term response actions; site investigations; remedial investigations; remedial alternatives; clean up criterial; final remedy; implementing remedy; on-site waste management; completion of remedial process

  6. Remedial action at the Acid/Pueblo Canyon site, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    1984-10-01

    The Acid/Pueblo Canyon site (TA-45) was designated in 1976 for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). During the period 1943 to 1964 untreated and treated liquid wastes generated by nuclear weapons research activities at the Los Alamos Scientific Laboratory (LASL) were discharged into the two canyons. A survey of the site conducted by LASL in 1976 to 1977 identified two areas where radiological contamination exceeded criteria levels. The selected remedial action was based on extensive radiological characterization and comprehensive engineering assessments and comprised the excavation and disposal of 390 yd 3 of contaminated soil and rock. This document describes the background to the remedial action, the parties involved in administering and executing it, the chronology of the work, verification of the adequacy of the remedial action, and the cost incurred. 14 references, 5 figures, 5 tables

  7. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  8. Best Practices for Fuel System Contamination Detection and Remediation

    Science.gov (United States)

    2016-01-15

    The University of Dayton Research Institute Best Practices for Fuel System Contamination Detection and Remediation Final Report Marlin D... Remediation Executive Summary: Fuel contamination is a broad term commonly applied to anything that causes a fuel test to fail quality assurance...Statement A: Approved for public release: distribution unlimited. 1 Best Practices for Fuel System Contamination Detection and Remediation Contents

  9. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1994-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  10. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  11. Superfund record of decision (EPA Region 3): Paoli Rail Yard, Paoli, PA. (First remedial action), July 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 428-acre Paoli Rail Yard site is a maintenance, storage, and repair facility located north of Paoli in Chester County, Pennsylvania. Soil contamination in and around the car shop is attributed to releases of fuel oil and PCB-laden transformer fluid from rail cars during maintenance and repair activities. In 1985, EPA identified PCB contamination in soil and sediment, and on building surfaces. The rail companies agreed to address site clean-up activities, including erosion, sedimentation, and stormwater characteristics and control, decontamination, soil sampling, excavation of 3,500 cubic yards residential soil, and implementation of worker protection measures. The ROD provides a final remedy for contaminated soil (from the rail yard and residences), sediment, and structures at the Paoli Rail Yard, and contaminated ground water. The primary contaminants of concern affecting the soil, sediment, debris, and ground water are VOCs, including benzene, ethylbenzene, toluene, xylenes; and other organics, including PCBs. The selected remedial action for the site are included

  12. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION. FINAL REPORT

    International Nuclear Information System (INIS)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-01-01

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology

  13. ICDF Complex Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  14. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  15. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    International Nuclear Information System (INIS)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 ). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations

  16. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    International Nuclear Information System (INIS)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-01-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  17. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    Energy Technology Data Exchange (ETDEWEB)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  18. Technologies for remediation of radioactively contaminated sites

    International Nuclear Information System (INIS)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes

  19. Technologies for remediation of radioactively contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes Refs, figs, tabs

  20. Superfund Record of Decision (EPA region 5): Fultz Landfill, Byesville, OH. (First remedial action), September 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The 30-acre Fultz Landfill site is a privately owned inactive sanitary landfill on the north slope of a ridge that overlies abandoned coal mines in Jackson Township, Guernsey County, Ohio. The site lies within the drainage basin of Wills Creek, which flows north adjacent to the site and is used by the city of Cambridge as the municipal water supply. The northern half of the landfill lies in an unreclaimed strip mine where surface mine spoil and natural soil form a shallow aquifer. During the 1970's, the landfill operator was cited for various violations. Investigations in 1988 by EPA indicated that ground water and leachate contaminants emanating from the site have contaminated the shallow aquifer and, to a lesser extent, the deep mine aquifer. The Record of Decision (ROD) addresses all contaminated media, and provides a final remedy for the site. The primary contaminants of concern affecting the soil, sediment, debris, ground water, and surface water are VOCs including benzene, PCE, TCE, toluene, and xylenes; other organics including PAHs and phenols; metals including arsenic, chromium, and lead; and other inorganics. The selected remedial action for this site is included

  1. 48 CFR 903.970 - Remedies.

    Science.gov (United States)

    2010-10-01

    ... PRACTICES AND PERSONAL CONFLICTS OF INTEREST Whistleblower Protections for Contractor Employees 903.970 Remedies. (a) Contractors found to have retaliated against an employee in reprisal for such disclosure.... However, a contractor's disagreement and refusal to comply with a final decision could result in a...

  2. Superfund Record of Decision (EPA Region 4): Maxey Flats Nuclear Disposal site, Fleming County, KY. (First remedial action), September 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The 280-acre Maxey Flats Nuclear Disposal site is an inactive low-level radioactive waste disposal facility in Fleming County, Kentucky. The estimated 663 people who reside within 2.5 miles of the site use the public water supply for drinking purposes. From 1962 to 1977, Nuclear Engineering Company, Inc. (NECO), operated a solid by-product, source, and special nuclear material disposal facility under a license with the State. Several State investigations in the 1970's revealed that leachate contaminated with tritium and other radioactive substances was migrating from the disposal trenches to unrestricted areas. The Record of Decision (ROD) addresses final remediation of soil, debris, and associated leachate. The primary contaminants of concern affecting the soil and debris are VOCs including benzene, TCE, and toluene; metals including arsenic and lead; and radioactive materials. The selected remedial action for the site is included

  3. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  4. In-Situ Radiation Detection Demonstration Final Report

    International Nuclear Information System (INIS)

    Mohagheghi, Amir H.; Reese, Robert; Miller, David R.; Miller, Mark Laverne; Duce, Stephen

    2000-01-01

    The Department of Defense (DoD) has hundreds of facilities where radioactive materials have been used or are being used, including firing ranges, low-level radioactive waste disposal areas, and areas where past activities have resulted in environmental contamination. Affected sites range in size from a few acres to square miles. Impact to the DoD comes through military base closure and release to the public. It is important that radioactive contaminants are remediated to levels that result in acceptable risk to the public. Remediation requires characterization studies, e.g., sampling and surveys, to define the affected areas, removal actions, and final confirmatory sampling and surveys. Characterization of surface contamination concentrations has historically been performed using extensive soil sampling programs in conjunction with surface radiation surveys conducted with hand-held radiation monitoring equipment. Sampling is required within the suspect affected area and a large buffer area. Surface soil contaminant characterization using soil sampling and hand held monitoring are costly, time consuming, and result in long delays between submission of samples for analysis and obtaining of final results. This project took an existing, proven radiation survey technology that has had limited exposure and improved its capabilities by documenting correlation factors for various detector/radionuclide geometries that commonly occur in field surveys. With this tool, one can perform characterization and final release surveys much more quickly than is currently possible, and have detection limits that are as good as or better than current technology. This paper will discuss the capabilities of a large area plastic scintillation detector used in conjunction with a global positioning system (GPS) to improve site characterization, remediation, and final clearance surveys of the radioactively contaminated site. Survey results can rapidly identify areas that require remediation as

  5. Can sustainability be applied to our remediation challenges? - 59148

    International Nuclear Information System (INIS)

    Booth, Peter; Gaskin, Vicky

    2012-01-01

    There are many environmental remediation challenges around the world today with a radiological connotation. These in turn relate to all aspects of the nuclear industry life cycle as well as the NORM industries and consequences of accidents /incidents. In reality, apart from one or two major exceptions in a few counties who have extensive budgets allocated to environmental remediation, we do not generally see a lot of real progress in the protection of human health and the environment from legacy issues. It is important therefore to determine why this is the case and if there is anything that can be undertaken to improve the situation. There are a number of reasons potentially leading to this lack of progress, namely; - A lack of available funding; - The diversion of funds to other issues deemed to be a greater priority; - No practical experience in resolving such problems; - Lack of established regulatory and/or procedural infrastructure. More often than not when environmental remediation challenges exist, the decision makers only tend to look for final solutions. If such final solutions can't be achieved, often because of funding restrictions, then little or no progress is generally made. However, there is the potential through the phasing of environmental remediation work to find some early winners and to start to reduce the risk and detriment to human health and the environment, even if the improvement seen is in the short term initially. When further funding becomes available or technology improves then the longer term solutions could be implemented. It is important to ensure that any interim solutions are implemented in a manner such that further options or final solutions are not jeopardised. In reality therefore it should be possible to introduce greater sustainability into how we approach environmental remediation, rather than admit defeat at the outset. There are many different definitions for the term sustainability but a useful one can be referenced from

  6. OIL WELL REMEDIATION IN CLAY AND WAYNE COUNTIES, IL

    Energy Technology Data Exchange (ETDEWEB)

    Peter L. Dakuras; Larry Stieber; Dick Young

    2003-07-09

    This is the second progress and final technical report of the remediation of abandoned wells in Clay and Wayne Counties in Illinois. The wells will be identified as the Routt No.3 and No.4 and the Bates Hosselton 1 and 2. Both sites have met all legal, financial and environmental requirements to drill and/or pump oil on both leases. We have also obtained all available information about both leases. All steps were taken to improve access roads, dig the necessary pits, and build the necessary firewalls. This progress and final technical report will address the remediation efforts as well as our results and conclusions.

  7. To fail is human: remediating remediation in medical education.

    Science.gov (United States)

    Kalet, Adina; Chou, Calvin L; Ellaway, Rachel H

    2017-12-01

    Remediating failing medical learners has traditionally been a craft activity responding to individual learner and remediator circumstances. Although there have been moves towards more systematic approaches to remediation (at least at the institutional level), these changes have tended to focus on due process and defensibility rather than on educational principles. As remediation practice evolves, there is a growing need for common theoretical and systems-based perspectives to guide this work. This paper steps back from the practicalities of remediation practice to take a critical systems perspective on remediation in contemporary medical education. In doing so, the authors acknowledge the complex interactions between institutional, professional, and societal forces that are both facilitators of and barriers to effective remediation practices. The authors propose a model that situates remediation within the contexts of society as a whole, the medical profession, and medical education institutions. They also outline a number of recommendations to constructively align remediation principles and practices, support a continuum of remediation practices, destigmatize remediation, and develop institutional communities of practice in remediation. Medical educators must embrace a responsible and accountable systems-level approach to remediation if they are to meet their obligations to provide a safe and effective physician workforce.

  8. Final record of decision for remedial actions at Operable Unit 4

    International Nuclear Information System (INIS)

    1994-12-01

    This decision document presents the selected remedial action for Operable Unit 4 of the Fernald Site in Fernald, Ohio. This remedial action was selected in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and to the extent practicable 40 Code of Federal Regulations (CFR) Part 300, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). For Operable Unit 4 at the FEMP, DOE has chosen to complete an integrated CERCLA/NEPA process. This decision was based on the longstanding interest on the part of local stakeholders to prepare an Environmental Impact Statement (EIS) on the restoration activities at the FEMP and on the recognition that the draft document was issued and public comments received. Therefore, this single document is intended to serve as DOE's Record of Decision (ROD) for Operable Unit 4 under both CERCLA and NEPA; however, it is not the intent of the DOE to make a statement on the legal applicability of NEPA to CERCLA actions

  9. Final 2014 Remedial Action Report Project Chariot, Cape Thompson, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    This report was prepared to document remedial action (RA) work performed at the former Project Chariot site located near Cape Thompson, Alaska during 2014. The work was managed by the U.S. Army Corps of Engineers (USACE) Alaska District for the U.S. Department of Energy (DOE) Office of Legacy Management (LM). Due to the short field season and the tight barge schedule, all field work was conducted at the site July 6 through September 12, 2014. Excavation activities occurred between July 16 and August 26, 2014. A temporary field camp was constructed at the site prior to excavation activities to accommodate the workers at the remote, uninhabited location. A total of 785.6 tons of petroleum, oil, and lubricants (POL)-contaminated soil was excavated from four former drill sites associated with test holes installed circa 1960. Diesel was used in the drilling process during test hole installations and resulted in impacts to surface and subsurface soils at four of the five sites (no contamination was identified at Test Hole Able). Historic information is not definitive as to the usage for Test Hole X-1; it may have actually been a dump site and not a drill site. In addition to the contaminated soil, the steel test hole casings were decommissioned and associated debris was removed as part of the remedial effort.

  10. Remedial actions at the former Union Carbide Corporation uranium mill sites, Rifle, Garfield County, Colorado: Final environmental impact statement

    International Nuclear Information System (INIS)

    1990-03-01

    This appendix provides the information needed to understand the conceptual designs for the remedial action alternatives addressed in this environmental impact statement (EIS). It is intended to provide sufficient details for the reader to evaluate the feasibility and assess the impacts of each remedial action alternative. It is not intended to provide the detailed engineering necessary to implement the alternatives. Details of the preferred remedial action will be presented in the remedial action plan (RAP). The remedial action alternatives addressed in this EIS include no action, stabilization at the New Rifle site, disposal at the Estes Gulch site, and disposal at the Lucas Mesa site. All alternatives include interim actions to remediate existing health and safety hazards to the Rifle community that presently exist at the Old and New Rifle processing sites. 21 figs., 18 tabs

  11. Remediating the South Alligator Valley uranium mining legacy

    International Nuclear Information System (INIS)

    Fawcett, M.; Waggitt, P.

    2010-01-01

    In late 1950s and early 1960s 13 uranium mines operated in the South Alligator Valley of Australia's Northern Territory. Once sales contracts had been filled the mines were abandoned and no remediation took place. In the 1980s the valley was designated as part of Stage 3 of the adjacent World Heritage-listed, Kakadu National Park. Proposals for remediation were only seriously put forward when the land was returned to the traditional Aboriginal owners, the Gunlom Land Trust, in 1996. Although they leased the land back so it would remain a part of Kakadu National Park the traditional Aboriginal owners required remediation to be complete by 2015. This paper tells the story of the development and implementation of the remediation process from the start of planning in 1998 to completion in 2009; and finally it describes the development of stakeholder relationships and the initial plans for long term stewardship. (author)

  12. Radiological surveillance of Remedial Action activities at the processing site, Falls City, Texas. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Falls City, Texas. This surveillance was conducted March 22--26, 1993. No findings were identified during the surveillance. Three site-specific observations and three programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Falls City, Texas, remedial action program are performed adequately. However, some of the observations identify that there is potential for improving certain aspects of the occupational radiological air sampling, ensuring analytical data quality, and in communicating with the DOE and TAC on the ore sampling methods. The TAC has also received and is currently reviewing the RAC's responses regarding the observations identified during the radiological surveillance performed October 29--30, 1992

  13. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  14. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  15. 300-FF-1 remedial design report/remedial action work plan

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes.

  16. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  17. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2005-01-01

    study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi......-ples of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA treated wood using electrodialytic remediation in laboratory scale (Ribeiro et al., 2000; Kristensen et al., 2003), but until now, the method had not been studied in larger scale. The pilot scale plant used...... in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to fi-nally 150 cm. The remediation time was varied between 11 and 21 days...

  18. Cost estimating for CERCLA remedial alternatives a unit cost methodology

    International Nuclear Information System (INIS)

    Brettin, R.W.; Carr, D.J.; Janke, R.J.

    1995-06-01

    The United States Environmental Protection Agency (EPA) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final, dated October 1988 (EPA 1988) requires a detailed analysis be conducted of the most promising remedial alternatives against several evaluation criteria, including cost. To complete the detailed analysis, order-of-magnitude cost estimates (having an accuracy of +50 percent to -30 percent) must be developed for each remedial alternative. This paper presents a methodology for developing cost estimates of remedial alternatives comprised of various technology and process options with a wide range of estimated contaminated media quantities. In addition, the cost estimating methodology provides flexibility for incorporating revisions to remedial alternatives and achieves the desired range of accuracy. It is important to note that the cost estimating methodology presented here was developed as a concurrent path to the development of contaminated media quantity estimates. This methodology can be initiated before contaminated media quantities are estimated. As a result, this methodology is useful in developing cost estimates for use in screening and evaluating remedial technologies and process options. However, remedial alternative cost estimates cannot be prepared without the contaminated media quantity estimates. In the conduct of the feasibility study for Operable Unit 5 at the Fernald Environmental Management Project (FEMP), fourteen remedial alternatives were retained for detailed analysis. Each remedial alternative was composed of combinations of remedial technologies and processes which were earlier determined to be best suited for addressing the media-specific contaminants found at the FEMP site, and achieving desired remedial action objectives

  19. Risk evaluation of remedial alternatives for the Hanford Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Lane, N.K.; Swenson, L.

    1994-01-01

    Risk assessment is one of the many tools used to evaluate and select remedial alternatives and evaluate the risk associated with selected remedial alternatives during and after implementation. The risk evaluation of remedial alternatives (RERA) is performed to ensure selected alternatives are protective of human health and the environment. Final remedy selection is promulgated in a record of decision (ROD) and risks of the selected alternatives are documented. Included in the ROD documentation are the risk-related analyses for long-term effectiveness, short-term effectiveness, and overall protection of human health and the environment including how a remedy will eliminate, reduce or control risks and whether exposure will be reduced to acceptable levels. A major goal of RERA in the process leading to a ROD is to provide decision-makers with specific risk information that may be needed to choose among alternatives. For the Hanford Site, there are many considerations that must be addressed from a risk perspective. These include the large size of the Hanford Site, the presence of both chemical and radionuclide contamination, one likelihood of many analogues sites, public and worker health and safety, and stakeholder concern with ecological impacts from site contamination and remedial actions. A RERA methodology has been promulgated to (1) identify the points in the process leading to a ROD where risk assessment input is either required or desirable and (2) provide guidance on how to evaluate risks associated with remedial alternatives under consideration. The methodology and evaluations parallel EPA guidance requiring consideration of short-term impacts and the overall protectiveness of remedial actions for evaluating potential human health and ecological risks during selection of remedial alternatives, implementation of remedial measures, and following completion of remedial action

  20. Final Work Plan for a Remedial Action Plan in Support of the Risk-Based Approach to Remediation at KC-135 Crash Site

    National Research Council Canada - National Science Library

    1994-01-01

    ... receptor exposure to fuel-hydrocarbon- contaminated environmental media at the KC-135 Crash Site. The second goal is to implement any necessary and appropriate remedial technologies at the KC-135 Crash Site...

  1. Completion of the South Alligator Valley remediation, Northern Territory, Australia - -16198

    International Nuclear Information System (INIS)

    Waggitt, Peter; Fawcett, Mike

    2009-01-01

    13 uranium mines operated in the South Alligator Valley of Australia's Northern Territory between 1953 and 1963. At the end of operations the mines, and associated infrastructure, were simply abandoned. As this activity preceded environmental legislation by about 15 years there was neither any obligation, nor attempt, at remediation. In the 1980's it was decided that the whole area should become an extension of the adjacent World Heritage, Kakadu National Park. As a result the Commonwealth Government made an inventory of the abandoned mines and associated facilities in 1986. This established the size and scope of the liability and formed the framework for a possible future remediation project. The initial program for the reduction of physical and radiological hazards at each of the identified sites was formulated in 1989 and the works took place from 1990 to 1992. But even at this time, as throughout much of the valley's history, little attention was being paid to the long term aspirations of traditional land owners. The traditional Aboriginal owners, the Gunlom Land Trust, were granted freehold Native Title to the area in 1996. They immediately leased the land back to the Commonwealth Government so it would remain a part of Kakadu National Park, but under joint management. One condition of the lease required that all evidence of former mining activity be remediated by 2015. The consultation, and subsequent planning processes, for a final remediation program began in 1997. A plan was agreed in 2003 and, after funding was granted in 2005, works implementation commenced in 2007. An earlier paper described the planning and consultation stages, experience involving the cleaning up of remnant uranium mill tailings and other mining residues; and the successful implementation of the initial remediation works. This paper deals with the final planning and design processes to complete the remediation programme, which is due to occur in 2009. The issues of final containment

  2. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    International Nuclear Information System (INIS)

    1993-12-01

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE's preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public's role in helping DOE and the EPA to make the final decision on a remedy

  3. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  4. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    International Nuclear Information System (INIS)

    Audibert, J.M.E.; Lew, L.R.

    1994-01-01

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public

  5. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the United States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts

  6. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs

  7. The harm of petroleum-polluted soil and its remediation research

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Lin, Zhaofeng; Zhang, Jishi; Norbu, Namkha; Liu, Wei

    2017-08-01

    Land resources are the foundation of human's survival and development, and it's one of the most valuable natural resources of each country. In view of the serious problems of petroleum pollution to soil caused during the exploration and development processes, this article based on a large number of literature researches, firstly discussed the compositions and properties of petroleum contaminants, secondly investigated some restoration methods for the current situation of petroleum polluted soil, compared and analyzed the advantages and disadvantages of three kinds of bioremediation technologies. Finally, according to the deficiencies of previous research and existing problems, made an outlook of the physical and chemical remediation, bioremediation, and microbe-plant remediation, to provide some enlightenments for petroleum-contaminated soil remediation.

  8. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE's Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ''demonstration'' version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing

  9. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  10. Cost and Performance Report of Electrical Resistance Heating (ERH) for Source Treatment. Addendum

    Science.gov (United States)

    2008-09-29

    remains and thin sandy layers. Patuxent Multiple-Layer Aquifer Sand, gray and yellow, with interbedded clay, kaolinized feldspar, pyrite and lignite...treatment. However, the post-treatment CVOC mass is likely to be even more sporadically dispersed than the pre-treatment CVOC mass, leading to similar (or

  11. Cost and Performance Report: Solar-Powered Remediation and pH Control

    Science.gov (United States)

    2017-04-01

    parallel, with two batteries in each series, providing a 24 V DC power supply. A solar charge controller regulated the charging of the batteries when...ER-201033) Solar -Powered Remediation and pH Control April 2017 This document has been cleared for public release; Distribution Statement A...Technol. 32:1817-1824. CB&I Federal Services. 2017. Final Report. Solar Powered Remediation and pH Control . ESTCP Project ER-201033. April. Cheng, S

  12. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    International Nuclear Information System (INIS)

    Post, Thomas C.; Strom, Dean; Beulow, Laura

    2013-01-01

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  13. Superfund record of decision (EPA Region 4): Ciba-Geigy Site (McIntosh Plant), Washington County, McIntosh, AL. (Third remedial action), July 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 1,500-acre Ciba-Geigy site is an active chemical manufacturer in an industrial area in McIntosh, Washington County, Alabama. A wetlands area borders the site property, and part of the site lies within the floodplain of the Tombigbee River. In 1985, EPA issued a RCRA permit that included a corrective action plan requiring Ciba-Geigy to remove and treat ground water and surface water contamination at the site. Further investigations by EPA revealed 11 former waste management areas of potential contamination onsite. These areas contain a variety of waste, debris, pesticide by-products and residues. The ROD addresses a final remedy for OU4, which includes contaminated soil and sludge in former waste management Area 8 and the upper dilute ditch. The primary contaminants of concern affecting the soil, sludge, and debris are VOCs, including benzene, toluene, and xylenes; other organics, including pesticides; metals, including arsenic, chromium, and lead; and inorganics, including cyanide. The selected remedial action for the site are included

  14. The Department of Energy's Remedial Action Assessment System (RAAS): Decision support tools for performing streamlined feasibility studies

    International Nuclear Information System (INIS)

    White, M.K.

    1994-06-01

    The United States Department of Energy (DOE) faces the major task of cleaning up hundreds of waste sites across the nation, which will require completion of a large number of remedial investigation/feasibility studies (RI/FSs). The intent of each RI/FS is to characterize the waste problems and environmental conditions at the operable unit level, segment the remediation problem into manageable medium-specific and contaminant-specific pieces, define corresponding remediation objectives, and identify remedial response actions to satisfy those objectives. The RI/FS team can then identify combinations of remediation technologies that will meet the remediation objectives. Finally, the team must evaluate these remedial alternatives in terms of effectiveness, implementability, cost, and acceptability. The Remedial Action Assessment System (RAAS) is being developed by Pacific Northwest Laboratory (PNL) to support DOE in this effort

  15. Pump-and-treat is not the only solution to aquifer remediation

    International Nuclear Information System (INIS)

    Odermatt, J.R.

    1994-01-01

    The Environmental Protection Agency (EPA) recently surveyed remediation technologies used at petroleum-contaminated sites in 22 states. About 96 percent of underground storage tank (UST) corrective action sites used some form of pump-and-treat technology to remediate contaminated groundwater. However, using only pump-and-treat technology is not a cost-effective approach to aquifer remediation. Pump-and-treat may be more appropriate for containing plumes or for use in initial emergency response actions at sites and massive NAPL releases to groundwater. As of 1990, 68 percent of Superfund records of decision selected pump-and-treat as the final remedy for aquifer remediation. However, of 13 sites where the remedial alternative objective was to restore the aquifer to health-based levels, only one pump-and-treat method has succeeded. Except in cases where human health and the environment are threatened, long-term active technologies, such as pump-and-treat, may not be warranted. Groundwater monitoring and possible wellhead treatment may be perceived as time-consuming processes; however, at many sites, this long-term approach may be far less costly and just as effective as other long-term strategies based on exclusive use of pump-and-treat technology

  16. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the Unites States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third, the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts. This paper briefly outlines some of the liabilities surrounding environmental contracting and ways to minimize risks

  17. Remediation of uranium impacted sediments in a watercourse

    Energy Technology Data Exchange (ETDEWEB)

    Shephard, Eugene; Walter, Nelson; Downey, Heath [AMEC, Inc., Portland, Maine (United States); Collopy, Peter [AMEC, Inc., San Diego, California (United States); Conant, John [ABB, Inc., Windsor, Connecticut (United States)

    2013-07-01

    In 2009, remediation was initiated for a non-operational fuel cycle facility previously used for government contract work located in Windsor, Connecticut, USA. Radiological contaminants consisted primarily of high enriched uranium (HEU). Other radionuclides encountered in relatively minor amounts in certain areas of the clean-up included Co-60, Cs- 137, Ra-226, Th-232 and low enriched uranium (LEU).Between 2009 and the spring of 2011, remediation efforts were focused on demolition of contaminated buildings and removal of contaminated soil. In the late spring of 2011, the last phase of remediation commenced involving the removal of contaminated sediments from portions of a 1,200 meter long gaining stream. Planning and preparation for remediation of the stream began in 2009 with submittal of permit applications to undertake construction activities in a wetland area. The permitting process was lengthy and involved securing permits from multiple agencies. However, early and frequent communication with stakeholders played an integral role in efficiently obtaining the permit approvals. Frequent communication with stakeholders throughout the planning and remediation process also proved to be a key factor in timely completion of the project. The remediation of the stream involved the use of temporary bladder berms to divert surface water flow, water diversion piping, a sediment vacuum removal system, excavation of sediments using small front-end loaders, sediment dewatering, and waste packaging, transportation and disposal. Many safeguards were employed to protect several species of concern in the work area, water management during project activities, challenges encountered during the project, methods of Final Status Survey, and stream restoration. (authors)

  18. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are

  19. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    International Nuclear Information System (INIS)

    1996-01-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings ' ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings.' Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in

  20. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    Energy Technology Data Exchange (ETDEWEB)

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  1. Conclusions and recommendations of the SCOPE-RADSITE workshop on remediation achievements after uranium mining and milling

    International Nuclear Information System (INIS)

    Vandenhove, H.; Vandecasteele, C.M.; Collard, G.

    2002-01-01

    The SCOPE-RADSITE Project provides a unique international scientific forum where the radioactive wastes generated in the development of nuclear weapons, including their potential impact on the environment and human populations, are studied and reviewed. At the present SCOPE-RADSITE workshop a team of experts presented the current status of uranium mining and milling operations in the United States, in the former Soviet Union (FSU) and in Central and Eastern Europe. The effect of radiocontaminants resulting from the uranium mining and milling operations to species other than humans and the combined effects of environmental radiation and other agents were discussed. Finally, three cases of remediation projects were presented: remediation at COGEMA sites in France, the WISMUT rehabilitation project in Germany and uranium mine reclamation in Texas and remediation achievements were described. Finally the workshop discussed important issues and recommendations to be considered when approaching remediation of past legacies resulting from uranium mining and milling. (author)

  2. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  3. Improving Risk Governance of Emerging Technologies through Public Engagement: The Neglected Case of Nano-Remediation?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Wickson, Fern; Andersen, Henning Boje

    2012-01-01

    : the use of nanoparticles for environmental remediation (nano-remediation). Through our review and analysis we find that the main approaches to incorporating public engagement into governance strategies have been the generation of a better understanding of public perceptions of NT and the setting...... of general research priorities. In the case of nano-remediation, we find that public engagement efforts have been extremely limited, even though this technology has been used in the field in several countries and highlighted as potentially problematic by others. Finally, we provide recommendations...... for improving the links between public engagement and risk assessment and specifically call for more work on the case of nano-remediation....

  4. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    Science.gov (United States)

    2016-02-11

    FINAL REPORT In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones SERDP Project ER-2306...volatile organic compound (CVOCs), ethene and ethane in groundwater at Raritan Arsenal Area 18C after in situ bioremediation . 4 List of...aquifers, the bioremediation approach most commonly used for chlorinated solvents. The ability of methanotrophs to biodegrade 1,4-dioxane was

  5. Development of a sitewide groundwater remediation strategy at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Goswami, D.

    1996-01-01

    Over 440 km 2 (170 mi 2 ) of groundwater beneath the Hanford Site are contaminated by hazardous and radioactive waste, out of which almost half is over state and federal drinking water standards. In addition to the complicated nature of these plumes, remediation is further obscured by limited application of available technologies and hydrogeologic information. This paper briefly describes the processes used by the Washington State Department of Ecology (Ecology), U.S. Environmental Protection Agency, and U.S. Department of Energy (USDOE) in developing a sitewide groundwater remediation strategy for Hanford and its outcome. As an initial approach to sitewide groundwater remediation, the strategy is to remediate the major plumes found in the reactor areas (100 Area) adjacent to the Columbia River and contain the major plumes found in the Central Plateau region (200 Area). This approach was based mainly on the qualitative risk, stakeholder's and tribe's values, and available technical feasibility. The strategy emphasizes the use of existing treatment and extraction technology for the remediation of groundwater in combination with proposed and existing site infrastructure. This work is being performed in parallel with ongoing risk and other feasibility activities. Under this strategy, innovative technologies being developed are in the areas of dense nonaqueous phase liquid identification and recovery, and problems associated with strontium-90, cesium-137, and plutonium in the vadose zone and groundwater. The final remediation strategy alternatives remain a product of risk assessment, technical feasibility, site use scenario, and cost consideration. In order to develop a strategy for the final cleanup, several issues such as aquifer restoration, natural attenuation, potential contamination of groundwater from the tank farms and from the existing contamination source in the vadose zone must be looked in detail in conjuction with public and stakeholder's values

  6. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    Energy Technology Data Exchange (ETDEWEB)

    Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

    2013-07-01

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  7. Superfund Record of Decision (EPA region 2): Glen Ridge Radium site, Essex County, NJ. (Second remedial action), June 1990. Final report

    International Nuclear Information System (INIS)

    1990-01-01

    The 90-acre Glen Ridge Radium site is a residential community in the Borough of Glen Ridge, Essex County, New Jersey. The site is adjacent to another Superfund site, the Montclair/West Orange site. The Glen Ridge site includes a community of 274 properties serviced by surface reservoirs in northern New Jersey. In the early 1900s, a radium processing or utilization facility was located in the vicinity of the site. EPA investigations in 1981 and 1983 confirmed the presence of gamma radiation contamination in the Glen Ridge area and in several adjacent houses. The ROD complements the previous 1989 ROD for this site and provides a final remedy. The primary contaminant of concern affecting the soil is radium 226

  8. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  9. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  10. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    Day, R.S.; Duncan, G.M; Trent, S.J.

    1998-07-01

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  11. Radioactive tank waste remediation focus area

    International Nuclear Information System (INIS)

    1996-08-01

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  12. Radioactive tank waste remediation focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  13. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-02-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use

  14. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use

  15. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    Hunt, A.; Jones, G.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  16. Pilot remediation of sediment from the Petroleum harbour in Amsterdam

    International Nuclear Information System (INIS)

    Hakstege, A.L.; Geldermalsen, L.A. van

    1998-01-01

    The Petroleum Harbour project is the third pilot remediation, which was carried out within the framework of POSW (the national development programme for treatment processes of polluted sediments). The main objectives of the pilot remediation are: to demonstrate the biological treatment of dredged materials on a practical scale; and to gain knowledge and experience for the future remediation of the total Petroleum harbour. A strict tender procedure was carefully executed in order to select the most effective and 'state of the art' biodegradation technology. The selected remediation chain was a combination of 'standard' soil treatment technology and newly developed biotechnology. Dredging, biotechnological treatment and the effects of the remediation on the environment were monitored in detail. The quality of the treated sand fraction complied with the Dutch standards for re-use and was actually applied in a project of Rijkswaterstaat. Biodegradation resulted in a substantial decrease of the oil and PAH's contents, but due to the lack of breakdown of a few high-molecular PAH's, the quality requirements of the contract were not achieved. It is concluded that the two main objectives of the project have been attained. Finally some recommendations for the future clean-up of the Petroleum harbour are given. (author)

  17. In Situ Thermal NAPL Remediation at the Northeast Site Pinellas Environmental Restoration Project

    International Nuclear Information System (INIS)

    Juhlin, R.; Butherus, M.

    2006-01-01

    The U.S. Department of Energy (DOE) is conducting thermal remediation to remove non-aqueous phase liquids (NAPLs) from the subsurface at the Northeast Site that is part of the Pinellas Environmental Restoration Project. The Northeast Site is located on the Young - Rainey Science, Technology, and Research (STAR) Center in Largo, Florida. The STAR Center was formerly a DOE facility. The NAPL remediation was performed at Area A and is currently being performed at Area B at the Northeast Site. The remediation at Area A was completed in 2003 and covered an area of 900 m 2 (10,000 ft 2 ) and a depth of remediation that extended to 10.7 m (35 ft) below ground surface. Cleanup levels achieved were at or below maximum contaminant levels in almost all locations. The remediation project at Area B is ongoing and covers an area of 3,240 m 2 (36,000 ft 2 ), a volume of 41,300 m (54,000 yd 3), and a depth of remediation to 12 m (40 ft) below ground surface. In addition, a portion of the subsurface under an occupied building in Area B is included in the remediation. The cleanup levels achieved from this remediation will be available in the Area B Final Report that will be posted on the DOE Office of Legacy Management web site (www.lm.doe.gov/land/sites/fl/ pinellas/pinellas.htm) in January 2007. Electrical resistive heating and steam were the chosen remediation methods at both areas. Lessons learned from the Area A remediation were incorporated into the Area B remediation and could benefit managers of similar remediation projects. (authors)

  18. In-situ storage: An approach to interim remedial action - recent case studies in Canada

    International Nuclear Information System (INIS)

    Zelmer, R.L.

    1991-01-01

    The Low-Level Radioactive Waste Management Office (LLRWMO) acts on behalf of the federal government to manage historic low-level radioactive wastes. Recent interim remedial work in the Town of Port Hope, Ontario has included the consolidation of radium and uranium contaminated soils into temporary storage facilities on two sites to await final disposal elsewhere. Simple containments constructed and sited on already contaminated sites have been found effective as part of an interim remedial strategy. The approach has been accepted and supported by the local public. Lessons have been learned from a project management, environmental remediation and engineering design point of view

  19. Superfund Record of Decision (EPA Region 9): Nineteenth Avenue Landfill, Phoenix, AZ. (First remedial action), September 1989. Final report

    International Nuclear Information System (INIS)

    1989-01-01

    The 213-acre Nineteenth Avenue Landfill is in an industrial area of Maricopa County, Phoenix, Arizona. State permitted landfill operations were conducted from 1957 to 1979 during which time approximately nine million cubic yards of municipal refuse, solid and liquid industrial wastes, and some medical wastes and materials containing low levels of radioactivity were deposited in the landfill. The State ordered the landfill closed in 1979 due to the periodic inundation of the landfill by flood waters from the Salt River Channel. Subsequently, the city covered the site with fill, stockpiled soil for final capping, installed ground water monitoring wells, built berms around the landfill, and installed a methane gas collection system. The remedial action is designed to mitigate threats resulting from flooding of the landfill, which has occurred intermittently since 1965. The primary contaminants of concern in the soil/refuse include VOCs such as toluene and xylenes

  20. Role of institutional controls in selection of remedial measures

    International Nuclear Information System (INIS)

    Bakr, A.A.; Agoston, E.N.; McLeod, R.V.; Hicks, H.T.

    1992-01-01

    This paper explores the regulatory intent of CERCLA's definition and applicability of institutional controls at hazardous substance release sites undergoing remedial action and institutional controls that have been defined and implemented at selected CERCLA (Superfund) sites in the United States. Under provisions of CERCLA, institutional controls can be components of, or supplements to, interim or final remedial measures for hazardous substance [as defined under CERCLA 101(14)] releases. The use of institutional controls has been proposed in a number of RODs for large Superfund sites (e.g., Times Beach, Missouri; the Clothier Disposal Site in Oswego County, New York; and the Wildcat Landfill in Kent County, Delaware). In these cases, the selected remedial actions combine active response measures with institutional controls to protect human health and the environment. These RODs provide insight to how widely the concept of institutional controls is used and under what conditions. The use of institutional controls at large federal facilities is also discussed

  1. Objective Assessment of General Surgery Residents Followed by Remediation.

    Science.gov (United States)

    Gas, Becca L; Buckarma, EeeLN H; Mohan, Monali; Pandian, T K; Farley, David R

    offer opportunities to remediate if performance is poor. Our multifaceted remediation methodology allowed 18 residents to achieve good or stellar performance on each station after deliberate practice. Enticing chief residents to participate in remediation efforts in the spring of their final year of training remains a work in progress. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Remedial actions at the former Union Carbide Corporation uranium mill sites, Rifle, Garfield County, Colorado

    International Nuclear Information System (INIS)

    1990-03-01

    This appendix provides the information needed to understand the conceptual designs for the remedial action alternatives addressed in this environmental impact statement (EIS). It is intended to provide sufficient details for the reader to evaluate the feasibility and assess the impacts of each remedial action alternative. It is not intended to provide the detailed engineering necessary to implement the alternatives. Details of the preferred remedial action will be presented in the remedial action plan (RAP). The remedial action alternatives addressed in this EIS include no action, stabilization at the New Rifle site, disposal at the Estes Gulch site, and disposal at the Lucas Mesa site. All alternatives include interim actions to remediate existing health and safety hazards to the Rifle community that presently exist at the Old and New Rifle processing sites. It should be noted that the borrow sites included in this EIS were selected as the sources of the necessary borrow materials for impacts analyses purposes only. The borrow sites to be used for the remedial action will be selected during the final design. 21 figs., 18 tabs

  3. Soil radiological characterisation and remediation at CIEMAT

    International Nuclear Information System (INIS)

    Correa, Cristina; Garcia Tapias, Esther; Leganes, Jose

    2012-01-01

    Located in Madrid, CIEMAT is the Spanish Centre for Energy-Related, Environmental and Technological Research. It used to have more than 60 facilities in operation that allowed a wide range of activities in the nuclear field and in the application of ionising radiations. At present, the centre includes several facilities; some of them are now obsolete, shut down and in dismantling phases. In 2000 CIEMAT started the 'Integrated plan for the improvement of CIEMAT facilities (PIMIC)', which includes activities for the decontamination, dismantling, rehabilitation of obsolete installations and soil remediation activities. A small contaminated area named with the Spanish word 'Lenteja' (Lentil), has had to be remediate and restored. In the 70's, an incidental leakage of radioactive liquid occurred during a transference operation from the Reprocessing Plant to the Liquid Treatment Installation, and contaminated about 1000 m 3 of soil. Remediation activities in this area started with an exhaustive radiological characterisation of the soil, including surface samples and up to 16 meters boreholes, and the development of a comprehensive radiological characterization methodology for pre-classification of materials. Once the framework was defined the following tasks were being carried out: preparation of the area, soil extraction activities and final radiological characterisation for release purposes. Next step will be the refilling of the resulting hole from the removal soil activities. This paper will describe the soil radiological characterization and remediation activities at the Lentil Zone in Ciemat Research Centre. (authors)

  4. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2006-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  5. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  6. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  7. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    TRodovsky, T.J.

    2007-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  8. Homeopathy--between tradition and modern science: remedies as carriers of significance.

    Science.gov (United States)

    Almirantis, Yannis

    2013-04-01

    The healing potential and description of homeopathic remedies, as determined in homeopathic pathogenic trials (HPTs) and verified by medical experience, are often found to be meaningfully connected with the symbolic content attributed to the original materials (tinctures, metals etc) through tradition or modern semantics. Such a connection is incompatible with a biomolecular mechanistic explanation of the healing action of remedies. The physiological effects of crude substances are often similar to the symptoms of illnesses cured by the corresponding homeopathic remedy. This is considered a manifestation of the similia principle. Evidence is brought here that in several cases the inverse situation occurs, with the healing properties of the crude substance and those of its homeopathic preparation partially coinciding, the remedy usually having broader healing properties. The existence of these two possibilities in the relationship of medicinal actions of remedy and the crude substance, offers evidence in favor of a direct involvement of the level of significances in the mechanism underlying the homeopathic phenomenon. Finally, an experimental methodology is proposed, which may bring the result of double-blind randomized studies for homeopathic remedies closer to the reported performance of homeopathy in real life medical practice. If successful, this method would be a further indication of a non-local, significance-related interpretation of homeopathy. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  9. Know Your Enemy - Implementation of Bioremediation within a Suspected DNAPL Source Zone Following High-Resolution Site Characterization at Contractors Road Heavy Equipment Area, Kennedy Space Center, Florida

    Science.gov (United States)

    Chrest, Anne; Daprato, Rebecca; Burcham, Michael; Johnson, Jill

    2018-01-01

    The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC), has adopted high-resolution site characterization (HRSC) sampling techniques during baseline sampling prior to implementation of remedies to confirm and refine the conceptual site model (CSM). HRSC sampling was performed at Contractors Road Heavy Equipment Area (CRHE) prior to bioremediation implementation to verify the extent of the trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source area (defined as the area with TCE concentrations above 1% solubility) and its daughter product dissolved plume that had been identified during previous HRSC events. The results of HRSC pre-bioremediation implementation sampling suggested that the TCE source area was larger than originally identified during initial site characterization activities, leading to a design refinement to improve electron donor distribution and increase the likelihood of achieving remedial objectives. Approach/Activities: HRSC was conducted from 2009 through 2014 to delineate the vertical and horizontal extent of chlorinated volatile organic compounds (CVOCs) in the groundwater. Approximately 2,340 samples were collected from 363 locations using direct push technology (DPT) groundwater sampling techniques. Samples were collected from up to 14 depth intervals at each location using a 4-foot sampling screen. This HRSC approach identified a narrow (approx. 5 to 30 feet wide), approximately 3,000 square foot TCE DNAPL source area (maximum detected TCE concentration of 160,000 micrograms per liter [micro-g/L] at DPT sampling location DPT0225). Prior to implementation of a bioremediation interim measure, HRSC baseline sampling was conducted using DPT groundwater sampling techniques. Concentrations of TCE were an order of magnitude lower than previous reported (12,000 micro-g/L maximum at DPT sampling location DPT0225) at locations sampled adjacent to previous sampling locations. To further evaluate the variability

  10. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  11. Environmental Remediation Data Management Tools

    International Nuclear Information System (INIS)

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-01-01

    Computer software tools for data management can improve site characterization, planning and execution of remediation projects. This paper discusses the use of two such products that have primarily been used within the nuclear power industry to enhance the capabilities of radiation protection department operations. Advances in digital imaging, web application development and programming technologies have made development of these tools possible. The Interactive Visual Tour System (IVTS) allows the user to easily create and maintain a comprehensive catalog containing digital pictures of the remediation site. Pictures can be cataloged in groups (termed ''tours'') that can be organized either chronologically or spatially. Spatial organization enables the user to ''walk around'' the site and view desired areas or components instantly. Each photo is linked to a map (floor plan, topographical map, elevation drawing, etc.) with graphics displaying the location on the map and any available tour/component links. Chronological organization enables the user to view the physical results of the remediation efforts over time. Local and remote management teams can view these pictures at any time and from any location. The Visual Survey Data System (VSDS) allows users to record survey and sample data directly on photos and/or maps of areas and/or components. As survey information is collected for each area, survey data trends can be reviewed for any repetitively measured location or component. All data is stored in a Quality Assurance (Q/A) records database with reference to its physical sampling point on the site as well as other information to support the final closeout report for the site. The ease of use of these web-based products has allowed nuclear power plant clients to plan outage work from their desktop and realize significant savings with respect to dose and cost. These same tools are invaluable for remediation and decommissioning planning of any scale and for recording

  12. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.

    Science.gov (United States)

    Mushak, Paul

    2003-02-15

    This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.

  13. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  14. SRS Burial Ground Complex: Remediation in Progress

    International Nuclear Information System (INIS)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-01

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities

  15. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  16. Remediation Approach for the Integrated Facility Disposition Project at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kirk, P.G.; Stephens, Jr.J.M.

    2009-01-01

    The Integrated Facility Disposition Project (IFDP) is a multi-billion-dollar remediation effort being conducted by the U.S. Department of Energy (DOE) Office of Environmental Management in Oak Ridge, Tennessee. The scope of the IFDP encompasses remedial actions related to activities conducted over the past 65 years at the Oak Ridge National Laboratory (ORNL) and the Y-12 National Security Complex (Y-12). Environmental media and facilities became contaminated as a result of operations, leaks, spills, and past waste disposal practices. ORNL's mission includes energy, environmental, nuclear security, computational, and materials research and development. Remediation activities will be implemented at ORNL as part of IFDP scope to meet remedial action objectives established in existing and future decision documents. Remedial actions are necessary (1) to comply with environmental regulations to reduce human health and environmental risk and (2) to release strategic real estate needed for modernization initiatives at ORNL. The scope of remedial actions includes characterization, waste management, transportation and disposal, stream restoration, and final remediation of contaminated soils, sediments, and groundwater. Activities include removal of at or below-grade substructures such as slabs, underground utilities, underground piping, tanks, basins, pits, ducts, equipment housings, manholes, and concrete-poured structures associated with equipment housings and basement walls/floors/columns. Many interim remedial actions involving groundwater and surface water that have not been completed are included in the IFDP remedial action scope. The challenges presented by the remediation of Bethel Valley at ORNL are formidable. The proposed approach to remediation endeavors to use the best available technologies and technical approaches from EPA and other federal agencies and lessons learned from previous cleanup efforts. The objective is to minimize cost, maximize remedial

  17. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  18. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  19. Strategy paper. Remedial design/remedial action 100 Area. Revision 2

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-10-01

    This strategy paper identifies and defines the approach for remedial design and remedial action (RD/RA) for source waste sites in the 100 Area of the Hanford Site, located in southeastern Washington State. This paper provides the basis for the US Department of Energy (DOE) to assess and approve the Environmental Restoration Contractor's (ERC) approach to RD/RA. Additionally, DOE is requesting review/agreement from the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) on the strategy presented in this document in order to expedite remedial activities

  20. Environmental Modelling of Remediation of Urban Contaminated Areas. Report of the Urban Remediation Working Group of EMRAS Theme 2

    International Nuclear Information System (INIS)

    2012-01-01

    obtained in Ukraine following the Chernobyl accident. This exercise provided an opportunity to model large-scale contamination events such as the result of a nuclear accident. The exercise was designed to permit intercomparison of model results from different participants as well as, for some endpoints, comparison of model results with actual measurements. The third area was a modelling exercise based on a hypothetical situation involving a point-release of a radionuclide in an urban setting, specifically a release resulting from a radiological dispersal device involving an explosion. This exercise was intended to provide an opportunity for intercomparison of model results among participants. For both modelling exercises, the intent was to model the radiological situation over time in the absence of any remediation and with the effects of selected remedial measures. This approach was intended to permit comparison of the effects of various remedial measures in terms of their short- or long-term effect on dose rates and resulting doses in the areas of interest, for the purpose of aiding decisions about when to remediate and which remedial measures to use. The Urban Remediation Working Group's final report includes an overview and discussion of the major modelling approaches and computer models presently available for use in assessing urban contamination situations. The models actually used in the Working Group's exercises are described in detail, including the parameterization for each of the exercises. Basic considerations in characterizing an urban environment have been summarized. The application of computer models to assess potential countermeasures or remediation measures is less well developed; therefore, the Working Group has summarized the available literature on countermeasures and their effectiveness and has developed some guidance for implementing countermeasures or remediation measures in computer models. An important caveat is that much of the information base

  1. The soil remediation fund for petrol stations in Belgium

    International Nuclear Information System (INIS)

    Naeyer, F. de; Van Dyck, E.; Janssens, J.P.; Duliere, A.; Fondaire, D.; Bodart, O.

    2005-01-01

    In the Flemish, Brussels-Capital and Walloon Region, petrol stations are subjected to strict operating standards, to avoid soil contamination as much as possible in the future. Besides these operating requirements, regional authorities also issued regulations regarding the remediation of contaminated soils. For many petrol stations operators, land owners and users, these rules and regulations are a heavy financial burden. As a result, the soil contamination threaten to become a public charge, due to a lack of adequate remediation by the stakeholders. After years of negotiating between the petroleum industry and the government the negotiations finally resulted in a cooperation agreement between the Federal Government, the Flemish, Walloon and Brussels-Capital Regions regarding the execution and financing of the remediation of contaminated soil at petrol stations. The cooperation agreement, signed in Brussels on 13 December 2002 and approved by all Regions and the Federal Government, makes it possible to provide a structured approach for the remediation of the soil contamination at petrol stations in Belgium. In the cooperation agreement the establishment of an Inter-regional Soil Remediation Committee is provided to guarantee the fund's independence and to observe the fund's operation. The official start is given through the accreditation of BOFAS by the Inter-regional Soil Remediation Committee. To calculate the amount that would be necessary for the remediation of the soil contamination at petrol stations and the contribution to the fund, an economical research has been carried out. This research indicated that the total cost for the remediation of the soil contamination at petrol stations in Belgium is situated between 400 and 450 million EUR. BOFAS has calculated that 5.000 petrol stations can comply with the conditions mentioned in the cooperation agreement. Operators, Owners or Actual users can submit an application if they comply with the legally established

  2. The soil remediation fund for petrol stations in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Naeyer, F. de; Van Dyck, E. [OVAM, Mechelen (Belgium); Janssens, J.P.; Duliere, A. [BIM, Brussel (Belgium); Fondaire, D. [DGRNE, Liege (Belgium); Bodart, O. [Governement Wallon, Namur (Belgium)

    2005-07-01

    In the Flemish, Brussels-Capital and Walloon Region, petrol stations are subjected to strict operating standards, to avoid soil contamination as much as possible in the future. Besides these operating requirements, regional authorities also issued regulations regarding the remediation of contaminated soils. For many petrol stations operators, land owners and users, these rules and regulations are a heavy financial burden. As a result, the soil contamination threaten to become a public charge, due to a lack of adequate remediation by the stakeholders. After years of negotiating between the petroleum industry and the government the negotiations finally resulted in a cooperation agreement between the Federal Government, the Flemish, Walloon and Brussels-Capital Regions regarding the execution and financing of the remediation of contaminated soil at petrol stations. The cooperation agreement, signed in Brussels on 13 December 2002 and approved by all Regions and the Federal Government, makes it possible to provide a structured approach for the remediation of the soil contamination at petrol stations in Belgium. In the cooperation agreement the establishment of an Inter-regional Soil Remediation Committee is provided to guarantee the fund's independence and to observe the fund's operation. The official start is given through the accreditation of BOFAS by the Inter-regional Soil Remediation Committee. To calculate the amount that would be necessary for the remediation of the soil contamination at petrol stations and the contribution to the fund, an economical research has been carried out. This research indicated that the total cost for the remediation of the soil contamination at petrol stations in Belgium is situated between 400 and 450 million EUR. BOFAS has calculated that 5.000 petrol stations can comply with the conditions mentioned in the cooperation agreement. Operators, Owners or Actual users can submit an application if they comply with the legally

  3. Record of Decision Remedial Alternative Selection for the Gunsite 113 Access Road (631-24G) Operable Unit: Final Action

    International Nuclear Information System (INIS)

    Palmer, E.

    1997-01-01

    This decision document presents the selected remedial action for the Gunsite 113 Access Road Unit located at the Savannah River Site near Aiken, SC. The selected action was developed in accordance with CERCLA, as amended, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The selected remedy satisfies both CERCLA and RCRA 3004(U) requirements. This decision is based ont he Administrative Record File for this specific RCRA/CERCLA Unit

  4. Environmental assessment for 881 Hillside (High Priority Sites) interim remedial action

    International Nuclear Information System (INIS)

    1990-01-01

    This Environmental Assessment evaluates the impact of an interim remedial action proposed for the High Priority Sites (881 Hillside Area) at the Rocky Flats Plant (RFP). This interim action is to be conducted to minimize the release of hazardous substances from the 881 Hillside Area that pose a potential long-term threat to public health and the environment. This document integrates current site characterization data and environmental analyses required by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or ''Superfund'' process, into an environmental assessment pursuant to the National Environmental Policy Act (NEPA). Characterization of the 881 Hillside Area is continuing. Consequently, a final remedial action has not yet been proposed. Environmental impacts associated with the proposed interim remedial action and reasonable alternatives designed to remove organic and inorganic contaminants, including radionuclides, from alluvial groundwater in the 881 Hillside Area are addressed. 24 refs., 5 figs., 23 tabs

  5. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  6. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  7. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  8. Flammable gas deflagration consequence calculations for the tank waste remediation system basis for interim operation

    Energy Technology Data Exchange (ETDEWEB)

    Van Vleet, R.J., Westinghouse Hanford

    1996-08-13

    This paper calculates the radiological dose consequences and the toxic exposures for deflagration accidents at various Tank Waste Remediation System facilities. These will be used in support of the Tank Waste Remediation System Basis for Interim Operation.The attached SD documents the originator`s analysis only. It shall not be used as the final or sole document for effecting changes to an authorization basis or safety basis for a facility or activity.

  9. Development of subsurface characterization method for decommissioning site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In situ measurement of peak to valley method based on the ratio of counting rate between the full energy peak and Compton region was applied to identify the depth distribution of 137Cs. The In situ measurement and sampling results were applied to evaluate a residual radioactivity before and after remediation in decommissioning KRR site. Spatial analysis based on the Geostatistics method provides a reliable estimating the volume of contaminated soil with a graphical analysis, which was applied to the site characterization in the decommissioning KRR site. The in situ measurement and spatial analysis results for characterization of subsurface contamination are presented. The objective of a remedial action is to reduce risks to human health to acceptable levels by removing the source of contamination. Site characterization of the subsurface contamination is an important factor for planning and implementation of site remediation. Radiological survey and evaluation technology are required to ensure the reliability of the results, and the process must be easily applied during field measurements. In situ gamma-ray spectrometry is a powerful method for site characterization that can be used to identify the depth distribution and quantify radionuclides directly at the measurement site. The in situ measurement and Geostatistics method was applied to the site characterization for remediation and final status survey in decommissioning KRR site.

  10. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final

    International Nuclear Information System (INIS)

    1994-01-01

    Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230

  11. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  13. DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Susan E. Powers; Stefan J. Grimberg; Miles Denham

    2007-02-07

    The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying

  14. Lead immobilization in thermally remediated soils and igneous rocks

    International Nuclear Information System (INIS)

    Hickmott, D.D.; Carey, J.W.; Stimac, J.; Larocque, A.; Abell, R.; Gauerke, E.; Eppler, A.

    1997-01-01

    This is the final report for a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The principal goal of this project was to investigate the speciation of lead in the environment at LANL and to determine the feasibility of using thermal remediation methods to immobilize lead in the environment. Lead occurs as pyromorphite [Pb(PO 4 ) 3 (Cl, OH)], cerussite (PbCO 3 ) and galena (PbS) in vapor-phase-altered Bandelier Tuff samples. LANL soils primarily contain cerussite and PbO. Thermal remediation experiments at high temperatures (up to 400 C) suggest that thermal immobilization of highly-reactive Pb compounds in the environment may be feasible, but that this technique is not optimal for more refractory lead phases such as cerussite and PbO

  15. Uranium Mill Tailings Remedial Action Project: technical approach document

    International Nuclear Information System (INIS)

    1986-05-01

    The Uranium Mill Tailings Radiation Control Act of 1978, PL95-604, grants the Secretary of Energy authority and responsibility to perform such actions as are necessary to minimize radiation health hazards and other environmental hazards from inactive uranium mill sites. These cleanup actions are to be performed in compliance with the EPA standards (40 CFR Part 192) which became final on March 7, 1983. This document describes the general technical approaches and design criteria that are adopted by the US Department of Energy (DOE) in order to implement Remedial Action Plans (RAPs) and final designs that comply with EPA standards

  16. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah

    International Nuclear Information System (INIS)

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement

  17. Functional remediation components: A conceptual method of evaluating the effects of remediation on risks to ecological receptors.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer

    2016-01-01

    Governmental agencies, regulators, health professionals, tribal leaders, and the public are faced with understanding and evaluating the effects of cleanup activities on species, populations, and ecosystems. While engineers and managers understand the processes involved in different remediation types such as capping, pump and treat, and natural attenuation, there is often a disconnect between (1) how ecologists view the influence of different types of remediation, (2) how the public perceives them, and (3) how engineers understand them. The overall goal of the present investigation was to define the components of remediation types (= functional remediation). Objectives were to (1) define and describe functional components of remediation, regardless of the remediation type, (2) provide examples of each functional remediation component, and (3) explore potential effects of functional remediation components in the post-cleanup phase that may involve continued monitoring and assessment. Functional remediation components include types, numbers, and intensity of people, trucks, heavy equipment, pipes, and drill holes, among others. Several components may be involved in each remediation type, and each results in ecological effects, ranging from trampling of plants, to spreading invasive species, to disturbing rare species, and to creating fragmented habitats. In some cases remediation may exert a greater effect on ecological receptors than leaving the limited contamination in place. A goal of this conceptualization is to break down functional components of remediation such that managers, regulators, and the public might assess the effects of timing, extent, and duration of different remediation options on ecological systems.

  18. Electrokinetic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrián; Ottosen, Lisbeth M.

    2007-01-01

    Important process parameters to optimize in electrokinetic soil remediation are those influencing remediation time and power consumption since these directly affect the cost of a remediation action. This work shows how the electrokinetic remediation (EKR) process could be improved by implementing...... bipolar electrodes in the porous material. The bipolar electrodes in EKR meant two improvements: (1) a shorter migration pathway for the contaminant, and (2) an increased electrical conductivity in the remediation system. All together the remediation proceeded faster with lower electrical resistance than...... in similar experiments but without the bipolar electrodes. The new electrokinetic remediation design was tested on copper mine tailings with different applied electric fields, remediation times and pre-treatment. The results showed that the copper removal was increased from 8% (applying 20V for 8 days...

  19. Remediating Remediation: From Basic Writing to Writing across the Curriculum

    Science.gov (United States)

    Faulkner, Melissa

    2013-01-01

    This article challenges faculty members and administrators to rethink current definitions of remediation. First year college students are increasingly placed into basic writing courses due to a perceived inability to use English grammar correctly, but it must be acknowledged that all students will encounter the need for remediation as they attempt…

  20. [Cognitive remediation and cognitive assistive technologies in schizophrenia].

    Science.gov (United States)

    Sablier, J; Stip, E; Franck, N

    2009-04-01

    . Finally, we present a review of recent studies testing innovative devices developed to assist schizophrenia patients. First, we found several cognitive programs proven to be effective with schizophrenia patients, but only three were validated in French. It could be useful to adapt other programs for French-speaking populations. Unfortunately, we found that very few of the existing cognitive assistive technologies are proposed to be used with schizophrenia patients. In fact, most of the available cognitive orthoses were tested primarily in people with neurological injuries (for example, various memory impairments caused by traumas), and in elderly illnesses (like Alzheimer disease). Devices for patients with mental deficits (e.g., mental retardation) were developed later, and only very recently explored for use in schizophrenia. As a result of an international collaboration between France and Canada, currently a tool called MOBUS is being tested. This technology aims at improving the autonomy of schizophrenia patients, by helping them plan and remember their daily activities. Furthermore, it encourages patient-caregiver communication, and permits monitoring patients' subjective reports of their symptoms. The use of cognitive assistive technologies is not meant to isolate patients by replacing the human element of relatives and caregivers by a machine. On the contrary, they offer a sense of security and they improve interpersonal relationships by permitting enhanced autonomy and greater self-confidence. Finally, a literature review of cognitive remediation in schizophrenia emphasizes the importance of a structured application of the technique in order for it to succeed. First, it is crucial to detect the impairments that will be targeted in each patient presenting a specific pattern of impairments. For this purpose, validated and customised neuropsychological tests are required. Then, cognitive remediation programs must be customised to each patient's needs in order to

  1. Current state and future prospects of remedial soil protection. Background

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, Joerg

    2009-08-15

    The legal basis for soil protection in the Federal Republic of Germany is: -The Act on Protection against Harmful Changes to Soil and on Rehabilitation of Contaminated Sites (Federal Soil Protection Act) (Bundes-Bodenschutzgesetz - BBodSchG) of 1998 [1] -The Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV) of 1999 [2]. In Germany, the Federal Government has legislative competence in the field of soil protection. The Lander (German federal states), in turn, are responsible for enforcement of the BBodSchG and the BBodSchV; they may also issue supplementary procedural regulations. According to Article 1 BBodschG, the purpose of the Act is inter alia to protect and restore the functions of the soil on a permanent sustainable basis. These actions shall include prevention of harmful soil changes as well as rehabilitating soil, contaminated sites and waters contaminated by such sites in such a way that any contamination remains permanently below the hazard threshold. Whilst prevention aims to protect and preserve soil functions on a long-term basis, the object of remediation is mainly to avert concrete hazards in a spatial, temporal and manageable causative context. ''Remedial soil protection'' encompasses a tiered procedure in which a suspicion is verified successively and with least-possible effort and in which the circumstances of the individual case at hand are taken into account in deciding whether or not a need for remediation exists. It comprises the systematic stages of identifying, investigating and assessing suspect sites and sites suspected of being contaminated with a view to their hazard potential, determining whether remediation is necessary, remediating identified harmful soil changes and contaminated sites, and carrying out, where necessary, aftercare measures following final inspection of the remedial measure. (orig.)

  2. Developmental Learning Disorders: From Generic Interventions to Individualized Remediation

    Directory of Open Access Journals (Sweden)

    David eMoreau

    2016-01-01

    Full Text Available Developmental learning disorders affect many children, impairing their experience in the classroom and hindering many aspects of their life. Once a bleak sentence associated with life-long difficulties, several learning disorders can now be successfully alleviated, directly benefiting from promising interventions. In this review, we focus on two of the most prevalent learning disorders, dyslexia and ADHD. Recent advances have refined our understanding of the specific neural networks that are altered in these disorders, yet questions remain regarding causal links between neural changes and behavioral improvements. After briefly reviewing the theoretical foundations of dyslexia and ADHD, we explore their distinct and shared characteristics, and discuss the comorbidity of the two disorders. We then examine current interventions, and consider the benefits of approaches that integrate remediation within other activities to encourage sustained motivation and improvements. Finally, we conclude with a reflection on the potential for remediation programs to be personalized by taking into account the specificities and demands of each individual. The effective remediation of learning disorders is critical to modern societies, especially considering the far-reaching ramifications of successful early interventions.

  3. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    Science.gov (United States)

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals.

  4. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  5. Remediation plans in family medicine residency

    Science.gov (United States)

    Audétat, Marie-Claude; Voirol, Christian; Béland, Normand; Fernandez, Nicolas; Sanche, Gilbert

    2015-01-01

    Abstract Objective To assess use of the remediation instrument that has been implemented in training sites at the University of Montreal in Quebec to support faculty in diagnosing and remediating resident academic difficulties, to examine whether and how this particular remediation instrument improves the remediation process, and to determine its effects on the residents’ subsequent rotation assessments. Design A multimethods approach in which data were collected from different sources: remediation plans developed by faculty, program statistics for the corresponding academic years, and students’ academic records and rotation assessment results. Setting Family medicine residency program at the University of Montreal. Participants Family medicine residents in academic difficulty. Main outcome measures Assessment of the content, process, and quality of remediation plans, and students’ academic and rotation assessment results (successful, below expectations, or failure) both before and after the remediation period. Results The framework that was developed for assessing remediation plans was used to analyze 23 plans produced by 10 teaching sites for 21 residents. All plans documented cognitive problems and implemented numerous remediation measures. Although only 48% of the plans were of good quality, implementation of a remediation plan was positively associated with the resident’s success in rotations following the remediation period. Conclusion The use of remediation plans is well embedded in training sites at the University of Montreal. The residents’ difficulties were mainly cognitive in nature, but this generally related to deficits in clinical reasoning rather than knowledge gaps. The reflection and analysis required to produce a remediation plan helps to correct many academic difficulties and normalize the academic career of most residents in difficulty. Further effort is still needed to improve the quality of plans and to support teachers.

  6. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    International Nuclear Information System (INIS)

    2005-01-01

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) (section) 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

  7. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  8. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  9. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  10. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    International Nuclear Information System (INIS)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC section 7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management

  11. Some Similarities and Differences Between Compositions Written by Remedial and Non-Remedial College Freshmen.

    Science.gov (United States)

    House, Elizabeth B.; House, William J.

    The essays composed by 84 remedial and 77 nonremedial college freshmen were analyzed for some features proposed by Mina Shaughnessy as being characteristic of basic writers. The students were enrolled in either a beginning remedial class (098), a class at the next level of remediation (099), or a regular English class (101). The essays were…

  12. Object reasoning for waste remediation

    International Nuclear Information System (INIS)

    Pennock, K.A.; Bohn, S.J.; Franklin, A.L.

    1991-08-01

    A large number of contaminated waste sites across the United States await size remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System is a hybrid system, designed and constructed using object-oriented, knowledge- based systems, and structured programming techniques. RAAS uses a combination of quantitative and qualitative reasoning to consider and suggest remediation alternatives. The reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper describes the information structure and organization used to support this reasoning process. In addition, the paper describes the level of detail of the technology related information used in RAAS, discusses required assumptions and procedural implications of these assumptions, and provides rationale for structuring RAAS in this manner. 3 refs., 3 figs

  13. Sanitary landfill in situ bioremediation optimization test. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This work was performed as part of a corrective action plan for the Savannah River Site Sanitary Landfill. This work was performed for the Westinghouse Savannah River Company Environmental Restoration Department as part of final implementation of a groundwater remediation system for the SRS Sanitary Landfill. Primary regulatory surveillance was provided by the South Carolina Department of Health and Environmental Control and the US Environmental Protection Agency (Region IV). The characterization, monitoring and remediation systems in the program generally consisted of a combination of innovative and baseline methods to allow comparison and evaluation. The results of these studies will be used to provide input for the full-scale groundwater remediation system for the SRS Sanitary Landfill. This report summarizes the performance of the Sanitary Landfill In Situ Optimization Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill

  14. Initial screening of thermal desorption for soil remediation

    International Nuclear Information System (INIS)

    Yezzi, J.J. Jr.; Tafuri, A.N.; Rosenthal, S.; Troxler, W.L.

    1994-01-01

    Petroleum-contaminated soils--caused by spills, leaks, and accidental discharges--exist at many sites throughout the United States. Thermal desorption technologies which are increasingly being employed to treat these soils, have met soil cleanup criteria for a variety of petroleum products. Currently the United States Environmental Protection Agency is finalizing a technical report entitled Use of Thermal Desorption for Treating Petroleum-Contaminated Soils to assist remedial project managers, site owners, remediation contractors, and equipment vendors in evaluating the use of thermal desorption technologies for petroleum-contaminated soil applications. The report will present a three-level screening method to help a reader predict the success of applying thermal desorption at a specific site. The objective of screening level one is to determine the likelihood of success in a specific application of thermal desorption. It will take into account procedures for collecting and evaluating data on site characteristics, contaminant characteristics, soil characteristics, and regulatory requirements. This level will establish whether or not thermal desorption should be evaluated further for site remediation, whether treatment should occur on-site or off-site, and if on-site is a viable option, what system size will be most cost-effective. The scope of this paper addresses only screening level one which provides a preliminary assessment of the applicability of thermal desorption to a particular site. This topic encompasses worksheets that are an integral part of the ''user friendly'' screening process. Level one screening provides a foundation for the subsequent two levels which follow a similar ''user friendly'' worksheet approach to evaluating thermal desorption technologies and establishing costs for thermal desorption in an overall remediation project

  15. Final project report: TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1993-02-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project including, Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 M 3 of mixed waste

  16. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    Science.gov (United States)

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  17. 200-UP-1 groundwater remedial design/remedial action work plan. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This 200-UP-1 remedial design report presents the objective and rationale developed for the design and implementation of the selected interim remedial measure for the 200-UP-1 Operable Unit, located in the 200 West Area of the Hanford Site

  18. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...... possibilities. Genealogists use their private websites to negotiate family identity and hereby create a sense of belonging in an increasingly complex society. Digital technologies enhance the possibilities of coorporation between genealogists. Therefore, the websites are also used to present archival...

  19. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  20. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  1. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  2. Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995

    International Nuclear Information System (INIS)

    Forbes, G.H.; Egidi, P.V.

    1997-04-01

    The purpose of this independent assessment was to provide the U.S. Department of Energy (DOE) with an independent verification (IV) that the soil at the Grand Junction Projects Office (GJPO) complies with applicable DOE guidelines. Oak Ridge National Laboratory/ Environmental Technology Section (ORNL/ETS) which is also located at the GJPO, was assigned by DOE as the Independent Verification Contractor (IVC). The assessment included reviews of the decontamination and decommissioning plan, annual environmental monitoring reports, data in the pre- and post-remedial action reports, reassessment reports and IV surveys. Procedures and field methods used during the remediation were reviewed, commented on, and amended as needed. The IV surveys included beta-gamma and gamma radiation scans, soil sampling and analyses. Based on the data presented in the post-remedial action report and the results of the IV surveys, the remediation of the outdoor portions of the GJPO has achieved the objectives. Residual deposits of uranium contamination may exist under asphalt because the original characterization was not designed to identify uranium and subsequent investigations were limited. The IVC recommends that this be addressed with the additional remediation. The IVC is working with the remedial action contractor (RAC) to assure that final documentation WM be sufficient for certification. The IVC will address additional remediation of buildings, associated utilities, and groundwater in separate reports. Therefore, this is considered a partial verification

  3. Engineering evaluation/conceptual plan for the 200-UP-1 groundwater operable unit interim remedial measure

    International Nuclear Information System (INIS)

    Myers, D.A.; Swanson, L.C.; Weeks, R.S.; Giacinto, J.; Gustafson, F.W.; Ford, B.H.; Wittreich, C.; Parnell, S.; Green, J.

    1995-04-01

    This report presents an engineering evaluation and conceptual plan for an interim remedial measure (ERM) to address a uranium and technetium-99 groundwater plume and an associated nitrate contamination plume in the 200-UP-1 Groundwater Operable Unit located in the 200 West Area of the Hanford Site. This report provides information regarding the need and potentially achievable objectives and goals for an IRM and evaluates alternatives to contain elevated concentrations of uranium, technetium-99, nitrate, and carbon tetrachloride and to obtain information necessary to develop final remedial actions for the operable unit

  4. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project. Status of project to date January 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell

  5. Strategy paper. Remedial design/remedial action 100 Area. Revision 1

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-07-01

    The purpose of this planning document is to identify and define the approach for remedial design and remedial action (RD/RA) in the 100 Area of the Hanford Site, located in southeastern Washington State. Additionally, this document will support the Hanford Site Environmental Restoration Contract (ERC) team, the US Department of Energy (DOE), and regulatory agencies in identifying and agreeing upon the complete process for expedited cleanup of the 100 Area

  6. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  7. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  8. MGP site remediation: Working toward presumptive remedies

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1996-01-01

    Manufactured Gas Plants (MGPs) were prevalent in the United States during the 19th and first half of the 20th centuries. MGPs produced large quantities of waste by-products, which varied depending on the process used to manufacture the gas, but most commonly were tars and polynuclear aromatic hydrocarbons. There are an estimated 3,000 to 5,000 abandoned MGP sites across the United States. Because these sites are not concentrated in one geographic location and at least three different manufacturing processes were used, the waste characteristics are very heterogeneous. The question of site remediation becomes how to implement a cost-effective remediation with the variety of cleanup technologies available for these sites. Because of the significant expenditure required for characterization and cleanup of MGP sites, owners and regulatory agencies are beginning to look at standardizing cleanup technologies for these sites. This paper discusses applicable cleanup technologies and the attitude of state regulatory agencies towards the use of presumptive remedies, which can reduce the amount of characterization and detailed analysis necessary for any particular site. Additionally, this paper outlines the process of screening and evaluating candidate technologies, and the progress being made to match the technology to the site

  9. Site remediation: The naked truth

    International Nuclear Information System (INIS)

    Calloway, J.M.

    1991-01-01

    The objective of any company faced with an environmental site remediation project is to perform the cleanup effectively at the lowest possible cost. Today, there are a variety of techniques being applied in the remediation of sites involving soils and sludges. The most popular include: stabilization, incineration, bioremediation and off-site treatment. Dewatering may also play an integral role in a number of these approaches. Selecting the most cost-effective technique for remediation of soils and sludges can be a formidable undertaking, namely because it is often difficult to quantify certain expenses in advance of the project. In addition to providing general cost guidelines for various aspects of soil and sludge remediation, this paper will show how some significant cost factors can be affected by conditions related to specific remediation projects and the cleanup technology being applied

  10. Avian Conservation Areas as a Proxy for Contaminated Soil Remediation.

    Science.gov (United States)

    Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen; Ding, Tsun-Su

    2015-07-17

    Remediation prioritization frequently falls short of systematically evaluating the underlying ecological value of different sites. This study presents a novel approach to delineating sites that are both contaminated by any of eight heavy metals and have high habitat value to high-priority species. The conservation priority of each planning site herein was based on the projected distributions of eight protected bird species, simulated using 900 outputs of species distribution models (SDMs) and the subsequent application of a systematic conservation tool. The distributions of heavy metal concentrations were generated using a geostatistical joint-simulation approach. The uncertainties in the heavy metal distributions were quantified in terms of variability among 1000 realization sets. Finally, a novel remediation decision-making approach was presented for delineating contaminated sites in need of remediation based on the spatial uncertainties of multiple realizations and the priorities of conservation areas. The results thus obtained demonstrate that up to 42% of areas of high conservation priority are also contaminated by one or more of the heavy metal contaminants of interest. Moreover, as the proportion of the land for proposed remediated increased, the projected area of the pollution-free habitat also increased. Overall uncertainty, in terms of the false positive contamination rate, also increased. These results indicate that the proposed decision-making approach successfully accounted for the intrinsic trade-offs among a high number of pollution-free habitats, low false positive rates and robustness of expected decision outcomes.

  11. Avian Conservation Areas as a Proxy for Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    Wei-Chih Lin

    2015-07-01

    Full Text Available Remediation prioritization frequently falls short of systematically evaluating the underlying ecological value of different sites. This study presents a novel approach to delineating sites that are both contaminated by any of eight heavy metals and have high habitat value to high-priority species. The conservation priority of each planning site herein was based on the projected distributions of eight protected bird species, simulated using 900 outputs of species distribution models (SDMs and the subsequent application of a systematic conservation tool. The distributions of heavy metal concentrations were generated using a geostatistical joint-simulation approach. The uncertainties in the heavy metal distributions were quantified in terms of variability among 1000 realization sets. Finally, a novel remediation decision-making approach was presented for delineating contaminated sites in need of remediation based on the spatial uncertainties of multiple realizations and the priorities of conservation areas. The results thus obtained demonstrate that up to 42% of areas of high conservation priority are also contaminated by one or more of the heavy metal contaminants of interest. Moreover, as the proportion of the land for proposed remediated increased, the projected area of the pollution-free habitat also increased. Overall uncertainty, in terms of the false positive contamination rate, also increased. These results indicate that the proposed decision-making approach successfully accounted for the intrinsic trade-offs among a high number of pollution-free habitats, low false positive rates and robustness of expected decision outcomes.

  12. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  13. Remedial action and waste disposal project: 100-B/C remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Cislo, G.B.

    1996-06-01

    The Readiness Evaluation Plan presents the methodology used to assess the readiness of the 100-B/C Remedial Action Project. The 100 Areas Remedial Action Project will remediate the 100 Areas liquid waste site identified in the Interim Action Record of Decision for the 100- BC-1, 100-DR-1, and 100-HR-1 Operable Units. These sites are located in the 100 Area of the Hanford Site in Richland, Washington

  14. Thermal soil remediation

    International Nuclear Information System (INIS)

    Nelson, D.

    1999-01-01

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  15. Building dismantlement and site remediation at the Apollo Fuel Plant: When is technology the answer?

    International Nuclear Information System (INIS)

    Walton, L.

    1995-01-01

    The Apollo fuel plant was located in Pennsylvania on a site known to have been used continuously for stell production from before the Civil War until after World War II. Then the site became a nuclear fuel chemical processing plants. Finally it was used to convert uranium hexafluoride to various oxide fuel forms. After the fuel manufacturing operations were teminated, the processing equipment was partially decontaminated, removed, packaged and shipped to a licensed low-level radioactive waste burial site. The work was completed in 1984. In 1990 a detailed site characterization was initiated to establishe the extent of contamination and to plan the building dismantlement and soil remediation efforts. This article discusses the site characterization and remedial action at the site in the following subsections: characterization; criticality control; mobile containment; soil washing; in-process measurements; and the final outcome of the project

  16. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  17. Proposed plan for remedial action at the chemical plant area of the Weldon Spring site

    International Nuclear Information System (INIS)

    1992-11-01

    This proposed plan addresses the management of contaminated material at the chemical plant area of the Weldon Spring site and nearby properties in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry, both of which are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced at the chemical plant in the 1940s, and uranium and thorium materials were processed in the 1950s and 1960s. Various liquid, sludge, and solid wastes were disposed of at the Chemical plant area and in the quarry during that time. The Weldon Spring site is listed on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The proposed plan is organized as follows: Chapter 2 presents the history and setting of the Weldon Spring site and briefly describes the contaminated material at the chemical plant area. Chapter 3 defines the scope of the remedial action and its role in the Weldon Spring Site Remedial Action Project. Chapter 4 summarizes the risks associated with possible exposures to site contaminants in the absence of remedial action and identifies proposed cleanup levels for soil. Chapter 5 briefly describes the final alternatives considered for the remedial action. Chapter 6 summarizes the evaluation of final alternatives for managing the contaminated material, identifies the currently preferred alternative, and discusses a possible contingency remedy to provide treatment flexibility. Chapter 7 presents the community's role in this action. Chapter 8 is a list of the references cited in this proposed plan

  18. Control of a long reach manipulator with suspension cables for waste storage tank remediation. Final report

    International Nuclear Information System (INIS)

    Wang, S.L.

    1994-01-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  19. IAEA Remediation Mission to Japan Concludes

    International Nuclear Information System (INIS)

    2011-01-01

    classifying removed materials that do not warrant special radiation protection measures as ''radioactive waste''; - Japan is advised to consider explaining to the public the importance of focusing on radiation doses that may actually be received by people rather than on data indicating contamination levels; and - Japan is encouraged to continue its remediation efforts. In doing so, Japan is encouraged to take into account the advice provided by the Mission. The IAEA stands ready to support Japan as it considers new and appropriate criteria for such activities. The authorities and local residents in Japan fully assisted the IAEA international team in its endeavor to conclude its mission successfully. ''The team also appreciates the openness with which our discussions were conducted and the high level of cooperation and access we were granted by Japan,'' says Mr. Lentijo. ''This was an invaluable opportunity for us to learn from this important decontamination initiative. We would like to continue our support to Japan in this very challenging task. We look forward to sharing our findings with the international community.'' The final report of the mission will be presented to the Government of Japan in the next month. Background. The accident at the Fukushima Dai-ichi Nuclear Power Plant has led to elevated levels of radiation over large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA organized an International Fact Finding Expert Mission of the Fukushima Dai-ichi Nuclear Power Plant Accident Following The Great East Japan Earthquake and Tsunami, which took place between 24 May and 2 June 2011. The mission concluded today is a follow-up to the fact-finding mission held earlier in the year and an essential component of the IAEA's Nuclear Safety Action Plan, approved by the IAEA Board of Governors on 13 September and endorsed by all 151 Member States at the recent IAEA General Conference in

  20. Assessing sustainable remediation frameworks using sustainability principles.

    Science.gov (United States)

    Ridsdale, D Reanne; Noble, Bram F

    2016-12-15

    The remediation industry has grown exponentially in recent decades. International organizations of practitioners and remediation experts have developed several frameworks for integrating sustainability into remediation projects; however, there has been limited attention to how sustainability is approached and operationalized in sustainable remediation frameworks and practices - or whether sustainability plays any meaningful role at all in sustainable remediation. This paper examines how sustainability is represented in remediation frameworks and the guidance provided for practical application. Seven broad sustainability principles and review criteria are proposed and applied to a sample of six international remediation frameworks. Not all review criteria were equally satisfied and none of the frameworks fully met all criteria; however, the best performing frameworks were those identified as sustainability remediation frameworks. Intra-generational equity was addressed by all frameworks. Integrating social, economic and biophysical components beyond triple-bottom-line indicators was explicitly addressed only by the sustainable remediation frameworks. No frameworks provided principle- or rule-based guidance for dealing with trade-offs in sustainability decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Risk-based remediation: Approach and application

    International Nuclear Information System (INIS)

    Frishmuth, R.A.; Benson, L.A.

    1995-01-01

    The principle objective of remedial actions is to protect human health and the environment. Risk assessments are the only defensible tools available to demonstrate to the regulatory community and public that this objective can be achieved. Understanding the actual risks posed by site-related contamination is crucial to designing cost-effective remedial strategies. All to often remedial actions are overdesigned, resulting in little to no increase in risk reduction while increasing project cost. Risk-based remedial actions have recently been embraced by federal and state regulators, industry, government, the scientific community, and the public as a mechanism to implement rapid and cost-effective remedial actions. Emphasizing risk reduction, rather than adherence to ambiguous and generic standards, ensures that only remedial actions required to protect human health and the environment at a particular site are implemented. Two sites are presented as case studies on how risk-based approaches are being used to remediate two petroleum hydrocarbon contaminated sites. The sites are located at two US Air Force Bases, Wurtsmith Air Force Base (AFB) in Oscoda, Michigan and Malmstrom AFB in Great Falls, Montana

  2. Cost considerations in remediation and disposal

    International Nuclear Information System (INIS)

    Dance, J.T.; Huddleston, R.D.

    1999-01-01

    Opportunities for assessing the costs associated with the reclamation and remediation of sites contaminated by oilfield wastes are discussed. The savings can be maximized by paying close attention to five different aspects of the overall site remediation and disposal process. These are: (1) highly focused site assessment, (2) cost control of treatment and disposal options, (3) value added cost benefits, (4) opportunities to control outside influences during the remedial process, and (5) opportunities for managing long-term liabilities and residual risk remaining after the remedial program is completed. It is claimed that addressing these aspects of the process will ultimately lower the overall cost of site remediation and waste disposal

  3. 200-ZP-1 phase 2 interim remedial measure quarterly report, August--October 1996

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.; Jacques, I.D.; McMahon, W.J.; Singleton, K.M.; Strope, S.A.; Swanson, L.C.; Windmueller, C.R.

    1996-11-01

    A groundwater pump-and-treat system is being operated in the 200-ZP-1 Operable Unit under authority of the Hanford Federal Facility Agreement and Consent Order . The purpose of the pump-and-treat system is to accomplish the following: Minimize further migration of the high-concentration portion of the carbon tetrachloride plume and co-contaminants chloroform and trichlorethylene in the 200-ZP-1 Operable Unit Provide data for evaluation of final remedy selection. The 200-ZP-1 pump-and-treat operations were conducted as a pilot-scale treatability test and interim remedial measure treatment system between August 1994 and July 1996 to assess the effectiveness of liquid-phase granular activated carbon carbon tetrachloride removal. The pilot-scale treatability test's removal efficiently was determined to be 99.96% for carbon tetrachloride, chloroform, and trichloroethylene. This report summarizes and evaluates treatment, hydraulic, and hydrochemistry data collected for the 200-ZP-1 interim remedial measure from August through September 1996

  4. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  5. [Cognitive remediation and nursing care].

    Science.gov (United States)

    Schenin-King, Palmyre; Thomas, Fanny; Braha-Zeitoun, Sonia; Bouaziz, Noomane; Januel, Dominique

    2016-01-01

    Therapies based on cognitive remediation integrate psychiatric care. Cognitive remediation helps to ease cognitive disorders and enable patients to improve their day-to-day lives. It is essential to complete nurses' training in this field. This article presents the example of a patient with schizophrenia who followed the Cognitive Remediation Therapy programme, enabling him to access mainstream employment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  7. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    International Nuclear Information System (INIS)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-01-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land's surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define

  8. DOE'S remedial action assurance program

    International Nuclear Information System (INIS)

    Welty, C.G. Jr.; Needels, T.S.; Denham, D.H.

    1984-10-01

    The formulation and initial implementation of DOE's Assurance Program for Remedial Action are described. It was initiated in FY 84 and is expected to be further implemented in FY 85 as the activities of DOE's Remedial Action programs continue to expand. Further APRA implementation will include additional document reviews, site inspections, and program office appraisals with emphasis on Uranium Mill Tailings Remedial Action Program and Surplus Facilities Management Program

  9. Remediation of spatial processing disorder (SPD).

    Science.gov (United States)

    Graydon, Kelley; Van Dun, Bram; Tomlin, Dani; Dowell, Richard; Rance, Gary

    2018-05-01

    To determine the efficacy of deficit-specific remediation for spatial processing disorder, quantify effects of remediation on functional listening, and determine if remediation is maintained. Participants had SPD, diagnosed using the Listening in Spatialised Noise-Sentences test. The LiSN and Learn software was provided as auditory training. Post-training, repeat LiSN-S testing was conducted. Questionnaires pre- and post-training acted as subjective measures of remediation. A late-outcome assessment established long-term effects of remediation. Sixteen children aged between 6;3 [years; months] and 10;0 completed between 20 and 146 training games. Post-training LiSN-S improved in measures containing spatial cues (p ≤ 0.001) by 2.0 SDs (3.6 dB) for DV90, 1.8 SDs for SV90 (3.2 dB), 1.4 SDs for spatial advantage (2.9 dB) and 1.6 SDs for total advantage (3.3 dB). Improvement was also found in the DV0 condition (1.4 dB or 0.5 SDs). Post-training changes were not significant in the talker advantage measure (1.0 dB or 0.4 SDs) or the SV0 condition (0.3 dB or 0.1 SDs). The late-outcome assessment demonstrated improvement was maintained. Subjective improvement post-remediation was observed using the parent questionnaire. Children with SPD had improved ability to utilise spatial cues following deficit-specific remediation, with the parent questionnaire sensitive to remediation. Effects of the remediation also appear to be sustained.

  10. Legal remedies in the proceedings before the Court of Justice of the European Union

    Directory of Open Access Journals (Sweden)

    Radivojević Zoran

    2014-01-01

    Full Text Available Legal remedies applied in the proceedings before the Court of Justice of the European Union have some distinctive features as compared to the legal remedies used in the national judicial systems. At first, the communitarian justice system originally did not envisage the possibility of filing an appeal with this Court as a regular legal remedy but there were other remedies that could be pursued in respect of the judgments issued by the Court. After the establishment of the Court of First Instance, the Procedural Law of the European Union introduced the possibility of filing an appeal with the Court of Justice against the judgments of the Court of First Instance. Later, the Court of First Instance became competent to decide on appeals against the judgments rendered by the judicial panels, which were established in the meantime. The Court of First Instance and judicial panels reserved the possibility of using other legal remedies against the final decisions rendered by these judicial authorities. In this respect, the Lisbon Treaty did not bring any significant changes, except that the Court of First Instance was renamed into the General Court whereas the judicial panels were designated as specialized courts. Taking into account the system of legal remedies recognized by the Procedural Law of the European Union, the first part of the paper deals with appeals as a regular legal instrument for bringing the case before a higher instance court which is to review the judgment of a lower instance court, including appeals against the decisions of the General Court and specialized courts. In the second part of the paper, the authors focus on the legal remedies which are awarded by the same court that issued the judgment. This category includes the application of a third party and revision, which may be considered as extraordinary legal remedies, as well as the objection against the judgment by default, judgment interpretation, judgment rectification and

  11. Remediation plan for contaminated areas by naturally occurring radioactivity materials in Syrian petroleum company oil fields

    International Nuclear Information System (INIS)

    Shwekani, R.; Al-Masri, M.S.; Awad, I.

    2005-08-01

    The present report contains a detailed plan for remediation of areas contaminated with naturally occurring radioactive materials in the Syrian petroleum company oil fields. This plan includes a description of the contaminated areas and the procedures that will be followed before and during the execution of the project in addition to the final radiation surveys according to the Syrian regulations. In addition, responsibilities of the main personnel who will carry out the work have been defined and the future monitoring program of the remediated areas was determined. (author)

  12. Remediation plan for contaminated areas by naturally occurring radioactivity materials in Syrian Petroleum Company oil fields

    International Nuclear Information System (INIS)

    Shweikani, R.; Al-Masri, M. S.; Awad, I.

    2006-01-01

    The present report contains a detailed plan for remediation of areas contaminated with naturally occurring radioactive materials in the syrian Petroleum Company Oil fields. This plan includes a description of the contaminated areas and the procedures that will be followed before and during the execution of the project in addition to the final radiation surveys according to the Syrian regulations. In addition, responsibilities of the main personnel who will carry out the work have been defined and the future monitoring program of the remediated areas was determined. (author)

  13. 46 CFR 298.41 - Remedies after default.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Remedies after default. 298.41 Section 298.41 Shipping... Defaults and Remedies, Reporting Requirements, Applicability of Regulations § 298.41 Remedies after default... governing remedies after a default, which relate to our rights and duties, the rights and duties of the...

  14. Radiological surveillance of Remedial Action activities at the processing site, Ambrosia Lake, New Mexico, April 12--16, 1993. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Ambrosia Lake, New Mexico. The requirements and attributes examined during the audit were developed from reviewing working-level procedures developed by the RAC. Objective evidence, comments, and observations were verified based on investigating procedures, documentation, records located at the site, personal interviews, and tours of the site. No findings were identified during this audit. Ten site-specific observations, three good practice observations, and five programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Ambrosia Lake, New Mexico, remedial action program are performed adequately. The results of the good practice observations indicate that the site health physics (HP) staff is taking the initiative to address and resolve potential issues, and implement suggestions useful to the UMTRA Project. However, potential exists for improving designated storage areas for general items, and the RAC Project Office should consider resolving site-specific and procedural inconsistencies

  15. Final project report, TA-35 Los Alamos Power Reactor Experiment No. II (LAPRE II) decommissioning project

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1992-01-01

    This final report addresses the decommissioning of the LAPRE II Reactor, safety enclosure, fuel reservoir tanks, emergency fuel recovery system, primary pump pit, secondary loop, associated piping, and the post-remediation activities. Post-remedial action measurements are also included. The cost of the project, including Phase I assessment and Phase II remediation was approximately $496K. The decommissioning operation produced 533 m 3 of low-level solid radioactive waste and 5 m 3 of mixed waste

  16. Remedial pulse programme for the production of monoenergetic ion beams of low energy

    International Nuclear Information System (INIS)

    Olubuyide, O.A.

    1975-01-01

    The technique involves an extension of sequential pulse techniques. An ion swarm is produced in a conventional mass-spectrometer ion source by a short electron beam pulse. Immediately, this swarm is accelerated impulsively by a short high voltage pulse on the repeller. The principal disadvantage of impulsive acceleration is that the final energy distribution of the ion swarm is broad especially at the lowest energies. At some instant during the passage of the ion swarm across the chamber second pulse is applied to the repeller--a ''remedial'' pulse which will accelerate the ions throughout the remainder of their passage and whose amplitude will be time-dependent. Slower ions must travel a greater distance in this ''remedial'' field than faster ions and will experience a proportionately greater increase in velocity from it. In this way, the remedial pulse can cause all the ions to acquire the same velocity at the exit slit. A limited experimental investigation has been made to examine the application of the proposed remedial pulse technique to existing ion sources. Application of the remedial pulse to impulsively-accelerated ion swarms reduced the energy distribution in the manner predicted by the theory but the quantitative reduction measured experimentally--a factor of approximately 2--was substantially less than the theoretical prediction of a factor of approximately 4. The limitations were characterized and a means of overcoming them was suggested in a new ion source of improved design. (Diss. Abstr. Int., B)

  17. 32 CFR 310.47 - Civil remedies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Civil remedies. 310.47 Section 310.47 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Privacy Act Violations § 310.47 Civil remedies. In addition to specific remedial...

  18. Engineering evaluation/conceptual plan for the 200-UP-1 Groundwater Operable Unit interim remedial measure. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    This report presents an engineering evaluation and conceptual plan for an interim remedial measure (IRM) to address a uranium and technetium-99 groundwater plume in the 200-UP-1 Groundwater Operable Unit located in the 200 West Area of the Hanford Site. This report provides information regarding the need for an IRM and its potentially achievable objectives and goals. The report also evaluates alternatives to contain elevated concentrations of uranium and technetium-99 and to obtain information necessary to develop final remedial actions for the operable unit

  19. LCA of Soil and Groundwater Remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Owsianiak, Mikolaj

    2018-01-01

    Today, there is increasing interest in applying LCA to support decision-makers in contaminated site management. In this chapter, we introduce remediation technologies and associated environmental impacts, present an overview of literature findings on LCA applied to remediation technologies...... and present methodological issues to consider when conducting LCAs within the area. Within the field of contaminated site remediation , a terminology distinguishing three types of environmental impacts: primary, secondary and tertiary, is often applied. Primary impacts are the site-related impacts due...... and efficiency of remediation, which are important for assessment or primary impacts; (ii) robust assessment of primary impacts using site-specific fate and exposure models; (iii) weighting of primary and secondary (or tertiary) impacts to evaluate trade-offs between life cycle impacts from remediation...

  20. Policy and Strategies for Environmental Remediation

    International Nuclear Information System (INIS)

    2015-01-01

    In the environmental remediation of a given site, concerned and interested parties have diverse and often conflicting interests with regard to remediation goals, the time frames involved, reuse of the site, the efforts necessary and cost allocation. An environmental remediation policy is essential for establishing the core values on which remediation is to be based. It incorporates a set of principles to ensure the safe and efficient management of remediation situations. Policy is mainly established by the national government and may become codified in the national legislative system. An environmental remediation strategy sets out the means for satisfying the principles and requirements of the national policy. It is normally established by the relevant remediation implementer or by the government in the case of legacy sites. Thus, the national policy may be elaborated in several different strategies. To ensure the safe, technically optimal and cost effective management of remediation situations, countries are advised to formulate an appropriate policy and strategies. Situations involving remediation include remediation of legacy sites (sites where past activities were not stringently regulated or adequately supervised), remediation after emergencies (nuclear and radiological) and remediation after planned ongoing operation and decommissioning. The environmental policy involves the principles of justification, optimization of protection, protection of future generations and the environment, efficiency in the use of resources, and transparent interaction with stakeholders. A typical policy will also take into account the national legal framework and institutional structure and applicable international conventions while providing for the allocation of responsibilities and resources, in addition to safety and security objectives and public information and participation in the decision making process. The strategy reflects and elaborates the goals and requirements set

  1. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  2. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  3. Lessons Learned from Environmental Remediation Programmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  4. Lessons Learned from Environmental Remediation Programmes

    International Nuclear Information System (INIS)

    2014-01-01

    Several remediation projects have been developed to date, and experience with these projects has been accumulated. Lessons learned span from non-technical to technical aspects, and need to be shared with those who are beginning or are facing the challenge to implement environmental remediation works. This publication reviews some of these lessons. The key role of policy and strategies at the national level in framing the conditions in which remediation projects are to be developed and decisions made is emphasized. Following policy matters, this publication pays attention to the importance of social aspects and the requirement for fairness in decisions to be made, something that can only be achieved with the involvement of a broad range of interested parties in the decision making process. The publication also reviews the funding of remediation projects, planning, contracting, cost estimates and procurement, and issues related to long term stewardship. Lessons learned regarding technical aspects of remediation projects are reviewed. Techniques such as the application of cover systems and soil remediation (electrokinetics, phytoremediation, soil flushing, and solidification and stabilization techniques) are analysed with respect to performance and cost. After discussing soil remediation, the publication covers issues associated with water treatment, where techniques such as ‘pump and treat’ and the application of permeable barriers are reviewed. Subsequently, there is a section dedicated to reviewing briefly the lessons learned in the remediation of uranium mining and processing sites. Many of these sites throughout the world have become orphaned, and are waiting for remediation. The publication notes that little progress has been made in the management of some of these sites, particularly in the understanding of associated environmental and health risks, and the ability to apply prediction to future environmental and health standards. The publication concludes

  5. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action

  6. Approaches for assessing sustainable remediation

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Binning, Philip John; Bjerg, Poul Løgstrup

    Sustainable remediation seeks to reduce direct contaminant point source impacts on the environment, while minimizing the indirect cost of remediation to the environment, society and economy. This paper presents an overview of available approaches for assessing the sustainability of alternative...... remediation strategies for a contaminated site. Most approaches use multi-criteria assessment methods (MCA) to structure a decision support process. Different combinations of environmental, social and economic criteria are employed, and are assessed either in qualitative or quantitative forms with various...... tools such as life cycle assessment and cost benefit analysis. Stakeholder involvement, which is a key component of sustainable remediation, is conducted in various ways. Some approaches involve stakeholders directly in the evaluation or weighting of criteria, whereas other approaches only indirectly...

  7. Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Ding, Dahu; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan; Cai, Tianming

    2016-02-01

    The radiation contamination after the Fukushima Daiichi Nuclear Power Plant accident attracts considerable concern all over the world. Many countries, areas, and oceans are greatly affected by the emergency situation other than Japan. An effective remediation strategy is in a highly urgent demand. Though plenty of works have been carried out, progressive achievements have not yet been well summarized. Here, we review the recent advances on the remediation of radiocesium-contaminated liquid waste, soil, and ash. The overview of the radiation contamination is firstly given. Afterwards, the current remediation strategies are critically reviewed in terms of the environmental medium. Special attentions are paid on the adsorption/ion exchange and electrically switched ion exchange methods. Finally, the present review outlines the possible works to do for the large-scale application of the novel remediation strategies.

  8. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko

    2016-10-01

    Calculations are reported for ambient dose equivalent rates [H˙*(10)] at 1 m height above the ground surface before and after remediating radiocesium-contaminated soil at wide and open sites. The results establish how the change in H˙*(10) upon remediation depends on the initial depth distribution of radiocesium within the ground, on the size of the remediated area, and on the mass per unit area of remediated soil. The remediation strategies considered were topsoil removal (with and without recovering with a clean soil layer), interchanging a topsoil layer with a subsoil layer, and in situ mixing of the topsoil. The results show the ratio of the radiocesium components of H˙*(10) post-remediation relative to their initial values (residual dose factors). It is possible to use the residual dose factors to gauge absolute changes in H˙*(10) upon remediation. The dependency of the residual dose factors on the number of years elapsed after fallout deposition is analyzed when remediation parameters remain fixed and radiocesium undergoes typical downward migration within the soil column.

  9. Herbal remedies and supplements for weight loss

    Science.gov (United States)

    Weight loss - herbal remedies and supplements; Obesity - herbal remedies; Overweight - herbal remedies ... health care provider. Nearly all over-the-counter supplements with claims of weight-loss properties contain some ...

  10. Remedial design process for Montclair/West Orange and Glen Ridge radium sites

    International Nuclear Information System (INIS)

    MacIndoe, M.; Johnson, R.; Paez-Restrepo, A.; Wilkinson, S.; Hyman, M.

    1994-01-01

    The Montclair/West Orange and Glen Ridge Superfund Sites, located in Essex County, New Jersey, are contaminated to varying degrees with radioactive materials. The waste materials originated from radium processing facilities prevalent in the area during the early 1900's. The two sites consist of 769 residential and commercial properties having a combined land area of approximately 210 acres. Historically, radioactive waste materials were disposed as landfill material in what were once rural areas. As development flourished, homes and streets were constructed over the landfilled waste. In 1981 the EPA conducted an aerial gamma radiation survey of the area to determine the presence of radioactive materials. It was from this survey that subsequent ground studies where initiated, and elevated gamma radiation and radon levels were discovered. The paper will discuss the methods used to obtain data through field investigations; the relationship between the interpretation of data to define the vertical and lateral limits of contamination and the selection of remedial design methods used to develop excavation plans; the evolution of remediation methods and technologies relative to the remediation of structures by underpinning basements, on-grade structures, and chimneys; removal of contaminated material beneath footings without cribbing; and demolition of basement foundation walls (where contaminated) without use of traditional support methods. Finally, the paper will discuss remedial action execution of the work

  11. New Mexico English Remediation Taskforce Report

    Science.gov (United States)

    New Mexico Higher Education Department, 2016

    2016-01-01

    In March, 2016, the state of New Mexico established a Remediation Task Force to examine remediation reform efforts across the state's higher education institutions. On March 11, the Task Force met for the "New Mexico Corequisite Remediation at Scale Policy Institute" in order to learn about the results of the latest national reform…

  12. Remediation: Higher Education's Bridge to Nowhere

    Science.gov (United States)

    Complete College America, 2012

    2012-01-01

    The intentions were noble. It was hoped that remediation programs would be an academic bridge from poor high school preparation to college readiness. Sadly, remediation has become instead higher education's "Bridge to Nowhere." This broken remedial bridge is travelled by some 1.7 million beginning students each year, most of whom will…

  13. Remedial action selection report Maybell, Colorado, site. Final report

    International Nuclear Information System (INIS)

    1996-12-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 )

  14. Proceedings of the remediation technologies symposium 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This conference provided a forum to discuss the remediation of contaminated sites. It was attended by all industry sectors that have an interest in learning about technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation and industrial pollutant treatments. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies. The diversified sessions at this conference were entitled: regulatory update; Montreal Centre of Excellence in Brownfields Rehabilitation; soil and groundwater remediation through the Program of Energy Research and Development at Environment Canada; technology from the Netherlands; bioremediation; hydrocarbons; in-situ remediation; phytoremediation; salt management; unique locations; and, miscellaneous issues. Some areas and case studies covered in the presentations included: biological and non-biological treatments; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; electrochemical remediation; and membrane technology. The conference featured 63 presentations, of which 23 have been catalogued separately for inclusion in this database. tabs., figs.

  15. Proceedings of the remediation technologies symposium 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This conference provided a forum to discuss the remediation of contaminated sites. It was attended by all industry sectors that have an interest in learning about technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation and industrial pollutant treatments. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies. The diversified sessions at this conference were entitled: regulatory update; Montreal Centre of Excellence in Brownfields Rehabilitation; soil and groundwater remediation through the Program of Energy Research and Development at Environment Canada; technology from the Netherlands; bioremediation; hydrocarbons; in-situ remediation; phytoremediation; salt management; unique locations; and, miscellaneous issues. Some areas and case studies covered in the presentations included: biological and non-biological treatments; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; electrochemical remediation; and membrane technology. The conference featured 63 presentations, of which 23 have been catalogued separately for inclusion in this database. tabs., figs

  16. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado

    International Nuclear Information System (INIS)

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ''may affect'' the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA)

  17. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Radiological audit of remedial action activities at the processing sites Mexican Hat, Utah and Monument Valley, Arizona. Audit date: May 3--7, 1993, Final report

    International Nuclear Information System (INIS)

    1993-05-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing sites in Mexican Hat, Utah, and Monument Valley, Arizona. This audit was conducted May 3--7, 1993, by Bill James and Gerry Simiele of the TAC. Three site-specific findings and four observations were identified during the audit and are presented in this report. The overall conclusion from the audit is that the majority of the radiological aspects of the Mexican Hat, Utah, and Monument Valley, Arizona, remedial action programs are performed adequately. However, the findings identify that there is some inconsistency in following procedures and meeting requirements for contamination control, and a lack of communication between the RAC and the DOE on variances from the published remedial action plan (RAP)

  19. Integrating removal actions and remedial actions: Soil and debris management at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Goidell, L.C.; Hagen, T.D.; Strimbu, M.J.; Dupuis-Nouille, E.M.; Taylor, A.C.; Weese, T.E.; Yerace, P.J.

    1996-01-01

    Since 1991, excess soil and debris generated at the Fernald Environmental management Project (FEMP) have been managed in accordance with the principles contained in a programmatic Removal Action (RvA) Work Plan (WP). This plan provides a sitewide management concept and implementation strategy for improved storage and management of excess soil and debris over the period required to design and construct improved storage facilities. These management principles, however, are no longer consistent with the directions in approved and draft Records of Decision (RODs) and anticipated in draft RODs other decision documents. A new approach has been taken to foster improved management techniques for soil and debris that can be readily incorporated into remedial design/remedial action plans. Response, Compensation and Liability Act (CERCLA) process. This paper describes the methods that were applied to address the issues associated with keeping the components of the new work plan field implementable and flexible; this is especially important as remedial design is either in its initial stages or has not been started and final remediation options could not be precluded

  20. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    Science.gov (United States)

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier

  1. Integrated remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Dykes, R.S.; Howles, A.C.

    1992-01-01

    Remediation of sites contaminated with petroleum hydrocarbons and other organic chemicals frequently focuses on a single phase of the chemical in question. This paper describes an integrated approach to remediation involving selection of complimentary technologies designed to create a remedial system which achieves cleanup goals in affected media in the shortest possible time consistent with overall environmental protection

  2. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.

    1996-01-01

    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities

  3. Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediation

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2016-01-01

    A highly oil-polluted soil from Krasnoe in North-West Russia was used to investigate the degradation of organic pollutants during electrodialytic remediation. Removal efficiencies were up to 70 % for total hydrocarbons (THC) and up to 65 % for polyaromatic hydrocarbons (PAH). Relatively more...... of the lighter PAH compounds and THC fractions were degraded. A principal component analysis (PCA) revealed a difference in the distribution of PAH compounds after the remediation. The observed clustering of experiments in the PCA scores plot was assessed to be related to the stirring rate. Multivariate analysis...... of the experimental settings and final concentrations in the 12 experiments revealed that the stirring rate of the soil suspension was by far the most important parameter for the remediation for both THC and PAH. Light was the second most important variable for PAH and seems to influence degradation. The experimental...

  4. Radon remediation in irish schools

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: Commencing in 1998, the Radiological Protection Institute of Ireland carried out radon measurements in 3826 schools in the Republic of I reland on behalf of the Irish Department of Education and Science (D.E.S.). This represents approximately 97% of all schools in the country. Approximately 25% (984) schools had radon concentrations above the Irish national schools Reference Level for radon of 200 Bq/m 3 and required remedial work. The number of individual rooms with radon concentrations above 200 Bq/m 3 was 3020. Remedial work in schools commenced in early 2000. In general schools with maximum radon concentrations in the range 200 -400 Bq/m 3 in one or more rooms were remediated through the installation of passive systems such as an increase in permanent background ventilation mainly wall vents and trickle vents in windows. Schools with maximum radon concentrations greater than 400 Bq/m 3 were usually remediated through the provision of active systems mainly fan assisted sub -slab de pressurization or where this was not possible fan assisted under floor ventilation. The cost of the remedial programme was funded by central Government. Active systems were installed by specialized remedial contractors working to the specifications of a radon remedial expert appointed by the D.E.S. to design remedial systems for affected schools. Schools requiring increased ventilation were granted aided 190 pounds per affected room and had to organize the work themselves. In most schools radon remediation was successful in reducing existing radon concentrations to below the Reference Level. Average radon concentration reduction factors for sub-slab de pressurization systems and fan assisted fan assisted under floor ventilation ranged from 5 to 40 with greater reduction rates found at higher original radon concentrations. Increasing ventilation in locations with moderately elevated radon concentrations (200 - 400 Bq/m 3 ) while not as effective as active systems produced on

  5. 29 CFR 1614.503 - Enforcement of final Commission decisions.

    Science.gov (United States)

    2010-07-01

    ... ADEA, the Equal Pay Act or the Rehabilitation Act and to seek judicial review of the agency's refusal... 1614.503 Labor Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION FEDERAL SECTOR EQUAL EMPLOYMENT OPPORTUNITY Remedies and Enforcement § 1614.503 Enforcement of final...

  6. The benefits from environmental remediation

    International Nuclear Information System (INIS)

    Falck, W.E.

    2002-01-01

    Environmental remediation projects inevitably take place against a backdrop of overall social goals and values. These goals can include, for example, full employment, preservation of the cultural, economic and archaeological resources, traditional patterns of land use, spiritual values, quality of life factors, biological diversity, environmental and socio-economic sustainability, protection of public health. Different countries will have different priorities, linked to the overall set of societal goals and the availability of resources, including funding, man-power and skills. These issues are embedded within both a national and local socio-cultural context, and will shape the way in which the remediation process is structured in any one country. The context will shape both the overall objectives of a remediation activity within the framework of competing societal goals, as well as generate constraints on the decision making process. Hence, the overall benefit of a remediation project is determined by its overall efficiency and effectiveness within the given legal, institutional, and governance framework, under the prevailing socio-economic boundary conditions, and balancing technology performance and risk reduction with fixed or limited budgetary resources, and is not simply the result of the technical remediation operation itself. (author)

  7. Evaluation and determination of soil remediation schemes using a modified AHP model and its application in a contaminated coking plant.

    Science.gov (United States)

    Li, Xingang; Li, Jia; Sui, Hong; He, Lin; Cao, Xingtao; Li, Yonghong

    2018-07-05

    Soil remediation has been considered as one of the most difficult pollution treatment tasks due to its high complexity in contaminants, geological conditions, usage, urgency, etc. The diversity in remediation technologies further makes quick selection of suitable remediation schemes much tougher even the site investigation has been done. Herein, a sustainable decision support hierarchical model has been developed to select, evaluate and determine preferred soil remediation schemes comprehensively based on modified analytic hierarchy process (MAHP). This MAHP method combines competence model and the Grubbs criteria with the conventional AHP. It not only considers the competence differences among experts in group decision, but also adjusts the big deviation caused by different experts' preference through sample analysis. This conversion allows the final remediation decision more reasonable. In this model, different evaluation criteria, including economic effect, environmental effect and technological effect, are employed to evaluate the integrated performance of remediation schemes followed by a strict computation using above MAHP. To confirm the feasibility of this developed model, it has been tested by a benzene workshop contaminated site in Beijing coking plant. Beyond soil remediation, this MAHP model would also be applied in other fields referring to multi-criteria group decision making. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Lewis, C. M.; Van Pelt, R.

    2002-01-01

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  9. International experience in tailings pond remediation

    Energy Technology Data Exchange (ETDEWEB)

    MacG. Robertson, A. [Robertson GeoConsultants Ltd., Vancouver (Canada)

    2001-07-01

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  10. International experience in tailings pond remediation

    International Nuclear Information System (INIS)

    Robertson, A.MacG.

    2001-01-01

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  11. Program management strategies for following EPA guidance for remedial design/remedial action at DOE sites

    International Nuclear Information System (INIS)

    Hopper, J.P.; Chew, J.R.; Kowalski, T.E.

    1991-01-01

    At the US Department of Energy (DOE) facilities, environmental restoration is being conducted in accordance with Federal Facilities Compliance Agreements (or Interagency Agreements). These agreements establish a cooperative working relationship and often define roles, responsibilities and authorities for conduct and oversight of the Remedial Action Programs. The US Environmental Protection Agency (EPA) has guidelines on how to initiate and perform remedial actions for sites they are remediating under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Re-Authorization Act (SARA). This paper addresses some of the difference and commonalities between the DOE project management procedures and EPA guidance documents. This report covers only the RD/RA phase of environmental restoration. On the surface, there are many apparent differences between the DOE and EPA project management processes. Upon closer review, however, many of the differences are the result of applying different terminology to the same phase of a project. By looking for the similarities in the two processes rather than hunting for differences, many communication problems are avoided. Understanding both processes also aids in figuring out when, how and to what extent EPA should participate in the RD/RA phase for DOE lead cleanup activities. The DOE Remedial Design and Remedial Action process is discussed in a stepwise manner and compared to the EPA process. Each element of the process is defined. Activities common to both the EPA and DOE are correlated. The annual DOE budget cycle for remediation projects and the four-year cycle for appropriation of remediation funds are discussed, and the constraints of this process examined. DOE orders as well as other requirements for RD/RA activities are summarized and correlated to EPA regulations where this is possible

  12. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 2

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project is to eliminate, reduce, or address to acceptable levels the potential health and environmental consequences of milling activities. One of the first steps in the UMTRA Ground Water Project is the preparation of the Programmatic Environmental Impact Statement (PEIS). This report contains the comments and responses received on the draft PEIS

  13. Remediation of sites with dispersed radioactive contamination

    International Nuclear Information System (INIS)

    2004-01-01

    To respond to the needs of Member States, the IAEA launched an environmental remediation project to deal with the problems of radioactive contamination worldwide. The IAEA environmental remediation project includes an IAEA Coordinated Research Project, as well as the participation of IAEA experts in concrete remediation projects when requested by individual Member States. The IAEA has prepared several documents dedicated to particular technical or conceptual areas, including documents on the characterization of contaminated sites, technical and non-technical factors relevant to the selection of a preferred remediation strategy and technique, overview of applicable techniques for environmental remediation,, options for the cleanup of contaminated groundwater and planning and management issues. In addition, a number of other IAEA publications dealing with related aspects have been compiled under different IAEA projects; these include TECDOCs on the remediation of uranium mill tailings, the decontamination of buildings and roads and the characterization of decommissioned sites. Detailed procedures for the planning and implementation of remedial measures have been developed over the past decade or so. A critical element is the characterization of the contamination and of the various environmental compartments in which it is found, in order to be able to evaluate the applicability of remediation techniques. The chemical or mineralogical form of the contaminant will critically influence the efficiency of the remediation technique chosen. Careful delineation of the contamination will ensure that only those areas or volumes of material that are actually contaminated are treated. This, in turn, reduces the amount of any secondary waste generated. The application of a remediation technique requires holistic studies examining the technical feasibility of the proposed measures, including analyses of their impact. Consequently, input from various scientific and engineering

  14. Sustainable remediation of mercury contaminated soils by thermal desorption.

    Science.gov (United States)

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  15. Site remediation techniques in India: a review

    International Nuclear Information System (INIS)

    Anomitra Banerjee; Miller Jothi

    2013-01-01

    India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelands arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)

  16. Proceedings of the remediation technologies symposium 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference provided an opportunity for industry, practitioners, researchers and regulators to discuss technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies in 13 sessions entitled: hydrocarbon contamination; salt management; liability management; chemical oxidation; light non-aqueous phase liquids (LNAPL); Montreal Center of Excellence in Brownfields Rehabilitation; Alberta government updates; phytoremediation; natural attenuation; Lake Wabamun; ex-situ remediation; in-situ remediation; and, miscellaneous issues. Technological solutions for erosion control and water clarification were highlighted. The conference featured 52 presentations, of which 17 have been catalogued separately for inclusion in this database. tabs., figs.

  17. ICDF Complex Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  18. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Hansen, Lene

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  19. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1985-01-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses program to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  20. Remedial action of radium contaminated residential properties

    International Nuclear Information System (INIS)

    White, D.; Eng, J.

    1986-01-01

    Since November 1983, the New Jersey Department of Environmental Protection (NJDEP) and the US Environmental Protection Agency (USEPA) have been in the process of identifying properties in Montclair, Glen Ridge and West Orange, New Jersey, which were built over radium contaminated soil landfilled areas. Elevated indoor radon concentrations prompted the Centers for Disease Control (CDC) to issue a health advisory which included permanent remediation of radon progeny levels in excess of 0.02 Working Levels within two years of discovery. In order to expedite remedial action, NJDEP undertook a ten million dollar cleanup program. Remedial Action at the 12 residential properties encountered some unanticipated problems despite the efforts of numerous government agencies and their contractors to characterize the contamination as much as possible prior to remediation. Some of the unanticipated issues include contamination from other radionuclides, underestimation of removal volumes, and controversy over the transportation and disposal of the radium contaminated soil at a commercial facility in Nevada. This paper will review the approach taken by NJDEP to the remedial action for radium contaminated soil, discuss some of the issues encountered during the remedial action, and provide post remedial action data

  1. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1984-10-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses progress to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  2. Electrodialytic Remediation of Different Cu-Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Hansen, Lene

    1999-01-01

    Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action......Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action...

  3. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Garcia Frutos, F.J.; Diaz, J.; Rodriguez, V.; Escolano, O.; Garcia, S.; Perez, R.; Martinez, R.; Oromendia, R.

    2005-01-01

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  4. Electrodialytic remediation of solid waste

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...

  5. Sustainability: A new imperative in contaminated land remediation

    International Nuclear Information System (INIS)

    Hou, Deyi; Al-Tabbaa, Abir

    2014-01-01

    Highlights: • Reviewed the emerging green and sustainable remediation movement in the US and Europe. • Identified three sources of pressures for emphasizing sustainability in the remediation field. • Presented a holistic view of sustainability considerations in remediation. • Developed an integrated framework for sustainability assessment and decision making. - Abstract: Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders’ demand for economically sustainable brownfield remediation and “green” practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the “sustainable remediation” concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making

  6. Remediating a design tool

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Rädle, Roman; Klokmose, Clemens N.

    2018-01-01

    digital sticky notes setup. The paper contributes with a nuanced understanding of what happens when remediating a physical design tool into digital space, by emphasizing focus shifts and breakdowns caused by the technology, but also benefits and promises inherent in the digital media. Despite users......' preference for creating physical notes, handling digital notes on boards was easier and the potential of proper documentation make the digital setup a possible alternative. While the analogy in our remediation supported a transfer of learned handling, the users' experiences across technological setups impact......Sticky notes are ubiquitous in design processes because of their tangibility and ease of use. Yet, they have well-known limitations in professional design processes, as documentation and distribution are cumbersome at best. This paper compares the use of sticky notes in ideation with a remediated...

  7. Alternative Remedies

    Science.gov (United States)

    ... Home › Aging & Health A to Z › Alternative Remedies Font ... medical treatment prescribed by their healthcare provider. Using this type of alternative therapy along with traditional treatments is ...

  8. Case study of an approved corrective action integrating active remediation with intrinsic remediation

    International Nuclear Information System (INIS)

    Teets, D.B.; Guest, P.R.; Blicker, B.R.

    1996-01-01

    Parsons Engineering Science, Inc., performed UST removals and/or site assessments at UST system locations at a former US Air Force Base (AFB) in Denver, Colorado. Four UST systems, incorporating 17 USTs, were located within the petroleum, oils, and lubricants bulk storage yard (POL Yard) of the former AFB. During the tank removals and subsequent site investigations, petroleum hydrocarbon contamination was found in soils at each site. Significant releases from two of the UST systems resulted in a dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) plume in the groundwater, and smear-zone contamination of soils beneath the majority of the POL Yard. Because of the close proximity of the UST systems, and the presence of the groundwater plume beneath the POL Yard, a corrective action plan (CAP) was prepared that encompassed all four UST systems. An innovative, risk-based CAP integrated active remediation of petroleum-contaminated soils with intrinsic remediation of groundwater. A natural attenuation evaluation for the dissolved BTEX was performed to demonstrate that natural attenuation processes are providing adequate remediation of groundwater and to predict the fate of the groundwater plume. BTEX concentrations versus distance were regressed to obtain attenuation rates, which were then used to calculate BTEX degradation rates using a one-dimensional, steady-state analytical solution. Additionally, electron acceptor concentrations in groundwater were compared to BTEX concentrations to provide evidence that natural attenuation of BTEX compounds was occurring. The natural attenuation evaluation was used in the CAP to support the intrinsic remediation with long-term monitoring alternative for groundwater, thereby avoiding the installation of an expensive groundwater remediation system

  9. The Integration of Cognitive Remediation Therapy into the Whole Psychosocial Rehabilitation Process: An Evidence-Based and Person-Centered Approach

    Directory of Open Access Journals (Sweden)

    Rafael Penadés

    2012-01-01

    Full Text Available Cognitive remediation therapies seem to ameliorate cognitive impairments in patients with schizophrenia. Interestingly, some improvement in daily functioning can also be expected as a result. However, to achieve these results it is necessary that cognitive remediation is carried out in the context of broader psychosocial rehabilitation involving the learning of other communication, social, and self-control skills. Unfortunately, little is known about how to integrate these different rehabilitation tools in broader rehabilitation programs. Based on both the neurocognitive behavioral approach and the action theory framework, a hierarchical flowchart is represented in this paper to integrate CRT with other evidence-based psychological therapies in outpatient settings. Finally, some evidence is provided in which cognitive abilities need to be targeted in remediation programs to improve functioning. In summary, to improve daily functioning, according to these studies, cognitive remediation needs to include the teaching of some cognitive strategies that target executive skills.

  10. CENTRAL PLATEAU REMEDIATION

    International Nuclear Information System (INIS)

    ROMINE, L.D.

    2006-01-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress

  11. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    International Nuclear Information System (INIS)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section

  12. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  13. 40 CFR 761.61 - PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...

  14. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. Volume 4 of 4

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Energy's (DOE) is preparing this ''Hanford Site Comprehensive Land Use Plan'' (Comprehensive Plan), Appendix M to address future land uses for the Hanford Site. The DOE has integrated this land-use planning initiative with the development of the HRA-EIS to facilitate and expedite land-use and remediation decision making, reduce time and cost of remediation, and optimize the usefulness of the planning process. The HRA-EIS is being developed to evaluate the potential environmental impacts associated with remediation, create a remedial baseline for the Environmental Restoration Program, and provide a framework for future uses at the Hanford Site. This Comprehensive Plan identifies current assets and resources related to land-use planning, and provides the analysis and recommendations for future land sues and accompanying restrictions at the Hanford Site over a 50-year period. This Comprehensive Plan relies on the analysis of environmental impacts in the HRA-EIS. The National Environmental Policy Act of 1969 (NEPA) Record of Decision (ROD) issued for the HRA-EIS will be the decision process for finalization and adoption of this Comprehensive Plan. The HRA-EIS and this Comprehensive Plan will provide a basis for remediation decisions to be identified and contained in site- and area-specific Comprehensive Environmental Response, Compensation and Liability Act of 1980 ROD

  15. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  16. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  17. Measures for radiation prevention and remediation of islightly radioactive contaminated sites by phytoremediation and subsequent utilization of the loaded plant residues (PHYTOREST). Final report

    International Nuclear Information System (INIS)

    Willscher, Sabine; Werner, Peter; Jablonski, Lukasz; Wittig, Juliane

    2013-01-01

    In the presented scientific research project, the radiation protection of soil surfaces impacted by former industrial utilization or mining was investigated. This radiation protection of the contaminated soil surfaces was carried out by bioremediation techniques. The soil surfaces include larger agricultural or forestry areas useful for the production of sustainable plant-based raw materials and renewable energies. The contaminated areas show a positive climatic water balance with a subsequent impact of SM/R contaminants onto the adjacent ground water. During this scientific research project, the introduction of sustainable, biosphere conserving methods for a long-term remediation of slightly to moderately HM/R- contaminated areas was investigated; these areas are characterized by a radiotoxic amplifying potential due to a continued occurrence of radionuclides and heavy metals/ metalloids. The insights into transfer processes from the soil substrate over the mediating soil water phase and by microbes into the plant roots, into the shoots and the leaves of the plants represent necessary requirements for the control of SM/R transfer into the plants and its optimization. In this research project, considerable investigations were carried out for the understanding of binding of HM/R in the different plant compartments, also depending on different soil additives. The obtained first scientific results and their practical applicability were transformed onto experimental soil areas under natural field conditions. The transfer processes could be optimized and finally bioremediation efficiency could be enhanced due to the accompanying modifications (different soil additives of the field experiments). This new remediation method, further developed to a field application, represents a new tool for the stabilization / and extraction of HM/R on the field site and improves the efficiency of bioremediation processes. A pacification of the large areas with slightly to medium

  18. Final remediation of the provisional storage near Zavratec. Separation of waste, decontamination and radiological measurements

    International Nuclear Information System (INIS)

    Stepisnik, M.; Zeleznik, N.; Mele, I.

    2000-01-01

    This paper presents remedial activities in Zavratec during winter 1999 - 2000. The difficult and slow process of separation radioactive from non-radioactive waste is explained, and the measuring techniques and equipment for separation are presented. The measurements of storage contamination and its decontamination, involving different practical problems, are described in detail. As a result, the initial volume of the waste was reduced to 50%, in spite of the extended decontamination works. The waste has been relocated to the Brinje storage facility. Measurements inside and outside the Zavratec facility after decontamination showed that no radioactivity higher than the natural background was present. The facility was released for unrestricted use. (author)

  19. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    International Nuclear Information System (INIS)

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities

  20. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... efficiency from 1% to 80% compared to experiments with no stirring but with the same operational conditions. This showed the crucial importance of having the solids in suspension and not settled during the remediation....

  1. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  2. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  3. Remediation in Practicing Physicians: Current and Alternative Conceptualizations.

    Science.gov (United States)

    Bourgeois-Law, Gisèle; Teunissen, Pim W; Regehr, Glenn

    2018-04-24

    Suboptimal performance in practicing physicians is a decades-old problem. The lack of a universally accepted definition of remediation, the paucity of research on best remediation practices, and the ongoing controversy regarding the institutional responsibility for enacting and overseeing this activity suggests that the remediation of physicians is not merely a difficult problem to solve, but a problem that the community does not grapple with meaningfully. Undoubtedly, logistical and political considerations contribute to this state of affairs; however, other underlying conceptual issues may also play a role in the medical profession's difficulties in engaging with the challenges around remediation.Through a review of the medical education and other literatures, the authors examined current conceptualizations of both remediation itself and the individual being remediated, as well as how the culture of medicine influences these conceptions. The authors explored how conceptualizations of remediation and the surrounding culture might affect not only the medical community's ability to support, but also its willingness to engage with physicians in need of remediation.Viewing remediation as a means of supporting practice change-rather than as a means of redressing gaps in knowledge and skill-might be a useful alternative conceptualization, providing a good place to start exploring new avenues of research. However, moving forward will require more than simply a reconceptualizion of remediation; it will also necessitate a change in how the community views its struggling members and a change in the medical culture that currently positions professional autonomy as the foundational premise for individual practice improvement.

  4. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  5. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  6. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  7. Remediation of PAH-contaminated soil using Achromobacter sp

    International Nuclear Information System (INIS)

    Cutright, T.J.; Lee, S.

    1994-01-01

    Several technologies have the potential to effectively remediate soil contaminated with polycyclic aromatic hydrocarbons (PAHs): solvent extraction, coal-oil agloflotation, supercritical extraction, and bioremediation. Due to the cost effectiveness and in-situ treatment capabilities of bioremediation, studies were conducted to determine the efficiency of Achromobacter sp. to remediate an industrial contaminated soil sample. Specifically, the use of three different mineral salt solutions in conjunction with the Achromobacter sp. was investigated. The molecular identification of the contaminants and their respective levels after remediation were determined using a Hewlett-Packard 1050 HPLC. Preliminary results show a 92% remediation for the use of two of the mineral salt solutions after 20 days' treatment. After 8 weeks, the remediation efficiency reached 99%. Bioremediation was also critically compared to the other potential remediation technologies

  8. Key Principles of Superfund Remedy Selection

    Science.gov (United States)

    Guidance on the primary considerations of remedy selection which are universally applicable at Superfund sites. Key guidance here include: Rules of Thumb for Superfund Remedy Selection and Role of the Baseline Risk Assessment.

  9. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

  10. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process.

    Science.gov (United States)

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Remedial technology and characterization development at the SRS F/H Retention Basins using the DOE SAFER methodology

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Kuelske, K.J.

    1994-01-01

    The Streamlined Approach For Environmental Restoration (SAFER) is a strategy used to accelerate and improve the environmental assessment and remediation of the F/H Retention Basins at the Savannah River Site (SRS). TMs strategy combines the data quality objectives (DQO) process and the observational approach to focus on data collection and converge on a remedial action early. This approach emphasizes stakeholder involvement throughout the Remedial Investigation/Feasibility Study (RI/FS) process. The SAFER methodology is being applied to the characterization, technology development, and remediation tasks for the F/H Retention Basins. This ''approach was initiated in the scoping phase of these projects through the involvment of major stakeholders; Department of Energy (DOE)-Savannah River Field Office, DOE-Headquarters, Westinghouse Savannah River Company, United States Environmental Protection Agency (EPA) Region IV, and the state of South Carolina Department of Health and Environmental Control (SCDHEC), in the development of the Remedial Investigation (RI) workplans. A major activity that has been initiated is the development and implementation of a phase I workplan to identify preliminary contaminants of concern (pCOCs). A sampling plan was developed and approved by the major stakeholders for preliminary characterization of wastes remaining in the F/H Retention Basins. The involvement of stakeholders, development of a site conceptual model, development of remedial objectives for probable conditions, identification of the problem and reasonable deviations, and development of initial decision rules in the planning stages will ensure that preliminary data needs are identified and obtained prior to the initiation of the assessment and implementation phases of the projects resulting in the final remediation of the sites in an accelerated and more cost effective manner

  12. Medicinal plants used as home remedies: a family survey by first year medical students.

    Science.gov (United States)

    Sewani-Rusike, Constance R; Mammen, Marykutty

    2014-01-01

    There is a hierarchical organisation of knowledge in the use of medicinal plants in communities. Medicinal use knowledge starts in the home and is passed on to family members. Next in the hierarchy are neighbours, village elders and finally, traditional healers being the most knowledgeable. For primary health care this hierarchy is actively followed in seeking remedies for ailments. This study was a survey of medicinal plant knowledge from family members of 1(st) year medical students registered at Walter Sisulu University. A total of 206 first year medical students participated in this study in 2010 and 2011. Results revealed 47 species used as home remedies, 32% of which are food plants. Leaves and roots were reported as most commonly used. The top five ailments managed at home were gastrointestinal problems (25 plants), wounds (19 plants), respiratory tract problems (19 plants), infections, including sexually transmitted diseases (19 plants) and pain including headaches (19 plants). Chronic diseases such as hypertension, diabetes, cancer and reproductive ailments also formed a large group of diseases self-managed at home (29 plants). Family members hold knowledge of medicinal plant use. From this study, first year medical students were made aware of the relationship between common ailments and associated home remedies. This study forms a basis for further study of medicinal plants to validate their use as medicinal remedies.

  13. Biological technologies for the remediation of co-contaminated soil.

    Science.gov (United States)

    Ye, Shujing; Zeng, Guangming; Wu, Haipeng; Zhang, Chang; Dai, Juan; Liang, Jie; Yu, Jiangfang; Ren, Xiaoya; Yi, Huan; Cheng, Min; Zhang, Chen

    2017-12-01

    Compound contamination in soil, caused by unreasonable waste disposal, has attracted increasing attention on a global scale, particularly since multiple heavy metals and/or organic pollutants are entering natural ecosystem through human activities, causing an enormous threat. The remediation of co-contaminated soil is more complicated and difficult than that of single contamination, due to the disparate remediation pathways utilized for different types of pollutants. Several modern remediation technologies have been developed for the treatment of co-contaminated soil. Biological remediation technologies, as the eco-friendly methods, have received widespread concern due to soil improvement besides remediation. This review summarizes the application of biological technologies, which contains microbial technologies (function microbial remediation and composting or compost addition), biochar, phytoremediation technologies, genetic engineering technologies and biochemical technologies, for the remediation of co-contaminated soil with heavy metals and organic pollutants. Mechanisms of these technologies and their remediation efficiencies are also reviewed. Based on this study, this review also identifies the future research required in this field.

  14. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  15. Options Evaluation for Remediation of the Gunnar Site Using a Decision- Tree Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yankovich, Tamara L. [International Atomic Energy Agency, P.O. Box 100, 1400 Vienna (Austria); Hachkowski, Andrea [CH2M Hill Canada Limited, 1305 Kenaston Blvd, Winnipeg, Manitoba, R3P 2P2 (Canada); Klyashtorin, Alexey [Saskatchewan Research Council, 15 Innovation Blvd no.125, Saskatoon, Saskatchewan, S7N 2X8 (Canada)

    2014-07-01

    Current best practice in the nuclear industry involves proactive planning of activities from cradle-to-grave over the entire nuclear life cycle in accordance with national requirements and international guidance. This includes the development of detailed decommissioning plans (DDP) at an early stage to facilitate proactive, responsible decision-making as activities are being planned. It should be noted, however, that the current approach may not be applicable to historic nuclear legacy sites, such as abandoned uranium mines and mills, which had operated in the past under less stringent regulatory regimes. In such cases, records documenting past activities are often not available and monitoring data may not have been collected, thereby limiting knowledge of impacts related to past activities. This can lead to challenges in gaining regulatory and funding approvals related to the remediation of such sites, especially given the costs that can be associated with remediation and the uncertainties in characterizing the existing situation. The Gunnar Site, in northern Saskatchewan, is an example of an abandoned uranium mine/mill site, which was operated between the late 1950's to early 1960's under a different regulatory regime than today. Due to the lack of monitoring data and records for the site, and the corresponding uncertainties, a number of precedent-setting approaches have been developed and applied, as part of the environmental impact assessment (EIA) process. Specifically, unlike traditional environmental assessments for planned and operating facilities, it was not possible to identify a preferred and alternative remedial option. Instead, a step-wise decision-tree approach has been developed to identify all potentially feasible remedial options and to map out key decision points, during the licensing phase of the project (following approval of the environmental assessment), when final remedial options will be selected. The presentation will provide

  16. Technologies for remediating radioactively contaminated land

    International Nuclear Information System (INIS)

    Pearl, M.

    2000-01-01

    This paper gives an overview of technologies that can be used for the remediation of radioactively contaminated ground. There are a wide variety of techniques available -most have established track records for contaminated ground, though in general many are only just being adapted to use for radioactively contaminated ground. 1) Remediation techniques for radioactively contaminated ground involve either removal of the contamination and transfer to a controlled/contained facility such as the national LLW repository at Drigg, or 2) immobilization, solidification and stabilization of the contamination where the physical nature of the soil is changed, or an 'agent' is added to the soil, to reduce the migration of the contaminants, or 3) isolation and containment of the contaminated ground to reduce contaminant migration and control potential detrimental effects to human health. Where contamination has to be removed, ex situ and in situ techniques are available which minimize the waste requiring disposal to an LLW repository. These techniques include: 1) detector-based segregation 2) soil washing by particle separations 3) oil washing with chemical leaching agents 4) electro remediation 5) phyto remediation. Although many technologies are potentially applicable, their application to the remediation of a specific contaminated site is dependent on a number of factors and related to detailed site characterization studies, results from development trials and BPEO (best practicable environmental option) studies. Those factors considered of particular importance are: 1) the clean-up target 2) technical feasibility relative to the particular site, soil and contaminant characteristics, and time frame 3) site infrastructure arrangements and needs, the working life of the site and the duration of institutional care 4) long-term monitoring arrangements for slow remedial techniques or for immobilization and containment techniques 5) validation of the remediation 6) health and

  17. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses....... The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...

  18. Remediation of spent block in Uvanas deposit

    International Nuclear Information System (INIS)

    Nurgaziev, M.A.; Iskakov, M.M.

    2012-01-01

    In 2007 by 'Kazatomprom' and 'Mining company' board decision, the branch of 'Mining company', 'Steppe ore management body' is reorganized in structure subdivision, the basic activity of which is organization and carrying out remediation works on spent blocks of PSV uranium deposit. In 2002 works are completed on OVOS for operating deposits Uvanas, Kanjugan, Northern Karamurun and Eastern Minkuduk. The results of present work were reported in IAEA conference. The working project 'Remediation of spent blocks of PSV uranium deposit PV-17 polygon of Steppe ore management body' approved in 2005 was developed for carrying out the remediation works. Works funding were carried out from liquidation fund of the current deposit established in accordance with the Republic of Kazakhstan law 'About interior and interior use'. Deposits remediation is the part of deposit operation life cycle which obliges to operate deposits with minimum expenditures for remediation.

  19. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  20. IAEA Expert Remediation Mission to Japan Issues Preliminary Report

    International Nuclear Information System (INIS)

    2013-01-01

    consisted of international experts and IAEA staff working in a range of disciplines, including radiation protection, remediation technologies, waste management and stakeholder involvement. The Mission's Preliminary Summary Report can be viewed here. The final report will be presented to the Japanese government in December. Background The Mission, which is the follow-up to the IAEA International Mission on Remediation of Large Contaminated Areas Off-site the Fukushima Daiichi NPS in October 2011, had the following three objectives: To provide assistance to Japan in assessing the progress made with the remediation of the Special Decontamination Area (not included in the previous mission of 2011) and the Intensive Contamination Survey Areas; To review remediation strategies, plans and works, in view of the advice provided by the previous mission on remediation of large contaminated off-site areas; and To share its findings with the international community as lessons learned. The Mission Team assessed comprehensive information provided by the Japanese authorities and held discussions with the relevant institutions, including national, prefectural and local institutions. It also visited the affected areas, including several sites where remediation activities were conducted and some temporary storage sites for radioactive waste and soil, as well as a survey area for an interim storage facility, and a demonstration facility for incineration of sewage sludge. The Mission was in line with the IAEA Action Plan on Nuclear Safety, which was unanimously endorsed by the IAEA's Member States in September 2011 and defines a programme of work to strengthen the global nuclear safety framework. (IAEA)

  1. Herbal remedies: issues in licensing and economic evaluation.

    Science.gov (United States)

    Ashcroft, D M; Po, A L

    1999-10-01

    In recent years, the use of alternative therapies has become widespread. In particular, there has been a resurgence in the public's demand for herbal remedies, despite a lack of high-quality evidence to support the use of many of them. Given the increasing pressures to control healthcare spending in most countries, it is not surprising that attention is being focused on the cost effectiveness of herbal remedies. We address the question of whether there is sufficient information to enable the assessment of the cost effectiveness of herbal remedies. In so doing, we discuss the current state of play with several of the more high-profile alternative herbal remedies [Chinese medicinal herbs for atopic eczema, evening primrose oil, ginkgo biloba, hypericum (St John's wort)] and some which have made the transition from being alternative to being orthodox remedies. We use historical context to discuss, on the one hand, the increasing commodification of herbal remedies and on the other, the trend towards greater regulatory control and licensing of alternative herbal remedies. We argue that unless great care is exercised, these changes are not necessarily in the best interests of patients. In order to identify cost-effective care, we need reliable information about the costs as well as the efficacy and safety of the treatments being assessed. For most alternative therapies, such data are not available. We believe that studies to gather such data are long overdue. Whilst we argue strongly in favour of control of some herbal remedies, we urge caution with the trend towards licensing of all herbal remedies. We argue that the licensing of those herbal remedies with equivocal benefits and few risks, as evidenced by a long history of safe use, increases barriers to entry and increases societal healthcare costs.

  2. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-11-14

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  3. The Aftermath of Remedial Math: Investigating the Low Rate of Certificate Completion among Remedial Math Students

    Science.gov (United States)

    Bahr, Peter Riley

    2013-01-01

    Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…

  4. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  5. Passive remediation strategies for petroleum contaminated sites

    International Nuclear Information System (INIS)

    Everett, L.G.; Cullen, S.J.; Eccles, L.A.

    1991-01-01

    The US EPA is becoming increasingly aware of costs and the limited success of existing remediation strategies. Research teams within the US EPA believe that if passive remediation can be successfully demonstrated, it is a candidate for best available technology. Passive remediation, however, must be demonstrated through the use of monitoring techniques, which demonstrate: contaminants are not moving in the dissolved, adsorbed or free product phase; and contamination is biodegrading in-place. This paper presents a concise monitoring and analysis strategy for passive remediation. Specifically, the paper presents the accuracy, precision and operating range of neutron moderation techniques as a low cost, real-time screening tool to measure the migration of the dissolved phase in soil moisture, the stabilized adsorbed phase and free product movement. In addition, the paper identifies the capillary pressure range through which the dissolved phase will move and identifies techniques for satisfying the risk analysis that movement is not taking place. The rationale for passive remediation taking place is confirmed through a discussion of gas ratios associated with bacterial assimilation of hydrocarbons. Gas ratios which are relatively constant above ground are highly inverted in the subsurface at contamination sites. The use of frequent screening of a vertical geologic profile using least cost techniques and the infrequent analysis of soil gas ratios provides the required data upon which the public will accept passive remediation as best available technology at a particular site. The paper points out that neutron moderation is a high candidate vadose zone monitoring device and identifies alternative techniques using resistivity and dielectric constants, which are in the developmental stage. The economic implications for passive remediation are enormous relative to the excavation and remediation strategies which are currently in use

  6. Electrokinetic remediation - a new process for in-situ remediation of polluted land used as construction terrain; Elektrokinetische Bodensanierung - Ein neues Verfahren fuer die in-situ Sanierung bebauter Altlaststandorte

    Energy Technology Data Exchange (ETDEWEB)

    Haus, R. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Angewandte Geologie

    1998-12-31

    Electrokinetic Remediation is a coming up technology for the clean up of contaminated sites based on the electrokinetic phenomena in fine grained sediments. The following investigations offer theoretical and experimental consideration about the dependence of electrokinetic remediation techniques on the clay mineralogical composition of various clays. Finally, laboratory tests on the electroosmotic remediation of a chromate contaminated loess loam are presented. Different voltages applied led to important changes in the direction of chromate transport. When using low voltage (1 V) chromate transport was in the direction of water flow, and an increase of chromate in the effluent of the cathode could be measured. In contrast the application of high voltages up to 30 V changed the transport mechanism and high concentrations of chromate chould be detected in the anode reservoir. The results show that the clay mineral composition and the applied electric field controls the electroosmotic permeability, removal efficiency as well as the transport mechanism of the electrokinetic remediation technology in fine grained sediments. (orig.) [Deutsch] Elektrokinetische Verfahren werden in der Geotechnik zur Entwaesserung, Boeschungsstabilisierung und Bodenverbesserung von bindigen Sedimenten eingesetzt. Unter dem sanierungstechnischen Aspekt von kontaminierten Altlaststandorten ermoeglichen elektrokinetische Prozesse erstmals eine gezielte Mobilisierung von Schadstoffen (Schwermetalle, organische Verbindungen) auch in feinkoernigen Gesteinen. Entscheidend ist hierbei die Moeglichkeit eines in situ-Einsatzes unter Vermeidung des Bodenaushubes. Die vorliegenden Untersuchungen vertiefen in theoretischen und versuchstechnischen Betrachtungen die Abhaengigkeit elektrokinetischer Sanierungsverfahren von der tonmineralogischen Zusammensetzung bindiger Gesteine. Oberflaechenladung und Oberflaechenpotential ausgewaehlter Tonminerale werden quantifiziert und den Ergebnissen aus

  7. Developing a disposal and remediation plan

    International Nuclear Information System (INIS)

    Messier, T.S.

    1999-01-01

    The environmental release of wastes generated by the upstream oil and gas industry in Alberta can result in polluted soil and groundwater at several facilities across the province. Responsibility for decommissioning upstream oil and gas facilities falls under the jurisdiction of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection (AEP). This paper outlines a protocol that can serve as a framework for the development of a plan to dispose of oilfield waste and to remediate related contaminated soils. The components involved in developing a disposal and remediation plan for oilfield wastes are: (1) identifying the potential source of pollution and oilfield waste generation, (2) characterizing oilfield wastes, (3) determining the nature and extent of soil and groundwater pollution, (4) preparing a remedial action plan, (5) assessing the viability of various remediation options, and (6) preparing health and safety plan. 12 refs., 2 tabs., 2 figs

  8. REAL TIME DATA FOR REMEDIATION ACTIVITIES (11505)

    International Nuclear Information System (INIS)

    Brock, C.T.

    2011-01-01

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  9. Data Summary Report for 116-N-1 and 116-N-3 Facility Soil Sampling to Support Remedial Design

    International Nuclear Information System (INIS)

    Ludowise, J. D.

    1999-01-01

    The 116-N-1 (1301-N) and 116-N-3 (1325-N) liquid waste disposal facilities (LWDFs) are to be remediated beginning in July 2000. Each LWDF consists of a crib and a trench. Under the proposed remedial action (DOE-RL 1998b), pipelines and above ground structures would be removed. Clean overburden material would be excavated and stockpiled. Contaminated soils would be excavated, treated (if required to meet Resource Conservation and Recovery Act of 1976 [RCRA] land disposal restrictions), and finally disposed at the Environmental Restoration Disposal Facility (ERDF). The sites would then be backfilled, graded, and revegetated. The purpose of this report is to summarize results of the sampling effort and discuss how they apply to the conceptual model of the sites and the planned remedial action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and closure action under RCRA

  10. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  11. Foreword Special Issue on Electrokinetic remediation

    NARCIS (Netherlands)

    Loch, J.P.G.; Lima, A.T.

    2012-01-01

    Since the first symposium on Electro-remediation (EREM) in 1997 at the École des Mines d’Albi, in Albi, France, much international attention, interest and progress have been generated in the science and technology of electro-remediation of contaminated soils, sediments and construction

  12. Remediation of the Maxey Flats Site

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes issues associated with remedial action of Maxey Flats, a low-level radioactive waste disposal site from 1963-1977, located in Fleming County, Kentucky. Present remedial action alternatives being considered are discussed along with emergency plans, ground water monitoring plans, and budgets

  13. Superfund Record of Decision (EPA Region 2): Ramapo Landfill Site, Rockland County, NY. (First remedial action), March 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 60-acre former landfill site is located on a 96-acre tract in the Town of Ramapo, Rockland County, New York, about 35 miles northwest of New York City. Utility corridors lie on three sides of the site, including high-voltage power transmission lines. The site is currently being used as a compaction and transfer facility by the Town of Ramapo. Trash and debris are weighed at a weigh station/guardhouse, compacted at a baler facility in the northeastern corner of the site, and transferred to the Al Turi Landfill in Goshen, New York. The ROD represents the entire remedial action for the site by controlling source of contamination and the generation of leachate, and treatment of contaminated ground water. The primary contaminants of concern affecting soil, ground water, and surface water are VOCs, including benzene; other organics; and metals, including arsenic, chromium, and lead. The selected remedial action for the site is included

  14. Superfund Record of Decision (EPA Region 2): Sinclair Refinery, Allegany County, Wellsville, NY. (Second remedial action), September 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The Sinclair Refinery site is a former refinery in Wellsville, Allegany County, New York. The site is composed of a 90-acre refinery area, 10-acre landfill area, and 14-acre offsite tank farm. From 1901 to 1958, the site was used to process Pennsylvania grade crude oil until a fire in 1958 halted operations. Currently, some private companies and the State University of New York occupy the site. A 1981 site inspection revealed that debris from the eroding landfill area has washed into and contaminated the Genesee River. The ROD addresses OU2, remediation of the remaining contaminated areas at the site located within the 90-acre refinery area and the offsite tank farm including the contaminated ground water beneath the refinery. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene and xylenes, semi-volatile compounds including naphthalene and nitrobenzene, and metals including arsenic and lead. The selected remedial action for the site is included

  15. 12 CFR 268.503 - Enforcement of final EEOC decisions.

    Science.gov (United States)

    2010-01-01

    ... the decision pursuant to title VII, the ADEA, the Equal Pay Act or the Rehabilitation Act and to seek... RESERVE SYSTEM RULES REGARDING EQUAL OPPORTUNITY Remedies and Enforcement § 268.503 Enforcement of final... Procedures Act, 5 U.S.C. 701 et seq., and the mandamus statute, 28 U.S.C. 1361, or to commence de novo...

  16. The Follow-up IAEA International Mission on Remediation of Large Contaminated Areas Off-Site the Fukushima Daiichi Nuclear Power Plant, Tokyo and Fukushima Prefecture, Japan, 14-21 October 2013. Final Report

    International Nuclear Information System (INIS)

    2014-01-01

    In October 2011, the IAEA conducted an International Mission to Japan to support the remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). In response to the request made by the Government of Japan, in October 2013, the IAEA organized a follow-up International Mission on remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi NPP (hereinafter referred to as the 'Follow-up Mission' or the 'Mission') with the main purpose of evaluating the progress of the on-going remediation works achieved since the previous mission in October 2011. The Follow-up Mission Team involved 13 international experts. Additionally, 3 experts of the Working Group 5 (Subgroup 5.2, Remediation) in charge of preparing the IAEA Report on TEPCO Fukushima Daiichi Accident accompanied the Mission as observers to obtain first-hand information for the report. The Follow-up Mission had the following three objectives: 1. To provide assistance to Japan in assessing the progress made with the remediation of the Special Decontamination Area (not included in the previous mission of 2011) and the Intensive Contamination Survey Areas; 2. To review remediation strategies, plans and works, in view of the advice provided by the previous mission on remediation of large contaminated off-site areas; and 3. To share its findings with the international community as lessons learned. The Mission was conducted through the assessment of information provided to the Team and by means of professional and open discussions with the relevant institutions in Japan, including national, prefectural and local institutions. The Japanese authorities provided comprehensive information on their remediation programme. The Mission Team visited the affected areas, including several sites where activities on remediation were conducted. The Team also visited some temporary storage sites for radioactive waste and soil generated in the remediation activities, as well as a

  17. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  18. Remediating MGP brownfields

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1997-01-01

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example

  19. The proceduralisation of data protection remedies under EU data protection law : Towards a more effective and data subject-oriented remedial system?

    NARCIS (Netherlands)

    Galetta, Antonella; de Hert, Paul

    2015-01-01

    The proceduralisation of data protection remedies under EU data protection law: towards a more effective and data subject-oriented remedial system?
The right to remedy breaches of data protection is laid down in both Directive 95/46/EC (Art. 22) and the Council of Europe Data Protection Convention

  20. Technical Evaluation of Soil Remediation Alternatives at the Building 812 Operable Unit, Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-01-01

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in

  1. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    Energy Technology Data Exchange (ETDEWEB)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in

  2. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  3. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  4. Remediation of problematic residents--A national survey.

    Science.gov (United States)

    Bhatti, Nasir I; Ahmed, Aadil; Stewart, Michael G; Miller, Robert H; Choi, Sukgi S

    2016-04-01

    Despite careful selection processes, residency programs face the challenge of training residents who fall below minimal performance standards. Poor performance of a resident can endanger both patient safety and the reputation of the residency program. It is important, therefore, for a program to identify such residents and implement strategies for their successful remediation. The purpose of our study was to gather information on evaluation and remediation strategies employed by different otolaryngology programs. Cross-sectional survey. We conducted a national survey, sending a questionnaire to the program directors of 106 otolaryngology residency programs. We collected information on demographics of the program, identification of problematic residents, and remediation strategies. The response rate was 74.5%, with a 2% cumulative incidence of problematic residents in otolaryngology programs during the past 10 years. The most frequently reported deficiencies of problematic residents were unprofessional behavior with colleagues/staff (38%), insufficient medical knowledge (37%), and poor clinical judgment (34%). Personal or professional stress was the most frequently identified underlying problem (70.5%). Remediation efforts included general counseling (78%), frequent feedback sessions (73%), assignment of a mentor (58%), and extra didactics (47%). These remediation efforts failed to produce improvement in 23% of the identified residents, ultimately leading to their dismissal. The apparent deficiencies, underlying causes, and remediation strategies vary among otolaryngology residency programs. Based on the results of this survey, we offer recommendations for the early identification of problematic residents and a standardized remediation plan. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Development of a waste minimization plan for a Department of Energy remedial action program: Ideas for minimizing waste in remediation scenarios

    International Nuclear Information System (INIS)

    Hubbard, Linda M.; Galen, Glen R.

    1992-01-01

    Waste minimization has become an important consideration in the management of hazardous waste because of regulatory as well as cost considerations. Waste minimization techniques are often process specific or industry specific and generally are not applicable to site remediation activities. This paper will examine ways in which waste can be minimized in a remediation setting such as the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program, where the bulk of the waste produced results from remediating existing contamination, not from generating new waste. (author)

  6. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lightman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  7. Comparison of doses, before and after remedial action

    International Nuclear Information System (INIS)

    Wallo, A. III

    1988-01-01

    The Division of Facility and Site Decommissioning Projects at DOE-Headquarters is evaluating potential doses from vicinity properties before and after remedial action at several sites using the RESRAD computer code. A preliminary review was completed for nineteen Colonie vicinity properties. This review indicated potential doses before remedial action at these sites ranged from about 43 to 2 mrem/year and after remediation between 5 and 0 mrem/year. These estimates indicate the conservatism in the DOE-derived soil decontamination remedial action. Following remedial action, the potential doses are on the order of those being considered to be below regulatory concern by EPA and NRC. The estimates made for these sites are still conservative due to the method used to determine the source term. More realistic assessments of source terms are anticipate dot significantly affect the after-remedial-action doses, possibly lowering them all to below 1 mrem/year. This evaluation is being refined with more realistic estimates of the source term, for all of the Colonie vicinity properties. Once the Colonie vicinity properties are completed, at least three other sites will be evaluated. It is hoped that this information will provide added confidence in the remedial action guidelines and more general acceptance of the guidelines by the EPA and others

  8. Papers of the remediation technologies symposium 2005. CD-ROM ed.

    International Nuclear Information System (INIS)

    2005-01-01

    This conference was attended by over 500 delegates and provided an opportunity for industry, practitioners, researchers and regulators to discuss technical issues in environmental remediation research and recent innovations in soil and groundwater remediation. Sessions included presentations on in-situ, groundwater and surface water remediation. Issues concerning phytoremediation, natural attenuation, extraction and commercial redevelopment were examined. The aim of the conference was also to provide a forum for innovators in remediation to present new work. Topics included hydrocarbon and salt contamination; engineered soil cover for management of salt impacted sites; remediation and revegetation of tar sands composite tailings containing naphthenic acids; sorption of oil sands naphthenic acid mixtures; denitrification as a natural attenuation mechanism; sampling methodologies; variability assessments; stabilization treatment technologies; remediation of coal wastes; bioreactor landfills; well blowouts in Alberta; soil remediation in coarse gravelly soils; diesel-contaminated aquifers; gasoline spill remediation; soil vapour extraction systems; technological solutions for erosion control and water clarification; and cost-effective in-situ remediation strategies. Fifty-two technical presentations were given, of which 27 have been catalogued separately for inclusion in this database

  9. Papers of the remediation technologies symposium 2005. CD-ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This conference was attended by over 500 delegates and provided an opportunity for industry, practitioners, researchers and regulators to discuss technical issues in environmental remediation research and recent innovations in soil and groundwater remediation. Sessions included presentations on in-situ, groundwater and surface water remediation. Issues concerning phytoremediation, natural attenuation, extraction and commercial redevelopment were examined. The aim of the conference was also to provide a forum for innovators in remediation to present new work. Topics included hydrocarbon and salt contamination; engineered soil cover for management of salt impacted sites; remediation and revegetation of tar sands composite tailings containing naphthenic acids; sorption of oil sands naphthenic acid mixtures; denitrification as a natural attenuation mechanism; sampling methodologies; variability assessments; stabilization treatment technologies; remediation of coal wastes; bioreactor landfills; well blowouts in Alberta; soil remediation in coarse gravelly soils; diesel-contaminated aquifers; gasoline spill remediation; soil vapour extraction systems; technological solutions for erosion control and water clarification; and cost-effective in-situ remediation strategies. Fifty-two technical presentations were given, of which 27 have been catalogued separately for inclusion in this database. tabs., figs.

  10. Source zone remediation by zero valent iron technologies

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann

    at a fifth of these contaminated sites. These source zones pose a serious threat to soil and groundwater quality. Remediation of the heterogeneous source zones is challenging due to irregular downwards migration patterns in the subsurface, low aqueous solubility and matrix diffusion. To protect the soil...... and groundwater resources from long-term deterioration, the development of in situ technologies suitable for remediation of DNAPL is warranted. Currently, an array of aggressive in situ remediation technologies remediation exists. These technologies may be suitable under various site specific conditions; however......, most of them are limited by subsurface heterogeneities and/or the risk of inadvertent DNAPL displacement during field application. This thesis presents the results of an investigation of the potential for remediation of chlorinated solvent source zones by emerging zero valent iron (ZVI) based...

  11. Cost-effectiveness analysis of radon remediation in schools

    International Nuclear Information System (INIS)

    Kennedy, C.A.; Gray, A.M.

    2000-01-01

    Indoor radon is an important source of radiation dosage in the general population and has been recognised as a world-wide environmental and public health challenge. Governments in many Western and Eastern European and North American countries are undertaking active radon-risk reduction policies, including the remediation of existing residential and work place building stocks (1). These endeavours include a priority of remediating school buildings. Epidemiological and technical radon research has produced information which has enabled attention to be turned to specific effectiveness and optimisation questions regarding radon identification and remediation programmes in buildings, including schools. Decision making about policy implementation has been an integral part of these programmes and questions have been raised about the economic implications of the regulations and optimisation strategies for workplace action level policy (2,3). (the action level applied to schools is 400 Bq m -3 ). No previous study has estimated the cost-effectiveness of a radon remediation programme for schools using the methodological framework now considered appropriate in the economic evaluation of health interventions. It is imperative that this should be done, in order that the resources required to obtain health gain from radon remediation in schools can be systematically compared with equivalent data for other health interventions and radon remediation programmes. In this study a cost-effectiveness analysis of radon remediation in schools was undertaken, using the best available national data and information from Northamptonshire on the costs and effectiveness of radon identification and remediation in schools, and the costs and health impact of lung cancer cases. A model based on data from Northamptonshire is presented (where 6.3% of residential stock is over 200 Bq m -3 ). The resultant cost-effectiveness ratio was pound 7,550 per life year gained in pound 1997. Results from the

  12. Lead contamination of paint remediation workers' vehicles.

    Science.gov (United States)

    Boraiko, Carol; Wright, Eva M; Ralston, Faye

    2013-03-01

    Exposure to lead has been shown to be harmful to adults; it is a teratogen, it can damage the peripheral nervous system, and it adversely affects the reproductive system. Professional lead-based paint remediation workers are at risk of exposure to lead dust. The authors' study was conducted to determine if these remediation workers transfer lead from their work site to their vehicles and then potentially expose their families. It was hypothesized that remediation workers transported the lead from the remediation work site to the floorboards of their vehicles due to not following required protective equipment use. The laboratory's level of quantitation for lead on the wipe samples, 10 microg/ft2, was used to indicate lead contamination. This level was exceeded in 50% of the floorboards sampled. These results confirm that many vehicle floorboards used by remediation workers are contaminated with lead dust, potentially resulting in transfer of lead dust. The ultimate detrimental outcome could be the transfer of lead particles to other family members, causing the poisoning of a child or other at-risk person.

  13. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    Science.gov (United States)

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  14. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  15. Economics of biofiltration for remediation projects

    International Nuclear Information System (INIS)

    Yudelson, J.M.; Tinari, P.D.

    1995-01-01

    Biofilters with granular activated carbon (GAC) filter backup units offer substantial savings compared to conventional GAC filters and catalytic/thermal oxidation (Catox) units in controlling emissions of volatile organic compounds (VOCs) from petroleum remediation projects. Provided that the biofilter supplier is willing to satisfy the client's and consultant's risk-management concerns, biofilters offer anew method for reducing the cost of remediation projects, with savings of up to $10,000 (24%) per facility in 24-month projects and up to $16,000 (32%) per facility in 36-month projects for simple gas station remediation projects. Savings will be greater for longer projects and projects with higher average contaminant loadings

  16. Abstracts of Remediation Case Studies, Volume 9

    Science.gov (United States)

    This report, published by the Federal Remediation Technologies Roundtable (FRTR), is a collection of recently published abstracts summarizing 13 cost and performance case studies on the use of remediation technologies at contaminated sites.

  17. 10 CFR 1008.15 - Civil remedies.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Civil remedies. 1008.15 Section 1008.15 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) RECORDS MAINTAINED ON INDIVIDUALS (PRIVACY ACT) Requests for Access or Amendment § 1008.15 Civil remedies. Subsection (g) of the Act provides that an individual may bring suit...

  18. Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

  19. 200 Areas soil remediation strategy -- Environmental Restoration Program

    International Nuclear Information System (INIS)

    1996-09-01

    The remediation and waste management activities in the 200 Areas of the Hanford Site (located in Richland, Washington) currently range from remediating groundwater, remediating source units (contaminated soils), decontaminating and decommissioning of buildings and structures, maintaining facilities, managing transuranic, low-level and mixed waste, and operating tank farms that store high-level waste. This strategy focuses on the assessment and remediation of soil that resulted from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs, burial grounds) in the 200 Areas and addresses only those waste sites assigned to the Environmental Restoration Program

  20. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  1. An Expert support model for ex situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Frankhuizen, E.M.; Wit, de J.C.; Pijls, C.G.J.M.; Stein, A.

    2000-01-01

    This paper presents an expert support model recombining knowledge and experience obtained during ex situ soil remediation. To solve soil remediation problems, an inter-disciplinary approach is required. Responsibilities during the soil remediation process, however, are increasingly decentralised,

  2. Integration of biotechnology in remediation and pollution prevention activities

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.

    1996-01-01

    The North American Free Trade Agreement/North American Agreement on Environmental Cooperation provides a mechanism for an international collaboration between the US, Canada, and Mexico to jointly develop, modify, or refine technologies that remediate or protect the environment. These countries have a vested interest in this type of collaboration because contaminants do not respect the boundaries of a manufacturing site, region, city, state, or country. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) consists of a diverse group of individuals who address a variety of environmental issues. ESD is involved in basic and applied research on the fate, transport, and remediation of contaminants; environmental assessment; environmental engineering; and demonstrations of advanced remediation technologies. The remediation and protection of the environment includes water, air, and soils for organic, inorganic, and radioactive contaminants. In addition to remediating contaminated sites, research also focuses on life-cycle analyses of industrial processes and the production of green technologies. The author focuses this discussion on subsurface remediation and pollution prevention; however, the research activities encompass water, soil and air and many of the technologies are applicable to all environments. The discussion focuses on the integration of biotechnology with remediation activities and subsequently linking these biological processes to other remediation technologies

  3. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    International Nuclear Information System (INIS)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE's preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area

  4. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

  5. 75 FR 35720 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-06-23

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07-1... Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management Section, Office of Site...

  6. 40 CFR 85.1803 - Remedial Plan.

    Science.gov (United States)

    2010-07-01

    ... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... the total parts requirement of each person who is to perform the repair under the remedial plan to be...: (i) The recall campaign number; and (ii) A code designating the campaign facility at which the repair...

  7. Superfund Green Remediation

    Science.gov (United States)

    Green remediation is the practice of considering all environmental effects of site cleanup and incorporating options – like the use of renewable energy resources – to maximize the environmental benefits of cleanups.

  8. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  9. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    International Nuclear Information System (INIS)

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy

  10. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

  11. After School Centers Project. Final Reports. Winter 1968-1969; Summer 1969.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Graduate School of Education.

    Two final reports, winter 1968-1969 and summer 1969, respectively describe the sixth and seventh sessions of the Cambridge School Department's After School Center Program and involving six elementary schools. Both the winter and the summer programs were designed to give disadvantaged children remedial instruction in reading and mathematics along…

  12. Remedial Action Program annual conference: Proceedings

    International Nuclear Information System (INIS)

    1990-01-01

    Within the DOE's Office of Environmental Restoration ampersand Waste Management, the Office of Environmental Restoration manages a number of programs whose purposes are to complete remedial actions at DOE facilities and sites located throughout the United States. The programs include the Surplus Facilities Management Program, the Formerly Utilized Sites Remedial Action Program, the Uranium Mill Tailings Remedial Action Program, and the West Valley Demonstration Project. These programs involve the decontamination and decommissioning of radioactively-contaminated structures and equipment, the disposal of uranium mill tailings, and the cleanup or restoration of soils and ground water that have been contaminated with radioactive or hazardous substances. Each year the DOE and DOE-contractor staff who conduct these programs meet to exchange information and experience in common technical areas. This year's meeting was hosted by the Uranium Mill Tailings Remedial Action Project, DOE-AL, and was held in Albuquerque, NM. This volume of proceedings is the record of that conference. The proceedings consist of abstracts, summaries, or actual text for each presentation made and any visual aids used by the speakers

  13. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  14. Privatization considerations of environmental remediation of DOE wastes

    International Nuclear Information System (INIS)

    Zocher, M.A.; Paananen, O.H.; Kost, K.

    1997-01-01

    The US Department of Energy (DOE) is in the process of privatizing the application of environmental cleanup technologies to remediate nuclear waste within the DOE complex. These wastes are the legacy of the production of nuclear materials during the cold war era. It is anticipated that the privatization strategy will result in more efficient and less expensive approaches to the cleanup of DOE wastes. Similar privatization initiatives have the potential to achieve increased efficiency and cost savings at sites under the Department of Defense (DOD) and other Federal agencies. The DOE is privatizing a major, complex portion of the Tank Waste Remediation System (TWRS) Program at the Hanford nuclear reservation located in eastern Washington State. This effort will involve private companies that will design, permit, construct, operate, and finally deactivate waste treatment facilities that will be owned entirely by the private sector. The DOE will purchase treated waste products on a unit cost basis from the facilities after supplying the vendors with waste from the tank farm at Hanford. The privatization of selected United States and international Government functions involve decisions that are based on accurate and valid cost information. Private firms are beginning to privatize certain corporate activities so that they may concentrate business activities along main product or mission lines. In either the public or private sector, many aspects of cost engineering are utilized to make prioritization a success

  15. Overview: Microbial amendment of remediated soils for effective recycling

    Directory of Open Access Journals (Sweden)

    Kim Soo-Bin

    2017-01-01

    Full Text Available In recent years, various methods are being considered with appropriate amendments, not with conventional reclamation to recycle deteriorated soils after remediation as agricultural addition, backfilling and construction materials etc. Among these amendments, microbial amendments with effective microorganism(EMs are known to improve soil qualities such as fertility, strength and toxicity to be recycled into possible utilizations. This study indicates the possibility of recycling the remediated soils by using these EMs most efficiently. Soil samples will be collected from contaminated sites with either heavy metals or petroleum and will be remediated by bench-scale soil washing and thermal desorption. And then the remediated soils will be treated with easily obtainable inocula, substrates (culture media near our life and they are compared with commercial EM products in terms of the cost and efficiency. Also, after treating with a number of mixing ratios, soil properties of (1 fresh, (2 contaminated, (3 remediated (4 amended soils will be evaluated based on soil quality indicators depending on demands and the optimal mixing ratios which are effective than commercial EM products will be determined. The ratio derived from pre-tests could be applied on the remediated soils with pilot-scale in order to assess suitability for recycling and characterize correlation between soil properties and microbial amendments regarding contaminants and remediation, and furthermore for modelling. In conclusion, application of the established models on recycling remediated soils may help to dispose the remediated soils in future, including environmental and ecological values as well as economical values.

  16. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    Science.gov (United States)

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  17. Process for determining the remediation category of hazardous substance sites

    International Nuclear Information System (INIS)

    Sieben, A.K.

    1994-01-01

    An evaluation process has been developed that aids in selecting the appropriate remediation category of hazardous substance sites. Three general remediation categories have been established: No further Action: Potential Early Action: and Defer for RI/FS or Transition/Decontamination and Decommissioning. This evaluation method is a preliminary screening process only and will not identify the most appropriate remediation alternative for each site. The remedy selection process can proceed only after a remediation category is determined for each site. All sites are evaluated at a preliminary screening level to determine the general remediation category. After the first screen, a secondary evaluation is performed on both the PEA sites and the DEFER sites. For PEAs, this secondary evaluation will incorporate additional specific factors, such as a screening level risk assessment. For the DEFER sites feasibility factors will be used to distinguish between the sites which should undergo a normal RI/FS and the sites which will be recommended to be remediated in association with D ampersand D of buildings. Ultimately, all of the sites will be placed into one of four remediation categories

  18. Remediation of Soil at Nuclear Sites

    International Nuclear Information System (INIS)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-01-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  19. Provincial labour market study : mould remediation industry

    International Nuclear Information System (INIS)

    2003-06-01

    Indoor exposure to mold can be problematic to human health, and some molds are considered to be toxigenic. The emergent mold remediation industry in Ontario is fragmented, with various different standards, training and certification processes. This report investigated the labour market for mold remediation workers, with particular reference to training needs and priorities. Research was derived from a literature review in order to analyze the economic, legal, technical and social context of the mold remediation industry. Data on the organized work force were obtained from records of the International Union of Painters and Allied Trades, the Labour Force Historical Review 2002, and various publications. Population data from the Ontario government and Statistics Canada were also used. Surveys of workers and employers were conducted with questionnaires. Results of the surveys indicated that mold remediation projects currently constitute a minority share of most companies' business. However, the importance of mold remediation projects is expected to increase, and industry self-regulation is the most likely scenario for the development of standards and related training programs. It was suggested that the creation of an industry body representing key stakeholder constituencies or the legitimization of an existing industry organization will reduce fragmentation and facilitate research, standard setting and certification, as well as improve marketing and education. If the demand for mold remediation services increases as anticipated, the industry will face the challenge of remaining competitive in the province's projected labour market due to shortages in personnel. There was a strong consensus between employers and workers in the mold remediation industry regarding the need for skills upgrading and compulsory certification. It was concluded that leadership is needed in the development and delivery of training programs, standard setting, recruitment and retention and

  20. Final hazard classification for the 116-F-4 (Terra Stor) soil retrieval activities

    International Nuclear Information System (INIS)

    Adam, W.J.

    1996-07-01

    The purpose of this document is to provide the final hazard classification for the remediation activities described in the Work Plan for the Retrieval of Contaminated Soil from the 116-F-4 Storage Unit. Based upon total inventories calculated from the characterization data, a preliminary hazard categorization of less than Hazard Category 3 was assigned. Based upon the material-at-risk, a final hazard classification of radiological was assigned

  1. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  2. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    .... Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Public Comment. SUMMARY... biphenyl (PCB) disposal regulations regarding PCB bulk product and PCB remediation waste. The proposed... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761. The...

  3. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul [Univ. of Kentucky, Lexington, KY (United States)

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  4. 14 CFR 1212.800 - Civil remedies.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Civil remedies. 1212.800 Section 1212.800... Comply With Requirements of This Part § 1212.800 Civil remedies. Failure to comply with the requirements of the Privacy Act and this part could subject NASA to civil suit under the provisions of 5 U.S.C...

  5. Steam Injection For Soil And Aquifer Remediation

    Science.gov (United States)

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  6. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  7. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    International Nuclear Information System (INIS)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  8. Integrated phytobial remediation for sustainable management of arsenic in soil and water.

    Science.gov (United States)

    Roy, Madhumita; Giri, Ashok K; Dutta, Sourav; Mukherjee, Pritam

    2015-02-01

    Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications

  9. Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)

    International Nuclear Information System (INIS)

    Livesay, Jake

    2012-01-01

    Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

  10. Use of LCA as decision support for the selection of remedial strategies for remediation of contaminated soil and groundwater

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2009-01-01

    , there is a trade-off between obtaining local beneficial effects from the remediation and generating environmental impacts on the regional and global scale due to the remedial actions. Therefore there is a need for including the impact of soil contaminants that will potentially leach to the groundwater, e......Groundwater is the dominant source of drinking water in Denmark and the general policy is to maintain the groundwater as a clean source of drinking water. The risk of groundwater contamination is therefore often the prime reason for remediating a contaminated site. Chlorinated solvents are among...... the contaminants most frequently found to be threatening the groundwater quality in Denmark and worldwide. Life cycle assessment has recently been applied as part of decision support for contaminated site management and subsurface remediation techniques. Impacts in the groundwater compartment have only gained...

  11. The effect of Soil Temperature on Electrodialytic Remediation

    DEFF Research Database (Denmark)

    Kristensen, Iben Vernegren

    1999-01-01

    The electrodialytic remediation of copper, zinc and lead contaminated kaolin was studied at three different temperatures (0-39 degrees centrigrate). It is shown that an increase in temperature increases the rate of remediation for all three metals. Copper and zinc shows similar rate constants......, while for lead, the rate constant obtained are significantly smaller. The increased remediation rate is presumed to be due mainly to the lowering of the viscosity....

  12. Breach of information duties in the B2C e-commerce: adequacy of available remedies

    Directory of Open Access Journals (Sweden)

    Zofia Bednarz

    2016-07-01

    Full Text Available

    B2C e-commerce is characterised by the information asymmetry between the contracting parties. Various information duties are imposed on traders, both at the European and national level to correct this asymmetry and to ensure proper market functioning. The mandated disclosure is based on the assumption of consumers' rationality. However, developments of behavioural economics challenge this assumption. The utility of mandated disclosure in consumer contracts depends also on the remedies available to consumers in a case of breach of information duties. Those remedies are often heavily influenced by the national general private law applicable to the contractual relationship between the parties. Nevertheless, since the economics of general contract law differ importantly from principles of consumer e-commerce, various problems can be associated with the application of general law remedies to the breach of information duties in B2C contracts. The limited value of the majority of the online B2C transactions is incompatible with costly and lengthy court proceedings. Moreover, breach of information duties will often not produce enough material damage on the side of the consumer to make the remedies available. Different solutions are explored, from ADR, to the duty to advise, to non-legal mechanisms making the information easier to use for consumers throughlimiting disclosure. Finally, the right of withdrawal is analysed as an example of a specific remedy, adapted to the economics of the B2C electronic transactions, where the aims parties pursue through contracts are different than in commercial contracts, and their relationship is marked with the inequality of economic power and information asymmetry. However, the legally established cooling-off period is not free from limitations, and only a combination of various measures, including effective

  13. Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1995-06-01

    The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project

  14. Superfund record of decision (EPA Region 4): Whitehouse Waste Oil Pits Site, Duval County, Jacksonville, FL. (First remedial action), (Amendment), June 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 7-acre Whitehouse Waste Oil Pits site was used by Allied Petroleum Products (Allied) to dispose of acidic waste oil sludges from its oil reclamation process in Whitehouse, Duval County, Florida. A cypress swamp system and residential area are immediately adjacent to the site. The acid sludge produced in the first step and clay used to decolorize the oil were dumped into the unlined pits at the site. A 1985 ROD addressed source control as a containment remedy consisting of a slurry wall construction, soil cap, and a ground water recovery and treatment system; however, EPA has re-evaluated the 1985 ROD selection and determined that the containment remedy failed to meet the requirements of SARA. As a result, the ROD Amendment focuses on an alternative for treating Whitehouse wastes by eliminating direct contact risk associated with pit soil/sludge wastes and preventing contaminated ground water in the surficial aquifer from migrating laterally. The primary contaminants of concern that affect the soil, sediment, surface water, and ground water are VOCs, including benzene, toluene, and xylenes; organics, including PCBs and phenols; and metals, including arsenic, chromium, and lead. The amended remedial action for the site are included

  15. The use of chelating agents in the remediation of metal-contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lestan, Domen [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia); Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)], E-mail: cexdli@polyu.edu.hk

    2008-05-15

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades.

  16. The use of chelating agents in the remediation of metal-contaminated soils: A review

    International Nuclear Information System (INIS)

    Lestan, Domen; Luo Chunling; Li Xiangdong

    2008-01-01

    This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed. - The use of synthetic chelants for soil washing and enhanced phytoextraction by plants has been well studied for the remediation of metal-contaminated soils in the last two decades

  17. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  18. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.' different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  19. [Optimization of electrode configuration in soil electrokinetic remediation].

    Science.gov (United States)

    Liu, Fang; Fu, Rong-Bing; Xu, Zhen

    2015-02-01

    Electric field distributions of several different electrode configurations in non-uniform electric field were simulated using MATLAB software, and the electrokinetic remediation device was constructed according to the best electrode configuration. The changes of soil pH and heavy metal residues in different parts of the device during the electrokinetic remediation were also studied. The results showed that, in terms of the effectiveness of the electric field strength, the square (1-D-1) and hexagonal (2-D-3) were the optimal electrode configurations for one-dimensional and two-dimensional respectively and the changes of soil pH, the removal of heavy metals and the distribution of electric field were closely related to one another. An acidic migration band, which could prevent premature precipitation of heavy metals to a certain extent and promote electrokinetic removal of heavy metals, was formed gradually along with the remediation in the whole hexagon device when the cathodic pH was controlled during the remediation of the four cationic metallic ions, Cd2+, Ni2+, Pb2+ and Cu2+. After 480-hour remediation, the total removals of Cd, Ni, Pb and Cu were 86.6%, 86.2%, 67.7% and 73.0%, respectively. Remediation duration and replacement frequency of the electrodes could be adjusted according to the repair target.

  20. Electrodialytic remediation of soil polluted with heavy metals

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    In this paper, the importance of some parameters for the efficiency of electrodialytic soil remediation are evaluated. The parameters investigated are pH, the limiting current density and the adding of desorbing agents to the soil. Three parameters are found to be of greatest importance. Results...... show that the electrodialytic soil remediation can be optimized by understanding and adjusting of these parameters. For scaling up of the remediation method these parameters are of crucial importance....

  1. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    Science.gov (United States)

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Integrated approach to planning the remediation of sites undergoing decommissioning

    International Nuclear Information System (INIS)

    2009-01-01

    Responding to the needs of Member States, the IAEA has launched an environmental remediation guidance initiative dealing with the issues of radioactive contamination world wide. Its aim is to collate and disseminate information concerning the key issues affecting environmental remediation of contaminated sites. This IAEA initiative includes the development of documents that report on remediation technologies available, best practices, and information and guidance concerning (a) Strategy development for environmental remediation; (b) Characterization and remediation of contaminated sites and contaminated groundwater; (c) Management of waste and residues from mining and milling of uranium and thorium; (d) Decommissioning of buildings; (e) A database for contaminated sites. The subject of this present report concerns the integration of decommissioning and remediation activities at sites undergoing decommissioning and this fits within the first category of guidance documentation (strategy development). This document addresses key strategic planning issues. It is intended to provide practical advice and complement other reports that focus on decommissioning and remediation at nuclear facilities. The document is designed to encourage site remediation activities that take advantage of synergies with decommissioning in order to reduce the duplication of effort by various parties and minimize adverse impacts on human health, the environment, and costs through the transfer of experience and knowledge. To achieve this objective, the document is designed to help Member States gain perspective by summarizing available information about synergies between decommissioning and remediation, strategic planning and project management and planning tools and techniques to support decision making and remediation. Case studies are also presented as to give concrete examples of the theoretical elements elaborated in the documents. This publication investigates the potential synergies

  3. Cognitive Remediation in Schizophrenia: Current Status and Future Perspectives

    Science.gov (United States)

    Deste, Giacomo; De Peri, Luca

    2013-01-01

    Objectives. This study is aimed to review the current scientific literature on cognitive remediation in schizophrenia. In particular, the main structured protocols of cognitive remediation developed for schizophrenia are presented and the main results reported in recent meta-analyses are summarized. Possible benefits of cognitive remediation in the early course of schizophrenia and in subjects at risk for psychosis are also discussed. Methods. Electronic search of the relevant studies which appeared in the PubMed database until April 2013 has been performed and all the meta-analyses and review articles on cognitive remediation in schizophrenia have been also taken into account. Results. Numerous intervention programs have been designed, applied, and evaluated, with the objective of improving cognition and social functioning in schizophrenia. Several quantitative reviews have established that cognitive remediation is effective in reducing cognitive deficits and in improving functional outcome of the disorder. Furthermore, the studies available support the usefulness of cognitive remediation when applied in the early course of schizophrenia and even in subjects at risk of the disease. Conclusions. Cognitive remediation is a promising approach to improve real-world functioning in schizophrenia and should be considered a key strategy for early intervention in the psychoses. PMID:24455253

  4. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase...

  5. Present status of the Zavratec remediation project

    International Nuclear Information System (INIS)

    Zeleznik, N.; Stepisnik, M.; Mele, I.

    1997-01-01

    In 1992 the responsibility for the remediation of the temporary storage of radioactive waste near Zavratec was assigned to the Agency for Radwaste Management. The project was divided into two phases. First, in a study, different options for remediation were considered. In the second phase, performed in 1996, the measurements, inventorying and repacking of radioactive waste were carried out. Simultaneously with these activities a programme for covering public relations was prepared. One of the results of the public relation campaign is also a 15-minute video film, which was prepared from documentary material recorded during remedial activities, and will be presented here. (author)

  6. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  7. Remediation in Canadian medical residency programs: Established and emerging best practices.

    Science.gov (United States)

    Shearer, Cindy; Bosma, Mark; Bergin, Fiona; Sargeant, Joan; Warren, Andrew

    2018-02-23

    Policies to guide remediation in postgraduate medical education exist in all Canadian medical schools. This study examines concordance between these policies and processes, and published "best practices" in remediation. We conducted a literature review to identify best practices in the area of remediation. We then reviewed remediation policies from all 13 English medical schools in Canada other than our own and conducted interviews with key informants from each institution. Each policy and interview transcript pair was then reviewed for evidence of pre-defined "best practices." Team members also noted additional potential policy or process enablers of successful remediation. Most policies and processes aligned with some but not all published best practices. For instance, all participating schools tailored remediation strategies to individual resident needs, and a majority encouraged faculty-student relationships during remediation. Conversely, few required the teaching of goal-setting, strategic planning, self-monitoring, and self-awareness. In addition, we identified avoidance of automatic training extension and the use of an educational review board to support the remediation process as enablers for success. Remediation policies and practices in Canada align well with published best practices in this area. Based on key informant opinions, flexibility to avoid training extension and use of an educational review board may also support optimal remediation outcomes.

  8. Microbial Remediation of Metals in Soils

    Science.gov (United States)

    Hietala, K. A.; Roane, T. M.

    Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

  9. Adaptive remediation using portable treatment units

    International Nuclear Information System (INIS)

    Bahowick, S.; Folsom, E.; Pico, T.

    1996-01-01

    Lawrence Livermore National Laboratory (LLNL) is using adaptive remediation to optimize their environmental restoration strategy. Adaptive remediation uses hydrostratigraphic analysis to gain a better understanding of the subsurface characteristics, hydraulic tests to optimize contaminant transport models, and Portable Treatment Units (PTUs) as an alternative to fixed facilities. Hydrostratigraphic analysis is an optimization tool that improves the ability to identify and target contaminant migration pathways, identify the relationship between plumes and source areas, and better define hydraulic capture areas. Hydraulic tests, performed with PTUs, provide valuable data about subsurface characteristics. As clean up progresses, PTUs can be moved to the appropriate extraction wells to optimize contaminant mass removal. PTUs can also be placed to support innovative treatment technologies such as steam injection and microbial filters. Construction of PTUs will reduce by one-half the capital costs of building the rest of the fixed treatment system planned in the Record of Decision. Regulatory agencies are receptive to the use of the PTUs because the same treatment technology is being used and the PTUs will be able to clean up the plume cheaper and faster. Using adaptive remediation, LLNL is more effectively implementing remediation plans, improving cleanup time, and reducing project costs

  10. Calculating the Costs of Remedial Placement Testing. CCRC Analytics

    Science.gov (United States)

    Rodríguez, Olga; Bowden, Brooks; Belfield, Clive; Scott-Clayton, Judith

    2015-01-01

    Of the more than one million new students who enter community colleges each fall, nearly 70 percent are assigned to remedial coursework. The cost of providing this coursework is high, yet evidence about the effectiveness of remediation is not compelling. In addition, many students are misclassified in the remedial assessment process. In order for…

  11. Strategic Considerations for the Sustainable Remediation of Nuclear Installations

    International Nuclear Information System (INIS)

    Miller, Susan; Wilson, Ian; Decung, Fabien; Ollivier Dehaye, Catherine; Pellenz, Gilles; Palut-Laurent, Odile; Nitzsche, Olaf; Rehs, Bernd; Altavilla, Massimo; Osimani, Celso; Florya, Sergey; Revilla, Jose-Luis; Efraimsson, Henrik; Baines, Kim; Clark, Anna; Cruickshank, Julian; Mitchell, Nick; Mobbs, Shelly; Orr, Peter; Abu-Eid, Rateb Boby; Durham, Lisa; Morse, John; Walker, Stuart; Weber, Inge; ); Monken-Fernandes, Horst; )

    2016-01-01

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable sites, or parts of sites, to be reused. Although such activities are relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic drawbacks and benefits. Site remediation should thus be sustainable and result in an overall net benefit. This report draws on recent experience of NEA member countries in nuclear site remediation during decommissioning in order to identify strategic considerations for the sustainable remediation of subsurface contamination - predominantly contaminated soil and groundwater - to describe good practice, and to make recommendations for further research and development. It provides insights for the decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so as to ensure the sustainable remediation of nuclear sites, now and in the future. (authors)

  12. Remedial Action Programs annual meeting: Proceedings

    International Nuclear Information System (INIS)

    1988-01-01

    Within the DOE's Office of Nuclear Energy, the Office of Remedial Action and Waste Technology manages a number of programs whose purposes are to complete remedial actions at DOE facilities and sites located throughout the United States. These programs include the Surplus Facilities Management Program, the Formerly Utilized Sites Remedial Action Program, the Uranium Mill Tailings remedial Action Program and the West Valley Demonstration Project. The programs involve the decontamination and decommissioning of radioactively-contaminated structures and equipment, the disposal of uranium mill tailings, and the cleanup or restoration of soils and ground water that have been contaminated with radioactive hazardous substances. Each year the DOE and DOE-contractor staff who conduct these programs meet to exchange information and experience in common technical areas. This year's meeting was hosted by the Surplus Facilities Management Program and was held near DOE Headquarters, in Gaithersburg, Maryland. This volume of proceedings provides the record for the meeting. The proceedings consist of abstracts for each presentation made at the meeting, and the visual aids (if any) used by the speakers. The material is organized in the following pages according to the five different sessions at the meeting: Session 1: Environmental Compliance--Policy; Session 2: Environmental Compliance--Practice; Session 3: Reports from working groups; Session 4: DandD Technology; and Session 5: Remedial Action Technology. The agenda for the meeting and the list of meeting registrants are provided in Appendix A and B, respectively. Individual papers are processed separately for the data base

  13. Remedial principles and meaningful engagement in education ...

    African Journals Online (AJOL)

    This article evaluates the meaningful engagement doctrine in the education rights jurisprudence of the Constitutional Court in the light of a set of normative principles developed by Susan Sturm for evaluating participatory public law remedies. It commences by identifying four principles for evaluating participatory remedies ...

  14. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    International Nuclear Information System (INIS)

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2

  15. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.

    Science.gov (United States)

    Liu, Lianwen; Li, Wei; Song, Weiping; Guo, Mingxin

    2018-08-15

    Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton -1 soil (or $1500m -3 soil or $100m -2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability. Copyright © 2018 Elsevier B.V. All rights

  16. Remediation trials of crude oil contaminated soil using different ...

    African Journals Online (AJOL)

    A 3 month remediation trial of the use of detergent and sawdust in different combination forms in the restoration of a crude oil contaminated tropical soil was investigated. 8 remediation treatments labeled A – H in addition to the control (I) were used in 10 kg soil artificially polluted with 300 ml crude oil each. Remediation ...

  17. Strategic considerations for the sustainable remediation of nuclear installations.

    Science.gov (United States)

    Mobbs, S; Orr, P; Weber, I

    2017-08-05

    Nuclear sites around the world are being decommissioned and remedial actions are being undertaken to enable the sites or parts of the sites to be reused. Although this is relatively straightforward for most sites, experience has suggested that preventative action is needed to minimise the impact of remediation activities on the environment and the potential burden to future generations. Removing all contamination in order to make a site suitable for any use generates waste and has associated environmental, social and economic detriments and benefits that should be taken into account. Recent experience of OECD Nuclear Energy Agency (NEA) member countries in the remediation of contaminated land, predominantly contaminated soil and groundwater, on nuclear sites during decommissioning has been assessed by an NEA task group. The experience was used to identify strategic considerations for nuclear site remediation, to consider the application of sustainability principles to nuclear site remediation, to describe good practice, and to make recommendations for further research and development. The key aspects that were identified were that 1) site remediation should be sustainable by resulting in an overall net benefit; and 2) an adaptive approach is essential in order to take into account the inherent uncertainty associated with the decommissioning and site remediation timescales. A report describing the findings was published by OECD/NEA in 2016. The conclusions provide insights to decision makers, regulators, implementers and stakeholders involved in nuclear site decommissioning so that they can achieve sustainable remediation of nuclear sites, now and in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radioactive Tank Waste Remediation Focus Area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    In February 1991, DOE's Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina

  19. 75 FR 43478 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-07-26

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental.... Mail: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07... Delivery or Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management Section, Office of Site...

  20. Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications

    Science.gov (United States)

    Kim, K.; Bushart, S.

    2009-12-01

    A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power

  1. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  2. Drama, dissensus, remediation and a fluttering butterfly

    DEFF Research Database (Denmark)

    Kusk, Hanne

    2017-01-01

    Why is it important to pay attention to democracy and polyphony when working with remediation in a multimodal drama project in introductory schooling? This question is elucidated and investigated in this article on the basis of a drama project case study conducted at Hundborg Friskole. The study...... is analysed on the basis of the concepts of remediation (Bolter and Grusin 1999; Christoffersen 2009), dissensus (Biesta 2013; Rancière 2013), dialogue and polyphony (Dysthe, Bernhardt and Esbjørn 2012). The examples in the investigation show how dialogue, polyphony and dissensus influence the art......-based process of remediation, and how this impacts children’s democratic education....

  3. Electrochemical Remediation of Dredged Material for Beneficial Use

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    Two different methods, electrodialytic and electroosmotic remediation, were used to demonstrate the potential of electrochemical methods for remediation of contaminated harbor sediments. In two three-week-long laboratory experiments using electrodialysis and electroosmosis, respectively...

  4. 48 CFR 22.1504 - Violations and remedies.

    Science.gov (United States)

    2010-10-01

    ... to cooperate as required in accordance with the clause at 52.222-19, Child Labor Cooperation with Authorities and Remedies, with an investigation of the use of forced or indentured child labor by an Inspector... contractor knew of the violation. (b) Remedies. (1) The contracting officer may terminate the contract. (2...

  5. Laboratory Experiment on Electrokinetic Remediation of Soil

    Science.gov (United States)

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  6. Principle of progressive (gradual use of contractual remedies

    Directory of Open Access Journals (Sweden)

    Bazil OGLINDĂ

    2014-12-01

    Full Text Available In this study, we intend to answer to the question whether, in the modern contract law, in general, and in Romanian contract law, in particular, the creditor may resort almost discretionary to remedies (contractual sanctions such as termination, rescission without being opposed that he should have resorted to other more appropriate remedies. In order to answer to this question, we find it extremely useful to define the term of contractual remedy and to analyse the correlation of this principle with other principles of modern contract law. Also, last but not least, we intend to define the principle of progressive (gradual use of the contractual remedies and to detail the vocation (legal nature of this principle in the modern contract law, having as starting point the provisions of the new Romanian Civil Code.

  7. Cortical Signatures of Dyslexia and Remediation: An Intrinsic Functional Connectivity Approach

    Science.gov (United States)

    Koyama, Maki S.; Di Martino, Adriana; Kelly, Clare; Jutagir, Devika R.; Sunshine, Jessica; Schwartz, Susan J.; Castellanos, Francisco X.; Milham, Michael P.

    2013-01-01

    This observational, cross-sectional study investigates cortical signatures of developmental dyslexia, particularly from the perspective of behavioral remediation. We employed resting-state fMRI, and compared intrinsic functional connectivity (iFC) patterns of known reading regions (seeds) among three dyslexia groups characterized by (a) no remediation (current reading and spelling deficits), (b) partial remediation (only reading deficit remediated), and (c) full remediation (both reading and spelling deficits remediated), and a group of age- and IQ-matched typically developing children (TDC) (total N = 44, age range = 7–15 years). We observed significant group differences in iFC of two seeds located in the left posterior reading network – left intraparietal sulcus (L.IPS) and left fusiform gyrus (L.FFG). Specifically, iFC between L.IPS and left middle frontal gyrus was significantly weaker in all dyslexia groups, irrespective of remediation status/literacy competence, suggesting that persistent dysfunction in the fronto-parietal attention network characterizes dyslexia. Additionally, relative to both TDC and the no remediation group, the remediation groups exhibited stronger iFC between L.FFG and right middle occipital gyrus (R.MOG). The full remediation group also exhibited stronger negative iFC between the same L.FFG seed and right medial prefrontal cortex (R.MPFC), a core region of the default network These results suggest that behavioral remediation may be associated with compensatory changes anchored in L.FFG, which reflect atypically stronger coupling between posterior visual regions (L.FFG-R.MOG) and greater functional segregation between task-positive and task-negative regions (L.FFG-R.MPFC). These findings were bolstered by significant relationships between the strength of the identified functional connections and literacy scores. We conclude that examining iFC can reveal cortical signatures of dyslexia with particular promise for monitoring

  8. Sandia's activities in uranium mill tailings remedial action

    International Nuclear Information System (INIS)

    Neuhauser, S.

    1980-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978 requires that remedial action be taken at over 20 inactive uranium mill tailings sites in the United States. Standards promulgated by the EPA under this act are to be the operative standards for this activity. Proposed standards must still undergo internal review, public comment, and receive Nuclear Regulatory Commission concurrence before being finalized. Briefly reviewed, the standards deal separately with new disposal sites (Part A) and cleanup of soil and contaminated structures at existing locations (Part B). In several cases, the present sites are felt to be too close to human habitations or to be otherwise unacceptably located. These tailings will probably be relocated. New disposal sites for relocated tailings must satisfy certain standards. The salient features of these standards are summarized

  9. Acid rock drainage passive remediation using alkaline clay and impacts of vegetation and saturated sand barrier

    Science.gov (United States)

    Plaza, F.; Wen, Y.; Liang, X.

    2017-12-01

    Acid rock drainage (ARD) caused by abundance of coal refuse (CR) deposits in mining regions requires adequate treatment to prevent serious water pollution due to its acidity and high concentrations of sulfate and metals/metalloids. Over the past decades, various approaches have been explored and developed to remediate ARD. This study uses laboratory experiments to investigate the effectiveness and impacts of ARD passive remediation using alkaline clay (AC), a by-product of the aluminum refining process. Twelve column kinetic leaching experiments were set up with CR/AC mixing ratios ranging from 1%AC to 10%AC. Samples were collected from these columns to measure the pH, sulfate, metals/metalloids, acidity and alkalinity. Additional tests of XRD and acid base accounting were also conducted to better characterize the mineral phase in terms of the alkalinity and acidity potential. Based on the leachate measurement results, these columns were further classified into two groups of neutral/near neutral pH and acidic pH for further analysis. In addition, impacts of the vegetation and saturated sand layer on the remediation effectiveness were explored. The results of our long-term (more than three years in some cases) laboratory experiments show that AC is an effective ARD remediation material for the neutralization of leachate pH and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. The CR/AC mixing ratios higher than 3%AC are found to be effective, with 10% close to optimal. Moreover, the results demonstrate the benefits of using vegetation and a saturated sand barrier. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked the oxygen and water diffusion downwards, leading to a reduction of the pyrite oxidation rate. Finally, the proposed remediation approach shows that the acidity consumption will likely occur before all the alkalinity is exhausted

  10. Remediation General Permit (RGP) for Massachusetts & New Hampshire

    Science.gov (United States)

    Documents, links & contacts for the Notice of Availability of the National Pollutant Discharge Elimination System (NPDES) General Permit for Remediation Activity Discharges – the Remediation General Permit in MA (MAG910000) and NH (NHG910000).

  11. Superfund Record of Decision (EPA Region 5): Buckeye Reclamation Landfill Site, Belmont County, OH. (First remedial action), August 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The 658-acre Buckeye Reclamation site contains a 50-acre former landfill in Richland Township, Belmont County, Ohio. Land use in the area is predominantly agricultural, rural residential, and strip mining. A total of 46 domestic wells and springs are located within 1 mile of the site. The original topography of the valley has been altered by coal mining and landfill operations. Solid industrial wastes also were disposed of with municipal wastes elsewhere in the landfill. In 1980, the Waste Pit was filled with sludge, mine spoil, and overburden soil; covered with soil and garbage; and seeded. Results of the RI indicate various levels of contamination in all media sampled, except air. The Record of Decision (ROD) addresses the remediation of contaminated leachate and ground water and eliminates exposure to contaminated surface soil. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, TCE, and toluene; other organics including PAHs; and metals including arsenic, chromium, beryllium, and lead. The selected remedial action for the site is included

  12. Steam and electroheating remediation of tight soils

    Energy Technology Data Exchange (ETDEWEB)

    Balshaw-Biddle, K.; Oubre, C.L.; Ward, C.H. [eds.; Dablow, J.F. III; Pearce, J.A.; Johnson, P.C.

    2000-07-01

    In the past few decades the need for soil remediation has become urgent, even more necessary--innovative, cost effective methods. Steam and Electroheating Remediation of Tight Soils presents the results of a field study testing the cleanup of semi-volatile fuels from tight soils using combination of hydraulic fracturing and soil heating technologies.

  13. Strategic planning for remediation projects

    International Nuclear Information System (INIS)

    Tapp, J.W.

    1995-01-01

    Remediation projects may range from a single leaking storage tank to an entire plant complex or producing oil and gas field. Strategic planning comes into play when the contamination of soil and groundwater is extensive. If adjacent landowners have been impacted or the community at large is concerned about the quality of drinking water, then strategic planning is even more important. (1) To manage highly complex interrelated issues--for example, the efforts expended on community relations can alter public opinion, which can impact regulatory agency decisions that affect cleanup standards, which can...and so on. (2) To ensure that all potential liabilities are managed--for example, preparation for the defense of future lawsuits is essential during site investigation and remediation. (3) To communicate with senior management--when the remediation team provides a strategic plan that includes both technical and business issues, senior management has the opportunity to become more involved and make sound policy decisions. The following discusses the elements of a strategic plan, who should participate in it, and the issues that should be considered

  14. Uranium mill tailings remedial action technology

    International Nuclear Information System (INIS)

    Hartley, J.N.; Gee, G.W.

    1984-01-01

    The uranium milling process involves the hydrometallurgical extraction of uranium from ores and the resultant generation of large quantities of waste referred to as tailings. Uranium mill tailings have been identified as requiring remediation because they contain residual radioactive material that is not removed in the milling process. Potential radiation exposure can result from direct contact with the tailings, from radon gas emitted by the tailings, and from radioactive contamination of groundwater. As a result, the technology developed under the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) and the US Nuclear Regulatory Commission (NRC) Uranium Recovery Program have focused on radon control, groundwater contamination and the long-term protection of the containment system. This paper briefly summarizes the UMTRAP and NRC remedial action technology development. 33 references, 9 figures, 5 tables

  15. Almost remediation of saltwater spills at E and P sites

    International Nuclear Information System (INIS)

    Carty, D.J.

    1995-01-01

    At exploration and production (E and P) sites crude spills restricted to topsoil are often self-remediating, but salt spills rarely are. Most soils naturally biodegrade crude. Without appropriate human intervention, brine spills can result in decades of barren land and seriously degrade surface water and aquifers. Servicing the E and P industry are remediation practitioners with a limited array of often expensive remediation concepts and materials which they hope will work, and sometimes do. Unfortunately, many remediation practitioners are unfamiliar with, or disregard, the natural physical, chemical, and biotic complexity of the soil and aquatic media. All too often this results in exacerbating injury to an already damaged ecosystem. Likewise, important cultural factors such as public relations, environmental regulations, property rights, and water rights are also overlooked until after implementation of an ill-advised or illegal remediation design has been initiated. A major issue is determining what constitutes ''successful'' remediation of a brine spill. Environmental managers have long sought one or two universally applicable fast and cheap amendment/treatment protocols for all their diverse multi-state salt affected spill scenarios. This presentation describes aspects of common spill-affected ecosystems which must be considered to achieve ''successful'' remediation

  16. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  17. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Science.gov (United States)

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  18. New technologies in decommissioning and remediation

    International Nuclear Information System (INIS)

    Fournier, Vincent

    2016-01-01

    New and emerging technologies are making decommissioning and remediation more cost effective, faster and safer. From planning to execution and control, the use of new technologies is on the rise. Before starting decommissioning or environmental remediation, experts need to plan each step of the process, and to do that, they first need a clear idea of the characteristics of the structure and the level of radiation that they can expect to encounter

  19. Spectral induced polarization for monitoring electrokinetic remediation processes

    Science.gov (United States)

    Masi, Matteo; Losito, Gabriella

    2015-12-01

    Electrokinetic remediation is an emerging technology for extracting heavy metals from contaminated soils and sediments. This method uses a direct or alternating electric field to induce the transport of contaminants toward the electrodes. The electric field also produces pH variations, sorption/desorption and precipitation/dissolution of species in the porous medium during remediation. Since heavy metal mobility is pH-dependent, the accurate control of pH inside the material is required in order to enhance the removal efficiency. The common approach for monitoring the remediation process both in laboratory and in the field is the chemical analysis of samples collected from discrete locations. The purpose of this study is the evaluation of Spectral Induced Polarization as an alternative method for monitoring geochemical changes in the contaminated mass during remediation. The advantage of this technique applied to field-scale is to offer higher resolution mapping of the remediation site and lower cost compared to the conventional sampling procedure. We carried out laboratory-scale electrokinetic remediation experiments on fine-grained marine sediments contaminated by heavy metal and we made Spectral Induced Polarization measurements before and after each treatment. Measurements were done in the frequency range 10- 3-103 Hz. By the deconvolution of the spectra using the Debye Decomposition method we obtained the mean relaxation time and total chargeability. The main finding of this work is that a linear relationship exists between the local total chargeability and pH, with good agreement. The observed behaviour of chargeability is interpreted as a direct consequence of the alteration of the zeta potential of the sediment particles due to pH changes. Such relationship has a significant value for the interpretation of induced polarization data, allowing the use of this technique for monitoring electrokinetic remediation at field-scale.

  20. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, William [Navarro Research and Engineering

    2016-05-23

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uranium processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.

  1. Selection of monitoring times to assess remediation performance

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, B.H.; Mundle, K. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering, Geoengineering Centre

    2007-07-01

    Several factors determine the time needed for a plume to respond to non-aqueous phase liquid (NAPL) source zone remediation. Most spills of NAPLs (fuels, chlorinated solvents, PCB oils, creosote and coal tar) require mass removal in order to implement remediation technologies such as chemical oxidation, thermal treatments, alcohol flushing, surfactant flushing and hydraulic displacement. While much attention has been given to the development of these remediation technologies, little attention has been given to the response of the plume downstream of the treatment zone and selection of an appropriate monitoring time scale to adequately evaluate the impacts of remediation. For that reason, this study focused on the prevalence of diffusive sinks, the mobility of the contaminant and the hydraulic conductivity of subsurface materials. Typically, plumes in subsurface environments dominated by diffusive sinks or low permeability materials need long periods of time to detach after source removal. This paper presented generic plume response model simulations that illustrated concentration rebound following the use of in-situ chemical oxidation in fractured clay containing trichloroethylene. It was determined that approximately 2 years are needed to reach peak rebound concentration after cessation remedial action. It was concluded that downgradient monitoring well concentrations may be greatly reduced during remedial action due to the fact that oxidant occupies the fracture and because oxidant diffuses into the clay matrix, creating a short period of contaminant reduction in the area of flowing groundwater. 9 refs., 2 tabs., 7 figs.

  2. Functioning of metal contaminated garden soil after remediation

    International Nuclear Information System (INIS)

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-01-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg −1 ) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg −1 of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg −1 EDTA) and changed the structure of microbial population. -- Highlights: ► Toxic metals contaminated garden soil was remediated in a pilot-scale. ► EDTA washing reduced soil Pb, Zn and Cd content and bioavailability. ► Remediated soil preserved the function of plant and microbial substrate. ► Remediation didn't prevent the accumulation of toxic metals in the test plant. -- EDTA soil washing effectively removed toxic metals and reduced their transfer from the soil to plant roots but did not prevent their accumulation in leaves

  3. Selection of monitoring times to assess remediation performance

    International Nuclear Information System (INIS)

    Kueper, B.H.; Mundle, K.

    2007-01-01

    Several factors determine the time needed for a plume to respond to non-aqueous phase liquid (NAPL) source zone remediation. Most spills of NAPLs (fuels, chlorinated solvents, PCB oils, creosote and coal tar) require mass removal in order to implement remediation technologies such as chemical oxidation, thermal treatments, alcohol flushing, surfactant flushing and hydraulic displacement. While much attention has been given to the development of these remediation technologies, little attention has been given to the response of the plume downstream of the treatment zone and selection of an appropriate monitoring time scale to adequately evaluate the impacts of remediation. For that reason, this study focused on the prevalence of diffusive sinks, the mobility of the contaminant and the hydraulic conductivity of subsurface materials. Typically, plumes in subsurface environments dominated by diffusive sinks or low permeability materials need long periods of time to detach after source removal. This paper presented generic plume response model simulations that illustrated concentration rebound following the use of in-situ chemical oxidation in fractured clay containing trichloroethylene. It was determined that approximately 2 years are needed to reach peak rebound concentration after cessation remedial action. It was concluded that downgradient monitoring well concentrations may be greatly reduced during remedial action due to the fact that oxidant occupies the fracture and because oxidant diffuses into the clay matrix, creating a short period of contaminant reduction in the area of flowing groundwater. 9 refs., 2 tabs., 7 figs

  4. The problem resident behavior guide: strategies for remediation.

    Science.gov (United States)

    Williamson, Kelly; Quattromani, Erin; Aldeen, Amer

    2016-04-01

    In 2012, the ACGME supplemented the core competencies with outcomes-based milestones for resident performance within the six competency domains. These milestones address the knowledge, skills, abilities, attitudes, and experiences that a resident is expected to progress through during the course of training. Even prior to the initiation of the milestones, there was a paucity of EM literature addressing the remediation of problem resident behaviors and there remain few readily accessible tools to aid in the implementation of a remediation plan. The goal of the "Problem Resident Behavior Guide" is to provide specific strategies for resident remediation based on deficiencies identified within the framework of the EM milestones. The "Problem Resident Behavior Guide" is a written instructional manual that provides concrete examples of remediation strategies to address specific milestone deficiencies. The more than 200 strategies stem from the experiences of the authors who have professional experience at three different academic hospitals and emergency medicine residency programs, supplemented by recommendations from educational leaders as well as utilization of valuable education adjuncts, such as focused simulation exercises, lecture preparation, and themed ED shifts. Most recommendations require active participation by the resident with guidance by faculty to achieve the remediation expectations. The ACGME outcomes-based milestones aid in the identification of deficiencies with regards to resident performance without providing recommendations on remediation. The Problem Resident Behavior Guide can therefore have a significant impact by filling in this gap.

  5. Remedial action plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Final report, Appendixes to attachment 3

    International Nuclear Information System (INIS)

    1994-06-01

    This document contains supporting appendices to attachment 3 for the remedial action and site stabilization plan for Maybell, Colorado UMTRA site. Appendix A includes the Hydrological Services Calculations and Appendix B contains Ground Water Quality by Location data

  6. Use of time and materials and cost reimbursement subcontracts for remedial actions under the alternative remedial contracting strategy contracts. Directive

    International Nuclear Information System (INIS)

    1992-01-01

    The directive is intended to establish agency guidance on the use of time and materials and cost reimbursement contracts for remedial actions in general and to provide specific instruction regarding the use of these approaches in subcontracting under the Alternative Remedial Contracting Strategy (ARCS) contracts

  7. Cost and performance of innovative remediation technologies

    International Nuclear Information System (INIS)

    Cummings, J.B.; Kingscott, J.W.; Fiedler, L.D.

    1995-01-01

    The selection and use of more cost-effective remedies requires better access to data on the performance and cost of technologies used in the field. To make data more widely available, the US Environmental Protection Agency is working jointly with member agencies of the Federal Remediation Technologies Round table to publish case studies of full-scale remediation and demonstration projects. EPA, DoD, and DOE have published case studies of cleanup projects primarily consisting of bioremediation, soil vapor extraction, and thermal desorption. Within the limits of this initial data set, the paper evaluates technology performance and cost. In the analysis of cost factors, the paper shows the use of a standardized Work Breakdown Structure (WBS). Use of the WBS will be important in future reporting of completed projects to facilitate cost comparison. The paper notes the limits to normalization and thus cross-site comparison which can be achieved using the WBS. The paper identifies conclusions from initial efforts to compile cost and performance data, highlights the importance of such efforts to the overall remediation effort, and discusses future cost and performance documentation efforts

  8. Utilization of brewery wastewater for culturing yeast cells for use in river water remediation.

    Science.gov (United States)

    Chang, Su-Yun; Sun, Jing-Mei; Song, Shu-Qiang; Sun, Bao-Sheng

    2012-01-01

    Successful in situ bio-augmentation of contaminated river water involves reducing the cost of the bio-agent. In this study, brewery wastewater was used to culture yeast cells for degrading the COD(Cr) from a contaminated river. The results showed that 15 g/L of yeast cells could be achieved after being cultured in the autoclaved brewery wastewater with 5 mL/L of saccharified starch and 9 g/L of corn steep liquor. The COD(Cr) removal efficiency was increased from 22% to 33% when the cells were cultured using the mentioned method. Based on the market price of materials used in this method, the cost of the medium for remediating 1 m3 of river water was 0.0076 US dollars. If the additional cost of field implementation is included, the total cost is less than 0.016 US dollars for treating 1 m3 of river water. The final cost was dependent on the size of remediation: the larger the scale, the lower the cost. By this method, the nutrient in the brewery wastewater was reused, the cost of brewery wastewater treatment was saved and the cost of the remediation using bio-augmentation was reduced. Hence, it is suggested that using brewery wastewater to culture a bio-agent for bio-augmentation is a cost-effective method.

  9. A ''dog gone'' restoration project: Remediation of an AEC research facility

    International Nuclear Information System (INIS)

    Huff, P.E.; Brooks, B.T.

    1994-01-01

    This facility was established in 1958 by the Atomic Energy Commission. Research at the facility originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 ( 90 Sr) and radium 226 ( 226 Ra), using beagles to simulate radiation effects on humans. In 1988 the Department of Energy (DOE) decided to close out the research program, shut down the facility and turn it over to the tenant after remediation. This paper examines the remediation activities relative to Animal Hospitals 1 and 2 (AH-1 and AH-2), the cobalt 60 ( 60 Co) source and the Specimen Storage Room. Remediation of this facility took place over one year period beginning in August 1992. Portions of the facility not requiring remediation are now a part of an ongoing research facility. While excluded from areas where remediation took place, facility personnel and others were in close proximity to the remediation, sometimes separated only by a common building wall. This close proximity required remediation techniques that stressed contamination control

  10. Environmental restoration remedial action quality assurance requirements document

    International Nuclear Information System (INIS)

    Cote, R.F.

    1991-01-01

    The environmental Restoration Remedial Action Quality Assurance Requirements Document (DOE/RL 90-28) defines the quality assurance program requirements for the US Department of Energy-Richland Field Office Environmental Restoration Remedial Action Program at the Hanford Site, Richland, Washington. This paper describes the objectives outlined in DOE/RL 90-28. The Environmental Restoration Remedial Action Program implements significant commitments made by the US Department of Energy in the Hanford Federal Facility Agreement and Consent Order entered into with the Washington State Department of Ecology and the US Environmental Protection Agency

  11. Use of folk remedies among patients in Karachi Pakistan.

    Science.gov (United States)

    Qidwai, Waris; Alim, Salman Raza; Dhanani, Raheem H; Jehangir, Sana; Nasrullah, Aysha; Raza, Ammara

    2003-01-01

    The concept that food is medicine is being practiced in certain parts of the world, with positive outcomes on health of the population. We have such practice in Pakistan but it needs to be brought in line with the available scientific evidence. The study was conducted on 270 patients, visiting the Family Practice Center, the Aga Khan University, Karachi. A questionnaire was used to collect information on the demographic profile, and the use of folk remedies for medicinal uses. Substantial use of folk remedies for different medical conditions has been documented. The remedies included cinnamon, ginger, cloves, cordimon, sesame oil, poppy seeds, honey, lemon, table salt, eggs and curd. The medical conditions in which folk remedies are used in respondents' view, include conditions such as common cold, cough and flu to more serious conditions such as asthma, jaundice and heat stroke. We have found a substantial use of folk remedies for treatment of medical conditions. There is a need to organize their use on scientific lines.

  12. Proceedings of the remediation technologies symposium, RemTech 2010

    International Nuclear Information System (INIS)

    2010-01-01

    In response to concerns regarding environmental impacts resulting from the extraction and production of fossil fuels, many oil and gas operators are seeking ways to reduce their environmental footprint and ensure the sustainable development of the industry. This symposium provided a forum to discuss innovations in soil and groundwater remediation. It highlighted recent work conducted in the field of contamination and remediation of industrial pollutant treatments. The conference technical sessions were entitled: British Columbia perspective; DND sites; hydrocarbons; oilfield remediation; Saskatchewan perspective; brownfields; miscellaneous; Quebec perspective; laboratory analysis and testing; landfill management and remediation; and, in-situ treatment methods. Some presentations also reviewed biological and non-biological treatment methods; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; solar detoxification; electrochemical remediation; pre-treatment considerations; phytoremediation; and environmental management. The pre-conference workshop discussed methods of working with the federal government on future contaminated sites. The symposium featured 67 presentations, of which 26 have been catalogued separately for inclusion in this database

  13. Proceedings of the remediation technologies symposium, RemTech 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In response to concerns regarding environmental impacts resulting from the extraction and production of fossil fuels, many oil and gas operators are seeking ways to reduce their environmental footprint and ensure the sustainable development of the industry. This symposium provided a forum to discuss innovations in soil and groundwater remediation. It highlighted recent work conducted in the field of contamination and remediation of industrial pollutant treatments. The conference technical sessions were entitled: British Columbia perspective; DND sites; hydrocarbons; oilfield remediation; Saskatchewan perspective; brownfields; miscellaneous; Quebec perspective; laboratory analysis and testing; landfill management and remediation; and, in-situ treatment methods. Some presentations also reviewed biological and non-biological treatment methods; thermal desorption; encapsulation; natural attenuation; multi-phase extraction; solar detoxification; electrochemical remediation; pre-treatment considerations; phytoremediation; and environmental management. The pre-conference workshop discussed methods of working with the federal government on future contaminated sites. The symposium featured 67 presentations, of which 26 have been catalogued separately for inclusion in this database. tabs., figs.

  14. What is the Prevalence and Success of Remediation of Emergency Medicine Residents?

    OpenAIRE

    Silverberg, Mark; Weizberg, Moshe; Murano, Tiffany; Smith, Jessica L.; Burkhardt, John C.; Santen, Sally A.

    2015-01-01

    Introduction: The primary objective of this study was to determine the prevalence of remediation, competency domains for remediation, the length, and success rates of remediation in emergency medicine (EM). Methods: We developed the survey in SurveymonkeyTM with attention to content and response process validity. EM program directors responded how many residents had been placed on remediation in the last three years. Details regarding the remediation were collected inclu...

  15. A remedial alternative prioritization method

    International Nuclear Information System (INIS)

    Richter, S.A.; Travis, C.C.

    1987-01-01

    This study develops and tests a technique for evaluating and prioritizing alternative remedial actions for hazardous waste sites. The method is based on criteria involving risk, benefit and cost, and identifies the most cost-effective solution to a given remedial problem. Four sites on the Department of Energy's Oak Ridge National Laboratory (ORNL) property in Oak Ridge, Tennessee, were used in a case study to develop and test the method. Results of the case study indicate that even if the cap providing in situ containment must be replaced every 10 years, it is a superior alternative to total excavation of the waste sites

  16. Finally Underway: Implementation of the Port Hope Area Initiative - 13151

    International Nuclear Information System (INIS)

    Fahey, Christine A.; Palmeter, Tim; Blanchette, Marcia

    2013-01-01

    Two distinct yet closely related waste remediation projects are finally underway in Canada under the Port Hope Area Initiative (PHAI) which aims to clean up 1.7 million cubic metres (m 3 ) of low-level radioactive waste (LLRW) arising from 60 years of uranium and radium operations. Under the PHAI, the Port Hope Project and the smaller Port Granby Project will result in the consolidation of the LLRW within two highly engineered, above-ground mounds, to be constructed within the municipalities of Port Hope and Clarington. These projects will fulfill the federal government commitment to the safe, long-term management of the LLRW, as set out in the legal agreement signed by the government and the host municipalities in 2001. The federal authorization to commence PHAI Remediation and Construction Phase 2 was received in late 2011 and several enabling infrastructure construction and radiological survey contracts were awarded in 2012. The contracts to remediate the waste sites and construct the new engineered mounds will be tendered in 2013. At the end of Phase 2, environmental risks will be substantially mitigated, land development restrictions lifted, and an honourable legacy left for future generations. (authors)

  17. Is Sustainable Remediation Now a Self-Sustaining Process? an International Progress Report

    Science.gov (United States)

    Smith, J. W. N.

    2014-12-01

    Sustainable remediation - the consideration of environmental, social and economic factors associated with soil and groundwater risk-management options, to help select the best overall solution - has been a rapidly evolving topic in recent years. The first published reference[1] to 'sustainable remediation' was in the title of a 1999 conference paper by Kearney et al., (1999), but activity really accelerated in the middle-late 2000's, with establishment of a number of collaborative sustainable remediation groups and fora, and increased publication rates in the peer reviewed literature (Fig 1). Figure 1. Journal paper publications with search term 'sustainable remediation' (SCOPUS survey, 17 July 2014) This presentation will review the international progress of sustainable remediation concept development and application in regulatory and corporate decision-making processes. It will look back at what has already been achieved, provide an update on the latest initiatives and developments, and look forward to what the future of sustainable remediation might look like. Specifically it will describe: Sustainable remediation frameworks: synergies and international collaboration; Latest guidance and tools developed by the various sustainable remediation organisations (SuRFs), including the SuRF-UK Best Management Practices and Tier 1 Briefcase; Best practice standard development by ASTM and ISO; Regulatory acceptance of sustainable remediation, including incorporation into legislation, and the NICOLE - Common Forum Joint statement on 'risk-informed and sustainable remediation' in Europe; Examples of corporate adoption of sustainable remediation principles. The presentation will conclude with a look forward to a vision of sustainable remediation in 2020.

  18. Multi-Objective Optimization of the Setup of a Surfactant-Enhanced DNAPL Remediation

    NARCIS (Netherlands)

    Schaerlaekens, J.; Carmeliet, J.; Feyen, J.

    2005-01-01

    Surfactant-enhanced aquifer remediation (SEAR) is widely considered a promising technique to remediate dense nonaqueous phase liquid (DNAPL) contaminations in-situ. The costs of a SEAR remediation are important and depend mostly on the setup of the remediation. Costs can be associated with the

  19. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report

    International Nuclear Information System (INIS)

    1991-12-01

    The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado

  20. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electrodialytic Remediation of Different Heavy Metal-Polluted Soils in Suspension

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2013-01-01

    Electrokinetic remediation of heavy metal-polluted soil faces different challenges in relation to implementation. One challenge is to cope with the nonlinear and transient geochemical changes in the soil and another is to increase the remediation rate. Both these challenges are met when treating...... the soil in a suspension in an electrodialytic cell. The soil suspension is stirred and uniform during treatment. Previously, it has been shown that a faster remediation can be obtained when remediating a stirred soil suspension compared to a stationary water saturated soil (all other parameters the same...

  2. Remedial design and remedial action guidance for the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-10-01

    The US Department of Energy, Idaho Operations Office (DOE-ID), the US Environmental Protection Agency, Region X (EPA), and the Idaho Department of Health and Welfare (IDHW) have developed this guidance on the remedial design and remedial action (RD/RA) process. This guidance is applicable to activities conducted under the Idaho National Engineering Laboratory (INEL) Federal Facility Agreement and Consent Order (FFA/CO) and Action Plan. The INEL FFA/CO and Action Plan provides the framework for performing environmental restoration according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The guidance is intended for use by the DOE-ID, the EPA, and the IDHW Waste Area Group (WAG) managers and others involved in the planning and implementation of CERCLA environmental restoration activities. The scope of the guidance includes the RD/RA strategy for INEL environmental restoration projects and the approach to development and review of RD/RA documentation. Chapter 2 discusses the general process, roles and responsibilities, and other elements that define the RD/RA strategy. Chapters 3 through 7 describe the RD/RA documents identified in the FFA/CO and Action Plan. Chapter 8 provides examples of how this guidance can be applied to restoration projects. Appendices are included that provide excerpts from the FFA/CO pertinent to RD/RA (Appendix A), a applicable US Department of Energy (DOE) orders (Appendix B), and an EPA Engineering ''Data Gaps in Remedial Design'' (Appendix C)

  3. 40 CFR 300.435 - Remedial design/remedial action, operation and maintenance.

    Science.gov (United States)

    2010-07-01

    ... features of the selected remedy with respect to scope, performance, or cost. To amend the ROD, the lead...) Include appropriate language in the solicitation requiring potential prime contractors to submit... protection of human health and the environment, the operation of such treatment or other measures for a...

  4. Multi-objective decision-making for soil remediation problems

    NARCIS (Netherlands)

    Drunen, van M.A.; Beinat, E.; Nijboer, M.; Okx, J.P.

    2005-01-01

    After deciding whether or not a soil clean-up operation is necessary, the question remains which remedial strategy and technique should be applied. Traditionally, remediation techniques aim at reaching environmental threshold values within the shortest possible time. There is, however, a growing

  5. Environmental Restoration Remedial Action Program records management plan

    International Nuclear Information System (INIS)

    Michael, L.E.

    1991-07-01

    The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan [(FOMP) DOE-RL 1989] describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document [(QARD) DOE-RL 1991], provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig

  6. Uranium Mill Tailings Remedial Action Program. Annual status report

    International Nuclear Information System (INIS)

    1983-12-01

    The FY 1983 project accomplishments are: completed the Remedial Action Plan and Phase I engineering design for the Canonsburg processing site; completed remedial action on an additional 52 vicinity properties and the inclusion of an additional 303 properties in the Uranium Mill Tailings Remedial Action Project; executed cooperative agreements with four states and the Navajo Nation; published the draft environmental impact statement for Salt Lake City site; and issued the approved Project Plan

  7. A framework to teach self-reflection for the remedial resident.

    Science.gov (United States)

    Leung, Fok-Han; Ratnapalan, Savithri

    2011-01-01

    Regardless of the area of deficiency, be it in knowledge, skills or attitudes, residents requiring remediation are rarely self-identified. This illustrates a diminished ability for self-reflection. Self-reflection is a cornerstone of adult education. During the remediation process, the remediation curriculum needs to emphasize self-reflection. How can one structure self-reflection in a remediation curriculum? This article describes how to adapt and apply environmental scanning for remedial residents. Environmental scanning is a rigorous and well-developed business approach that can be adapted for personal continuous quality improvement to foster self-reflection in medical trainees. There are often already existing tools which can form the foundation for regular reflection in medical education using an environmental scanning structure. Environmental scanning can be thought of as a structured approach to internal and external reflections.

  8. Comparison of approaches for assessing sustainable remediation of contaminated sites

    DEFF Research Database (Denmark)

    Søndergaard, Gitte Lemming; Binning, Philip John; Bjerg, Poul Løgstrup

    2017-01-01

    It has been estimated that there are approximately 2.5 million potentially contaminated sites in Europe. Of these, approximately 340,000 sites are thought to be contaminated to a degree that may require remediation (Joint Research Center, 2014). Until recently, remediation was considered...... to be inherently green or sustainable since it removes a contaminant problem. However, it is now broadly recognized that while remediation is intended to address a local environmental threat, it may cause other local, regional and global impacts on the environment, society and economy. Over the last decade......, the broader assessment of these criteria is occurring in a movement toward ‘sustainable remediation’. This paper aims to review the available methods for assessing the sustainability of remediation alternatives. Sustainable remediation seeks to reduce direct contaminant point source impacts on the environment...

  9. Electrodialytic remediation of copper mine tailings: Comparing different operational conditions

    DEFF Research Database (Denmark)

    Rojo, Adrian; Hansen, Henrik K.; Ottosen, Lisbeth M.

    2006-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analyzed, such as remediation time, voltage drop, addition of desorbing agents, and the use of pulsed electrical fields. The results show that electric...... of copper citrate complexes. Using pulsed electric fields the remediation process with sulphuric acid addition was also improved by a decrease in the polarization cell. Main results: considering remediation with watery tailing as the base line, for three weeks experiments no copper removal was observed......, adding sulphuric acid total copper removal reached 39%. Adding citric acid, total copper removal was improved in terms of remediation time: after 5h experiment copper removal was 16% instead of 9% obtained after 72h with sulphuric acid addition. Using pulsed electric fields total copper removal was also...

  10. EM-54 Technology Development In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years

  11. Remediation in Situ of Hydrocarbons by Combined Treatment in a Contaminated Alluvial Soil due to an Accidental Spill of LNAPL

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2016-10-01

    Full Text Available Soil contamination represents an environmental issue which has become extremely important in the last decades due to the diffusion of industrial activities. Accidents during transport of dangerous materials and fuels may cause severe pollution. The present paper describes the criteria of the actions which were operated to remediate the potential risk and observed negative effects on groundwater and soil originating from an accidental spill of diesel fuel from a tank truck. With the aim to evaluate the quality of the involved environmental matrices in the “emergency” phase, in the following “safety” operation and during the remediation action, a specific survey on hydrocarbons, light and heavy, was carried out in the sand deposits soil. Elaboration of collected data allows us to observe the movement of pollutants in the unsaturated soil. The remediation action was finalized to improve the groundwater and soil quality. The former was treated by a so called “pump and treat” system coupled with air sparging. A train of three different technologies was applied to the unsaturated soil in a sequential process: soil vapour extraction, bioventing and enhanced bioremediation. Results showed that the application of sequential remediation treatments allowed us to obtain a state of quality in unsaturated soil and groundwater as required by Italian law.

  12. Remediation of Learning Disable Children Following L.S. Vygotsky's Approach

    Directory of Open Access Journals (Sweden)

    Janna M. Glozman

    2011-01-01

    Full Text Available The paper defines remediating education, its peculiarities against trasitional education, main tasks and principles, based upon the cultural-historical theory of L.S. Vygotsky. Base functional systems formed during remediation are discussed. Peculiarities of individual, group and dyadic methods of remediation are described with regard to its potential for mediating child's activity.

  13. Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty

    International Nuclear Information System (INIS)

    Li, Jing; He, Li; Lu, Hongwei; Fan, Xing

    2014-01-01

    Highlights: • We propose an integrated optimal groundwater remediation design approach. • The approach can address stochasticity in carcinogenic risks. • Goal programming is used to make the system approaching to ideal operation and remediation effects. • The uncertainty in slope factor is evaluated under different confidence levels. • Optimal strategies are obtained to support remediation design under uncertainty. - Abstract: An optimal design approach for groundwater remediation is developed through incorporating numerical simulation, health risk assessment, uncertainty analysis and nonlinear optimization within a general framework. Stochastic analysis and goal programming are introduced into the framework to handle uncertainties in real-world groundwater remediation systems. Carcinogenic risks associated with remediation actions are further evaluated at four confidence levels. The differences between ideal and predicted constraints are minimized by goal programming. The approach is then applied to a contaminated site in western Canada for creating a set of optimal remediation strategies. Results from the case study indicate that factors including environmental standards, health risks and technical requirements mutually affected and restricted themselves. Stochastic uncertainty existed in the entire process of remediation optimization, which should to be taken into consideration in groundwater remediation design

  14. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  15. 161 EVALUATION OF ON-SHORE OIL SPILL REMEDIATION ...

    African Journals Online (AJOL)

    EVALUATION OF ON-SHORE OIL SPILL REMEDIATION OPERATIONS IN. PORT HARCOURT ... study is an attempt to unravel the effectiveness of clean-up exercises undertaken by oil .... Research Design. The study ..... remediation as well as tilling and evacuation of affected soils would certainly be more productive.

  16. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    Science.gov (United States)

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. evaluation of different remediation methods of polluted soils using nuclear technique

    International Nuclear Information System (INIS)

    Moussa, I.E.A.

    2012-01-01

    Remediation of heavy metal contaminated has become a considerable task to introduce such marginal or waste lands into productive systems. Various techniques, i.e. chemical and organic agents, bio- and Phyto remediation including microorganisms and/or phyto plants are used to remediate such contaminated soils. The contamination of the soil with metals has become a widespread environmental problem in many industrialized countries. The fact that the Earth's surface is becoming increasingly polluted by human activities challenges society to develop strategies for sustainability that conserve nonrenewable natural resources such as soil. The aim of the present study is to investigate the effectiveness of (I) some chemical and organic amendments in remediation of heavy metals contaminated soil. At the same time, a follow up the effects of interaction between amendment concentration and incubation time intervals on bioavailability of tested heavy metals was taken into consideration. (II) Fungi inoculation in remediation of heavy metals contaminated soils. (III) Calcium carbonate on the potentiality of panikum and sudan grass (as hyper accumulators) in remediation of heavy metals contaminated soil. To fulfill this task, it was suggested to conduct three experiments, namely; (1) Chemical remediation of Contaminated Soils experiment (2) Bioremediation experiment (3) Phyto remediation Experiment

  18. An economic decision framework using modeling for improving aquifer remediation design

    International Nuclear Information System (INIS)

    James, B.R.; Gwo, J.P.; Toran, L.E.

    1995-11-01

    Reducing cost is a critical challenge facing environmental remediation today. One of the most effective ways of reducing costs is to improve decision-making. This can range from choosing more cost- effective remediation alternatives (for example, determining whether a groundwater contamination plume should be remediated or not) to improving data collection (for example, determining when data collection should stoop). Uncertainty in site conditions presents a major challenge for effective decision-making. We present a framework for increasing the effectiveness of remedial design decision-making at groundwater contamination sites where there is uncertainty in many parameters that affect remediation design. The objective is to provide an easy-to-use economic framework for making remediation decisions. The presented framework is used to 1) select the best remedial design from a suite of possible ones, 2) estimate if additional data collection is cost-effective, and 3) determine the most important parameters to be sampled. The framework is developed by combining elements from Latin-Hypercube simulation of contaminant transport, economic risk-cost-benefit analysis, and Regional Sensitivity Analysis (RSA)

  19. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  20. Status report: Fernald site remediation

    International Nuclear Information System (INIS)

    Craig, J.R. Jr.; Saric, J.A.; Schneider, T.; Yates, M.K.

    1995-01-01

    The Fernald site is rapidly transitioning from a Remedial Investigation/ Feasibility Study (RI/FS) site to one where design and construction of the remedies dominates. Fernald is one of the first sites in the Department of Energy (DOE) complex to accomplish this task and real physical progress is being made in moving the five operable units through the CERCLA process. Two of the required Records of Decision (ROD) are in hand and all five operable units will have received their RODs (IROD for OU3) by the end of 1995. Pre-design investigations, design work or construction are now in progress on the operable units. The lessons learned from the work done to date include implementing innovations in the RI and FS process as well as effective use of Removal Actions to begin the actual site remediation. Also, forging close working relationships with the Federal and State Regulators, citizens action groups and the Fernald Citizens Task Force has helped move the program forward. The Fernald successes have been achieved by close coordination and cooperation among all groups working on the projects and by application of innovative technologies within the decision making process

  1. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    International Nuclear Information System (INIS)

    McLaughlin, T.J.

    1998-01-01

    This document is prepared in order to support the US Department of Energy's evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors

  2. Innovative technologies for in-situ remediation

    International Nuclear Information System (INIS)

    Ragaini, R.; Aines, R.; Knapp, R.; Matthews, S.; Yow, J.

    1994-06-01

    LLNL is developing several innovative remediation technologies as long-term improvements to the current pump and treat approaches to cleaning up contaminated soils and groundwater. These technologies include dynamic underground stripping, in-situ microbial filters, and remediation using bremsstrahlung radiation. Concentrated underground organic contaminant plumes are one of the most prevalent groundwater contamination sources. The solvent or fuel can percolate deep into the earth, often into water-bearing regions. Collecting as a separate, liquid organic phase called dense non-aqueous-phase liquids (DNAPLs), or light NAPLs (LNAPLs), these contaminants provide a source term that continuously compromises surrounding groundwater. This type of spill is one of the most difficult environmental problems to remediate. Attempts to remove such material requires a huge amount of water which must be washed through the system to clean it, requiring decades. Traditional pump and treat approaches have not been successful. LLNL has developed several innovative technologies to clean up NAPL contamination. Detailed descriptions of these technologies are given

  3. Reading Remediation Based on Sequential and Simultaneous Processing.

    Science.gov (United States)

    Gunnison, Judy; And Others

    1982-01-01

    The theory postulating a dichotomy between sequential and simultaneous processing is reviewed and its implications for remediating reading problems are reviewed. Research is cited on sequential-simultaneous processing for early and advanced reading. A list of remedial strategies based on the processing dichotomy addresses decoding and lexical…

  4. Development of an integrated economic decision-support tool for the remediation of contaminated sites. Overview note

    International Nuclear Information System (INIS)

    Samson, R.; Bage, G.

    2004-05-01

    , and costs of treatment according to the most current ranges obtained from the literature. For bio-venting and bio-pile treatment, which are used in the simulations described in this report, a list of equipment requirements, established according to the requirements of the virtual site, accompanies the technology files. Rather than employing economic databases specific to each technology as an integral part of the software, the software makes use of a system of generalized databases applicable to all technologies and specialized databases for various remedial operations (e.g., laboratory analyses, air extraction system). The databases specific to a given technology for a given site will be created from the system of generalized and specialized databases for each simulation, as required. This permits a high degree of flexibility in the economic evaluation of each technology, and facilitates updating (a single modification is sufficient for an element that may be used by several technologies). Twelve simulations have been realized for the remediation of a virtual site contaminated by diesel. Each simulation is constrained by a time limit for remediation and/or by a maximum benefit associated with the remediated site. The complexity of some optimal remediation strategies underlines the need for site managers to utilize a tool such as SITE VII. Finally, having established the foundations of the software, this report presents a series of recommendations for future work for completing the design of SITE VII, in order to make it complete, functional, and equipped with a user-friendly interface. (authors)

  5. Optimum Remediation Conditions of Vertical Electrokinetic-Flushing Equipment to Decontaminate a Radioactive Soil

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Yang, Byeong IL; Moon, Jei Kwon; Lee, Kune Woo

    2009-01-01

    Vertical electrokintic-flushing remediation equipment was developed for the remediation of a radioactive soil near nuclear facilities. An optimum reagent was selected to decontaminate the radioactive soil near nuclear facilities with the developed vertical electrokintic-flushing remediation equipment, and the optimum remediation conditions were established to obtain a higher remediation efficiency. Namely, acetic acid was selected as an optimum reagent due to its higher remediation efficiency. When the electrokinetic remediation and the electrokinetic-flushing remediation results were compared, the removal efficiency of 4.6% and the soil waste solution volume of 1.5 times were increased in the electrokinetic remediation. When the potential gradient within an electrokinetic soil cell was increased by two times (4.0 V/cm), the removal efficiencies of Co 2+ and Cs + were increased by about 4.3%( Co 2+ : 98.9%, Cs + : 96.7%). Also, when the reagent concentration was increased from 0.01 M to 0.05 M, the removal efficiency of Co 2+ was increased but that of Cs + was decreased. Therefore, the optimum remediation conditions were that the acetic concentration was 0.01 M ∼ 0.05 M, the potential gradient was 4 V/cm, the injection of reagent 2.4 ml/g, and the remediation period was 20 days.

  6. Sustainability likelihood of remediation options for metal-contaminated soil/sediment.

    Science.gov (United States)

    Chen, Season S; Taylor, Jessica S; Baek, Kitae; Khan, Eakalak; Tsang, Daniel C W; Ok, Yong Sik

    2017-05-01

    Multi-criteria analysis and detailed impact analysis were carried out to assess the sustainability of four remedial alternatives for metal-contaminated soil/sediment at former timber treatment sites and harbour sediment with different scales. The sustainability was evaluated in the aspects of human health and safety, environment, stakeholder concern, and land use, under four different scenarios with varying weighting factors. The Monte Carlo simulation was performed to reveal the likelihood of accomplishing sustainable remediation with different treatment options at different sites. The results showed that in-situ remedial technologies were more sustainable than ex-situ ones, where in-situ containment demonstrated both the most sustainable result and the highest probability to achieve sustainability amongst the four remedial alternatives in this study, reflecting the lesser extent of off-site and on-site impacts. Concerns associated with ex-situ options were adverse impacts tied to all four aspects and caused by excavation, extraction, and off-site disposal. The results of this study suggested the importance of considering the uncertainties resulting from the remedial options (i.e., stochastic analysis) in addition to the overall sustainability scores (i.e., deterministic analysis). The developed framework and model simulation could serve as an assessment for the sustainability likelihood of remedial options to ensure sustainable remediation of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modularizing Remedial Mathematics

    Science.gov (United States)

    Wong, Aaron

    2013-01-01

    As remedial mathematics education has become an increasingly important topic of conversation in higher education. Mathematics departments have been put under increased pressure to change their programs to increase the student success rate. A number of models have been introduced over the last decade that represent a wide range of new ideas and…

  8. Using risk-based remedy selection to minimize remedial response costs -- A case history

    International Nuclear Information System (INIS)

    Cox, S.A.; Hochreiter, J.J. Jr.; Stout, D.J.

    1995-01-01

    The authors used a risk-based remedy selection at a former coal tar emulsion production facility in a heavily industrialized area of northern New Jersey. Historical site activities resulted in extensive contamination of shallow site soils from high molecular weight Polycyclic Aromatic Hydrocarbons (PAHs), including potentially carcinogenic PAHs (cPAHs). Then-current risk-based proposed soil cleanup goals developed by the New Jersey Department of Environmental Protection (NJDEP) were not representative of potential exposures under current or future exposure scenarios. Alternate soil cleanup goals were calculated, incorporating relevant input variables that accurately reflected site conditions and potential receptors/exposure scenarios; these cleanup goals demonstrated the site did not pose the degree of risk assumed by the NJDEP. However, they were not accepted by NJDEP as performance standards for remedial activities for ''policy'' reasons

  9. Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site

    Science.gov (United States)

    Morse, J. G.; Wellman, D. M.; Gephart, R.

    2010-12-01

    .S Department of Energy recognizes these challenges and is committed to a sustained, focused effort of continuing to apply existing technologies where feasible while investing and developing in new innovative, field-demonstrated capabilities supporting longer-term basic and applied research to establish the technical underpinning for solving intractable deep vadose zone problems and implementing final remedies. This approach will rely upon Multi-Project Teams focusing on coordinated projects across multiple DOE offices, programs, and site contractors plus the facilitation of basic and applied research investments through implementing a Deep Vadose Zone Applied Field Research Center and other scientific studies.

  10. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    International Nuclear Information System (INIS)

    Deeb, Rula A.; Hawley, Elisabeth L.

    2013-01-01

    alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)

  11. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, Rula A.; Hawley, Elisabeth L. [ARCADIS, U.S., 2000 Powell St., 7th Floor, Emeryville, California 94608 (United States)

    2013-07-01

    to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)

  12. Systematic effects in radon mitigation by sump/pump remediation

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Groves-Kirkby, C.J.; Woolridge, A.C.; Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M.; Tornberg, R.

    2006-01-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump technology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  13. Managerial response to stockouts: the effect of remedies on consumer behavior

    Directory of Open Access Journals (Sweden)

    Ester Quirino Dias Sampaio

    2016-03-01

    Full Text Available Abstract Stockouts remain a significant problem for retail firms. Estimates of stockout rates in the past fifty years consistently averaged approximately 8 percent. The consequences of stockouts transcend the retail store to include its supporting supply chain. In addition to the effect on the behavior of consumers, stockouts can impact the firm’s replenishment policy, the level and location of inventories and the cost of emergency shipments required to replenish out-of-stock items. Although there is a substantive literature in logistics that measures the frequency of and the consumer response to stockouts, investigation of the effect of remedies on consumer response is sparse. To address this problem, the effectiveness of five remedies as tools to manage retail stockouts was investigated: apology, raincheck, home delivery, trade-up and discount. A remedy is an incentive to induce consumers to not leave a store in response to a stockout. In addition the influence of consumer characteristics (i.e., brand loyalty and shopping situations (i.e., urgency of purchase on the effect of each remedy on consumer behavior was examined. The results suggest that the remedies are usually effective. The most effective remedy is home delivery. The least effective remedy is a simple apology, which may actually increase the percentage of consumers leaving the store. The results also indicate that the urgency of the purchase and store loyalty have the most impact on remedy effectiveness. These results suggest that there are significant opportunities to use remedies as tools to manage the effect of stockouts on retail stores and their supporting supply chains.

  14. Technology needs and trends for hazardous waste site remediation

    International Nuclear Information System (INIS)

    Kovalick, W.W. Jr.

    1995-01-01

    Over the next few decades, federal, state, and local governments and private industry will commit billions of dollars annually to clean up sites contaminated with hazardous waste and petroleum products. While these needs represent an obligation for society, they also represent an important business opportunity for vendors of remediation services. This presentation assesses the remediation market by characterizing sites that comprise the demand for cleanup services, observing remedy selection trends in the Superfund program, and discussing gaps in the supply of technologies

  15. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  16. Environmental remediation and waste management information systems

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1993-01-01

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency's (EPA's) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA's CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information

  17. Department of Energy hazardous waste remedial actions program: Quality assurance program

    International Nuclear Information System (INIS)

    Horne, T.E.

    1988-01-01

    This paper describes the Quality Assurance Program developed for the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAP SCO). Key topics discussed include an overview of the HAZWRAP SCO mission and organization, the basic quality assurance program requirements and the requirements for the control of quality for the Department of Energy and Work for Others hazardous waste management programs, and the role of ensuring quality through the project team concept for the management of remedial response actions. The paper focuses on planning for quality assurance for this remedial waste management process from preliminary assessments of remedial sites to feasibility studies. Some observations concerning the control of quality during the implementation of remedial actions are presented. (2 refs.)

  18. Remedial measures in Swedish and Norwegian houses - application of radon and radon decay product measurements

    International Nuclear Information System (INIS)

    Just, G.; Philipsborn, H. von; Matolin, M.; Molzahn, D.

    1998-01-01

    Houses and apartments in Sweden and Norway with excessive indoor radon concentrations were studied in detail with a variety of methods, standard and novel ones recently developed. For suitable remediation it is necessary to distinguish soil radon and exhalation from blue (porous) concrete. Our CARBOTEST-S is a simple, sensitive, in-situ method to quantify radon exhalation from existing walls, as well as radon permeability of different protective foils and final quality control of foils applied to existing walls. (orig.) [de

  19. Comment and response document for the final remedial action plan site design for stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-09-01

    This document consists of comments and responses; the reviewers are the U.S. Nuclear Regulatory Commission (NRC), Colorado Dept. of Public Health and Environment, and the remedial action contractor (RAC)

  20. Cost benefit analysis for remediation of a nuclear industry landfill

    International Nuclear Information System (INIS)

    Parker, Tom; Hardisty, Paul; Dennis, Frank; Liddiard, Mark; McClelland, Paul

    2006-01-01

    An old landfill site, licensed to receive inert construction waste, is situated on the top of hard rock cliffs adjacent to the sea at the Dounreay nuclear facility in Scotland. During restoration and investigation work at the landfill, radioactively contaminated material and asbestos was identified. UKAEA subsequently investigated the feasibility of remediating the landfill with the aim of removing any remaining radioactive or otherwise-contaminated material. The cost of landfill remediation would be considerable, making Cost Benefit Analysis (CBA) an ideal tool for assessing remediation options. The overall conclusion of the CBA, from a remedial decision making point of view, is that the remediation objective for the landfill should be to reduce any impacts to the current receptors through a comprehensive pathway control scheme. This would be considerably less expensive than even a limited source removal approach. Aggressive source removal objectives are not likely to be economic, even under the most conservative assumptions. A natural monitored attenuation approach will not be economic. All remediation options are considered assuming compliance with the existing regulatory requirements to monitor and cap the landfill before and after closure

  1. Cost benefit analysis for remediation of a nuclear industry landfill

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Tom; Hardisty, Paul [WorleyParsons Komex, Bristol (United Kingdom); Dennis, Frank; Liddiard, Mark; McClelland, Paul [UKAEA, Dounreay (United Kingdom)

    2006-09-15

    An old landfill site, licensed to receive inert construction waste, is situated on the top of hard rock cliffs adjacent to the sea at the Dounreay nuclear facility in Scotland. During restoration and investigation work at the landfill, radioactively contaminated material and asbestos was identified. UKAEA subsequently investigated the feasibility of remediating the landfill with the aim of removing any remaining radioactive or otherwise-contaminated material. The cost of landfill remediation would be considerable, making Cost Benefit Analysis (CBA) an ideal tool for assessing remediation options. The overall conclusion of the CBA, from a remedial decision making point of view, is that the remediation objective for the landfill should be to reduce any impacts to the current receptors through a comprehensive pathway control scheme. This would be considerably less expensive than even a limited source removal approach. Aggressive source removal objectives are not likely to be economic, even under the most conservative assumptions. A natural monitored attenuation approach will not be economic. All remediation options are considered assuming compliance with the existing regulatory requirements to monitor and cap the landfill before and after closure.

  2. Green remediation. Tool for safe and sustainable environment: a review

    Science.gov (United States)

    Singh, Mamta; Pant, Gaurav; Hossain, Kaizar; Bhatia, A. K.

    2017-10-01

    Nowadays, the bioremediation of toxic pollutants is a subject of interest in terms of health issues and environmental cleaning. In the present review, an eco-friendly, cost-effective approach is discussed for the detoxification of environmental pollutants by the means of natural purifier, i.e., blue-green algae over the conventional methods. Industrial wastes having toxic pollutants are not able to eliminate completely by existing the conventional techniques; in fact, these methods can only change their form rather than the entire degradation. These pollutants have an adverse effect on aquatic life, such as fauna and flora, and finally harm human life directly or indirectly. Cyanobacterial approach for the removal of this contaminant is an efficient tool for sustainable development and pollution control. Cyanobacteria are the primary consumers of food chain which absorbed complex toxic compounds from environments and convert them to simple nontoxic compounds which finally protect higher food chain consumer and eliminate risk of pollution. In addition, these organisms have capability to solve secondary pollution, as they can remediate radioactive compound, petroleum waste and degrade toxins from pesticides.

  3. Evaluation of the initial and final radiological status of a nuclear facility in sanitation status

    International Nuclear Information System (INIS)

    Granier, Guy; Aubonnet, Emilie; Courbet, Christele; Desnoyers, Yvon; Dubot, Didier; Fichet, Pascal; Nokhamzon, Jean-Guy; Ollivier Dehaye, Catherine; Pillette-Cousin, Lucien; Mahe, Charly

    2017-02-01

    This technical report is a guideline for radiological assessment of a nuclear facility in remediation stages. From initial state of remediation to final status survey it describes the best suited statistical or geostatistical approach for the characterization of sites contaminated by radionuclides. Prior to any characterization campaign an historical analysis coupled with a function analysis targeted investigations is fundamental to obtain a robust overview. The evaluation of the amount of radioactive material present in a defined area requires a sampling strategy correlated with characterization objective. On the other hand correlation between remediation objectives and characterization objectives also requires knowing acceptable level of risk. This give better inputs to allow available resources and take into account environmental constraints. In particular, radiological characterization of infrastructures is one of the key step to conduct industrial project of decommissioning nuclear facilities in remediation. It needs a reliable initial diagnosis to obtain an efficient waste management with a financial control Optimization of the production of nuclear waste. It is an important part of Setting the Off Final - Dismantling). This approach is compatible with French Regulation (Guide 14 ASN) for the first and second line of defence. Annexes provide feedback of experimentation of this methodology. This report supplements the methodological guide published by the GT10 CETAMA entitled 'Soil Radiological Characterisation Methodology' (CEA-R 6386). The latter is intended for project managers and covers all issues related to the characterization projects for soil. This guideline concern specifically design engineers in charge of implementation program at the different stages of investigation and data processing. Similarly, the proposed methodology can be broken for the characterization of chemical pollution and process equipment. (authors)

  4. 32 CFR 634.10 - Remedial driver training programs.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Remedial driver training programs. 634.10 Section 634.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges § 634.10 Remedial driver training programs. (a) Navy...

  5. Soil Contamination and Remediation Strategies. Current research and future challenge

    Science.gov (United States)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  6. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information

  7. Evaluation of home lead remediation in an Australian mining community.

    Science.gov (United States)

    Boreland, F; Lesjak, M; Lyle, D

    2009-12-20

    In 1994 a comprehensive program was established to reduce children's blood lead levels in Broken Hill, NSW, Australia. Home remediation (abatement of lead hazards in a child's home) was included as part of a case management strategy for children with blood lead levels >or=15 microg/dL. Children with blood lead levels >or=30 microg/dL were offered immediate home remediation. Children with blood lead levels of 15-29 microg/dL were allocated to 'immediate' or 'delayed' home remediation; a subset of these participated in a randomized controlled trial (RCT) to evaluate the effectiveness of home remediation for reducing blood lead levels. One hundred and seventeen children received home remediation. One hundred and thirteen returned for follow-up blood tests, 88 of whom participated in the RCT. On average children's blood lead levels decreased by 1.7 microg/dL (10%) in the 6 months after remediation and by 2.2 microg/dL (13%) in the 6-12 months after remediation. However, remediation did not significantly change the rate of decline in blood lead levels (P=0.609). There was no evidence of association between change in children's blood lead levels and changes in lead loading in their homes. The results are consistent with the published literature, which suggests that home remediation does not reduce children's exposure to lead sufficiently to cause a moderate or greater decrease in their blood lead level. In communities where lead is widely dispersed, the study suggests that it is important to assess potential sources and pathways by which children are exposed to lead when developing an intervention plan, and the need for multiple interventions to effectively reduce blood lead levels. The findings reinforce the ongoing need for rigorous epidemiological evaluation of lead management programs to improve the evidence base, and for effective primary prevention to avoid children being exposed to lead in the first place.

  8. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment report

    International Nuclear Information System (INIS)

    Carson, J.W.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Remsen, W.E.; Tuttle, B.G.; Wilson, R.C.

    1997-09-01

    This report documents the readiness assessment for initial startup of the 300-FF-1 Remedial Action Task. A readiness assessment verifies and documents that field activities are ready to start (or restart) safely. The 300-FF-1 assessment was initiated in April 1997. Readiness assessment activities included confirming the completion of project-specific procedures and permits, training staff, obtaining support equipment, receipt and approval of subcontractor submittals, and mobilization and construction of site support systems. The scope of the 300-FF-1 Remedial Action Task includes excavation and disposal of contaminated soils at liquid waste disposal facilities and of waste in the 618-4 Burial Ground and the 300-FF-1 landfills. The scope also includes excavation of test pits and test trenches

  9. Pulse current enhanced electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.; Jensen, Pernille E.

    2012-01-01

    Energy consumption is an important factor influencing the cost of electrodialytic soil remediation (EDR). It has been indicated that the pulse current (in low frequency range) could decrease the energy consumption during EDR. This work is focused on the comparison of energy saving effect at diffe......Energy consumption is an important factor influencing the cost of electrodialytic soil remediation (EDR). It has been indicated that the pulse current (in low frequency range) could decrease the energy consumption during EDR. This work is focused on the comparison of energy saving effect...

  10. Bio remediation of inorganic contaminants; Biotratamiento de contaminantes de origen inorganico

    Energy Technology Data Exchange (ETDEWEB)

    Algucial, F J; Merino, Y [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1999-12-31

    Bio remediation is usually associated with the remediation of organic contaminants. However, there is an increasing amount of information on the application of biological systems to bio remediation of soils, sediments and water contaminated with inorganic compounds which includes metals, radionuclides and anions (e.g. nitrates and cyanides). These compounds can be toxic both to humans and to the organisms used to remediate these toxic components. In contrast to organic compounds, most inorganic contaminants cannot be degrades, but must be remediated by altering their transport properties. Immobilization, mobilization or transformation of inorganic contaminants via bioaccumulation, bi sorption, oxidation and reduction, methylation, demethylation, complexation, ligand degradation, and phytoremediation are some of the different processes applied in this type of byoremediation. This paper describes these processes. (Author) 60 refs.

  11. Cognitive Deficits in Schizophrenia: Understanding the Biological Correlates and Remediation Strategies

    Science.gov (United States)

    Tripathi, Adarsh; Shukla, Rashmi

    2018-01-01

    Cognitive deficits are one of the core symptoms of schizophrenia that evolve during the course of schizophrenia, after being originated even before the onset of illness. Existing pharmacological and biological treatment modalities fall short to meet the needs to improve the cognitive symptoms; hence, various cognitive remediation strategies have been adopted to address these deficits. Research evidences suggest that cognitive remediation measures improve the functioning, limit disability bettering the quality of life. The functional outcomes of cognitive remediation in schizophrenia are resultant of neurobiological changes in specific brain areas. Recent years witnessed significant innovations in cognitive remediation strategies in schizophrenia. This comprehensive review highlights the biological correlates of cognitive deficits in schizophrenia and the remedial measures with evidence base. PMID:29397662

  12. Trade Remedies: A Primer

    National Research Council Canada - National Science Library

    Jones, Vivian C

    2006-01-01

    The United States and many of its trading partners use laws known as trade remedies to mitigate the adverse impact of various trade practices on domestic industries and workers. U.S. antidumping laws (19 U.S.C. 1673 et seq...

  13. Trade Remedies: A Primer

    National Research Council Canada - National Science Library

    Jones, Vivian C

    2007-01-01

    The United States and many of its trading partners use laws known as trade remedies to mitigate the adverse impact of various trade practices on domestic industries and workers. U.S. antidumping (AD) laws (19 U.S.C. 1673 et seq...

  14. Trade Remedies: A Primer

    National Research Council Canada - National Science Library

    Jones, Vivian C

    2008-01-01

    The United States and many of its trading partners use laws known as trade remedies to mitigate the adverse impact of various trade practices on domestic industries and workers. U.S. antidumping (AD) laws (19 U.S.C. 1673 et seq...

  15. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  16. PROBABILISTIC RISK ANALYSIS OF REMEDIATION EFFORTS IN NAPL SITES

    Science.gov (United States)

    Fernandez-Garcia, D.; de Vries, L.; Pool, M.; Sapriza, G.; Sanchez-Vila, X.; Bolster, D.; Tartakovsky, D. M.

    2009-12-01

    The release of non-aqueous phase liquids (NAPLs) such as petroleum hydrocarbons and chlorinated solvents in the subsurface is a severe source of groundwater and vapor contamination. Because these liquids are essentially immiscible due to low solubility, these contaminants get slowly dissolved in groundwater and/or volatilized in the vadoze zone threatening the environment and public health over a long period. Many remediation technologies and strategies have been developed in the last decades for restoring the water quality properties of these contaminated sites. The failure of an on-site treatment technology application is often due to the unnoticed presence of dissolved NAPL entrapped in low permeability areas (heterogeneity) and/or the remaining of substantial amounts of pure phase after remediation efforts. Full understanding of the impact of remediation efforts is complicated due to the role of many interlink physical and biochemical processes taking place through several potential pathways of exposure to multiple receptors in a highly unknown heterogeneous environment. Due to these difficulties, the design of remediation strategies and definition of remediation endpoints have been traditionally determined without quantifying the risk associated with the failure of such efforts. We conduct a probabilistic risk assessment of the likelihood of success of an on-site NAPL treatment technology that easily integrates all aspects of the problem (causes, pathways, and receptors). Thus, the methodology allows combining the probability of failure of a remediation effort due to multiple causes, each one associated to several pathways and receptors.

  17. High Blood Pressure and Cold Remedies: Which Are Safe?

    Science.gov (United States)

    ... counter cold remedies safe for people who have high blood pressure? Answers from Sheldon G. Sheps, M.D. Over- ... remedies aren't off-limits if you have high blood pressure, but it's important to make careful choices. Among ...

  18. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  19. Summary of Remediated Nitrate Salt Surrogate Formulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leonard, Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartline, Ernest Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tian, Hongzhao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    High Explosives Science and Technology (M-7) completed all required formulation and testing of Remediated Nitrate Salt (RNS) surrogates on April 27, 2016 as specified in PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing Standard Procedure", released February 16, 2016. This report summarizes the results of the work and also includes additional documentation required in that test plan. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B. The work was carried out in three rounds, with the full matrix of samples formulated and tested in each round. Results from the first round of formulation and testing were documented in memorandum M7-J6-6042, " Results from First Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Results from the second round of formulation and testing were documented in M7-16-6053 , "Results from the Second Round of Remediated Nitrate Salt Surrogate Formulation and Testing." Initial results from the third round were documented in M7-16-6057, "Initial Results from the Third Round of Remediated Nitrate Salt Formulation and Testing."

  20. Remediation of the low-level radioactive waste tailing pond at Kowary, Poland

    International Nuclear Information System (INIS)

    Goerner, R.; Hartsch, J.; Koszela, J.; Krzyskow, A.; Machniewicz, B.; Sennewald, R.; Sowa, J.

    2002-03-01

    The last remaining uranium mining tailing pond in Poland, situated at Kowary, was the subject of the Kowary Tailing Pond Remediation Programme financed by Polish public bodies (70%) and by the European Commission (30%) within the framework of its programme of co-operation on radioactive waste issues with candidate countries. The EC-part of the project comprised investigations of the site, project management duties and large-scale civil works following the initial remediation planning performed by the Wroclaw University of Technology (WUT) in 1998-2000. The EC-part was contracted to G.E.O.S. Freiberg Ingenieurgesellschaft mbH following an Open Call for Tender launched by the European Commission in 1999. The following general tasks were performed in close co-operation with WUT, with the construction works subcontracted to local companies, as proposed in the Terms of Reference (TOR) of the EC-part: review of General Remediation Plan (GRP), technical design of the pond cover, construction work: internal drainage system, pond cover and site reclamation. From the information in the TOR, the following aims of remediation were defined: minimise the detrimental impact of the tailing pond on the environment, provide long-term stability of the slopes surrounding the pond, ensure the remediated site is in harmony with the surrounding natural scenery. Based on the experience gathered in similar projects, which had been running under PHARE-MCE or which belonged to the WISMUT-remediation programme in Germany, cost efficient remediation solutions were designed in close co-operation with all involved parties. They were delineated in the detailed planning documents approved in the overall remediation programme managed by WUT. The planned remediation works were prepared and performed successfully according to Polish law and in agreement with the competent local authorities. The aims of remediation were met. However, some additional tasks have been recommended in zones adjacent to the